WorldWideScience

Sample records for rapidly evolving chloroplast

  1. Rapid evolutionary change of common bean (Phaseolus vulgaris L plastome, and the genomic diversification of legume chloroplasts

    Directory of Open Access Journals (Sweden)

    Dávila Guillermo

    2007-07-01

    Full Text Available Abstract Background Fabaceae (legumes is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean 1. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome.

  2. Rapid evolutionary change of common bean (Phaseolus vulgaris L) plastome, and the genomic diversification of legume chloroplasts

    Science.gov (United States)

    Guo, Xianwu; Castillo-Ramírez, Santiago; González, Víctor; Bustos, Patricia; Luís Fernández-Vázquez, José; Santamaría, Rosa Isela; Arellano, Jesús; Cevallos, Miguel A; Dávila, Guillermo

    2007-01-01

    Background Fabaceae (legumes) is one of the largest families of flowering plants, and some members are important crops. In contrast to what we know about their great diversity or economic importance, our knowledge at the genomic level of chloroplast genomes (cpDNAs or plastomes) for these crops is limited. Results We sequenced the complete genome of the common bean (Phaseolus vulgaris cv. Negro Jamapa) chloroplast. The plastome of P. vulgaris is a 150,285 bp circular molecule. It has gene content similar to that of other legume plastomes, but contains two pseudogenes, rpl33 and rps16. A distinct inversion occurred at the junction points of trnH-GUG/rpl14 and rps19/rps8, as in adzuki bean [1]. These two pseudogenes and the inversion were confirmed in 10 varieties representing the two domestication centers of the bean. Genomic comparative analysis indicated that inversions generally occur in legume plastomes and the magnitude and localization of insertions/deletions (indels) also vary. The analysis of repeat sequences demonstrated that patterns and sequences of tandem repeats had an important impact on sequence diversification between legume plastomes and tandem repeats did not belong to dispersed repeats. Interestingly, P. vulgaris plastome had higher evolutionary rates of change on both genomic and gene levels than G. max, which could be the consequence of pressure from both mutation and natural selection. Conclusion Legume chloroplast genomes are widely diversified in gene content, gene order, indel structure, abundance and localization of repetitive sequences, intracellular sequence exchange and evolutionary rates. The P. vulgaris plastome is a rapidly evolving genome. PMID:17623083

  3. Developing Collective Learning Extension for Rapidly Evolving Information System Courses

    Science.gov (United States)

    Agarwal, Nitin; Ahmed, Faysal

    2017-01-01

    Due to rapidly evolving Information System (IS) technologies, instructors find themselves stuck in the constant game of catching up. On the same hand students find their skills obsolete almost as soon as they graduate. As part of IS curriculum and education, we need to emphasize more on teaching the students "how to learn" while keeping…

  4. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)

    1997-04-15

    The active region NOAA 8032 of April 15, 1997 was observed to evolve rapidly. The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. The magnetic evolution of this region is studied to ascertain its role in flare production. Large changes were observed in magnetic ...

  5. ON THE NATURE OF RAPIDLY ROTATING SINGLE EVOLVED STARS

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, R. Rodrigues; Canto Martins, B. L.; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-03-01

    We present an analysis of the nature of the rapidly rotating, apparently single giant based on rotational and radial velocity measurements carried out by the CORAVEL spectrometers. From the analyzed sample, composed of 2010 spectroscopic, apparently single, evolved stars of luminosity classes IV, III, II, and Ib with spectral types G and K, we classified 30 stars that presented unusual, moderate to rapid rotation. This work reports, for the first time, the presence of these abnormal rotators among subgiant, bright giant, and Ib supergiant stars. To date, this class of stars was reported only among giant stars of luminosity class III. Most of these abnormal rotators present an IRAS infrared excess, which, in principle, can be related to dust around these stars.

  6. The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Hanul eKim

    2015-02-01

    Full Text Available Concern about global warming has prompted an intense interest in developing economical methods of producing biofuels. Microalgae provide a promising platform for biofuel production, because they accumulate high levels of lipids, and do not compete with food or feed sources. However, current methods of producing algal oil involve subjecting the microalgae to stress conditions, such as nitrogen deprivation, and are prohibitively expensive. Here, we report that the fungicide fenpropimorph rapidly causes high levels of neutral lipids to accumulate in Chlamydomonas reinhardtii cells. When treated with fenpropimorph (10 μg mL–1 for 1 h, Chlamydomonas cells accumulated at least four-fold the amount of triacylglycerols (TAGs present in the untreated control cells. Furthermore, the quantity of TAGs present after 1 h of fenpropimorph treatment was over two-fold higher than that formed after 9 days of nitrogen starvation in medium with no acetate supplement. Biochemical analysis of lipids revealed that the accumulated TAGs were derived mainly from chloroplast polar membrane lipids. Such a conversion of chloroplast polar lipids to TAGs is desirable for biodiesel production, because polar lipids are usually removed during the biodiesel production process. Thus, our data exemplified that a cost and time effective method of producing TAGs is possible using fenpropimorph or similar drugs.

  7. Microsatellites evolve more rapidly in humans than in chimpanzees

    Energy Technology Data Exchange (ETDEWEB)

    Rubinsztein, D.C.; Leggo, J.; Amos, W. [Cambridge Univ. (United Kingdom)

    1995-12-10

    Microsatellites are highly polymorphic markers consisting of varying numbers of tandem repeats. At different loci, these repeats can consist of one to five nucleotides. Microsatellites have been used in many fields of genetics, including genetic mapping, linkage disequilibrium analyses, forensic studies, and population genetics. It is important that we understand their mutational processes better so that they can be exploited optimally for studies of human diversity and evolutionary genetics. We have analyzed 24 microsatellite loci in chimpanzees, East Anglians, and Sub-Saharan Africans. The stepwise-weighted genetic distances between the humans and the chimpanzees and between the two human populations were calculated according to the method described by Deka et al. The ratio of the genetic distances between the chimpanzees and the humans relative to that between the Africans and the East Anglians was more than 10 times smaller than expected. This suggests that microsatellites have evolved more rapidly in humans than in chimpanzees. 12 refs., 1 tab.

  8. Histone variant innovation in a rapidly evolving chordate lineage

    Directory of Open Access Journals (Sweden)

    Jansen Pascal WTC

    2011-07-01

    Full Text Available Abstract Background Histone variants alter the composition of nucleosomes and play crucial roles in transcription, chromosome segregation, DNA repair, and sperm compaction. Modification of metazoan histone variant lineages occurs on a background of genome architecture that shows global similarities from sponges to vertebrates, but the urochordate, Oikopleura dioica, a member of the sister group to vertebrates, exhibits profound modification of this ancestral architecture. Results We show that a histone complement of 47 gene loci encodes 31 histone variants, grouped in distinct sets of developmental expression profiles throughout the life cycle. A particularly diverse array of 15 male-specific histone variants was uncovered, including a testes-specific H4t, the first metazoan H4 sequence variant reported. Universal histone variants H3.3, CenH3, and H2A.Z are present but O. dioica lacks homologs of macroH2A and H2AX. The genome encodes many H2A and H2B variants and the repertoire of H2A.Z isoforms is expanded through alternative splicing, incrementally regulating the number of acetylatable lysine residues in the functionally important N-terminal "charge patch". Mass spectrometry identified 40 acetylation, methylation and ubiquitylation posttranslational modifications (PTMs and showed that hallmark PTMs of "active" and "repressive" chromatin were present in O. dioica. No obvious reduction in silent heterochromatic marks was observed despite high gene density in this extraordinarily compacted chordate genome. Conclusions These results show that histone gene complements and their organization differ considerably even over modest phylogenetic distances. Substantial innovation among all core and linker histone variants has evolved in concert with adaptation of specific life history traits in this rapidly evolving chordate lineage.

  9. Multivariate sexual selection in a rapidly evolving speciation phenotype.

    Science.gov (United States)

    Oh, Kevin P; Shaw, Kerry L

    2013-06-22

    Estimating the fitness surface of rapidly evolving secondary sexual traits can elucidate the origins of sexual isolation and thus speciation. Evidence suggests that sexual selection is highly complex in nature, often acting on multivariate sexual characters that sometimes include non-heritable components of variation, thus presenting a challenge for predicting patterns of sexual trait evolution. Laupala crickets have undergone an explosive species radiation marked by divergence in male courtship song and associated female preferences, yet patterns of sexual selection that might explain this diversification remain unknown. We used female phonotaxis trials to estimate the fitness surface for acoustic characters within one population of Laupala cerasina, a species with marked geographical variation in male song and female preferences. Results suggested significant directional sexual selection on three major song traits, while canonical rotation of the matrix of nonlinear selection coefficients (γ) revealed the presence of significant convex (stabilizing) sexual selection along combinations of characters. Analysis of song variation within and among males indicated significantly higher repeatability along the canonical axis of greatest stabilizing selection than along the axis of greatest linear selection. These results are largely consistent with patterns of song divergence that characterize speciation and suggest that different song characters have the potential to indicate distinct information to females during courtship.

  10. Reproductive behaviour evolves rapidly when intralocus sexual conflict is removed.

    Directory of Open Access Journals (Sweden)

    Stéphanie Bedhomme

    Full Text Available BACKGROUND: Intralocus sexual conflict can inhibit the evolution of each sex towards its own fitness optimum. In a previous study, we confirmed this prediction through the experimental removal of female selection pressures in Drosophila melanogaster, achieved by limiting the expression of all major chromosomes to males. Compared to the control populations (C(1-4 where the genomes are exposed to selection in both sexes, the populations with male-limited genomes (ML(1-4 showed rapid increases in male fitness, whereas the fitness of females expressing ML-evolved chromosomes decreased. METHODOLOGY/PRINCIPAL FINDINGS: Here we examine the behavioural phenotype underlying this sexual antagonism. We show that males expressing the ML genomes have a reduced courtship level but acquire the same number of matings. On the other hand, our data suggest that females expressing the ML genomes had reduced attractiveness, stimulating a lower rate of courtship from males. Moreover, females expressing ML genomes tend to display reduced yeast-feeding behaviour, which is probably linked to the reduction of their fecundity. CONCLUSION/SIGNIFICANCE: These results suggest that reproductive behaviour is shaped by opposing selection on males and females, and that loci influencing attractiveness and foraging were polymorphic for alleles with sexually antagonistic expression patterns prior to ML selection. Hence, intralocus sexual conflict appears to play a role in the evolution of a wide range of fitness-related traits and may be a powerful mechanism for the maintenance of genetic variation in fitness.

  11. Chloroplast biogenesis-associated nuclear genes: Control by plastid signals evolved prior to their regulation as part of photomorphogenesis.

    Directory of Open Access Journals (Sweden)

    Alison C HIlls

    2015-12-01

    Full Text Available The assembly of photosynthetically-competent chloroplasts occurs in angiosperm seedlings when first exposed to light, and is due to the control by light of photosynthesis-associated nuclear genes (PhANGs, also dependent upon plastid-to-nucleus biogenic communication signals. The relationship between light- and plastid signal-regulation of PhANGs is close but poorly understood. In contrast, many conifers green in the dark and the promoter of a pine PhANG, Lhcb, is active in the dark in tobacco. Here we show that the activity of this promoter in tobacco is sensitive to plastid photobleaching, or to the inhibition of plastid translation in the light or the dark, and the same interventions reduce expression of the native gene in pine seedlings, demonstrating classic plastid biogenic signalling in gymnosperms. Furthermore, Arabidopsis mutations causing defective plastid biogenesis suppress the effect in darkness of mutations in COP1 and DET1, repressors of photomorphogenesis, for the expression of several PhANGs but not a photosynthesis-unrelated, light-regulated gene. GLK transcriptional regulators mediate the response of LHCB but not of other tested PhANGs. We propose gain of the ability by repressors of photomorphogenesis to suppress the response of PhANG promoters to positive plastid biogenic signals in the dark to have contributed to the evolution of light control of chloroplast biogenesis.

  12. How rapidly does the human mitochondrial genome evolve?

    Energy Technology Data Exchange (ETDEWEB)

    Howell, N.; Kubacka, I. [Univ. of Texas Medical Branch, Galveston, TX (United States); Mackey, D.A. [Univ. of Melbourne (Australia)]|[Univ. of Tasmania, Launceston (Australia)

    1996-09-01

    The results of an empirical nucleotide-sequencing approach indicate that the evolution of the human mitochondrial noncoding D-loop is both more rapid and more complex than is revealed by standard phylogenetic approaches. The nucleotide sequence of the D-loop region of the mitochondrial genome was determined for 45 members of a large matrilineal Leber hereditary optic neuropathy pedigree. Two germ-line mutations have arisen in members of one branch of the family, thereby leading to triplasmic descendants with three mitochondrial genotypes. Segregation toward the homoplasmic state can occur within a single generation in some of these descendants, a result that suggests rapid fixation of mitochondrial mutations as a result of developmental bottlenecking. However, slow segregation was observed in other offspring, and therefore no single or simple pattern of segregation can be generalized from the available data. Evidence for rare mtDNA recombination within the D-loop was obtained for one family member. In addition to these germ-line mutations, a somatic mutation was found in the D-loop of one family member. When this genealogical approach was applied to the nucleotide sequences of mitochondrial coding regions, the results again indicated a very rapid rate of evolution. 44 refs., 2 figs., 2 tabs.

  13. Genetic basis for rapidly evolved tolerance in the wild ...

    Science.gov (United States)

    Atlantic killifish (Fundulus heteroclitus) residing in some urban and industrialized estuaries of the US eastern seaboard demonstrate recently evolved and extreme tolerance to toxic aryl hydrocarbon pollutants, characterized as dioxin-like compounds (DLCs). Here we provide an unusually comprehensive accounting (69%) through Quantitative Trait Locus (QTL) analysis of the genetic basis for DLC tolerance in killifish inhabiting an urban estuary contaminated with PCB congeners, the most toxic of which are DLCs. Consistent with mechanistic knowledge of DLC toxicity in fish and other vertebrates, the Aryl Hydrocarbon Receptor (ahr2) region accounts for 17% of trait variation; however, QTLs on independent linkage groups and their interactions have even greater explanatory power (44%). QTLs interpreted within the context of recently available Fundulus genomic resources and shared synteny among fish species suggest adaptation via inter-acting components of a complex stress response network. Some QTLs were also enriched in other killifish populations characterized as DLC tolerant and residing in distant urban estuaries contaminated with unique mixtures of pollutants. Together, our results suggest that DLC tolerance in killifish represents an emerging example of parallel contemporary evolution that has been driven by intense human-mediated selection on natural populations. This manuscript describes experimental studies that contribute to our understanding of the ecological

  14. A rapidly evolving secretome builds and patterns a sea shell

    Directory of Open Access Journals (Sweden)

    Green Kathryn

    2006-11-01

    Full Text Available Abstract Background Instructions to fabricate mineralized structures with distinct nanoscale architectures, such as seashells and coral and vertebrate skeletons, are encoded in the genomes of a wide variety of animals. In mollusks, the mantle is responsible for the extracellular production of the shell, directing the ordered biomineralization of CaCO3 and the deposition of architectural and color patterns. The evolutionary origins of the ability to synthesize calcified structures across various metazoan taxa remain obscure, with only a small number of protein families identified from molluskan shells. The recent sequencing of a wide range of metazoan genomes coupled with the analysis of gene expression in non-model animals has allowed us to investigate the evolution and process of biomineralization in gastropod mollusks. Results Here we show that over 25% of the genes expressed in the mantle of the vetigastropod Haliotis asinina encode secreted proteins, indicating that hundreds of proteins are likely to be contributing to shell fabrication and patterning. Almost 85% of the secretome encodes novel proteins; remarkably, only 19% of these have identifiable homologues in the full genome of the patellogastropod Lottia scutum. The spatial expression profiles of mantle genes that belong to the secretome is restricted to discrete mantle zones, with each zone responsible for the fabrication of one of the structural layers of the shell. Patterned expression of a subset of genes along the length of the mantle is indicative of roles in shell ornamentation. For example, Has-sometsuke maps precisely to pigmentation patterns in the shell, providing the first case of a gene product to be involved in molluskan shell pigmentation. We also describe the expression of two novel genes involved in nacre (mother of pearl deposition. Conclusion The unexpected complexity and evolvability of this secretome and the modular design of the molluskan mantle enables

  15. EVOLVE

    CERN Document Server

    Deutz, André; Schütze, Oliver; Legrand, Pierrick; Tantar, Emilia; Tantar, Alexandru-Adrian

    2017-01-01

    This book comprises nine selected works on numerical and computational methods for solving multiobjective optimization, game theory, and machine learning problems. It provides extended versions of selected papers from various fields of science such as computer science, mathematics and engineering that were presented at EVOLVE 2013 held in July 2013 at Leiden University in the Netherlands. The internationally peer-reviewed papers include original work on important topics in both theory and applications, such as the role of diversity in optimization, statistical approaches to combinatorial optimization, computational game theory, and cell mapping techniques for numerical landscape exploration. Applications focus on aspects including robustness, handling multiple objectives, and complex search spaces in engineering design and computational biology.

  16. Rapid and systemic accumulation of chloroplast mRNA-binding protein transcripts after flame stimulus in tomato

    Science.gov (United States)

    Vian, A.; Henry-Vian, C.; Davies, E.

    1999-01-01

    It has been shown that tomato (Lycopersicon esculentum) plants respond to flame wounding and electrical stimulation by a rapid (15 min) and systemic up-regulation of proteinase inhibitor (pin) genes. To find other genes having a similar expression pattern, we used subtractive cDNA screening between flamed and control plants to select clones up-regulated by flame wounding. We report the characterization of one of them, a chloroplast mRNA-binding protein encoded by a single gene and expressed preferentially in the leaves. Systemic gene expression in response to flaming in the youngest terminal leaf exhibited three distinct phases: a rapid and transient increase (5-15 min) in transcript accumulation, a decline to basal levels (15-45 min), and then a second, more prolonged increase (60-90 min). In contrast, after a mechanical wound the rapid, transient increase (5 min) was followed by a rapid decline to basal levels but no later, prolonged accumulation. In the petiole, the initial flame-wound-evoked transient increase (15 min) was followed by a continuous decline for 3 h. The nature of the wound signal(s) causing such rapid changes in transcript abundance is discussed in relation to electrical signaling, which has recently been implicated in plant responses to wounding.

  17. Rapid determination of the damage to photosynthesis caused by salt and osmotic stresses using delayed fluorescence of chloroplasts.

    Science.gov (United States)

    Zhang, Lingrui; Xing, Da

    2008-03-01

    Chloroplasts are one of the most susceptible systems to salt and osmotic stresses. Based on quantitative measurements of delayed fluorescence (DF) of the chloroplasts, we have investigated the damage to photosynthesis caused by these two kinds of stresses in Arabidopsis seedlings by using a custom-built multi-channel biosensor. Results showed that the DF intensity and net photosynthesis rate (Pn) decreased in a similar way with increasing NaCl or sorbitol concentration. Incubation of the seedlings in 200 mM NaCl induced a rapid and reversible decline and subsequent slow and irreversible loss in both the DF intensity and Pn. The rapid decline was dominantly related to osmotic stress, whereas the slow declines in the DF intensity and Pn were specific to ionic stress and could be reversed to a similar extent by a Na+-channel blocker. The DF intensity and Pn also exhibited a similar response to irradiation light under NaCl or sorbitol stress. All results indicated that the DF intensity correlated well with Pn under salt and osmotic stresses. We thus conclude that DF is an excellent marker for detecting the damage to photosynthesis caused by these two stresses. The mechanism of the correlation between the DF intensity and Pn under salt and osmotic stresses was also analyzed in theory and investigated with experiments by measuring intercellular CO2 concetration (Ci), stomatal conductance (Gs), chlorophyll fluorescence parameter, and chlorophyll content. This proposed DF technique holds the potential to be a useful means for analyzing the dynamics of salt and osmotic stresses in vivo and elucidating the mechanism by which plants respond to stress.

  18. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    Science.gov (United States)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  19. Chloroplast immunophilins.

    Science.gov (United States)

    Tomašić Paić, Ana; Fulgosi, Hrvoje

    2016-03-01

    Immunophilins occur in almost all living organisms. They are ubiquitously expressed proteins including cyclophilins, FK506/rapamycin-binding proteins, and parvulins. Their functional significance in vascular plants is mostly related to plant developmental processes, signalling, and regulation of photosynthesis. Enzymatically active immunophilins catalyse isomerization of proline imidic peptide bonds and assist in rapid folding of nascent proline-containing polypeptides. They also participate in protein trafficking and assembly of supramolecular protein complexes. Complex immunophilins possess various additional functional domains associated with a multitude of molecular interactions. A considerable number of immunophilins act as auxiliary and/or regulatory proteins in highly specialized cellular compartments, such as lumen of thylakoids. In this review, we present a comprehensive overview of so far identified chloroplast immunophilins that assist in specific assembly/repair processes necessary for the maintenance of efficient photosynthetic energy conversion.

  20. Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins

    Directory of Open Access Journals (Sweden)

    Tsoka Sophia

    2011-05-01

    Full Text Available Abstract Background Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation. Results We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes. Conclusions Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.

  1. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (venoms. Protein evolutionary rates were positively correlated with transcriptomic and proteomic abundances, and the most abundant proteins showed positive selection. This pattern holds with the addition of four other published crotaline transcriptomes, from two more genera, and also for the recently published king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we

  2. Rodent-specific alternative exons are more frequent in rapidly evolving genes and in paralogs

    Directory of Open Access Journals (Sweden)

    Mironov Andrey A

    2009-06-01

    Full Text Available Abstract Background Alternative splicing is an important mechanism for generating functional and evolutionary diversity of proteins in eukaryotes. Here, we studied the frequency and functionality of recently gained, rodent-specific alternative exons. Results We projected the data about alternative splicing of mouse genes to the rat, human, and dog genomes, and identified exons conserved in the rat genome, but missing in more distant genomes. We estimated the frequency of rodent-specific exons while controlling for possible residual conservation of spurious exons. The frequency of rodent-specific exons is higher among predominantly skipped exons and exons disrupting the reading frame. Separation of all genes by the rate of sequence evolution and by gene families has demonstrated that rodent-specific cassette exons are more frequent in rapidly evolving genes and in rodent-specific paralogs. Conclusion Thus we demonstrated that recently gained exons tend to occur in fast-evolving genes, and their inclusion rate tends to be lower than that of older exons. This agrees with the theory that gain of alternative exons is one of the major mechanisms of gene evolution.

  3. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.

    Science.gov (United States)

    Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M

    2017-08-01

    Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Genome-Wide Analysis in Three Fusarium Pathogens Identifies Rapidly Evolving Chromosomes and Genes Associated with Pathogenicity

    Science.gov (United States)

    Sperschneider, Jana; Gardiner, Donald M.; Thatcher, Louise F.; Lyons, Rebecca; Singh, Karam B.; Manners, John M.; Taylor, Jennifer M.

    2015-01-01

    Pathogens and hosts are in an ongoing arms race and genes involved in host–pathogen interactions are likely to undergo diversifying selection. Fusarium plant pathogens have evolved diverse infection strategies, but how they interact with their hosts in the biotrophic infection stage remains puzzling. To address this, we analyzed the genomes of three Fusarium plant pathogens for genes that are under diversifying selection. We found a two-speed genome structure both on the chromosome and gene group level. Diversifying selection acts strongly on the dispensable chromosomes in Fusarium oxysporum f. sp. lycopersici and on distinct core chromosome regions in Fusarium graminearum, all of which have associations with virulence. Members of two gene groups evolve rapidly, namely those that encode proteins with an N-terminal [SG]-P-C-[KR]-P sequence motif and proteins that are conserved predominantly in pathogens. Specifically, 29 F. graminearum genes are rapidly evolving, in planta induced and encode secreted proteins, strongly pointing toward effector function. In summary, diversifying selection in Fusarium is strongly reflected as genomic footprints and can be used to predict a small gene set likely to be involved in host–pathogen interactions for experimental verification. PMID:25994930

  5. Sensationalistic journalism and tales of snakebite: are rattlesnakes rapidly evolving more toxic venom?

    Science.gov (United States)

    Hayes, William K; Mackessy, Stephen P

    2010-03-01

    Recent reports in the lay press have suggested that bites by rattlesnakes in the last several years have been more severe than those in the past. The explanation, often citing physicians, is that rattlesnakes are evolving more toxic venom, perhaps in response to anthropogenic causes. We suggest that other explanations are more parsimonious, including factors dependent on the snake and factors associated with the bite victim's response to envenomation. Although bites could become more severe from an increased proportion of bites from larger or more provoked snakes (ie, more venom injected), the venom itself evolves much too slowly to explain the severe symptoms occasionally seen. Increased snakebite severity could also result from a number of demographic changes in the victim profile, including age and body size, behavior toward the snake (provocation), anatomical site of bite, clothing, and general health including asthma prevalence and sensitivity to foreign antigens. Clinical management of bites also changes perpetually, rendering comparisons of snakebite severity over time tenuous. Clearly, careful study taking into consideration many factors will be essential to document temporal changes in snakebite severity or venom toxicity. Presently, no published evidence for these changes exists. The sensationalistic coverage of these atypical bites and accompanying speculation is highly misleading and can produce many detrimental results, such as inappropriate fear of the outdoors and snakes, and distraction from proven snakebite management needs, including a consistent supply of antivenom, adequate health care, and training. We urge healthcare providers to avoid propagating misinformation about snakes and snakebites. Copyright (c) 2010 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  6. Navigating the Perfect Storm: Research Strategies for Socialecological Systems in a Rapidly Evolving World

    Science.gov (United States)

    Dearing, John A.; Bullock, Seth; Costanza, Robert; Dawson, Terry P.; Edwards, Mary E.; Poppy, Guy M.; Smith, Graham M.

    2012-04-01

    The `Perfect Storm' metaphor describes a combination of events that causes a surprising or dramatic impact. It lends an evolutionary perspective to how social-ecological interactions change. Thus, we argue that an improved understanding of how social-ecological systems have evolved up to the present is necessary for the modelling, understanding and anticipation of current and future social-ecological systems. Here we consider the implications of an evolutionary perspective for designing research approaches. One desirable approach is the creation of multi-decadal records produced by integrating palaeoenvironmental, instrument and documentary sources at multiple spatial scales. We also consider the potential for improved analytical and modelling approaches by developing system dynamical, cellular and agent-based models, observing complex behaviour in social-ecological systems against which to test systems dynamical theory, and drawing better lessons from history. Alongside these is the need to find more appropriate ways to communicate complex systems, risk and uncertainty to the public and to policy-makers.

  7. From Rapid to Delayed and Remote Postconditioning: the Evolving Concept of Ischemic Postconditioning in Brain Ischemia

    Science.gov (United States)

    Zhao, Heng; Ren, Chuancheng; Chen, Xingmiao; Shen, Jiangang

    2012-01-01

    Ischemic postconditioning is a concept originally defined to contrast with that of ischemic preconditioning. While both preconditioning and postconditioning confer a neuroprotective effect on brain ischemia, preconditioning is a sublethal insult performed in advance of brain ischemia, and postconditioning, which conventionally refers to a series of brief occlusions and reperfusions of the blood vessels, is conducted after ischemia/reperfusion. In this article, we first briefly review the history of preconditioning, including the experimentation that initially uncovered its neuroprotective effects and later revealed its underlying mechanisms-of-action. We then discuss how preconditioning research evolved into that of postconditioning – a concept that now represents a broad range of stimuli or triggers, including delayed postconditioning, pharmacological postconditioning, remote postconditioning – and its underlying protective mechanisms involving the Akt, MAPK, PKC and KATP channel cell-signaling pathways. Because the concept of postconditioning is so closely associated with that of preconditioning, and both share some common protective mechanisms, we also discuss whether a combination of preconditioning and postconditioning offers greater protection than preconditioning or postconditioning alone. PMID:22204317

  8. Cloning of novel rice blast resistance genes from two rapidly evolving NBS-LRR gene families in rice.

    Science.gov (United States)

    Guo, Changjiang; Sun, Xiaoguang; Chen, Xiao; Yang, Sihai; Li, Jing; Wang, Long; Zhang, Xiaohui

    2016-01-01

    Most rice blast resistance genes (R-genes) encode proteins with nucleotide-binding site (NBS) and leucine-rich repeat (LRR) domains. Our previous study has shown that more rice blast R-genes can be cloned in rapidly evolving NBS-LRR gene families. In the present study, two rapidly evolving R-gene families in rice were selected for cloning a subset of genes from their paralogs in three resistant rice lines. A total of eight functional blast R-genes were identified among nine NBS-LRR genes, and some of these showed resistance to three or more blast strains. Evolutionary analysis indicated that high nucleotide diversity of coding regions served as important parameters in the determination of gene resistance. We also observed that amino-acid variants (nonsynonymous mutations, insertions, or deletions) in essential motifs of the NBS domain contribute to the blast resistance capacity of NBS-LRR genes. These results suggested that the NBS regions might also play an important role in resistance specificity determination. On the other hand, different splicing patterns of introns were commonly observed in R-genes. The results of the present study contribute to improving the effectiveness of R-gene identification by using evolutionary analysis method and acquisition of novel blast resistance genes.

  9. Consumer Health Informatics: Past, Present, and Future of a Rapidly Evolving Domain.

    Science.gov (United States)

    Demiris, G

    2016-05-20

    Consumer Health Informatics (CHI) is a rapidly growing domain within the field of biomedical and health informatics. The objective of this paper is to reflect on the past twenty five years and showcase informatics concepts and applications that led to new models of care and patient empowerment, and to predict future trends and challenges for the next 25 years. We discuss concepts and systems based on a review and analysis of published literature in the consumer health informatics domain in the last 25 years. The field was introduced with the vision that one day patients will be in charge of their own health care using informatics tools and systems. Scientific literature in the field originally focused on ways to assess the quality and validity of available printed health information, only to grow significantly to cover diverse areas such as online communities, social media, and shared decision-making. Concepts such as home telehealth, mHealth, and the quantified-self movement, tools to address transparency of health care organizations, and personal health records and portals provided significant milestones in the field. Consumers are able to actively participate in the decision-making process and to engage in health care processes and decisions. However, challenges such as health literacy and the digital divide have hindered us from maximizing the potential of CHI tools with a significant portion of underserved populations unable to access and utilize them. At the same time, at a global scale consumer tools can increase access to care for underserved populations in developing countries. The field continues to grow and emerging movements such as precision medicine and the sharing economy will introduce new opportunities and challenges.

  10. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    Science.gov (United States)

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  11. Rapidly evolving marmoset MSMB genes are differently expressed in the male genital tract

    Directory of Open Access Journals (Sweden)

    Ceder Yvonne

    2009-09-01

    Full Text Available Abstract Background Beta-microseminoprotein, an abundant component in prostatic fluid, is encoded by the potential tumor suppressor gene MSMB. Some New World monkeys carry several copies of this gene, in contrast to most mammals, including humans, which have one only. Here we have investigated the background for the species difference by analyzing the chromosomal organization and expression of MSMB in the common marmoset (Callithrix jacchus. Methods Genes were identified in the Callithrix jacchus genome database using bioinformatics and transcripts were analyzed by RT-PCR and quantified by real time PCR in the presence of SYBR green. Results The common marmoset has five MSMB: one processed pseudogene and four functional genes. The latter encompass homologous genomic regions of 32-35 kb, containing the genes of 12-14 kb and conserved upstream and downstream regions of 14-19 kb and 3-4 kb. One gene, MSMB1, occupies the same position on the chromosome as the single human gene. On the same chromosome, but several Mb away, is another MSMB locus situated with MSMB2, MSMB3 and MSMB4 arranged in tandem. Measurements of transcripts demonstrated that all functional genes are expressed in the male genital tract, generating very high transcript levels in the prostate. The transcript levels in seminal vesicles and testis are two and four orders of magnitude lower. A single gene, MSMB3, accounts for more than 90% of MSMB transcripts in both the prostate and the seminal vesicles, whereas in the testis around half of the transcripts originate from MSMB2. These genes display rapid evolution with a skewed distribution of mutated nucleotides; in MSMB2 they affect nucleotides encoding the N-terminal Greek key domain, whereas in MSMB3 it is the C-terminal MSMB-unique domain that is affected. Conclusion Callitrichide monkeys have four functional MSMB that are all expressed in the male genital tract, but the product from one gene, MSMB3, will predominate in seminal

  12. De novo ORFs in Drosophila are important to organismal fitness and evolved rapidly from previously non-coding sequences.

    Directory of Open Access Journals (Sweden)

    Josephine A Reinhardt

    Full Text Available How non-coding DNA gives rise to new protein-coding genes (de novo genes is not well understood. Recent work has revealed the origins and functions of a few de novo genes, but common principles governing the evolution or biological roles of these genes are unknown. To better define these principles, we performed a parallel analysis of the evolution and function of six putatively protein-coding de novo genes described in Drosophila melanogaster. Reconstruction of the transcriptional history of de novo genes shows that two de novo genes emerged from novel long non-coding RNAs that arose at least 5 MY prior to evolution of an open reading frame. In contrast, four other de novo genes evolved a translated open reading frame and transcription within the same evolutionary interval suggesting that nascent open reading frames (proto-ORFs, while not required, can contribute to the emergence of a new de novo gene. However, none of the genes arose from proto-ORFs that existed long before expression evolved. Sequence and structural evolution of de novo genes was rapid compared to nearby genes and the structural complexity of de novo genes steadily increases over evolutionary time. Despite the fact that these genes are transcribed at a higher level in males than females, and are most strongly expressed in testes, RNAi experiments show that most of these genes are essential in both sexes during metamorphosis. This lethality suggests that protein coding de novo genes in Drosophila quickly become functionally important.

  13. The Genomics, Epigenomics, and Transcriptomics of HPV-Associated Oropharyngeal Cancer--Understanding the Basis of a Rapidly Evolving Disease.

    Science.gov (United States)

    Lechner, M; Fenton, T R

    2016-01-01

    Human papillomavirus (HPV) has been shown to represent a major independent risk factor for head and neck squamous cell cancer, in particular for oropharyngeal carcinoma. This type of cancer is rapidly evolving in the Western world, with rising trends particularly in the young, and represents a distinct epidemiological, clinical, and molecular entity. It is the aim of this review to give a detailed description of genomic, epigenomic, transcriptomic, and posttranscriptional changes that underlie the phenotype of this deadly disease. The review will also link these changes and examine what is known about the interactions between the host genome and viral genome, and investigate changes specific for the viral genome. These data are then integrated into an updated model of HPV-induced head and neck carcinogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Patient with rapidly evolving neurological disease with neuropathological lesions of Creutzfeldt-Jakob disease, Lewy body dementia, chronic subcortical vascular encephalopathy and meningothelial meningioma.

    Science.gov (United States)

    Vita, Maria Gabriella; Tiple, Dorina; Bizzarro, Alessandra; Ladogana, Anna; Colaizzo, Elisa; Capellari, Sabina; Rossi, Marcello; Parchi, Piero; Masullo, Carlo; Pocchiari, Maurizio

    2017-04-01

    We report a case of rapidly evolving neurological disease in a patient with neuropathological lesions of Creutzfeldt-Jakob disease (CJD), Lewy body dementia (LBD), chronic subcortical vascular encephalopathy and meningothelial meningioma. The coexistence of severe multiple pathologies in a single patient strengthens the need to perform accurate clinical differential diagnoses in rapidly progressive dementias. © 2016 Japanese Society of Neuropathology.

  15. Complex chloroplast RNA metabolism: just debugging the genetic programme?

    Directory of Open Access Journals (Sweden)

    Schmitz-Linneweber Christian

    2008-08-01

    Full Text Available Abstract Background The gene expression system of chloroplasts is far more complex than that of their cyanobacterial progenitor. This gain in complexity affects in particular RNA metabolism, specifically the transcription and maturation of RNA. Mature chloroplast RNA is generated by a plethora of nuclear-encoded proteins acquired or recruited during plant evolution, comprising additional RNA polymerases and sigma factors, and sequence-specific RNA maturation factors promoting RNA splicing, editing, end formation and translatability. Despite years of intensive research, we still lack a comprehensive explanation for this complexity. Results We inspected the available literature and genome databases for information on components of RNA metabolism in land plant chloroplasts. In particular, new inventions of chloroplast-specific mechanisms and the expansion of some gene/protein families detected in land plants lead us to suggest that the primary function of the additional nuclear-encoded components found in chloroplasts is the transgenomic suppression of point mutations, fixation of which occurred due to an enhanced genetic drift exhibited by chloroplast genomes. We further speculate that a fast evolution of transgenomic suppressors occurred after the water-to-land transition of plants. Conclusion Our inspections indicate that several chloroplast-specific mechanisms evolved in land plants to remedy point mutations that occurred after the water-to-land transition. Thus, the complexity of chloroplast gene expression evolved to guarantee the functionality of chloroplast genetic information and may not, with some exceptions, be involved in regulatory functions.

  16. Complete chloroplast genome of the genus Cymbidium: lights into the species identification, phylogenetic implications and population genetic analyses

    Science.gov (United States)

    2013-01-01

    Background Cymbidium orchids, including some 50 species, are the famous flowers, and they possess high commercial value in the floricultural industry. Furthermore, the values of different orchids are great differences. However, species identification is very difficult. To a certain degree, chloroplast DNA sequence data are a versatile tool for species identification and phylogenetic implications in plants. Different chloroplast loci have been utilized for evaluating phylogenetic relationships at each classification level among plant species, including at the interspecies and intraspecies levels. However, there is no evidence that a short sequence can distinguish all plant species from each other in order to infer phylogenetic relationships. Molecular markers derived from the complete chloroplast genome can provide effective tools for species identification and phylogenetic resolution. Results The complete nucleotide sequences of eight individuals from a total of five Cymbidium species’ chloroplast (cp) genomes were determined using Illumina sequencing technology of the total DNA via a combination of de novo and reference-guided assembly. The length of the Cymbidium cp genome is about 155 kb. The cp genomes contain 123 unique genes, and the IR regions contain 24 duplicates. Although the genomes, including genome structure, gene order and orientation, are similar to those of other orchids, they are not evolutionarily conservative. The cp genome of Cymbidium evolved moderately with more than 3% sequence divergence, which could provide enough information for phylogeny. Rapidly evolving chloroplast genome regions were identified and 11 new divergence hotspot regions were disclosed for further phylogenetic study and species identification in Orchidaceae. Conclusions Phylogenomic analyses were conducted using 10 complete chloroplast genomes from seven orchid species. These data accurately identified the individuals and established the phylogenetic relationships between

  17. Phylogenetic utility of rapidly evolving DNA at high taxonomical levels: contrasting matK, trnT-F, and rbcL in basal angiosperms.

    Science.gov (United States)

    Müller, Kai F; Borsch, Thomas; Hilu, Khidir W

    2006-10-01

    The prevailing view in molecular systematics is that relationships among distantly related taxa should be inferred using DNA segments with low rates of evolution. However, recent analyses of sequences from the rapidly evolving matK and trnT-trnF regions yielded well resolved and highly supported trees for early diverging angiosperms. We compare here the phylogenetic structure in matK, trnT-F, and rbcL datasets for the same 42, primarily basal angiosperm taxa. Phylogenetic trees based on matK or trnT-F are far more robust than those based on rbcL. Combined analysis of the rapidly evolving regions provides support for higher-level relationships stronger than that derived from analyses of multi-gene datasets of up to several fold the number of characters analyzed here. In addition to displaying a higher percentage of parsimony-informative characters, the average phylogenetic signal per informative character is significantly higher in the datasets from rapidly evolving DNA than in the more slowly evolving rbcL, as detected using resampling of identical numbers of parsimony-informative characters from the data matrices and subjecting different statistics for overall tree robustness and phylogenetic signal to significance tests. Automated via a set of scripts, the method used here should be easily extendable to comparisons of a broader range of genomic regions for varying taxon samplings. The relative performance of markers correlates not only with a lower mean homoplasy in matK and trnT-trnF compared to rbcL, but in particular correlates negatively with the percentage of sites exhibiting maximum or close to maximum homoplasy. A likelihood ratio test confirms that the rapidly evolving gene matK evolves significantly closer to neutrality, which may be one of the underlying factors for lower levels of overall homoplasy. Our results are in line with evidence from simulation studies suggesting that the deleterious effect of multiple hits in using rapidly evolving DNA at

  18. Salinity Response in Chloroplasts: Insights from Gene Characterization

    Directory of Open Access Journals (Sweden)

    Jinwei Suo

    2017-05-01

    Full Text Available Salinity is a severe abiotic stress limiting agricultural yield and productivity. Plants have evolved various strategies to cope with salt stress. Chloroplasts are important photosynthesis organelles, which are sensitive to salinity. An understanding of molecular mechanisms in chloroplast tolerance to salinity is of great importance for genetic modification and plant breeding. Previous studies have characterized more than 53 salt-responsive genes encoding important chloroplast-localized proteins, which imply multiple vital pathways in chloroplasts in response to salt stress, such as thylakoid membrane organization, the modulation of photosystem II (PS II activity, carbon dioxide (CO2 assimilation, photorespiration, reactive oxygen species (ROS scavenging, osmotic and ion homeostasis, abscisic acid (ABA biosynthesis and signaling, and gene expression regulation, as well as protein synthesis and turnover. This review presents an overview of salt response in chloroplasts revealed by gene characterization efforts.

  19. Auxin and chloroplast movements.

    Science.gov (United States)

    Eckstein, Aleksandra; Krzeszowiec, Weronika; Waligórski, Piotr; Gabryś, Halina

    2016-03-01

    Auxin is involved in a wide spectrum of physiological processes in plants, including responses controlled by the blue light photoreceptors phototropins: phototropic bending and stomatal movement. However, the role of auxin in phototropin-mediated chloroplast movements has never been studied. To address this question we searched for potential interactions between auxin and the chloroplast movement signaling pathway using different experimental approaches and two model plants, Arabidopsis thaliana and Nicotiana tabacum. We observed that the disturbance of auxin homeostasis by shoot decapitation caused a decrease in chloroplast movement parameters, which could be rescued by exogenous auxin application. In several cases, the impairment of polar auxin transport, by chemical inhibitors or in auxin carrier mutants, had a similar negative effect on chloroplast movements. This inhibition was not correlated with changes in auxin levels. Chloroplast relocations were also affected by the antiauxin p-chlorophenoxyisobutyric acid and mutations in genes encoding some of the elements of the SCF(TIR1)-Aux/IAA auxin receptor complex. The observed changes in chloroplast movement parameters are not prominent, which points to a modulatory role of auxin in this process. Taken together, the obtained results suggest that auxin acts indirectly to regulate chloroplast movements, presumably by regulating gene expression via the SCF(TIR1)-Aux/IAA-ARF pathway. Auxin does not seem to be involved in controlling the expression of phototropins. © 2015 Scandinavian Plant Physiology Society.

  20. Sequence evidence for the symbiotic origins of chloroplasts and mitochondria

    Science.gov (United States)

    George, D. G.; Hunt, L. T.; Dayhoff, M. O.

    1983-01-01

    The origin of mitochondria and chloroplasts is investigated on the basis of prokaryotic and early-eukaryotic evolutionary trees derived from protein and nucleic-acid sequences by the method of Dayhoff (1979). Trees for bacterial ferrodoxins, 5S ribosomal RNA, c-type cytochromes, the lipid-binding subunit of ATPase, and dihydrofolate reductase are presented and discussed. Good agreement among the trees is found, and it is argued that the mitochondria and chloroplasts evolved by multiple symbiotic events.

  1. Chloroplast Delivery by UPS

    National Research Council Canada - National Science Library

    Kessler, F

    2012-01-01

    .... On page 655 in this issue, Ling et al. show that the ubiquitin-26S proteasome system (UPS) directly targets plastids and promotes chloroplast biogenesis, controlling yet another important facet of cell biology. [PUBLICATION ABSTRACT

  2. Rapid emergence and predominance of a broadly recognizing and fast-evolving norovirus GII.17 variant in late 2014

    Science.gov (United States)

    Chan, Martin C. W.; Lee, Nelson; Hung, Tin-Nok; Kwok, Kirsty; Cheung, Kelton; Tin, Edith K. Y.; Lai, Raymond W. M.; Nelson, E. Anthony S.; Leung, Ting F.; Chan, Paul K. S.

    2015-01-01

    Norovirus genogroup II genotype 4 (GII.4) has been the predominant cause of viral gastroenteritis since 1996. Here we show that during the winter of 2014–2015, an emergent variant of a previously rare norovirus GII.17 genotype, Kawasaki 2014, predominated in Hong Kong and outcompeted contemporary GII.4 Sydney 2012 in hospitalized cases. GII.17 cases were significantly older than GII.4 cases. Root-to-tip and Bayesian BEAST analyses estimate GII.17 viral protein 1 (VP1) evolves one order of magnitude faster than GII.4 VP1. Residue substitutions and insertion occur in four of five inferred antigenic epitopes, suggesting immune evasion. Sequential GII.4-GII.17 infections are noted, implicating a lack of cross-protection. Virus bound to saliva of secretor histo-blood groups A, B and O, indicating broad susceptibility. This fast-evolving, broadly recognizing and probably immune-escaped emergent GII.17 variant causes severe gastroenteritis and hospitalization across all age groups, including populations who were previously less vulnerable to GII.4 variants; therefore, the global spread of GII.17 Kawasaki 2014 needs to be monitored. PMID:26625712

  3. Rapidly evolving genes in pathogens: methods for detecting positive selection and examples among fungi, bacteria, viruses and protists.

    Science.gov (United States)

    Aguileta, Gabriela; Refrégier, Guislaine; Yockteng, Roxana; Fournier, Elisabeth; Giraud, Tatiana

    2009-07-01

    The ongoing coevolutionary struggle between hosts and pathogens, with hosts evolving to escape pathogen infection and pathogens evolving to escape host defences, can generate an 'arms race', i.e., the occurrence of recurrent selective sweeps that each favours a novel resistance or virulence allele that goes to fixation. Host-pathogen coevolution can alternatively lead to a 'trench warfare', i.e., balancing selection, maintaining certain alleles at loci involved in host-pathogen recognition over long time scales. Recently, technological and methodological progress has enabled detection of footprints of selection directly on genes, which can provide useful insights into the processes of coevolution. This knowledge can also have practical applications, for instance development of vaccines or drugs. Here we review the methods for detecting genes under positive selection using divergence data (i.e., the ratio of nonsynonymous to synonymous substitution rates, d(N)/d(S)). We also review methods for detecting selection using polymorphisms, such as methods based on F(ST) measures, frequency spectrum, linkage disequilibrium and haplotype structure. In the second part, we review examples where targets of selection have been identified in pathogens using these tests. Genes under positive selection in pathogens have mostly been sought among viruses, bacteria and protists, because of their paramount importance for human health. Another focus is on fungal pathogens owing to their agronomic importance. We finally discuss promising directions in pathogen studies, such as detecting selection in non-coding regions.

  4. Rapidly evolving asymptomatic eosinophilia in a patient with lung adenocarcinoma causes cognitive disturbance and respiratory insufficiency: Case report.

    Science.gov (United States)

    Lo, Cheng-Hsiang; Jen, Yee-Min; Tsai, Wen-Chiuan; Chung, Ping-Ying; Kao, Woei-Yau

    2013-02-01

    Paraneoplastic eosinophilia is an unusual manifestation that usually remains asymptomatic. In this report, we presented the case of an 82-year-old patient with poorly differentiated lung adenocarcinoma and asymptomatic eosinophilia. The patient's condition worsened rapidly over a week, with episodes of cognitive disturbance, shortness of breath and acute kidney dysfunction. These symptoms were associated with a 4-fold increase in circulating eosinophil counts. The poor condition hindered further anticancer treatment. Treatment of the eosinophilia with corticosteroids and hydroxyurea significantly reduced circulating eosinophil counts to below the initial levels. Results of this case report suggested that lung cancer patients should be monitored closely for rapidly worsening symptoms of cognitive disturbance and respiratory insufficiency as signs of life-threatening asymptomatic eosinophilia, in order to initiate corticosteroid treatment.

  5. The wheat chloroplastic proteome.

    Science.gov (United States)

    Kamal, Abu Hena Mostafa; Cho, Kun; Choi, Jong-Soon; Bae, Kwang-Hee; Komatsu, Setsuko; Uozumi, Nobuyuki; Woo, Sun Hee

    2013-11-20

    With the availability of plant genome sequencing, analysis of plant proteins with mass spectrometry has become promising and admired. Determining the proteome of a cell is still a challenging assignment, which is convoluted by proteome dynamics and convolution. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. In this review, an overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. In recent years, we and other groups have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during vegetative stage. Those studies provide interesting results leading to better understanding of the photosynthesis and identifying the stress-responsive proteins. Indeed, recent studies aimed at resolving the photosynthesis pathway in wheat. Proteomic analysis combining two complementary approaches such as 2-DE and shotgun methods couple to high through put mass spectrometry (LTQ-FTICR and MALDI-TOF/TOF) in order to better understand the responsible proteins in photosynthesis and abiotic stress (salt and water) in wheat chloroplast will be focused. In this review we discussed the identification of the most abundant protein in wheat chloroplast and stress-responsive under salt and water stress in chloroplast of wheat seedlings, thus providing the proteomic view of the events during the development of this seedling under stress conditions. Chloroplast is fastidious curiosity for plant biologists due to their intricate biochemical pathways for indispensable metabolite functions. An overview on proteomic studies conducted in wheat with a special focus on subcellular proteomics of chloroplast, salt and water stress. We have attempted to understand the photosynthesis in wheat and abiotic stress under salt imposed and water deficit during seedling stage. Those studies

  6. Congenic strain analysis reveals genes that are rapidly evolving components of a prezygotic isolation mechanism mediating incipient reinforcement.

    Directory of Open Access Journals (Sweden)

    Christina M Laukaitis

    Full Text Available Two decades ago, we developed a congenic strain of Mus musculus, called b-congenic, by replacing the androgen-binding protein Abpa27(a allele in the C3H/HeJ genome with the Abpa27(b allele from DBA/2J. We and other researchers used this b-congenic strain and its C3H counterpart, the a-congenic strain, to test the hypothesis that, given the choice between signals from two strains with different a27 alleles on the same genetic background, test subjects would prefer the homosubspecific one. It was our purpose in undertaking this study to characterize the segment transferred from DBA to the C3H background in producing the b-congenic strain on which a role for ABPA27 in behavior has been predicated. We determined the size of the chromosome 7 segment transferred from DBA and the genes it contains that might influence preference. We found that the "functional" DBA segment is about 1% the size of the mouse haploid genome and contains at least 29 genes expressed in salivary glands, however, only three of these encode proteins identified in the mouse salivary proteome. At least two of the three genes Abpa27, Abpbg26 and Abpbg27 encoding the subunits of androgen-binding protein ABP dimers evolved under positive selection and the third one may have also. In the sense that they are subunits of the same two functional entities, the ABP dimers, we propose that their evolutionary histories might not be independent of each other.

  7. Engineering the Chloroplast Genome

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 10. Engineering the Chloroplast Genome. P Manju Elizabeth. Research News Volume 10 Issue 10 October 2005 pp 94-95. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/010/10/0094-0095 ...

  8. Dichroism in spinach chloroplasts

    NARCIS (Netherlands)

    Thomas, J.B.; Lierop, J.H. van; Ham, M. ten

    1967-01-01

    In spinach chloroplasts oriented at steel-water interfaces parallel to the light beam a distinct dichroism is measured at about 680 nm. This dichroism is minimal upon addition of sucrose up to a final concentration of 0.18 M to the medium, the dichroic ratio amounting to 1.02. It is concluded that

  9. Rapidly Evolving Genes Are Key Players in Host Specialization and Virulence of the Fungal Wheat Pathogen Zymoseptoria tritici (Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Stephan Poppe

    2015-07-01

    Full Text Available The speciation of pathogens can be driven by divergent host specialization. Specialization to a new host is possible via the acquisition of advantageous mutations fixed by positive selection. Comparative genome analyses of closely related species allows for the identification of such key substitutions via inference of genome-wide signatures of positive selection. We previously used a comparative genomics framework to identify genes that have evolved under positive selection during speciation of the prominent wheat pathogen Zymoseptoria tritici (synonym Mycosphaerella graminicola. In this study, we conducted functional analyses of four genes exhibiting strong signatures of positive selection in Z. tritici. We deleted the four genes in Z. tritici and confirm a virulence-related role of three of the four genes ΔZt80707, ΔZt89160 and ΔZt103264. The two mutants ΔZt80707 and ΔZt103264 show a significant reduction in virulence during infection of wheat; the ΔZt89160 mutant causes a hypervirulent phenotype in wheat. Mutant phenotypes of ΔZt80707, ΔZt89160 and ΔZt103264 can be restored by insertion of the wild-type genes. However, the insertion of the Zt80707 and Zt89160 orthologs from Z. pseudotritici and Z. ardabiliae do not restore wild-type levels of virulence, suggesting that positively selected substitutions in Z. tritici may relate to divergent host specialization. Interestingly, the gene Zt80707 encodes also a secretion signal that targets the protein for cell secretion. This secretion signal is however only transcribed in Z. tritici, suggesting that Z. tritici-specific substitutions relate to a new function of the protein in the extracellular space of the wheat-Z. tritici interaction. Together, the results presented here highlight that Zt80707, Zt103264 and Zt89160 represent key genes involved in virulence and host-specific disease development of Z. tritici. Our findings illustrate that evolutionary predictions provide a powerful tool

  10. A history into genetic and epigenetic evolution of food tolerance: how humanity rapidly evolved by drinking milk and eating wheat.

    Science.gov (United States)

    Blanchard, Carine

    2017-12-01

    Human exposure to wheat and milk is almost global worldwide. Yet the introduction of milk and wheat is very recent (5000-10 000 years) when compared to the human evolution. The last 4 decades have seen a rise in food allergy and food intolerance to milk and wheat. Often described as plurifactorial, the cause of allergic diseases is the result from an interplay between genetic predisposition and epigenetic in the context of environmental changes. Genetic and epigenetic understanding and their contribution to allergy or other antigen-driven diseases have considerably advanced in the last few years. Yet, environmental factors are also quite difficult to identify and associate with disease risk. Can we rethink our old findings and learn from human history and recent genetic studies? More than one million years separate Homo habilis to today's mankind, more than 1 million years to develop abilities to obtain food by foraging in diverse environments. One million year to adjust and fine-tune our genetic code and adapt; and only 1% of this time, 10 000 years, to face the three biggest revolutions of the human kind: the agricultural revolution, the industrial revolution and the postindustrial revolution. With big and rapid environmental changes come adaptation but with no time for fine-tuning. Today tolerance and adverse reactions to food may be a testimony of adaptation successes and mistakes.

  11. Loss of matK RNA editing in seed plant chloroplasts

    Directory of Open Access Journals (Sweden)

    Maier Uwe G

    2009-08-01

    Full Text Available Abstract Background RNA editing in chloroplasts of angiosperms proceeds by C-to-U conversions at specific sites. Nuclear-encoded factors are required for the recognition of cis-elements located immediately upstream of editing sites. The ensemble of editing sites in a chloroplast genome differs widely between species, and editing sites are thought to evolve rapidly. However, large-scale analyses of the evolution of individual editing sites have not yet been undertaken. Results Here, we analyzed the evolution of two chloroplast editing sites, matK-2 and matK-3, for which DNA sequences from thousands of angiosperm species are available. Both sites are found in most major taxa, including deep-branching families such as the nymphaeaceae. However, 36 isolated taxa scattered across the entire tree lack a C at one of the two matK editing sites. Tests of several exemplary species from this in silico analysis of matK processing unexpectedly revealed that one of the two sites remain unedited in almost half of all species examined. A comparison of sequences between editors and non-editors showed that specific nucleotides co-evolve with the C at the matK editing sites, suggesting that these nucleotides are critical for editing-site recognition. Conclusion (i Both matK editing sites were present in the common ancestor of all angiosperms and have been independently lost multiple times during angiosperm evolution. (ii The editing activities corresponding to matK-2 and matK-3 are unstable. (iii A small number of third-codon positions in the vicinity of editing sites are selectively constrained independent of the presence of the editing site, most likely because of interacting RNA-binding proteins.

  12. Inhibition of chloroplastic respiration by osmotic dehydration. [Spinacia oleracea L

    Energy Technology Data Exchange (ETDEWEB)

    Willeford, K.O.; Ahluwalia, K.J.K.; Gibbs, M. (Brandeis Univ., Waltham, MA (USA))

    1989-04-01

    The respiratory capacity of isolated spinach (Spinacia oleracea L.) chloroplasts, measured as the rate of {sup 14}CO{sub 2} evolved from the oxidative pentose phosphate cycle in darkened chloroplasts exogenously supplied with ({sup 14}C)glucose, was progressively diminished by escalating osmotic dehydration with betaine or sorbitol. Comparing the inhibitions of CO{sub 2} evolution generated by osmotic dehydration in chloroplasts given C-1 and C-6 labeled glucose, 54% and 84%, respectively, indicates that osmotic dehydration effects to a greater extent the recycling of the oxidative pentose phosphate intermediates, fructose-6P and glyceraldehyde-3P. Respiratory inhibition in the darkened chloroplast could be alleviated by addition of NH{sub 4}Cl (a stromal alkylating agent), iodoacetamide (an inhibitor of glyceraldehyde-3P dehydrogenase), or glycolate-2P (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiratory inhibition in the darkened chloroplast occurs at the fructose 1,6-bisphosphatase/phosphofructokinase junction.

  13. Targeted disruption in mice of a neural stem cell-maintaining, KRAB-Zn finger-encoding gene that has rapidly evolved in the human lineage.

    Directory of Open Access Journals (Sweden)

    Huan-Chieh Chien

    Full Text Available Understanding the genetic basis of the physical and behavioral traits that separate humans from other primates is a challenging but intriguing topic. The adaptive functions of the expansion and/or reduction in human brain size have long been explored. From a brain transcriptome project we have identified a KRAB-Zn finger protein-encoding gene (M003-A06 that has rapidly evolved since the human-chimpanzee separation. Quantitative RT-PCR analysis of different human tissues indicates that M003-A06 expression is enriched in the human fetal brain in addition to the fetal heart. Furthermore, analysis with use of immunofluorescence staining, neurosphere culturing and Western blotting indicates that the mouse ortholog of M003-A06, Zfp568, is expressed mainly in the embryonic stem (ES cells and fetal as well as adult neural stem cells (NSCs. Conditional gene knockout experiments in mice demonstrates that Zfp568 is both an NSC maintaining- and a brain size-regulating gene. Significantly, molecular genetic analyses show that human M003-A06 consists of 2 equilibrated allelic types, H and C, one of which (H is human-specific. Combined contemporary genotyping and database mining have revealed interesting genetic associations between the different genotypes of M003-A06 and the human head sizes. We propose that M003-A06 is likely one of the genes contributing to the uniqueness of the human brain in comparison to other higher primates.

  14. Though with constraints imposed by endosymbiosis, preferential attachment is still a plausible mechanism responsible for the evolution of the chloroplast metabolic network.

    Science.gov (United States)

    Wang, Z; Zhu, X-G; Chang, X; Chen, Y Z; Li, Y X; Liu, L

    2009-01-01

    Chloroplasts evolved as a result of endosymbiosis, during which sophisticated mechanisms evolved to translocate nucleus-encoded plastid-targeted enzymes into the chloroplast to form the chloroplast metabolic network. Given the constraints and complexity of endosymbiosis, will preferential attachment still be a plausible mechanism for chloroplast metabolic network evolution? We answer this question by analysing the metabolic network properties of the chloroplast and a cyanobacterium, Synechococcus sp. WH8102 (syw). First, we found that enzymes related to more ancient pathways are more connected, and synthetases have the highest connectivity. Most of the enzymes shared by the two densest cores between the chloroplast and syw are synthetases. Second, the highly conserved functional modules mainly consist of highly connected enzymes. Finally, isozymes and enzymes from endosymbiotic gene transfer (EGT) were distributed mainly in conserved modules and showed higher connectivity than nonisozymes or non-EGT enzymes. These results suggest that even with severe evolutionary constraints imposed by endosymbiosis, preferential attachment is still a plausible mechanism responsible for the evolution of the chloroplast metabolic network. However, the current analysis may not completely differentiate whether the chloroplast network properties reflect the evolution of the chloroplast network through preferential attachment or has been inherited from its cyanobacterial ancestor. To fully differentiate these two possibilities, further analyses of the metabolic network structure properties of organisms at various intermediate evolutionary stages between cyanobacteria and the chloroplast are needed.

  15. Evolving a photosynthetic organelle

    Directory of Open Access Journals (Sweden)

    Nakayama Takuro

    2012-04-01

    Full Text Available Abstract The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles. The plastids, or chloroplasts, of algae and plants evolved from cyanobacteria by endosymbiosis. This landmark event conferred on eukaryotes the benefits of photosynthesis - the conversion of solar energy into chemical energy - and in so doing had a huge impact on the course of evolution and the climate of Earth 1. From the present state of plastids, however, it is difficult to trace the evolutionary steps involved in this momentous development, because all modern-day plastids have fully integrated into their hosts. Paulinella chromatophora is a unicellular eukaryote that bears photosynthetic entities called chromatophores that are derived from cyanobacteria and has thus received much attention as a possible example of an organism in the early stages of organellogenesis. Recent studies have unlocked the genomic secrets of its chromatophore 23 and provided concrete evidence that the Paulinella chromatophore is a bona fide photosynthetic organelle 4. The question is how Paulinella can help us to understand the process by which an endosymbiont is converted into an organelle.

  16. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.

  17. Maintaining evolvability.

    Science.gov (United States)

    Crow, James F

    2008-12-01

    Although molecular methods, such as QTL mapping, have revealed a number of loci with large effects, it is still likely that the bulk of quantitative variability is due to multiple factors, each with small effect. Typically, these have a large additive component. Conventional wisdom argues that selection, natural or artificial, uses up additive variance and thus depletes its supply. Over time, the variance should be reduced, and at equilibrium be near zero. This is especially expected for fitness and traits highly correlated with it. Yet, populations typically have a great deal of additive variance, and do not seem to run out of genetic variability even after many generations of directional selection. Long-term selection experiments show that populations continue to retain seemingly undiminished additive variance despite large changes in the mean value. I propose that there are several reasons for this. (i) The environment is continually changing so that what was formerly most fit no longer is. (ii) There is an input of genetic variance from mutation, and sometimes from migration. (iii) As intermediate-frequency alleles increase in frequency towards one, producing less variance (as p --> 1, p(1 - p) --> 0), others that were originally near zero become more common and increase the variance. Thus, a roughly constant variance is maintained. (iv) There is always selection for fitness and for characters closely related to it. To the extent that the trait is heritable, later generations inherit a disproportionate number of genes acting additively on the trait, thus increasing genetic variance. For these reasons a selected population retains its ability to evolve. Of course, genes with large effect are also important. Conspicuous examples are the small number of loci that changed teosinte to maize, and major phylogenetic changes in the animal kingdom. The relative importance of these along with duplications, chromosome rearrangements, horizontal transmission and polyploidy

  18. The Chloroplast Genome Sequence of Scutellaria baicalensis Provides Insight into Intraspecific and Interspecific Chloroplast Genome Diversity in Scutellaria

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    2017-09-01

    Full Text Available Scutellaria baicalensis Georgi (Lamiaceae is the source of the well-known traditional Chinese medicine “HuangQin” (Radix Scutellariae. Natural sources of S. baicalensis are rapidly declining due to high market demand and overexploitation. Moreover, the commercial products of Radix Scutellariae have often been found to contain adulterants in recent years, which may give rise to issues regarding drug efficacy and safety. In this study, we developed valuable chloroplast molecular resources by comparing intraspecific and interspecific chloroplast genome. The S. baicalensis chloroplast genome is a circular molecule consisting of two single-copy regions separated by a pair of inverted repeats. Comparative analyses of three Scutellaria chloroplast genomes revealed six variable regions (trnH-psbA, trnK-rps16, petN-psbM, trnT-trnL, petA-psbJ, and ycf1 that could be used as DNA barcodes. There were 25 single nucleotide polymorphisms(SNPs and 29 indels between the two S. baicalensis genotypes. All of the indels occurred within non-coding regions. Phylogenetic analysis suggested that Scutellarioideae is a sister taxon to Lamioideae. These resources could be used to explore the variation present in Scutellaria populations and for further evolutionary, phylogenetic, barcoding and genetic engineering studies, in addition to effective exploration and conservation of S. baicalensis.

  19. Specificity of leaf mitochondrial and chloroplast processing systems for nuclear-encoded precursor proteins.

    Science.gov (United States)

    Whelan, J; Knorpp, C; Harmey, M A; Glaser, E

    1991-02-01

    The specificity of the mitochondrial and chloroplast processing enzymes for the nuclear-encoded precursor proteins was investigated. Mitochondrial precursor proteins of the Nicotiana plumbaginifolia and the Neurospora crassa beta subunits of F1-ATPase and the Neurospora Rieske FeS precursor protein were processed to the correct mature size by matrix extracts isolated from spinach leaves, yeast, rat liver and beef heart. The mitochondrial extracts failed to process chloroplast precursor proteins of the stromal small subunit of ribulose 1,5-bisphosphate carboxylase and the thylakoid 33 kDa protein of the oxygen-evolving complex. Both mitochondrial F1 beta precursors were specifically processed by a soluble stromal extract from chloroplasts. However, no processing of the Rieske FeS precursor protein was observed under the same conditions with the chloroplast extract. The cleavage of the mitochondrial F1 beta precursors by the chloroplast extract was shown to be sensitive to the metal chelators EDTA and ortho-phenanthroline. The cleavage site of the mitochondrial F1 beta precursor by the chloroplast soluble extract appears to be located at the N-terminus.

  20. A database of PCR primers for the chloroplast genomes of higher plants

    Directory of Open Access Journals (Sweden)

    Heinze Berthold

    2007-02-01

    Full Text Available Abstract Background Chloroplast genomes evolve slowly and many primers for PCR amplification and analysis of chloroplast sequences can be used across a wide array of genera. In some cases 'universal' primers have been designed for the purpose of working across species boundaries. However, the essential information on these primer sequences is scattered throughout the literature. Results A database is presented here which assembles published primer information for chloroplast DNA. Additional primers were designed to fill gaps where little or no primer information could be found. Amplicons are either the genes themselves (typically useful in studies of sequence variation in higher-order phylogeny or they are spacers, introns, and intergenic regions (for studies of phylogeographic patterns within and among species. The current list of 'generic' primers consists of more than 700 sequences. Wherever possible, we give the locations of the primers in the thirteen fully sequenced chloroplast genomes (Nicotiana tabacum, Atropa belladonna, Spinacia oleracea, Arabidopsis thaliana, Populus trichocarpa, Oryza sativa, Pinus thunbergii, Marchantia polymorpha, Zea mays, Oenothera elata, Acorus calamus, Eucalyptus globulus, Medicago trunculata. Conclusion The database described here is designed to serve as a resource for researchers who are venturing into the study of poorly described chloroplast genomes, whether for large- or small-scale DNA sequencing projects, to study molecular variation or to investigate chloroplast evolution.

  1. Incongruence between nuclear and chloroplast DNA phylogenies in pedicularis section Cyathophora (Orobanchaceae.

    Directory of Open Access Journals (Sweden)

    Wen-Bin Yu

    Full Text Available Pedicularis section Cyathophora is a monophyletic group characterized by perfoliate leaf and/or bract bases at each node. This section comprises four series, corresponding to four general corolla types of Pedicularis, i.e. toothless, toothed, beaked and long-tubed corollas. In this study, we aim to reconstruct a comprehensive phylogeny of section Cyathophora, and compare phylogenetic incongruence between nuclear and chloroplast datasets. Sixty-seven accessions belonging to section Cyathophora and 9 species for other Pedicularis were sampled, and one nuclear gene (nrITS and four chloroplast genes (matK, rbcL, trnH-psbA and trnL-F were sequenced. Phylogenetic analyses show that the topologies and networks inferred from nrITS and the concatenated chloroplast datasets were incongruent, and the nrITS phylogenies and network agreed with the morphology-based taxonomy to some degree. The chloroplast genome of two Sichuan samples of P. cyathophylloides (E4 and E5 may show introgression from an ancestor of P. cyathophylla. Neither the nrITS dataset nor the concatenated chloroplast dataset were able to adequately resolve relationships among species in the series Reges; this is most likely due to incomplete lineage sorting and/or introgression/hybridization. The nrITS phylogeny indicates the beakless (toothed and toothless and beaked galeas may have evolved independently within section Cyathophora, and the chloroplast phylogeny reveals that the long corolla tube with beaked galea is derived from the short one.

  2. Chloroplast movement provides photoprotection to plants by redistributing PSII damage within leaves.

    Science.gov (United States)

    Davis, Phillip A; Hangarter, Roger P

    2012-09-01

    Plants use light to fix carbon through the process of photosynthesis but light also causes photoinhibition, by damaging photosystem II (PSII). Plants can usually adjust their rate of PSII repair to equal the rate of damage, but under stress conditions or supersaturating light-intensities damage may exceed the rate of repair. Light-induced chloroplast movements are one of the many mechanisms plants have evolved to minimize photoinhibition. We found that chloroplast movements achieve a measure of photoprotection to PSII by altering the distribution of photoinhibition through depth in leaves. When chloroplasts are in the low-light accumulation arrangement a greater proportion of PSII damage occurs near the illuminated surface than for leaves where the chloroplasts are in the high-light avoidance arrangement. According to our findings chloroplast movements can increase the overall efficiency of leaf photosynthesis in at least two ways. The movements alter light profiles within leaves to maximize photosynthetic output and at the same time redistribute PSII damage throughout the leaf to reduce the amount of inhibition received by individual chloroplasts and prevent a decrease in photosynthetic potential.

  3. Complete sequencing of five araliaceae chloroplast genomes and the phylogenetic implications.

    Directory of Open Access Journals (Sweden)

    Rong Li

    Full Text Available BACKGROUND: The ginseng family (Araliaceae includes a number of economically important plant species. Previously phylogenetic studies circumscribed three major clades within the core ginseng plant family, yet the internal relationships of each major group have been poorly resolved perhaps due to rapid radiation of these lineages. Recent studies have shown that phyogenomics based on chloroplast genomes provides a viable way to resolve complex relationships. METHODOLOGY/PRINCIPAL FINDINGS: We report the complete nucleotide sequences of five Araliaceae chloroplast genomes using next-generation sequencing technology. The five chloroplast genomes are 156,333-156,459 bp in length including a pair of inverted repeats (25,551-26,108 bp separated by the large single-copy (86,028-86,566 bp and small single-copy (18,021-19,117 bp regions. Each chloroplast genome contains the same 114 unique genes consisting of 30 transfer RNA genes, four ribosomal RNA genes, and 80 protein coding genes. Gene size, content, and order, AT content, and IR/SC boundary structure are similar among all Araliaceae chloroplast genomes. A total of 140 repeats were identified in the five chloroplast genomes with palindromic repeat as the most common type. Phylogenomic analyses using parsimony, likelihood, and Bayesian inference based on the complete chloroplast genomes strongly supported the monophyly of the Asian Palmate group and the Aralia-Panax group. Furthermore, the relationships among the sampled taxa within the Asian Palmate group were well resolved. Twenty-six DNA markers with the percentage of variable sites higher than 5% were identified, which may be useful for phylogenetic studies of Araliaceae. CONCLUSION: The chloroplast genomes of Araliaceae are highly conserved in all aspects of genome features. The large-scale phylogenomic data based on the complete chloroplast DNA sequences is shown to be effective for the phylogenetic reconstruction of Araliaceae.

  4. Noncoding RNA mediated traffic of foreign mRNA into chloroplasts reveals a novel signaling mechanism in plants.

    Directory of Open Access Journals (Sweden)

    Gustavo Gómez

    Full Text Available Communication between chloroplasts and the nucleus is one of the milestones of the evolution of plants on earth. Proteins encoded by ancestral chloroplast-endogenous genes were transferred to the nucleus during the endosymbiotic evolution and originated this communication, which is mainly dependent on specific transit-peptides. However, the identification of nuclear-encoded proteins targeted to the chloroplast lacking these canonical signals suggests the existence of an alternative cellular pathway tuning this metabolic crosstalk. Non-coding RNAS (NcRNAs are increasingly recognized as regulators of gene expression as they play roles previously believed to correspond to proteins. Avsunviroidae family viroids are the only noncoding functional RNAs that have been reported to traffic inside the chloroplasts. Elucidating mechanisms used by these pathogens to enter this organelle will unearth novel transport pathways in plant cells. Here we show that a viroid-derived NcRNA acting as a 5'UTR-end mediates the functional import of Green Fluorescent Protein (GFP mRNA into chloroplast. This claim is supported by the observation at confocal microscopy of a selective accumulation of GFP in the chloroplast of the leaves expressing the chimeric vd-5'UTR/GFP and by the detection of the GFP mRNA in chloroplasts isolated from cells expressing this construct. These results support the existence of an alternative signaling mechanism in plants between the host cell and chloroplasts, where an ncRNA functions as a key regulatory molecule to control the accumulation of nuclear-encoded proteins in this organelle. In addition, our findings provide a conceptual framework to develop new biotechnological tools in systems using plant chloroplast as bioreactors. Finally, viroids of the family Avsunviroidae have probably evolved to subvert this signaling mechanism to regulate their differential traffic into the chloroplast of infected cells.

  5. Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae and other angiosperms for marker choice.

    Directory of Open Access Journals (Sweden)

    Nadja Korotkova

    Full Text Available Plastid genomes exhibit different levels of variability in their sequences, depending on the respective kinds of genomic regions. Genes are usually more conserved while noncoding introns and spacers evolve at a faster pace. While a set of about thirty maximum variable noncoding genomic regions has been suggested to provide universally promising phylogenetic markers throughout angiosperms, applications often require several regions to be sequenced for many individuals. Our project aims to illuminate evolutionary relationships and species-limits in the genus Pyrus (Rosaceae-a typical case with very low genetic distances between taxa. In this study, we have sequenced the plastid genome of Pyrus spinosa and aligned it to the already available P. pyrifolia sequence. The overall p-distance of the two Pyrus genomes was 0.00145. The intergenic spacers between ndhC-trnV, trnR-atpA, ndhF-rpl32, psbM-trnD, and trnQ-rps16 were the most variable regions, also comprising the highest total numbers of substitutions, indels and inversions (potentially informative characters. Our comparative analysis of further plastid genome pairs with similar low p-distances from Oenothera (representing another rosid, Olea (asterids and Cymbidium (monocots showed in each case a different ranking of genomic regions in terms of variability and potentially informative characters. Only two intergenic spacers (ndhF-rpl32 and trnK-rps16 were consistently found among the 30 top-ranked regions. We have mapped the occurrence of substitutions and microstructural mutations in the four genome pairs. High AT content in specific sequence elements seems to foster frequent mutations. We conclude that the variability among the fastest evolving plastid genomic regions is lineage-specific and thus cannot be precisely predicted across angiosperms. The often lineage-specific occurrence of stem-loop elements in the sequences of introns and spacers also governs lineage-specific mutations. Sequencing

  6. Chloroplast-encoded serotonin N-acetyltransferase in the red alga Pyropia yezoensis: gene transition to the nucleus from chloroplasts.

    Science.gov (United States)

    Byeon, Yeong; Yool Lee, Hyoung; Choi, Dong-Woog; Back, Kyoungwhan

    2015-02-01

    Melatonin biosynthesis involves the N-acetylation of arylalkylamines such as serotonin, which is catalysed by serotonin N-acetyltransferase (SNAT), the penultimate enzyme of melatonin biosynthesis in both animals and plants. Here, we report the functional characterization of a putative N-acetyltransferase gene in the chloroplast genome of the alga laver (Pyropia yezoensis, formerly known as Porphyra yezoensis) with homology to the rice SNAT gene. To confirm that the putative Pyropia yezoensis SNAT (PySNAT) gene encodes an SNAT, we cloned the full-length chloroplastidic PySNAT gene by PCR and purified the recombinant PySNAT protein from Escherichia coli. PySNAT was 174 aa and had 50% amino acid identity with cyanobacteria SNAT. Purified recombinant PySNAT showed a peak activity at 55 °C with a K m of 467 µM and V max of 28 nmol min-1 mg(-1) of protein. Unlike other plant SNATs, PySNAT localized to the cytoplasm due to a lack of N-terminal chloroplast transit peptides. Melatonin was present at 0.16ng g(-1) of fresh mass but increased during heat stress. Phylogenetic analysis of the sequence suggested that PySNAT has evolved from the cyanobacteria SNAT gene via endosymbiotic gene transfer. Additionally, the chloroplast transit peptides of plant SNATs were acquired 1500 million years ago, concurrent with the appearance of green algae. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Current trends in chloroplast genome research

    African Journals Online (AJOL)

    USER

    2010-06-14

    Jun 14, 2010 ... 2006). Recently, sequencing of several chloroplast genomes has been reported with involvement of rolling circle amplification (RCA) step which improves the initial DNA template for sequencing (Jansen, 2005). During the sequencing of chloroplast genomes of Gossypium hirsu- tum (Lee, 2006) and Citrus ...

  8. Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue. III. Two new low-mass systems with rapidly evolving spots

    Science.gov (United States)

    Hełminiak, K. G.; Konacki, M.; Złoczewski, K.; Ratajczak, M.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Crain, J. A.; Foster, A. C.; Nysewander, M. C.; Lacluyze, A. P.

    2011-03-01

    Aims: We present the results of our spectroscopic and photometric analysis of two newly discovered low-mass detached eclipsing binaries found in the All-Sky Automated Survey (ASAS) catalogue: ASAS J093814-0104.4 and ASAS J212954-5620.1. Methods: Using the Grating Instrument for Radiation Analysis with a Fibre-Fed Echelle (GIRAFFE) on the 1.9-m Radcliffe telescope at the South African Astronomical Observatory (SAAO) and the University College London Echelle Spectrograph (UCLES) on the 3.9-m Anglo-Australian Telescope, we obtained high-resolution spectra of both objects and derived their radial velocities (RVs) at various orbital phases. The RVs of both objects were measured with the two-dimensional cross-correlation technique (TODCOR) using synthetic template spectra as references. We also obtained V and I band photometry using the 1.0-m Elizabeth telescope at SAAO and the 0.4-m Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT) located at the Cerro Tololo Inter-American Observatory (CTIO). The orbital and physical parameters of the systems were derived with PHOEBE and JKTEBOP codes. We compared our results with several sets of widely-used isochrones. Results: Our multi-epoch photometric observations demonstrate that both objects show significant out-of-eclipse modulations, which vary in time. We believe that this effect is caused by stellar spots, which evolve on time scales of tens of days. For this reason, we constructed our models on the basis of photometric observations spanning short time scales (less than a month). Our modeling indicates that (1) ASAS J093814-0104.04 is a main sequence active system with nearly-twin components with masses of M1 = 0.771 ± 0.033 M⊙, M2 = 0.768 ± 0.021 M⊙ and radii of R1 = 0.772 ± 0.012 R⊙ and R2 = 0.769 ± 0.013 R⊙. (2) ASAS J212954-5620.1 is a main sequence active binary with component masses of M1 = 0.833 ± 0.017 M⊙, M2 = 0.703 ± 0.013 M⊙ and radii of R1 = 0.845 ± 0.012 R⊙ and R2

  9. Nano-scale characterization of the dynamics of the chloroplast Toc translocon.

    Science.gov (United States)

    Reddick, L Evan; Chotewutmontri, Prakitchai; Crenshaw, Will; Dave, Ashita; Vaughn, Michael; Bruce, Barry D

    2008-01-01

    Translocons are macromolecular nano-scale machines that facilitate the selective translocation of proteins across membranes. Although common in function, different translocons have evolved diverse molecular mechanisms for protein translocation. Subcellular organelles of endosymbiotic origin such as the chloroplast and mitochondria had to evolve/acquire translocons capable of importing proteins whose genes were transferred to the host genome. These gene products are expressed on cytosolic ribosomes as precursor proteins and targeted back to the organelle by an N-terminal extension called the transit peptide or presequence. In chloroplasts the transit peptide is specifically recognized by the Translocon of the Outer Chloroplast membrane (Toc) which is composed of receptor GTPases that potentially function as gate-like switches, where GTP binding and hydrolysis somehow facilitate preprotein binding and translocation. Compared to other translocons, the dynamics of the Toc translocon are probably more complex and certainly less understood. We have developed biochemical/biophysical, imaging, and computational techniques to probe the dynamics of the Toc translocon at the nanoscale. In this chapter we provide detailed protocols for kinetic and binding analysis of precursor interactions in organeller, measurement of the activity and nucleotide binding of the Toc GTPases, native electrophoretic analysis of the assembly/organization of the Toc complex, visualization of the distribution and mobility of Toc apparatus on the surface of chloroplasts, and conclude with the identification and molecular modeling Toc75 POTRA domains. With these new methodologies we discuss future directions of the field.

  10. The complete chloroplast genome sequences of five Epimedium species: lights into phylogenetic and taxonomic analyses

    Directory of Open Access Journals (Sweden)

    Yanjun eZhang

    2016-03-01

    Full Text Available Epimedium L. is a phylogenetically and economically important genus in the family Berberidaceae. We here sequenced the complete chloroplast (cp genomes of four Epimedium species using Illumina sequencing technology via a combination of de novo and reference-guided assembly, which was also the first comprehensive cp genome analysis on Epimedium combining the cp genome sequence of E. koreanum previously reported. The five Epimedium cp genomes exhibited typical quadripartite and circular structure that was rather conserved in genomic structure and the synteny of gene order. However, these cp genomes presented obvious variations at the boundaries of the four regions because of the expansion and contraction of the inverted repeat (IR region and the single-copy (SC boundary regions. The trnQ-UUG duplication occurred in the five Epimedium cp genomes, which was not found in the other basal eudicotyledons. The rapidly evolving cp genome regions were detected among the five cp genomes, as well as the difference of simple sequence repeats (SSR and repeat sequence were identified. Phylogenetic relationships among the five Epimedium species based on their cp genomes showed accordance with the updated system of the genus on the whole, but reminded that the evolutionary relationships and the divisions of the genus need further investigation applying more evidences. The availability of these cp genomes provided valuable genetic information for accurately identifying species, taxonomy and phylogenetic resolution and evolution of Epimedium, and assist in exploration and utilization of Epimedium plants.

  11. Nitrogen control of chloroplast differentiation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1998-05-01

    This project was directed toward understanding at the physiological, biochemical and molecular levels of how photosynthetic organisms adapt to long-term nitrogen-deficiency conditions is quite incomplete even though limitation of this nutrient is the most commonly restricts plant growth and development. For our work on this problem, the unicellular green alga, Chlamydomonas reinhardtii, was grown in continuous cultures in which steady-state levels of nitrogen can be precisely controlled. N-limited cells exhibit the classical symptoms of deficiency of this nutrient, chlorosis and slow growth rates, and respond to nitrogen provision by rapid greening and chloroplast differentiation. We have addressed three aspects of this problem: (1) the regulation of pigment synthesis; (2) control of expression of nuclear genes encoding photosynthetic proteins; (3) changes in metabolic and electron transport pathways that enable sustained CO{sub 2} fixation even though they cannot be readily converted into amino and nucleic acids. For the last, principle components are: (a) enhanced mitochondrial respiratory activity intimately associated with photosynthates, and (b) the occurrence in thylakoids of a supplemental electron transport pathway that facilitates reduction of the plastoquinone pool. Together, these distinguishing features of N-limited cells are likely to enable cell survival, especially under conditions of high irradiance stress.

  12. Electrochemical Sensing for a Rapidly Evolving World

    Science.gov (United States)

    Mullen, Max Robertson

    This dissertation focuses on three projects involving the development of harsh environment gas sensors. The first project discusses the development of a multipurpose oxygen sensor electrode for use in sealing with the common electrolyte yttria stabilized zirconia. The purpose of the sealing function is to produce an internal reference environment maintained by a metal/metal oxide mixture, a criteria for miniaturization of potentiometric oxygen sensing technology. This sensor measures a potential between the internal reference and a sensing environment. The second project discusses the miniaturization of an oxygen sensor and the fabrication of a more generalized electrochemical sensing platform. The third project discusses the discovery of a new mechanism in the electrochemical sensing of ammonia through molecular recognition and the utilization of a sensor taking advantage of the new mechanism. An initial study involving the development of a microwave synthesized La0.8Sr0.2Al0.9Mn0.1O3 sensor electrode material illustrates the ability of the material developed to meet ionic and electronic conducting requirements for effective and Nernstian oxygen sensing. In addition the material deforms plastically under hot isostatic pressing conditions in a similar temperature and pressure regime with yttria stabilized zirconia to produce a seal and survive temperatures up to 1350 °C. In the second project we show novel methods to seal an oxygen environment inside a device cavity to produce an electrochemical sensor body using room temperature plasma-activated bonding and low temperature and pressure assisted plasma-activated bonding with silicon bodies, both in a clean room environment. The evolution from isostatic hot pressing methods towards room temperature complementary metal oxide semiconductor (CMOS) compatible technologies using single crystal silicon substrates in the clean room allows the sealing of devices on a much larger scale. Through this evolution in bonding technology we move from performing non-scalable experiments to produce one sensor at a time to scalable experiments producing six. The bonding methods we use are compatible with wafer scale processing. Practically speaking this means that the oxygen sensor design is scalable to produce thousands of sensors from one single bond. Using this bonding technology we develop a generalized sensing platform that could be used for a variety of sensing applications, including oxygen sensing, but also potentially involving CO2 or NOx as well. Future efforts will involve completing of O2 sensor construction and adaption of the design for CO2 and NOx sensing. The final project focuses on a novel ammonia sensor and sensing mechanism in Ag loaded zeolite Y. The sensor resistance changes upon exposure to ammonia due to the molecular recognition of Ag+ and ammonia, producing Ag(NH3)x+ species. The sensing mechanism is a Grothuss like mechanism based on the hoping of Ag+ centers. The hopping frequency of Ag+ changes upon introduction of ammonia due to the reduced electrostatic interactions between Ag+ and the negatively charged zeolite framework upon formation of Ag(NH3) x+. The change in hopping frequency results in a measurable change in impedance.

  13. Importance of phosphatidylcholine on the chloroplast surface.

    Science.gov (United States)

    Botella, César; Jouhet, Juliette; Block, Maryse A

    2017-01-01

    In plant cells, phosphatidylcholine (PC) is a major glycerolipid of most membranes but practically lacking from the plastid internal membranes. In chloroplasts, PC is absent from the thylakoids and the inner envelope membrane. It is however the main component of the outer envelope membrane, where it exclusively distributes in the outer monolayer. This unique distribution is likely related with operational compartmentalization of plant lipid metabolism. In this review, we summarize the different mechanisms involved in homeostasis of PC in plant cells. The specific origin of chloroplast PC is examined and the involvement of the P4-ATPase family of phospholipid flippases (ALA) is considered with a special attention to the recently reported effect of the endoplasmic reticulum-localized ALA10 on modification of chloroplast PC desaturation. The different possible roles of chloroplast PC are then discussed and analyzed in consideration of plant physiology. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. A comparison of rice chloroplast genomes

    DEFF Research Database (Denmark)

    Tang, Jiabin; Xia, Hong'ai; Cao, Mengliang

    2004-01-01

    Using high quality sequence reads extracted from our whole genome shotgun repository, we assembled two chloroplast genome sequences from two rice (Oryza sativa) varieties, one from 93-11 (a typical indica variety) and the other from PA64S (an indica-like variety with maternal origin of japonica...... to intersubspecific polymorphisms. In our study, we found that the intersubspecific variations of 93-11 (indica) and PA64S (japonica) chloroplast genomes consisted of 72 single nucleotide polymorphisms and 27 insertions or deletions. The intersubspecific polymorphism rates between 93-11 and PA64S were 0.......05% for single nucleotide polymorphisms and 0.02% for insertions or deletions, nearly 8 and 10 times lower than their respective nuclear genomes. Based on the total number of nucleotide substitutions between the two chloroplast genomes, we dated the divergence of indica and japonica chloroplast genomes...

  15. Export of carbon from chloroplasts at night

    Energy Technology Data Exchange (ETDEWEB)

    Schleucher, J.; Vanderveer, P.J.; Sharkey, T.D. [Univ. of Wisconsin, Madison, WI (United States)

    1998-12-01

    Hexose export from chloroplasts at night has been inferred in previous studies of mutant and transgenic plants. The authors have tested whether hexose export is the normal route of carbon export from chloroplasts at night. The authors used nuclear magnetic resonance to distinguish glucose (Glc) made from hexose export and Glc made from triose export. Glc synthesized in vitro from fructose-6-phosphate in the presence of deuterium-labeled water had deuterium incorporated at C-2, whereas synthesis from triose phosphates caused C-2 through C-5 to become deuterated. In both tomato (Lycopersicon esculentum L.) and bean (phaseolus vulgaris L.), Glc from sucrose made at night in the presence of deuterium-enriched water was deuterated only in the C-2 position, indicating that >75% of carbon is exported as hexoses at night. In darkness the phosphate in the cytosol was 28 mM, whereas that in the chloroplasts was 5 mW, but hexose phosphates were 10-fold higher in the cytosol than in the chloroplasts. Therefore, hexose phosphates would not move out of chloroplasts without the input of energy. The authors conclude that most carbon leaves chloroplasts at night as Glc, maltose, or higher maltodextrins under normal conditions.

  16. Oxygenic photosynthesis and the distribution of chloroplasts.

    Science.gov (United States)

    Gantt, Elisabeth

    2011-01-01

    The integrated functioning of two photosystems (I and II) whether in cyanobacteria or in chloroplasts is the outstanding sign of a common ancestral origin. Many variations on the basic theme are currently evident in oxygenic photosynthetic organisms whether they are prokaryotes, unicellular, or multicellular. By conservative estimates, oxygenic photosynthesis has been around for at least ca. 2.2-2.7 billions years, consistent with cyanobacteria-type microfossils, biomarkers, and an atmospheric rise in oxygen to less than 1.0% of the present concentration. The presumptions of chloroplast formation by the cyanobacterial uptake into a eukaryote prior to 1.6 BYa ago are confounded by assumptions of host type(s) and potential tolerance of oxygen toxicity. The attempted dating and interrelationships of particular chloroplasts in various plant or animal lineages has relied heavily on phylogenomic analysis and evaluations that have been difficult to confirm separately. Many variations occur in algal groups, involving the type and number of accessory pigments, and the number(s) of membranes (2-4) enclosing a chloroplast, which can both help and complicate inferences made about early or late origins of chloroplasts. Integration of updated phylogenomics with physiological and cytological observations remains a special challenge, but could lead to more accurate assumptions of initial and extant endosymbiotic event(s) leading toward stable chloroplast associations.

  17. Evolvable synthetic neural system

    Science.gov (United States)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  18. Natural selection promotes antigenic evolvability.

    Science.gov (United States)

    Graves, Christopher J; Ros, Vera I D; Stevenson, Brian; Sniegowski, Paul D; Brisson, Dustin

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios) and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish chronic infections.

  19. Natural selection promotes antigenic evolvability.

    Directory of Open Access Journals (Sweden)

    Christopher J Graves

    Full Text Available The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide an experimentally tractable system to test whether natural selection has favored mechanisms that increase evolvability. Many antigenic variation systems consist of paralogous unexpressed 'cassettes' that recombine into an expression site to rapidly alter the expressed protein. Importantly, the magnitude of antigenic change is a function of the genetic diversity among the unexpressed cassettes. Thus, evidence that selection favors among-cassette diversity is direct evidence that natural selection promotes antigenic evolvability. We used the Lyme disease bacterium, Borrelia burgdorferi, as a model to test the prediction that natural selection favors amino acid diversity among unexpressed vls cassettes and thereby promotes evolvability in a primary surface antigen, VlsE. The hypothesis that diversity among vls cassettes is favored by natural selection was supported in each B. burgdorferi strain analyzed using both classical (dN/dS ratios and Bayesian population genetic analyses of genetic sequence data. This hypothesis was also supported by the conservation of highly mutable tandem-repeat structures across B. burgdorferi strains despite a near complete absence of sequence conservation. Diversification among vls cassettes due to natural selection and mutable repeat structures promotes long-term antigenic evolvability of VlsE. These findings provide a direct demonstration that molecular mechanisms that enhance evolvability of surface antigens are an evolutionary adaptation. The molecular evolutionary processes identified here can serve as a model for the evolution of antigenic evolvability in many pathogens which utilize similar strategies to establish

  20. Complete chloroplast genome of Sedum sarmentosum and chloroplast genome evolution in Saxifragales.

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    Full Text Available Comparative chloroplast genome analyses are mostly carried out at lower taxonomic levels, such as the family and genus levels. At higher taxonomic levels, chloroplast genomes are generally used to reconstruct phylogenies. However, little attention has been paid to chloroplast genome evolution within orders. Here, we present the chloroplast genome of Sedum sarmentosum and take advantage of several available (or elucidated chloroplast genomes to examine the evolution of chloroplast genomes in Saxifragales. The chloroplast genome of S. sarmentosum is 150,448 bp long and includes 82,212 bp of a large single-copy (LSC region, 16.670 bp of a small single-copy (SSC region, and a pair of 25,783 bp sequences of inverted repeats (IRs.The genome contains 131 unique genes, 18 of which are duplicated within the IRs. Based on a comparative analysis of chloroplast genomes from four representative Saxifragales families, we observed two gene losses and two pseudogenes in Paeonia obovata, and the loss of an intron was detected in the rps16 gene of Penthorum chinense. Comparisons among the 72 common protein-coding genes confirmed that the chloroplast genomes of S. sarmentosum and Paeonia obovata exhibit accelerated sequence evolution. Furthermore, a strong correlation was observed between the rates of genome evolution and genome size. The detected genome size variations are predominantly caused by the length of intergenic spacers, rather than losses of genes and introns, gene pseudogenization or IR expansion or contraction. The genome sizes of these species are negatively correlated with nucleotide substitution rates. Species with shorter duration of the life cycle tend to exhibit shorter chloroplast genomes than those with longer life cycles.

  1. Phylogenomic Analysis and Dynamic Evolution of Chloroplast Genomes in Salicaceae

    Directory of Open Access Journals (Sweden)

    Yuan Huang

    2017-06-01

    Full Text Available Chloroplast genomes of plants are highly conserved in both gene order and gene content. Analysis of the whole chloroplast genome is known to provide much more informative DNA sites and thus generates high resolution for plant phylogenies. Here, we report the complete chloroplast genomes of three Salix species in family Salicaceae. Phylogeny of Salicaceae inferred from complete chloroplast genomes is generally consistent with previous studies but resolved with higher statistical support. Incongruences of phylogeny, however, are observed in genus Populus, which most likely results from homoplasy. By comparing three Salix chloroplast genomes with the published chloroplast genomes of other Salicaceae species, we demonstrate that the synteny and length of chloroplast genomes in Salicaceae are highly conserved but experienced dynamic evolution among species. We identify seven positively selected chloroplast genes in Salicaceae, which might be related to the adaptive evolution of Salicaceae species. Comparative chloroplast genome analysis within the family also indicates that some chloroplast genes are lost or became pseudogenes, infer that the chloroplast genes horizontally transferred to the nucleus genome. Based on the complete nucleus genome sequences from two Salicaceae species, we remarkably identify that the entire chloroplast genome is indeed transferred and integrated to the nucleus genome in the individual of the reference genome of P. trichocarpa at least once. This observation, along with presence of the large nuclear plastid DNA (NUPTs and NUPTs-containing multiple chloroplast genes in their original order in the chloroplast genome, favors the DNA-mediated hypothesis of organelle to nucleus DNA transfer. Overall, the phylogenomic analysis using chloroplast complete genomes clearly elucidates the phylogeny of Salicaceae. The identification of positively selected chloroplast genes and dynamic chloroplast-to-nucleus gene transfers in

  2. Betaine synthesis in chenopods: localization in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, A.D.; May A.M.; Grumet, R.; Bode, J.; Jamieson, G.C.; Rhodes, D.

    1985-06-01

    Plants from several families (Chenopodiaceae, Gramineae, Compositae) accumulate betaine (glycine betaine) in response to salt or water stress via the pathway: choline betainal (betaine aldehyde) betaine. Betaine accumulation is probably a metabolic adaptation to stress. Intact protoplasts from leaves of spinach (Spinacia oleracea) oxidized ( UC)choline to betainal and betaine, as did protoplast lysates. Upon differential centrifugation, the ( UC)choline-oxidizing activity of lysates sedimented with chloroplasts. Chloroplasts purified from protoplast lysates by a Percoll cushion procedure retained strong ( UC)choline-oxidizing activity, although the proportion of the intermediate, ( UC)betainal, in the reaction products was usually higher than for protoplasts. Isolated chloroplasts also readily oxidized ( UC)betainal to betaine. Light increased the oxidation of both ( UC)choline and ( UC)betainal by isolated chloroplasts. Similar results were obtained with another chenopod (Beta vulgaris) but not with pea (Pisum sativum), a species that accumulates no betaine. The chloroplast site for betaine synthesis in chenopods contrasts with the mitochondrial site in mammals.

  3. Molecular devices for the regulation of chloroplast ATP synthase

    NARCIS (Netherlands)

    Hisabori, T.; Konno, H.; Ichimura, H.; Strotmann, H.; Bald, D.

    2002-01-01

    In chloroplasts, synthesis of ATP is energetically coupled with the utilization of a proton gradient formed by photosynthetic electron transport. The involved enzyme, the chloroplast ATP synthase, can potentially hydrolyze ATP when the magnitude of the transmembrane electrochemical potential

  4. Mergers and acquisitions: malaria and the great chloroplast heist.

    Science.gov (United States)

    McFadden, G I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups.

  5. Mergers and acquisitions: malaria and the great chloroplast heist

    Science.gov (United States)

    McFadden, Geoffrey I

    2000-01-01

    The origin of the relict chloroplast recently identified in malarial parasites has been mysterious. Several new papers suggest that the parasites obtained their chloroplasts in an ancient endosymbiotic event that also created some major algal groups. PMID:11178253

  6. Chloroplastic oxidative burst induced by tenuazonic acid, a natural photosynthesis inhibitor, triggers cell necrosis in Eupatorium adenophorum Spreng.

    Science.gov (United States)

    Chen, Shiguo; Yin, Chunyan; Qiang, Sheng; Zhou, Fenyan; Dai, Xinbin

    2010-03-01

    Tenuazonic acid (TeA), a nonhost-specific phytotoxin produced by Alternaria alternata, was determined to be a novel natural photosynthesis inhibitor owning several action sites in chloroplasts. To further elucidate the mode of its action, studies were conducted to assess the production and involvement of reactive oxygen species (ROS) in the toxic activity of TeA. A series of experiments indicated that TeA treatment can induce chloroplast-derived ROS generation including not only (1)O(2) but also superoxide radical, H(2)O(2) and hydroxyl radicals in Eupatorium adenophorum mesophyll cells, resulting from electron leakage and charge recombination in PSII as well as thylakoid overenergization due to inhibition of the PSII electron transport beyond Q(A) and the reduction of end acceptors on the PSI acceptor side and chloroplast ATPase activity. The initial production of TeA-induced ROS was restricted to chloroplasts and accompanied with a certain degree of chloroplast damage. Subsequently, abundant ROS were quickly dispersed throughout whole cell and cellular compartments, causing a series of irreversible cellular harm such as chlorophyll breakdown, lipid peroxidation, plasma membrane rupture, chromatin condensation, DNA cleavage, and organelle disintegration, and finally resulting in rapid cell destruction and leaf necrosis. These results show that TeA causing cell necrosis of host-plants is a result of direct oxidative damage from chloroplast-mediated ROS eruption. Copyright 2009 Elsevier B.V. All rights reserved.

  7. Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes.

    Science.gov (United States)

    Zhong, Bojian; Xi, Zhenxiang; Goremykin, Vadim V; Fong, Richard; McLenachan, Patricia A; Novis, Philip M; Davis, Charles C; Penny, David

    2014-01-01

    The phylogenetic branching order of the green algal groups that gave rise to land plants remains uncertain despite its fundamental importance to understanding plant evolution. Previous studies have demonstrated that land plants evolved from streptophyte algae, but different lineages of streptophytes have been suggested to be the sister group of land plants. To better understand the evolutionary history of land plants and to determine the potential effects of "long-branch attraction" in phylogenetic reconstruction, we analyzed a chloroplast genome data set including three new chloroplast genomes from streptophyte algae: Coleochaetae orbicularis (Coleochaetales), Nitella hookeri (Charales), and Spirogyra communis (Zygnematales). We further applied a site pattern sorting method together with site- and time-heterogeneous models to investigate the branching order among streptophytes and land plants. Our chloroplast phylogenomic analyses support previous hypotheses based on nuclear data in placing Zygnematales alone, or a clade consisting of Coleochaetales plus Zygnematales, as the closest living relatives of land plants.

  8. High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae.

    Directory of Open Access Journals (Sweden)

    Yun-Jie Zhang

    Full Text Available BACKGROUND: Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies. METHODOLOGY/PRINCIPAL FINDINGS: Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae. CONCLUSIONS/SIGNIFICANCE: The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among

  9. Analyses of charophyte chloroplast genomes help characterize the ancestral chloroplast genome of land plants.

    Science.gov (United States)

    Civaň, Peter; Foster, Peter G; Embley, Martin T; Séneca, Ana; Cox, Cymon J

    2014-04-01

    Despite the significance of the relationships between embryophytes and their charophyte algal ancestors in deciphering the origin and evolutionary success of land plants, few chloroplast genomes of the charophyte algae have been reconstructed to date. Here, we present new data for three chloroplast genomes of the freshwater charophytes Klebsormidium flaccidum (Klebsormidiophyceae), Mesotaenium endlicherianum (Zygnematophyceae), and Roya anglica (Zygnematophyceae). The chloroplast genome of Klebsormidium has a quadripartite organization with exceptionally large inverted repeat (IR) regions and, uniquely among streptophytes, has lost the rrn5 and rrn4.5 genes from the ribosomal RNA (rRNA) gene cluster operon. The chloroplast genome of Roya differs from other zygnematophycean chloroplasts, including the newly sequenced Mesotaenium, by having a quadripartite structure that is typical of other streptophytes. On the basis of the improbability of the novel gain of IR regions, we infer that the quadripartite structure has likely been lost independently in at least three zygnematophycean lineages, although the absence of the usual rRNA operonic synteny in the IR regions of Roya may indicate their de novo origin. Significantly, all zygnematophycean chloroplast genomes have undergone substantial genomic rearrangement, which may be the result of ancient retroelement activity evidenced by the presence of integrase-like and reverse transcriptase-like elements in the Roya chloroplast genome. Our results corroborate the close phylogenetic relationship between Zygnematophyceae and land plants and identify 89 protein-coding genes and 22 introns present in the chloroplast genome at the time of the evolutionary transition of plants to land, all of which can be found in the chloroplast genomes of extant charophytes.

  10. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    Directory of Open Access Journals (Sweden)

    Dhingra Amit

    2008-05-01

    Full Text Available Abstract Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic

  11. Comparative chloroplast genomics and phylogenetics of Fagopyrum esculentum ssp. ancestrale – A wild ancestor of cultivated buckwheat

    Science.gov (United States)

    Logacheva, Maria D; Samigullin, Tahir H; Dhingra, Amit; Penin, Aleksey A

    2008-01-01

    Background Chloroplast genome sequences are extremely informative about species-interrelationships owing to its non-meiotic and often uniparental inheritance over generations. The subject of our study, Fagopyrum esculentum, is a member of the family Polygonaceae belonging to the order Caryophyllales. An uncertainty remains regarding the affinity of Caryophyllales and the asterids that could be due to undersampling of the taxa. With that background, having access to the complete chloroplast genome sequence for Fagopyrum becomes quite pertinent. Results We report the complete chloroplast genome sequence of a wild ancestor of cultivated buckwheat, Fagopyrum esculentum ssp. ancestrale. The sequence was rapidly determined using a previously described approach that utilized a PCR-based method and employed universal primers, designed on the scaffold of multiple sequence alignment of chloroplast genomes. The gene content and order in buckwheat chloroplast genome is similar to Spinacia oleracea. However, some unique structural differences exist: the presence of an intron in the rpl2 gene, a frameshift mutation in the rpl23 gene and extension of the inverted repeat region to include the ycf1 gene. Phylogenetic analysis of 61 protein-coding gene sequences from 44 complete plastid genomes provided strong support for the sister relationships of Caryophyllales (including Polygonaceae) to asterids. Further, our analysis also provided support for Amborella as sister to all other angiosperms, but interestingly, in the bayesian phylogeny inference based on first two codon positions Amborella united with Nymphaeales. Conclusion Comparative genomics analyses revealed that the Fagopyrum chloroplast genome harbors the characteristic gene content and organization as has been described for several other chloroplast genomes. However, it has some unique structural features distinct from previously reported complete chloroplast genome sequences. Phylogenetic analysis of the dataset

  12. Utilization of complete chloroplast genomes for phylogenetic studies

    NARCIS (Netherlands)

    Ramlee, Shairul Izan Binti

    2016-01-01

    Chloroplast DNA sequence polymorphisms are a primary source of data in many plant phylogenetic studies. The chloroplast genome is relatively conserved in its evolution making it an ideal molecule to retain phylogenetic signals. The chloroplast genome is also largely, but not completely, free from

  13. Chloroplast division during leaf development of Xanthium pensylvanicum Wallr. (Compositae)

    OpenAIRE

    Roman Maksymowych; Norman Dollahon; Russell J. Williams; Joseph A.J. Orkiszewski

    2014-01-01

    Division and growth of chloroplasts was studied during leaf development of Xanthium pensylvanicum at various stages of development represented by the leaf plastochron index.Between leaf plastochron indices -1.00 and 2.56 chloroplast division was observed with little enlargement. Between 2.50 and 5.00 chloroplasts enlarged in diameter with an average rate of 0.21 µm per day. At leaf plastochron index 5.00 chloroplasts attained their mature size of 6.12 µm. No chloroplast division was found aft...

  14. Chloroplast replication and growth in tobacco

    NARCIS (Netherlands)

    Verbeek-Boasson, Rosalinda

    1969-01-01

    SUMMARY AND CONCLUSIONS 1. The greening and the growth of chloroplasts as induced by light has been investigated in leaf discs from etiolated tobacco leaves in sterile culture. 2.On a medium containing salts after Murashige and Skoog plus sucrose, chlorophyll synthesis proceeds very slowly during

  15. Metabolic engineering of chloroplasts for artemisinic acid ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 39; Issue 1. Metabolic engineering of chloroplasts for artemisinic acid biosynthesis and impact on plant growth ... International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India; School of Science Engineering and Technology, ...

  16. Structure of the chloroplast ribosome: novel domains for translation regulation.

    Directory of Open Access Journals (Sweden)

    Andrea L Manuell

    2007-08-01

    Full Text Available Gene expression in chloroplasts is controlled primarily through the regulation of translation. This regulation allows coordinate expression between the plastid and nuclear genomes, and is responsive to environmental conditions. Despite common ancestry with bacterial translation, chloroplast translation is more complex and involves positive regulatory mRNA elements and a host of requisite protein translation factors that do not have counterparts in bacteria. Previous proteomic analyses of the chloroplast ribosome identified a significant number of chloroplast-unique ribosomal proteins that expand upon a basic bacterial 70S-like composition. In this study, cryo-electron microscopy and single-particle reconstruction were used to calculate the structure of the chloroplast ribosome to a resolution of 15.5 A. Chloroplast-unique proteins are visualized as novel structural additions to a basic bacterial ribosome core. These structures are located at optimal positions on the chloroplast ribosome for interaction with mRNAs during translation initiation. Visualization of these chloroplast-unique structures on the ribosome, combined with mRNA cross-linking, allows us to propose a model for translation initiation in chloroplasts in which chloroplast-unique ribosomal proteins interact with plastid-specific translation factors and RNA elements to facilitate regulated translation of chloroplast mRNAs.

  17. Direct chloroplast sequencing: comparison of sequencing platforms and analysis tools for whole chloroplast barcoding.

    Directory of Open Access Journals (Sweden)

    Marta Brozynska

    Full Text Available Direct sequencing of total plant DNA using next generation sequencing technologies generates a whole chloroplast genome sequence that has the potential to provide a barcode for use in plant and food identification. Advances in DNA sequencing platforms may make this an attractive approach for routine plant identification. The HiSeq (Illumina and Ion Torrent (Life Technology sequencing platforms were used to sequence total DNA from rice to identify polymorphisms in the whole chloroplast genome sequence of a wild rice plant relative to cultivated rice (cv. Nipponbare. Consensus chloroplast sequences were produced by mapping sequence reads to the reference rice chloroplast genome or by de novo assembly and mapping of the resulting contigs to the reference sequence. A total of 122 polymorphisms (SNPs and indels between the wild and cultivated rice chloroplasts were predicted by these different sequencing and analysis methods. Of these, a total of 102 polymorphisms including 90 SNPs were predicted by both platforms. Indels were more variable with different sequencing methods, with almost all discrepancies found in homopolymers. The Ion Torrent platform gave no apparent false SNP but was less reliable for indels. The methods should be suitable for routine barcoding using appropriate combinations of sequencing platform and data analysis.

  18. Photoregulation of fructose and glucose respiration in the intact chloroplasts of Chlamydomonas reinhardtii F-60 and spinach

    Energy Technology Data Exchange (ETDEWEB)

    Singh, K.K.; Changguo Chen; Gibbs, M. (Brandeis Univ., Waltham, MA (United States))

    1993-04-01

    The photoregulation of chloroplastic respiration was studied by monitoring in darkness and in light the release of [sup 14]CO[sub 2] from whole chloroplasts of Chlamydomonas reinhardtii F-60 and spinach (Spinacia oleracea L.) supplied externally with [[sup 14]C]glucose and [[sup 14]C]fructose, respectively. CO[sub 2] release was inhibited more than 90% in both chloroplasts by a light intensity of 4 W m[sup [minus]2]. Oxidants, oxaloacetate in Chlamydomonas, nitrite in spinach, and phenazine methosulfate in both chloroplasts, reversed the inhibition. The onset of the photoinhibitory effect on CO[sub 2] release was relatively rapid compared to the restoration of CO[sub 2] release following illumination. In both darkened chloroplasts, dithiothreitol inhibited release. Of the four enzymes (fructokinase, phosphoglucose isomerase, glucose-6-P dehydrogenase, and gluconate-6-P dehydrogenase) in the pathway catalyzing the release of CO[sub 2] from fructose, only glucose-6-P dehydrogenase was deactivated by light and by dithiothreitol. 33 refs., 3 figs., 4 tabs.

  19. 3'end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a two-step process.

    Science.gov (United States)

    Stern, D B; Kindle, K L

    1993-01-01

    Inverted repeat (IR) sequences are found at the 3' ends of most chloroplast protein coding regions, and we have previously shown that the 3'IR is important for accumulation of atpB mRNA in Chlamydomonas reinhardtii (D. B. Stern, E.R. Radwanski, and K. L. Kindle, Plant Cell 3:285-297, 1991). In vitro studies indicate that 3' IRs are inefficient transcription termination signals in higher plants and have furthermore defined processing activities that act on the 3' ends of chloroplast transcripts, suggesting that most chloroplast mRNAs are processed at their 3' ends in vivo. To investigate the mechanism of 3' end processing in Chlamydomonas reinhardtii chloroplasts, the maturation of atpB mRNA was examined in vitro and in vivo. In vitro, a synthetic atpB mRNA precursor is rapidly cleaved at a position 10 nucleotides downstream from the mature 3' terminus. This cleavage is followed by exonucleolytic processing to generate the mature 3' end. In vivo run-on transcription experiments indicate that a maximum of 50% of atpB transcripts are transcriptionally terminated at or near the IR, while the remainder are subject to 3' end processing. Analysis of transcripts derived from chimeric atpB genes introduced into Chlamydomonas chloroplasts by biolistic transformation suggests that in vivo processing and in vitro processing occur by similar or identical mechanisms. Images PMID:8455609

  20. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

    Energy Technology Data Exchange (ETDEWEB)

    Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L.; Jansen, Robert K.

    2006-01-20

    Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since

  1. Chloroplast Chaperonin: An Intricate Protein Folding Machine for Photosynthesis

    Directory of Open Access Journals (Sweden)

    Qian Zhao

    2018-01-01

    Full Text Available Group I chaperonins are large cylindrical-shaped nano-machines that function as a central hub in the protein quality control system in the bacterial cytosol, mitochondria and chloroplasts. In chloroplasts, proteins newly synthesized by chloroplast ribosomes, unfolded by diverse stresses, or translocated from the cytosol run the risk of aberrant folding and aggregation. The chloroplast chaperonin system assists these proteins in folding into their native states. A widely known protein folded by chloroplast chaperonin is the large subunit of ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, an enzyme responsible for the fixation of inorganic CO2 into organic carbohydrates during photosynthesis. Chloroplast chaperonin was initially identified as a Rubisco-binding protein. All photosynthetic eucaryotes genomes encode multiple chaperonin genes which can be divided into α and β subtypes. Unlike the homo-oligomeric chaperonins from bacteria and mitochondria, chloroplast chaperonins are more complex and exists as intricate hetero-oligomers containing both subtypes. The Group I chaperonin requires proper interaction with a detachable lid-like co-chaperonin in the presence of ATP and Mg2+ for substrate encapsulation and conformational transition. Besides the typical Cpn10-like co-chaperonin, a unique co-chaperonin consisting of two tandem Cpn10-like domains joined head-to-tail exists in chloroplasts. Since chloroplasts were proposed as sensors to various environmental stresses, this diversified chloroplast chaperonin system has the potential to adapt to complex conditions by accommodating specific substrates or through regulation at both the transcriptional and post-translational levels. In this review, we discuss recent progress on the unique structure and function of the chloroplast chaperonin system based on model organisms Chlamydomonas reinhardtii and Arabidopsis thaliana. Knowledge of the chloroplast chaperonin system may ultimately lead

  2. Ranking in evolving complex networks

    Science.gov (United States)

    Liao, Hao; Mariani, Manuel Sebastian; Medo, Matúš; Zhang, Yi-Cheng; Zhou, Ming-Yang

    2017-05-01

    Complex networks have emerged as a simple yet powerful framework to represent and analyze a wide range of complex systems. The problem of ranking the nodes and the edges in complex networks is critical for a broad range of real-world problems because it affects how we access online information and products, how success and talent are evaluated in human activities, and how scarce resources are allocated by companies and policymakers, among others. This calls for a deep understanding of how existing ranking algorithms perform, and which are their possible biases that may impair their effectiveness. Many popular ranking algorithms (such as Google's PageRank) are static in nature and, as a consequence, they exhibit important shortcomings when applied to real networks that rapidly evolve in time. At the same time, recent advances in the understanding and modeling of evolving networks have enabled the development of a wide and diverse range of ranking algorithms that take the temporal dimension into account. The aim of this review is to survey the existing ranking algorithms, both static and time-aware, and their applications to evolving networks. We emphasize both the impact of network evolution on well-established static algorithms and the benefits from including the temporal dimension for tasks such as prediction of network traffic, prediction of future links, and identification of significant nodes.

  3. Evolving digital ecological networks.

    Directory of Open Access Journals (Sweden)

    Miguel A Fortuna

    Full Text Available "It is hard to realize that the living world as we know it is just one among many possibilities" [1]. Evolving digital ecological networks are webs of interacting, self-replicating, and evolving computer programs (i.e., digital organisms that experience the same major ecological interactions as biological organisms (e.g., competition, predation, parasitism, and mutualism. Despite being computational, these programs evolve quickly in an open-ended way, and starting from only one or two ancestral organisms, the formation of ecological networks can be observed in real-time by tracking interactions between the constantly evolving organism phenotypes. These phenotypes may be defined by combinations of logical computations (hereafter tasks that digital organisms perform and by expressed behaviors that have evolved. The types and outcomes of interactions between phenotypes are determined by task overlap for logic-defined phenotypes and by responses to encounters in the case of behavioral phenotypes. Biologists use these evolving networks to study active and fundamental topics within evolutionary ecology (e.g., the extent to which the architecture of multispecies networks shape coevolutionary outcomes, and the processes involved.

  4. Nanophotonics of Chloroplasts for Bio-Inspired Solar Energy Materials

    Science.gov (United States)

    Gourley, Paul L.; Gourley, Cheryl R.

    2011-03-01

    In the search for new energy sources, lessons can be learned from chloroplast photonics. The nano-architecture of chloroplasts is remarkably well-adapted to mediate sunlight interactions for efficient energy conversion. We carried out experiments with chloroplasts isolated from spinach and leaf lettuce to elucidate the relationship between nano-architecture, biomolecular composition and photonic properties. We obtained high-resolution microscopic images of single chloroplasts to identify geometries of chloroplasts and interior grana. We performed micro-spectroscopy to identify strengths of absorption and fluorescence transitions and related them to broadband reflectance and transmittance spectra of whole leaf structures. Finally, the nonlinear optical properties were investigated with nanolaser spectroscopy by placing chloroplasts into micro-resonators and optically pumping. These spectra reveal chloroplast photonic modes and allow measurement of single chloroplast light scattering cross section, polarizability, and refractive index. The nanolaser spectra recorded at increasing pump powers enabled us to observe non-linear optics, photon dynamics, and stimulated emission from single chloroplasts. All of these experiments provide insight into plant photonics and inspiration of paradigms for synthetic biomaterials to harness sunlight in new ways.

  5. Looking for a substituent of spinach (Spinacia oleracea) chloroplasts

    Science.gov (United States)

    Chang, Ying Ping; Yeoh, Loo Yew; Chee, Swee Yong; Lim, Tuck Meng

    2017-04-01

    Spinach's chloroplasts electron transport features are often adapted to build biofuel cells or biosensors for environment conservation. This approach may raise food security issues. The present study aimed to test on in vitro functional activity of chloroplasts from selected underutilized leaves of: Pandan (Pandanus amaryllifolius), oil palm (Elaeis guineensis) and water lettuce (Pistia stratiotes) in comparison with spinach (Spinacia oleracea). The leaves' electrical conductivity was measured to evaluate the initial cell permeability. We applied Hill's reaction to determine the photoreduction capacity of the chloroplasts. Initial electrical conductivity of leaves ranged from 11.5 to 18.5 µs/cm/g followed the order of water lettucechloroplasts. Chloroplasts of oil palm frond and water lettuce showed low photoreduction rate of 14 to 22%. On the other hand, the chloroplasts of both spinach and pandan leaves exerted an initial photoreduction rate which was above 90%. The photoreduction rate of these chloroplasts remained to above 60% even after 30 day-storage at -20°C. In comparison with spinach, pandan leaves' chloroplasts possessed similar in vitro functional activity and storage stability at 4°C and -20°C. This warrants further investigation on chloroplasts of pandan leaves for higher-value applications.

  6. CHLOROPLAST BIOGENESIS Genes Act Cell and Noncell Autonomously in Early Chloroplast Development1

    Science.gov (United States)

    de la Luz Gutiérrez-Nava, María; Gillmor, C. Stewart; Jiménez, Luis F.; Guevara-García, Arturo; León, Patricia

    2004-01-01

    In order to identify nuclear genes required for early chloroplast development, a collection of photosynthetic pigment mutants of Arabidopsis was assembled and screened for lines with extremely low levels of chlorophyll. Nine chloroplast biogenesis (clb) mutants that affect proplastid growth and thylakoid membrane formation and result in an albino seedling phenotype were identified. These mutations identify six new genes as well as a novel allele of cla1. clb mutants have less than 2% of wild-type chlorophyll levels, and little or no expression of nuclear and plastid-encoded genes required for chloroplast development and function. In all but one mutant, proplastids do not differentiate enough to form elongated stroma thylakoid membranes. Analysis of mutants during embryogenesis allows differentiation between CLB genes that act noncell autonomously, where partial maternal complementation of chloroplast development is observed in embryos, and those that act cell autonomously, where complementation during embryogenesis is not observed. Molecular characterization of the noncell autonomous clb4 mutant established that the CLB4 gene encodes for hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate synthase (HDS), the next to the last enzyme of the methylerythritol 4-phosphate (MEP) pathway for the synthesis of plastidic isoprenoids. The noncell autonomous nature of the clb4 mutant suggests that products of the MEP pathway can travel between tissues, and provides in vivo evidence that some movement of MEP intermediates exists from the cytoplasm to the plastid. The isolation and characterization of clb mutants represents the first systematic study of genes required for early chloroplast development in Arabidopsis. PMID:15133149

  7. Expression of eukaryotic polypeptides in chloroplasts

    Science.gov (United States)

    Mayfield, Stephen P.

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  8. Characterization of chloroplast phosphoproteins controlling manganese use efficiency using quantitative proteomics

    DEFF Research Database (Denmark)

    Petersen, Jørgen; Sprenger, Richard Remko; Rogowska-Wrzesinska, Adelina

    Manganese is important for molecular functions in plants, i.e. as a co-factor in enzymes and in the oxygen evolving complex of photosystem II, located like most of the photosynthetic machinery, in the thylakoid membranes of chloroplasts. Soils that lack plant available micronutrients such as mang......Manganese is important for molecular functions in plants, i.e. as a co-factor in enzymes and in the oxygen evolving complex of photosystem II, located like most of the photosynthetic machinery, in the thylakoid membranes of chloroplasts. Soils that lack plant available micronutrients...... such as manganese are generally not suitable for crop production. Fortunately, various plant genotypes differ in their ability to grow in soil with low amounts of micronutrients, providing an opportunity to identify strains that tolerate low manganese levels. We want to identify and quantified phosphoproteins...... involved in manganese use efficiency, focusing on the phosphoproteome from thylakoid preparations from two barley genotypes, manganese efficient (Vanessa) and inefficient (Antonia) genotype. Experimental: By monitoring the photosynthetic efficiency (Fv/Fm) a decline in activity is observed as a consequence...

  9. Comparative studies on codon usage pattern of chloroplasts and ...

    Indian Academy of Sciences (India)

    Unknown

    chloroplast genome might display particular characteristics of codon usage that are different from its host nuclear ge- nome. ... [Liu Q. and Xue Q. 2005 Comparative studies on codon usage pattern of chloroplasts and their host nuclear genes in four plant spe- cies. .... factors in the evolution of genomic structures (Bellgard.

  10. Expression of recombinant interferon α-2a in tobacco chloroplasts ...

    African Journals Online (AJOL)

    Chloroplast-based expression of pharmaceuticals provides cost-effective benefits to the consumer. In order to establish the transplastomic biopharmaceuticals, the interferon α-2a gene along with aadA gene was flanked by the tobacco chloroplast inverted repeat region for two events of homologous recombination.

  11. C4 photosynthetic machinery: insights from maize chloroplast proteomics

    Directory of Open Access Journals (Sweden)

    Qi eZhao

    2013-04-01

    Full Text Available C4 plants exhibit much higher CO2 assimilation rates than C3 plants. The specialized differentiation of mesophyll cell (M and bundle sheath cell (BS type chloroplasts is unique to C4 plants and improves photosynthesis efficiency. Maize (Zea mays is an important crop and model with C4 photosynthetic machinery. Current high-throughput quantitative proteomics approaches (e.g., 2DE, iTRAQ, and shotgun proteomics have been employed to investigate maize chloroplast structure and function. These proteomic studies have provided valuable information on C4 chloroplast protein components, photosynthesis, and other metabolic mechanisms underlying chloroplast biogenesis, stromal and membrane differentiation, as well as response to salinity, high/low temperature, and light stress. This review presents an overview of proteomics advances in maize chloroplast biology.

  12. Chloroplast division during leaf development of Xanthium pensylvanicum Wallr. (Compositae

    Directory of Open Access Journals (Sweden)

    Roman Maksymowych

    2014-01-01

    Full Text Available Division and growth of chloroplasts was studied during leaf development of Xanthium pensylvanicum at various stages of development represented by the leaf plastochron index.Between leaf plastochron indices -1.00 and 2.56 chloroplast division was observed with little enlargement. Between 2.50 and 5.00 chloroplasts enlarged in diameter with an average rate of 0.21 µm per day. At leaf plastochron index 5.00 chloroplasts attained their mature size of 6.12 µm. No chloroplast division was found after leaf plastochron index 2.50. A change in shape of plastids from spherical proplastids to discoidal accompanied their growth during stages 2.50 and 5.00.

  13. Circadian rhythms of chloroplast orientation and photosynthetic capacity in ulva.

    Science.gov (United States)

    Britz, S J; Briggs, W R

    1976-07-01

    Ulva lactuca L. var. latissima (L.) Decandolle and var. rigida (C. Agardh) Le Jolis and U. mutabilis Foyn have a circadian rhythm of chloroplast orientation which results in large changes in the light-absorption properties of the thallus. During the day, the chloroplasts cover the outer face of the cells and absorbance is high. At night, the chloroplasts are along the side walls and absorbance is low. Enteromorpha linza (L.) J. Agardh, E. intestinalis (L.) Link, E. sp., and Monostroma grevillei (Thuret) Wittrock, members of the Ulvales, were not observed to have this rhythmic movement. Chloroplasts, when in the face position, could not be induced to move to the sides by high intensity light up to 80,000 lux. Unrelated to chloroplast position per se and light-absorption efficiency, there is a rhythm of photosynthetic capacity which peaks just before midday and which continues in constant darkness.

  14. Mentoring: An Evolving Relationship.

    Science.gov (United States)

    Block, Michelle; Florczak, Kristine L

    2017-04-01

    The column concerns itself with mentoring as an evolving relationship between mentor and mentee. The collegiate mentoring model, the transformational transcendence model, and the humanbecoming mentoring model are considered in light of a dialogue with mentors at a Midwest university and conclusions are drawn.

  15. Measurably evolving populations

    DEFF Research Database (Denmark)

    Drummond, Alexei James; Pybus, Oliver George; Rambaut, Andrew

    2003-01-01

    processes through time. Populations for which such studies are possible � measurably evolving populations (MEPs) � are characterized by sufficiently long or numerous sampled sequences and a fast mutation rate relative to the available range of sequence sampling times. The impact of sequences sampled through...... understanding of evolutionary processes in diverse organisms, from viruses to vertebrates....

  16. Physiological and proteomic analysis in chloroplasts of Solanum lycopersicum L. under silicon efficiency and salinity stress.

    Science.gov (United States)

    Muneer, Sowbiya; Park, Yoo Gyeong; Manivannan, Abinaya; Soundararajan, Prabhakaran; Jeong, Byoung Ryong

    2014-11-26

    Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si) supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L.) were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis) revealed a high sensitivity of multiprotein complex proteins (MCPs) such as photosystems I (PSI) and II (PSII) to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs) were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome expression

  17. Physiological and Proteomic Analysis in Chloroplasts of Solanum lycopersicum L. under Silicon Efficiency and Salinity Stress

    Directory of Open Access Journals (Sweden)

    Sowbiya Muneer

    2014-11-01

    Full Text Available Tomato plants often grow in saline environments in Mediterranean countries where salt accumulation in the soil is a major abiotic stress that limits its productivity. However, silicon (Si supplementation has been reported to improve tolerance against several forms of abiotic stress. The primary aim of our study was to investigate, using comparative physiological and proteomic approaches, salinity stress in chloroplasts of tomato under silicon supplementation. Tomato seedlings (Solanum lycopersicum L. were grown in nutrient media in the presence or absence of NaCl and supplemented with silicon for 5 days. Salinity stress caused oxidative damage, followed by a decrease in silicon concentrations in the leaves of the tomato plants. However, supplementation with silicon had an overall protective effect against this stress. The major physiological parameters measured in our studies including total chlorophyll and carotenoid content were largely decreased under salinity stress, but were recovered in the presence of silicon. Insufficient levels of net-photosynthesis, transpiration and stomatal conductance were also largely improved by silicon supplementation. Proteomics analysis of chloroplasts analyzed by 2D-BN-PAGE (second-dimensional blue native polyacrylamide-gel electrophoresis revealed a high sensitivity of multiprotein complex proteins (MCPs such as photosystems I (PSI and II (PSII to the presence of saline. A significant reduction in cytochrome b6/f and the ATP-synthase complex was also alleviated by silicon during salinity stress, while the complex forms of light harvesting complex trimers and monomers (LHCs were rapidly up-regulated. Our results suggest that silicon plays an important role in moderating damage to chloroplasts and their metabolism in saline environments. We therefore hypothesize that tomato plants have a greater capacity for tolerating saline stress through the improvement of photosynthetic metabolism and chloroplast proteome

  18. EVOLVE 2014 International Conference

    CERN Document Server

    Tantar, Emilia; Sun, Jian-Qiao; Zhang, Wei; Ding, Qian; Schütze, Oliver; Emmerich, Michael; Legrand, Pierrick; Moral, Pierre; Coello, Carlos

    2014-01-01

    This volume encloses research articles that were presented at the EVOLVE 2014 International Conference in Beijing, China, July 1–4, 2014.The book gathers contributions that emerged from the conference tracks, ranging from probability to set oriented numerics and evolutionary computation; all complemented by the bridging purpose of the conference, e.g. Complex Networks and Landscape Analysis, or by the more application oriented perspective. The novelty of the volume, when considering the EVOLVE series, comes from targeting also the practitioner’s view. This is supported by the Machine Learning Applied to Networks and Practical Aspects of Evolutionary Algorithms tracks, providing surveys on new application areas, as in the networking area and useful insights in the development of evolutionary techniques, from a practitioner’s perspective. Complementary to these directions, the conference tracks supporting the volume, follow on the individual advancements of the subareas constituting the scope of the confe...

  19. Evolvable Neural Software System

    Science.gov (United States)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  20. Complex processing patterns of mRNAs of the large ATP synthase operon in Arabidopsis chloroplasts.

    Directory of Open Access Journals (Sweden)

    Mustafa Malik Ghulam

    Full Text Available Chloroplasts are photosynthetic cell organelles which have evolved from endosymbiosis of the cyanobacterial ancestor. In chloroplasts, genes are still organized into transcriptional units as in bacteria but the corresponding poly-cistronic mRNAs undergo complex processing events, including inter-genic cleavage and 5' and 3' end-definition. The current model for processing proposes that the 3' end of the upstream cistron transcripts and the 5' end of the downstream cistron transcripts are defined by the same RNA-binding protein and overlap at the level of the protein-binding site. We have investigated the processing mechanisms that operate within the large ATP synthase (atp operon, in Arabidopsis thaliana chloroplasts. This operon is transcribed by the plastid-encoded RNA polymerase starting from two promoters, which are upstream and within the operon, respectively, and harbors four potential sites for RNA-binding proteins. In order to study the functional significance of the promoters and the protein-binding sites for the maturation processes, we have performed a detailed mapping of the atp transcript ends. Our data indicate that in contrast to maize, atpI and atpH transcripts with overlapping ends are very rare in Arabidopsis. In addition, atpA mRNAs, which overlap with atpF mRNAs, are even truncated at the 3' end, thus representing degradation products. We observe, instead, that the 5' ends of nascent poly-cistronic atp transcripts are defined at the first protein-binding site which follows either one of the two transcription initiation sites, while the 3' ends are defined at the subsequent protein-binding sites or at hairpin structures that are encountered by the progressing RNA polymerase. We conclude that the overlapping mechanisms of mRNA protection have only a limited role in obtaining stable processed atp mRNAs in Arabidopsis. Our findings suggest that during evolution of different plant species as maize and Arabidopsis, chloroplasts

  1. Chloroplasts in anther endothecium of Zea mays (Poaceae).

    Science.gov (United States)

    Murphy, Katherine M; Egger, Rachel L; Walbot, Virginia

    2015-11-01

    Although anthers of Zea mays, Oryza sativa, and Arabidopsis thaliana have been studied intensively using genetic and biochemical analyses in the past 20 years, few updates to anther anatomical and ultrastructural descriptions have been reported. For example, no transmission electron microscopy (TEM) images of the premeiotic maize anther have been published. Here we report the presence of chloroplasts in maize anthers. TEM imaging, electron acceptor photosynthesis assay, in planta photon detection, microarray analysis, and light and fluorescence microscopy were used to investigate the presence of chloroplasts in the maize anther. Most cells of the maize subepidermal endothecium have starch-containing chloroplasts that do not conduct measurable photosynthesis in vitro. The maize anther contains chloroplasts in most subepidermal, endothecial cells. Although maize anthers receive sufficient light to photosynthesize in vivo and the maize anther transcribes >96% of photosynthesis-associated genes found in the maize leaf, no photosynthetic light reaction activity was detected in vitro. The endothecial cell layer should no longer be defined as a complete circle viewed transversely in anther lobes, because chloroplasts are observed only in cells directly beneath the epidermis and not those adjacent to the connective tissue. We propose that chloroplasts be a defining characteristic of differentiated endothecial cells and that nonsubepidermal endothecial cells that lack chloroplasts be defined as a separate cell type, the interendothecium. © 2015 Botanical Society of America.

  2. Chloroplast: the Trojan horse in plant-virus interaction.

    Science.gov (United States)

    Bhattacharyya, Dhriti; Chakraborty, Supriya

    2018-02-01

    The chloroplast is one of the most dynamic organelles of a plant cell. It carries out photosynthesis, synthesizes major phytohormones, plays an active part in the defence response and is crucial for interorganelle signalling. Viruses, on the other hand, are extremely strategic in manipulating the internal environment of the host cell. The chloroplast, a prime target for viruses, undergoes enormous structural and functional damage during viral infection. Indeed, large proportions of affected gene products in a virus-infected plant are closely associated with the chloroplast and the process of photosynthesis. Although the chloroplast is deficient in gene silencing machinery, it elicits the effector-triggered immune response against viral pathogens. Virus infection induces the organelle to produce an extensive network of stromules which are involved in both viral propagation and antiviral defence. From studies over the last few decades, the involvement of the chloroplast in the regulation of plant-virus interaction has become increasingly evident. This review presents an exhaustive account of these facts, with their implications for pathogenicity. We have attempted to highlight the intricacies of chloroplast-virus interactions and to explain the existing gaps in our current knowledge, which will enable virologists to utilize chloroplast genome-based antiviral resistance in economically important crops. © 2017 BSPP AND JOHN WILEY & SONS LTD.

  3. Chloroplast microsatellite primers for cacao (Theobroma cacao) and other Malvaceae.

    Science.gov (United States)

    Yang, Ji Y; Motilal, Lambert A; Dempewolf, Hannes; Maharaj, Kamaldeo; Cronk, Q C B

    2011-12-01

    Chloroplast microsatellites were developed in Theobroma cacao to examine the genetic diversity of cacao cultivars in Trinidad and Tobago. Nine polymorphic microsatellites were designed from the chloroplast genomes of two T. cacao accessions. These microsatellites were tested in 95 hybrid accessions from Trinidad and Tobago. An average of 2.9 alleles per locus was found. These chloroplast microsatellites, particularly the highly polymorphic pentameric repeat, were useful in assessing genetic variation in T. cacao. In addition, these markers should also prove to be useful for population genetic studies in other species of Malvaceae.

  4. The integration of chloroplast protein targeting with plant developmental and stress responses.

    Science.gov (United States)

    Richardson, Lynn G L; Singhal, Rajneesh; Schnell, Danny J

    2017-12-07

    The plastids, including chloroplasts, are a group of interrelated organelles that confer photoautotrophic growth and the unique metabolic capabilities that are characteristic of plant systems. Plastid biogenesis relies on the expression, import, and assembly of thousands of nuclear encoded preproteins. Plastid proteomes undergo rapid remodeling in response to developmental and environmental signals to generate functionally distinct plastid types in specific cells and tissues. In this review, we will highlight the central role of the plastid protein import system in regulating and coordinating the import of functionally related sets of preproteins that are required for plastid-type transitions and maintenance.

  5. Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts

    Science.gov (United States)

    Schwartz, R. M.; Dayhoff, M. O.

    1978-01-01

    A computer branching model is used to analyze cellular evolution. Attention is given to certain key amino acids and nucleotide residues (ferredoxin, 5s ribosomal RNA, and c-type cytochromes) because of their commonality over a wide variety of cell types. Each amino acid or nucleotide residue is a sequence in an inherited biological trait; and the branching method is employed to align sequences so that changes reflect substitution of one residue for another. Based on the computer analysis, the symbiotic theory of cellular evolution is considered the most probable. This theory holds that organelles, e.g., mitochondria and chloroplasts invaded larger bodies, e.g., bacteria, and combined functions to form eucaryotic cells.

  6. Chloroplast Response to Low Leaf Water Potentials

    Science.gov (United States)

    Boyer, J. S.; Potter, J. R.

    1973-01-01

    The effect of decreases in turgor on chloroplast activity was studied by measuring the photochemical activity of intact sunflower (Helianthus annuus L. cv. Russian Mammoth) leaves having low water potentials. Leaf turgor, calculated from leaf water potential and osmotic potential, was found to be affected by the dilution of cell contents by water in the cell walls, when osmotic potentials were measured with a thermocouple psychrometer. After the correction of measurements of leaf osmotic potential, both the thermocouple psychrometer and a pressure chamber indicated that turgor became zero in sunflower leaves at leaf water potentials of −10 bars. Since most of the loss in photochemical activity occurred at water potentials below −10 bars, it was concluded that turgor had little effect on the photochemical activity of the leaves. PMID:16658486

  7. Chloroplast Microsatellite Diversity in Phaseolus vulgaris

    Science.gov (United States)

    Desiderio, F.; Bitocchi, E.; Bellucci, E.; Rau, D.; Rodriguez, M.; Attene, G.; Papa, R.; Nanni, L.

    2012-01-01

    Evolutionary studies that are aimed at defining the processes behind the present level and organization of crop genetic diversity represent the fundamental bases for biodiversity conservation and use. A Mesoamerican origin of the common bean Phaseolus vulgaris was recently suggested through analysis of nucleotide polymorphism at the nuclear level. Here, we have used chloroplast microsatellites to investigate the origin of the common bean, on the basis of the specific characteristics of these markers (no recombination, haploid genome, uniparental inheritance), to validate these recent findings. Indeed, comparisons of the results obtained through analysis of nuclear and cytoplasmic DNA should allow the resolution of some of the contrasting information available on the evolutionary processes. The main outcomes of the present study are: (i) confirmation at the chloroplast level of the results obtained through nuclear data, further supporting the Mesoamerican origin of P. vulgaris, with central Mexico representing the cradle of its diversity; (ii) identification of a putative ancestral plastidial genome, which is characteristic of a group of accessions distributed from central Mexico to Peru, but which have not been highlighted beforehand through analyses at the nuclear level. Finally, the present study suggests that when a single species is analyzed, there is the need to take into account the complexity of the relationships between P. vulgaris and its closely related and partially intercrossable species P. coccineus and P. dumosus. Thus, the present study stresses the importance for the investigation of the speciation processes of these taxa through comparisons of both plastidial and nuclear variability. This knowledge will be fundamental not only from an evolutionary point of view, but also to put P. coccineus and P. dumosus germplasm to better use as a source of useful diversity for P. vulgaris breeding. PMID:23346091

  8. Chloroplast microsatellite diversity in Phaseolus vulgaris.

    Directory of Open Access Journals (Sweden)

    Francesca eDesiderio

    2013-01-01

    Full Text Available Evolutionary studies that are aimed at defining the processes behind the present level and organization of crop genetic diversity represent the fundamental bases for biodiversity conservation and use. A Mesoamerican origin of the common bean Phaseolus vulgaris was recently suggested through analysis of nucleotide polymorphism at the nuclear level. Here, we have used chloroplast microsatellites to investigate the origin of the common bean, on the basis of the specific characteristics of these markers (no recombination, haploid genome, uniparental inheritance, to validate these recent findings. Indeed, comparisons of the results obtained through analysis of nuclear and cytoplasmic DNA should allow the resolution of some of the contrasting information available on the evolutionary processes. The main outcomes of the present study are: (i confirmation at the chloroplast level of the results obtained through nuclear data, further supporting the Mesoamerican origin of P. vulgaris, with central Mexico representing the cradle of its diversity; (ii identification of a putative ancestral plastidial genome, which is characteristic of a group of accessions distributed from central Mexico to Peru, but which have not been highlighted beforehand through analyses at the nuclear level. Finally, the present study suggests that when a single species is analysed, there is the need to take into account the complexity of the relationships between P. vulgaris and its closely related and partially intercrossable species P. coccineus and P. dumosus. Thus, the present study stresses the importance for the investigation of the speciation processes of these taxa through comparisons of both plastidial and nuclear variability. This knowledge will be fundamental not only from an evolutionary point of view, but also to put P. coccineus and P. dumosus germplasm to better use as a source of useful diversity for P. vulgaris breeding.

  9. Regolith Evolved Gas Analyzer

    Science.gov (United States)

    Hoffman, John H.; Hedgecock, Jud; Nienaber, Terry; Cooper, Bonnie; Allen, Carlton; Ming, Doug

    2000-01-01

    The Regolith Evolved Gas Analyzer (REGA) is a high-temperature furnace and mass spectrometer instrument for determining the mineralogical composition and reactivity of soil samples. REGA provides key mineralogical and reactivity data that is needed to understand the soil chemistry of an asteroid, which then aids in determining in-situ which materials should be selected for return to earth. REGA is capable of conducting a number of direct soil measurements that are unique to this instrument. These experimental measurements include: (1) Mass spectrum analysis of evolved gases from soil samples as they are heated from ambient temperature to 900 C; and (2) Identification of liberated chemicals, e.g., water, oxygen, sulfur, chlorine, and fluorine. REGA would be placed on the surface of a near earth asteroid. It is an autonomous instrument that is controlled from earth but does the analysis of regolith materials automatically. The REGA instrument consists of four primary components: (1) a flight-proven mass spectrometer, (2) a high-temperature furnace, (3) a soil handling system, and (4) a microcontroller. An external arm containing a scoop or drill gathers regolith samples. A sample is placed in the inlet orifice where the finest-grained particles are sifted into a metering volume and subsequently moved into a crucible. A movable arm then places the crucible in the furnace. The furnace is closed, thereby sealing the inner volume to collect the evolved gases for analysis. Owing to the very low g forces on an asteroid compared to Mars or the moon, the sample must be moved from inlet to crucible by mechanical means rather than by gravity. As the soil sample is heated through a programmed pattern, the gases evolved at each temperature are passed through a transfer tube to the mass spectrometer for analysis and identification. Return data from the instrument will lead to new insights and discoveries including: (1) Identification of the molecular masses of all of the gases

  10. Complete chloroplast genome sequences of Solanum commersonii and its application to chloroplast genotype in somatic hybrids with Solanum tuberosum.

    Science.gov (United States)

    Cho, Kwang-Soo; Cheon, Kyeong-Sik; Hong, Su-Young; Cho, Ji-Hong; Im, Ju-Seong; Mekapogu, Manjulatha; Yu, Yei-Soo; Park, Tae-Ho

    2016-10-01

    Chloroplast genome of Solanum commersonii and S olanum tuberosum were completely sequenced, and Indel markers were successfully applied to distinguish chlorotypes demonstrating the chloroplast genome was randomly distributed during protoplast fusion. Somatic hybridization has been widely employed for the introgression of resistance to several diseases from wild Solanum species to overcome sexual barriers in potato breeding. Solanum commersonii is a major resource used as a parent line in somatic hybridization to improve bacterial wilt resistance in interspecies transfer to cultivated potato (S. tuberosum). Here, we sequenced the complete chloroplast genomes of Lz3.2 (S. commersonii) and S. tuberosum (PT56), which were used to develop fusion products, then compared them with those of five members of the Solanaceae family, S. tuberosum, Capsicum annum, S. lycopersicum, S. bulbocastanum and S. nigrum and Coffea arabica as an out-group. We then developed Indel markers for application in chloroplast genotyping. The complete chloroplast genome of Lz3.2 is composed of 155,525 bp, which is larger than the PT56 genome with 155,296 bp. Gene content, order and orientation of the S. commersonii chloroplast genome were highly conserved with those of other Solanaceae species, and the phylogenetic tree revealed that S. commersonii is located within the same node of S. tuberosum. However, sequence alignment revealed nine Indels between S. commersonii and S. tuberosum in their chloroplast genomes, allowing two Indel markers to be developed. The markers could distinguish the two species and were successfully applied to chloroplast genotyping (chlorotype) in somatic hybrids and their progenies. The results obtained in this study confirmed the random distribution of the chloroplast genome during protoplast fusion and its maternal inheritance and can be applied to select proper plastid genotypes in potato breeding program.

  11. The complete chloroplast genome sequence of Zanthoxylum piperitum.

    Science.gov (United States)

    Lee, Jonghoon; Lee, Hyeon Ju; Kim, Kyunghee; Lee, Sang-Choon; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    The complete chloroplast genome sequence of Zanthoxylum piperitum, a plant species with useful aromatic oils in family Rutaceae, was generated in this study by de novo assembly with whole-genome sequence data. The chloroplast genome was 158 154 bp in length with a typical quadripartite structure containing a pair of inverted repeats of 27 644 bp, separated by large single copy and small single copy of 85 340 bp and 17 526 bp, respectively. The chloroplast genome harbored 112 genes consisting of 78 protein-coding genes 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis of the complete chloroplast genome sequences with those of known relatives revealed that Z. piperitum is most closely related to the Citrus species.

  12. Transport of Ions Across the Inner Envelope Membrane of Chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    McCarty, R. E.

    2004-06-02

    The technical report outlines the results of nine years of research on how ions cross the inner envelope membrane of chloroplasts. The ions include protons, nitrite, calcium and ferrous iron. Bicarbonate transport was also studied.

  13. IM30 triggers membrane fusion in cyanobacteria and chloroplasts

    NARCIS (Netherlands)

    Hennig, R.; Heidrich, J.; Saur, M.; Schmüser, L.; Roeters, S.J.; Hellmann, N.; Woutersen, S.; Bonn, M.; Weidner, T.; Markl, J.; Schneider, D.

    2015-01-01

    The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane

  14. Cloning and sequence analysis of cDNAs encoding the cytosolic precursors of subunits GapA and GapB of chloroplast glyceraldehyde-3-phosphate dehydrogenase from pea and spinach.

    Science.gov (United States)

    Brinkmann, H; Cerff, R; Salomon, M; Soll, J

    1989-07-01

    Chloroplast glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is composed of two different subunits, GapA and GapB. cDNA clones containing the entire coding sequences of the cytosolic precursors for GapA from pea and for GapB from pea and spinach have been identified, sequenced and the derived amino acid sequences have been compared to the corresponding sequences from tobacco, maize and mustard. These comparisons show that GapB differs from GapA in about 20% of its amino acid residues and by the presence of a flexible and negatively charged C-terminal extension, possibly responsible for the observed association of the enzyme with chloroplast envelopes in vitro. This C-terminal extension (29 or 30 residues) may be susceptible to proteolytic cleavage thereby leading to a conversion of chloroplast GAPDH isoenzyme I into isoenzyme II. Evolutionary rate comparisons at the amino acid sequence level show that chloroplast GapA and GapB evolve roughly two-fold slower than their cytosolic counterpart GapC. GapA and GapB transit peptides evolve about 10 times faster than the corresponding mature subunits. They are relatively long (68 and 83 residues for pea GapA and spinach GapB respectively) and share a similar amino acid framework with other chloroplast transit peptides.

  15. Breakthrough in chloroplast genetic engineering of agronomically important crops

    OpenAIRE

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2005-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens a...

  16. Evolving haloalkane dehalogenases

    NARCIS (Netherlands)

    Janssen, D.B.

    Mechanistic insight into the biochemistry of carbon–halogen bond cleavage is rapidly growing because of recent structural, biochemical and computational studies that have provided further insight into how haloalkane dehalogenases achieve their impressive catalytic activity. An occluded water-free

  17. Wax plants disentangled: a phylogeny of Hoya (Marsdenieae, Apocynaceae) inferred from nuclear and chloroplast DNA sequences.

    Science.gov (United States)

    Wanntorp, Livia; Kocyan, Alexander; Renner, Susanne S

    2006-06-01

    Hoya (Marsdenieae, Apocynaceae) includes at least 200 species distributed from India to the Pacific Islands. We here infer major species groups in the genus based on combined sequences from the chloroplast atpB-rbcL spacer, the trnL region, and nuclear ribosomal DNA ITS region for 42 taxa of Hoya and close relatives. To assess levels of ITS polymorphism, ITS sequences for a third of the accessions were obtained by cloning. Most ITS clones grouped by species, indicating that speciation in Hoya usually predates ITS duplication. One ITS sequence of H. carnosa, however, grouped with a sequence of the morphologically similar H. pubicalyx, pointing to recent hybridization or the persistence of paralogous copies through a speciation event. The topology resulting from the combined chloroplast and nuclear data recovers some morphology-based sections, such as Acanthostemma and Eriostemma, as well as a well-supported Australian/New Guinean clade. The combined data also suggest that morphological adaptations for ant-symbiosis evolved at least three times within Hoya.

  18. Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.

    Science.gov (United States)

    Leliaert, Frederik; Tronholm, Ana; Lemieux, Claude; Turmel, Monique; DePriest, Michael S.; Bhattacharya, Debashish; Karol, Kenneth G.; Fredericq, Suzanne; Zechman, Frederick W.; Lopez-Bautista, Juan M.

    2016-01-01

    The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov. PMID:27157793

  19. Multi-functional roles for the polypeptide transport associated domains of Toc75 in chloroplast protein import

    Science.gov (United States)

    Paila, Yamuna D; Richardson, Lynn GL; Inoue, Hitoshi; Parks, Elizabeth S; McMahon, James; Inoue, Kentaro; Schnell, Danny J

    2016-01-01

    Toc75 plays a central role in chloroplast biogenesis in plants as the membrane channel of the protein import translocon at the outer envelope of chloroplasts (TOC). Toc75 is a member of the Omp85 family of bacterial and organellar membrane insertases, characterized by N-terminal POTRA (polypeptide-transport associated) domains and C-terminal membrane-integrated β-barrels. We demonstrate that the Toc75 POTRA domains are essential for protein import and contribute to interactions with TOC receptors, thereby coupling preprotein recognition at the chloroplast surface with membrane translocation. The POTRA domains also interact with preproteins and mediate the recruitment of molecular chaperones in the intermembrane space to facilitate membrane transport. Our studies are consistent with the multi-functional roles of POTRA domains observed in other Omp85 family members and demonstrate that the domains of Toc75 have evolved unique properties specific to the acquisition of protein import during endosymbiotic evolution of the TOC system in plastids. DOI: http://dx.doi.org/10.7554/eLife.12631.001 PMID:26999824

  20. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression.

    Science.gov (United States)

    Allen, John F

    2015-08-18

    Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.

  1. Alteration in the chloroplastic metabolism leads to ROS accumulation in pea plants in response to plum pox virus.

    Science.gov (United States)

    Díaz-Vivancos, Pedro; Clemente-Moreno, María José; Rubio, Manuel; Olmos, Enrique; García, Juan Antonio; Martínez-Gómez, Pedro; Hernández, José Antonio

    2008-01-01

    In this work, a recombinant plum pox virus (PPV, Sharka) encoding green fluorescent protein is used to study its effect on antioxidant enzymes and protein expression at the subcellular level in pea plants (cv. Alaska). PPV had produced chlorotic spots as well as necrotic spots in the oldest leaves at 13-15 d post-inoculation. At 15 d post-inoculation, PPV was present in the chlorotic and necrotic areas, as shown by the fluorescence signal produced by the presence of the green fluorescent protein. In the same areas, an accumulation of reactive oxygen species was noticed. Studies with laser confocal and electron microscopy demonstrated that PPV accumulated in the cytosol of infected cells. In addition, PPV infection produced an alteration in the chloroplast ultrastructure, giving rise to dilated thylakoids, an increase in the number of plastoglobuli, and a decreased amount of starch content. At 3 d post-inoculation, although no changes in the oxidative stress parameters were observed, an increase in the chloroplastic hydrogen peroxide levels was observed that correlated with a decrease in the enzymatic mechanisms involved in its elimination (ascorbate peroxidase and peroxidase) in this cell compartment. These results indicate that an alteration in the chloroplastic metabolism is produced in the early response to PPV. This oxidative stress is more pronounced during the development of the disease (15 d post-inoculation) judging from the increase in oxidative stress parameters as well as the imbalance in the antioxidative systems, mainly at the chloroplastic level. Finally, proteomic analyses showed that most of the changes produced by PPV infection with regard to protein expression at the subcellular level were related mainly to photosynthesis and carbohydrate metabolism. It seems that PPV infection has some effect on PSII, directly or indirectly, by decreasing the amount of Rubisco, oxygen-evolving enhancer, and PSII stability factor proteins. The results indicate

  2. Evidence for chloroplastic succinate dehydrogenase participating in the chloroplastic respiratory and photosynthetic electron transport chains of Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Willeford, K.O.; Gombos, Z.; Gibbs, M. (Brandeis Univ., Waltham, MA (USA))

    1989-07-01

    A method for isolating intact chloroplasts from Chlamydomonas reinhardtii F-60 was developed from the Klein, Chen, Gibbs, Platt-Aloia procedure. Protoplasts, generated by treatment with autolysine, were lysed with a solution of digitonin and fractionated on Percoll step gradients. The chloroplasts were assessed to be 90% intact (ferricyanide assay) and free from cytoplasmic contamination (NADP isocitrate dehydrogenase activity) and to range from 2 to 5% in mitochondrial contamination (cytochrome c oxidase activity). About 25% of the cellular succinate dehydrogenase activity (21.6 micromoles per milligram chlorophyll per hour, as determined enzymically) was placed within the chloroplast. Chloroplastic succinate dehydrogenase had a K{sub m} for succinate of 0.55 millimolar and was associated with the thylakoidal material derived from the intact chloroplasts. This same thylakoidal material, with an enzymic assay of 21.6 micromoles per milligram chlorophyll per hour was able to initiate a light-dependent uptake of oxygen at a rate of 16.4 micromoles per milligram chlorophyll per hour when supplied with succinate and methyl viologen. Malonate was an apparent competitive inhibitor of this reaction. The succinate dehydrogenase activity present in the chloroplast was sufficient to account for the photoanaerobic rate of acetate dissimilation in H{sub 2} adapted Chlamydomonas.

  3. Border control: selectivity of chloroplast protein import and regulation at the TOC-complex.

    Science.gov (United States)

    Demarsy, Emilie; Lakshmanan, Ashok M; Kessler, Felix

    2014-01-01

    Plants have evolved complex and sophisticated molecular mechanisms to regulate their development and adapt to their surrounding environment. Particularly the development of their specific organelles, chloroplasts and other plastid-types, is finely tuned in accordance with the metabolic needs of the cell. The normal development and functioning of plastids require import of particular subsets of nuclear encoded proteins. Most preproteins contain a cleavable sequence at their N terminal (transit peptide) serving as a signal for targeting to the organelle and recognition by the translocation machinery TOC-TIC (translocon of outer membrane complex-translocon of inner membrane complex) spanning the dual membrane envelope. The plastid proteome needs constant remodeling in response to developmental and environmental factors. Therefore selective regulation of preprotein import plays a crucial role in plant development. In this review we describe the diversity of transit peptides and TOC receptor complexes, and summarize the current knowledge and potential directions for future research concerning regulation of the different Toc isoforms.

  4. State transitions--the molecular remodeling of photosynthetic supercomplexes that controls energy flow in the chloroplast.

    Science.gov (United States)

    Minagawa, Jun

    2011-08-01

    In oxygen-evolving photosynthesis, the two photosystems-photosystem I and photosystem II-function in parallel, and their excitation levels must be balanced to maintain an optimal photosynthetic rate under natural light conditions. State transitions in photosynthetic organisms balance the absorbed light energy between the two photosystems in a short time by relocating light-harvesting complex II proteins. For over a decade, the understanding of the physiological consequences, the molecular mechanism, and its regulation has increased considerably. After providing an overview of the general understanding of state transitions, this review focuses on the recent advances of the molecular aspects of state transitions with a particular emphasis on the studies using the green alga Chlamydomonas reinhardtii. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  5. Nitrogen control of chloroplast development and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1991-12-01

    The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

  6. Hypergravity of 10g Changes Plant Growth, Anatomy, Chloroplast Size, and Photosynthesis in the Moss Physcomitrella patens

    Science.gov (United States)

    Takemura, Kaori; Watanabe, Rina; Kameishi, Ryuji; Sakaguchi, Naoya; Kamachi, Hiroyuki; Kume, Atsushi; Karahara, Ichirou; Hanba, Yuko T.; Fujita, Tomomichi

    2017-10-01

    The photosynthetic and anatomical responses of bryophytes to changes in gravity will provide crucial information for estimating how these plant traits evolved to adapt to changes in gravity in land plant history. We performed long-term hypergravity experiments at 10g for 4 and 8 weeks using the moss Physcomitrella patens with two centrifuges equipped with lighting systems that enable long-term plant growth under hypergravity with irradiance. The aims of this study are (1) to quantify changes in the anatomy and morphology of P. patens, and (2) to analyze the post-effects of hypergravity on photosynthesis by P. patens in relation to these changes. We measured photosynthesis by P. patens for a population of gametophores (e.g., canopy) in Petri dishes and plant culture boxes. Gametophore numbers increased by 9% for a canopy of P. patens, with 24-27% increases in chloroplast sizes (diameter and thickness) in leaf cells. In a canopy of P. patens, the area-based photosynthesis rate (A canopy) was increased by 57% at 10g. The increase observed in A canopy was associated with greater plant numbers and chloroplast sizes, both of which involved enhanced CO2 diffusion from the atmosphere to chloroplasts in the canopies of P. patens. These results suggest that changes in gravity are important environmental stimuli to induce changes in plant growth and photosynthesis by P. patens, in which an alteration in chloroplast size is one of the key traits. We are now planning an ISS experiment to investigate the responses of P. patens to microgravity.

  7. Hypergravity of 10 g Changes Plant Growth, Anatomy, Chloroplast Size, and Photosynthesis in the Moss Physcomitrella patens

    Science.gov (United States)

    Takemura, Kaori; Watanabe, Rina; Kameishi, Ryuji; Sakaguchi, Naoya; Kamachi, Hiroyuki; Kume, Atsushi; Karahara, Ichirou; Hanba, Yuko T.; Fujita, Tomomichi

    2017-12-01

    The photosynthetic and anatomical responses of bryophytes to changes in gravity will provide crucial information for estimating how these plant traits evolved to adapt to changes in gravity in land plant history. We performed long-term hypergravity experiments at 10 g for 4 and 8 weeks using the moss Physcomitrella patens with two centrifuges equipped with lighting systems that enable long-term plant growth under hypergravity with irradiance. The aims of this study are (1) to quantify changes in the anatomy and morphology of P. patens, and (2) to analyze the post-effects of hypergravity on photosynthesis by P. patens in relation to these changes. We measured photosynthesis by P. patens for a population of gametophores (e.g., canopy) in Petri dishes and plant culture boxes. Gametophore numbers increased by 9% for a canopy of P. patens, with 24-27% increases in chloroplast sizes (diameter and thickness) in leaf cells. In a canopy of P. patens, the area-based photosynthesis rate ( A canopy) was increased by 57% at 10 g. The increase observed in A canopy was associated with greater plant numbers and chloroplast sizes, both of which involved enhanced CO2 diffusion from the atmosphere to chloroplasts in the canopies of P. patens. These results suggest that changes in gravity are important environmental stimuli to induce changes in plant growth and photosynthesis by P. patens, in which an alteration in chloroplast size is one of the key traits. We are now planning an ISS experiment to investigate the responses of P. patens to microgravity.

  8. Fat: an evolving issue

    Directory of Open Access Journals (Sweden)

    John R. Speakman

    2012-09-01

    Work on obesity is evolving, and obesity is a consequence of our evolutionary history. In the space of 50 years, we have become an obese species. The reasons why can be addressed at a number of different levels. These include separating between whether the primary cause lies on the food intake or energy expenditure side of the energy balance equation, and determining how genetic and environmental effects contribute to weight variation between individuals. Opinion on whether increased food intake or decreased energy expenditure drives the obesity epidemic is still divided, but recent evidence favours the idea that food intake, rather than altered expenditure, is most important. There is more of a consensus that genetics explains most (probably around 65% of weight variation between individuals. Recent advances in genome-wide association studies have identified many polymorphisms that are linked to obesity, yet much of the genetic variance remains unexplained. Finding the causes of this unexplained variation will be an impetus of genetic and epigenetic research on obesity over the next decade. Many environmental factors – including gut microbiota, stress and endocrine disruptors – have been linked to the risk of developing obesity. A better understanding of gene-by-environment interactions will also be key to understanding obesity in the years to come.

  9. Evolving Concepts of Asthma

    Science.gov (United States)

    Ray, Anuradha; Wenzel, Sally E.

    2015-01-01

    Our understanding of asthma has evolved over time from a singular disease to a complex of various phenotypes, with varied natural histories, physiologies, and responses to treatment. Early therapies treated most patients with asthma similarly, with bronchodilators and corticosteroids, but these therapies had varying degrees of success. Similarly, despite initial studies that identified an underlying type 2 inflammation in the airways of patients with asthma, biologic therapies targeted toward these type 2 pathways were unsuccessful in all patients. These observations led to increased interest in phenotyping asthma. Clinical approaches, both biased and later unbiased/statistical approaches to large asthma patient cohorts, identified a variety of patient characteristics, but they also consistently identified the importance of age of onset of disease and the presence of eosinophils in determining clinically relevant phenotypes. These paralleled molecular approaches to phenotyping that developed an understanding that not all patients share a type 2 inflammatory pattern. Using biomarkers to select patients with type 2 inflammation, repeated trials of biologics directed toward type 2 cytokine pathways saw newfound success, confirming the importance of phenotyping in asthma. Further research is needed to clarify additional clinical and molecular phenotypes, validate predictive biomarkers, and identify new areas for possible interventions. PMID:26161792

  10. Evolving endoscopic surgery.

    Science.gov (United States)

    Sakai, Paulo; Faintuch, Joel

    2014-06-01

    Since the days of Albukasim in medieval Spain, natural orifices have been regarded not only as a rather repugnant source of bodily odors, fluids and excreta, but also as a convenient invitation to explore and treat the inner passages of the organism. However, surgical ingenuity needed to be matched by appropriate tools and devices. Lack of technologically advanced instrumentation was a strong deterrent during almost a millennium until recent decades when a quantum jump materialized. Endoscopic surgery is currently a vibrant and growing subspecialty, which successfully handles millions of patients every year. Additional opportunities lie ahead which might benefit millions more, however, requiring even more sophisticated apparatuses, particularly in the field of robotics, artificial intelligence, and tissue repair (surgical suturing). This is a particularly exciting and worthwhile challenge, namely of larger and safer endoscopic interventions, followed by seamless and scarless recovery. In synthesis, the future is widely open for those who use together intelligence and creativity to develop new prototypes, new accessories and new techniques. Yet there are many challenges in the path of endoscopic surgery. In this new era of robotic endoscopy, one will likely need a virtual simulator to train and assess the performance of younger doctors. More evidence will be essential in multiple evolving fields, particularly to elucidate whether more ambitious and complex pathways, such as intrathoracic and intraperitoneal surgery via natural orifice transluminal endoscopic surgery (NOTES), are superior or not to conventional techniques. © 2014 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  11. Asymmetric evolving random networks

    Science.gov (United States)

    Coulomb, S.; Bauer, M.

    2003-10-01

    We generalize the Poissonian evolving random graph model of M. Bauer and D. Bernard (2003), to deal with arbitrary degree distributions. The motivation comes from biological networks, which are well-known to exhibit non Poissonian degree distributions. A node is added at each time step and is connected to the rest of the graph by oriented edges emerging from older nodes. This leads to a statistical asymmetry between incoming and outgoing edges. The law for the number of new edges at each time step is fixed but arbitrary. Thermodynamical behavior is expected when this law has a large time limit. Although (by construction) the incoming degree distributions depend on this law, this is not the case for most qualitative features concerning the size distribution of connected components, as long as the law has a finite variance. As the variance grows above 1/4, the average being < 1/2, a giant component emerges, which connects a finite fraction of the vertices. Below this threshold, the distribution of component sizes decreases algebraically with a continuously varying exponent. The transition is of infinite order, in sharp contrast with the case of static graphs. The local-in-time profiles for the components of finite size allow to give a refined description of the system.

  12. Assessing SfM-Photogrammetry potential at micro-scale on a rapidly evolving mud-bank: case study on a mesocosm study within pioneer mangroves in French Guiana (South America)

    Science.gov (United States)

    Fleury, Jules; Brunier, Guillaume; Michaud, Emma; Anthony, Edward; Dussouillez, Philippe; Morvan, Sylvain

    2016-04-01

    Mud banks are the loci of rich bio-geo-chemical processes occuring rapidly at infra-tide frequency. Their surface topography is commonly affected by many of these processes, including bioturbation, water drainage or dessication. Quantifying surface morphology and changes on a mud bank at the micro-scale is a challenging task due to a number of issues. First, the water-saturated nature of the soil makes it difficult to measure High Resolution Topography (HRT) with classical methods. Second, setting up an instrumented experiment without disrupting the signal being studied is hardly achieved at micro-scale. Finally, the highly mobile nature of this environment enhancing strong spatio-temporal heterogeneity is hard to capture. Terrestrial Laser Scanning (TLS) and SfM (Surface from Motion)-Photogrammetry are two techniques that enable mapping of micro-scale features, but the first technique is not suitable because of the poor quality of the backscattered laser signal on wet surfaces and the need to set up several measuring stations on a complex, unstable substrate. Thus, we set up an experiment to assess the feasibility and the accuracy of SfM in such a context. We took the opportunity of the installation of a pontoon dedicated to the study of bio-geochemical processes within benthic mesocosms installed on a mud bank inhabited by pioneer mangroves trees to develop an adapted photogrammetry protocol based on a full-frame remotely triggered camera sensor mounted on a pole. The incident light on the surface was also controlled with a light-diffusing device. We obtained sub-millimetric resolution 3D-topography and visible imagery. Surveys were carried out every 2 hours at low tide to detect surface changes due to water content variation as well as bioturbation mainly caused by crabs digging galleries and feeding on sediment surface. Both the qualitative and quantitative results seem very promising and lead us to expect new insights into heterogeneous surface processes on a

  13. The puzzle of chloroplast vesicle transport – involvement of GTPases

    Directory of Open Access Journals (Sweden)

    Sazzad eKarim

    2014-09-01

    Full Text Available In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum (ER network, Golgi bodies, secretory granules, endosome and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbour the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologues to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e, have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologues of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1 (VIPP1, thylakoid formation 1 (THF1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor (SCO2/CYO1, curvature thylakoid 1 (CURT1 proteins, and a dynamin like GTPase FZO-like (FZL protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.

  14. Analysis of protein interactions at native chloroplast membranes by ellipsometry.

    Directory of Open Access Journals (Sweden)

    Verena Kriechbaumer

    Full Text Available Membrane bound receptors play vital roles in cell signaling, and are the target for many drugs, yet their interactions with ligands are difficult to study by conventional techniques due to the technical difficulty of monitoring these interactions in lipid environments. In particular, the ability to analyse the behaviour of membrane proteins in their native membrane environment is limited. Here, we have developed a quantitative approach to detect specific interactions between low-abundance chaperone receptors within native chloroplast membranes and their soluble chaperone partners. Langmuir-Schaefer film deposition was used to deposit native chloroplasts onto gold-coated glass slides, and interactions between the molecular chaperones Hsp70 and Hsp90 and their receptors in the chloroplast membranes were detected and quantified by total internal reflection ellipsometry (TIRE. We show that native chloroplast membranes deposited on gold-coated glass slides using Langmuir-Schaefer films retain functional receptors capable of binding chaperones with high specificity and affinity. Taking into account the low chaperone receptor abundance in native membranes, these binding properties are consistent with data generated using soluble forms of the chloroplast chaperone receptors, OEP61 and Toc64. Therefore, we conclude that chloroplasts have the capacity to selectively bind chaperones, consistent with the notion that chaperones play an important role in protein targeting to chloroplasts. Importantly, this method of monitoring by TIRE does not require any protein labelling. This novel combination of techniques should be applicable to a wide variety of membranes and membrane protein receptors, thus presenting the opportunity to quantify protein interactions involved in fundamental cellular processes, and to screen for drugs that target membrane proteins.

  15. Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency.

    Science.gov (United States)

    Jacobs, Matthew; Lopez-Garcia, Martin; Phrathep, O-Phart; Lawson, Tracy; Oulton, Ruth; Whitney, Heather M

    2016-10-24

    Enhanced light harvesting is an area of interest for optimizing both natural photosynthesis and artificial solar energy capture1,2. Iridescence has been shown to exist widely and in diverse forms in plants and other photosynthetic organisms and symbioses3,4, but there has yet to be any direct link demonstrated between iridescence and photosynthesis. Here we show that epidermal chloroplasts, also known as iridoplasts, in shade-dwelling species of Begonia5, notable for their brilliant blue iridescence, have a photonic crystal structure formed from a periodic arrangement of the light-absorbing thylakoid tissue itself. This structure enhances photosynthesis in two ways: by increasing light capture at the predominantly green wavelengths available in shade conditions, and by directly enhancing quantum yield by 5-10% under low-light conditions. These findings together imply that the iridoplast is a highly modified chloroplast structure adapted to make best use of the extremely low-light conditions in the tropical forest understorey in which it is found5,6. A phylogenetically diverse range of shade-dwelling plant species has been found to produce similarly structured chloroplasts7-9, suggesting that the ability to produce chloroplasts whose membranes are organized as a multilayer with photonic properties may be widespread. In fact, given the well-established diversity and plasticity of chloroplasts10,11, our results imply that photonic effects may be important even in plants that do not show any obvious signs of iridescence to the naked eye but where a highly ordered chloroplast structure may present a clear blue reflectance at the microscale. Chloroplasts are generally thought of as purely photochemical; we suggest that one should also think of them as a photonic structure with a complex interplay between control of light propagation, light capture and photochemistry.

  16. The Physcomitrella patens chloroplast proteome changes in response to protoplastation

    Directory of Open Access Journals (Sweden)

    Igor Fesenko

    2016-11-01

    Full Text Available Plant protoplasts are widely used for genetic manipulation and functional studies in transient expression systems. However, little is known about the molecular pathways involved in a cell response to the combined stress factors resulted from protoplast generation. Plants often face more than one type of stress at a time, and how plants respond to combined stress factors is therefore of great interest. Here, we used protoplasts of the moss Physcomitrella patens as a model to study the effects of short-term stress on the chloroplast proteome. Using label-free comparative quantitative proteomic analysis (SWATH-MS, we quantified 479 chloroplast proteins, 219 of which showed a more than 1.4-fold change in abundance in protoplasts. We additionally quantified 1451 chloroplast proteins using emPAI. We observed degradation of a significant portion of the chloroplast proteome following the first hour of stress imposed by the protoplast isolation process. Electron-transport chain (ETC components underwent the heaviest degradation, resulting in the decline of photosynthetic activity. We also compared the proteome changes to those in the transcriptional level of nuclear-encoded chloroplast genes. Globally, the levels of the quantified proteins and their corresponding mRNAs showed limited correlation. Genes involved in the biosynthesis of chlorophyll and components of the outer chloroplast membrane showed decreases in both transcript and protein abundance. However, proteins like dehydroascorbate reductase 1 and 2-cys peroxiredoxin B responsible for ROS detoxification increased in abundance. Further, genes such as thylakoid ascorbate peroxidase were induced at the transcriptional level but down-regulated at the proteomic level. Together, our results demonstrate that the initial chloroplast reaction to stress is due changes at the proteomic level.

  17. The Role of Light–Dark Regulation of the Chloroplast ATP Synthase

    Directory of Open Access Journals (Sweden)

    Kaori Kohzuma

    2017-07-01

    Full Text Available The chloroplast ATP synthase catalyzes the light-driven synthesis of ATP and is activated in the light and inactivated in the dark by redox-modulation through the thioredoxin system. It has been proposed that this down-regulation is important for preventing wasteful hydrolysis of ATP in the dark. To test this proposal, we compared the effects of extended dark exposure in Arabidopsis lines expressing the wild-type and mutant forms of ATP synthase that are redox regulated or constitutively active. In contrast to the predictions of the model, we observed that plants with wild-type redox regulation lost photosynthetic capacity rapidly in darkness, whereas those expressing redox-insensitive form were far more stable. To explain these results, we propose that in wild-type plants, down-regulation of ATP synthase inhibits ATP hydrolysis, leading to dissipation of thylakoid proton motive force (pmf and subsequent inhibition of protein transport across the thylakoid through the twin arginine transporter (Tat-dependent and Sec-dependent import pathways, resulting in the selective loss of specific protein complexes. By contrast, in mutants with a redox-insensitive ATP synthase, pmf is maintained by ATP hydrolysis, thus allowing protein transport to maintain photosynthetic activities for extended periods in the dark. Hence, a basal level of Tat-dependent, as well as, Sec-dependent import activity, in the dark helps replenishes certain components of the photosynthetic complexes and thereby aids in maintaining overall complex activity. However, the influence of a dark pmf on thylakoid protein import, by itself, could not explain all the effects we observed in this study. For example, we also observed in wild type plants a large transient buildup of thylakoid pmf and nonphotochemical exciton quenching upon sudden illumination of dark adapted plants. Therefore, we conclude that down-regulation of the ATP synthase is probably not related to preventing loss of ATP

  18. Three-dimensional Ultrastructure of Chloroplast Pockets Formed under Salinity Stress.

    Science.gov (United States)

    Yamane, Koji; Oi, Takao; Enomoto, Sakiko; Nakao, Tomoyo; Arai, Shigeo; Miyake, Hiroshi; Taniguchi, Mitsutaka

    2017-12-07

    We investigated the invagination structure of a chloroplast that surrounds organelles such as mitochondria and peroxisomes within a thin layer of chloroplast stroma, which is called a chloroplast pocket. In this study, chloroplast pockets were observed in rice plants subjected to salinity stress, but not under moderate growth condition. They included cytosol, transparent structure, lipid bodies, mitochondria, and peroxisomes. We constructed the three-dimensional architecture of chloroplast pockets by using serial images obtained by transmission electron microscopy (TEM) and focused ion beam-scanning electron microscopy (FIB-SEM). Three types of chloroplast pockets were observed by TEM: organelles were completely enclosed in a chloroplast pocket (enclosed type), a chloroplast pocket with a small gap in the middle part (gap type), and a chloroplast pocket with one side open (open type). Of the 70 pockets observed by serial imaging, 35 were enclosed type and 21 and 14 were gap and open types, respectively. Mitochondria and peroxisomes were often in contact with the chloroplast pockets. FIB-SEM revealed chloroplasts with a sheet structure partially surrounding peroxisomes. This fact suggests that chloroplasts might construct large sheet structures that would be related to the formation of chloroplast pockets. This article is protected by copyright. All rights reserved.

  19. Computer modeling of electron and proton transport in chloroplasts.

    Science.gov (United States)

    Tikhonov, Alexander N; Vershubskii, Alexey V

    2014-07-01

    Photosynthesis is one of the most important biological processes in biosphere, which provides production of organic substances from atmospheric CO2 and water at expense of solar energy. In this review, we contemplate computer models of oxygenic photosynthesis in the context of feedback regulation of photosynthetic electron transport in chloroplasts, the energy-transducing organelles of the plant cell. We start with a brief overview of electron and proton transport processes in chloroplasts coupled to ATP synthesis and consider basic regulatory mechanisms of oxygenic photosynthesis. General approaches to computer simulation of photosynthetic processes are considered, including the random walk models of plastoquinone diffusion in thylakoid membranes and deterministic approach to modeling electron transport in chloroplasts based on the mass action law. Then we focus on a kinetic model of oxygenic photosynthesis that includes key stages of the linear electron transport, alternative pathways of electron transfer around photosystem I (PSI), transmembrane proton transport and ATP synthesis in chloroplasts. This model includes different regulatory processes: pH-dependent control of the intersystem electron transport, down-regulation of photosystem II (PSII) activity (non-photochemical quenching), the light-induced activation of the Bassham-Benson-Calvin (BBC) cycle. The model correctly describes pH-dependent feedback control of electron transport in chloroplasts and adequately reproduces a variety of experimental data on induction events observed under different experimental conditions in intact chloroplasts (variations of CO2 and O2 concentrations in atmosphere), including a complex kinetics of P700 (primary electron donor in PSI) photooxidation, CO2 consumption in the BBC cycle, and photorespiration. Finally, we describe diffusion-controlled photosynthetic processes in chloroplasts within the framework of the model that takes into account complex architecture of

  20. The complete chloroplast genome sequence of Chrysanthemum indicum.

    Science.gov (United States)

    Xia, Ye; Hu, Zhigang; Li, Xiwen; Wang, Ping; Zhang, Xiuqiao; Li, Qing; Lu, Chaolong

    2016-11-01

    Chrysanthemum indicum, an important medicinal plant of Asteraceae, had a long history in use for medicine in China. In this study, the complete chloroplast genome of C. indicum was sequenced by a 454 sequencing platform, and the structure of the obtained chloroplast genome was also analyzed. The complete chloroplast genome of C. indicum was 150 972 bp in length and had a pair of inverted repeats (IR, 24 956 bp) separated by a large (LSC, 82 741 bp) and small single copy (SSC, 18 319 bp) regions. Its total GC content was 37.48%. There were 126 chloroplast genes including 83 protein-coding genes, 35 tRNAs and eight rRNAs were successfully annotated. Sixteen genes contained one or two introns. Phylogenetic analyses declared that the chloroplast genome could distinguish C. indicum from its closely related species and might become a potential super barcode for the identification of these species.

  1. Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Paeonia ostii

    Directory of Open Access Journals (Sweden)

    Shuai Guo

    2018-01-01

    Full Text Available Paeonia ostii, a common oil-tree peony, is important ornamentally and medicinally. However, there are few studies on the chloroplast genome of Paeonia ostii. We sequenced and analyzed the complete chloroplast genome of P. ostii. The size of the P. ostii chloroplast genome is 152,153 bp, including a large single-copy region (85,373 bp, a small single-copy region (17,054 bp, and a pair of inverted repeats regions (24,863 bp. The P. ostii chloroplast genome encodes 111 genes, including 77 protein-coding genes, four ribosomal RNA genes, and 30 transfer RNA genes. The genome contains forward repeats (22, palindromic repeats (28, and tandem repeats (24. The presence of rich simple-sequence repeat loci in the genome provides opportunities for future population genetics work for breeding new varieties. A phylogenetic analysis showed that P. ostii is more closely related to Paeonia delavayi and Paeonia ludlowii than to Paeonia obovata and Paeonia veitchii. The results of this study provide an assembly of the whole chloroplast genome of P. ostii, which may be useful for future breeding and further biological discoveries. It will provide a theoretical basis for the improvement of peony yield and the determination of phylogenetic status.

  2. Glucose Respiration in the Intact Chloroplast of Chlamydomonas reinhardtii1

    Science.gov (United States)

    Chen, Changguo; Gibbs, Martin

    1991-01-01

    Chloroplastic respiration was monitored by measuring 14CO2 from 14C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast. The patterns of 14CO2 evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolpyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The Km for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of 14CO2 was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO2 evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO2 evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH4Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolpyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to CO2 and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism. PMID:16667985

  3. Glucose Respiration in the Intact Chloroplast of Chlamydomonas reinhardtii.

    Science.gov (United States)

    Chen, C; Gibbs, M

    1991-01-01

    Chloroplastic respiration was monitored by measuring (14)CO(2) from (14)C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast. The patterns of (14)CO(2) evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolpyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The K(m) for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of (14)CO(2) was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO(2) evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO(2) evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH(4)Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolpyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to CO(2) and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.

  4. Regulation of chloroplast development and function by cytokinin.

    Science.gov (United States)

    Cortleven, Anne; Schmülling, Thomas

    2015-08-01

    A role of the plant hormone cytokinin in regulating the development and activity of chloroplasts was described soon after its discovery as a plant growth regulator more than 50 years ago. Its promoting action on chloroplast ultrastructure and chlorophyll synthesis has been reported repeatedly, especially during etioplast-to-chloroplast transition. Recently, a protective role of the hormone for the photosynthetic apparatus during high light stress was shown. Details about the molecular mechanisms of cytokinin action on plastids are accumulating from genetic and transcriptomic studies. The cytokinin receptors AHK2 and AHK3 are mainly responsible for the transduction of the cytokinin signal to B-type response regulators, in particular ARR1, ARR10, and ARR12, which are transcription factors of the two-component system mediating cytokinin functions. Additional transcription factors linking cytokinin and chloroplast development include CGA1, GNC, HY5, GLK2, and CRF2. In this review, we summarize early and more recent findings of the long-known relationship between the hormone and the organelle and describe crosstalk between cytokinin, light, and other hormones during chloroplast development. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  5. Evolutionary divergence of chloroplast FAD synthetase proteins

    Directory of Open Access Journals (Sweden)

    Arilla-Luna Sonia

    2010-10-01

    Full Text Available Abstract Background Flavin adenine dinucleotide synthetases (FADSs - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity.

  6. Evolutionary divergence of chloroplast FAD synthetase proteins

    Science.gov (United States)

    2010-01-01

    Background Flavin adenine dinucleotide synthetases (FADSs) - a group of bifunctional enzymes that carry out the dual functions of riboflavin phosphorylation to produce flavin mononucleotide (FMN) and its subsequent adenylation to generate FAD in most prokaryotes - were studied in plants in terms of sequence, structure and evolutionary history. Results Using a variety of bioinformatics methods we have found that FADS enzymes localized to the chloroplasts, which we term as plant-like FADS proteins, are distributed across a variety of green plant lineages and constitute a divergent protein family clearly of cyanobacterial origin. The C-terminal module of these enzymes does not contain the typical riboflavin kinase active site sequence, while the N-terminal module is broadly conserved. These results agree with a previous work reported by Sandoval et al. in 2008. Furthermore, our observations and preliminary experimental results indicate that the C-terminus of plant-like FADS proteins may contain a catalytic activity, but different to that of their prokaryotic counterparts. In fact, homology models predict that plant-specific conserved residues constitute a distinct active site in the C-terminus. Conclusions A structure-based sequence alignment and an in-depth evolutionary survey of FADS proteins, thought to be crucial in plant metabolism, are reported, which will be essential for the correct annotation of plant genomes and further structural and functional studies. This work is a contribution to our understanding of the evolutionary history of plant-like FADS enzymes, which constitute a new family of FADS proteins whose C-terminal module might be involved in a distinct catalytic activity. PMID:20955574

  7. Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis.

    Science.gov (United States)

    Lv, Xiang-guang; Shi, Yong-feng; Xu, Xia; Wei, Yan-lin; Wang, Hui-mei; Zhang, Xiao-bo; Wu, Jian-li

    2015-01-01

    A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.

  8. Conformational changes in spinach (Spinacia oleracea leaves chloroplasts in vivo

    Directory of Open Access Journals (Sweden)

    Janina Godziemba-Czyż

    2015-01-01

    Full Text Available Changes in the surface area of chloroplasts from intact cells of spinach leaves (\tSpinacia oleracea induced by blue (370—500 nm and red (600- 850 nm light of various intensity (102 - 5x105 erg cm-1s-1 were investigated. The changes are deseribed in terms of mean surface area in , μm2 and frequency of oocurrence of surface size classes. Low intensity blue light caused enlargement of the chloroplast surface (as compared with that in darkness, whereas high intensity light markedly reduced it. Exposure of chloroplasts to red light produces an increase of the surface in proportion to the intensity of the light and irradiation time.

  9. STUDIES ON CHLOROPLAST DEVELOPMENT AND REPLICATION IN EUGLENA

    Science.gov (United States)

    Carell, Edgar F.

    1969-01-01

    When Euglena gracilis is grown under vitamin B12 deficiency conditions, the amount of protein and of chlorophyll per cell increase with decrease of B12 in the medium and consequently in the cell. The increase in cell protein is proportional to and precedes an increase in the number of chloroplasts per cell. This replication of the chloroplasts under deficiency conditions is not accompanied by nuclear or cell division. It is concluded that chloroplast replication in Euglena gracilis is independent of nuclear and cellular replication, at least under B12 deficiency conditions. We established a graph of the growth of Euglena under different concentrations of vitamin B12 added to the growth medium, which permitted us to calculate that at least 22,000 molecules of vitamin B12 per cell are required to give normal growth. PMID:5783865

  10. Breakthrough in chloroplast genetic engineering of agronomically important crops.

    Science.gov (United States)

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2005-05-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development.

  11. Breakthrough in chloroplast genetic engineering of agronomically important crops

    Science.gov (United States)

    Daniell, Henry; Kumar, Shashi; Dufourmantel, Nathalie

    2012-01-01

    Chloroplast genetic engineering offers several unique advantages, including high-level transgene expression, multi-gene engineering in a single transformation event and transgene containment by maternal inheritance, as well as a lack of gene silencing, position and pleiotropic effects and undesirable foreign DNA. More than 40 transgenes have been stably integrated and expressed using the tobacco chloroplast genome to confer desired agronomic traits or express high levels of vaccine antigens and biopharmaceuticals. Despite such significant progress, this technology has not been extended to major crops. However, highly efficient soybean, carrot and cotton plastid transformation has recently been accomplished through somatic embryogenesis using species-specific chloroplast vectors. This review focuses on recent exciting developments in this field and offers directions for further research and development. PMID:15866001

  12. IM30 triggers membrane fusion in cyanobacteria and chloroplasts.

    Science.gov (United States)

    Hennig, Raoul; Heidrich, Jennifer; Saur, Michael; Schmüser, Lars; Roeters, Steven J; Hellmann, Nadja; Woutersen, Sander; Bonn, Mischa; Weidner, Tobias; Markl, Jürgen; Schneider, Dirk

    2015-05-08

    The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a conserved chloroplast and cyanobacterial protein of approximately 30 kDa binds as an oligomeric ring in a well-defined geometry specifically to membranes containing anionic lipids. Triggered by Mg(2+), membrane binding causes destabilization and eventually results in membrane fusion. We propose that IM30 establishes contacts between internal membrane sites and promotes fusion to enable regulated exchange of proteins and/or lipids in cyanobacteria and chloroplasts.

  13. Manipulating the chloroplast genome of Chlamydomonas: Present realities and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Boynton, J.; Gillham, N.; Hauser, C.; Heifetz, P.; Lers, A.; Newman, S.; Osmond, B.

    1992-01-01

    Biotechnology is being applied in vitro modification and stable reintroduction of chloroplast genes in Chlamydomonas reinhardtii and Nicotiana tabacum by homologous recombination. We are attempting the function analyses of plastid encoded proteins involved in photosynthesis, characterization of sequences which regulate expression of plastid genes at the transcriptional and translational levels, targeted disruption of chloroplast genes and molecular analysis of processes involved in chloroplast recombination.

  14. Manipulating the chloroplast genome of Chlamydomonas: Present realities and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Boynton, J.; Gillham, N.; Hauser, C.; Heifetz, P.; Lers, A.; Newman, S.; Osmond, B.

    1992-12-31

    Biotechnology is being applied in vitro modification and stable reintroduction of chloroplast genes in Chlamydomonas reinhardtii and Nicotiana tabacum by homologous recombination. We are attempting the function analyses of plastid encoded proteins involved in photosynthesis, characterization of sequences which regulate expression of plastid genes at the transcriptional and translational levels, targeted disruption of chloroplast genes and molecular analysis of processes involved in chloroplast recombination.

  15. Oxidation versus reductive detoxification of SO sub 2 by chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Ghisi, R.; Dittrich, A.P.M.; Heber, U. (Universitaet Wuerzburg (West Germany))

    1990-03-01

    Intact chloroplasts isolated from spinach (Spinacia oleracea L. cv Yates) both oxidized and reduced added sulfite in the light. Oxidation was fast only when endogenous superoxide dismutase was inhibited by cyanide. It was largely suppressed by scavengers of oxygen radicals. After addition of O-acetylserine, chloroplasts reduced sulfite to cysteine and exhibited sulfite-dependent oxygen evolution. Cysteine synthesis from sulfite was faster than from sulfate. The results are discussed in relation to species-specific differences in the phytotoxicity of SO{sub 2}.

  16. The complete chloroplast genome sequence of Sapindus mukorossi.

    Science.gov (United States)

    Yang, Bingxian; Li, Mengzhu; Ma, Ji; Fu, Zhengzheng; Xu, Xiaobao; Chen, Qinyi; Zhu, Wei; Tian, Jingkui

    2016-05-01

    The complete chloroplast genome sequence of Sapindus mukorossi, a critical Chinese medicine, was reported here. The total length of the chloroplast genome is 160,481 bp long with 37.7% overall GC content. A pair of IRs (inverted repeats) of 27,979 bp were separated by SSC (18,873 bp) and LSC (85,650 bp). It contains 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Sixteen genes contain one or two introns.

  17. Robust expression of a bioactive mammalian protein in chlamydomonas chloroplast

    Science.gov (United States)

    Mayfield, Stephen P.

    2010-03-16

    Methods and compositions are disclosed to engineer chloroplast comprising heterologous mammalian genes via a direct replacement of chloroplast Photosystem II (PSII) reaction center protein coding regions to achieve expression of recombinant protein above 5% of total protein. When algae is used, algal expressed protein is produced predominantly as a soluble protein where the functional activity of the peptide is intact. As the host algae is edible, production of biologics in this organism for oral delivery or proteins/peptides, especially gut active proteins, without purification is disclosed.

  18. Anatomical structure and chloroplasts ultrastructural peculiarity of some hydrophytes leaves

    Directory of Open Access Journals (Sweden)

    Olena M. Nedukha

    2015-05-01

    Full Text Available The comparative analysis of the anatomical study, chloroplast ultrastructure and pigments content of submerged leaves of Potamogeton perfoliatus, P. pectinatus and Myriophyllum spіcatum at budding-flowering stage with light microscopy, transmission electron microscopic and biochemical methods were realized. The absent of stomata, the presence of undifferentiated mesophyll was shown with anatomical study of hydrophytes leaves. The common and distinctions signs of chloroplast ultrastructure in leaf photosynthesizing parenchyma were revealed in dependent from species. The structural changes of leaf phonotypical plasticity are examined as adaptative device of submerged leaves under influence of altered environment.

  19. Natural selection promotes antigenic evolvability

    NARCIS (Netherlands)

    Graves, C.J.; Ros, V.I.D.; Stevenson, B.; Sniegowski, P.D.; Brisson, D.

    2013-01-01

    The hypothesis that evolvability - the capacity to evolve by natural selection - is itself the object of natural selection is highly intriguing but remains controversial due in large part to a paucity of direct experimental evidence. The antigenic variation mechanisms of microbial pathogens provide

  20. Disgust: Evolved function and structure

    NARCIS (Netherlands)

    Tybur, J.M.; Lieberman, D.; Kurzban, R.; DeScioli, P.

    2013-01-01

    Interest in and research on disgust has surged over the past few decades. The field, however, still lacks a coherent theoretical framework for understanding the evolved function or functions of disgust. Here we present such a framework, emphasizing 2 levels of analysis: that of evolved function and

  1. 2012 Gordon Research Conference, Mitochondria and Chloroplasts, July 29 - Aug 3 2012

    Energy Technology Data Exchange (ETDEWEB)

    Barkan, Alice [Univ. of Oregon, Eugene, OR (United States)

    2012-08-03

    The 2012 Gordon Research Conference on Mitochondria and Chloroplasts will assemble an international group of scientists investigating fundamental properties of these organelles, and their integration into broader physiological processes. The conference will emphasize the many commonalities between mitochondria and chloroplasts: their evolution from bacterial endosymbionts, their genomes and gene expression systems, their energy transducing membranes whose proteins derive from both nuclear and organellar genes, the challenge of maintaining organelle integrity in the presence of the reactive oxygen species that are generated during energy transduction, their incorporation into organismal signaling pathways, and more. The conference will bring together investigators working in animal, plant, fungal and protozoan systems who specialize in cell biology, genetics, biochemistry, physiology, proteomics, genomics, and structural biology. As such, this conference will provide a unique forum that engenders cross-disciplinary discussions concerning the biogenesis, dynamics, and regulation of these key cellular structures. By fostering interactions among mammalian, fungal and plant organellar biologists, this conference also provides a conduit for the transmission of mechanistic insights obtained in model organisms to applications in medicine and agriculture. The 2012 conference will highlight areas that are moving rapidly and emerging themes. These include new insights into the ultrastructure and organization of the energy transducing membranes, the coupling of organellar gene expression with the assembly of photosynthetic and respiratory complexes, the regulatory networks that couple organelle biogenesis with developmental and physiological signals, the signaling events through which organellar physiology influences nuclear gene expression, and the roles of organelles in disease and development.

  2. The different fates of mitochondria and chloroplasts during dark-induced senescence in Arabidopsis leaves.

    Science.gov (United States)

    Keech, Olivier; Pesquet, Edouard; Ahad, Abdul; Askne, Anna; Nordvall, Dag; Vodnala, Sharvani Munender; Tuominen, Hannele; Hurry, Vaughan; Dizengremel, Pierre; Gardeström, Per

    2007-12-01

    Senescence is an active process allowing the reallocation of valuable nutrients from the senescing organ towards storage and/or growing tissues. Using Arabidopsis thaliana leaves from both whole darkened plants (DPs) and individually darkened leaves (IDLs), we investigated the fate of mitochondria and chloroplasts during dark-induced leaf senescence. Combining in vivo visualization of fates of the two organelles by three-dimensional reconstructions of abaxial parts of leaves with functional measurements of photosynthesis and respiration, we showed that the two experimental systems displayed major differences during 6 d of dark treatment. In whole DPs, organelles were largely retained in both epidermal and mesophyll cells. However, while the photosynthetic capacity was maintained, the capacity of mitochondrial respiration decreased. In contrast, IDLs showed a rapid decline in photosynthetic capacity while maintaining a high capacity for mitochondrial respiration throughout the treatment. In addition, we noticed an unequal degradation of organelles in the different cell types of the senescing leaf. From these data, we suggest that metabolism in leaves of the whole DPs enters a 'stand-by mode' to preserve the photosynthetic machinery for as long as possible. However, in IDLs, mitochondria actively provide energy and carbon skeletons for the degradation of cell constituents, facilitating the retrieval of nutrients. Finally, the heterogeneity of the degradation processes involved during senescence is discussed with regard to the fate of mitochondria and chloroplasts in the different cell types.

  3. Chloroplast DNA polymorphism reveals little geographical structure in Castanea sativa Mill. (Fagaceae) throughout southern European countries.

    Science.gov (United States)

    Fineschi, S; Taurchini, D; Villani, F; Vendramin, G G

    2000-10-01

    The distribution of haplotypic diversity of 38 European chestnut (Castanea sativa Mill.) populations was investigated by PCR/RFLP analysis of regions of the chloroplast and mitochondrial genomes in order to shed light on the history of this heavily managed species. The rapid expansion of chestnut starting from 3000 years ago is strongly related to human activities such as agricultural practice. This demonstrates the importance of human impact, which lasted some thousands of years, on the present-day distribution of the species. No polymorphism was detected for the single mitochondrial analysed region, while a total of 11 different chloroplast (cp) haplotypes were scored. The distribution of the cpDNA haplotypes revealed low geographical structure of the genetic diversity. The value of population subdivision, as measured by GSTc, is strikingly lower than in the other species of the family Fagaceae investigated. The actual distribution of haplotypic diversity may be explained by the strong human impact on this species, particularly during the Roman civilization of the continent, and to the long period of cultivation experienced during the last thousand years.

  4. Evolving virtual creatures and catapults.

    Science.gov (United States)

    Chaumont, Nicolas; Egli, Richard; Adami, Christoph

    2007-01-01

    We present a system that can evolve the morphology and the controller of virtual walking and block-throwing creatures (catapults) using a genetic algorithm. The system is based on Sims' work, implemented as a flexible platform with an off-the-shelf dynamics engine. Experiments aimed at evolving Sims-type walkers resulted in the emergence of various realistic gaits while using fairly simple objective functions. Due to the flexibility of the system, drastically different morphologies and functions evolved with only minor modifications to the system and objective function. For example, various throwing techniques evolved when selecting for catapults that propel a block as far as possible. Among the strategies and morphologies evolved, we find the drop-kick strategy, as well as the systematic invention of the principle behind the wheel, when allowing mutations to the projectile.

  5. Tissue Microarray: A rapidly evolving diagnostic and research tool

    Science.gov (United States)

    Jawhar, Nazar M.T.

    2009-01-01

    Tissue microarray is a recent innovation in the field of pathology. A microarray contains many small representative tissue samples from hundreds of different cases assembled on a single histologic slide, and therefore allows high throughput analysis of multiple specimens at the same time. Tissue microarrays are paraffin blocks produced by extracting cylindrical tissue cores from different paraffin donor blocks and re-embedding these into a single recipient (microarray) block at defined array coordinates. Using this technique, up to 1000 or more tissue samples can be arrayed into a single paraffin block. It can permit simultaneous analysis of molecular targets at the DNA, mRNA, and protein levels under identical, standardized conditions on a single glass slide, and also provide maximal preservation and use of limited and irreplaceable archival tissue samples. This versatile technique, in which data analysis is automated facilitates retrospective and prospective human tissue studies. It is a practical and effective tool for high-throughput molecular analysis of tissues that is helping to identify new diagnostic and prognostic markers and targets in human cancers, and has a range of potential applications in basic research, prognostic oncology and drug discovery. This article summarizes the technical aspects of tissue microarray construction and sectioning, advantages, application, and limitations. PMID:19318744

  6. Emerging Zika Virus Infection: A Rapidly Evolving Situation.

    Science.gov (United States)

    Bordi, Licia; Avsic-Zupanc, Tatjana; Lalle, Eleonora; Vairo, Francesco; Capobianchi, Maria Rosaria; da Costa Vasconcelos, Pedro Fernando

    2017-01-01

    Zika virus is a mosquito-borne flavivirus, firstly identified in Uganda and responsible for sporadic human cases in Africa and Asia until recently, when large outbreak occurred in Pacific Ocean and the Americas. Since the main vectors during its spread outside of Africa have been Ae. albopictus and Ae. aegypti mosquitoes, which are widely distributed all over the world, there is urgent need for a coordinated response for prevention and spread of ZIKV epidemics.Despite clinical manifestation of Zika virus infection are usually mild and self limiting, there are reports suggesting, during the recent epidemic, an association of ZIKV infection with severe consequences, including fetal/newborn microcephaly, due to vertical in utero transmission, autoimmune-neurological presentations including cranial nerve dysfunction, and Guillain-Barré Syndrome in adults. The primary mode of transmission of Zika virus between humans is through the bite of an infected female mosquito of the Aedes genus, but also sexual and blood transfusion transmission may occur. Moreover, a case of non-sexual spread from one person to another has been described, indicating that we still have more to learn about Zika transmission.Biological basis for pathogenetic effects are under investigation. Laboratory diagnosis is challenging since, so far, there are no "gold standard" diagnostic tools, and the low and short viremia in the acute phase, and together with the high cross-reactivity among the members of flavivirus genus are the most challenging aspects to be overcome.

  7. A Rapidly Evolving Active Region NOAA 8032 observed on April ...

    Indian Academy of Sciences (India)

    tribpo

    1997-04-15

    Apr 15, 1997 ... The GOES X-ray data showed a number of sub-flares and two C-class flares during the 8-9 hours of its evolution. ... (1991), where they observed X-class flares near the sites of. EFR. Wang & Shi (1993) suggested that ... region using the USΟ video magnetograph (Mathew et al. 1998). The active region. 233 ...

  8. The Rapidly Evolving Concept of Whole Heart Engineering

    Directory of Open Access Journals (Sweden)

    Laura Iop

    2017-01-01

    Full Text Available Whole heart engineering represents an incredible journey with as final destination the challenging aim to solve end-stage cardiac failure with a biocompatible and living organ equivalent. Its evolution started in 2008 with rodent organs and is nowadays moving closer to clinical application thanks to scaling-up strategies to human hearts. This review will offer a comprehensive examination on the important stages to be reached for the bioengineering of the whole heart, by describing the approaches of organ decellularization, repopulation, and maturation so far applied and the novel technologies of potential interest. In addition, it will carefully address important demands that still need to be satisfied in order to move to a real clinical translation of the whole bioengineering heart concept.

  9. "Reinventing Life": Introductory Biology for a Rapidly Evolving World

    Science.gov (United States)

    Coker, Jeffrey Scott

    2009-01-01

    Evolutionary concepts are essential for a scientific understanding of most issues surrounding modern medicine, agriculture, biotechnology, and the environment. If the mantra for biology education in the 20th century was, "Nothing in biology makes sense except in the light of evolution," the mantra for the 21st century must be, "Nothing in biology…

  10. Effect of light on photosynthetic efficiency of sequestered chloroplasts in intertidal benthic foraminifera (Haynesina germanica and Ammonia tepida)

    Science.gov (United States)

    Jauffrais, Thierry; Jesus, Bruno; Metzger, Edouard; Mouget, Jean-Luc; Jorissen, Frans; Geslin, Emmanuelle

    2016-05-01

    Some benthic foraminifera have the ability to incorporate functional chloroplasts from diatoms (kleptoplasty). Our objective was to investigate chloroplast functionality of two benthic foraminifera (Haynesina germanica and Ammonia tepida) exposed to different irradiance levels (0, 25, 70 µmol photon m-2 s-1) using spectral reflectance, epifluorescence observations, oxygen evolution and pulse amplitude modulated (PAM) fluorometry (maximum photosystem II quantum efficiency (Fv/Fm) and rapid light curves (RLC)). Our results clearly showed that H. germanica was capable of using its kleptoplasts for more than 1 week while A. tepida showed very limited kleptoplastic ability with maximum photosystem II quantum efficiency (Fv/Fm = 0.4), much lower than H. germanica and decreasing to zero in only 1 day. Only H. germanica showed net oxygen production with a compensation point at 24 µmol photon m-2 s-1 and a production up to 1000 pmol O2 cell-1 day-1 at 300 µmol photon m-2 s-1. Haynesina germanica Fv/Fm slowly decreased from 0.65 to 0.55 in 7 days when kept in darkness; however, it quickly decreased to 0.2 under high light. Kleptoplast functional time was thus estimated between 11 and 21 days in darkness and between 7 and 8 days at high light. These results emphasize that studies about foraminifera kleptoplasty must take into account light history. Additionally, this study showed that the kleptoplasts are unlikely to be completely functional, thus requiring continuous chloroplast resupply from foraminifera food source. The advantages of keeping functional chloroplasts are discussed but more information is needed to better understand foraminifera feeding strategies.

  11. [Effect of space flight on ultrastructure of chloroplast in Agastache rugosa].

    Science.gov (United States)

    Gao, W; Zhao, S; Xue, L; Fu, R; Xiao, P

    1999-12-01

    To substantiate the effects of space condition on medicinal plants, the seeds of Agastache rugosa were set up in retrievable satellites. After returning to earth, the ultrastructural changes of chloroplasts were examined by means of electron microscope. Vesicles could be seen in the chloroplasts in the cells of earth controlled group, it was few and could not be found in the chloroplasts in the cells of weightless group and hit group. Some chloroplasts were degrading in the cells of weightless group, but this phenomenon was not observed in the cells of the other two groups. These results showed that space environment had some effect on the ultrastructure of chloroplasts in Agastache rugosa.

  12. Chloroplast degeneration and its inhibition by kinetin in detached leaves of Cichorium intybus L.

    Directory of Open Access Journals (Sweden)

    F. Młodzianowski

    2015-01-01

    Full Text Available In the chicory (Cichorium intybus L. var. sativum cv. Polanowicka leaves two types of chloroplasts are present differing by their degree of osmiophility of the thylakoid inside. This type of differentiation of chloroplasts has so far been found only in several plant species. The process of chloroplast degeneration in darkness is described. In osmiophilic chloroplasts at certain stage of degeneration minutely layered giant grana were found. Kinetin markedly inhibited the process of chloroplast degeneration, and after prolonged treatment even stimulated the stacking. process of grana thylakoids.

  13. The Sites of Transcription and Translation for Euglena Chloroplastic Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Hecker, L. I.; Egan, J.; Reynolds, R. J.; Nix, C. E.; Schiff, J. A.; Barnett, W. Edgar

    1974-01-01

    We find that cycloheximide completely blocks the light-induced apearance of Euglena chloroplastic aminoacyl-tRNA synthetases in dark-grown cells of Euglena gracilis var. bacillaris. Streptomycin, on the other hand, has no effect on the light-induction of these organellar enzymes. These observations, together with the finding that an aplastidic mutant (strain W3BUL, which has neither significant plastid structure nor detectable chloroplast DNA) contains low levels of the chloroplastic synthetases, indicate that the chloroplastic synthetases are transcriptional products of nuclear genes and are translated on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts. PMID:4525469

  14. Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici

    Directory of Open Access Journals (Sweden)

    Lung Shiu-Cheung

    2012-03-01

    Full Text Available Abstract Three terrestrial plants are known to perform C4 photosynthesis without the dual-cell system by partitioning two distinct types of chloroplasts in separate cytoplasmic compartments. We report herein a protocol for isolating the dimorphic chloroplasts from Bienertia sinuspersici. Hypo-osmotically lysed protoplasts under our defined conditions released intact compartments containing the central chloroplasts and intact vacuoles with adhering peripheral chloroplasts. Following Percoll step gradient purification both chloroplast preparations demonstrated high homogeneities as evaluated from the relative abundance of respective protein markers. This protocol will open novel research directions toward understanding the mechanism of single-cell C4 photosynthesis.

  15. sequence analysis of maturase k (matk): a chloroplast-encoding ...

    African Journals Online (AJOL)

    Global Journal

    varying between 7.29%-31.37%. The secondary structure of amino acids sequence of matK gene in the selected ... Presently, many chloroplast, mitochondrial and nuclear genes have been utilized for studying and understanding ... two important unique features that underscore its usefulness in plant's molecular systematics ...

  16. Current trends in chloroplast genome research | Khan | African ...

    African Journals Online (AJOL)

    Faster algorithms for gene-order based phylogenetic reconstruction and bootstrap analysis have attracted the attention of research community. Current trends in sequencing strategies and bioinformatics with reference to chloroplast genomes hold great potential to illuminate more hidden corners of this ancient cell organelle ...

  17. The TOC complex: preprotein gateway to the chloroplast.

    Science.gov (United States)

    Andrès, Charles; Agne, Birgit; Kessler, Felix

    2010-06-01

    Photosynthetic eukaryotes strongly depend on chloroplast metabolic pathways. Most if not all involve nuclear encoded proteins. These are synthesized as cytosolic preproteins with N-terminal, cleavable targeting sequences (transit peptide). Preproteins are imported by a major pathway composed of two proteins complexes: TOC and TIC (Translocon of the Outer and Inner membranes of the Chloroplasts, respectively). These selectively recognize the preproteins and facilitate their transport across the chloroplast envelope. The TOC core complex consists of three types of components, each belonging to a small family: Toc34, Toc75 and Toc159. Toc34 and Toc159 isoforms represent a subfamily of the GTPase superfamily. The members of the Toc34 and Toc159 subfamily act as GTP-dependent receptors at the chloroplast surface and distinct members of each occur in defined, substrate-specific TOC complexes. Toc75, a member of the Omp85 family, is conserved from prokaryotes and functions as the unique protein-conducting channel at the outer membrane. In this review we will describe the current state of knowledge regarding the composition and function of the TOC complex.

  18. Targeting of nucleus-encoded proteins to chloroplasts in plants.

    Science.gov (United States)

    Jarvis, Paul

    2008-07-01

    Most chloroplast proteins are encoded in the nucleus and synthesized on free, cytosolic ribosomes in precursor form. Each precursor has an amino-terminal extension called a transit peptide, which directs the protein through a post-translational targeting pathway and is removed upon arrival inside the organelle. This 'protein import' process is mediated by the coordinate action of two multiprotein complexes, one in each of the envelope membranes: the TOC and TIC (Translocon at the Outer/ Inner envelope membrane of Chloroplasts) machines. Many components of these complexes have been identified biochemically in pea; these include transit peptide receptors, channel proteins, and molecular chaperones. Intriguingly, the Arabidopsis genome encodes multiple, homologous genes for receptor components of the TOC complex. Careful analysis indicated that the different receptor isoforms operate in different import pathways with distinct precursor recognition specificities. These 'substrate-specific' import pathways might play a role in the differentiation of different plastid types, and/or act to prevent deleterious competition effects between abundant and nonabundant precursors. Until recently, all proteins destined for internal chloroplast compartments were thought to possess a cleavable transit peptide, and to engage the TOC/TIC machinery. New studies using proteomics and other approaches have revealed that this is far from true. Remarkably, a significant number of chloroplast proteins are transported via a pathway that involves the endoplasmic reticulum and Golgi apparatus. Other recent reports have elucidated an intriguing array of protein targeting routes leading to the envelope membranes themselves.

  19. Contribution of chloroplast DNA in the biodiversity of some Aegilops ...

    African Journals Online (AJOL)

    Four Aegilops species (Aegilops longissima, Aegilops speltoides, Aegilops searsii and Aegilops caudata) belonging to the family Poaceae were used in this study. Nucleotides of 1651 bp from 5.8 S rRNA gene and the intergenic spacers trnT-trnL and trnL-trnF from the chloroplast DNA were combined together in order to ...

  20. Photosynthetic activity of isolated chloroplast fragments of Spirogyra

    NARCIS (Netherlands)

    Thomas, J.B.; Haans, A.J.M.; Leun, A.A.J. van der; Koning, J.

    1957-01-01

    Suspensions of fragmented Spirogyra chloroplasts were prepared and their capacity for photosynthetic oxygen evolution and carbon dioxide reduction was studied by means of manometry and mass spectrometry. No special substances, enzymes or cofactors were added to the suspensions. The rates of

  1. Functional characterization of recombinant chloroplast signal recognition particle

    NARCIS (Netherlands)

    Groves, M R; Mant, A; Kuhn, A; Koch, J; Dübel, S; Robinson, C; Sinning, I

    2001-01-01

    The signal recognition particle (SRP) is a ubiquitous system for the targeting of membrane and secreted proteins. The chloroplast SRP (cpSRP) is unique among SRPs in that it possesses no RNA and is functional in post-translational as well as co-translational targeting. We have expressed and purified

  2. Extending the biosynthetic repertoires of cyanobacteria and chloroplasts

    DEFF Research Database (Denmark)

    Nielsen, Agnieszka Janina Zygadlo; Mellor, Silas Busck; Vavitsas, Konstantinos

    2016-01-01

    The chloroplasts found in plants and algae, and photosynthetic microorganisms such as cyanobacteria, are emerging hosts for sustainable production of valuable biochemicals, using only inorganic nutrients, water, CO2 and light as inputs. In the past decade, many bioengineering efforts have focused...

  3. Characterization of polymorphic SSRs among Prunus chloroplast genomes

    Science.gov (United States)

    An in silico mining process yielded 80, 75, and 78 microsatellites in the chloroplast genome of Prunus persica, P. kansuensis, and P. mume. A and T repeats were predominant in the three genomes, accounting for 67.8% on average and most of them were successful in primer design. For the 80 P. persica ...

  4. Contribution of chloroplast DNA in the biodiversity of some Aegilops ...

    African Journals Online (AJOL)

    user

    2011-03-21

    Mar 21, 2011 ... Four Aegilops species (Aegilops longissima, Aegilops speltoides, Aegilops searsii and Aegilops caudata) belonging to the family Poaceae were used in this study. Nucleotides of 1651 bp from 5.8 S. rRNA gene and the intergenic spacers trnT-trnL and trnL-trnF from the chloroplast DNA were combined.

  5. Chloroplast heterogeneity and historical admixture within the genus Malus

    Science.gov (United States)

    Premise of the study: We examined chloroplast DNA sequence variation in 412 samples representing 30 Malus species (including Malus x domestica Borkh.). Malus wild species are of particular interest for providing novel alleles and traits in apple breeding programs, yet the taxonomic status of these s...

  6. Comparative studies on codon usage pattern of chloroplasts and ...

    Indian Academy of Sciences (India)

    A detailed comparison was made of codon usage of chloroplast genes with their host (nuclear) genes in the four angiosperm species Oryza sativa, Zea mays, Triticum aestivum and Arabidopsis thaliana. The average GC content of the entire genes, and at the three codon positions individually, was higher in nuclear than in ...

  7. Chloroplast DNA phylogeography and cytotype geography in autopolyploid Plantago media

    NARCIS (Netherlands)

    Van Dijk, P.J.; Bakx-Schotman, Tanja

    1997-01-01

    In order to gain insight into the causes of parapatric diploid and tetraploid distributions in Plantago media chloroplast DNA (cpDNA) restriction site polymorphism was studied in 36 European populations. Parapatric distributions are often explained by adaptive differences between cytotypes to an

  8. Section-level relationships of North American Agalinis (Orobanchaceae based on DNA sequence analysis of three chloroplast gene regions

    Directory of Open Access Journals (Sweden)

    Neel Maile C

    2004-06-01

    Full Text Available Abstract Background The North American Agalinis are representatives of a taxonomically difficult group that has been subject to extensive taxonomic revision from species level through higher sub-generic designations (e.g., subsections and sections. Previous presentations of relationships have been ambiguous and have not conformed to modern phylogenetic standards (e.g., were not presented as phylogenetic trees. Agalinis contains a large number of putatively rare taxa that have some degree of taxonomic uncertainty. We used DNA sequence data from three chloroplast genes to examine phylogenetic relationships among sections within the genus Agalinis Raf. (=Gerardia, and between Agalinis and closely related genera within Orobanchaceae. Results Maximum likelihood analysis of sequences data from rbcL, ndhF, and matK gene regions (total aligned length 7323 bp yielded a phylogenetic tree with high bootstrap values for most branches. Likelihood ratio tests showed that all but a few branch lengths were significantly greater than zero, and an additional likelihood ratio test rejected the molecular clock hypothesis. Comparisons of substitution rates between gene regions based on linear models of pairwise distance estimates between taxa show both ndhF and matK evolve more rapidly than rbcL, although the there is substantial rate heterogeneity within gene regions due in part to rate differences among codon positions. Conclusions Phylogenetic analysis supports the monophyly of Agalinis, including species formerly in Tomanthera, and this group is sister to a group formed by the genera Aureolaria, Brachystigma, Dasistoma, and Seymeria. Many of the previously described sections within Agalinis are polyphyletic, although many of the subsections appear to form natural groups. The analysis reveals a single evolutionary event leading to a reduction in chromosome number from n = 14 to n = 13 based on the sister group relationship of section Erectae and section Purpureae

  9. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus

    National Research Council Canada - National Science Library

    Brian J. Green; Wei-Ye Li; James R. Manhart; Theodore C. Fox; Elizabeth J. Summer; Robert A. Kennedy; Sidney K. Pierce; Mary E. Rumpho

    2000-01-01

    .... Here we demonstrate that the sea slug symbiont chloroplast maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence...

  10. Revisiting the algal "chloroplast lipid droplet": the absence of an entity that is unlikely to exist.

    Science.gov (United States)

    Moriyama, Takashi; Toyoshima, Masakazu; Saito, Masakazu; Wada, Hajime; Sato, Naoki

    2017-10-23

    The precise localization of the lipid droplets and the metabolic pathways associated with the oil production are crucial to the engineering of microalgae for biofuel production. Several studies have reported detecting lipid droplets within the chloroplast of the microalga Chlamydomonas reinhardtii (Chlamydomonas), which accumulates considerable amount of triacylglycerol (TAG) and starch within the cell under nitrogen deprivation or high-light stress conditions. Starch undoubtedly accumulates within the chloroplast, but there have been debates on the localization of the lipid droplets, which are cytosolic organelles in other organisms. Although it is impossible to deny what never existed, we tried to repeat the experiments that pretended to find "chloroplast lipid droplets". Here, we present microscopic results showing no evidence for the presence of lipid droplets within the chloroplast stroma, even though some lipid droplets existed in close association with the chloroplast or were even largely engulfed by the chloroplasts. Therefore, lipid droplets are cytosolic structures, distinct from the plastoglobules present in the chloroplast stroma. These results not only contrast with the old ideas, but also point out that the presumptive "chloroplast lipid droplets" are, in fact, lipid droplets embedded within chloroplast invaginations in association with the outer envelope of the chloroplast without intervention of the endoplasmic reticulum. This points to an intriguing possibility of a tight metabolic flow from the chloroplast to the lipid droplet through a close association rather than direct contact of both organelles. {copyright, serif} 2017 American Society of Plant Biologists. All rights reserved.

  11. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana.

    Science.gov (United States)

    López-Castillo, Laura M; Jiménez-Sandoval, Pedro; Baruch-Torres, Noe; Trasviña-Arenas, Carlos H; Díaz-Quezada, Corina; Lara-González, Samuel; Winkler, Robert; Brieba, Luis G

    2016-01-01

    In plants triosephosphate isomerase (TPI) interconverts glyceraldehyde 3-phosphate (G3P) and dihydroxyacetone phosphate (DHAP) during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs) and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI) and chloroplast TPI (pdTPI) share more than 60% amino acid identity and assemble as (β-α)8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively) and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218). Site directed mutagenesis of residues pdTPI-C15, cTPI-C13, and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS) and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218). Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to the

  12. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Laura Margarita López-Castillo

    2016-12-01

    Full Text Available In plants triosephosphate isomerase (TPI interconverts glyceraldehyde 3-phosphate (G3P and dihydroxyacetone phosphate (DHAP during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI and chloroplast TPI (pdTPI share more than 60% amino acid identity and assemble as (β-α8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218. Site directed mutagenesis of residues pdTPI-C15, cTPI-C13 and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218. Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to

  13. When did oxygenic photosynthesis evolve?

    National Research Council Canada - National Science Library

    Roger Buick

    2008-01-01

    ...2.4 Ga ago, but when the photosynthetic oxygen production began is debatable. However, geological and geochemical evidence from older sedimentary rocks indicates that oxygenic photosynthesis evolved well before this oxygenation event...

  14. Marshal: Maintaining Evolving Models Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SIFT proposes to design and develop the Marshal system, a mixed-initiative tool for maintaining task models over the course of evolving missions. Marshal-enabled...

  15. Glucose respiration in the intact chloroplast of Chlamydomonas reinhardtii

    Energy Technology Data Exchange (ETDEWEB)

    Changguo Chen; Gibbs, M. (Brandeis Univ., Waltham, MA (United States))

    1991-01-01

    Chloroplastic respiration was monitored by measuring {sup 14}CO{sub 2} from {sup 14}C glucose in the darkened Chlamydomonas reinhardtii F-60 chloroplast, The patterns of {sup 14}CO{sub 2} evolution from labeled glucose in the absence and presence of the inhibitors iodoacetamide, glycolate-2-phosphate, and phosphoenolypyruvate were those expected from the oxidative pentose phosphate cycle and glycolysis. The K{sub m} for glucose was 56 micromolar and for MgATP was 200 micromolar. Release of {sup 14}CO{sub 2} was inhibited by phloretin and inorganic phosphate. Comparing the inhibition of CO{sub 2} evolution generated by pH 7.5 with respect to pH 8.2 (optimum) in chloroplasts given C-1, C-2, and C-6 labeled glucose indicated that a suboptimum pH affects the recycling of the pentose phosphate intermediates to a greater extent than CO{sub 2} evolution from C-1 of glucose. Respiratory inhibition by pH 7.5 in the darkened chloroplast was alleviated by NH{sub 4}Cl and KCl (stromal alkalating agents), iodoacetamide (an inhibitor of glyceraldehyde 3-phosphate dehydrogenase), or phosphoenolypyruvate (an inhibitor of phosphofructokinase). It is concluded that the site which primarily mediates respiration in the darkened Chlamydomonas chloroplast is the fructose-1,6-bisphosphatase/phosphofructokinase junction. The respiratory pathways described here can account for the total oxidation of a hexose to Co{sub 2} and for interactions between carbohydrate metabolism and the oxyhydrogen reaction in algal cells adapted to a hydrogen metabolism.

  16. Redirecting the Cyanobacterial Bicarbonate Transporters BicA and SbtA to the Chloroplast Envelope: Soluble and Membrane Cargos Need Different Chloroplast Targeting Signals in Plants.

    Directory of Open Access Journals (Sweden)

    Vivien eRolland

    2016-02-01

    Full Text Available Most major crops used for human consumption are C3 plants, which yields are limited by photosynthetic inefficiency. To circumvent this, it has been proposed to implement the cyanobacterial CO2-concentrating mechanism (CCM, principally consisting of bicarbonate transporters and carboxysomes, into plant chloroplasts. As it is currently not possible to recover homoplasmic transplastomic monocots, foreign genes must be introduced in these plants via nuclear transformation. Consequently, it is paramount to ensure that resulting proteins reach the appropriate sub-cellular compartment, which for cyanobacterial transporters BicA and SbtA, is the chloroplast inner-envelope membrane (IEM. At present, targeting signals to redirect large transmembrane proteins from non-chloroplastic organisms to plant chloroplast envelopes are unknown. The goal of this study was to identify such signals, using agrobacteria-mediated transient expression and confocal microscopy to determine the sub-cellular localization of ~37 GFP-tagged chimeras. Initially, fragments of chloroplast proteins known to target soluble cargos to the stroma were tested for their ability to redirect BicA, but they proved ineffective. Next, different N-terminal regions from Arabidopsis IEM transporters were tested. We demonstrated that the N-terminus of AtHP59, AtPLGG1 or AtNTT1 (92-115 amino acids, containing a cleavable chloroplast transit peptide (cTP and a membrane protein leader (MPL, was sufficient to redirect BicA or SbtA to the chloroplast envelope. This constitutes the first evidence that nuclear-encoded transmembrane proteins from non-chloroplastic organisms can be targeted to the envelope of plant chloroplasts; a finding which represents an important advance in chloroplast engineering by opening up the door to further manipulation of the chloroplastic envelope.

  17. Completion of the Chloroplast Genomes of Five ChineseJuglansand Their Contribution to Chloroplast Phylogeny.

    Science.gov (United States)

    Hu, Yiheng; Woeste, Keith E; Zhao, Peng

    2016-01-01

    Juglans L. (walnuts and butternuts) is an economically and ecologically important genus in the family Juglandaceae. All Juglans are important nut and timber trees. Juglans regia (Common walnut), J. sigillata (Iron walnut), J. cathayensis (Chinese walnut), J. hopeiensis (Ma walnut), and J. mandshurica (Manchurian walnut) are native to or naturalized in China. A strongly supported phylogeny of these five species is not available due to a lack of informative molecular markers. We compared complete chloroplast genomes and determined the phylogenetic relationships among the five Chinese Juglans using IIumina sequencing. The plastid genomes ranged from 159,714 to 160,367 bp encoding 128 functional genes, including 88 protein-coding genes and 40 tRNA genes each. A complete map of the variability across the genomes of the five Juglans species was produced that included single nucleotide variants, indels (insertions and deletions), and large structural variants, as well as differences in simple sequence repeats (SSR) and repeat sequences. Molecular phylogeny strongly supported division of the five walnut species into two previously recognized sections ( Juglans/Dioscaryon and Cardiocaryon ) with a 100% bootstrap (BS) value using the complete cp genomes, protein coding sequences (CDS), and the introns and spacers (IGS) data. The availability of these genomes will provide genetic information for identifying species and hybrids, taxonomy, phylogeny, and evolution in Juglans , and also provide insight into utilization of Juglans plants.

  18. Abundant RNA editing sites of chloroplast protein-coding genes in Ginkgo biloba and an evolutionary pattern analysis.

    Science.gov (United States)

    He, Peng; Huang, Sheng; Xiao, Guanghui; Zhang, Yuzhou; Yu, Jianing

    2016-12-01

    RNA editing is a posttranscriptional modification process that alters the RNA sequence so that it deviates from the genomic DNA sequence. RNA editing mainly occurs in chloroplasts and mitochondrial genomes, and the number of editing sites varies in terrestrial plants. Why and how RNA editing systems evolved remains a mystery. Ginkgo biloba is one of the oldest seed plants and has an important evolutionary position. Determining the patterns and distribution of RNA editing in the ancient plant provides insights into the evolutionary trend of RNA editing, and helping us to further understand their biological significance. In this paper, we investigated 82 protein-coding genes in the chloroplast genome of G. biloba and identified 255 editing sites, which is the highest number of RNA editing events reported in a gymnosperm. All of the editing sites were C-to-U conversions, which mainly occurred in the second codon position, biased towards to the U_A context, and caused an increase in hydrophobic amino acids. RNA editing could change the secondary structures of 82 proteins, and create or eliminate a transmembrane region in five proteins as determined in silico. Finally, the evolutionary tendencies of RNA editing in different gene groups were estimated using the nonsynonymous-synonymous substitution rate selection mode. The G. biloba chloroplast genome possesses the highest number of RNA editing events reported so far in a seed plant. Most of the RNA editing sites can restore amino acid conservation, increase hydrophobicity, and even influence protein structures. Similar purifying selections constitute the dominant evolutionary force at the editing sites of essential genes, such as the psa, some psb and pet groups, and a positive selection occurred in the editing sites of nonessential genes, such as most ndh and a few psb genes.

  19. Chloroplast Dynamics and Photosynthetic Efficiency: Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Maureen [Cornell Univ., Ithaca, NY (United States)

    2016-11-03

    This project investigated the mechanism by which chloroplasts position themselves to maximize solar energy utilization, to enhance gas exchange, to minimize environmental stress, and to promote efficient exchange of metabolites with other compartments within the plant cell. Chloroplasts move within leaf cells to optimize light levels, moving toward levels of light useful for photosynthesis while moving away from excess light. Plastids sometimes extend their reach by sending out projections (stromules) that can connect anchor chloroplasts in position within the cell or provide close contacts with plasma membrane, mitochondria, peroxisomes, endoplasmic reticulum, and the nucleus. The intracellular location of chloroplasts in relation to other organelles with which they share biosynthetic pathways, such as peroxisomes and mitochondria in photorespiration, affects metabolite flow. This work contributed to the knowledge of the mechanisms of organelle movement and anchoring in specific locations in plant cells and how proteins traffic within the cell. We identified two domains on 12 of the 13 Arabidopsis myosins that were similar to the vacuole-binding (V) domain characterized in yeast and to the DIL domain characterized in yeast and mouse as required for secretory vesicle or melanosome movement, respectively. Because all of the Arabidopsis regions with homology to the V domain contain the amino acid sequence PAL, we refer to this region as the Arabidopsis PAL domain. We have used the yeast Myo2p tail structural information to model the 12 myosin XI tail domains containing the homologous PAL and DIL domains. Eight YFP::DIL domain fusions labeled peroxisomes; none labeled mitochondria or chloroplasts. Six myosin XI Vacuole domains labeled mitochondria and seven labeled Golgi bodies. The Arabidopsis myosin XI-F PAL domain and the homologous myosin XI-F PAL domain from N. benthamiana labels chloroplasts and stromules in N. benthamiana leaves. Using an Arabidopsis line

  20. Pb-induced avoidance-like chloroplast movements in fronds of Lemna trisulca L.

    Directory of Open Access Journals (Sweden)

    Sławomir Samardakiewicz

    Full Text Available Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed. An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2. In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the

  1. Pb-Induced Avoidance-Like Chloroplast Movements in Fronds of Lemna trisulca L.

    Science.gov (United States)

    Samardakiewicz, Sławomir; Krzeszowiec-Jeleń, Weronika; Bednarski, Waldemar; Jankowski, Artur; Suski, Szymon; Gabryś, Halina; Woźny, Adam

    2015-01-01

    Lead ions are particularly dangerous to the photosynthetic apparatus, but little is known about the effects of trace metals, including Pb, on regulation of chloroplast redistribution. In this study a new effect of lead on chloroplast distribution patterns and movements was demonstrated in mesophyll cells of a small-sized aquatic angiosperm Lemna trisulca L. (star duckweed). An analysis of confocal microscopy images of L. trisulca fronds treated with lead (15 μM Pb2+, 24 h) in darkness or in weak white light revealed an enhanced accumulation of chloroplasts in the profile position along the anticlinal cell walls, in comparison to untreated plants. The rearrangement of chloroplasts in their response to lead ions in darkness was similar to the avoidance response of chloroplasts in plants treated with strong white light. Transmission electron microscopy X-ray microanalysis showed that intracellular chloroplast arrangement was independent of the location of Pb deposits, suggesting that lead causes redistribution of chloroplasts, which looks like a light-induced avoidance response, but is not a real avoidance response to the metal. Furthermore, a similar redistribution of chloroplasts in L. trisulca cells in darkness was observed also under the influence of exogenously applied hydrogen peroxide (H2O2). In addition, we detected an enhanced accumulation of endogenous H2O2 after treatment of plants with lead. Interestingly, H2O2-specific scavenger catalase partly abolished the Pb-induced chloroplast response. These results suggest that H2O2 can be involved in the avoidance-like movement of chloroplasts induced by lead. Analysis of photometric measurements revealed also strong inhibition (but not complete) of blue-light-induced chloroplast movements by lead. This inhibition may result from disturbances in the actin cytoskeleton, as we observed fragmentation and disappearance of actin filaments around chloroplasts. Results of this study show that the mechanisms of the toxic

  2. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    OpenAIRE

    Wolf Paul G; Everett Karin DE; Mandoli Dina F; Boore Jeffrey L; Kuehl Jennifer V; Mishler Brent D; Murdock Andrew G; Oliver Melvin J; Duffy Aaron M; Karol Kenneth G

    2010-01-01

    Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-t...

  3. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis.

    Science.gov (United States)

    Llamas, Ernesto; Pulido, Pablo; Rodriguez-Concepcion, Manuel

    2017-09-01

    Disruption of protein homeostasis in chloroplasts impairs the correct functioning of essential metabolic pathways, including the methylerythritol 4-phosphate (MEP) pathway for the production of plastidial isoprenoids involved in photosynthesis and growth. We previously found that misfolded and aggregated forms of the first enzyme of the MEP pathway are degraded by the Clp protease with the involvement of Hsp70 and Hsp100/ClpC1 chaperones in Arabidopsis thaliana. By contrast, the combined unfolding and disaggregating actions of Hsp70 and Hsp100/ClpB3 chaperones allow solubilization and hence reactivation of the enzyme. The repair pathway is promoted when the levels of ClpB3 proteins increase upon reduction of Clp protease activity in mutants or wild-type plants treated with the chloroplast protein synthesis inhibitor lincomycin (LIN). Here we show that LIN treatment rapidly increases the levels of aggregated proteins in the chloroplast, unleashing a specific retrograde signaling pathway that up-regulates expression of ClpB3 and other nuclear genes encoding plastidial chaperones. As a consequence, folding capacity is increased to restore protein homeostasis. This sort of chloroplast unfolded protein response (cpUPR) mechanism appears to be mediated by the heat shock transcription factor HsfA2. Expression of HsfA2 and cpUPR-related target genes is independent of GUN1, a central integrator of retrograde signaling pathways. However, double mutants defective in both GUN1 and plastome gene expression (or Clp protease activity) are seedling lethal, confirming that the GUN1 protein is essential for protein homeostasis in chloroplasts.

  4. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis.

    Directory of Open Access Journals (Sweden)

    Ernesto Llamas

    2017-09-01

    Full Text Available Disruption of protein homeostasis in chloroplasts impairs the correct functioning of essential metabolic pathways, including the methylerythritol 4-phosphate (MEP pathway for the production of plastidial isoprenoids involved in photosynthesis and growth. We previously found that misfolded and aggregated forms of the first enzyme of the MEP pathway are degraded by the Clp protease with the involvement of Hsp70 and Hsp100/ClpC1 chaperones in Arabidopsis thaliana. By contrast, the combined unfolding and disaggregating actions of Hsp70 and Hsp100/ClpB3 chaperones allow solubilization and hence reactivation of the enzyme. The repair pathway is promoted when the levels of ClpB3 proteins increase upon reduction of Clp protease activity in mutants or wild-type plants treated with the chloroplast protein synthesis inhibitor lincomycin (LIN. Here we show that LIN treatment rapidly increases the levels of aggregated proteins in the chloroplast, unleashing a specific retrograde signaling pathway that up-regulates expression of ClpB3 and other nuclear genes encoding plastidial chaperones. As a consequence, folding capacity is increased to restore protein homeostasis. This sort of chloroplast unfolded protein response (cpUPR mechanism appears to be mediated by the heat shock transcription factor HsfA2. Expression of HsfA2 and cpUPR-related target genes is independent of GUN1, a central integrator of retrograde signaling pathways. However, double mutants defective in both GUN1 and plastome gene expression (or Clp protease activity are seedling lethal, confirming that the GUN1 protein is essential for protein homeostasis in chloroplasts.

  5. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  6. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  7. The Evolving Status of Photojournalism Education. ERIC Digest.

    Science.gov (United States)

    Cookman, Claude

    Noting that new technologies are resulting in extensive changes in the field of photojournalism, both as it is practiced and taught, this Digest reviews this rapidly evolving field of education and professional practice. It discusses what digital photography is; the history of digital photography; how digital photography has changed…

  8. Characterization of the complete chloroplast genome of Platycarya strobilacea (Juglandaceae)

    Science.gov (United States)

    Jing Yan; Kai Han; Shuyun Zeng; Peng Zhao; Keith Woeste; Jianfang Li; Zhan-Lin Liu

    2017-01-01

    The whole chloroplast genome (cp genome) sequence of Platycarya strobilacea was characterized from Illumina pair-end sequencing data. The complete cp genome was 160,994 bp in length and contained a large single copy region (LSC) of 90,225 bp and a small single copy region (SSC) of 18,371 bp, which were separated by a pair of inverted repeat regions...

  9. Complete chloroplast genome sequences of two endangered Phoebe (Lauraceae) species.

    Science.gov (United States)

    Li, Yingang; Xu, Wuqin; Zou, Wentao; Jiang, Dongyue; Liu, Xinhong

    2017-09-13

    Phoebe (Lauraceae) comprises of evergreen trees or shrubs with approximately 100 species, distributed in tropical and subtropical Asia and Neotropical America. A total of 34 species and three varieties occur in China. Despite of economic and ecological value, only limited genomic resources are available for this genus. We sequenced the two complete chloroplast (cp) genomes of Phoebe chekiangensis and P. bournei using Illumina sequencing technology via a combined strategy of de novo and reference-guided assembly. We also performed comparative analyses with the cp genomes of P. sheareri and P. sheareri var. oineiensis previously reported. The chloroplast genomes of P. chekiangensis and P. bournei identically contain 112 genes consisting of 78 protein coding genes, 30 tRNA genes, and 4 rRNA genes, with the size of 152,849 and 152,853 bp, respectively. From the two chloroplast genomes, 131 SSRs were identified and 12 different SSRs located in five protein coding genes. The analysis showed the extremely conserved structure of chloroplast genomes with surprisingly little variations at the LSC/IR and SSC/IR boundaries. Moreover, the mean nucleotide diversity was found to be 0.162% for 77 regions, suggesting an extraordinarily low level of sequence divergence. Four highest divergent regions (trnH-psbA, rps14-trnT, petA-psbJ, ccsA-ndhD) with the percentage of nucleotide diversity higher than 0.50% were identified, which had potential use for species identification and phylogenetic studies. This study will facilitate our understanding of population genetics, phylogenetic relationship and plant evolution of Phoebe species.

  10. Regulation of chloroplast biogenesis: the immutans mutant of Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Rodermel, Steven

    2015-11-16

    The immutans (im) variegation mutant of Arabidopsis is an ideal model to gain insight into factors that control chloroplast biogenesis. im defines the gene for PTOX, a plastoquinol terminal oxidase that participates in control of thylakoid redox. Here, we report that the im defect can be suppressed during the late stages of plant development by gigantea (gi2), which defines the gene for GIGANTEA (GI), a central component of the circadian clock that plays a poorly-understood role in diverse plant developmental processes. imgi2 mutants are late-flowering and display other well-known phenotypes associated with gi2, such as starch accumulation and resistance to oxidative stress. We show that the restoration of chloroplast biogenesis in imgi2 is caused by a developmental-specific de-repression of cytokinin signaling that involves crosstalk with signaling pathways mediated by gibberellin (GA) and SPINDLY (SPY), a GA response inhibitor. Suppression of the plastid defect in imgi2 is likely caused by a relaxation of excitation pressures in developing plastids by factors contributed by gi2, including enhanced rates of photosynthesis and increased resistance to oxidative stress. Interestingly, the suppression phenotype of imgi can be mimicked by crossing im with the starch accumulation mutant, sex1, perhaps because sex1 utilizes pathways similar to gi. We conclude that our studies provide a direct genetic linkage between GIGANTEA and chloroplast biogenesis, and we construct a model of interactions between signaling pathways mediated by gi, GA, SPY, cytokinins, and sex1 that are required for chloroplast biogenesis.

  11. Episodic evolution and adaptation of chloroplast genomes in ancestral grasses.

    Directory of Open Access Journals (Sweden)

    Bojian Zhong

    Full Text Available BACKGROUND: It has been suggested that the chloroplast genomes of the grass family, Poaceae, have undergone an elevated evolutionary rate compared to most other angiosperms, yet the details of this phenomenon have remained obscure. To know how the rate change occurred during evolution, estimation of the time-scale with reliable calibrations is needed. The recent finding of 65 Ma grass phytoliths in Cretaceous dinosaur coprolites places the diversification of the grasses to the Cretaceous period, and provides a reliable calibration in studying the tempo and mode of grass chloroplast evolution. METHODOLOGY/PRINCIPAL FINDINGS: By using chloroplast genome data from angiosperms and by taking account of new paleontological evidence, we now show that episodic rate acceleration both in terms of non-synonymous and synonymous substitutions occurred in the common ancestral branch of the core Poaceae (a group formed by rice, wheat, maize, and their allies accompanied by adaptive evolution in several chloroplast proteins, while the rate reverted to the slow rate typical of most monocot species in the terminal branches. CONCLUSIONS/SIGNIFICANCE: Our finding of episodic rate acceleration in the ancestral grasses accompanied by adaptive molecular evolution has a profound bearing on the evolution of grasses, which form a highly successful group of plants. The widely used model for estimating divergence times was based on the assumption of correlated rates between ancestral and descendant lineages. However, the assumption is proved to be inadequate in approximating the episodic rate acceleration in the ancestral grasses, and the assumption of independent rates is more appropriate. This finding has implications for studies of molecular evolutionary rates and time-scale of evolution in other groups of organisms.

  12. IM30 triggers membrane fusion in cyanobacteria and chloroplasts

    OpenAIRE

    Hennig, R.; Heidrich, J.; Saur, M.; Schmüser, L.; Roeters, S.J.; Hellmann, N.; Woutersen, S.; Bonn, M.; Weidner, T.; Markl, J.; Schneider, D.

    2015-01-01

    The thylakoid membrane of chloroplasts and cyanobacteria is a unique internal membrane system harbouring the complexes of the photosynthetic electron transfer chain. Despite their apparent importance, little is known about the biogenesis and maintenance of thylakoid membranes. Although membrane fusion events are essential for the formation of thylakoid membranes, proteins involved in membrane fusion have yet to be identified in photosynthetic cells or organelles. Here we show that IM30, a con...

  13. Overexpression of the Bacillus thuringiensis (Bt) Cry2Aa2 protein in chloroplasts confers resistance to plants against susceptible and Bt-resistant insects.

    Science.gov (United States)

    Kota, M; Daniell, H; Varma, S; Garczynski, S F; Gould, F; Moar, W J

    1999-03-02

    Evolving levels of resistance in insects to the bioinsecticide Bacillus thuringiensis (Bt) can be dramatically reduced through the genetic engineering of chloroplasts in plants. When transgenic tobacco leaves expressing Cry2Aa2 protoxin in chloroplasts were fed to susceptible, Cry1A-resistant (20,000- to 40,000-fold) and Cry2Aa2-resistant (330- to 393-fold) tobacco budworm Heliothis virescens, cotton bollworm Helicoverpa zea, and the beet armyworm Spodoptera exigua, 100% mortality was observed against all insect species and strains. Cry2Aa2 was chosen for this study because of its toxicity to many economically important insect pests, relatively low levels of cross-resistance against Cry1A-resistant insects, and its expression as a protoxin instead of a toxin because of its relatively small size (65 kDa). Southern blot analysis confirmed stable integration of cry2Aa2 into all of the chloroplast genomes (5, 000-10,000 copies per cell) of transgenic plants. Transformed tobacco leaves expressed Cry2Aa2 protoxin at levels between 2% and 3% of total soluble protein, 20- to 30-fold higher levels than current commercial nuclear transgenic plants. These results suggest that plants expressing high levels of a nonhomologous Bt protein should be able to overcome or at the very least, significantly delay, broad spectrum Bt-resistance development in the field.

  14. Chloroplast retrograde regulation of heat stress responses in plants

    Directory of Open Access Journals (Sweden)

    Ai-Zhen eSun

    2016-03-01

    Full Text Available It is well known that intracellular signaling from chloroplast to nucleus plays a vital role in stress responses to survive environmental perturbations. The chloroplasts were proposed as sensors to heat stress since components of the photosynthetic apparatus housed in the chloroplast are the primary susceptible targets of thermal damage in plants. Thus, communicating subcellular perturbations to the nucleus is critical during exposure to extreme environmental conditions such as heat stress. By coordinating expression of stress specific nuclear genes essential for adaptive responses to hostile environment, plants optimize different cell functions and activate acclimation responses through retrograde signaling pathways. Such diverse metabolic and biosynthetic functions require efficient communication between plastids and the nucleus. In recent years several putative retrograde signals released from plastids that regulate nuclear genes have been identified and signaling pathways have been proposed. In this review, we provide an update on retrograde signals derived from tetrapyrroles, carotenoids, reactive oxygen species (ROS and organellar gene expression (OGE in the context of heat stress responses and address their roles in retrograde regulation of heat-responsive gene expression, systemic acquired acclimation and cellular coordination in plants.

  15. [Antenna replacement in the evolutionary origin of chloroplasts].

    Science.gov (United States)

    Stadnichuk, I N; Tropin, I V

    2014-01-01

    Endosymbiotic origin of chloroplasts from unicellular cyanobacteria is presently beyond doubt. Oxygenic photosynthesis is based on coordinated action of two photosystems (PS), PS I and PS II, cooperating with several variants of the pigment antenna. In cyanobacteria, red algae, and glaucophytes, phycobilisomes (PBS) act as antennae, while in terrestrial plants, as well as most macro- and microalgae antennae are formed by chlorophyll a/b- and chlorophyll a/c-containing proteins. Advantages and disadvantages of the PBS antenna compared to other light-gathering complexes form the basis for adaptive variations of the antenna in the course of development of eukaryotic photosynthesis. During the evolution of the "green" and "chromophyte" lineages of the chloroplasts, PBS, in spite of their optimal features of light absorption,were replaced by chlorophyll a/b- and chlorophyll a/c-containing light-gathering complexes. Development of the cell wall associated with limited motility and with tissue formation in photosynthetic eukaryotes were the factors responsible for the antenna shift. The subsequent redistribution of cell resources in favor of cellulose biosynthesis required increased for CO2 consumption, higher PS II levels, and greater number and density of the thylakoids in the chloroplasts, got incompatible with the energy-consuming and overly large PBS antenna.

  16. Hydrogenase-Mediated Activities in Isolated Chloroplasts of Chlamydomonas reinhardii.

    Science.gov (United States)

    Maione, T E; Gibbs, M

    1986-02-01

    Isolated intact chloroplasts of Chlamydomonas reinhardii were found to catalyze photoreduction of CO(2) in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea when adapted under an atmosphere of H(2) demonstrating the association of a hydrogenase and anaerobic adaptation system with these plastids. The specific activity of photoreduction was approximately one third that detected in cells and protoplasts. Photoreduction was found to have a lower osmoticum optimum relative to aerobically maintained chloroplasts (50 millimolar versus 120 millimolar mannitol). 3-Phosphoglycerate (3-PGA) stimulated photoreduction up to a peak at 0.25 millimolar beyond which inhibition was observed. In the absence of 3-PGA, inorganic phosphate had no effect on photoreduction but in the presence of 3-PGA, inorganic phosphate also stimulated the reaction. Carbonyl cyanide-p-trifluoromethoxyphenylhydrazone and 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone inhibited photoreduction but inhibition by the former could be partially overcome by exogenously added ATP. The intact plastid can also catalyze photoevolution of H(2) while lysed chloroplast extracts catalyzed the reduction of methyl viologen by H(2). Both reactions occurred at rates approximately one-third of those found in cells. The oxyhydrogen reaction in the presence or absence of CO(2) was not detected.

  17. Phototropin-related NPL1 controls chloroplast relocation induced by blue light.

    Science.gov (United States)

    Jarillo, J A; Gabrys, H; Capel, J; Alonso, J M; Ecker, J R; Cashmore, A R

    2001-04-19

    In photosynthetic cells, chloroplasts migrate towards illuminated sites to optimize photosynthesis and move away from excessively illuminated areas to protect the photosynthetic machinery. Although this movement of chloroplasts in response to light has been known for over a century, the photoreceptor mediating this process has not been identified. The Arabidopsis gene NPL1 (ref. 2) is a paralogue of the NPH1 gene, which encodes phototropin, a photoreceptor for phototropic bending. Here we show that NPL1 is required for chloroplast relocation induced by blue light. A loss-of-function npl1 mutant showed no chloroplast avoidance response in strong blue light, whereas the accumulation of chloroplasts in weak light was normal. These results indicate that NPL1 may function as a photoreceptor mediating chloroplast relocation.

  18. Polypeptide Composition of Envelope Membranes Isolated from Chloroplasts of C_3, C_4, and CAM Plants

    OpenAIRE

    Joyce G., Foster; Gerald E, Edwards; Department of Botany, Washington State University:(Present)United States Department of Agriculture, Appalachian Soil and Water Conservation Research Laboratory; Department of Botany, Washington State University

    1983-01-01

    Chloroplast envelopes were isolated from chloroplasts purified from Spinacea oleracea L. (C_3), Panicum miliaceum L. (NAD-malic enzyme-type C_4), Digitaria sanguinalis (L.) Scop. (NADP-malic enzyme-type C_4). Kalanchoe daigremontiana Hamet et Perrier (constitutive CAM), and from Mesembryanthemum crystallinum L. (inducible CAM) performing either C_3 photosynthesis or Crassulacean acid metabolism (CAM). For each species, methods were developed to isolate chloroplast envelopes free of thylakoid ...

  19. Method of producing metallized chloroplasts and use thereof in the photochemical production of hydrogen and oxygen

    Science.gov (United States)

    Greenbaum, Elias

    1987-01-01

    The invention is primarily a metallized chloroplast composition for use in a photosynthetic reaction. A catalytic metal is precipitated on a chloroplast membrane at the location where a catalyzed reduction reaction occurs. This metallized chloroplast is stabilized by depositing it on a support medium such as fiber so that it can be easily handled. A possible application of this invention is the splitting of water to form hydrogen and oxygen that can be used as a renewable energy source.

  20. Longevity of guard cell chloroplasts in falling leaves: implication for stomatal function and cellular aging

    Energy Technology Data Exchange (ETDEWEB)

    Zeiger, E.; Schwartz, A.

    1982-11-12

    Guard cell chloroplasts in senescing leaves from 12 species of perennial trees and three species of annual plants survived considerably longer than their mesophyll counterparts. In Ginkgo biloba, stomata from yellow leaves opened during the day and closed at night; guard cell chloroplasts from these leaves showed fluorescence transients associated with electron transport and photophosphorylation. These findings indicate that guard cell chloroplasts are highly conserved throughout the life-span of the leaf and that leaves retain stomatal control during senescence.

  1. Exploring photosynthesis evolution by comparative analysis of metabolic networks between chloroplasts and photosynthetic bacteria

    Directory of Open Access Journals (Sweden)

    Hou Jing

    2006-04-01

    Full Text Available Abstract Background Chloroplasts descended from cyanobacteria and have a drastically reduced genome following an endosymbiotic event. Many genes of the ancestral cyanobacterial genome have been transferred to the plant nuclear genome by horizontal gene transfer. However, a selective set of metabolism pathways is maintained in chloroplasts using both chloroplast genome encoded and nuclear genome encoded enzymes. As an organelle specialized for carrying out photosynthesis, does the chloroplast metabolic network have properties adapted for higher efficiency of photosynthesis? We compared metabolic network properties of chloroplasts and prokaryotic photosynthetic organisms, mostly cyanobacteria, based on metabolic maps derived from genome data to identify features of chloroplast network properties that are different from cyanobacteria and to analyze possible functional significance of those features. Results The properties of the entire metabolic network and the sub-network that consists of reactions directly connected to the Calvin Cycle have been analyzed using hypergraph representation. Results showed that the whole metabolic networks in chloroplast and cyanobacteria both possess small-world network properties. Although the number of compounds and reactions in chloroplasts is less than that in cyanobacteria, the chloroplast's metabolic network has longer average path length, a larger diameter, and is Calvin Cycle -centered, indicating an overall less-dense network structure with specific and local high density areas in chloroplasts. Moreover, chloroplast metabolic network exhibits a better modular organization than cyanobacterial ones. Enzymes involved in the same metabolic processes tend to cluster into the same module in chloroplasts. Conclusion In summary, the differences in metabolic network properties may reflect the evolutionary changes during endosymbiosis that led to the improvement of the photosynthesis efficiency in higher plants. Our

  2. The complete chloroplast DNA sequence of the green alga Nephroselmis olivacea: insights into the architecture of ancestral chloroplast genomes.

    Science.gov (United States)

    Turmel, M; Otis, C; Lemieux, C

    1999-08-31

    Green plants seem to form two sister lineages: Chlorophyta, comprising the green algal classes Prasinophyceae, Ulvophyceae, Trebouxiophyceae, and Chlorophyceae, and Streptophyta, comprising the Charophyceae and land plants. We have determined the complete chloroplast DNA (cpDNA) sequence (200,799 bp) of Nephroselmis olivacea, a member of the class (Prasinophyceae) thought to include descendants of the earliest-diverging green algae. The 127 genes identified in this genome represent the largest gene repertoire among the green algal and land plant cpDNAs completely sequenced to date. Of the Nephroselmis genes, 2 (ycf81 and ftsI, a gene involved in peptidoglycan synthesis) have not been identified in any previously investigated cpDNA; 5 genes [ftsW, rnE, ycf62, rnpB, and trnS(cga)] have been found only in cpDNAs of nongreen algae; and 10 others (ndh genes) have been described only in land plant cpDNAs. Nephroselmis and land plant cpDNAs share the same quadripartite structure-which is characterized by the presence of a large rRNA-encoding inverted repeat and two unequal single-copy regions-and very similar sets of genes in corresponding genomic regions. Given that our phylogenetic analyses place Nephroselmis within the Chlorophyta, these structural characteristics were most likely present in the cpDNA of the common ancestor of chlorophytes and streptophytes. Comparative analyses of chloroplast genomes indicate that the typical quadripartite architecture and gene-partitioning pattern of land plant cpDNAs are ancient features that may have been derived from the genome of the cyanobacterial progenitor of chloroplasts. Our phylogenetic data also offer insight into the chlorophyte ancestor of euglenophyte chloroplasts.

  3. Sonication-based isolation and enrichment of Chlorella protothecoides chloroplasts for illumina genome sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Angelova, Angelina [University of Arizona; Park, Sang-Hycuk [University of Arizona; Kyndt, John [Bellevue University; Fitzsimmons, Kevin [University of Arizona; Brown, Judith K [University of Arizona

    2013-09-01

    With the increasing world demand for biofuel, a number of oleaginous algal species are being considered as renewable sources of oil. Chlorella protothecoides Krüger synthesizes triacylglycerols (TAGs) as storage compounds that can be converted into renewable fuel utilizing an anabolic pathway that is poorly understood. The paucity of algal chloroplast genome sequences has been an important constraint to chloroplast transformation and for studying gene expression in TAGs pathways. In this study, the intact chloroplasts were released from algal cells using sonication followed by sucrose gradient centrifugation, resulting in a 2.36-fold enrichment of chloroplasts from C. protothecoides, based on qPCR analysis. The C. protothecoides chloroplast genome (cpDNA) was determined using the Illumina HiSeq 2000 sequencing platform and found to be 84,576 Kb in size (8.57 Kb) in size, with a GC content of 30.8 %. This is the first report of an optimized protocol that uses a sonication step, followed by sucrose gradient centrifugation, to release and enrich intact chloroplasts from a microalga (C. prototheocoides) of sufficient quality to permit chloroplast genome sequencing with high coverage, while minimizing nuclear genome contamination. The approach is expected to guide chloroplast isolation from other oleaginous algal species for a variety of uses that benefit from enrichment of chloroplasts, ranging from biochemical analysis to genomics studies.

  4. Cytokinins in Tobacco and Wheat Chloroplasts. Occurrence and Changes Due to Light/Dark Treatment1

    Science.gov (United States)

    Benková, Eva; Witters, Erwin; Van Dongen, Walter; Kolar, Jan; Motyka, Václav; Brzobohatý, Bretislav; Van Onckelen, Harry A.; Machácková, Ivana

    1999-01-01

    Although cytokinins (CKs) affect a number of processes connected with chloroplasts, it has never been rigorously proven that chloroplasts contain CKs. We isolated intact chloroplasts from tobacco (Nicotiana tabacum L. cv SR1) and wheat (Triticum aestivum L. cv Ritmo) leaves and determined their CKs by liquid chromatography/tandem mass spectroscopy. Chloroplasts from both species contained a whole spectrum of CKs, including free bases (zeatin and isopentenyladenine), ribosides (zeatin riboside, and isopentenyladenosine), ribotides (isopentenyladenosine-5′-monophosphate, zeatin riboside-5′-monophosphate, and dihydrozeatin riboside-5′-monophosphate), and N-glucosides (zeatin-N9-glucoside, dihydrozeatin-N9-glucoside, zeatin-N7-glucoside, and isopentenyladenine-N-glucosides). In chloroplasts there was a moderately higher relative amount of bases, ribosides, and ribotides than in leaves, and a significantly increased level of N9-glucosides of zeatin and dihydrozeatin. Tobacco and wheat chloroplasts were prepared from leaves at the end of either a dark or light period. After a dark period, chloroplasts accumulated more CKs than after a light period. The differences were moderate for free bases and ribosides, but highly significant for glucosides. Tobacco chloroplasts from dark-treated leaves contained zeatin riboside-O-glucoside and dihydrozeatin riboside-O-glucoside, as well as a relatively high CK oxidase activity. These data show that chloroplasts contain a whole spectrum of CKs and the enzymatic activity necessary for their metabolism. PMID:10482680

  5. Different effects of eubacterial and eukaryotic DNA topoisomerase II inhibitors on chloroplasts ofEuglena gracilis

    Science.gov (United States)

    Krajčovič, Juraj; Ebringer, Libor

    1990-03-01

    Inhibitors of eubacterial and eukaryotic DNA topoisomerases type II exhibited different effects on chloroplasts of the flagellateEuglena gracilis. Antibacterial agents (cinoxacin, nalidixic and oxolinic acids, ciprofloxacin, enoxacin, norfloxacin and ofloxacin) from the group of quinolones and coumarins (coumermycin A1, clorobiocin and novobiocin) — all inhibitors of prokaryotic DNA topoisomerase II — were very potent eliminators of chloroplasts fromE. gracilis. In contrast, antitumor drugs (adriamycin, etoposide, teniposide and mitoxantrone) — antagonists of the eukaryotic counterpart — did not affect these semiautonomous photosynthetic organelles. These findings point out again the close evolutionary relationships between eubacteria and chloroplasts and are in agreement with the hypothesis of an endosymbiotic origin of chloroplasts.

  6. Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma.

    Science.gov (United States)

    Wang, Xiao-Ping; Shan, Xiao-Quan; Zhang, Shu-Zhen; Wen, Bei

    2003-07-01

    A rare earth element (REE) hyperaccumulator, Dicranopteris dichotoma, that accumulates more than 0.1% REEs dry leaf mass has been discovered in southern China. The different components of chloroplast were isolated and the concentration of REEs in each component was determined by ICP-MS. The experimental data indicated that about 8% of total leaf REEs was present in the chloroplast of Dicranopteris dichotoma. In order to thoroughly study the distribution of REEs among different components of chloroplast, the membrane of chloroplast, the intact thylakoid and the photosystem II (PS II system) of D. dichotoma were isolated from the chloroplast. It was found that half of total chloroplast REEs was stored at the membrane of the chloroplast and another half was in the thylakoid. And 25% of total chloroplast REEs was bound with PS II system of D.dichotoma. The concentration of REEs in chlorophyll a was only at the level of microg/g on the bases of chlorophylls. These data are useful for understanding of both the storage of REEs in chloroplast and the effect of REEs on the photosynthesis of plants.

  7. The evolutionary fate of the chloroplast and nuclear rps16 genes as revealed through the sequencing and comparative analyses of four novel legume chloroplast genomes from Lupinus.

    Science.gov (United States)

    Keller, J; Rousseau-Gueutin, M; Martin, G E; Morice, J; Boutte, J; Coissac, E; Ourari, M; Aïnouche, M; Salmon, A; Cabello-Hurtado, F; Aïnouche, A

    2017-08-01

    The Fabaceae family is considered as a model system for understanding chloroplast genome evolution due to the presence of extensive structural rearrangements, gene losses and localized hypermutable regions. Here, we provide sequences of four chloroplast genomes from the Lupinus genus, belonging to the underinvestigated Genistoid clade. Notably, we found in Lupinus species the functional loss of the essential rps16 gene, which was most likely replaced by the nuclear rps16 gene that encodes chloroplast and mitochondrion targeted RPS16 proteins. To study the evolutionary fate of the rps16 gene, we explored all available plant chloroplast, mitochondrial and nuclear genomes. Whereas no plant mitochondrial genomes carry an rps16 gene, many plants still have a functional nuclear and chloroplast rps16 gene. Ka/Ks ratios revealed that both chloroplast and nuclear rps16 copies were under purifying selection. However, due to the dual targeting of the nuclear rps16 gene product and the absence of a mitochondrial copy, the chloroplast gene may be lost. We also performed comparative analyses of lupine plastomes (SNPs, indels and repeat elements), identified the most variable regions and examined their phylogenetic utility. The markers identified here will help to reveal the evolutionary history of lupines, Genistoids and closely related clades. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Mollusc-Algal Chloroplast Endosymbiosis. Photosynthesis, Thylakoid Protein Maintenance, and Chloroplast Gene Expression Continue for Many Months in the Absence of the Algal Nucleus1

    Science.gov (United States)

    Green, Brian J.; Li, Wei-Ye; Manhart, James R.; Fox, Theodore C.; Summer, Elizabeth J.; Kennedy, Robert A.; Pierce, Sidney K.; Rumpho, Mary E.

    2000-01-01

    Early in its life cycle, the marine mollusc Elysia chlorotica Gould forms an intracellular endosymbiotic association with chloroplasts of the chromophytic alga Vaucheria litorea C. Agardh. As a result, the dark green sea slug can be sustained in culture solely by photoautotrophic CO2 fixation for at least 9 months if provided with only light and a source of CO2. Here we demonstrate that the sea slug symbiont chloroplasts maintain photosynthetic oxygen evolution and electron transport activity through photosystems I and II for several months in the absence of any external algal food supply. This activity is correlated to the maintenance of functional levels of chloroplast-encoded photosystem proteins, due in part at least to de novo protein synthesis of chloroplast proteins in the sea slug. Levels of at least one putative algal nuclear encoded protein, a light-harvesting complex protein homolog, were also maintained throughout the 9-month culture period. The chloroplast genome of V. litorea was found to be 119.1 kb, similar to that of other chromophytic algae. Southern analysis and polymerase chain reaction did not detect an algal nuclear genome in the slug, in agreement with earlier microscopic observations. Therefore, the maintenance of photosynthetic activity in the captured chloroplasts is regulated solely by the algal chloroplast and animal nuclear genomes. PMID:10982447

  9. Studies on the genus Mesodinium I: ultrastructure and description of Mesodinium chamaeleon n. sp., a benthic marine species with green or red chloroplasts.

    Science.gov (United States)

    Moestrup, Ojvind; Garcia-Cuetos, Lydia; Hansen, Per Juel; Fenchel, Tom

    2012-01-01

    We provide here the description of a new marine species that harbors green or red chloroplasts. In contrast to certain other species of the genus, Mesodinium chamaeleon n. sp. can be maintained in culture for short periods only. It captures and ingests flagellates including cryptomonads. The prey is ingested very rapidly into a food vacuole without the cryptomonad flagella being shed and the trichocysts being discharged. The individual food vacuoles subsequently serve as photosynthetic units, each containing the cryptomonad chloroplast, a nucleus, and some mitochondria. The ingested cells are eventually digested. This type of symbiosis differs from other plastid-bearing Mesodinium spp. in retaining ingested cryptomonad cells almost intact. The food strategy of the new species appears to be intermediate between heterotrophic species, such as Mesodinium pulex and Mesodinium pupula, and species with red cryptomonad endosymbionts, such as Mesodinium rubrum. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  10. The Evolving Resource Metadata Infrastructure

    Science.gov (United States)

    Biemesderfer, Chris

    The search and discovery mechanisms that will facilitate and simplify systematic research on the Internet depend on systematic classifications of resources, as well as on standardized access to such metadata. The principles and technologies that will make this possible are evolving in the work of the Internet Engineering Task Force and the digital library initiatives, among others. The desired outcome is a set of standards, tools, and practices that permits both cataloging and retrieval to be comprehensive and efficient.

  11. Photosynthetic electron transport in genetically altered chloroplasts. Progress report, June 15, 1992--June 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, R.T.

    1993-06-01

    We have generated and characterized the phenotypes of several photosystem II,D1 protein mutants in Chlamydomonas reinhardtii chloroplasts. The first set of mutants which we produced were at residue H195 on the D1 protein, adjacent to histidine -198 (H198), a putative ligand to the redox active chlorophyll special pair, P680. Conservative amino acid replacements at H195 had little effect on electron transfer whereas non-conservative replacements had significant effects on electron transfer processes, particularly rates of transfer from Z to P680. In contrast, histidine 190 (H190) mutants were unable to evolve oxygen, had reduced manganese content, slower rates of charge transfer from Z to P680 and lacked the A{sub t} thermoluminescence band. These results suggested that H190 may be a redox active histidine residue required for photoligation of manganese into the water oxidizing complex. EPR studies demonstrated that H190 does not H-bond to Z. This is in contrast to the H190 residue of the D2 protein which does H-bond to the redox active tyrosine, D. These are the first results which identify a specific histidine residue as potentially being redox active in photosystem II and have implications for the structure of the water oxidizing complex.

  12. Complex RNA metabolism in the chloroplast: an update on the psbB operon.

    Science.gov (United States)

    Stoppel, Rhea; Meurer, Jörg

    2013-02-01

    Expression of most plastid genes involves multiple post-transcriptional processing events, such as splicing, editing, and intercistronic processing. The latter involves the formation of mono-, di-, and multicistronic transcripts, which can further be regulated by differential stability and expression. The plastid pentacistronic psbB transcription unit has been well characterized in vascular plants. It encodes the subunits CP47 (psbB), T (psbT), and H (psbH) of photosystem II as well as cytochrome b (6) (petB) and subunit IV (petD) of the cytochrome b (6) f complex. Each of the petB and petD genes contains a group II intron, which is spliced during post-transcriptional modification. The small subunit of photosystem II, PsbN, is encoded in the intercistronic region between psbH and psbT but is transcribed in the opposite direction. Expression of the psbB gene cluster necessitates different processing events along with numerous newly evolved specificity factors conferring stability to many of the processed RNA transcripts, and thus exemplarily shows the complexity of RNA metabolism in the chloroplast.

  13. Flip-flop of phospholipids in proteoliposomes reconstituted from detergent extract of chloroplast membranes: kinetics and phospholipid specificity.

    Directory of Open Access Journals (Sweden)

    Archita Rajasekharan

    Full Text Available Eukaryotic cells are compartmentalized into distinct sub-cellular organelles by lipid bilayers, which are known to be involved in numerous cellular processes. The wide repertoire of lipids, synthesized in the biogenic membranes like the endoplasmic reticulum and bacterial cytoplasmic membranes are initially localized in the cytosolic leaflet and some of these lipids have to be translocated to the exoplasmic leaflet for membrane biogenesis and uniform growth. It is known that phospholipid (PL translocation in biogenic membranes is mediated by specific membrane proteins which occur in a rapid, bi-directional fashion without metabolic energy requirement and with no specificity to PL head group. A recent study reported the existence of biogenic membrane flippases in plants and that the mechanism of plant membrane biogenesis was similar to that found in animals. In this study, we demonstrate for the first time ATP independent and ATP dependent flippase activity in chloroplast membranes of plants. For this, we generated proteoliposomes from Triton X-100 extract of intact chloroplast, envelope membrane and thylakoid isolated from spinach leaves and assayed for flippase activity using fluorescent labeled phospholipids. Half-life time of flipping was found to be 6 ± 1 min. We also show that: (a intact chloroplast and envelope membrane reconstituted proteoliposomes can flip fluorescent labeled analogs of phosphatidylcholine in ATP independent manner, (b envelope membrane and thylakoid reconstituted proteoliposomes can flip phosphatidylglycerol in ATP dependent manner, (c Biogenic membrane ATP independent PC flipping activity is protein mediated and (d the kinetics of PC translocation gets affected differently upon treatment with protease and protein modifying reagents.

  14. Higher plant chloroplasts import the mRNA coding for the eucaryotic translation initiation factor 4E.

    Science.gov (United States)

    Nicolaï, Maryse; Duprat, Anne; Sormani, Rodnay; Rodriguez, Cecilia; Roncato, Marie-Anne; Rolland, Norbert; Robaglia, Christophe

    2007-08-21

    Plant chloroplasts probably originate from an endosymbiosis event between a photosynthetic bacteria and a eucaryotic cell. The proper functioning of this association requires a high level of integration between the chloroplastic genome and the plant cell genome. Many chloroplastic genes have been transferred to the nucleus of the host cell and the proteins coded by these genes are imported into the chloroplast. Chloroplastic activity also regulates the expression of these genes at the transcriptional and post-transcriptional levels. The importation of nucleic acids from the host cell into the chloroplast has never been observed. This work show that the mRNA coding for the eucaryotic translation factor 4E, an essential regulator of translation, enters the chloroplast in four different plant species, and is located in the stroma. Furthermore, the localization in the chloroplast of an heterologous GFP mRNA fused to the eIF4E RNA was also observed.

  15. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from total DNA Sequences.

    NARCIS (Netherlands)

    Izan, Shairul; Esselink, G.; Visser, R.G.F.; Smulders, M.J.M.; Borm, T.J.A.

    2017-01-01

    Whole Genome Shotgun (WGS) sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This

  16. Characterization of mango (Mangifera indica L.) transcriptome and chloroplast genome.

    Science.gov (United States)

    Azim, M Kamran; Khan, Ishtaiq A; Zhang, Yong

    2014-05-01

    We characterized mango leaf transcriptome and chloroplast genome using next generation DNA sequencing. The RNA-seq output of mango transcriptome generated >12 million reads (total nucleotides sequenced >1 Gb). De novo transcriptome assembly generated 30,509 unigenes with lengths in the range of 300 to ≥3,000 nt and 67× depth of coverage. Blast searching against nonredundant nucleotide databases and several Viridiplantae genomic datasets annotated 24,593 mango unigenes (80% of total) and identified Citrus sinensis as closest neighbor of mango with 9,141 (37%) matched sequences. The annotation with gene ontology and Clusters of Orthologous Group terms categorized unigene sequences into 57 and 25 classes, respectively. More than 13,500 unigenes were assigned to 293 KEGG pathways. Besides major plant biology related pathways, KEGG based gene annotation pointed out active presence of an array of biochemical pathways involved in (a) biosynthesis of bioactive flavonoids, flavones and flavonols, (b) biosynthesis of terpenoids and lignins and (c) plant hormone signal transduction. The mango transcriptome sequences revealed 235 proteases belonging to five catalytic classes of proteolytic enzymes. The draft genome of mango chloroplast (cp) was obtained by a combination of Sanger and next generation sequencing. The draft mango cp genome size is 151,173 bp with a pair of inverted repeats of 27,093 bp separated by small and large single copy regions, respectively. Out of 139 genes in mango cp genome, 91 found to be protein coding. Sequence analysis revealed cp genome of C. sinensis as closest neighbor of mango. We found 51 short repeats in mango cp genome supposed to be associated with extensive rearrangements. This is the first report of transcriptome and chloroplast genome analysis of any Anacardiaceae family member.

  17. The evolvability of programmable hardware

    Science.gov (United States)

    Raman, Karthik; Wagner, Andreas

    2011-01-01

    In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 1045 logic circuits (‘genotypes’) and 1019 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry. PMID:20534598

  18. The complete chloroplast genome sequence of Dendrobium officinale.

    Science.gov (United States)

    Yang, Pei; Zhou, Hong; Qian, Jun; Xu, Haibin; Shao, Qingsong; Li, Yonghua; Yao, Hui

    2016-01-01

    The complete chloroplast sequence of Dendrobium officinale, an endangered and economically important traditional Chinese medicine, was reported and characterized. The genome size is 152,018 bp, with 37.5% GC content. A pair of inverted repeats (IRs) of 26,284 bp are separated by a large single-copy region (LSC, 84,944 bp) and a small single-copy region (SSC, 14,506 bp). The complete cp DNA contains 83 protein-coding genes, 39 tRNA genes and 8 rRNA genes. Fourteen genes contained one or two introns.

  19. The complete chloroplast genome sequence of Curcuma flaviflora (Curcuma).

    Science.gov (United States)

    Zhang, Yan; Deng, Jiabin; Li, Yangyi; Gao, Gang; Ding, Chunbang; Zhang, Li; Zhou, Yonghong; Yang, Ruiwu

    2016-09-01

    The complete chloroplast (cp) genome of Curcuma flaviflora, a medicinal plant in Southeast Asia, was sequenced. The genome size was 160 478 bp in length, with 36.3% GC content. A pair of inverted repeats (IRs) of 26 946 bp were separated by a large single copy (LSC) of 88 008 bp and a small single copy (SSC) of 18 578 bp, respectively. The cp genome contained 132 annotated genes, including 79 protein coding genes, 30 tRNA genes, and four rRNA genes. And 19 of these genes were duplicated in inverted repeat regions.

  20. Hartmut Lichtenthaler: an authority on chloroplast structure and isoprenoid biochemistry.

    Science.gov (United States)

    Sharkey, Thomas D; Govindjee

    2016-05-01

    We pay tribute to Hartmut Lichtenthaler for making important contributions to the field of photosynthesis research. He was recently recognized for ground-breaking discoveries in chloroplast structure and isoprenoid biochemistry by the Rebeiz Foundation for Basic Research (RFBR; http://vlpbp.org/ ), receiving a 2014 Lifetime Achievement Award for Photosynthesis. The ceremony, held in Champaign, Illinois, was attended by many prominent researchers in the photosynthesis field. We provide below a brief note on his education, and then describe some of the areas in which Hartmut Lichtenthaler has been a pioneer.

  1. Biotin Carboxyl Carrier Protein in Barley Chloroplast Membranes

    DEFF Research Database (Denmark)

    Kannangara, C. G.; Jense, C J

    1975-01-01

    Biotin localized in barley chloroplast lamellae is covalently bound to a single protein with an approximate molecular weight of 21000. It contains one mole of biotin per mole of protein and functions as a carboxyl carrier in the acetyl-CoA carboxylase reaction. The protein was obtained by solubil...... by solubilization of the lamellae in phenol/acetic acid/8 M urea. Feeding barley seedlings with [14C]-biotin revealed that the vitamin is not degraded into respiratory substrates by the plant, but is specifically incorporated into biotin carboxyl carrier protein....

  2. Vertical Gradient in Photosynthetic Properties of Spinach Chloroplasts Dependent on Intra-Leaf Light Environment

    OpenAIRE

    Ichiro, TERASHIMA; Yorinao, Inoue; Laboratory of Ecology, Department of Botany, Faculty of Science, University of Tokyo; Solar Energy Research Group, RIKEN Institute of Physical and Chemical Research

    1985-01-01

    A spinach leaf piece was planed into 10 layers parallel with leaf surface. The biochemical and ultrastructural properties of the chloroplasts of these 10 layers were compared. Results showed that both the biochemical and ultrastructural properties of the chloroplasts change gradually and continuously from sun- to shade-type with the depth from the adaxial surface.

  3. The diurnal logic of the expression of the chloroplast genome in Chlamydomonas reinhardtii.

    Directory of Open Access Journals (Sweden)

    Adam D Idoine

    Full Text Available Chloroplasts are derived from cyanobacteria and have retained a bacterial-type genome and gene expression machinery. The chloroplast genome encodes many of the core components of the photosynthetic apparatus in the thylakoid membranes. To avoid photooxidative damage and production of harmful reactive oxygen species (ROS by incompletely assembled thylakoid protein complexes, chloroplast gene expression must be tightly regulated and co-ordinated with gene expression in the nucleus. Little is known about the control of chloroplast gene expression at the genome-wide level in response to internal rhythms and external cues. To obtain a comprehensive picture of organelle transcript levels in the unicellular model alga Chlamydomonas reinhardtii in diurnal conditions, a qRT-PCR platform was developed and used to quantify 68 chloroplast, 21 mitochondrial as well as 71 nuclear transcripts in cells grown in highly controlled 12 h light/12 h dark cycles. Interestingly, in anticipation of dusk, chloroplast transcripts from genes involved in transcription reached peak levels first, followed by transcripts from genes involved in translation, and finally photosynthesis gene transcripts. This pattern matches perfectly the theoretical demands of a cell "waking up" from the night. A similar trend was observed in the nuclear transcripts. These results suggest a striking internal logic in the expression of the chloroplast genome and a previously unappreciated complexity in the regulation of chloroplast genes.

  4. Designing specific chloroplast markers for black walnut from a set of universal primers

    Science.gov (United States)

    Erin Victory; Rodney L. Robichaud; Keith Woeste

    2003-01-01

    Chloroplasts are a valuable source of genetic information because their sequence is highly conserved, they undergo little or no recombination, and they are uniparentally inherited. Chloroplast polymorphisms are powerful genetic tools for identifying matrilineal family groups, studying gene flow from seed versus pollen movement, reconstructing phylogeographic...

  5. Genetic analysis of a Microseris douglasii (Asteraceae) population polymorphic for an alien chloroplast type

    NARCIS (Netherlands)

    Roelofs, Dick; Bachmann, Konrad

    1997-01-01

    Recent evidence suggests chloroplast introgression from Microseris bigelovii into M. douglasii. We have examined 23 plants from a population of M. douglasii polymorphic for M. douglasii and M. bigelovii chloroplast types. All 23 plants were completely homozygous for morphological and RAPD markers,

  6. The toxic dinoflagellate Dinophysis acuminata harbors permanent chloroplasts of cryptomomad prigin, not kleptochloroplasts

    DEFF Research Database (Denmark)

    Garcia, Lydia; Moestrup, Øjvind; Hansen, Per Juel

    2010-01-01

    Most species belonging to the toxigenic genus Dinophysis have chloroplasts of cryptophyte origin. Whether these chloroplasts are temporarily sequestered from the prey, or permanently established under the control of the dinoflagellate is currently disputed. To investigate this, a culture of Dinop...

  7. Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait

    Science.gov (United States)

    Craig S. Echt; L.L. DeVerno; M. Anzidei; G.G. Vendramin

    1998-01-01

    Variation in paternally inherited chloroplast microsatellite (cpSSR) DNA was used to study population genetic structure in red pine (Pinus resinosa Ait.), a species characterized by morphological uniformity, no allozyme variation, and limited RAPD variation. Using nine cpSSR loci, a total of 23 chloroplast haplotypes and 25 cpSSR alleles were were...

  8. Complete chloroplast genomes from apomictic Taraxacum (Asteraceae): Identity and variation between three microspecies.

    Science.gov (United States)

    M Salih, Rubar Hussein; Majeský, Ľuboš; Schwarzacher, Trude; Gornall, Richard; Heslop-Harrison, Pat

    2017-01-01

    Chloroplast DNA sequences show substantial variation between higher plant species, and less variation within species, so are typically excellent markers to investigate evolutionary, population and genetic relationships and phylogenies. We sequenced the plastomes of Taraxacum obtusifrons Markl. (O978); T. stridulum Trávniček ined. (S3); and T. amplum Markl. (A978), three apomictic triploid (2n = 3x = 24) dandelions from the T. officinale agg. We aimed to characterize the variation in plastomes, define relationships and correlations with the apomictic microspecies status, and refine placement of the microspecies in the evolutionary or phylogenetic context of the Asteraceae. The chloroplast genomes of accessions O978 and S3 were identical and 151,322 bp long (where the nuclear genes are known to show variation), while A978 was 151,349 bp long. All three genomes contained 135 unique genes, with an additional copy of the trnF-GGA gene in the LSC region and 20 duplicated genes in the IR region, along with short repeats, the typical major Inverted Repeats (IR1 and IR2, 24,431bp long), and Large and Small Single Copy regions (LSC 83,889bp and SSC 18,571bp in O978). Between the two Taraxacum plastomes types, we identified 28 SNPs. The distribution of polymorphisms suggests some parts of the Taraxacum plastome are evolving at a slower rate. There was a hemi-nested inversion in the LSC region that is common to Asteraceae, and an SSC inversion from ndhF to rps15 found only in some Asteraceae lineages. A comparative repeat analysis showed variation between Taraxacum and the phylogenetically close genus Lactuca, with many more direct repeats of 40bp or more in Lactuca (1% larger plastome than Taraxacum). When individual genes and non-coding regions were for Asteraceae phylogeny reconstruction, not all showed the same evolutionary scenario suggesting care is needed for interpretation of relationships if a limited number of markers are used. Studying genotypic diversity in

  9. Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life

    Directory of Open Access Journals (Sweden)

    Krug Patrick J

    2009-12-01

    Full Text Available Abstract Background Among metazoans, retention of functional diet-derived chloroplasts (kleptoplasty is known only from the sea slug taxon Sacoglossa (Gastropoda: Opisthobranchia. Intracellular maintenance of plastids in the slug's digestive epithelium has long attracted interest given its implications for understanding the evolution of endosymbiosis. However, photosynthetic ability varies widely among sacoglossans; some species have no plastid retention while others survive for months solely on photosynthesis. We present a molecular phylogenetic hypothesis for the Sacoglossa and a survey of kleptoplasty from representatives of all major clades. We sought to quantify variation in photosynthetic ability among lineages, identify phylogenetic origins of plastid retention, and assess whether kleptoplasty was a key character in the radiation of the Sacoglossa. Results Three levels of photosynthetic activity were detected: (1 no functional retention; (2 short-term retention lasting about one week; and (3 long-term retention for over a month. Phylogenetic analysis of one nuclear and two mitochondrial loci revealed reciprocal monophyly of the shelled Oxynoacea and shell-less Plakobranchacea, the latter comprising a monophyletic Plakobranchoidea and paraphyletic Limapontioidea. Only species in the Plakobranchoidea expressed short- or long-term kleptoplasty, most belonging to a speciose clade of slugs bearing parapodia (lateral flaps covering the dorsum. Bayesian ancestral character state reconstructions indicated that functional short-term retention arose once in the last common ancestor of Plakobranchoidea, and independently evolved into long-term retention in four derived species. Conclusion We propose a sequential progression from short- to long-term kleptoplasty, with different adaptations involved in each step. Short-term kleptoplasty likely arose as a deficiency in plastid digestion, yielding additional energy via the release of fixed carbon

  10. The 'E' factor -- evolving endodontics.

    Science.gov (United States)

    Hunter, M J

    2013-03-01

    Endodontics is a constantly developing field, with new instruments, preparation techniques and sealants competing with trusted and traditional approaches to tooth restoration. Thus general dental practitioners must question and understand the significance of these developments before adopting new practices. In view of this, the aim of this article, and the associated presentation at the 2013 British Dental Conference & Exhibition, is to provide an overview of endodontic methods and constantly evolving best practice. The presentation will review current preparation techniques, comparing rotary versus reciprocation, and question current trends in restoration of the endodontically treated tooth.

  11. Influence of Adenosine Phosphates and Magnesium on Photosynthesis in Chloroplasts from Peas, Sedum, and Spinach 1

    Science.gov (United States)

    Piazza, George J.; Gibbs, Martin

    1983-01-01

    14CO2 photoassimilation in the presence of MgATP, MgADP, and MgAMP was investigated using intact chloroplasts from Sedum praealtum, a Crassulacean acid metabolism plant, and two C3 plants: spinach and peas. Inasmuch as free ATP, ADP, AMP, and uncomplexed Mg2+ were present in the assays, their influence upon CO2 assimilation was also examined. Free Mg2+ was inhibitory with all chloroplasts, as were ADP and AMP in chloroplasts from Sedum and peas. With Sedum chloroplasts in the presence of ADP, the time course of assimilation was linear. However, with pea chloroplasts, ADP inhibition became progressively more severe, resulting in a curved time course. ATP stimulated assimilation only in pea chloroplasts. MgATP and MgADP stimulated assimilation in all chloroplasts. ADP inhibition of CO2 assimilation was maximal at optimum orthophosphate concentrations in Sedum chloroplasts, while MgATP stimulation was maximal at optimum or below optimum concentrations of orthophosphate. MgATP stimulation in peas and Sedum and ADP inhibition in Sedum were not sensitive to the addition of glycerate 3-phosphate (PGA). PGA-supported O2 evolution by pea chloroplasts was not inhibited immediately by ADP; the rate of O2 evolution slowed as time passed, corresponding to the effect of ADP on CO2 assimilation, and indicating that glycerate 3-phosphate kinase was a site of inhibition. Likewise, upon the addition of AMP, inhibition of PGA-dependent O2 evolution became more severe with time. This did not mirror CO2 assimilation, which was inhibited immediately by AMP. In Sedum chloroplasts, PGA-dependent O2 evolution was not inhibited by ADP and AMP. In chloroplasts from peas and Sedum, the magnitude of MgADP and MgATP stimulation of PGA-dependent O2 evolution was not much larger than that given by ATP, and it was much smaller than MgATP stimulation of CO2 assimilation. Analysis of stromal metabolite levels by anion exchange chromatography indicated that ribulose 1,5-bisphosphate carboxylase was

  12. The complete chloroplast genome sequence of tung tree (Vernicia fordii): Organization and phylogenetic relationships with other angiosperms

    Science.gov (United States)

    Tung tree (Vernicia fordii) is an economically important plant widely cultivated for industrial oil production in China. To better understand the molecular basis of tung tree chloroplasts, we sequenced and characterized the complete chloroplast genome. The chloroplast genome was 161,524 bp in length...

  13. Circadian Rhythms of Chloroplast Orientation and Photosynthetic Capacity in Ulva123

    Science.gov (United States)

    Britz, Steven J.; Briggs, Winslow R.

    1976-01-01

    Ulva lactuca L. var. latissima (L.) Decandolle and var. rigida (C. Agardh) Le Jolis and U. mutabilis Foyn have a circadian rhythm of chloroplast orientation which results in large changes in the light-absorption properties of the thallus. During the day, the chloroplasts cover the outer face of the cells and absorbance is high. At night, the chloroplasts are along the side walls and absorbance is low. Enteromorpha linza (L.) J. Agardh, E. intestinalis (L.) Link, E. sp., and Monostroma grevillei (Thuret) Wittrock, members of the Ulvales, were not observed to have this rhythmic movement. Chloroplasts, when in the face position, could not be induced to move to the sides by high intensity light up to 80,000 lux. Unrelated to chloroplast position per se and light-absorption efficiency, there is a rhythm of photosynthetic capacity which peaks just before midday and which continues in constant darkness. Images PMID:16659613

  14. Chloroplast genome sequence of the moss Tortula ruralis: gene content, polymorphism, and structural arrangement relative to other green plant chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Wolf Paul G

    2010-02-01

    Full Text Available Abstract Background Tortula ruralis, a widely distributed species in the moss family Pottiaceae, is increasingly used as a model organism for the study of desiccation tolerance and mechanisms of cellular repair. In this paper, we present the chloroplast genome sequence of T. ruralis, only the second published chloroplast genome for a moss, and the first for a vegetatively desiccation-tolerant plant. Results The Tortula chloroplast genome is ~123,500 bp, and differs in a number of ways from that of Physcomitrella patens, the first published moss chloroplast genome. For example, Tortula lacks the ~71 kb inversion found in the large single copy region of the Physcomitrella genome and other members of the Funariales. Also, the Tortula chloroplast genome lacks petN, a gene found in all known land plant plastid genomes. In addition, an unusual case of nucleotide polymorphism was discovered. Conclusions Although the chloroplast genome of Tortula ruralis differs from that of the only other sequenced moss, Physcomitrella patens, we have yet to determine the biological significance of the differences. The polymorphisms we have uncovered in the sequencing of the genome offer a rare possibility (for mosses of the generation of DNA markers for fine-level phylogenetic studies, or to investigate individual variation within populations.

  15. A pseudogene cluster in the leader region of the Euglena chloroplast 16S-23S rRNA genes.

    Science.gov (United States)

    Miyata, T; Kikuno, R; Ohshima, Y

    1982-01-01

    The nucleotide sequence of a region (leader region) preceding the 5'-end of 16S-23S rRNA gene region of Euglena gracilis chloroplast DNA was compared with the homologous sequences that code for the 16S-23S rRNA operons of Euglena and E. coli. The leader region shows close homology in sequence to the 16S-23S rRNA gene region of Euglena (Orozco et al. (1980) J. Biol.Chem. 255, 10997-11003) as well as to the rrnD operon of E. coli, suggesting that it was derived from the 16S-23S rRNA gene region by gene duplication. It was shown that the leader region had accumulated nucleotide substitutions at an extremely rapid rate in its entirety, similar to the rate of tRNAIle pseudogene identified in the leader region. In addition, the leader region shows an unique base content which is quite distinct from those of 16S-23S rRNA gene regions of Euglena and E. coli, but again is similar to that of the tRNAIle pseudogene. The above two results strongly suggest that the leader region contains a pseudogene cluster which was derived from a gene cluster coding for the functional 16S-23S rRNA operon possibly by imperfect duplication during evolution of Euglena chloroplast DNA. PMID:7041094

  16. Chloroplast ATP Synthase Modulation of the Thylakoid Proton Motive Force: Implications for Photosystem I and Photosystem II Photoprotection

    Directory of Open Access Journals (Sweden)

    Atsuko Kanazawa

    2017-05-01

    Full Text Available In wild type plants, decreasing CO2 lowers the activity of the chloroplast ATP synthase, slowing proton efflux from the thylakoid lumen resulting in buildup of thylakoid proton motive force (pmf. The resulting acidification of the lumen regulates both light harvesting, via the qE mechanism, and photosynthetic electron transfer through the cytochrome b6f complex. Here, we show that the cfq mutant of Arabidopsis, harboring single point mutation in its γ-subunit of the chloroplast ATP synthase, increases the specific activity of the ATP synthase and disables its down-regulation under low CO2. The increased thylakoid proton conductivity (gH+ in cfq results in decreased pmf and lumen acidification, preventing full activation of qE and more rapid electron transfer through the b6f complex, particularly under low CO2 and fluctuating light. These conditions favor the accumulation of electrons on the acceptor side of PSI, and result in severe loss of PSI activity. Comparing the current results with previous work on the pgr5 mutant suggests a general mechanism where increased PSI photodamage in both mutants is caused by loss of pmf, rather than inhibition of CEF per se. Overall, our results support a critical role for ATP synthase regulation in maintaining photosynthetic control of electron transfer to prevent photodamage.

  17. Mesophyll Chloroplast Investment in C3, C4 and C2 Species of the Genus Flaveria.

    Science.gov (United States)

    Stata, Matt; Sage, Tammy L; Hoffmann, Natalie; Covshoff, Sarah; Ka-Shu Wong, Gane; Sage, Rowan F

    2016-05-01

    The mesophyll (M) cells of C4 plants contain fewer chloroplasts than observed in related C3 plants; however, it is uncertain where along the evolutionary transition from C3 to C4 that the reduction in M chloroplast number occurs. Using 18 species in the genus Flaveria, which contains C3, C4 and a range of C3-C4 intermediate species, we examined changes in chloroplast number and size per M cell, and positioning of chloroplasts relative to the M cell periphery. Chloroplast number and coverage of the M cell periphery declined in proportion to increasing strength of C4 metabolism in Flaveria, while chloroplast size increased with increasing C4 cycle strength. These changes increase cytosolic exposure to the cell periphery which could enhance diffusion of inorganic carbon to phosphenolpyruvate carboxylase (PEPC), a cytosolic enzyme. Analysis of the transcriptome from juvenile leaves of nine Flaveria species showed that the transcript abundance of four genes involved in plastid biogenesis-FtsZ1, FtsZ2, DRP5B and PARC6-was negatively correlated with variation in C4 cycle strength and positively correlated with M chloroplast number per planar cell area. Chloroplast size was negatively correlated with abundance of FtsZ1, FtsZ2 and PARC6 transcripts. These results indicate that natural selection targeted the proteins of the contractile ring assembly to effect the reduction in chloroplast numbers in the M cells of C4 Flaveria species. If so, efforts to engineer the C4 pathway into C3 plants might evaluate whether inducing transcriptome changes similar to those observed in Flaveria could reduce M chloroplast numbers, and thus introduce a trait that appears essential for efficient C4 function. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. The complete chloroplast genome of banana (Musa acuminata, Zingiberales: insight into plastid monocotyledon evolution.

    Directory of Open Access Journals (Sweden)

    Guillaume Martin

    Full Text Available BACKGROUND: Banana (genus Musa is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS: The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp and a Small Single Copy region (SSC, 10,768 bp separated by Inverted Repeat regions (IRs, 35,433 bp. Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1 and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION: The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  19. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution.

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Cardi, Céline; Aury, Jean-Marc; D'Hont, Angélique

    2013-01-01

    Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.

  20. Rapid plant identification using species- and group-specific primers targeting chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Corinna Wallinger

    Full Text Available Plant identification is challenging when no morphologically assignable parts are available. There is a lack of broadly applicable methods for identifying plants in this situation, for example when roots grow in mixture and for decayed or semi-digested plant material. These difficulties have also impeded the progress made in ecological disciplines such as soil- and trophic ecology. Here, a PCR-based approach is presented which allows identifying a variety of plant taxa commonly occurring in Central European agricultural land. Based on the trnT-F cpDNA region, PCR assays were developed to identify two plant families (Poaceae and Apiaceae, the genera Trifolium and Plantago, and nine plant species: Achillea millefolium, Fagopyrum esculentum, Lolium perenne, Lupinus angustifolius, Phaseolus coccineus, Sinapis alba, Taraxacum officinale, Triticum aestivum, and Zea mays. These assays allowed identification of plants based on size-specific amplicons ranging from 116 bp to 381 bp. Their specificity and sensitivity was consistently high, enabling the detection of small amounts of plant DNA, for example, in decaying plant material and in the intestine or faeces of herbivores. To increase the efficacy of identifying plant species from large number of samples, specific primers were combined in multiplex PCRs, allowing screening for multiple species within a single reaction. The molecular assays outlined here will be applicable manifold, such as for root- and leaf litter identification, botanical trace evidence, and the analysis of herbivory.

  1. Chloroplast genome variation in upland and lowland switchgrass.

    Directory of Open Access Journals (Sweden)

    Hugh A Young

    Full Text Available Switchgrass (Panicum virgatum L. exists at multiple ploidies and two phenotypically distinct ecotypes. To facilitate interploidal comparisons and to understand the extent of sequence variation within existing breeding pools, two complete switchgrass chloroplast genomes were sequenced from individuals representative of the upland and lowland ecotypes. The results demonstrated a very high degree of conservation in gene content and order with other sequenced plastid genomes. The lowland ecotype reference sequence (Kanlow Lin1 was 139,677 base pairs while the upland sequence (Summer Lin2 was 139,619 base pairs. Alignments between the lowland reference sequence and short-read sequence data from existing sequence datasets identified as either upland or lowland confirmed known polymorphisms and indicated the presence of other differences. Insertions and deletions principally occurred near stretches of homopolymer simple sequence repeats in intergenic regions while most Single Nucleotide Polymorphisms (SNPs occurred in intergenic regions and introns within the single copy portions of the genome. The polymorphism rate between upland and lowland switchgrass ecotypes was found to be similar to rates reported between chloroplast genomes of indica and japonica subspecies of rice which were believed to have diverged 0.2-0.4 million years ago.

  2. [Bioinformatics studies on photosynthetic system genes in cyanobacteria and chloroplasts].

    Science.gov (United States)

    Shi, Ding-Ji; Zhang, Chao; Li, Shi-Ming; Li, Ci-Shan; Zhang, Peng-Peng; Yang, Ming-Li

    2004-06-01

    This study compared homology of base sequences in genes encoding photosynthetic system proteins of cyanobacteria (Synechocystics sp. PCC6803, Nostoc sp. PCC7120) with these of chloroplasts (from Marchantia Polymorpha, Nicotiana tobacum, Oryza sativ, Euglena gracilis, Pinus thunbergii, Zea mays, Odentella sinesis, Cyanophora paradoxa, Porphyra purpurea and Arabidopsis thaliana) by BLAST method. While the gene sequence of Synechocystics sp. PCC6803 was considered as the criterion (100%) the homology of others were compared with it. Among the genes for photosystem I, psaC homology was the highest (90.14%) and the lowest was psaJ (52.24%). The highest ones were psbD (83.71%) for photosystem II, atpB (79.58%) for ATP synthase and petB (81.66%) for cytochrome b6/f complex. The lowest ones were psbN (49.70%) for photosystem II, atpF (26.69%) for ATP synthase and petA (55.27%) for cytochrome b6/f complex. Also, this paper discussed why the homology of gene sequences was the highest or the lowest. No report has been published and this bioinformatics research may provide some evidences for the origin and evolution of chloroplasts.

  3. The molecular architecture of the chloroplast thylakoid membrane

    Energy Technology Data Exchange (ETDEWEB)

    Stefansson, H.

    1996-08-01

    Non-detergent procedure for isolation of sub-thylakoid vesicle populations derived from different structural domains of the chloroplast thylakoid membrane has been developed. Sub-thylakoid vesicles representing the grana, grana core, stroma lamellae, and the grana margins have been isolated and their protein composition has been investigated. Furthermore a novel non-detergent procedure for investigating the pigment composition of photosynthetic complexes located in the different structural domains has been developed. This procedure circumvents selective extractions, an perturbing effect often combined with detergent isolations of membrane bound protein complexes. The fractionation experiments show that the NADPH dehydrogenase, suggested to operate as NADPH or ferredoxin-plastoquinone oxidoreductase in cyclic electron transport around photosystem I, is stoichiometrically depleted on photosystem I basis in the grana domain. The fractionation studies are consistent with the model of the thylakoid membrane where the photosystems in the grana are operating in a linear electron transport whereas the site of cyclic electron transport is in the stroma lamellae. It is suggested that partial destacking of grana, as a result of light-induced protein phosphorylation, may promote the exposure of the granal photosystem I centers to the chloroplast stroma and thereby enhance their participation in cyclic electron transport activity. 146 refs, 18 figs

  4. Characterization of a Virescent Chloroplast Mutant of Tobacco 1

    Science.gov (United States)

    Archer, E. Kathleen; Bonnett, Howard T.

    1987-01-01

    Virescent mutations produce plants in which young leaves have reduced chlorophyll levels but accumulate nearly normal amounts of chlorophyll as they age; they are predominantly nuclear mutations. We describe here a virescent mutation (designated Vir-c) found in a somatic hybrid line derived from Nicotiana tabacum L. and Nicotiana suaveolens Lehm. This mutation is inherited maternally. Young, half-expanded Vir-c leaves contained three to six times less chlorophyll than did control leaves, and reached maximum chlorophyll levels much later in development. Chlorophyll synthesis rates and chloroplast numbers per cell in Vir-c were similar to the control, and carotenoid content in Vir-c was sufficient to protect chlorophyll from photo-oxidation. Photosynthetic rates of Vir-c at low light intensities suggested a reduced ability to collect light. Electron micrographs of Vir-c chloroplasts from half-expanded leaves showed a significant reduction in thylakoids per granum. The decrease in granal thylakoids was strongly associated with low chlorophyll levels; mature Vir-c leaves with nearly normal chlorophyll content showed normal granal profiles. These results are discussed in relation to virescent mutants previously described. Images Fig. 3 PMID:16665364

  5. Characterization of a virescent chloroplast mutant of tobacco.

    Science.gov (United States)

    Archer, E K; Bonnett, H T

    1987-04-01

    Virescent mutations produce plants in which young leaves have reduced chlorophyll levels but accumulate nearly normal amounts of chlorophyll as they age; they are predominantly nuclear mutations. We describe here a virescent mutation (designated Vir-c) found in a somatic hybrid line derived from Nicotiana tabacum L. and Nicotiana suaveolens Lehm. This mutation is inherited maternally. Young, half-expanded Vir-c leaves contained three to six times less chlorophyll than did control leaves, and reached maximum chlorophyll levels much later in development. Chlorophyll synthesis rates and chloroplast numbers per cell in Vir-c were similar to the control, and carotenoid content in Vir-c was sufficient to protect chlorophyll from photo-oxidation. Photosynthetic rates of Vir-c at low light intensities suggested a reduced ability to collect light. Electron micrographs of Vir-c chloroplasts from half-expanded leaves showed a significant reduction in thylakoids per granum. The decrease in granal thylakoids was strongly associated with low chlorophyll levels; mature Vir-c leaves with nearly normal chlorophyll content showed normal granal profiles. These results are discussed in relation to virescent mutants previously described.

  6. Primordial evolvability: Impasses and challenges.

    Science.gov (United States)

    Vasas, Vera; Fernando, Chrisantha; Szilágyi, András; Zachár, István; Santos, Mauro; Szathmáry, Eörs

    2015-09-21

    While it is generally agreed that some kind of replicating non-living compounds were the precursors of life, there is much debate over their possible chemical nature. Metabolism-first approaches propose that mutually catalytic sets of simple organic molecules could be capable of self-replication and rudimentary chemical evolution. In particular, the graded autocatalysis replication domain (GARD) model, depicting assemblies of amphiphilic molecules, has received considerable interest. The system propagates compositional information across generations and is suggested to be a target of natural selection. However, evolutionary simulations indicate that the system lacks selectability (i.e. selection has negligible effect on the equilibrium concentrations). We elaborate on the lessons learnt from the example of the GARD model and, more widely, on the issue of evolvability, and discuss the implications for similar metabolism-first scenarios. We found that simple incorporation-type chemistry based on non-covalent bonds, as assumed in GARD, is unlikely to result in alternative autocatalytic cycles when catalytic interactions are randomly distributed. An even more serious problem stems from the lognormal distribution of catalytic factors, causing inherent kinetic instability of such loops, due to the dominance of efficiently catalyzed components that fail to return catalytic aid. Accordingly, the dynamics of the GARD model is dominated by strongly catalytic, but not auto-catalytic, molecules. Without effective autocatalysis, stable hereditary propagation is not possible. Many repetitions and different scaling of the model come to no rescue. Despite all attempts to show the contrary, the GARD model is not evolvable, in contrast to reflexively autocatalytic networks, complemented by rare uncatalyzed reactions and compartmentation. The latter networks, resting on the creation and breakage of chemical bonds, can generate novel ('mutant') autocatalytic loops from a given set of

  7. A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies

    Directory of Open Access Journals (Sweden)

    Turmel Monique

    2007-01-01

    Full Text Available Abstract Background The Viridiplantae comprise two major phyla: the Streptophyta, containing the charophycean green algae and all land plants, and the Chlorophyta, containing the remaining green algae. Despite recent progress in unravelling phylogenetic relationships among major green plant lineages, problematic nodes still remain in the green tree of life. One of the major issues concerns the scaly biflagellate Mesostigma viride, which is either regarded as representing the earliest divergence of the Streptophyta or a separate lineage that diverged before the Chlorophyta and Streptophyta. Phylogenies based on chloroplast and mitochondrial genomes support the latter view. Because some green plant lineages are not represented in these phylogenies, sparse taxon sampling has been suspected to yield misleading topologies. Here, we describe the complete chloroplast DNA (cpDNA sequence of the early-diverging charophycean alga Chlorokybus atmophyticus and present chloroplast genome-based phylogenies with an expanded taxon sampling. Results The 152,254 bp Chlorokybus cpDNA closely resembles its Mesostigma homologue at the gene content and gene order levels. Using various methods of phylogenetic inference, we analyzed amino acid and nucleotide data sets that were derived from 45 protein-coding genes common to the cpDNAs of 37 green algal/land plant taxa and eight non-green algae. Unexpectedly, all best trees recovered a robust clade uniting Chlorokybus and Mesostigma. In protein trees, this clade was sister to all streptophytes and chlorophytes and this placement received moderate support. In contrast, gene trees provided unequivocal support to the notion that the Mesostigma + Chlorokybus clade represents the earliest-diverging branch of the Streptophyta. Independent analyses of structural data (gene content and/or gene order and of subsets of amino acid data progressively enriched in slow-evolving sites led us to conclude that the latter topology

  8. Peripartum hysterectomy: an evolving picture.

    LENUS (Irish Health Repository)

    Turner, Michael J

    2012-02-01

    Peripartum hysterectomy (PH) is one of the obstetric catastrophes. Evidence is emerging that the role of PH in modern obstetrics is evolving. Improving management of postpartum hemorrhage and newer surgical techniques should decrease PH for uterine atony. Rising levels of repeat elective cesarean deliveries should decrease PH following uterine scar rupture in labor. Increasing cesarean rates, however, have led to an increase in the number of PHs for morbidly adherent placenta. In the case of uterine atony or rupture where PH is required, a subtotal PH is often sufficient. In the case of pathological placental localization involving the cervix, however, a total hysterectomy is required. Furthermore, the involvement of other pelvic structures may prospectively make the diagnosis difficult and the surgery challenging. If resources permit, PH for pathological placental localization merits a multidisciplinary approach. Despite advances in clinical practice, it is likely that peripartum hysterectomy will be more challenging for obstetricians in the future.

  9. Extreme evolved solar systems (EESS)

    Science.gov (United States)

    Gaensicke, Boris

    2017-08-01

    In just 20 years, we went from not knowing if the solar system is a fluke of Nature to realising that it is totally normal for stars to have planets. More remarkably, it is now clear that planet formation is a robust process, as rich multi-planet systems are found around stars more massive and less massive than the Sun. More recently, planetary systems have been identified in increasingly complex architectures, including circumbinary planets, wide binaries with planets orbiting one or both stellar components, and planets in triple stellar systems.We have also learned that many planetary systems will survive the evolution of their host stars into the white dwarf phase. Small bodies are scattered by unseen planets into the gravitational field of the white dwarfs, tidally disrupt, form dust discs, and eventually accrete onto the white dwarf, where they can be spectroscopically detected. HST/COS has played a critical role in the study these evolved planetary systems, demonstrating that overall the bulk composition of the debris is rocky and resembles in composition the inner the solar system, including evidence for water-rich planetesimals. Past observations of planetary systems at white dwarfs have focused on single stars with main-sequence progenitors of 1.5 to 2.5Msun. Here we propose to take the study of evolved planetary systems into the extremes of parameter ranges to answer questions such as: * How efficient is planet formation around 4-10Msun stars? * What are the metallicities of the progenitors of debris-accreting white dwarfs?* What is the fate of circumbinary planets?* Can star-planet interactions generate magnetic fields in the white dwarf host?

  10. Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes

    Directory of Open Access Journals (Sweden)

    Cronn Richard

    2009-12-01

    Full Text Available Abstract Background Molecular evolutionary studies share the common goal of elucidating historical relationships, and the common challenge of adequately sampling taxa and characters. Particularly at low taxonomic levels, recent divergence, rapid radiations, and conservative genome evolution yield limited sequence variation, and dense taxon sampling is often desirable. Recent advances in massively parallel sequencing make it possible to rapidly obtain large amounts of sequence data, and multiplexing makes extensive sampling of megabase sequences feasible. Is it possible to efficiently apply massively parallel sequencing to increase phylogenetic resolution at low taxonomic levels? Results We reconstruct the infrageneric phylogeny of Pinus from 37 nearly-complete chloroplast genomes (average 109 kilobases each of an approximately 120 kilobase genome generated using multiplexed massively parallel sequencing. 30/33 ingroup nodes resolved with ≥ 95% bootstrap support; this is a substantial improvement relative to prior studies, and shows massively parallel sequencing-based strategies can produce sufficient high quality sequence to reach support levels originally proposed for the phylogenetic bootstrap. Resampling simulations show that at least the entire plastome is necessary to fully resolve Pinus, particularly in rapidly radiating clades. Meta-analysis of 99 published infrageneric phylogenies shows that whole plastome analysis should provide similar gains across a range of plant genera. A disproportionate amount of phylogenetic information resides in two loci (ycf1, ycf2, highlighting their unusual evolutionary properties. Conclusion Plastome sequencing is now an efficient option for increasing phylogenetic resolution at lower taxonomic levels in plant phylogenetic and population genetic analyses. With continuing improvements in sequencing capacity, the strategies herein should revolutionize efforts requiring dense taxon and character sampling

  11. Measurement of Quantum Yield, Quantum Requirement, and Energetic Efficiency of the O2-Evolving System of Photosynthesis by a Simple Dye Reaction

    Science.gov (United States)

    Ros Barcelò, A.; Zapata, J. M.

    1996-11-01

    Photosynthesis is the conversion of absorbed radiant energy from sunlight into various forms of chemical energy by the chloroplasts of higher green plants. The overall process of photosynthesis consists of the oxidation of water (with the release of O2 as a product) and the reduction of CO2 to form carbohydrates. In the test tube electrons produced by the photolytic cleavage of H2) may be deviated from their true acceptor by inserting a suitable dye in the electron chain; i.e.; 2,6-dichlorophenol indophenol (DCPIP) (E'o = + 0.217 V), which is blue in the oxidized quinone form and which becomes colorless when reduced to the phenolic form. This dye-electrom acceptor also has the advantage that it accepts electroms directly from the quinone (Qa) electron-acceptor of the photosystem IIreaction center associated with the O2-evolving (or water-slplitting) system. Based in the bleaching of DCPIP by illuminated spinach leaf chloroplasts, a classroom laboratory protocol has been developed to determine the quantum yield (QY = micromol O2 s-1 / micromol photons s-1, the quantum requirement (1/QY) and the energetic efficiency (f = chemical energy stored / light energy supplied) of the O2-evolving system of photosynthesis. Although values for the quantum yield, the quantum requirement and the energetic efficiency calculated in the classroom laboratory differ widely from those expected theoretically, these calculations are useful for illustrating the transformation of light energy into chemical energy by the chloroplasts of green plants.

  12. A high-throughput method for detection of DNA in chloroplasts using flow cytometry

    Directory of Open Access Journals (Sweden)

    Oldenburg Delene J

    2007-03-01

    Full Text Available Abstract Background The amount of DNA in the chloroplasts of some plant species has been shown recently to decline dramatically during leaf development. A high-throughput method of DNA detection in chloroplasts is now needed in order to facilitate the further investigation of this process using large numbers of tissue samples. Results The DNA-binding fluorophores 4',6-diamidino-2-phenylindole (DAPI, SYBR Green I (SG, SYTO 42, and SYTO 45 were assessed for their utility in flow cytometric analysis of DNA in Arabidopsis chloroplasts. Fluorescence microscopy and real-time quantitative PCR (qPCR were used to validate flow cytometry data. We found neither DAPI nor SYTO 45 suitable for flow cytometric analysis of chloroplast DNA (cpDNA content, but did find changes in cpDNA content during development by flow cytometry using SG and SYTO 42. The latter dye provided more sensitive detection, and the results were similar to those from the fluorescence microscopic analysis. Differences in SYTO 42 fluorescence were found to correlate with differences in cpDNA content as determined by qPCR using three primer sets widely spaced across the chloroplast genome, suggesting that the whole genome undergoes copy number reduction during development, rather than selective reduction/degradation of subgenomic regions. Conclusion Flow cytometric analysis of chloroplasts stained with SYTO 42 is a high-throughput method suitable for determining changes in cpDNA content during development and for sorting chloroplasts on the basis of DNA content.

  13. Chloroplast function revealed through analysis of GreenCut2 genes.

    Science.gov (United States)

    Fristedt, Rikard

    2017-04-01

    Chloroplasts are the green plastids responsible for light-powered photosynthetic reactions and carbon assimilation in the plant cell. Our knowledge of chloroplast functions is constantly increasing and we now know this plastid is predicted to house around 3000 proteins. However, even with generous estimates, we do not know the function of more than 10-15% of these proteins. The next frontier in chloroplast research is to identify and characterize the function of the whole chloroplast proteome, a challenging task due to the inherent complexity a proteome possesses. A logical starting point is to identify and study proteins that have been determined experimentally to be localized in the chloroplast, conserved only among the photosynthetic lineage. These are the proteins with the most probable and important roles in chloroplast function. This review gives an introduction to the GreenCut2, a collection of proteins present only in photosynthetic organisms. By using recent large scale proteomics data, this cut was narrowed to include only those proteins experimentally verified to be localized in the chloroplast, and more specifically to the photosynthetic thylakoid membrane. By using highly informative bioinformatic approaches, the theoretical functional prediction for several of these uncharacterized GreenCut2 proteins is discussed. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Illumina sequencing of the chloroplast genome of common ragweed (Ambrosia artemisiifolia L.

    Directory of Open Access Journals (Sweden)

    Erzsébet Nagy

    2017-12-01

    Full Text Available Common ragweed (Ambrosia artemisiifolia L. is the most widespread weed and the most dangerous pollen allergenic plant in large areas of the temperate zone. Since herbicides like PSI and PSII inhibitors have their target genes in the chloroplast genome, understanding the chloroplast genome may indirectly support the exploration of herbicide resistance and development of novel control methods. The aim of the present study was to sequence and reconstruct for the chloroplast genome of A. artemisiifolia and establish a molecular dataset. We used an Illumina MiSeq protocol to sequence the chloroplast genome of isolated intact organelles of ragweed plants grown in our experimental garden. The assembled chloroplast genome was found to be 152,215 bp (GC: 37.6% in a quadripartite structure, where 80 protein coding genes, 30 tRNA and 4 rRNA genes were annotated in total. We also report the complete sequence of 114 genes encoded in A. artemisiifolia chloroplast genome supported by both MIRA and Velvet de novo assemblers and ordered to Helianthus annuus L. using the Geneious software. Keywords: Illumina sequencing, Chloroplast genome, cpDNA, Common ragweed, Ambrosia artemisiifolia

  15. The chloroplast genome of a symbiodinium sp. clade C3 isolate

    KAUST Repository

    Barbrook, Adrian C.

    2014-01-01

    Dinoflagellate algae of the genus Symbiodinium form important symbioses within corals and other benthic marine animals. Dinoflagellates possess an extremely reduced plastid genome relative to those examined in plants and other algae. In dinoflagellates the plastid genes are located on small plasmids, commonly referred to as \\'minicircles\\'. However, the chloroplast genomes of dinoflagellates have only been extensively characterised from a handful of species. There is also evidence of considerable variation in the chloroplast genome organisation across those species that have been examined. We therefore characterised the chloroplast genome from an environmental coral isolate, in this case containing a symbiont belonging to the Symbiodinium sp. clade C3. The gene content of the genome is well conserved with respect to previously characterised genomes. However, unlike previously characterised dinoflagellate chloroplast genomes we did not identify any \\'empty\\' minicircles. The sequences of this chloroplast genome show a high rate of evolution relative to other algal species. Particularly notable was a surprisingly high level of sequence divergence within the core polypeptides of photosystem I, the reasons for which are currently unknown. This chloroplast genome also possesses distinctive codon usage and GC content. These features suggest that chloroplast genomes in Symbiodinium are highly plastic. © 2013 Adrian C. Barbrook.

  16. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives.

    Directory of Open Access Journals (Sweden)

    Richard G Dorrell

    2014-01-01

    Full Text Available It is well understood that apicomplexan parasites, such as the malaria pathogen Plasmodium, are descended from free-living algae, and maintain a vestigial chloroplast that has secondarily lost all genes of photosynthetic function. Recently, two fully photosynthetic relatives of parasitic apicomplexans have been identified, the 'chromerid' algae Chromera velia and Vitrella brassicaformis, which retain photosynthesis genes within their chloroplasts. Elucidating the processes governing gene expression in chromerid chloroplasts might provide valuable insights into the origins of parasitism in the apicomplexans. We have characterised chloroplast transcript processing pathways in C. velia, V. brassicaformis and P. falciparum with a focus on the addition of an unusual, 3' poly(U tail. We demonstrate that poly(U tails in chromerids are preferentially added to transcripts that encode proteins that are directly involved in photosynthetic electron transfer, over transcripts for proteins that are not involved in photosynthesis. To our knowledge, this represents the first chloroplast transcript processing pathway to be associated with a particular functional category of genes. In contrast, Plasmodium chloroplast transcripts are not polyuridylylated. We additionally present evidence that poly(U tail addition in chromerids is involved in the alternative processing of polycistronic precursors covering multiple photosynthesis genes, and appears to be associated with high levels of transcript abundance. We propose that changes to the chloroplast transcript processing machinery were an important step in the loss of photosynthesis in ancestors of parasitic apicomplexans.

  17. Protection of Chloroplast Membranes by VIPP1 Rescues Aberrant Seedling Development in Arabidopsis nyc1 Mutant

    Directory of Open Access Journals (Sweden)

    Lingang eZhang

    2016-04-01

    Full Text Available Chlorophylls (Chl in photosynthetic apparatuses, along with other macromolecules in chloroplasts, are known to undergo degradation during leaf senescence. Several enzymes involved in Chl degradation, by which detoxification of Chl is safely implemented, have been identified. Chl degradation also occurs during embryogenesis and seedling development. Some genes encoding Chl degradation enzymes such as Chl b reductase (CBR function during these developmental stages. Arabidopsis mutants lacking CBR (NYC1 and NOL reportedly exhibit reduced seed storability and compromised germination and cotyledon development. This study examined aberrant cotyledon development, finding that NYC1 is solely responsible for this phenotype. We inferred that oxidative damage of chloroplast membranes caused the aberrant cotyledon. To test the inference, we attempted to trans-complement nyc1 mutant with overexpressing VIPP1 protein that is unrelated to Chl degradation but which supports chloroplast membrane integrity. VIPP1 expression actually complemented the aberrant cotyledon of nyc1, whereas stay-green phenotype during leaf senescence remained. The swollen chloroplasts observed in unfixed cotyledons of nyc1, which are characteristics of chloroplasts receiving envelope membrane damage, were recovered by overexpressing VIPP1. These results suggest that chloroplast membranes are a target for oxidative damage caused by the impairment in Chl degradation. Trans-complementation of nyc1 with VIPP1 also suggests that VIPP1 is useful for protecting chloroplasts against oxidative stress.

  18. Free radical generation and antioxidant content in chloroplasts from soybean leaves expsoed to ultraviolet-B

    Energy Technology Data Exchange (ETDEWEB)

    Galatro, A.; Simontacchi, M.; Puntarulo, S. [Univ. of Buenos Aires, School of Pharmacy and Biochemistry, Physical Chemistry, Buenos Aires (Argentina)

    2001-07-01

    The aim of this work was to study the effect of ultraviolet-B (UV-B) exposure on oxidative status in chloroplasts isolated from soybean (Glycine max cv. Hood). Chloroplasts were isolated from soybean leaves excised from either control seedlings or those exposed to 30 and 60 kJ m{sup -2} day{sup -1} of UV-B radiation for 4 days. Chloroplastic oxidative conditions were assessed as carbon-centered radical, carbonyl groups and ascorbyl radical content. Treatment with UV-B increased the carbon-centered radical-dependent EPR signal significantly by 55 and 100% in chloroplasts from leaves exposed to 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively, compared to radical content in chloroplasts from control leaves. The content of carbonyl groups increased by 37 and 62% in chloroplasts isolated from soybean leaves irradiated for 4 days with 30 and 60 kJ m{sup -2} day{sup -1} UV-B, respectively. The content of soluble metabolites in isolated chloroplasts should not be taken as absolute in vivo values; however, these data are valuable for comparative studies. UV-B exposure did not significantly affect ascorbyl radical content compared to controls. The content of ascorbic acid and thiols in chloroplasts isolated from leaves exposed to 60 kJ m{sup -2} day{sup -1} UV-B was increased by 117 and 20.8%, respectively, compared to controls. Neither the content of total carotene nor that of {beta}-carotene or {alpha}-tocopherol was affected by the irradiation. The results: presented here suggest that the increased content of lipid radicals and oxidized proteins in the chloroplasts isolated from leaves exposed to UV-B could be ascribed to both the lack of antioxidant response in the lipid soluble fraction and the modest increase in the soluble antioxidant content. (au)

  19. Transcriptome analysis of ectopic chloroplast development in green curd cauliflower (Brassica oleracea L. var. botrytis

    Directory of Open Access Journals (Sweden)

    Zhou Xiangjun

    2011-11-01

    Full Text Available Abstract Background Chloroplasts are the green plastids where photosynthesis takes place. The biogenesis of chloroplasts requires the coordinate expression of both nuclear and chloroplast genes and is regulated by developmental and environmental signals. Despite extensive studies of this process, the genetic basis and the regulatory control of chloroplast biogenesis and development remain to be elucidated. Results Green cauliflower mutant causes ectopic development of chloroplasts in the curd tissue of the plant, turning the otherwise white curd green. To investigate the transcriptional control of chloroplast development, we compared gene expression between green and white curds using the RNA-seq approach. Deep sequencing produced over 15 million reads with lengths of 86 base pairs from each cDNA library. A total of 7,155 genes were found to exhibit at least 3-fold changes in expression between green and white curds. These included light-regulated genes, genes encoding chloroplast constituents, and genes involved in chlorophyll biosynthesis. Moreover, we discovered that the cauliflower ELONGATED HYPOCOTYL5 (BoHY5 was expressed higher in green curds than white curds and that 2616 HY5-targeted genes, including 1600 up-regulated genes and 1016 down-regulated genes, were differently expressed in green in comparison to white curd tissue. All these 1600 up-regulated genes were HY5-targeted genes in the light. Conclusions The genome-wide profiling of gene expression by RNA-seq in green curds led to the identification of large numbers of genes associated with chloroplast development, and suggested the role of regulatory genes in the high hierarchy of light signaling pathways in mediating the ectopic chloroplast development in the green curd cauliflower mutant.

  20. Chloroplast gene arrangement variation within a closely related group of green algae (Trebouxiophyceae, Chlorophyta).

    Science.gov (United States)

    Letsch, Molly R; Lewis, Louise A

    2012-09-01

    The 22 published chloroplast genomes of green algae, representing sparse taxonomic sampling of diverse lineages that span over one billion years of evolution, each possess a unique gene arrangement. In contrast, many of the >190 published embryophyte (land plant) chloroplast genomes have relatively conserved architectures. To determine the phylogenetic depth at which chloroplast gene rearrangements occur in green algae, a 1.5-4 kb segment of the chloroplast genome was compared across nine species in three closely related genera of Trebouxiophyceae (Chlorophyta). In total, four distinct gene arrangements were obtained for the three genera Elliptochloris, Hemichloris, and Coccomyxa. In Elliptochloris, three distinct chloroplast gene arrangements were detected, one of which is shared with members of its sister genus Hemichloris. Both species of Coccomyxa examined share the fourth arrangement of this genome region, one characterized by very long spacers. Next, the order of genes found in this segment of the chloroplast genome was compared across green algae and land plants. As taxonomic ranks are not equivalent among different groups of organisms, the maximum molecular divergence among taxa sharing a common gene arrangement in this genome segment was compared. Well-supported clades possessing a single gene order had similar phylogenetic depth in green algae and embryophytes. When the dominant gene order of this chloroplast segment in embryophytes was assumed to be ancestral for land plants, the maximum molecular divergence was found to be over two times greater in embryophytes than in trebouxiophyte green algae. This study greatly expands information about chloroplast genome variation in green algae, is the first to demonstrate such variation among congeneric green algae, and further illustrates the fluidity of green algal chloroplast genome architecture in comparison to that of many embryophytes. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. The complete chloroplast genome sequence of Asian Palmyra palm (Borassus flabellifer).

    Science.gov (United States)

    Sakulsathaporn, Arpakorn; Wonnapinij, Passorn; Vuttipongchaikij, Supachai; Apisitwanich, Somsak

    2017-12-16

    Borassus flabellifer or Asian Palmyra palm is widely distributed in South and Southeast Asia and is horticultural and economic importance for its fruit and palm sugar production. However, its population is in rapid decline, and only a few genetic data are available. We sequenced the complete chloroplast (cp) genome of B. flabellifer to provide its genetic data for further utilization. The cp genome was obtained by Illumina sequencing and manual gap fillings providing 160,021 bp in length containing a pair of inverted repeats (IRs) with 27,256 bp. These IRs divide the genome into a large single copy region 87,444 bp and a small single copy region 18,065 bp. In total, 113 unique genes, 134 SSRs and 47 large repeats were identified. This is the first complete cp genome reported in the genus Borassus. A comparative analysis among members of the Borasseae tribe revealed that the B. flabellifer cp genome is, so far, the largest and the cp genomes of this tribe have a similar structure, gene number and gene arrangement. A phylogenetic tree reconstructed based on 74 protein-coding genes from 70 monocots demonstrates short branch lengths indicating slow evolutionary rates of cp genomes in family Arecaceae.

  2. Diversification, biogeographic pattern, and demographic history of Taiwanese Scutellaria species inferred from nuclear and chloroplast DNA.

    Directory of Open Access Journals (Sweden)

    Yu-Chung Chiang

    Full Text Available The ragged topography created by orogenesis generates diversified habitats for plants in Taiwan. In addition to colonization from nearby mainland China, high species diversity and endemism of plants is also present in Taiwan. Five of the seven Scutellaria species (Lamiaceae in Taiwan, for example, are endemic to the island. Hypotheses of multiple sources or in situ radiation have arisen to explain the high endemism of Taiwanese species. In this study, phylogenetic analyses using both nuclear and chloroplast markers revealed the multiple sources of Taiwanese Scutellaria species and confirmed the rapid and recent speciation of endemic species, especially those of the "indica group" composed of S. indica, S. austrotaiwanensis, S. tashiroi, and S. playfairii. The common ancestors of the indica group colonized first in northern Taiwan and dispersed regionally southward and eastward. Climate changes during glacial/interglacial cycles led to gradual colonization and variance events in the ancestors of these species, resulting in the present distribution and genetic differentiation of extant populations. Population decline was also detected in S. indica, which might reflect a bottleneck effect from the glacials. In contrast, the recently speciated endemic members of the indica group have not had enough time to accumulate much genetic variation and are thus genetically insensitive to demographic fluctuations, but the extant lineages were spatially expanded in the coalescent process. This study integrated phylogenetic and population genetic analyses to illustrate the evolutionary history of Taiwanese Scutellaria of high endemism and may be indicative of the diversification mechanism of plants on continental islands.

  3. Orbital Decay in Binaries with Evolved Stars

    Science.gov (United States)

    Sun, Meng; Arras, Phil; Weinberg, Nevin N.; Troup, Nicholas; Majewski, Steven R.

    2018-01-01

    Two mechanisms are often invoked to explain tidal friction in binary systems. The ``dynamical tide” is the resonant excitation of internal gravity waves by the tide, and their subsequent damping by nonlinear fluid processes or thermal diffusion. The ``equilibrium tide” refers to non-resonant excitation of fluid motion in the star’s convection zone, with damping by interaction with the turbulent eddies. There have been numerous studies of these processes in main sequence stars, but less so on the subgiant and red giant branches. Motivated by the newly discovered close binary systems in the Apache Point Observatory Galactic Evolution Experiment (APOGEE-1), we have performed calculations of both the dynamical and equilibrium tide processes for stars over a range of mass as the star’s cease core hydrogen burning and evolve to shell burning. Even for stars which had a radiative core on the main sequence, the dynamical tide may have very large amplitude in the newly radiative core in post-main sequence, giving rise to wave breaking. The resulting large dynamical tide dissipation rate is compared to the equilibrium tide, and the range of secondary masses and orbital periods over which rapid orbital decay may occur will be discussed, as well as applications to close APOGEE binaries.

  4. A zinc finger motif-containing protein is essential for chloroplast RNA editing.

    Science.gov (United States)

    Sun, Tao; Shi, Xiaowen; Friso, Giulia; Van Wijk, Klaas; Bentolila, Stephane; Hanson, Maureen R

    2015-03-01

    C-to-U editing of transcripts in plant organelles is carried out by small (build a model for the chloroplast RNA editosome. The RNA editosomes that act upon most chloroplast C targets are likely to contain a PPR protein recognition factor, either RIP2 or RIP9, ORRM1, and OZ1. The organelle zinc finger editing factor family (OZ) contains 4 members in Arabidopsis, three that are predicted to be targeted to chloroplasts and one to mitochondria. With the identification of OZ1, there are now 4 nuclear-encoded protein families known to be essential for plant organelle RNA editing.

  5. CERN internal communication is evolving

    CERN Multimedia

    2016-01-01

    CERN news will now be regularly updated on the CERN People page (see here).      Dear readers, All over the world, communication is becoming increasingly instantaneous, with news published in real time on websites and social networks. In order to keep pace with these changes, CERN's internal communication is evolving too. From now on, you will be informed of what’s happening at CERN more often via the “CERN people” page, which will frequently be updated with news. The Bulletin is following this trend too: twice a month, we will compile the most important articles published on the CERN site, with a brand-new layout. You will receive an e-mail every two weeks as soon as this new form of the Bulletin is available. If you have interesting news or stories to share, tell us about them through the form at: https://communications.web.cern.ch/got-story-cern-website​. You can also find out about news from CERN in real time...

  6. Functional analysis of chloroplast early light inducible proteins (ELIPs)

    Energy Technology Data Exchange (ETDEWEB)

    Wetzel, Carolyn M

    2005-02-22

    The objectives of this project were to characterize gene expression patterns of early light inducible protein (ELIP) genes in Arabidopsis thaliana and in Lycopersicon esculentum, to identify knock mutants of the 2 ELIP genes in Arabidopsis, and to characterize the effects of the knockouts. Expression in Arabidopsis was studied in response to thylakoid electron transport chain (PETC) capacity, where it was found that there is a signal for expression associated with reduction of the PETC. Expression in response to salt was also studied, with different responses of the two gene copies. Knockout lines for ELIP1 and ELIP2 have been identified and are being characterized. In tomato, it was found that the single-copy ELIP gene is highly expressed in ripening fruit during the chloroplast-to-chromoplast transition. Studies of expression in tomato ripening mutants are ongoing.

  7. The whole chloroplast genome of wild rice (Oryza australiensis).

    Science.gov (United States)

    Wu, Zhiqiang; Ge, Song

    2016-01-01

    The whole chloroplast genome of wild rice (Oryza australiensis) is characterized in this study. The genome size is 135,224  bp, exhibiting a typical circular structure including a pair of 25,776  bp inverted repeats (IRa,b) separated by a large single-copy region (LSC) of 82,212  bp and a small single-copy region (SSC) of 12,470  bp. The overall GC content of the genome is 38.95%. 110 unique genes were annotated, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30t RNA genes. Among these, 18 are duplicated in the inverted repeat regions, 13 genes contain one intron, and 2 genes (rps12 and ycf3) have two introns.

  8. The complete chloroplast genome sequence of Euonymus japonicus (Celastraceae).

    Science.gov (United States)

    Choi, Kyoung Su; Park, SeonJoo

    2016-09-01

    The complete chloroplast (cp) genome sequence of the Euonymus japonicus, the first sequenced of the genus Euonymus, was reported in this study. The total length was 157 637 bp, containing a pair of 26 678 bp inverted repeat region (IR), which were separated by small single copy (SSC) region and large single copy (LSC) region of 18 340 bp and 85 941 bp, respectively. This genome contains 107 unique genes, including 74 coding genes, four rRNA genes, and 29 tRNA genes. Seventeen genes contain intron of E. japonicus, of which three genes (clpP, ycf3, and rps12) include two introns. The maximum likelihood (ML) phylogenetic analysis revealed that E. japonicus was closely related to Manihot and Populus.

  9. [Study of Chloroplast DNA Polymorphism in the Sunflower (Helianthus L.)].

    Science.gov (United States)

    Markina, N V; Usatov, A V; Logacheva, M D; Azarin, K V; Gorbachenko, C F; Kornienko, I V; Gavrilova, V A; Tihobaeva, V E

    2015-08-01

    The polymorphism of microsatellite loci of chloroplast genome in six Helianthus species and 46 lines of cultivated sunflower H. annuus (17 CMS lines and 29 Rf-lines) were studied. The differences between species are confined to four SSR loci. Within cultivated forms of the sunflower H. annuus, the polymorphism is absent. A comparative analysis was performed on sequences of the cpDNA inbred line 3629, line 398941 of the wild sunflower, and the American line HA383 H. annuus. As a result, 52 polymorphic loci represented by 27 SSR and 25 SNP were found; they can be used for genotyping of H. annuus samples, including cultural varieties: twelve polymorphic positions, of which eight are SSR and four are SNP.

  10. The complete chloroplast genome of Origanum vulgare L. (Lamiaceae).

    Science.gov (United States)

    Lukas, Brigitte; Novak, Johannes

    2013-10-10

    Oregano (Origanum vulgare L., Lamiaceae) is a medicinal and aromatic plant maybe best known for flavouring pizza. New applications e.g. as natural antioxidants for food are emerging due to the plants' high antibacterial and antioxidant activity. The complete chloroplast (cp) genome of Origanum vulgare (GenBank/EBML/DDBJ accession number: JX880022) consists of 151,935 bp and includes a pair of inverted repeats (IR) of 25,527 bp separated by one small and one large single copy region (SSC and LSC) of 17,745 and 83,136 bp, respectively. The genome with an overall GC content of 38% hosts 114 genes that covering 63% of the genome of which 8% were introns. The comparison of the Origanum cp genome with the cp genomes of two other core lamiales (Salvia miltiorrhiza Bunge and Sesamum indicum L.) revealed completely conserved protein-coding regions in the IR region but also in the LSC and SSC regions. Phylogenetic analysis of the lamiids based on 56 protein-coding genes give a hint at the basic structure of the Lamiales. However, further genomes will be necessary to clarify this taxonomically complicated order. The variability of the cp within the genus Origanum, studied exemplarily on 16 different chloroplast DNA regions, demonstrated that in 14 regions analyzed, the variability was extremely low (max. 0.7%), while only two regions showed a moderate variability of up to 2.3%. The cp genome of Origanum vulgare contains 27 perfect mononucleotide repeats (number of repeats>9) consisting exclusively of the nucleotides A or T. 34 perfect repeats (repeat lengths>1 and number of repeats>3) were found, of which 32 were di-, and 2 were trinucleotide repeats. © 2013 Elsevier B.V. All rights reserved.

  11. The Pentratricopeptide Repeat Protein Pigment-Defective Mutant2 is Involved in the Regulation of Chloroplast Development and Chloroplast Gene Expression in Arabidopsis.

    Science.gov (United States)

    Du, Liang; Zhang, Jian; Qu, Shaofeng; Zhao, Yuanyuan; Su, Bodan; Lv, Xueqin; Li, Ruili; Wan, Yinglang; Xiao, Jianwei

    2017-04-01

    The development of functional chloroplasts, which is assisted by a series of nuclear-encoded auxiliary protein factors, is essential for plant autotrophic growth and development. To understand the molecular mechanisms underlying chloroplast development, we isolated and characterized a pigment-defective mutant, pdm2, and its corresponding variegated RNA interference (RNAi) lines in Arabidopsis. Sequence analysis revealed that PDM2 encodes a pentatricopeptide repeat protein that belongs to the P subgroup. Confocal microscopic analysis and immunoblotting of the chloroplast protein fraction showed that PDM2 was located in the stroma. In RNAi plants, protein-related photosynthesis was severely compromised. Furthermore, analysis of the transcript profile of chloroplast genes revealed that plastid-encoded polymerase-dependent transcript levels were markedly reduced, while nuclear-encoded polymerase-dependent transcript levels were increased, in RNAi plants. In addition, PDM2 affects plastid RNA editing efficiency in most editing sites, apparently by directly interacting with multiple organellar RNA editing factor 2 (MORF2) and MORF9. Thus, our results demonstrate that PDM2 is probably involved in the regulation of plastid gene expression required for normal chloroplast development. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  12. Arrangement of photosystem II supercomplexes in crystalline macrodomains within the thylakoid membrane of green plant chloroplasts

    NARCIS (Netherlands)

    Boekema, EJ; van Breemen, JFL; van Roon, H; Dekker, JP; Dekker, Jan P.

    2000-01-01

    The chloroplast thylakoid membrane of green plants is organized in stacked grana membranes and unstacked stroma membranes. We investigated the structural organization of Photosystem II (PSII) in paired grana membrane fragments by transmission electron microscopy. The membrane fragments were obtained

  13. Purification of a novel lipoxygenase from eggplant (Solanum melongena) fruit chloroplasts.

    Science.gov (United States)

    Pérez-Gilabert, Manuela; López-Nicolás, José Manuel; García Carmona, Francisco

    2001-03-01

    A novel membrane lipoxygenase (LOX; EC 1.13.11.12) from eggplant (Solanum melongena L. cv. Belleza negra) fruit chloroplasts has been purified 20-fold to a specific activity of 207 enzymatic units per mg of protein with a yield of 72%. The purification was carried out by sonicating the chloroplastic membranes in the presence of Triton X-114 followed by phase partitioning and anion exchange chromatography. The purified membrane LOX preparation consisted of a single major band with an apparent molecular mass of 97 kDa after sodium dodecyl sulfate polyacrylamide gel electrophoresis. The results obtained using intact chloroplasts indicate that the enzyme is not localized in the stroma. When the enzyme reacts with linoleic acid, it produces a single peak, which comigrates with standard 9-hydroperoxy-octadecadienoic acid. A physiological role for this chloroplastic LOX is proposed.

  14. Cloning and molecular genetics analyses of Deschampsia antarctica Desv. chloroplast and mitochondrial DNA sequence

    Directory of Open Access Journals (Sweden)

    O.P. Savchuk

    2012-03-01

    Full Text Available Chloroplast and mitochondrial DNA sequences of Deschampsia antarctica were studied. We had made comparison analysis with completely sequenced genomes of other temperateness plants to find homology.

  15. Activity of phosphatidylcholine-transfer protein from spinach (Spinacia oleracea) leaves with mitochondria and chloroplasts

    OpenAIRE

    Julienne, Marianne; Vergnolle, Chantal; Kader, Jean-Claude

    1981-01-01

    A low-molecular-weight protein catalysing the transfer of phosphatidylcholine from liposomes to mitochondria and chloroplasts has been isolated from spinach (Spinacia oleracea) by chromatography on Sephadex G-75.

  16. Activity of phosphatidylcholine-transfer protein from spinach (Spinacia oleracea) leaves with mitochondria and chloroplasts

    Science.gov (United States)

    Julienne, Marianne; Vergnolle, Chantal; Kader, Jean-Claude

    1981-01-01

    A low-molecular-weight protein catalysing the transfer of phosphatidylcholine from liposomes to mitochondria and chloroplasts has been isolated from spinach (Spinacia oleracea) by chromatography on Sephadex G-75. PMID:7325986

  17. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailed description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  18. Regulation of chloroplast number and DNA synthesis in higher plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mullet, J.E.

    1995-11-10

    The long term objective of this research is to understand the process of chloroplast development and its coordination with leaf development in higher plants. This is important because the photosynthetic capacity of plants is directly related to leaf and chloroplast development. This research focuses on obtaining a detailing description of leaf development and the early steps in chloroplast development including activation of plastid DNA synthesis, changes in plastid DNA copy number, activation of chloroplast transcription and increases in plastid number per cell. The grant will also begin analysis of specific biochemical mechanisms by isolation of the plastid DNA polymerase, and identification of genetic mutants which are altered in their accumulation of plastid DNA and plastid number per cell.

  19. Development of the First Chloroplast Microsatellite Loci in Ginkgo biloba (Ginkgoaceae

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Xie

    2013-07-01

    Full Text Available Premise of the study: To investigate population genetics, phylogeography, and cultivar origin of Ginkgo biloba, chloroplast microsatellite primers were developed. Methods and Results: Twenty-one chloroplast microsatellite markers were identified referring to the two published chloroplast genomes of G. biloba. Polymorphisms were assessed on four natural populations from the two refugia in China. Eight loci were detected to be polymorphic in these populations. The number of alleles per locus ranged from three to seven, and the unbiased haploid diversity per locus varied from 0.441 to 0.807. Conclusions: For the first time, we developed 21 chloroplast microsatellite markers for G. biloba, including 13 monomorphic and eight polymorphic ones within the assessed natural populations. These markers should provide a powerful tool for the study of genetic variation of both natural and cultivated populations of G. biloba, as well as cultivars.

  20. Coupling of Carbon Dioxide Fixation to the Oxyhydrogen Reaction in the Isolated Chloroplast of Chlamydomonas reinhardtii

    National Research Council Canada - National Science Library

    Changguo Chen; Martin Gibbs

    1992-01-01

    The oxyhydrogen reaction (the reduction of O to water by H ) in the presence of CO was studied in the isolated Chlamydomonas reinhardtii chloroplast by monitoring the rate of CO incorporation into acid-stable products in the dark...

  1. The complete chloroplast genome of two Brassica species, Brassica nigra and B. Oleracea.

    Science.gov (United States)

    Seol, Young-Joo; Kim, Kyunghee; Kang, Sang-Ho; Perumal, Sampath; Lee, Jonghoon; Kim, Chang-Kug

    2017-03-01

    The two Brassica species, Brassica nigra and Brassica oleracea, are important agronomic crops. The chloroplast genome sequences were generated by de novo assembly using whole genome next-generation sequences. The chloroplast genomes of B. nigra and B. oleracea were 153 633 bp and 153 366 bp in size, respectively, and showed conserved typical chloroplast structure. The both chloroplast genomes contained a total of 114 genes including 80 protein-coding genes, 30 tRNA genes, and 4 rRNA genes. Phylogenetic analysis revealed that B. oleracea is closely related to B. rapa and B. napus but B. nigra is more diverse than the neighbor species Raphanus sativus.

  2. Comparative analyses of chloroplast genome data representing nine green algae in Sphaeropleales (Chlorophyceae, Chlorophyta

    Directory of Open Access Journals (Sweden)

    Karolina Fučíková

    2016-06-01

    Full Text Available The chloroplast genomes of green algae are highly variable in their architecture. In this article we summarize gene content across newly obtained and published chloroplast genomes in Chlorophyceae, including new data from nine of species in Sphaeropleales (Chlorophyceae, Chlorophyta. We present genome architecture information, including genome synteny analysis across two groups of species. Also, we provide a phylogenetic tree obtained from analysis of gene order data for species in Chlorophyceae with fully sequenced chloroplast genomes. Further analyses and interpretation of the data can be found in “Chloroplast phylogenomic data from the green algal order Sphaeropleales (Chlorophyceae, Chlorophyta reveal complex patterns of sequence evolution” (Fučíková et al., In review [1].

  3. The complete chloroplast genome sequence of Cynanchum auriculatum Royle ex Wight (Apocynaceae).

    Science.gov (United States)

    Jang, Woojong; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Park, Hyun-Seung; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-11-01

    Cynanchum auriculatum is a climbing vine belonging to the Apocynaceae family and shows very similar morphology to Cynanchum wilfordii, a medicinal plant. The complete chloroplast genome of C. auriculatum was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. auriculatum was 160 840 bp in length and consisted of four distinct regions, such as large single copy region (91 973 bp), small single copy region (19 667 bp), and a pair of inverted repeat regions (24 600 bp). The overall GC contents of the chloroplast genome were 37.8%. A total of 114 genes were predicted and included 80 protein-coding genes, 30 tRNA genes, and four rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. auriculatum is most closely related to Cynanchum wilfordii, a medicinal plant.

  4. The complete chloroplast genome sequence of an important medicinal plant Cynanchum wilfordii (Maxim.) Hemsl. (Apocynaceae).

    Science.gov (United States)

    Park, Hyun-Seung; Kim, Kyu-Yeob; Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Seong, Rack Seon; Shim, Young Hun; Sung, Sang Hyun; Yang, Tae-Jin

    2016-09-01

    Cynanchum wilfordii (Maxim.) Hemsl. is a traditional medicinal herb belonging to the Asclepiadoideae subfamily, whose dried roots have been used as traditional medicine in Asia. The complete chloroplast genome of C. wilfordii was generated by de novo assembly using the small amount of whole genome sequencing data. The chloroplast genome of C. wilfordii was 161 241 bp long, composed of large single copy region (91 995 bp), small single copy region (19 930 bp) and a pair of inverted repeat regions (24 658 bp). The overall GC contents of the chloroplast genome was 37.8%. A total of 114 genes were annotated, which included 80 protein-coding genes, 30 tRNA genes and 4 rRNA genes. Phylogenetic analysis with the reported chloroplast genomes revealed that C. wilfordii is most closely related to Asclepias nivea (Caribbean milkweed) and Asclepias syriaca (common milkweed) within the Asclepiadoideae subfamily.

  5. Frataxin Is Localized to Both the Chloroplast and Mitochondrion and Is Involved in Chloroplast Fe-S Protein Function in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Valeria R Turowski

    Full Text Available Frataxin plays a key role in eukaryotic cellular iron metabolism, particularly in mitochondrial heme and iron-sulfur (Fe-S cluster biosynthesis. However, its precise role has yet to be elucidated. In this work, we studied the subcellular localization of Arabidopsis frataxin, AtFH, using confocal microscopy, and found a novel dual localization for this protein. We demonstrate that plant frataxin is targeted to both the mitochondria and the chloroplast, where it may play a role in Fe-S cluster metabolism as suggested by functional studies on nitrite reductase (NIR and ferredoxin (Fd, two Fe-S containing chloroplast proteins, in AtFH deficient plants. Our results indicate that frataxin deficiency alters the normal functioning of chloroplasts by affecting the levels of Fe, chlorophyll, and the photosynthetic electron transport chain in this organelle.

  6. Evolving fuzzy rules for relaxed-criteria negotiation.

    Science.gov (United States)

    Sim, Kwang Mong

    2008-12-01

    In the literature on automated negotiation, very few negotiation agents are designed with the flexibility to slightly relax their negotiation criteria to reach a consensus more rapidly and with more certainty. Furthermore, these relaxed-criteria negotiation agents were not equipped with the ability to enhance their performance by learning and evolving their relaxed-criteria negotiation rules. The impetus of this work is designing market-driven negotiation agents (MDAs) that not only have the flexibility of relaxing bargaining criteria using fuzzy rules, but can also evolve their structures by learning new relaxed-criteria fuzzy rules to improve their negotiation outcomes as they participate in negotiations in more e-markets. To this end, an evolutionary algorithm for adapting and evolving relaxed-criteria fuzzy rules was developed. Implementing the idea in a testbed, two kinds of experiments for evaluating and comparing EvEMDAs (MDAs with relaxed-criteria rules that are evolved using the evolutionary algorithm) and EMDAs (MDAs with relaxed-criteria rules that are manually constructed) were carried out through stochastic simulations. Empirical results show that: 1) EvEMDAs generally outperformed EMDAs in different types of e-markets and 2) the negotiation outcomes of EvEMDAs generally improved as they negotiated in more e-markets.

  7. Sorting signals, N-terminal modifications and abundance of the chloroplast proteome.

    Directory of Open Access Journals (Sweden)

    Boris Zybailov

    Full Text Available Characterization of the chloroplast proteome is needed to understand the essential contribution of the chloroplast to plant growth and development. Here we present a large scale analysis by nanoLC-Q-TOF and nanoLC-LTQ-Orbitrap mass spectrometry (MS of ten independent chloroplast preparations from Arabidopsis thaliana which unambiguously identified 1325 proteins. Novel proteins include various kinases and putative nucleotide binding proteins. Based on repeated and independent MS based protein identifications requiring multiple matched peptide sequences, as well as literature, 916 nuclear-encoded proteins were assigned with high confidence to the plastid, of which 86% had a predicted chloroplast transit peptide (cTP. The protein abundance of soluble stromal proteins was calculated from normalized spectral counts from LTQ-Obitrap analysis and was found to cover four orders of magnitude. Comparison to gel-based quantification demonstrates that 'spectral counting' can provide large scale protein quantification for Arabidopsis. This quantitative information was used to determine possible biases for protein targeting prediction by TargetP and also to understand the significance of protein contaminants. The abundance data for 550 stromal proteins was used to understand abundance of metabolic pathways and chloroplast processes. We highlight the abundance of 48 stromal proteins involved in post-translational proteome homeostasis (including aminopeptidases, proteases, deformylases, chaperones, protein sorting components and discuss the biological implications. N-terminal modifications were identified for a subset of nuclear- and chloroplast-encoded proteins and a novel N-terminal acetylation motif was discovered. Analysis of cTPs and their cleavage sites of Arabidopsis chloroplast proteins, as well as their predicted rice homologues, identified new species-dependent features, which will facilitate improved subcellular localization prediction. No evidence

  8. Changes in chloroplastic and cytoplasmic ribosomal protein after GA3-treatment of Zea mays leaves

    Directory of Open Access Journals (Sweden)

    P. Masłowski

    2015-06-01

    Full Text Available Protein was isolated from chioroplastic and cytoplasmic ribosomes of 14-day-old maize leaves subjected to the action of gibberellic acid. The proteins were separated electrophoretically on polyacrylamide gel. Fourteen fractions of ribosomal protein were obtained exhibiting wide electrophoretic differences. Qualitative differences were found between the chloroplastic and cytoplasmic ribosomes. Gibberellic acid caused the appearance of an additional protein Traction in cytoplasmic ribosomes. It did not, however, affect the qualitative composition of ribosome proteins from chloroplasts.

  9. Two Chloroplastic Viroids Induce the Accumulation of Small RNAs Associated with Posttranscriptional Gene Silencing

    Science.gov (United States)

    Martínez de Alba, A. E.; Flores, R.; Hernández, C.

    2002-01-01

    In plants, posttranscriptional gene silencing (PTGS) has been reported for cytoplasmic RNAs from endogenous nuclear genes, transgenes, viruses, and, recently, for a viroid with nuclear replication and accumulation. However, phenomena of this kind have not been described for mitochondrial or chloroplastic RNAs. Here we show that viroids that replicate and accumulate in the chloroplast are also targets of PTGS and this process may control viroid titer. PMID:12438638

  10. Effect of hydrogen peroxide on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase.

    Science.gov (United States)

    Charles, S A; Halliwell, B

    1980-01-01

    Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase (EC 3.1.3.11) is severely inhibited by H2O2, whereas the freshly purified enzyme is little affected. Dithiothreitol reverses inhibition by H2O2, indicating that essential thiol groups are oxidized during H2O2 inactivation. A new role for the dithiol and thioredoxin systems that are operative in illuminated chloroplasts is proposed. PMID:6257234

  11. Methyl jasmonate, gibberellic acid, and auxin affect transcription and transcript accumulation of chloroplast genes in barley.

    Science.gov (United States)

    Zubo, Yan O; Yamburenko, Maria V; Kusnetsov, Viktor V; Börner, Thomas

    2011-08-15

    Phytohormones control growth and development of plants. Their effects on the expression of nuclear genes are well investigated. Although they influence plastid-related processes, it is largely unknown whether phytohormones exert their control also by regulating the expression of plastid/chloroplast genes. We have therefore studied the effects of methyl jasmonate (MeJA), gibberellic acid (GA(3)), an auxin (indole-3-acetic acid, IAA), a brassinosteroid (24-epibrassinolide, BR) and a cytokinin (6-benzyladenine) on transcription (run-on assays) and transcript levels (RNA blot hybridization) of chloroplast genes after incubation of detached barley leaves in hormone solutions. BR was the only hormone without significant influence on chloroplast transcription. It showed, however, a weak reducing effect on transcript accumulation. MeJA, IAA and GA(3) repressed both transcription and transcript accumulation, while BA counteracted the effects of the other hormones. Effects of phytohormones on transcription differed in several cases from their influence on transcript levels suggesting that hormones may act via separate signaling pathways on transcription and transcript accumulation in chloroplasts. We observed striking differences in the response of chloroplast gene expression on phytohormones between the lower (young cells) and the upper segments (oldest cells) of barley leaves. Quantity and quality of the hormone effects on chloroplast gene expression seem to depend therefore on the age and/or developmental stage of the cells. As the individual chloroplast genes responded in different ways on phytohormone treatment, gene- and transcript-specific factors should be involved. Our data suggest that phytohormones adjust gene expression in the nucleo-cytoplasmic compartment and in plastids/chloroplasts in response to internal and external cues. Copyright © 2011 Elsevier GmbH. All rights reserved.

  12. Effect of Sodium Nutrition on the Ultrastructure of Chloroplasts of C4 Plants

    Science.gov (United States)

    Grof, Christopher P. L.; Johnston, Mark; Brownell, Peter F.

    1989-01-01

    Mesophyll chloroplasts from sodium-deficient compared to normal plants of the C4 species Kochia childsii and Amaranthus tricolor were found to have significantly less stacking in their grana. On the other hand, no marked difference of thylakoid arrangement between bundle sheath chloroplasts from sodium-deficient and normal plants of A. tricolor were observed. Images Figure 1 Figure 2 Figure 5 PMID:16666579

  13. A zinc finger motif-containing protein is essential for chloroplast RNA editing.

    Directory of Open Access Journals (Sweden)

    Tao Sun

    2015-03-01

    Full Text Available C-to-U editing of transcripts in plant organelles is carried out by small (<400 kD protein complexes called editosomes. Recognition of the proper C target for editing is mediated by pentatricopeptide repeat (PPR containing proteins that recognize cis-elements. Members of two additional gene families, the RIP/MORF and ORRM families, have each been found to be required for editing of particular sets of Cs in mitochondria and/or chloroplasts. By co-immunoprecipitation of the chloroplast editing factor ORRM1, followed by mass spectrometry, we have now identified a member of the RanBP2 type zinc fingers (pFAM00641 protein family that is required for editing of 14 sites in chloroplasts and affects editing efficiency of another 16 chloroplast C targets. In yeast two-hybrid assays, OZ1 (Organelle Zinc finger 1 interacts with PPR site recognition factors whose cognate sites are affected when OZ1 is mutated. No interaction of OZ1 with the chloroplast editing factors RIP2 and RIP9 was detected; however, OZ1 interacts with ORRM1, which binds to RIP proteins, allowing us to build a model for the chloroplast RNA editosome. The RNA editosomes that act upon most chloroplast C targets are likely to contain a PPR protein recognition factor, either RIP2 or RIP9, ORRM1, and OZ1. The organelle zinc finger editing factor family (OZ contains 4 members in Arabidopsis, three that are predicted to be targeted to chloroplasts and one to mitochondria. With the identification of OZ1, there are now 4 nuclear-encoded protein families known to be essential for plant organelle RNA editing.

  14. Diversity in biosynthetic pathways of galactolipids in the light of endosymbiotic origin of chloroplasts

    Directory of Open Access Journals (Sweden)

    Naoki eSato

    2016-02-01

    Full Text Available Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly different in the two systems. In this minireview, we explain the history of the discovery of the cyanobacterial pathway, and present a probable scenario of the evolution of the two pathways.

  15. Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in C4-related metabolite fluxes and development.

    Directory of Open Access Journals (Sweden)

    Kalpana eManandhar-Shrestha

    2013-03-01

    Full Text Available As the world population grows, our need for food increases drastically. Limited amounts of arable land lead to a competition between food and fuel crops, while changes in the global climate may impact future crop yields. Thus, a second green revolution will need a better understanding of the processes essential for plant growth and development. One approach toward the solution of this problem is to better understand regulatory and transport processes in C4 plants. C4 plants display an up to 10-fold higher apparent CO2 assimilation and higher yields while maintaining high water use efficiency. This requires differential regulation of mesophyll (M and bundle sheath (BS chloroplast development as well as higher metabolic fluxes of photosynthetic intermediates between cells and across chloroplast envelopes. While previous analyses of overall chloroplast membranes have yielded significant insight, our comparative proteomics approach using enriched BS and M chloroplast envelopes of Zea mays allowed us to identify 37 proteins of unknown function that have not been seen in these earlier studies. We identified 280 proteins, 84% of which are known/predicted to be present in chloroplasts (cp. 74% have a known or predicted membrane association. 21 membrane proteins were 2-15 times more abundant in BS cells, while 36 proteins were more abundant in M cp envelopes. These proteins could represent additional candidates of proteins essential for development or metabolite transport processes in C4 plants. RT-PCR confirmed differential expression of thirteen candidate genes. Cp association was confirmed using GFP labeling. Genes for a PIC-like protein and an ER-AP-like protein show an early transient increase in gene expression during the transition to light. In addition, PIC gene expression is increased in the immature part of the leaf and was lower in the fully developed parts of the leaf, suggesting a need for/incorporation of the protein during chloroplast

  16. Characterization of the snowy cotyledon 1 mutant of Arabidopsis thaliana: the impact of chloroplast elongation factor G on chloroplast development and plant vitality.

    Science.gov (United States)

    Albrecht, Verónica; Ingenfeld, Anke; Apel, Klaus

    2006-03-01

    During seedling development chloroplast formation marks the transition from heterotrophic to autotrophic growth. The development and activity of chloroplasts may differ in cotyledons that initially serve as a storage organ and true leaves whose primary function is photosynthesis. A genetic screen was used for the identification of genes that affect selectively chloroplast function in cotyledons of Arabidopsis thaliana. Several mutants exhibiting pale cotyledons and green true leaves were isolated and dubbed snowy cotyledon (sco). One of the mutants, sco1, was characterized in more detail. The mutated gene was identified using map-based cloning. The mutant contains a point mutation in a gene encoding the chloroplast elongation factor G, leading to an amino acid exchange within the predicted 70S ribosome-binding domain. The mutation results in a delay in the onset of germination. At this early developmental stage embryos still contain undifferentiated proplastids, whose proper function seems necessary for seed germination. In light-grown sco1 seedlings the greening of cotyledons is severely impaired, whereas the following true leaves develop normally as in wild-type plants. Despite this apparent similarity of chloroplast development in true leaves of mutant and wild-type plants various aspects of mature plant development are also affected by the sco1 mutation such as the onset of flowering, the growth rate, and seed production. The onset of senescence in the mutant and the wild-type plants occurs, however, at the same time, suggesting that in the mutant this particular developmental step does not seem to suffer from reduced protein translation efficiency in chloroplasts.

  17. Chloroplast behaviour and interactions with other organelles in Arabidopsis thaliana pavement cells.

    Science.gov (United States)

    Barton, Kiah A; Wozny, Michael R; Mathur, Neeta; Jaipargas, Erica-Ashley; Mathur, Jaideep

    2017-03-20

    Chloroplasts are a characteristic feature of green plants. Mesophyll cells possess the majority of chloroplasts and it is widely believed that, with the exception of guard cells, the epidermal layer in most higher plants does not contain chloroplasts. However, recent observations on Arabidopsis thaliana have shown a population of chloroplasts in pavement cells that are smaller than mesophyll chloroplasts and have a high stroma to grana ratio. Here, using stable transgenic lines expressing fluorescent proteins targeted to the plastid stroma, plasma membrane, endoplasmic reticulum, tonoplast, nucleus, mitochondria, peroxisomes, F-actin and microtubules, we characterize the spatiotemporal relationships between the pavement cell chloroplasts (PCCs) and their subcellular environment. Observations on the PCCs suggest a source-sink relationship between the epidermal and the mesophyll layers, and experiments with the Arabidopsis mutants glabra2 (gl2) and immutans (im), which show altered epidermal plastid development, underscored their developmental plasticity. Our findings lay down the foundation for further investigations aimed at understanding the precise role and contributions of PCCs in plant interactions with the environment. © 2017. Published by The Company of Biologists Ltd.

  18. Chloroplasts activity and PAP-signaling regulate programmed cell death in Arabidopsis

    KAUST Repository

    Bruggeman, Quentin

    2016-01-09

    Programmed cell death (PCD) is a crucial process both for plant development and responses to biotic and abiotic stress. There is accumulating evidence that chloroplasts may play a central role during plant PCD as for mitochondria in animal cells, but it is still unclear whether they participate in PCD onset, execution, or both. To tackle this question, we have analyzed the contribution of chloroplast function to the cell death phenotype of the myoinositol phosphate synthase1 (mips1) mutant that forms spontaneous lesions in a light-dependent manner. We show that photosynthetically active chloroplasts are required for PCD to occur in mips1, but this process is independent of the redox state of the chloroplast. Systematic genetic analyses with retrograde signaling mutants reveal that 3’-phosphoadenosine 5’-phosphate, a chloroplast retrograde signal that modulates nuclear gene expression in response to stress, can inhibit cell death and compromises plant innate immunity via inhibition of the RNA-processing 5’-3’ exoribonucleases. Our results provide evidence for the role of chloroplast-derived signal and RNA metabolism in the control of cell death and biotic stress response. © 2016 American Society of Plant Biologists. All Rights Reserved.

  19. Chloroplast genome analysis of Australian eucalypts--Eucalyptus, Corymbia, Angophora, Allosyncarpia and Stockwellia (Myrtaceae).

    Science.gov (United States)

    Bayly, Michael J; Rigault, Philippe; Spokevicius, Antanas; Ladiges, Pauline Y; Ades, Peter K; Anderson, Charlotte; Bossinger, Gerd; Merchant, Andrew; Udovicic, Frank; Woodrow, Ian E; Tibbits, Josquin

    2013-12-01

    We present a phylogenetic analysis and comparison of structural features of chloroplast genomes for 39 species of the eucalypt group (genera Eucalyptus, Corymbia, Angophora, and outgroups Allosyncarpia and Stockwellia). We use 41 complete chloroplast genome sequences, adding 39 finished-quality chloroplast genomes to two previously published genomes. Maximum parsimony and Bayesian analyses, based on >7000 variable nucleotide positions, produced one fully resolved phylogenetic tree (35 supported nodes, 27 with 100% bootstrap support). Eucalyptus and its sister lineage Angophora+Corymbia show a deep divergence. Within Eucalyptus, three lineages are resolved: the 'eudesmid', 'symphyomyrt' and 'monocalypt' groups. Corymbia is paraphyletic with respect to Angophora. Gene content and order do not vary among eucalypt chloroplasts; length mutations, especially frame shifts, are uncommon in protein-coding genes. Some non-synonymous mutations are highly incongruent with the overall phylogenetic signal, notably in rbcL, and may be adaptive. Application of custom informatics pipelines (GYDLE Inc.) enabled direct chloroplast genome assembly, resolving each genome to finished-quality with no need for PCR gap-filling or contig order resolution. Analysis of whole chloroplast genomes resolved major eucalypt clades and revealed variable regions of the genome that will be useful in lower-level genetic studies (including phylogeography and geneflow). Copyright © 2013 Elsevier Inc. All rights reserved.

  20. An optimized transit peptide for effective targeting of diverse foreign proteins into chloroplasts in rice.

    Science.gov (United States)

    Shen, Bo-Ran; Zhu, Cheng-Hua; Yao, Zhen; Cui, Li-Li; Zhang, Jian-Jun; Yang, Cheng-Wei; He, Zheng-Hui; Peng, Xin-Xiang

    2017-04-11

    Various chloroplast transit peptides (CTP) have been used to successfully target some foreign proteins into chloroplasts, but for other proteins these same CTPs have reduced localization efficiencies or fail completely. The underlying cause of the failures remains an open question, and more effective CTPs are needed. In this study, we initially observed that two E.coli enzymes, EcTSR and EcGCL, failed to be targeted into rice chloroplasts by the commonly-used rice rbcS transit peptide (rCTP) and were subsequently degraded. Further analyses revealed that the N-terminal unfolded region of cargo proteins is critical for their localization capability, and that a length of about 20 amino acids is required to attain the maximum localization efficiency. We considered that the unfolded region may alleviate the steric hindrance produced by the cargo protein, by functioning as a spacer to which cytosolic translocators can bind. Based on this inference, an optimized CTP, named RC2, was constructed. Analyses showed that RC2 can more effectively target diverse proteins, including EcTSR and EcGCL, into rice chloroplasts. Collectively, our results provide further insight into the mechanism of CTP-mediated chloroplastic localization, and more importantly, RC2 can be widely applied in future chloroplastic metabolic engineering, particularly for crop plants.

  1. Evolving Deep Networks Using HPC

    Energy Technology Data Exchange (ETDEWEB)

    Young, Steven R. [ORNL, Oak Ridge; Rose, Derek C. [ORNL, Oak Ridge; Johnston, Travis [ORNL, Oak Ridge; Heller, William T. [ORNL, Oak Ridge; Karnowski, thomas P. [ORNL, Oak Ridge; Potok, Thomas E. [ORNL, Oak Ridge; Patton, Robert M. [ORNL, Oak Ridge; Perdue, Gabriel [Fermilab; Miller, Jonathan [Santa Maria U., Valparaiso

    2017-01-01

    While a large number of deep learning networks have been studied and published that produce outstanding results on natural image datasets, these datasets only make up a fraction of those to which deep learning can be applied. These datasets include text data, audio data, and arrays of sensors that have very different characteristics than natural images. As these “best” networks for natural images have been largely discovered through experimentation and cannot be proven optimal on some theoretical basis, there is no reason to believe that they are the optimal network for these drastically different datasets. Hyperparameter search is thus often a very important process when applying deep learning to a new problem. In this work we present an evolutionary approach to searching the possible space of network hyperparameters and construction that can scale to 18, 000 nodes. This approach is applied to datasets of varying types and characteristics where we demonstrate the ability to rapidly find best hyperparameters in order to enable practitioners to quickly iterate between idea and result.

  2. NASA's Space Launch System: An Evolving Capability for Exploration An Evolving Capability for Exploration

    Science.gov (United States)

    Creech, Stephen D.; Crumbly, Christopher M.; Robinson, Kimerly F.

    2016-01-01

    A foundational capability for international human deep-space exploration, NASA's Space Launch System (SLS) vehicle represents a new spaceflight infrastructure asset, creating opportunities for mission profiles and space systems that cannot currently be executed. While the primary purpose of SLS, which is making rapid progress towards initial launch readiness in two years, will be to support NASA's Journey to Mars, discussions are already well underway regarding other potential utilization of the vehicle's unique capabilities. In its initial Block 1 configuration, capable of launching 70 metric tons (t) to low Earth orbit (LEO), SLS is capable of propelling the Orion crew vehicle to cislunar space, while also delivering small CubeSat-class spacecraft to deep-space destinations. With the addition of a more powerful upper stage, the Block 1B configuration of SLS will be able to deliver 105 t to LEO and enable more ambitious human missions into the proving ground of space. This configuration offers opportunities for launching co-manifested payloads with the Orion crew vehicle, and a class of secondary payloads, larger than today's CubeSats. Further upgrades to the vehicle, including advanced boosters, will evolve its performance to 130 t in its Block 2 configuration. Both Block 1B and Block 2 also offer the capability to carry 8.4- or 10-m payload fairings, larger than any contemporary launch vehicle. With unmatched mass-lift capability, payload volume, and C3, SLS not only enables spacecraft or mission designs currently impossible with contemporary EELVs, it also offers enhancing benefits, such as reduced risk, operational costs and/or complexity, shorter transit time to destination or launching large systems either monolithically or in fewer components. This paper will discuss both the performance and capabilities of Space Launch System as it evolves, and the current state of SLS utilization planning.

  3. DNA evolved to minimize frameshift mutations

    OpenAIRE

    Agoni, Valentina

    2013-01-01

    Point mutations can surely be dangerous but what is worst than to lose the reading frame?! Does DNA evolved a strategy to try to limit frameshift mutations?! Here we investigate if DNA sequences effectively evolved a system to minimize frameshift mutations analyzing the transcripts of proteins with high molecular weights.

  4. [Fluorescence used to investigate the sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation].

    Science.gov (United States)

    Xi, Gang; Yang, Yun-Jing; Lu, Hong

    2009-07-01

    A system for studying biological effect of radio frequency electromagnetic field was developed. The system can form an area where electromagnetic wave with large frequency range is well distributed. The strength of electromagnetic wave was measured easily. Electromagnetic wave in the system did not have effect on environment. The sensitivity of spinach chloroplast membrane to low intensity electromagnetic radiation of 300 MHz under power density of 5 mW x cm(-2) was studied by the spectral analysis method of fluorescence of 8-anilino-1-naphthalene-sulfonic acid (ANS) and the changes in chlorophyll a (Chla) fluorescence parameters of spinach chloroplast membrane. The result showed that the position of spectrum of ANS fluorescence of spinach chloroplast membrane did not change, but the intensity of ANS fluorescence was obviously increased under the action of electromagnetic radiation with power density of 1-5 mW x cm(-2). There was an increase in the intensity of ANS fluorescence with the increase in electromagnetic radiation. The increase of ANS fluorescence of spinach chloroplast membrane showed that low level electromagnetic field induced the decrease in fluidity of chloroplast membrane compared with control experiment. The cause of the change in the fluidity could be related to the polarization of chloroplast membrane under the electromagnetic field. The analysis of Chla fluorescence parameters of spinach chloroplast membrane indicated that low level electromagnetic field of 300 MHz made the fluorescence parameters F0 and F(VI/)F(V) decrease, and F(V)/Fo, Fv/F(m) and deltaF(V)/T increase. It was showed that low level electromagnetic field caused the change of non-active center of photosystem II of spinach chloroplast membrane to active center and the increase in potential active and photochemical efficiency of PSII, and promoted the transmit process of electron in photosynthesis of chloroplast membrane of photosynthesis cell in spinach leaf. The study confirmed

  5. Functional Consequences of Deletions of the N Terminus of the [epsilon] Subunit of the Chloroplast ATP Synthase.

    Science.gov (United States)

    Cruz, J. A.; Radkowski, C. A.; McCarty, R. E.

    1997-04-01

    The [epsilon] subunit of the chloroplast ATP synthase functions in part to prevent wasteful ATP hydrolysis by the enzyme. In addition, [epsilon] together with the remainder of the catalytic portion of the synthase (CF1) is required to block the nonproductive leak of protons through the membrane-embedded component of the synthase (CFO). Mutant [epsilon] subunits of the spinach (Spinacia oleracea) chloroplast ATP synthase that lack 5, 11, or 20 amino acids from their N termini ([epsilon]-[delta]5N, [epsilon]-[delta]11N, and [epsilon]-[delta]20N, respectively), were overexpressed as inclusion bodies. Using a procedure that resulted in the folding of full-length, recombinant [epsilon] in a biologically active form, none of these truncated forms resulted in [epsilon] that inhibited the ATPase activity of CF1 deficient in [epsilon], CF1(-[epsilon]). Yet, the [epsilon]-[delta]5N and [epsilon]-[delta]11N peptides significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO in NaBr-treated thylakoids. Although full-length [epsilon] rapidly inhibited the ATPase activity of CF1(-[epsilon]) in solution or bound to CFO, an extended period was required for the truncated forms to inhibit membrane-bound CF1(-[epsilon]). Despite the fact that [epsilon]-[delta]5N significantly inhibited the ATPase activity of CF1(-[epsilon]) bound to CFO, it did not block the proton conductance through CFO in NaBr-treated thylakoids reconstituted with CF1(-[epsilon]). Based on selective proteolysis and the binding of 8-anilino-1-naphthalene sulfonic acid, each of the truncated peptides gained significant secondary structure after folding. These results strongly suggest (a) that the N terminus of [epsilon] is important in its binding to CF1, (b) that CF0 stabilizes [epsilon] binding to the entire ATP synthase, and (c) that the N terminus may play some role in the regulation of proton flux through CFO.

  6. The Cytoskeleton and the Peroxisomal-Targeted SNOWY COTYLEDON3 Protein Are Required for Chloroplast Development in Arabidopsis[W

    Science.gov (United States)

    Albrecht, Verónica; Šimková, Klára; Carrie, Chris; Delannoy, Etienne; Giraud, Estelle; Whelan, Jim; Small, Ian David; Apel, Klaus; Badger, Murray R.; Pogson, Barry James

    2010-01-01

    Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO2 concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid β-oxidation or photorespiration, though there are so far undescribed changes in low and high CO2 sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis. PMID:20978221

  7. The cytoskeleton and the peroxisomal-targeted snowy cotyledon3 protein are required for chloroplast development in Arabidopsis.

    Science.gov (United States)

    Albrecht, Verónica; Simková, Klára; Carrie, Chris; Delannoy, Etienne; Giraud, Estelle; Whelan, Jim; Small, Ian David; Apel, Klaus; Badger, Murray R; Pogson, Barry James

    2010-10-01

    Here, we describe the snowy cotyledon3 (sco3-1) mutation, which impairs chloroplast and etioplast development in Arabidopsis thaliana seedlings. SCO3 is a member of a largely uncharacterized protein family unique to the plant kingdom. The sco3-1 mutation alters chloroplast morphology and development, reduces chlorophyll accumulation, impairs thylakoid formation and photosynthesis in seedlings, and results in photoinhibition under extreme CO(2) concentrations in mature leaves. There are no readily apparent changes to chloroplast biology, such as transcription or assembly that explain the disruption to chloroplast biogenesis. Indeed, SCO3 is actually targeted to another organelle, specifically to the periphery of peroxisomes. However, impaired chloroplast development cannot be attributed to perturbed peroxisomal metabolic processes involving germination, fatty acid β-oxidation or photorespiration, though there are so far undescribed changes in low and high CO(2) sensitivity in seedlings and young true leaves. Many of the chloroplasts are bilobed, and some have persistent membranous extensions that encircle other cellular components. Significantly, there are changes to the cytoskeleton in sco3-1, and microtubule inhibitors have similar effects on chloroplast biogenesis as sco3-1 does. The localization of SCO3 to the periphery of the peroxisomes was shown to be dependent on a functional microtubule cytoskeleton. Therefore, the microtubule and peroxisome-associated SCO3 protein is required for chloroplast development, and sco3-1, along with microtubule inhibitors, demonstrates an unexpected role for the cytoskeleton and peroxisomes in chloroplast biogenesis.

  8. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Science.gov (United States)

    Kadohama, Noriaki; Goh, Tatsuaki; Ohnishi, Miwa; Fukaki, Hidehiro; Mimura, Tetsuro; Suzuki, Yoshihiro

    2013-01-01

    It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg') and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  9. Sudden collapse of vacuoles in Saintpaulia sp. palisade cells induced by a rapid temperature decrease.

    Directory of Open Access Journals (Sweden)

    Noriaki Kadohama

    Full Text Available It is well known that saintpaulia leaf is damaged by the rapid temperature decrease when cold water is irrigated onto the leaf surface. We investigated this temperature sensitivity and the mechanisms of leaf damage in saintpaulia (Saintpaulia sp. cv. 'Iceberg' and other Gesneriaceae plants. Saintpaulia leaves were damaged and discolored when subjected to a rapid decrease in temperature, but not when the temperature was decreased gradually. Sensitivity to rapid temperature decrease increased within 10 to 20 min during pre-incubation at higher temperature. Injury was restricted to the palisade mesophyll cells, where there was an obvious change in the color of the chloroplasts. During a rapid temperature decrease, chlorophyll fluorescence monitored by a pulse amplitude modulated fluorometer diminished and did not recover even after rewarming to the initial temperature. Isolated chloroplasts were not directly affected by the rapid temperature decrease. Intracellular pH was monitored with a pH-dependent fluorescent dye. In palisade mesophyll cells damaged by rapid temperature decrease, the cytosolic pH decreased and the vacuolar membrane collapsed soon after a temperature decrease. In isolated chloroplasts, chlorophyll fluorescence declined when the pH of the medium was lowered. These results suggest that a rapid temperature decrease directly or indirectly affects the vacuolar membrane, resulting in a pH change in the cytosol that subsequently affects the chloroplasts in palisade mesophyll cells. We further confirmed that the same physiological damage occurs in other Gesneriaceae plants. These results strongly suggested that the vacuoles of palisade mesophyll cells collapsed during the initial phase of leaf injury.

  10. Artemisinin inhibits chloroplast electron transport activity: mode of action.

    Directory of Open Access Journals (Sweden)

    Adyasha Bharati

    Full Text Available Artemisinin, a secondary metabolite produced in Artemisia plant species, besides having antimalarial properties is also phytotoxic. Although, the phytotoxic activity of the compound has been long recognized, no information is available on the mechanism of action of the compound on photosynthetic activity of the plant. In this report, we have evaluated the effect of artemisinin on photoelectron transport activity of chloroplast thylakoid membrane. The inhibitory effect of the compound, under in vitro condition, was pronounced in loosely and fully coupled thylakoids; being strong in the former. The extent of inhibition was drastically reduced in the presence of uncouplers like ammonium chloride or gramicidin; a characteristic feature described for energy transfer inhibitors. The compound, on the other hand, when applied to plants (in vivo, behaved as a potent inhibitor of photosynthetic electron transport. The major site of its action was identified to be the Q(B; the secondary quinone moiety of photosystemII complex. Analysis of photoreduction kinetics of para-benzoquinone and duroquinone suggest that the inhibition leads to formation of low pool of plastoquinol, which becomes limiting for electron flow through photosystemI. Further it was ascertained that the in vivo inhibitory effect appeared as a consequence of the formation of an unidentified artemisinin-metabolite rather than by the interaction of the compound per se. The putative metabolite of artemisinin is highly reactive in instituting the inhibition of photosynthetic electron flow eventually reducing the plant growth.

  11. Stromal serine protein kinase activity in spinach chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, N.; Lucero, H.A.; Vallejos, R.H.

    1987-05-01

    At least twelve /sup 32/P-labeled stromal proteins were detected by electrophoresis under denaturing conditions when intact chloroplasts were incubated with /sup 32/Pi, in the light but only three were detected in the presence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) or in the dark. Incubation of isolated stroma with (gamma-/sup 32/P)ATP resulted in the preferential phosphorylation of one of them, a 70-kDa polypeptide, in serine residues. Thylakoid membranes in the dark promoted the phosphorylation of two additional stromal polypeptides of 55 and 40 kDa. Illumination during the phosphorylation of stroma in the presence of thylakoids stimulated severalfold the labeling of the 40-kDa polypeptide but not when DCMU was added. The protein kinase activity present in isolated stroma phosphorylated exogenous substrates like histone III, phosvitin, histone II, and casein with specific activities of 3, 1.8, 0.7, and 0.2 pmol X mg-1 X min-1. Histone III polypeptides were phosphorylated differently by stroma and by thylakoids in the dark. Moreover, histone III phosphorylated by thylakoids in the dark yielded a pattern of phosphopeptides after V8 protease treatment that was different from the pattern obtained when histone III was phosphorylated by stroma.

  12. The Complete Chloroplast Genome Sequences of Six Rehmannia Species

    Directory of Open Access Journals (Sweden)

    Shuyun Zeng

    2017-03-01

    Full Text Available Rehmannia is a non-parasitic genus in Orobanchaceae including six species mainly distributed in central and north China. Its phylogenetic position and infrageneric relationships remain uncertain due to potential hybridization and polyploidization. In this study, we sequenced and compared the complete chloroplast genomes of six Rehmannia species using Illumina sequencing technology to elucidate the interspecific variations. Rehmannia plastomes exhibited typical quadripartite and circular structures with good synteny of gene order. The complete genomes ranged from 153,622 bp to 154,055 bp in length, including 133 genes encoding 88 proteins, 37 tRNAs, and 8 rRNAs. Three genes (rpoA, rpoC2, accD have potentially experienced positive selection. Plastome size variation of Rehmannia was mainly ascribed to the expansion and contraction of the border regions between the inverted repeat (IR region and the single-copy (SC regions. Despite of the conserved structure in Rehmannia plastomes, sequence variations provide useful phylogenetic information. Phylogenetic trees of 23 Lamiales species reconstructed with the complete plastomes suggested that Rehmannia was monophyletic and sister to the clade of Lindenbergia and the parasitic taxa in Orobanchaceae. The interspecific relationships within Rehmannia were completely different with the previous studies. In future, population phylogenomic works based on plastomes are urgently needed to clarify the evolutionary history of Rehmannia.

  13. Chloroplast Phylogenomics Indicates that Ginkgo biloba Is Sister to Cycads

    Science.gov (United States)

    Wu, Chung-Shien; Chaw, Shu-Miaw; Huang, Ya-Yi

    2013-01-01

    Molecular phylogenetic studies have not yet reached a consensus on the placement of Ginkgoales, which is represented by the only living species, Ginkgo biloba (common name: ginkgo). At least six discrepant placements of ginkgo have been proposed. This study aimed to use the chloroplast phylogenomic approach to examine possible factors that lead to such disagreeing placements. We found the sequence types used in the analyses as the most critical factor in the conflicting placements of ginkgo. In addition, the placement of ginkgo varied in the trees inferred from nucleotide (NU) sequences, which notably depended on breadth of taxon sampling, tree-building methods, codon positions, positions of Gnetopsida (common name: gnetophytes), and including or excluding gnetophytes in data sets. In contrast, the trees inferred from amino acid (AA) sequences congruently supported the monophyly of a ginkgo and Cycadales (common name: cycads) clade, regardless of which factors were examined. Our site-stripping analysis further revealed that the high substitution saturation of NU sequences mainly derived from the third codon positions and contributed to the variable placements of ginkgo. In summary, the factors we surveyed did not affect results inferred from analyses of AA sequences. Congruent topologies in our AA trees give more confidence in supporting the ginkgo–cycad sister-group hypothesis. PMID:23315384

  14. Nitrogen control of chloroplast development and differentiation. Annual progress report

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, G.W.

    1991-12-01

    The growth and development of plants and photosynthetic microorganisms is commonly limited by the availability of nitrogen. Our work concerns understanding the mechanisms by which plants and algae that are subjected to nitrogen deprivation alter the composition of photosynthetic membranes and enzymes involved in photosynthetic carbon metabolism. Toward these ends, we study biosynthetic and gene expression processes in the unicellular green alga Chlamydomonas reinhardtii which is grown in an ammonium-limited continuous culture system. We have found that the expression of nuclear genes, including those encoding for light-harvesting proteins, are severely repressed in nitrogen-limited cells whereas, in general, chloroplast protein synthesis is attenuated primarily at the level of mRNA translation. Conversely, nitrogen deprivation appears to lead to enhanced synthesis of enzymes that are involved in starch and storage lipid deposition. In addition, as a possible means by which photosynthetic electron transport activities and ATP synthesis is sustained during chronic periods of nitrogen deprivation, thylakoid membranes become enriched with components for chlororespiration. Characterization of the chlororespiratory electron transport constituents, including cytochrome complexes and NAD(P)H dehydrogenase is a major current effort. Also, we are striving to isolate the genes encoding chlororespiration proteins toward determining how they and others that are strongly responsive to nutrient availability are regulated.

  15. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...

  16. Insights from the complete chloroplast genome into the evolution of Sesamum indicum L.

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    Full Text Available Sesame (Sesamum indicum L. is one of the oldest oilseed crops. In order to investigate the evolutionary characters according to the Sesame Genome Project, apart from sequencing its nuclear genome, we sequenced the complete chloroplast genome of S. indicum cv. Yuzhi 11 (white seeded using Illumina and 454 sequencing. Comparisons of chloroplast genomes between S. indicum and the 18 other higher plants were then analyzed. The chloroplast genome of cv. Yuzhi 11 contains 153,338 bp and a total of 114 unique genes (KC569603. The number of chloroplast genes in sesame is the same as that in Nicotiana tabacum, Vitis vinifera and Platanus occidentalis. The variation in the length of the large single-copy (LSC regions and inverted repeats (IR in sesame compared to 18 other higher plant species was the main contributor to size variation in the cp genome in these species. The 77 functional chloroplast genes, except for ycf1 and ycf2, were highly conserved. The deletion of the cp ycf1 gene sequence in cp genomes may be due either to its transfer to the nuclear genome, as has occurred in sesame, or direct deletion, as has occurred in Panax ginseng and Cucumis sativus. The sesame ycf2 gene is only 5,721 bp in length and has lost about 1,179 bp. Nucleotides 1-585 of ycf2 when queried in BLAST had hits in the sesame draft genome. Five repeats (R10, R12, R13, R14 and R17 were unique to the sesame chloroplast genome. We also found that IR contraction/expansion in the cp genome alters its rate of evolution. Chloroplast genes and repeats display the signature of convergent evolution in sesame and other species. These findings provide a foundation for further investigation of cp genome evolution in Sesamum and other higher plants.

  17. Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants.

    Science.gov (United States)

    Liu, Yue; Huo, Naxin; Dong, Lingli; Wang, Yi; Zhang, Shuixian; Young, Hugh A; Feng, Xiaoxiao; Gu, Yong Qiang

    2013-01-01

    Artemisia frigida Willd. is an important Mongolian traditional medicinal plant with pharmacological functions of stanch and detumescence. However, there is little sequence and genomic information available for Artemisia frigida, which makes phylogenetic identification, evolutionary studies, and genetic improvement of its value very difficult. We report the complete chloroplast genome sequence of Artemisia frigida based on 454 pyrosequencing. The complete chloroplast genome of Artemisia frigida is 151,076 bp including a large single copy (LSC) region of 82,740 bp, a small single copy (SSC) region of 18,394 bp and a pair of inverted repeats (IRs) of 24,971 bp. The genome contains 114 unique genes and 18 duplicated genes. The chloroplast genome of Artemisia frigida contains a small 3.4 kb inversion within a large 23 kb inversion in the LSC region, a unique feature in Asteraceae. The gene order in the SSC region of Artemisia frigida is inverted compared with the other 6 Asteraceae species with the chloroplast genomes sequenced. This inversion is likely caused by an intramolecular recombination event only occurred in Artemisia frigida. The existence of rich SSR loci in the Artemisia frigida chloroplast genome provides a rare opportunity to study population genetics of this Mongolian medicinal plant. Phylogenetic analysis demonstrates a sister relationship between Artemisia frigida and four other species in Asteraceae, including Ageratina adenophora, Helianthus annuus, Guizotia abyssinica and Lactuca sativa, based on 61 protein-coding sequences. Furthermore, Artemisia frigida was placed in the tribe Anthemideae in the subfamily Asteroideae (Asteraceae) based on ndhF and trnL-F sequence comparisons. The chloroplast genome sequence of Artemisia frigida was assembled and analyzed in this study, representing the first plastid genome sequenced in the Anthemideae tribe. This complete chloroplast genome sequence will be useful for molecular ecology and molecular phylogeny

  18. A simple low-cost microcontroller-based photometric instrument for monitoring chloroplast movement.

    Science.gov (United States)

    Berg, Robert; Königer, Martina; Schjeide, Brit-Maren; Dikmak, George; Kohler, Susan; Harris, Gary C

    2006-03-01

    A new microcontroller-based photometric instrument for monitoring blue light dependent changes in leaf transmission (chloroplast movement) was developed based on a modification of the double-beam technique developed by Walzcak and Gabrys [(1980) Photosynthetica 14: 65-72]. A blue and red bicolor light emitting diode (LED) provided both a variable intensity blue actinic light and a low intensity red measuring beam. A phototransistor detected the intensity of the transmitted measuring light. An inexpensive microcontroller independently and precisely controlled the light emission of the bicolor LED. A typical measurement event involved turning off the blue actinic light for 100 mus to create a narrow temporal window for turning on and measuring the transmittance of the red light. The microcontroller was programmed using LogoChip Logo (http://www.wellesley.edu/Physics/Rberg/logochip/) to record fluence rate response curves. Laser scanning confocal microscopy was utilized to correlate the changes in leaf transmission with intercellular chloroplast position. In the dark, the chloroplasts in the spongy mesophyll exhibited no evident asymmetries in their distribution, however, in the palisade layer the cell surface in contact with the overlying epidermis was devoid of chloroplasts. The low light dependent decrease in leaf transmittance in dark acclimated leaves was correlated with the movement of chloroplasts within the palisade layer into the regions previously devoid of chloroplasts. Changes in leaf transmittance were evident within one minute following the onset of illumination. Minimal leaf transmittance was correlated with chloroplasts having retreated from cell surfaces perpendicular to the incident light (avoidance reaction) in both spongy and palisade layers.

  19. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    Directory of Open Access Journals (Sweden)

    Birgit Kersten

    Full Text Available Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca and for chloroplasts (seven species, but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus. The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4 from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52 and 783,513 bp (717-1B4 in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  20. Genome Sequences of Populus tremula Chloroplast and Mitochondrion: Implications for Holistic Poplar Breeding.

    Science.gov (United States)

    Kersten, Birgit; Faivre Rampant, Patricia; Mader, Malte; Le Paslier, Marie-Christine; Bounon, Rémi; Berard, Aurélie; Vettori, Cristina; Schroeder, Hilke; Leplé, Jean-Charles; Fladung, Matthias

    2016-01-01

    Complete Populus genome sequences are available for the nucleus (P. trichocarpa; section Tacamahaca) and for chloroplasts (seven species), but not for mitochondria. Here, we provide the complete genome sequences of the chloroplast and the mitochondrion for the clones P. tremula W52 and P. tremula x P. alba 717-1B4 (section Populus). The organization of the chloroplast genomes of both Populus clones is described. A phylogenetic tree constructed from all available complete chloroplast DNA sequences of Populus was not congruent with the assignment of the related species to different Populus sections. In total, 3,024 variable nucleotide positions were identified among all compared Populus chloroplast DNA sequences. The 5-prime part of the LSC from trnH to atpA showed the highest frequency of variations. The variable positions included 163 positions with SNPs allowing for differentiating the two clones with P. tremula chloroplast genomes (W52, 717-1B4) from the other seven Populus individuals. These potential P. tremula-specific SNPs were displayed as a whole-plastome barcode on the P. tremula W52 chloroplast DNA sequence. Three of these SNPs and one InDel in the trnH-psbA linker were successfully validated by Sanger sequencing in an extended set of Populus individuals. The complete mitochondrial genome sequence of P. tremula is the first in the family of Salicaceae. The mitochondrial genomes of the two clones are 783,442 bp (W52) and 783,513 bp (717-1B4) in size, structurally very similar and organized as single circles. DNA sequence regions with high similarity to the W52 chloroplast sequence account for about 2% of the W52 mitochondrial genome. The mean SNP frequency was found to be nearly six fold higher in the chloroplast than in the mitochondrial genome when comparing 717-1B4 with W52. The availability of the genomic information of all three DNA-containing cell organelles will allow a holistic approach in poplar molecular breeding in the future.

  1. Combined analysis of the chloroplast genome and transcriptome of the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Jungeun Lee

    Full Text Available BACKGROUND: Antarctic hairgrass (Deschampsia antarctica Desv. is the only natural grass species in the maritime Antarctic. It has been researched as an important ecological marker and as an extremophile plant for studies on stress tolerance. Despite its importance, little genomic information is available for D. antarctica. Here, we report the complete chloroplast genome, transcriptome profiles of the coding/noncoding genes, and the posttranscriptional processing by RNA editing in the chloroplast system. RESULTS: The complete chloroplast genome of D. antarctica is 135,362 bp in length with a typical quadripartite structure, including the large (LSC: 79,881 bp and small (SSC: 12,519 bp single-copy regions, separated by a pair of identical inverted repeats (IR: 21,481 bp. It contains 114 unique genes, including 81 unique protein-coding genes, 29 tRNA genes, and 4 rRNA genes. Sequence divergence analysis with other plastomes from the BEP clade of the grass family suggests a sister relationship between D. antarctica, Festuca arundinacea and Lolium perenne of the Poeae tribe, based on the whole plastome. In addition, we conducted high-resolution mapping of the chloroplast-derived transcripts. Thus, we created an expression profile for 81 protein-coding genes and identified ndhC, psbJ, rps19, psaJ, and psbA as the most highly expressed chloroplast genes. Small RNA-seq analysis identified 27 small noncoding RNAs of chloroplast origin that were preferentially located near the 5'- or 3'-ends of genes. We also found >30 RNA-editing sites in the D. antarctica chloroplast genome, with a dominance of C-to-U conversions. CONCLUSIONS: We assembled and characterized the complete chloroplast genome sequence of D. antarctica and investigated the features of the plastid transcriptome. These data may contribute to a better understanding of the evolution of D. antarctica within the Poaceae family for use in molecular phylogenetic studies and may also help researchers

  2. Dissecting the chloroplast proteome of chickpea (Cicer arietinum L.) provides new insights into classical and non-classical functions.

    Science.gov (United States)

    Lande, Nilesh Vikram; Subba, Pratigya; Barua, Pragya; Gayen, Dipak; Keshava Prasad, T S; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-08-08

    Chloroplast, the energy organelle unique to plant cells, is a dynamic entity which integrates an array of metabolic pathways and serves as first level for energy conversion for the entire ecological hierarchy. Increasing amount of sequence data and evolution of mass spectrometric approaches has opened up new avenues for opportune exploration of the global proteome of this organelle. In our study, we aimed at generation of a comprehensive catalogue of chloroplast proteins in a grain legume, chickpea and provided a reference proteome map. To accurately assign the identified proteins, purity of chloroplast-enriched fraction was stringently monitored by multiple chemical and immunological indexes, besides pigment and enzyme analyses. The proteome analysis led to the identification of 2451 proteins, including 27 isoforms, which include predicted and novel chloroplast constituents. The identified proteins were validated through their sequence analysis. Extensive sequence based localization prediction revealed more than 50% proteins to be chloroplast resident by at least two different algorithms. Chromosomal distribution of identified proteins across nuclear and chloroplast genome unveiled the presence of 55 chloroplast encoded gene. In depth comparison of our dataset with the non-redundant set of chloroplast proteins identified so far across other species revealed novel as well as overlapping candidates. Pulses add large amount of nitrogen to the soil and has very low water footprint and therefore, contributes to fortification of sustainable agriculture. Chickpea is one of the earliest cultivated legumes and serves as an energy and protein source for humans and animals. Chloroplasts are the unique organelles which conduct photosynthesis. Investigation on chloroplast proteome is of particular significance, especially to plant biologists, as it would allow a better understanding of chloroplast function in plants. Generation of a saturated proteome map would not only

  3. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia) and comparative analysis within the rosids.

    Science.gov (United States)

    Su, Huei-Jiun; Hogenhout, Saskia A; Al-Sadi, Abdullah M; Kuo, Chih-Horng

    2014-01-01

    The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia). The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis) chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs) that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  4. Complete chloroplast genome sequence of Omani lime (Citrus aurantiifolia and comparative analysis within the rosids.

    Directory of Open Access Journals (Sweden)

    Huei-Jiun Su

    Full Text Available The genus Citrus contains many economically important fruits that are grown worldwide for their high nutritional and medicinal value. Due to frequent hybridizations among species and cultivars, the exact number of natural species and the taxonomic relationships within this genus are unclear. To compare the differences between the Citrus chloroplast genomes and to develop useful genetic markers, we used a reference-assisted approach to assemble the complete chloroplast genome of Omani lime (C. aurantiifolia. The complete C. aurantiifolia chloroplast genome is 159,893 bp in length; the organization and gene content are similar to most of the rosids lineages characterized to date. Through comparison with the sweet orange (C. sinensis chloroplast genome, we identified three intergenic regions and 94 simple sequence repeats (SSRs that are potentially informative markers with resolution for interspecific relationships. These markers can be utilized to better understand the origin of cultivated Citrus. A comparison among 72 species belonging to 10 families of representative rosids lineages also provides new insights into their chloroplast genome evolution.

  5. Complete Chloroplast Genome Sequence of Decaisnea insignis: Genome Organization, Genomic Resources and Comparative Analysis.

    Science.gov (United States)

    Li, Bin; Lin, Furong; Huang, Ping; Guo, Wenying; Zheng, Yongqi

    2017-08-30

    Decaisnea insignis is a wild resource plant and is used as an ornamental, medicinal, and fruit plant. High-throughput sequencing of chloroplast genomes has provided insight into the overall evolutionary dynamics of chloroplast genomes and has enhanced our understanding of the evolutionary relationships within plant families. In the present study, we sequenced the complete chloroplast genome of D. insignis and used the data to assess its genomic resources. The D. insignis chloroplast genome is 158,683 bp in length and includes a pair of inverted repeats of 26,167 bp that are separated by small and large single copy regions of 19,162 bp and 87,187 bp, respectively. We identified 83 simple sequence repeats and 18 pairs of large repeats. Most simple-sequence repeats were located in the noncoding sections of the large single-copy/small single-copy region and exhibited a high A/T content. The D. insignis chloroplast genome bias was skewed towards A/T on the basis of codon usage. A phylogenetic tree based on 82 protein-coding genes of 33 angiosperms showed that D. insignis was clustered with Akebia in Lardizabalaceae. Overall, the results of this study will contribute to better understanding the evolution, molecular biology and genetic improvement of D. insignis.

  6. Purification of intact chloroplasts from marine plant Posidonia oceanica suitable for organelle proteomics.

    Science.gov (United States)

    Piro, Amalia; Serra, Ilia Anna; Spadafora, Antonia; Cardilio, Monica; Bianco, Linda; Perrotta, Gaetano; Santos, Rui; Mazzuca, Silvia

    2015-12-01

    Posidonia oceanica is a marine angiosperm, or seagrass, adapted to grow to the underwater life from shallow waters to 50 m depth. This raises questions of how their photosynthesis adapted to the attenuation of light through the water column and leads to the assumption that biochemistry and metabolism of the chloroplast are the basis of adaptive capacity. In the present study, we described a protocol that was adapted from those optimized for terrestrial plants, to extract chloroplasts from as minimal tissue as possible. We obtained the best balance between tissue amount/intact chloroplasts yield using one leaf from one plant. After isopynic separations, the chloroplasts purity and integrity were evaluated by biochemical assay and using a proteomic approach. Chloroplast proteins were extracted from highly purified organelles and resolved by 1DE SDS-PAGE. Proteins were sequenced by nLC-ESI-IT-MS/MS of 1DE gel bands and identified against NCBInr green plant databases, Dr. Zompo database for seagrasses in a local customized dataset. The curated localization of proteins in sub-plastidial compartments (i.e. envelope, stroma and thylakoids) was retrieved in the AT_CHLORO database. This purification protocol and the validation of compartment markers may serve as basis for sub-cellular proteomics in P. oceanica and other seagrasses. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Is chloroplast import of photosynthesis proteins facilitated by an actin-TOC-TIC-VIPP1 complex?

    Science.gov (United States)

    Jouhet, Juliette; Gray, John C

    2009-10-01

    Actin filaments are major components of the cytoskeleton that interact with chloroplast envelope membranes to allow chloroplast positioning and movement, stromule mobility and gravitropism perception. We recently reported that Toc159, a component of the TOC complex of the chloroplast protein import apparatus, interacts directly with actin. The interaction of Toc159 and actin was identified by co-immunoprecipitation and co-sedimentation experiments with detergent-solubilised pea chloroplast envelope membranes. In addition, many of the components of the TOC-TIC protein import apparatus and VIPP1 (vesicle-inducing protein in plastids 1) were identified by mass spectroscopy in the material co-immunoprecipitated with antibodies to actin. Toc159 is the receptor for the import of photosynthesis proteins and VIPP1 is involved in thylakoid membrane formation by inducing vesicle formation from the chloroplast inner envelope membrane, suggesting we may have identified an actin-TOC-TIC-VIPP1 complex that may provide a means of channeling cytosolic preproteins to the thylakoid membrane. The interaction of Toc159 with actin may facilitate exchange between the putative soluble and membrane forms of Toc159 and promote the interaction of cytosolic preproteins with the TOC complex.

  8. Chloroplast translocations in Lemna trisulca L. induced by continuous irradiation and by light pulses : Kinetic analysis.

    Science.gov (United States)

    Zurzycki, J; Walczak, T; Gabryś, H; Kajfosz, J

    1983-05-01

    The analytical model describing the steady state position of chloroplasts in dependence of fluence rate as well as the chloroplast response to single strong light pulses has been proposed. The model is based on the following assumptions: 1. Irradiation of the cell generates the state X in the cell membrane region, proportional to the local fluence rate. After switching on the light, the value of X increases exponentially with the time constant of about 3 min. The dark decay of X is also exponential with the same time constant. The level of X controls all kinds of chloroplast arrangements. 2. The state X generates two further states: Y 1 and Y 2, the first of them representing attraction forces for chloroplasts and the second representing repulsion forces. Empirical equations have been found for both Y states. The fluence rate response curve can be described with the use of functions Y 1 and Y 2. 3. The kinetic analysis requires the introduction of two additional functions Z in order to account for delays and time dispersion of the chloroplast movement in response to driving and resistance factors. The computer program for the proposed model was developed and the results of calculations were compared with experimental data (fluence rate response curve and pulse effects) with satisfactory agreement. Initially no attempt was made to ascribe any physical meaning to the postulated states. Some suggestions in this respect are mentioned in the discussion.

  9. Comparative analysis of microsatellites in chloroplast genomes of lower and higher plants.

    Science.gov (United States)

    George, Biju; Bhatt, Bhavin S; Awasthi, Mayur; George, Binu; Singh, Achuit K

    2015-11-01

    Microsatellites, or simple sequence repeats (SSRs), contain repetitive DNA sequence where tandem repeats of one to six base pairs are present number of times. Chloroplast genome sequences have been  shown to possess extensive variations in the length, number and distribution of SSRs. However, a comparative analysis of chloroplast microsatellites is not available. Considering their potential importance in generating genomic diversity, we have systematically analysed the abundance and distribution of simple and compound microsatellites in 164 sequenced chloroplast genomes from wide range of plants. The key findings of these studies are (1) a large number of mononucleotide repeats as compared to SSR(2-6)(di-, tri-, tetra-, penta-, hexanucleotide repeats) are present in all chloroplast genomes investigated, (2) lower plants such as algae show wide variation in relative abundance, density and distribution of microsatellite repeats as compared to flowering plants, (3) longer SSRs are excluded from coding regions of most chloroplast genomes, (4) GC content has a weak influence on number, relative abundance and relative density of mononucleotide as well as SSR(2-6). However, GC content strongly showed negative correlation with relative density (R (2) = 0.5, P plants possesses relatively more genomic diversity compared to higher plants.

  10. Polyuridylylation and processing of transcripts from multiple gene minicircles in chloroplasts of the dinoflagellate Amphidinium carterae

    KAUST Repository

    Barbrook, Adrian C.

    2012-05-05

    Although transcription and transcript processing in the chloroplasts of plants have been extensively characterised, the RNA metabolism of other chloroplast lineages across the eukaryotes remains poorly understood. In this paper, we use RT-PCR to study transcription and transcript processing in the chloroplasts of Amphidinium carterae, a model peridinin-containing dinoflagellate. These organisms have a highly unusual chloroplast genome, with genes located on multiple small \\'minicircle\\' elements, and a number of idiosyncratic features of RNA metabolism including transcription via a rolling circle mechanism, and 3′ terminal polyuridylylation of transcripts. We demonstrate that transcription occurs in A. carterae via a rolling circle mechanism, as previously shown in the dinoflagellate Heterocapsa, and present evidence for the production of both polycistronic and monocistronic transcripts from A. carterae minicircles, including several regions containing ORFs previously not known to be expressed. We demonstrate the presence of both polyuridylylated and non-polyuridylylated transcripts in A. carterae, and show that polycistronic transcripts can be terminally polyuridylylated. We present a model for RNA metabolism in dinoflagellate chloroplasts where long polycistronic precursors are processed to form mature transcripts. Terminal polyuridylylation may mark transcripts with the correct 3′ end. © 2012 Springer Science+Business Media B.V.

  11. The role of calcium in chloroplasts--an intriguing and unresolved puzzle.

    Science.gov (United States)

    Rocha, Agostinho G; Vothknecht, Ute C

    2012-10-01

    More than 70 years of studies have indicated that chloroplasts contain a significant amount of calcium, are a potential storage compartment for this ion, and might themselves be prone to calcium regulation. Many of these studies have been performed on the photosynthetic light reaction as well as CO(2) fixation via the Calvin-Benson-Bassham cycle, and they showed that calcium is required in several steps of these processes. Further studies have indicated that calcium is involved in other chloroplast functions that are not directly related to photosynthesis and that there is a calcium-dependent regulation similar to cytoplasmic calcium signal transduction. Nevertheless, the precise role that calcium has as a functional and regulatory component of chloroplast processes remains enigmatic. Calcium concentrations in different chloroplast subcompartments have been measured, but the extent and direction of intra-plastidal calcium fluxes or calcium transport into and from the cytosol are not yet very well understood. In this review we want to give an overview over the current knowledge on the relationship between chloroplasts and calcium and discuss questions that need to be addressed in future research.

  12. Proteomic comparison reveals the contribution of chloroplast to salt tolerance of a wheat introgression line

    Science.gov (United States)

    Xu, Wenjing; Lv, Hongjun; Zhao, Mingming; Li, Yongchao; Qi, Yueying; Peng, Zhenying; Xia, Guangmin; Wang, Mengcheng

    2016-01-01

    We previously bred a salt tolerant wheat cv. SR3 with bread wheat cv. JN177 as the parent via asymmetric somatic hybridization, and found that the tolerance is partially attributed to the superior photosynthesis capacity. Here, we compared the proteomes of two cultivars to unravel the basis of superior photosynthesis capacity. In the maps of two dimensional difference gel electrophoresis (2D-DIGE), there were 26 differentially expressed proteins (DEPs), including 18 cultivar-based and 8 stress-responsive ones. 21 of 26 DEPs were identified and classified into four categories, including photosynthesis, photosynthesis system stability, linolenic acid metabolism, and protein synthesis in chloroplast. The chloroplast localization of some DEPs confirmed that the identified DEPs function in the chloroplast. The overexpression of a DEP enhanced salt tolerance in Arabidopsis thaliana. In line with these data, it is concluded that the contribution of chloroplast to high salinity tolerance of wheat cv. SR3 appears to include higher photosynthesis efficiency by promoting system protection and ROS clearance, stronger production of phytohormone JA by enhancing metabolism activity, and modulating the in chloroplast synthesis of proteins. PMID:27562633

  13. Genetic manipulation of isoprene emissions in poplar plants remodels the chloroplast proteome.

    Science.gov (United States)

    Velikova, Violeta; Ghirardo, Andrea; Vanzo, Elisa; Merl, Juliane; Hauck, Stefanie M; Schnitzler, Jörg-Peter

    2014-04-04

    Biogenic isoprene (2-methyl-1,3-butadiene) improves the integrity and functionality of thylakoid membranes and scavenges reactive oxygen species (ROS) in plant tissue under stress conditions. On the basis of available physiological studies, we hypothesized that the suppression of isoprene production in the poplar plant by genetic engineering would cause changes in the chloroplast protein pattern, which in turn would compensate for changes in chloroplast functionality and overall plant performance under abiotic stress. To test this hypothesis, we used a stable isotope-coded protein-labeling technique in conjunction with polyacrylamide gel electrophoresis and liquid chromatography tandem mass spectrometry. We analyzed quantitative and qualitative changes in the chloroplast proteome of isoprene-emitting and non isoprene-emitting poplars. Here we demonstrate that suppression of isoprene synthase by RNA interference resulted in decreased levels of chloroplast proteins involved in photosynthesis and increased levels of histones, ribosomal proteins, and proteins related to metabolism. Overall, our results show that the absence of isoprene triggers a rearrangement of the chloroplast protein profile to minimize the negative stress effects resulting from the absence of isoprene. The present data strongly support the idea that isoprene improves/stabilizes thylakoid membrane structure and interferes with the production of ROS.

  14. Discrete redox signaling pathways regulate photosynthetic light-harvesting and chloroplast gene transcription.

    Directory of Open Access Journals (Sweden)

    John F Allen

    Full Text Available In photosynthesis in chloroplasts, two related regulatory processes balance the actions of photosystems I and II. These processes are short-term, post-translational redistribution of light-harvesting capacity, and long-term adjustment of photosystem stoichiometry initiated by control of chloroplast DNA transcription. Both responses are initiated by changes in the redox state of the electron carrier, plastoquinone, which connects the two photosystems. Chloroplast Sensor Kinase (CSK is a regulator of transcription of chloroplast genes for reaction centres of the two photosystems, and a sensor of plastoquinone redox state. We asked whether CSK is also involved in regulation of absorbed light energy distribution by phosphorylation of light-harvesting complex II (LHC II. Chloroplast thylakoid membranes isolated from a CSK T-DNA insertion mutant and from wild-type Arabidopsis thaliana exhibit similar light- and redox-induced (32P-labelling of LHC II and changes in 77 K chlorophyll fluorescence emission spectra, while room-temperature chlorophyll fluorescence emission transients from Arabidopsis leaves are perturbed by inactivation of CSK. The results indicate indirect, pleiotropic effects of reaction centre gene transcription on regulation of photosynthetic light-harvesting in vivo. A single, direct redox signal is transmitted separately to discrete transcriptional and post-translational branches of an integrated cytoplasmic regulatory system.

  15. Positive Regulation of Phytochrome B on Chlorophyll Biosynthesis and Chloroplast Development in Rice

    Directory of Open Access Journals (Sweden)

    Jie ZHAO

    2013-07-01

    Full Text Available Phytochromes in rice are encoded by a gene family composed of three members, PHYA, PHYB, and PHYC. Through characterizing the phytochrome mutants and wild type (WT in terms of photomorphogenesis, roles of individual phytochromes have been preliminarily explored in regulating rice de-etiolation, flowering time and fertility. However, little information has been reported about whether or how phytochromes affect chlorophyll biosynthesis and chloroplast development in rice. In this study, we compared the chlorophyll contents of wild type and the phyA, phyB and phyAphyB mutants grown under either white light (WL or red light (R. The results suggest that phyB perceives R to positively regulate chlorophyll biosynthesis, while the role of phyA can be detected only in the phyB-deficient mutant. Analyses of the expression levels of genes involved in chlorophyll biosynthesis revealed that phytochromes affected the chlorophyll biosynthesis by regulating protochlorophyll oxidoreductase A (PORA expression. The role of phyB in chloroplast development was also analyzed, and the results suggest that phyB perceives R to regulate chloroplast development by affecting the numbers of chloroplasts and grana, as well as the chloroplast membrane system.

  16. Effects of Pb 2+ on energy distribution and photochemical activity of spinach chloroplast

    Science.gov (United States)

    Wu, Xiao; Hong, Fashui; Liu, Chao; Su, Mingyu; Zheng, Lei; Gao, Fengqing; Yang, Fan

    2008-03-01

    Lead (Pb 2+) is a well-known highly toxic element. The mechanisms of the Pb 2+ toxicity are not well understood for photosynthesis. In this paper, we reported the effect of Pb 2+ on light absorption, distribution and conversion of spinach chloroplast by spectroscopy, and photochemical reaction activities. Several effects of Pb 2+ were observed: (1) the absorption peak intensity of chloroplast obviously decreased in red and blue region and produced optical flattering; (2) fluorescence quantum yield nearby 680 nm of chloroplast greatly declined; (3) the excitation band nearby 440 nm of chloroplast significantly descended; (4) Pb 2+ treatments reduced of the rate of whole chain electron transport, photochemical activities of PSII DCPIP photoreduction and oxygen evolution, but the photoreduction activities of PSI were little changed. Together, the studies of the experiments showed that Pb 2+ decreased absorption of light on spinach chloroplast and inhibited excitation energy to be absorbed by LHCII and transferred to PSII, then reduced the conversion from light energy to electron energy, and decelerated electron transport, water photolysis and oxygen evolution.

  17. The Complete Chloroplast Genome Sequences of the Medicinal Plant Pogostemon cablin

    Directory of Open Access Journals (Sweden)

    Yang He

    2016-06-01

    Full Text Available Pogostemon cablin, the natural source of patchouli alcohol, is an important herb in the Lamiaceae family. Here, we present the entire chloroplast genome of P. cablin. This genome, with 38.24% GC content, is 152,460 bp in length. The genome presents a typical quadripartite structure with two inverted repeats (each 25,417 bp in length, separated by one small and one large single-copy region (17,652 and 83,974 bp in length, respectively. The chloroplast genome encodes 127 genes, of which 107 genes are single-copy, including 79 protein-coding genes, four rRNA genes, and 24 tRNA genes. The genome structure, GC content, and codon usage of this chloroplast genome are similar to those of other species in the family, except that it encodes less protein-coding genes and tRNA genes. Phylogenetic analysis reveals that P. cablin diverged from the Scutellarioideae clade about 29.45 million years ago (Mya. Furthermore, most of the simple sequence repeats (SSRs are short polyadenine or polythymine repeats that contribute to high AT content in the chloroplast genome. Complete sequences and annotation of P. cablin chloroplast genome will facilitate phylogenic, population and genetic engineering research investigations involving this particular species.

  18. WSC-07: Evolving the Web Services Challenge

    NARCIS (Netherlands)

    Blake, M. Brian; Cheung, William K.W.; Jaeger, Michael C.; Wombacher, Andreas

    Service-oriented architecture (SOA) is an evolving architectural paradigm where businesses can expose their capabilities as modular, network-accessible software services. By decomposing capabilities into modular services, organizations can share their offerings at multiple levels of granularity

  19. Satcom access in the evolved packet core

    NARCIS (Netherlands)

    Cano, M.D.; Norp, A.H.J.; Popova, M.P.

    2012-01-01

    Satellite communications (Satcom) networks are increasingly integrating with terrestrial communications networks, namely Next Generation Networks (NGN). In the area of NGN the Evolved Packet Core (EPC) is a new network architecture that can support multiple access technologies. When Satcom is

  20. Acquisition: Acquisition of the Evolved SEASPARROW Missile

    National Research Council Canada - National Science Library

    2002-01-01

    .... The Evolved SEASPARROW Missile, a Navy Acquisition Category II program, is an improved version of the RIM-7P SEASPARROW missile that will intercept high-speed maneuvering, anti-ship cruise missiles...

  1. Biomimetic molecular design tools that learn, evolve, and adapt.

    Science.gov (United States)

    Winkler, David A

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known "S curve", with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  2. Biomimetic molecular design tools that learn, evolve, and adapt

    Directory of Open Access Journals (Sweden)

    David A Winkler

    2017-06-01

    Full Text Available A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  3. Higher rates of sex evolve in spatially heterogeneous environments.

    Science.gov (United States)

    Becks, Lutz; Agrawal, Aneil F

    2010-11-04

    The evolution and maintenance of sexual reproduction has puzzled biologists for decades. Although this field is rich in hypotheses, experimental evidence is scarce. Some important experiments have demonstrated differences in evolutionary rates between sexual and asexual populations; other experiments have documented evolutionary changes in phenomena related to genetic mixing, such as recombination and selfing. However, direct experiments of the evolution of sex within populations are extremely rare (but see ref. 12). Here we use the rotifer, Brachionus calyciflorus, which is capable of both sexual and asexual reproduction, to test recent theory predicting that there is more opportunity for sex to evolve in spatially heterogeneous environments. Replicated experimental populations of rotifers were maintained in homogeneous environments, composed of either high- or low-quality food habitats, or in heterogeneous environments that consisted of a mix of the two habitats. For populations maintained in either type of homogeneous environment, the rate of sex evolves rapidly towards zero. In contrast, higher rates of sex evolve in populations experiencing spatially heterogeneous environments. The data indicate that the higher level of sex observed under heterogeneity is not due to sex being less costly or selection against sex being less efficient; rather sex is sufficiently advantageous in heterogeneous environments to overwhelm its inherent costs. Counter to some alternative theories for the evolution of sex, there is no evidence that genetic drift plays any part in the evolution of sex in these populations.

  4. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  5. Cyberspace Operations: Influence Upon Evolving War Theory

    Science.gov (United States)

    2011-03-18

    St ra te gy R es ea rc h Pr oj ec t CYBERSPACE OPERATIONS: INFLUENCE UPON EVOLVING WAR THEORY BY COLONEL KRISTIN BAKER United States...DATES COVERED (From - To) 4. TITLE AND SUBTITLE Cyberspace Operations: Influence Upon Evolving War Theory 5a. CONTRACT NUMBER... Leadership 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S

  6. Evolving effective incremental SAT solvers with GP

    OpenAIRE

    Bader, Mohamed; Poli, R.

    2008-01-01

    Hyper-Heuristics could simply be defined as heuristics to choose other heuristics, and it is a way of combining existing heuristics to generate new ones. In a Hyper-Heuristic framework, the framework is used for evolving effective incremental (Inc*) solvers for SAT. We test the evolved heuristics (IncHH) against other known local search heuristics on a variety of benchmark SAT problems.

  7. The chloroplast genome hidden in plain sight, open access publishing and anti-fragile distributed data sources.

    Science.gov (United States)

    McKernan, Kevin Judd

    2016-11-01

    We sequenced several cannabis genomes in 2011 of June and the first and the longest contigs to emerge were the chloroplast and mitochondrial genomes. Having been a contributor to the Human Genome Project and an eye-witness to the real benefits of immediate data release, I have first hand experience with the potential mal-investment of millions of dollars of tax payer money narrowly averted due to the adopted global rapid data release policy. The policy was vital in reducing duplication of effort and economic waste. As a result, we felt obligated to publish the Cannabis genome data in a similar spirit and placed them immediately on a cloud based Amazon server in August of 2011. While these rapid data release practices were heralded by many in the media, we still find some authors fail to find or reference said work and hope to compel the readership that this omission has more pervasive repercussions than bruised egos and is a regression for our community.

  8. Wax esters of different compositions produced via engineering of leaf chloroplast metabolism in Nicotiana benthamiana.

    Science.gov (United States)

    Aslan, Selcuk; Sun, Chuanxin; Leonova, Svetlana; Dutta, Paresh; Dörmann, Peter; Domergue, Frédéric; Stymne, Sten; Hofvander, Per

    2014-09-01

    In a future bio-based economy, renewable sources for lipid compounds at attractive cost are needed for applications where today petrochemical derivatives are dominating. Wax esters and fatty alcohols provide diverse industrial uses, such as in lubricant and surfactant production. In this study, chloroplast metabolism was engineered to divert intermediates from de novo fatty acid biosynthesis to wax ester synthesis. To accomplish this, chloroplast targeted fatty acyl reductases (FAR) and wax ester synthases (WS) were transiently expressed in Nicotiana benthamiana leaves. Wax esters of different qualities and quantities were produced providing insights to the properties and interaction of the individual enzymes used. In particular, a phytyl ester synthase was found to be a premium candidate for medium chain wax ester synthesis. Catalytic activities of FAR and WS were also expressed as a fusion protein and determined functionally equivalent to the expression of individual enzymes for wax ester synthesis in chloroplasts. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Authentication of Zanthoxylum Species Based on Integrated Analysis of Complete Chloroplast Genome Sequences and Metabolite Profiles.

    Science.gov (United States)

    Lee, Hyeon Ju; Koo, Hyun Jo; Lee, Jonghoon; Lee, Sang-Choon; Lee, Dong Young; Giang, Vo Ngoc Linh; Kim, Minjung; Shim, Hyeonah; Park, Jee Young; Yoo, Ki-Oug; Sung, Sang Hyun; Yang, Tae-Jin

    2017-11-29

    We performed chloroplast genome sequencing and comparative analysis of two Rutaceae species, Zanthoxylum schinifolium (Korean pepper tree) and Z. piperitum (Japanese pepper tree), which are medicinal and culinary crops in Asia. We identified more than 837 single nucleotide polymorphisms and 103 insertions/deletions (InDels) based on a comparison of the two chloroplast genomes and developed seven DNA markers derived from five tandem repeats and two InDel variations that discriminated between Korean Zanthoxylum species. Metabolite profile analysis pointed to three metabolic groups, one with Korean Z. piperitum samples, one with Korean Z. schinifolium samples, and the last containing all the tested Chinese Zanthoxylum species samples, which are considered to be Z. bungeanum based on our results. Two markers were capable of distinguishing among these three groups. The chloroplast genome sequences identified in this study represent a valuable genomics resource for exploring diversity in Rutaceae, and the molecular markers will be useful for authenticating dried Zanthoxylum berries in the marketplace.

  10. Induction events and short-term regulation of electron transport in chloroplasts: an overview.

    Science.gov (United States)

    Tikhonov, Alexander N

    2015-08-01

    Regulation of photosynthetic electron transport at different levels of structural and functional organization of photosynthetic apparatus provides efficient performance of oxygenic photosynthesis in plants. This review begins with a brief overview of the chloroplast electron transport chain. Then two noninvasive biophysical methods (measurements of slow induction of chlorophyll a fluorescence and EPR signals of oxidized P700 centers) are exemplified to illustrate the possibility of monitoring induction events in chloroplasts in vivo and in situ. Induction events in chloroplasts are considered and briefly discussed in the context of short-term mechanisms of the following regulatory processes: (i) pH-dependent control of the intersystem electron transport; (ii) the light-induced activation of the Calvin-Benson cycle; (iii) optimization of electron transport due to fitting alternative pathways of electron flow and partitioning light energy between photosystems I and II; and (iv) the light-induced remodeling of photosynthetic apparatus and thylakoid membranes.

  11. Complete chloroplast genome of green tide algae Ulva flexuosa (Ulvophyceae, Chlorophyta) with comparative analysis.

    Science.gov (United States)

    Cai, Chuner; Wang, Lingke; Zhou, Lingjie; He, Peimin; Jiao, Binghua

    2017-01-01

    Ulva flexuosa, one kind of green tide algae, has outbroken in the Yellow Sea of China during the past ten years. In the present study, we sequenced the chloroplast genome of U. flexuosa followed by annotation and comparative analysis. It indicated that the chloroplast genomes had high conservation among Ulva spp., and high rearrangement outside them. Though U. flexuosa was closer to U. linza than U. fasciata in phylogenetic tree, the average Ka/Ks between U. flexuosa and U. linza assessed by 67 protein-coding genes was higher than those between U. flexuosa and other species in Ulva spp., due to the variation of psbZ, psbM and ycf20. Our results laid the foundation for the future studies on the evolution of chloroplast genomes of Ulva, as well as the molecular identification of U. flexuosa varieties.

  12. Multimodal lightsheet, structured illumination and Airyscan superresolution microscopy of chloroplast size and its impact on light propagation

    Science.gov (United States)

    Altering chloroplast size changes the way light propagates through a leaf by altering light reflectance and transmission as well as absorption by chlorophyll. Thus changing chloroplast size can used to manipulate leaf optical properties to optimize photosynthetic efficiency with the ultimate goal of...

  13. Specific and efficient targeting of cyanobacterial bicarbonate transporters to the inner envelope membrane of chloroplasts in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Susumu eUehara

    2016-02-01

    Full Text Available Installation of cyanobacterial bicarbonate transporters to the inner envelope membrane (IEM of chloroplasts in C3 plants has been thought to improve photosynthetic performance. However, the method to deliver cyanobacterial bicarbonate transporters to the chloroplast IEM remains to be established. In this study, we provide evidence that the cyanobacterial bicarbonate transporters, BicA and SbtA, can be specifically installed into the chloroplast IEM using the chloroplast IEM targeting signal in conjunction with the transit peptide. We fused the transit peptide and the mature portion of Cor413im1, whose targeting mechanism to the IEM has been characterized in detail, to either BicA or SbtA isolated from Synechocystis sp. PCC6803. Among the seven chimeric constructs tested, we confirmed that four chimeric bicarbonate transporters, designated as BicAI, BicAII, SbtAII, and SbtAIII, were expressed in Arabidopsis. Furthermore, these chimeric transporters were specifically targeted to the chloroplast IEM. They were also resistant to alkaline extraction but can be solubilized by Triton X-100, indicating that they are integral membrane proteins in the chloroplast IEM. One of the transporters, BicA, could reside in the chloroplast IEM even after removal of the IEM targeting signal. Taken together, our results indicate that the addition of IEM targeting signal, as well as the transit peptide, to bicarbonate transporters allows us to efficiently target nuclear-encoded chimeric bicarbonate transporters to the chloroplast IEM.

  14. Sequencing Cucumber (Cucumis Sativus L.) Chloroplast Genomes Identifies Differences Between Chilling-Tolerant and-Susceptible Cucumber Lines

    Science.gov (United States)

    Complete sequencing of cucumber chloroplast (cp)DNA was facilitated by the development of 414 consensus chloroplast sequencing primers (CCSPs) from conserved cpDNA sequences of Arabidopsis (Arabidopsis thaliana L.), spinach (Spinacia oleracea L.), and tobacco (Nicotiana tabacum L.) cpDNAs, using deg...

  15. Genetic structure of Eurasian and North American Leymus (Triticeae) wildryes assessed by chloroplast DNA sequences and AFLP profiles

    Science.gov (United States)

    C. Mae Culumber; Steve R. Larson; Kevin B. Jensen; Thomas A. Jones

    2011-01-01

    Leymus is a genomically defined allopolyploid of genus Triticeae with two distinct subgenomes. Chloroplast DNA sequences of Eurasian and North American species are distinct and polyphyletic. However, phylogenies derived from chloroplast and nuclear DNA sequences are confounded by polyploidy and lack of polymorphism among many taxa. The AFLP technique can resolve...

  16. In vivo visualization of Mg-protoporphyrin IX, a coordinator of photosynthetic gene expression in the nucleus and the chloroplast

    DEFF Research Database (Denmark)

    Ankele, Elisabeth; Kindgren, Peter; Pesquet, Edouard

    2007-01-01

    property of tetrapyrroles, Mg-ProtoIX could be visualized in the cells using confocal laser scanning spectroscopy. Our results demonstrate that Mg-ProtoIX accumulated both in the chloroplast and in the cytosol during stress conditions. Thus, the signaling metabolite is exported from the chloroplast...

  17. Effects of temperature and light on the formation of chloroplast protrusions in leaf mesophyll cells of high alpine plants.

    Science.gov (United States)

    Buchner, Othmar; Holzinger, Andreas; Lütz, Cornelius

    2007-11-01

    Chloroplasts of many alpine plants have the ability to form marked, stroma-filled protrusions that do not contain thylakoids. Effects of temperature and light intensity on the frequency of chloroplasts with such protrusions in leaf mesophyll cells of nine different alpine plant species (Carex curvula All., Leontodon helveticus Merat., Oxyria digyna (L.) Hill., Poa alpina L. ssp. vivipara, Polygonum viviparum L., Ranunculus glacialis L., Ranunculus alpestris L., Silene acaulis L. and Soldanella pusilla Baumg.) covering seven different families were studied. Leaves were exposed to either darkness and a stepwise increase in temperature (10-38 degrees C) or to different light intensities (500 and 2000 micromol photons m(-2) s(-1)) and a constant temperature of 10 or 30 degrees C in a special temperature-regulated chamber. A chloroplast protrusions index characterising the relative proportion of chloroplasts with protrusions was defined. Seven of the nine species showed a significant increase in chloroplast protrusions when temperature was elevated to over 20 degrees C. In contrast, the light level did not generally affect the abundance of chloroplasts with protrusions. Chloroplast protrusions lead to a dynamic enlargement of the chloroplast surface area. They do not appear to be directly connected to a distinct photosystem II (PSII) (F(v)/F(m)) status and thus seem to be involved in secondary, not primary, photosynthetic processes.

  18. Reversible modifications of chloroplast proteins and assessment of their functions

    OpenAIRE

    Ingelsson, Björn

    2012-01-01

    Oxygenic photosynthesis is the process of solar energy conversion into chemical energy in the form of carbohydrates. This event is carried out by plants, algae and cyanobacteria and represents the starting point of the food chain in which most organisms are fed. Due to never-ending changes in the surrounding environment, these photoautotrophic organisms have evolved different acclimatizing strategies to optimize photosynthesis. Many of these fine-tuning mechanisms are dependent on reversible ...

  19. Identification and Characterization of a Chloroplast-Targeted Obg GTPase in Dendrobium officinale.

    Science.gov (United States)

    Chen, Ji; Deng, Feng; Deng, Mengsheng; Han, Jincheng; Chen, Jianbin; Wang, Li; Yan, Shen; Tong, Kai; Liu, Fan; Tian, Mengliang

    2016-12-01

    Bacterial homologous chloroplast-targeted Obg GTPases (ObgCs) belong to the plant-typical Obg group, which is involved in diverse physiological processes during chloroplast development. However, the evolutionarily conserved function of ObgC in plants remains elusive and requires further investigation. In this study, we identified DoObgC from an epiphytic plant Dendrobium officinale and demonstrated the characteristics of DoObgC. Sequence analysis indicated that DoObgC is highly conserved with other plant ObgCs, which contain the chloroplast transit peptide (cTP), Obg fold, G domain, and OCT regions. The C terminus of DoObgC lacking the chloroplast-targeting cTP region, DoObgCΔ1-160, showed strong similarity to ObgE and other bacterial Obgs. Overexpression of DoObgCΔ1-160 in Escherichia coli caused slow cell growth and an increased number of elongated cells. This phenotype was consistent with the phenotype of cells overexpressing ObgE. Furthermore, the expression of recombinant DoObgCΔ1-160 enhanced the cell persistence of E. coli to streptomycin. Results of transient expression assays revealed that DoObgC was localized to chloroplasts. Moreover, we demonstrated that DoObgC could rescue the embryotic lethal phenotype of the Arabidopsis obgc-t mutant, suggesting that DoObgC is a functional homolog to Arabidopsis AtObgC in D. officinale. Gene expression profiles showed that DoObgC was expressed in leaf-specific and light-dependent patterns and that DoObgC responded to wounding treatments. Our previous and present studies reveal that ObgC has an evolutionarily conserved role in ribosome biogenesis to adapt chloroplast development to the environment.

  20. The Complete Chloroplast Genome of the Hare’s Ear Root, Bupleurum falcatum: Its Molecular Features

    Directory of Open Access Journals (Sweden)

    Dong-Ho Shin

    2016-05-01

    Full Text Available Bupleurum falcatum, which belongs to the family Apiaceae, has long been applied for curative treatments, especially as a liver tonic, in herbal medicine. The chloroplast (cp genome has been an ideal model to perform the evolutionary and comparative studies because of its highly conserved features and simple structure. The Apiaceae family is taxonomically close to the Araliaceae family and there have been numerous complete chloroplast genome sequences reported in the Araliaceae family, while little is known about the Apiaceae family. In this study, the complete sequence of the B. falcatum chloroplast genome was obtained. The full-length of the cp genome is 155,989 nucleotides with a 37.66% overall guanine-cytosine (GC content and shows a quadripartite structure composed of three nomenclatural regions: a large single-copy (LSC region, a small single-copy (SSC region, and a pair of inverted repeat (IR regions. The genome occupancy is 85,912-bp, 17,517-bp, and 26,280-bp for LSC, SSC, and IR, respectively. B. falcatum was shown to contain 111 unique genes (78 for protein-coding, 29 for tRNAs, and four for rRNAs, respectively on its chloroplast genome. Genic comparison found that B. falcatum has no pseudogenes and has two gene losses, accD in the LSC and ycf15 in the IRs. A total of 55 unique tandem repeat sequences were detected in the B. falcatum cp genome. This report is the first to describe the complete chloroplast genome sequence in B. falcatum and will open up further avenues of research to understand the evolutionary panorama and the chloroplast genome conformation in related plant species.

  1. Evolvability Search: Directly Selecting for Evolvability in order to Study and Produce It

    DEFF Research Database (Denmark)

    Mengistu, Henok; Lehman, Joel Anthony; Clune, Jeff

    2016-01-01

    One hallmark of natural organisms is their significant evolvability, i.e.,their increased potential for further evolution. However, reproducing such evolvability in artificial evolution remains a challenge, which both reduces the performance of evolutionary algorithms and inhibits the study...... of evolvable digital phenotypes. Although some types of selection in evolutionary computation indirectly encourage evolvability, one unexplored possibility is to directly select for evolvability. To do so, we estimate an individual's future potential for diversity by calculating the behavioral diversity of its...... immediate offspring, and select organisms with increased offspring variation. While the technique is computationally expensive, we hypothesized that direct selection would better encourage evolvability than indirect methods. Experiments in two evolutionary robotics domains confirm this hypothesis: in both...

  2. Photosynthesis by Guard Cell Chloroplasts of Vicia faba L. : Effects of Factors Associated with Stomatal Movement

    OpenAIRE

    Weihua, WU; Sarah M., ASSMANN; The Biological Laboratories, Harvard University:(Current)Biology Department, Pennsylvania State University

    1993-01-01

    The properties of photosynthetic O_2 evolution by mesophyll cell chloroplasts (MCC) and guard cell chloroplasts (GCC) isolated from protoplasts of Vicia faba L. have been studied and effects on O_2 evolution of factors known to regulate stomatal movements have been compared. The O_2 evolution of GCC was CO_2-dependent. The saturating light intensity for O_2 evolution was between 150 and 200 μmol m^ s^ for MCC and was between 400 and 1,000μmol m^ s^ for GCC. Light quality (red vs. blue) had no...

  3. Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress.

    OpenAIRE

    Vasilikiotis, C; Melis, A

    1994-01-01

    A daily occurrence in the life of a plant is the function of a photosystem II (PSII) damage and repair cycle in chloroplasts. This unique phenomenon involves the frequent turnover of D1, the 32-kDa reaction-center protein of PSII (chloroplast psbA gene product). In the model organism Dunaliella salina (a green alga), growth under low light (100 mol of photons per m2 per sec) entails damage, degradation, and replacement of D1 every 7 hr. Growth under irradiance stress (2200 micromol of photons...

  4. The association of gibberellin-like activity with the chloroplast fraction of leaf homogenates.

    Science.gov (United States)

    Stoddart, J L

    1968-03-01

    Significant gibberellin-like activity has been detected in the 1000xg fraction of leaves of Brassica oleracea var. acephala (Canson kale) and Hordeum vulgare (cv. "Himalaya"). In kale and barley the qualitative pattern of activity found in the chloroplast fraction differs from that normally seen in total-leaf extracts. When expressed on a total chlorophyll or sample fresh-weight basis, approximately 16% of the gibberellin-like activity found in the leaf can be accounted for in the 1000xg or chloroplast fraction. The physiological implications of this finding are discussed.

  5. The complete chloroplast genome sequence of Tetrastigma hemsleyanum Diels at Gilg.

    Science.gov (United States)

    Li, Mengzhu; Chen, Qinyi; Yang, Bingxian; Ma, Ji; Li, Baoguo; Zhang, Lin

    2016-09-01

    The complete chloroplast genome sequence of Tetrastigma hemsleyanum Diels at Gilg, a critical Chinese medicine, is reported here. The complete chloroplast genome of Tetrastigma hemsleyanum Diels at Gilg is 159 914 bp in length with 37.55% overall GC content. A pair of IRs (inverted repeats) of 26 510 bp were separated by LSC (87 927 bp) and SSC (18 967 bp). The phylogenetic analysis of 40 taxa showed a strong sister relationship with all other rosids. However, the placement of Myrtales still needs further verification.

  6. Evolved atmospheric entry corridor with safety factor

    Science.gov (United States)

    Liang, Zixuan; Ren, Zhang; Li, Qingdong

    2018-02-01

    Atmospheric entry corridors are established in previous research based on the equilibrium glide condition which assumes the flight-path angle to be zero. To get a better understanding of the highly constrained entry flight, an evolved entry corridor that considers the exact flight-path angle is developed in this study. Firstly, the conventional corridor in the altitude vs. velocity plane is extended into a three-dimensional one in the space of altitude, velocity, and flight-path angle. The three-dimensional corridor is generated by a series of constraint boxes. Then, based on a simple mapping method, an evolved two-dimensional entry corridor with safety factor is obtained. The safety factor is defined to describe the flexibility of the flight-path angle for a state within the corridor. Finally, the evolved entry corridor is simulated for the Space Shuttle and the Common Aero Vehicle (CAV) to demonstrate the effectiveness of the corridor generation approach. Compared with the conventional corridor, the evolved corridor is much wider and provides additional information. Therefore, the evolved corridor would benefit more to the entry trajectory design and analysis.

  7. Environmental noise, genetic diversity and the evolution of evolvability and robustness in model gene networks.

    Directory of Open Access Journals (Sweden)

    Christopher F Steiner

    Full Text Available The ability of organisms to adapt and persist in the face of environmental change is accepted as a fundamental feature of natural systems. More contentious is whether the capacity of organisms to adapt (or "evolvability" can itself evolve and the mechanisms underlying such responses. Using model gene networks, I provide evidence that evolvability emerges more readily when populations experience positively autocorrelated environmental noise (red noise compared to populations in stable or randomly varying (white noise environments. Evolvability was correlated with increasing genetic robustness to effects on network viability and decreasing robustness to effects on phenotypic expression; populations whose networks displayed greater viability robustness and lower phenotypic robustness produced more additive genetic variation and adapted more rapidly in novel environments. Patterns of selection for robustness varied antagonistically with epistatic effects of mutations on viability and phenotypic expression, suggesting that trade-offs between these properties may constrain their evolutionary responses. Evolution of evolvability and robustness was stronger in sexual populations compared to asexual populations indicating that enhanced genetic variation under fluctuating selection combined with recombination load is a primary driver of the emergence of evolvability. These results provide insight into the mechanisms potentially underlying rapid adaptation as well as the environmental conditions that drive the evolution of genetic interactions.

  8. Interactively Evolving Compositional Sound Synthesis Networks

    DEFF Research Database (Denmark)

    Jónsson, Björn Þór; Hoover, Amy K.; Risi, Sebastian

    2015-01-01

    While the success of electronic music often relies on the uniqueness and quality of selected timbres, many musicians struggle with complicated and expensive equipment and techniques to create their desired sounds. Instead, this paper presents a technique for producing novel timbres that are evolved......, CPPNs can theoretically compute any function and can build on those present in traditional synthesizers (e.g. square, sawtooth, triangle, and sine waves functions) to produce completely novel timbres. Evolved with NeuroEvolution of Augmenting Topologies (NEAT), the aim of this paper is to explore...... the space of potential sounds that can be generated through such compositional sound synthesis networks (CSSNs). To study the effect of evolution on subjective appreciation, participants in a listener study ranked evolved timbres by personal preference, resulting in preferences skewed toward the first...

  9. Quantifying evolvability in small biological networks

    Energy Technology Data Exchange (ETDEWEB)

    Nemenman, Ilya [Los Alamos National Laboratory; Mugler, Andrew [COLUMBIA UNIV; Ziv, Etay [COLUMBIA UNIV; Wiggins, Chris H [COLUMBIA UNIV

    2008-01-01

    The authors introduce a quantitative measure of the capacity of a small biological network to evolve. The measure is applied to a stochastic description of the experimental setup of Guet et al. (Science 2002, 296, pp. 1466), treating chemical inducers as functional inputs to biochemical networks and the expression of a reporter gene as the functional output. The authors take an information-theoretic approach, allowing the system to set parameters that optimise signal processing ability, thus enumerating each network's highest-fidelity functions. All networks studied are highly evolvable by the measure, meaning that change in function has little dependence on change in parameters. Moreover, each network's functions are connected by paths in the parameter space along which information is not significantly lowered, meaning a network may continuously change its functionality without completely losing it along the way. This property further underscores the evolvability of the networks.

  10. Cytokinin Regulates the Etioplast-Chloroplast Transition through the Two-Component Signaling System and Activation of Chloroplast-Related Genes.

    Science.gov (United States)

    Cortleven, Anne; Marg, Ingke; Yamburenko, Maria V; Schlicke, Hagen; Hill, Kristine; Grimm, Bernhard; Schaller, G Eric; Schmülling, Thomas

    2016-09-01

    One of the classical functions of the plant hormone cytokinin is the regulation of plastid development, but the underlying molecular mechanisms remain elusive. In this study, we employed a genetic approach to evaluate the role of cytokinin and its signaling pathway in the light-induced development of chloroplasts from etioplasts in Arabidopsis (Arabidopsis thaliana). Cytokinin increases the rate of greening and stimulates ultrastructural changes characteristic for the etioplast-to-chloroplast transition. The steady-state levels of metabolites of the tetrapyrrole biosynthesis pathway leading to the production of chlorophyll are enhanced by cytokinin. This effect of cytokinin on metabolite levels arises due to the modulation of expression for chlorophyll biosynthesis genes such as HEMA1, GUN4, GUN5, and CHLM Increased expression of HEMA1 is reflected in an enhanced level of the encoded glutamyl-tRNA reductase, which catalyzes one of the rate-limiting steps of chlorophyll biosynthesis. Mutant analysis indicates that the cytokinin receptors ARABIDOPSIS HIS KINASE2 (AHK2) and AHK3 play a central role in this process. Furthermore, the B-type ARABIDOPSIS RESPONSE REGULATOR1 (ARR1), ARR10, and ARR12 play an important role in mediating the transcriptional output during etioplast-chloroplast transition. B-type ARRs bind to the promotors of HEMA1 and LHCB6 genes, indicating that cytokinin-dependent transcription factors directly regulate genes of chlorophyll biosynthesis and the light harvesting complex. Together, these results demonstrate an important role for the cytokinin signaling pathway in chloroplast development, with the direct transcriptional regulation of chlorophyll biosynthesis genes as a key aspect for this hormonal control. © 2016 American Society of Plant Biologists. All rights reserved.

  11. Evolution of evolvability in gene regulatory networks.

    Directory of Open Access Journals (Sweden)

    Anton Crombach

    Full Text Available Gene regulatory networks are perhaps the most important organizational level in the cell where signals from the cell state and the outside environment are integrated in terms of activation and inhibition of genes. For the last decade, the study of such networks has been fueled by large-scale experiments and renewed attention from the theoretical field. Different models have been proposed to, for instance, investigate expression dynamics, explain the network topology we observe in bacteria and yeast, and for the analysis of evolvability and robustness of such networks. Yet how these gene regulatory networks evolve and become evolvable remains an open question. An individual-oriented evolutionary model is used to shed light on this matter. Each individual has a genome from which its gene regulatory network is derived. Mutations, such as gene duplications and deletions, alter the genome, while the resulting network determines the gene expression pattern and hence fitness. With this protocol we let a population of individuals evolve under Darwinian selection in an environment that changes through time. Our work demonstrates that long-term evolution of complex gene regulatory networks in a changing environment can lead to a striking increase in the efficiency of generating beneficial mutations. We show that the population evolves towards genotype-phenotype mappings that allow for an orchestrated network-wide change in the gene expression pattern, requiring only a few specific gene indels. The genes involved are hubs of the networks, or directly influencing the hubs. Moreover, throughout the evolutionary trajectory the networks maintain their mutational robustness. In other words, evolution in an alternating environment leads to a network that is sensitive to a small class of beneficial mutations, while the majority of mutations remain neutral: an example of evolution of evolvability.

  12. How the first biopolymers could have evolved.

    Science.gov (United States)

    Abkevich, V I; Gutin, A M; Shakhnovich, E I

    1996-01-01

    In this work, we discuss a possible origin of the first biopolymers with stable unique structures. We suggest that at the prebiotic stage of evolution, long organic polymers had to be compact to avoid hydrolysis and had to be soluble and thus must not be exceedingly hydrophobic. We present an algorithm that generates such sequences for model proteins. The evolved sequences turn out to have a stable unique structure, into which they quickly fold. This result illustrates the idea that the unique three-dimensional native structures of first biopolymers could have evolved as a side effect of nonspecific physicochemical factors acting at the prebiotic stage of evolution. PMID:8570645

  13. Evolving Intelligent Systems Methodology and Applications

    CERN Document Server

    Angelov, Plamen; Kasabov, Nik

    2010-01-01

    From theory to techniques, the first all-in-one resource for EIS. There is a clear demand in advanced process industries, defense, and Internet and communication (VoIP) applications for intelligent yet adaptive/evolving systems. Evolving Intelligent Systems is the first self- contained volume that covers this newly established concept in its entirety, from a systematic methodology to case studies to industrial applications. Featuring chapters written by leading world experts, it addresses the progress, trends, and major achievements in this emerging research field, with a strong emphasis on th

  14. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences.

    Science.gov (United States)

    Izan, Shairul; Esselink, Danny; Visser, Richard G F; Smulders, Marinus J M; Borm, Theo

    2017-01-01

    Whole Genome Shotgun (WGS) sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This re-sequencing approach may select against structural differences between the genomes especially in non-model species for which no close relatives have been sequenced before. The alternative approach is to de novo assemble the chloroplast genome from total genomic DNA sequences. In this study, we used k-mer frequency tables to identify and extract the chloroplast reads from the WGS reads and assemble these using a highly integrated and automated custom pipeline. Our strategy includes steps aimed at optimizing assemblies and filling gaps which are left due to coverage variation in the WGS dataset. We have successfully de novo assembled three complete chloroplast genomes from plant species with a range of nuclear genome sizes to demonstrate the universality of our approach: Solanum lycopersicum (0.9 Gb), Aegilops tauschii (4 Gb) and Paphiopedilum henryanum (25 Gb). We also highlight the need to optimize the choice of k and the amount of data used. This new and cost-effective method for de novo short read assembly will facilitate the study of complete chloroplast genomes with more accurate analyses and inferences, especially in non-model plant genomes.

  15. De Novo Assembly of Complete Chloroplast Genomes from Non-model Species Based on a K-mer Frequency-Based Selection of Chloroplast Reads from Total DNA Sequences

    Directory of Open Access Journals (Sweden)

    Shairul Izan

    2017-08-01

    Full Text Available Whole Genome Shotgun (WGS sequences of plant species often contain an abundance of reads that are derived from the chloroplast genome. Up to now these reads have generally been identified and assembled into chloroplast genomes based on homology to chloroplasts from related species. This re-sequencing approach may select against structural differences between the genomes especially in non-model species for which no close relatives have been sequenced before. The alternative approach is to de novo assemble the chloroplast genome from total genomic DNA sequences. In this study, we used k-mer frequency tables to identify and extract the chloroplast reads from the WGS reads and assemble these using a highly integrated and automated custom pipeline. Our strategy includes steps aimed at optimizing assemblies and filling gaps which are left due to coverage variation in the WGS dataset. We have successfully de novo assembled three complete chloroplast genomes from plant species with a range of nuclear genome sizes to demonstrate the universality of our approach: Solanum lycopersicum (0.9 Gb, Aegilops tauschii (4 Gb and Paphiopedilum henryanum (25 Gb. We also highlight the need to optimize the choice of k and the amount of data used. This new and cost-effective method for de novo short read assembly will facilitate the study of complete chloroplast genomes with more accurate analyses and inferences, especially in non-model plant genomes.

  16. Preface: evolving rotifers, evolving science: Proceedings of the XIV International Rotifer Symposium

    Czech Academy of Sciences Publication Activity Database

    Devetter, Miloslav; Fontaneto, D.; Jersabek, Ch.D.; Welch, D.B.M.; May, L.; Walsh, E.J.

    2017-01-01

    Roč. 796, č. 1 (2017), s. 1-6 ISSN 0018-8158 Institutional support: RVO:60077344 Keywords : evolving rotifers * 14th International Rotifer Symposium * evolving science Subject RIV: EG - Zoology OBOR OECD: Zoology Impact factor: 2.056, year: 2016

  17. Cladistic biogeography of Juglans (Juglandaceae) based on chloroplast DNA intergenic spacer sequences

    Science.gov (United States)

    The phylogenetic utility of sequence variation from five chloroplast DNA intergenic spacer (IGS) regions: trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM was examined in the genus Juglans. A total of seventeen taxa representing the four sections within Juglans and an outgroup taxon, ...

  18. Diversity of chloroplast genome among local clones of cocoa (Theobroma cacao, L.) from Central Sulawesi

    Science.gov (United States)

    Suwastika, I. Nengah; Pakawaru, Nurul Aisyah; Rifka, Rahmansyah, Muslimin, Ishizaki, Yoko; Cruz, André Freire; Basri, Zainuddin; Shiina, Takashi

    2017-02-01

    Chloroplast genomes typically range in size from 120 to 170 kilo base pairs (kb), which relatively conserved among plant species. Recent evaluation on several species, certain unique regions showed high variability which can be utilized in the phylogenetic analysis. Many fragments of coding regions, introns, and intergenic spacers, such as atpB-rbcL, ndhF, rbcL, rpl16, trnH-psbA, trnL-F, trnS-G, etc., have been used for phylogenetic reconstructions at various taxonomic levels. Based on that status, we would like to analysis the diversity of chloroplast genome within species of local cacao (Theobroma cacao L.) from Central Sulawesi. Our recent data showed, there were more than 20 clones from local farming in Central Sulawesi, and it can be detected based on phenotypic and nuclear-genome-based characterization (RAPD- Random Amplified Polymorphic DNA and SSR- Simple Sequences Repeat) markers. In developing DNA marker for this local cacao, here we also included analysis based on the variation of chloroplast genome. At least several regions such as rpl32-TurnL, it can be considered as chloroplast markers on our local clone of cocoa. Furthermore, we could develop phylogenetic analysis in between clones of cocoa.

  19. Postglacial migration of Populus nigra L.: lessons learnt from chloroplast DNA

    NARCIS (Netherlands)

    Cottrell, J.E.; Krystufek, V.; Tabbener, H.E.; Milner, A.D.; Connolly, T.; Sing, L.; Fluch, S.; Burg, K.; Lefèvre, F.; Achard, P.; Bordács, S.; Gebhardt, K.; Vornam, B.; Smulders, M.J.M.; Vanden Broeck, A.H.; Slycken, Van J.; Storme, V.; Boerjan, W.; Castiglione, S.; Fossati, T.; Alba, N.; Agúndez, D.; Maestro, C.; Notivol, E.; Bovenschen, J.; Dam, van B.C.

    2005-01-01

    Eleven laboratories have collaborated to study chloroplast DNA (cpDNA) variation in black poplar (Populus nigra L.) across Europe in order to improve our understanding of the location of glacial refugia and the subsequent postglacial routes of recolonisation. A common analysis based on the

  20. Chloroplast phylogeography of Helianthemum songaricum (Cistaceae) from northwestern China: implications for preservation of genetic diversity

    Science.gov (United States)

    Zhihao Su; Mingli Zhang; Stewart C. Sanderson

    2011-01-01

    Two chloroplast intergenic spacers (trnD-trnT and rps16-trnK) were used to study the phylogeographical structure of Helianthemum songaricum in northwestern China, with 12 haplotypes detected. Phylogenetic analysis showed that H. songaricum comprised two lineages, one distributed in the Yili Valley and the other in the western Ordos Plateau. Nested clade phylogeographic...

  1. Complete Chloroplast Genomes of Papaver rhoeas and Papaver orientale: Molecular Structures, Comparative Analysis, and Phylogenetic Analysis

    Directory of Open Access Journals (Sweden)

    Jianguo Zhou

    2018-02-01

    Full Text Available Papaver rhoeas L. and P. orientale L., which belong to the family Papaveraceae, are used as ornamental and medicinal plants. The chloroplast genome has been used for molecular markers, evolutionary biology, and barcoding identification. In this study, the complete chloroplast genome sequences of P. rhoeas and P. orientale are reported. Results show that the complete chloroplast genomes of P. rhoeas and P. orientale have typical quadripartite structures, which are comprised of circular 152,905 and 152,799-bp-long molecules, respectively. A total of 130 genes were identified in each genome, including 85 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. Sequence divergence analysis of four species from Papaveraceae indicated that the most divergent regions are found in the non-coding spacers with minimal differences among three Papaver species. These differences include the ycf1 gene and intergenic regions, such as rpoB-trnC, trnD-trnT, petA-psbJ, psbE-petL, and ccsA-ndhD. These regions are hypervariable regions, which can be used as specific DNA barcodes. This finding suggested that the chloroplast genome could be used as a powerful tool to resolve the phylogenetic positions and relationships of Papaveraceae. These results offer valuable information for future research in the identification of Papaver species and will benefit further investigations of these species.

  2. On the electron-scattering power of protein structures in the spinach chloroplast

    NARCIS (Netherlands)

    Bustraan, M.; Goedheer, J.C.; Thomas, J.B.

    1952-01-01

    The relative electron-scattering power of chromidia and interchromidia in protein structures of the spinach chloroplast was examined with the aid of the electron microscope. It has been demonstrated that: 1. 1. The technique of Marton and Schiff holds for WO3 crystals and silica films

  3. Imaging of organelles by electron microscopy reveals protein-protein interactions in mitochondria and chloroplasts

    NARCIS (Netherlands)

    Dudkina, Natalya V.; Kouril, Roman; Bultema, Jelle B.; Boekema, Egbert J.

    2010-01-01

    Ongoing progress in electron microscopy (EM) offers now an opening to visualize cells at the nanoscale by cryo-electron tomography (ET). Large protein complexes can be resolved at near-atomic resolution by single particle averaging. Some examples from mitochondria and chloroplasts illustrate the

  4. Electron cryomicroscopy of two-dimensional crystals of the H+-ATPase from chloroplasts

    NARCIS (Netherlands)

    Böttcher, Bettina; Gräber, Peter; Boekema, Egbert J.; Lücken, Uwe

    1995-01-01

    The H+-ATPase from spinach chloroplasts was isolated and purified. Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were

  5. ELECTRON CRYOMICROSCOPY OF 2-DIMENSIONAL CRYSTALS OF THE H+-ATPASE FROM CHLOROPLASTS

    NARCIS (Netherlands)

    BOTTCHER, B; GRABER, P; BOEKEMA, EJ; LUCKEN, U

    1995-01-01

    The H+-ATPase from spinach chloroplasts was isolated and purified, Two-dimensional crystals were obtained from the protein/lipid/detergent micelles by treatment with phospholipase and simultaneous removal of detergent and fatty acids by Biobeads. The resulting two-dimensionally ordered arrays were

  6. Linoleate and alpha-linolenate synthesis by isolated spinach (Spinacia oleracea) chloroplasts.

    Science.gov (United States)

    Roughan, P G; Mudd, J B; McManus, T T; Slack, C R

    1979-01-01

    Diacylgalactosylglycerol synthesis was a prerequisite for the incorporation of [1-14C]-acetate into linoleate and alpha-linolenate of isolated spinach (Spinacia oleracea) chloroplasts. Oleate at position 1 of diacylgalactosylglycerol was desaturated to linoleate and alpha-linolenate both in the light and in the dark. Some desaturation of palmitate was also observed after prolonged incubations. PMID:540049

  7. Differences in thermal acclimation of chloroplast functioning in two ecotypes of Valonia utricularis (Chlorophyta)

    NARCIS (Netherlands)

    Eggert, A.; van Hasselt, P.R; Breeman, Arno

    Chloroplast functioning in two temperature ecotypes of the tropical to warm-temperate green macrophyte Valonia ultricularis was monitored by measuring chlorophyll a fluorescence parameters. One ecotype from the Mediterranean Sea is, with respect to growth and survival, more cold-adapted and

  8. Regulation of photosynthetic electron flow in isolated chloroplasts by bicarbonate, formate and herbicides

    NARCIS (Netherlands)

    Snel, J.F.H.

    1985-01-01

    This thesis describes some efforts that were made to gain a better understanding of the processes involved in the regulation of photosynthetic electron flow by bicarbonate, formate and herbicides in chloroplasts. In the past decade a large amount of research has been devoted to get insight into the

  9. Phylogenetics of Impatiens and Hydrocera (Balsaminaceae) using chloroplast atpB-rbcL spacer sequences

    NARCIS (Netherlands)

    Janssens, S.; Geuten, K.; Yuan, Y.; Song, Y.; Küpfer, P.; Smets, E.

    2006-01-01

    Balsaminaceae are a morphologically diverse family with ca. 1,000 representatives that are mainly distributed in the Old World tropics and subtropics. To understand the relationships of its members, we obtained chloroplast atpB-rbcL sequences from 86 species of Balsaminaceae and five outgroups.

  10. Structure of the ATP synthase from chloroplasts studied by electron microscopy and image processing

    NARCIS (Netherlands)

    Boekema, Egbert J.; Heel, Marin van; Gräber, Peter

    1988-01-01

    The structure of the hydrophilic part of the ATP synthase from chloroplasts (CF1) has been investigated by electron microscopy of negatively stained samples. The staining conditions, which are generally critical for such small objects as CF1, could be improved by mixing CF1 samples with a much

  11. The Chloroplast Genome of Hyoscyamus niger and a Phylogenetic Study of the Tribe Hyoscyameae (Solanaceae)

    Science.gov (United States)

    Sanchez-Puerta, M. Virginia; Abbona, Cinthia Carolina

    2014-01-01

    The tribe Hyoscyameae (Solanaceae) is restricted to Eurasia and includes the genera Archihyoscyamus, Anisodus, Atropa, Atropanthe, Hyoscyamus, Physochlaina, Przewalskia and Scopolia. Even though the monophyly of Hyoscyameae is strongly supported, the relationships of the taxa within the tribe remain unclear. Chloroplast markers have been widely used to elucidate plant relationships at low taxonomic levels. Identification of variable chloroplast intergenic regions has been developed based on comparative genomics of chloroplast genomes, but these regions have a narrow phylogenetic utility. In this study, we present the chloroplast genome sequence of Hyoscyamus niger and make comparisons to other solanaceous plastid genomes in terms of gene order, gene and intron content, editing sites, origins of replication, repeats, and hypothetical open reading frames. We developed and sequenced three variable plastid markers from eight species to elucidate relationships within the tribe Hyoscyameae. The presence of a horizontally transferred intron in the mitochondrial cox1 gene of some species of the tribe is considered here a likely synapomorphy uniting five genera of the Hyoscyameae. Alternatively, the cox1 intron could be a homoplasious character acquired twice within the tribe. A homoplasious inversion in the intergenic plastid spacer trnC-psbM was recognized as a source of bias and removed from the data set used in the phylogenetic analyses. Almost 12 kb of plastid sequence data were not sufficient to completely resolve relationships among genera of Hyoscyameae but some clades were identified. Two alternative hypotheses of the evolution of the genera within the tribe are proposed. PMID:24851862

  12. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes.

    Science.gov (United States)

    McKain, Michael R; Hartsock, Ryan H; Wohl, Molly M; Kellogg, Elizabeth A

    2017-01-01

    Chloroplast genomes are now produced in the hundreds for angiosperm phylogenetics projects, but current methods for annotation, alignment and tree estimation still require some manual intervention reducing throughput and increasing analysis time for large chloroplast systematics projects. Verdant is a web-based software suite and database built to take advantage a novel annotation program, annoBTD. Using annoBTD, Verdant provides accurate annotation of chloroplast genomes without manual intervention. Subsequent alignment and tree estimation can incorporate newly annotated and publically available plastomes and can accommodate a large number of taxa. Verdant sharply reduces the time required for analysis of assembled chloroplast genomes and removes the need for pipelines and software on personal hardware. Verdant is available at: http://verdant.iplantcollaborative.org/plastidDB/ It is implemented in PHP, Perl, MySQL, Javascript, HTML and CSS with all major browsers supported. mrmckain@gmail.comSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.

  13. The Clp protease system; a central component of the chloroplast protease network.

    Science.gov (United States)

    Olinares, Paul Dominic B; Kim, Jitae; van Wijk, Klaas J

    2011-08-01

    Intra-plastid proteases play crucial and diverse roles in the development and maintenance of non-photosynthetic plastids and chloroplasts. Formation and maintenance of a functional thylakoid electron transport chain requires various protease activities, operating in parallel, as well as in series. This review first provides a short, referenced overview of all experimentally identified plastid proteases in Arabidopsis thaliana. We then focus on the Clp protease system which constitutes the most abundant and complex soluble protease system in the plastid, consisting of 15 nuclear-encoded members and one plastid-encoded member in Arabidopsis. Comparisons to the simpler Clp system in photosynthetic and non-photosynthetic bacteria will be made and the role of Clp proteases in the green algae Chlamydomonas reinhardtii will be briefly reviewed. Extensive molecular genetics has shown that the Clp system plays an essential role in Arabidopsis chloroplast development in the embryo as well as in leaves. Molecular characterization of the various Clp mutants has elucidated many of the consequences of loss of Clp activities. We summarize and discuss the structural and functional aspects of the Clp machinery, including progress on substrate identification and recognition. Finally, the Clp system will be evaluated in the context of the chloroplast protease network. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. A set of 100 chloroplast DNA primer pairs to study population genetics and phylogeny in monocotylenons

    DEFF Research Database (Denmark)

    Scarcelli, Nora; Bernaud, Adeline; Eiserhardt, Wolf L.

    2011-01-01

    Chloroplast DNA sequences are of great interest for population genetics and phylogenetic studies. However, only a small set of markers are commonly used. Most of them have been designed for amplification in a large range of Angiosperms and are located in the Large Single Copy (LSC). Here we...

  15. Phylogenetic relationships among cultivated Allium species from restriction enzyme analysis of the chloroplast genome.

    Science.gov (United States)

    Havey, M J

    1991-06-01

    The genus Allium contains many economically important species, including the bulb onion, chive, garlic, Japanese bunching onion, and leek. Phylogenetic relationships among the cultivated alliums are not well understood, and taxonomic classifications are based on relatively few morphological characters. Chloroplast DNA is highly conserved and useful in determining phylogenetic relationships. The size of the chloroplast genome of Allium cepa was estimated at 140 kb and restriction enzyme sites were mapped for KpnI, PstI, PvuII, SalI, XbaI, and XhoI. Variability at restriction enzyme sites in the chloroplast DNA was studied for at least three accessions of each of six cultivated, old-world Allium species. Of 189 restriction enzyme sites detected with 12 enzymes, 15 mutations were identified and used to estimate phylogenetic relationships. Cladistic analysis based on Wagner and Dollo parsimony resulted in a single, most-parsimonious tree of 16 steps and supported division of the species into sections. Allium species in section Porrum were distinguished from species in sections Cepa and Phyllodolon. Two species in section Rhiziridium, A. schoenoprasum and A. tuberosum, differed by five mutations and were placed in separate lineages. Allium cepa and A. fistulosum shared the loss of a restriction enzyme site and were phylogenetically closer to each other than to A. schoenoprasum. This study demonstrates the usefulness of restriction enzyme site analysis of the chloroplast genome in the elucidation of phylogenetic relationships in Allium.

  16. Structural and biochemical response of chloroplasts in tolerant and sensitive barley genotypes to drought stress.

    Science.gov (United States)

    Filek, Maria; Łabanowska, Maria; Kurdziel, Magdalena; Wesełucha-Birczyńska, Aleksandra; Bednarska-Kozakiewicz, Elżbieta

    2016-12-01

    The aim of this research was to characterize the changes of structural organization of chloroplasts of sensitive (Maresi) and tolerant (Cam/B1) barley genotypes upon soil drought (10days), which was applied in two stages of plant growth, i.e. seedlings and flag leaves. The electron paramagnetic resonance (EPR) technique was used for the determination of changes in the concentration and nature of long-lived radicals and metal ions (Mn, Fe), measured directly in the structures of fresh leaves, occurring after stress treatment. Stronger variations of EPR parameters were found after drought stress application in the flag-leaf phase and for sensitive genotype. Chloroplasts of Cam/B1 were characterized by a larger surface area and less degradation of their structure during drought stress in comparison to Maresi. The data obtained from Raman spectra showed that better stress tolerance of the genotype was accompanied by greater accumulation of carotenoids in chloroplasts and was correlated with an increase in carotenoid radicals. The increase of the value of the electrokinetic potential (relative to control), which was slightly larger for the chloroplasts of Maresi than of Cam/B1, indicated the chemical reconstruction of the membrane leading to a reduction of their polarity during drought action. Copyright © 2016 Elsevier GmbH. All rights reserved.

  17. A tiling microarray for global analysis of chloroplast genome expression in cucumber and other plants

    Directory of Open Access Journals (Sweden)

    Pląder Wojciech

    2011-09-01

    Full Text Available Abstract Plastids are small organelles equipped with their own genomes (plastomes. Although these organelles are involved in numerous plant metabolic pathways, current knowledge about the transcriptional activity of plastomes is limited. To solve this problem, we constructed a plastid tiling microarray (PlasTi-microarray consisting of 1629 oligonucleotide probes. The oligonucleotides were designed based on the cucumber chloroplast genomic sequence and targeted both strands of the plastome in a non-contiguous arrangement. Up to 4 specific probes were designed for each gene/exon, and the intergenic regions were covered regularly, with 70-nt intervals. We also developed a protocol for direct chemical labeling and hybridization of as little as 2 micrograms of chloroplast RNA. We used this protocol for profiling the expression of the cucumber chloroplast plastome on the PlasTi-microarray. Owing to the high sequence similarity of plant plastomes, the newly constructed microarray can be used to study plants other than cucumber. Comparative hybridization of chloroplast transcriptomes from cucumber, Arabidopsis, tomato and spinach showed that the PlasTi-microarray is highly versatile.

  18. Sequencing of chloroplast genome using whole cellular DNA and Solexa sequencing technology

    Directory of Open Access Journals (Sweden)

    Jian eWu

    2012-11-01

    Full Text Available Sequencing of the chloroplast genome using traditional sequencing methods has been difficult because of its size (>120 kb and the complicated procedures required to prepare templates. To explore the feasibility of sequencing the chloroplast genome using DNA extracted from whole cells and Solexa sequencing technology, we sequenced whole cellular DNA isolated from leaves of three Brassica rapa accessions with one lane per accession. In total, 246 Mb, 362Mb, 361 Mb sequence data were generated for the three accessions Chiifu-401-42, Z16 and FT, respectively. Microreads were assembled by reference-guided assembly using the cpDNA sequences of B. rapa, Arabidopsis thaliana, and Nicotiana tabacum. We achieved coverage of more than 99.96% of the cp genome in the three tested accessions using the B. rapa sequence as the reference. When A. thaliana or N. tabacum sequences were used as references, 99.7–99.8% or 95.5–99.7% of the B. rapa chloroplast genome was covered, respectively. These results demonstrated that sequencing of whole cellular DNA isolated from young leaves using the Illumina Genome Analyzer is an efficient method for high-throughput sequencing of chloroplast genome.

  19. Incorporation of iron into chloroplasts triggers the restoration of cadmium induced inhibition of photosynthesis.

    Science.gov (United States)

    Solti, Ádám; Sárvári, Éva; Tóth, Brigitta; Mészáros, Ilona; Fodor, Ferenc

    2016-09-01

    Photosynthetic symptoms of acute Cd stress can be remedied by elevated Fe supply. To shed more light on the most important aspects of this recovery, the detailed Fe trafficking and accumulation processes as well as the changes in the status of the photosynthetic apparatus were investigated in recovering poplar plants. The Cd-free, Fe-enriched nutrient solution induced an immediate intensive Fe uptake. The increased Fe/Cd ratio in the roots initiated the translocation of Fe to the leaf with a short delay that ultimately led to the accumulation of Fe in the chloroplasts. The chloroplast Fe uptake was directly proportional to the Fe translocation to leaves. The accumulation of PSI reaction centers and the recovery of PSII function studied by Blue-Native PAGE and chlorophyll a fluorescence induction measurements, respectively, began in parallel to the increase in the Fe content of chloroplasts. The initial reorganization of PSII was accompanied by a peak in the antennae-based non-photochemical quenching. In conclusion, Fe accumulation of the chloroplasts is a process of prime importance in the recovery of photosynthesis from acute Cd stress. Copyright © 2016 Elsevier GmbH. All rights reserved.

  20. Insights into phylogeny, sex function and age of Fragaria based on whole chloroplast genome sequencing

    Science.gov (United States)

    Wambui Njunguna; Aaron Liston; Richard Cronn; Tia-Lynn Ashman; Nahla Bassil

    2013-01-01

    The cultivated strawberry is one of the youngest domesticated plants, developed in France in the 1700s from chance hybridization between two western hemisphere octoploid species. However, little is known about the evolution of the species that gave rise to this important fruit crop. Phylogenetic analysis of chloroplast genome sequences of 21 Fragaria...

  1. Photoactivation of electrogenic activity in chloroplasts and its relation to photoinduced swelling of thylakoids

    NARCIS (Netherlands)

    Bulychev, A.A.; Vredenberg, W.J.

    2000-01-01

    In patch-clamp experiments on isolated chloroplasts of Peperomia metallica Lind. et Rodig. (Piperaceae), the replacement of 50 mM KCl in a medium with 50 mM NH4Cl strongly influenced the parameters of photocurrent known to reflect the generation of electric potential in thylakoids. The addition of

  2. Analysis of chloroplast ribosomal subunit S16 (rpS16) intron ...

    African Journals Online (AJOL)

    In this study, the chloroplast rps16 sequence variation of Morus was examined. Sequence data were obtained from 18 mulberry individuals belonging to 13 species and three varieties, and two accessions of Broussonetia papyrifera and Ficus carica of the related Moraceae, designed as outgroup were analyzed.

  3. Genepool Variation in Genus Glycine Subgenus Soja Revealed by Polymorphic Nuclear and Chloroplast Microsatellites

    Science.gov (United States)

    Powell, W.; Morgante, M.; Doyle, J. J.; McNicol, J. W.; Tingey, S. V.; Rafalski, A. J.

    1996-01-01

    A combination of nuclear and chloroplast simple sequence repeats (SSRs) have been used to investigate the levels and pattern of variability detected in Glycine max and G. soja genotypes. Based on the analysis of 700 soybean genotypes with 115 restriction fragment length polymorphism (RFLP) probes, 12 accessions were identified that represent 92% of the allelic variability detected in this genepool. These 12 core genotypes together with a sample of G. max and G. soja accessions were evaluated with 11 nuclear SSRs that detected 129 alleles. Compared with the other G. max and G. soja genotypes sampled, the core genotypes represent 40% of the allelic variability detected with SSRs. Despite the multi-allelic nature of soybean SSRs, dendrograms representing phenetic relationships between accessions clustered according to their subspecies origin. In addition to biparentally inherited nuclear SSRs, two uniparentally (maternally) transmitted chloroplast SSRs were also studied. A total of seven haplotypes were identified, and diversity indices of 0.405 +/- 0.088 and 0.159 +/- 0.071 were obtained for the two chloroplast SSRs. The availability of polymorphic SSR loci in the chloroplast genome provides new opportunities to investigate cytonuclear interactions in plants. PMID:8889540

  4. beta. -carotene synthesis in spinach chloroplasts is tightly linked to photosynthetic carbon metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Siebert, D.; Schultz, G.

    1987-04-01

    When purified, highly intact spinach chloroplasts were illuminated in the presence of NaH/sup 14/CO/sub 3/, the largest portion of acetate derived compounds formed was ..beta..-carotene and not fatty acids (20 and 2.5 natoms C incorporated/mg chlorophyll x h when 5 mM NaH /sup 14/CO/sub 3/ was used). From isotopic dilution experiments applying glyceraldehyde 3-P, dihydroxyacetone-P, 3-phosphoglycerate (3-PGA), 2-PGA, phosphoenolpyruvate (PEP) and pyruvate, respectively, evidence was obtained that acetyl-CoA to form isopentenyl-PP (IPP) originates from a low capacity but highly effective flow from photosynthetic CO/sub 2/-fixation via 3-PGA - 2-PGA - PEP - pyruvate. Phosphoglycerate mutase in chloroplasts, of which the presence hitherto was not unequivocally proven, was detected by (i) latency technique and (ii) feeding/1-/sup 14/C/glycerate and following 3-PGA, 2-PGA, PEP and pyruvate level in chloroplasts and suspension medium. From highly effective synthesis of ..beta..-carotene from CO/sub 2/ conclusion may be drawn that pathways for both, acetyl compounds and IPP, to form isoprenoids must exist in chloroplasts.

  5. [Chloroplast ultrastructure and photosynthetic characteristics of five kinds of dandelion (Taraxacum) leaves in northeast China].

    Science.gov (United States)

    Ning, Wei; Wu, Jie; Zhao, Ting; Zhao, Xin; Li, Tianlai

    2012-05-01

    The paper adopted the JEM-100CX II transmission electron microscope to observe chloroplast ultrastructure of five kinds of dandelion (Taraxacum) leaves in northeast, and the LI-6400 portable photosynthesis system was used to compare the chlorophyll fluorescence and the photosynthesis characteristics of five kinds of dandelions in Northeast China. Chloroplast ultrastructure showed: in the five kinds of dandelion, larger chloroplast, grana with more layers, regular thylakoid, without starch grains and so on, these chloroplasts characteristics decided to bigger photosynthetic rate. The five kinds of dandelion P(n) exhibited a "double peak" diurnal curve: stomatal limitation is the main adjustment factors for the midday depression phenomenon. The P(n),G(s),C(i) content of T. mongolicum are the highest, and T. asiaticum are the lowest among them. The relation between P(n) and G(s),C(i) is direct ratio, P(n) and T(r) is in an inverse proportion among the five kinds of dandelion. In addition, P(n) is positively correlated with Chla, Chlb, and the relationship with Chlb is bigger. The paper demonstrates the Mongolian dandelion photosynthetic efficiency is the highest, it is an higher photosynthetic efficiency dandelion,it provide theoretical basis for assessment and use of the resource of dandelion.

  6. Development of a Reference Standard Library of Chloroplast Genome Sequences, GenomeTrakrCP.

    Science.gov (United States)

    Zhang, Ning; Ramachandran, Padmini; Wen, Jun; Duke, James A; Metzman, Helen; McLaughlin, William; Ottesen, Andrea R; Timme, Ruth E; Handy, Sara M

    2017-12-01

    Precise, species-level identification of plants in foods and dietary supplements is difficult. While the use of DNA barcoding regions (short regions of DNA with diagnostic utility) has been effective for many inquiries, it is not always a robust approach for closely related species, especially in highly processed products. The use of fully sequenced chloroplast genomes, as an alternative to short diagnostic barcoding regions, has demonstrated utility for closely related species. The U. S. Food and Drug Administration (FDA) has also developed species-specific DNA-based assays targeting plant species of interest by utilizing chloroplast genome sequences. Here, we introduce a repository of complete chloroplast genome sequences called GenomeTrakrCP, which will be publicly available at the National Center for Biotechnology Information (NCBI). Target species for inclusion are plants found in foods and dietary supplements, toxin producers, common contaminants and adulterants, and their close relatives. Publicly available data will include annotated assemblies, raw sequencing data, and voucher information with each NCBI accession associated with an authenticated reference herbarium specimen. To date, 40 complete chloroplast genomes have been deposited in GenomeTrakrCP (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA325670/), and this will be expanded in the future. Georg Thieme Verlag KG Stuttgart · New York.

  7. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering.

    Science.gov (United States)

    Yabuta, Yukinori; Tanaka, Hiroyuki; Yoshimura, Sahoko; Suzuki, Akiko; Tamoi, Masahiro; Maruta, Takanori; Shigeoka, Shigeru

    2013-04-01

    Vitamin E (tocopherol: Toc) is an important lipid-soluble antioxidant synthesized in chloroplasts. Among the 8 isoforms of vitamin E, α-Toc has the highest activity in humans. To generate transgenic plants with enhanced vitamin E activity, we applied a chloroplast transformation technique. Three types of the transplastomic tobacco plants (pTTC, pTTMT and pTTC-TMT) carrying the Toc cyclase (TC) or γ-Toc methyltransferase (γ-TMT) gene and the TC plus γ-TMT genes as an operon in the plastid genome, respectively, were generated. There was a significant increase in total levels of Toc due to an increase in γ-Toc in the pTTC plants. Compared to the wild-type plants, Toc composition was altered in the pTTMT plants. In the pTTC-TMT plants, total Toc levels increased and α-Toc was a major Toc isoform. Furthermore, to use chloroplast transformation to produce α-Toc-rich vegetable, TC-overexpressing transplastomic lettuce plants (pLTC) were generated. Total Toc levels and vitamin E activity increased in the pLTC plants compared with the wild-type lettuce plants. These findings indicated that chloroplast genetic engineering is useful to improve vitamin E quality and quantity in plants.

  8. Chloroplast evolution in the Pinus montezumae complex: a coalescent approach to hybridization.

    Science.gov (United States)

    Matos, J A; Schaal, B A

    2000-08-01

    This study addresses the evolutionary history of the chloroplast genomes of two closely related pine species, Pinus hartwegii Lindl. and P. montezumae Lamb (subsect. Ponderosae) using coalescent theory and some of the statistical tools that have been developed from it during the past two decades. Pinus hartwegii and P. montezumae are closely related species in the P. montezumae complex (subsect. Ponderosae) of Mexico and Central America. Pinus hartwegii is a high elevation species, whereas P. montezumae occurs at lower elevations. The two species occur on many of the same mountains throughout Mexico. A total of 350 individuals of P. hartwegii and P. montezumae were collected from Nevado de Colima (Jalisco), Cerro Potosí (Nuevo León), Iztaccihuatl/Popocatepetl (México), and Nevado de Toluca (México). The chloroplast genome of P. hartwegii and P. montezumae was mapped using eight restriction enzymes. Fifty-one different haplotypes were characterized; 38 of 160 restriction sites were polymorphic. Clades of most parsimoniously related chloroplast haplotypes are geographically localized and do not overlap in distribution, and the geographically localized clades of haplotypes include both P. hartwegii and P. montezumae. Some haplotypes in the clades occur in only one of the two species, whereas other haplotypes occur in both species. These data strongly suggest ancient and/or ongoing hybridization between P. hartwegii and P. montezumae and a shared chloroplast genome history within geographic regions of Mexico.

  9. Chloroplast DNA variation of oaks in western Central Europe and genetic consequences of human influences

    NARCIS (Netherlands)

    König, A.O.; Ziegenhagen, B.; Dam, van B.C.; Csaikl, U.M.; Coart, E.; Degen, B.; Burg, K.; Vries, de S.M.G.; Petit, R.J.

    2002-01-01

    Oak chloroplast DNA (cpDNA) variation was studied in a grid-based inventory in western Central Europe, including Belgium, The Netherlands, Luxembourg, Germany, the Czech Republic, and the northern parts of Upper and Lower Austria. A total of 2155 trees representing 426 populations of Quercus robur

  10. Variability of the chloroplast DNA of sessile oak (Quercus petraea agg. Ehrendorfer, 1967 in Serbia

    Directory of Open Access Journals (Sweden)

    Šijačić-Nikolić Mirjana

    2009-01-01

    Full Text Available Genetic variability of sessile oak (Quercus petraea agg. Ehrendorfer, 1967 in Serbia is estimated applying cpDNA universal primer pairs that were characterized by a high informative level for chloroplast genome variability assessment in previous investigations. Five different haplotypes were detected in the analyzed sample material from populations in Serbia.

  11. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes

    Directory of Open Access Journals (Sweden)

    Lemieux Claude

    2006-02-01

    Full Text Available Abstract Background The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae, in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR featuring an inverted rRNA operon and a small single-copy (SSC region containing 14 genes normally found in the large single-copy (LSC region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage. Results The 151,933 bp IR-containing genome of Oltmannsiellopsis differs considerably from Pseudendoclonium and other chlorophyte cpDNAs in intron content and gene order, but shares close similarities with its ulvophyte homologue at the levels of quadripartite architecture, gene content and gene density. Oltmannsiellopsis cpDNA encodes 105 genes, contains five group I introns, and features many short dispersed repeats. As in Pseudendoclonium cpDNA, the rRNA genes in the IR are transcribed toward the single copy region featuring the genes typically found in the ancestral LSC region, and the opposite single copy region harbours genes characteristic of both the ancestral SSC and LSC regions. The 52 genes that were transferred from the ancestral LSC to SSC region include 12 of those observed in Pseudendoclonium cpDNA. Surprisingly, the overall gene organization of

  12. Thermal and Evolved-Gas Analyzer Illustration

    Science.gov (United States)

    2008-01-01

    This is a computer-aided drawing of the Thermal and Evolved-Gas Analyzer, or TEGA, on NASA's Phoenix Mars Lander. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  13. Apollo 16 Evolved Lithology Sodic Ferrogabbro

    Science.gov (United States)

    Zeigler, Ryan; Jolliff, B. L.; Korotev, R. L.

    2014-01-01

    Evolved lunar igneous lithologies, often referred to as the alkali suite, are a minor but important component of the lunar crust. These evolved samples are incompatible-element rich samples, and are, not surprisingly, most common in the Apollo sites in (or near) the incompatible-element rich region of the Moon known as the Procellarum KREEP Terrane (PKT). The most commonly occurring lithologies are granites (A12, A14, A15, A17), monzogabbro (A14, A15), alkali anorthosites (A12, A14), and KREEP basalts (A15, A17). The Feldspathic Highlands Terrane is not entirely devoid of evolved lithologies, and rare clasts of alkali gabbronorite and sodic ferrogabbro (SFG) have been identified in Apollo 16 station 11 breccias 67915 and 67016. Curiously, nearly all pristine evolved lithologies have been found as small clasts or soil particles, exceptions being KREEP basalts 15382/6 and granitic sample 12013 (which is itself a breccia). Here we reexamine the petrography and geochemistry of two SFG-like particles found in a survey of Apollo 16 2-4 mm particles from the Cayley Plains 62283,7-15 and 62243,10-3 (hereafter 7-15 and 10-3 respectively). We will compare these to previously reported SFG samples, including recent analyses on the type specimen of SFG from lunar breccia 67915.

  14. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  15. Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers

    Directory of Open Access Journals (Sweden)

    Allender Charlotte J

    2010-03-01

    Full Text Available Abstract Background The amphiploid species Brassica napus (oilseed rape, Canola is a globally important oil crop yielding food, biofuels and industrial compounds such as lubricants and surfactants. Identification of the likely ancestors of each of the two genomes (designated A and C found in B. napus would facilitate incorporation of novel alleles from the wider Brassica genepool in oilseed rape crop genetic improvement programmes. Knowledge of the closest extant relatives of the genotypes involved in the initial formation of B. napus would also allow further investigation of the genetic factors required for the formation of a stable amphiploid and permit the more efficient creation of fully fertile re-synthesised B. napus. We have used a combination of chloroplast and nuclear genetic markers to investigate the closest extant relatives of the original maternal progenitors of B. napus. This was based on a comprehensive sampling of the relevant genepools, including 83 accessions of A genome B. rapa L. (both wild and cultivated types, 94 accessions of B. napus and 181 accessions of C genome wild and cultivated B. oleracea L. and related species. Results Three chloroplast haplotypes occurred in B. napus. The most prevalent haplotype (found in 79% of accessions was not present within the C genome accessions but was found at low frequencies in B. rapa. Chloroplast haplotypes characteristic of B. napus were found in a small number of wild and weedy B. rapa populations, and also in two accessions of cultivated B. rapa 'brocoletto'. Whilst introgression of the B. napus chloroplast type in the wild and weedy B. rapa populations has been proposed by other studies, the presence of this haplotype within the two brocoletto accessions is unexplained. Conclusions The distribution of chloroplast haplotypes eliminate any of the C genome species as being the maternal ancestor of the majority of the B. napus accessions. The presence of multiple chloroplast

  16. High-accuracy de novo assembly and SNP detection of chloroplast genomes using a SMRT circular consensus sequencing strategy.

    Science.gov (United States)

    Li, Qiushi; Li, Ying; Song, Jingyuan; Xu, Haibin; Xu, Jiang; Zhu, Yingjie; Li, Xiwen; Gao, Huanhuan; Dong, Linlin; Qian, Jun; Sun, Chao; Chen, Shilin

    2014-12-01

    A circular consensus sequencing (CCS) strategy involving single molecule, real-time (SMRT) DNA sequencing technology was applied to de novo assembly and single nucleotide polymorphism (SNP) detection of chloroplast genomes. Chloroplast DNA was purified from enriched chloroplasts of pooled individuals to construct a shotgun library for each species. The sequencing reactions were performed on a PacBio RS platform. CCS sub-reads were generated from polymerase reads that passed the native dumbbell-shaped DNA templates multiple times. The complete chloroplast genome sequence was generated by mapping all reads to the draft sequence constructed in a step-by-step manner. The full-chain, PCR-free approach eliminates the possible context-specific biases in library construction and sequencing reaction. The chloroplast genome was easily and completely assembled using the data generated from one SMRT Cell without requiring a reference genome. Comparisons of the three assembled Fritillaria genomes to 34.1 kb of validation Sanger sequences revealed 100% concordance, and the detected intraspecies SNPs at a minimum variant frequency of 15% were all confirmed. This simple approach with potential for parallel sequencing yields high-quality chloroplast genomes for sensitive SNP detection and comparative analyses. We recommend this approach for its powerful applicability for evolutionary genetics and genomics studies in plants based on the sequences of chloroplast genomes. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  17. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism.

    Science.gov (United States)

    Exposito-Rodriguez, Marino; Laissue, Pierre Philippe; Yvon-Durocher, Gabriel; Smirnoff, Nicholas; Mullineaux, Philip M

    2017-06-29

    Chloroplasts communicate information by signalling to nuclei during acclimation to fluctuating light. Several potential operating signals originating from chloroplasts have been proposed, but none have been shown to move to nuclei to modulate gene expression. One proposed signal is hydrogen peroxide (H2O2) produced by chloroplasts in a light-dependent manner. Using HyPer2, a genetically encoded fluorescent H2O2 sensor, we show that in photosynthetic Nicotiana benthamiana epidermal cells, exposure to high light increases H2O2 production in chloroplast stroma, cytosol and nuclei. Critically, over-expression of stromal ascorbate peroxidase (H2O2 scavenger) or treatment with DCMU (photosynthesis inhibitor) attenuates nuclear H2O2 accumulation and high light-responsive gene expression. Cytosolic ascorbate peroxidase over-expression has little effect on nuclear H2O2 accumulation and high light-responsive gene expression. This is because the H2O2 derives from a sub-population of chloroplasts closely associated with nuclei. Therefore, direct H2O2 transfer from chloroplasts to nuclei, avoiding the cytosol, enables photosynthetic control over gene expression.Multiple plastid-derived signals have been proposed but not shown to move to the nucleus to promote plant acclimation to fluctuating light. Here the authors use a fluorescent hydrogen peroxide sensor to provide evidence that H2O2 is transferred directly from chloroplasts to nuclei to control nuclear gene expression.

  18. The apparent absence of a pathway for synthesis of acetyl coenzyme A in pea chloroplasts: Lack of (14)CO 2 incorporation into lipids by the isolated organelle.

    Science.gov (United States)

    Sherratt, D; Givan, C V

    1973-03-01

    We have examined the extent to which isotopic lable derived from photosynthetically fixed (14)CO2 can be transferred to lipids by aqueously isolated chloroplasts of Pisum sativum. Although photosynthetically active, chloroplast preparations incubated with (14)CO2 showed little or no accumulation of label in lipids under any condition tested. Under identical conditions the chloroplasts were readily able to incorporate [(14)C]acetate into the lipid fraction; a fatty-acid synthesizing system was therefore operative in these chloroplasts.The essential failure of the isolated chloroplasts to incorporate label from fixed (14)CO2 into fatty acids supports the view that the organelle itself does not possess a self-contained pathway for the synthesis of acetyl coenzyme A, and favours the possibility that a shuttle mechanism involving the participation of extra-chloroplastic enzymes may be responsible for supplying the chloroplast with acetyl coenzyme A in vivo.

  19. Insights into Alternanthera mosaic virus TGB3 functions: interactions with Nicotiana benthamiana PsbO correlate with chloroplast vesiculation and veinal necrosis caused by TGB3 overexpression

    Directory of Open Access Journals (Sweden)

    Chanyong eJang

    2013-01-01

    Full Text Available Alternanthera mosaic virus (AltMV triple gene block 3 (TGB3 protein is involved in viral movement. AltMV TGB3 subcellular localization was previously shown to be distinct from that of Potato virus X (PVX TGB3, and a chloroplast binding domain identified; veinal necrosis and chloroplast vesiculation were observed in Nicotiana benthamiana when AltMV TGB3 was over-expressed from PVX. Plants with over-expressed TGB3 showed more lethal damage under dark conditions than under light. Yeast-two-hybrid analysis and bimolecular fluorescence complementation (BiFC reveal that A. thaliana PsbO1 has strong interactions with TGB3; N. benthamiana PsbO (NbPsbO also showed obvious interaction signals with TGB3 through BiFC. These results demonstrate an important role for TGB3 in virus cell-to-cell movement and virus-host plant interactions. The Photosystem II oxygen-evolving complex protein PsbO interaction with TGB3 is presumed to have a crucial role in symptom development and lethal damage under dark conditions. In order to further examine interactions between AtPsbO1, NbPsbO and TGB3, and to identify the binding domain(s in TGB3 protein, BiFC assays were performed between AtPsbO1 or NbPsbO and various mutants of TGB3. Interactions with C-terminally deleted TGB3 were significantly weaker than those with wild-type TGB3, and both N-terminally deleted TGB3 and a TGB3 mutant previously shown to lose chloroplast interactions failed to interact detectably with PsbO in BiFC. To gain additional information about TGB3 interactions in AltMV-susceptible plants, we cloned 12 natural AltMV TGB3 sequence variants into a PVX expression vector to examine differences in symptom development in N. benthamiana. Symptom differences were observed on PVX over-expression, with all AltMV TGB3 variants showing more severe symptoms than the WT PVX control, but without obvious correlation to sequence differences.

  20. The Rice TCM5 Gene Encoding a Novel Deg Protease Protein is Essential for Chloroplast Development under High Temperatures.

    Science.gov (United States)

    Zheng, Kailun; Zhao, Jian; Lin, Dongzhi; Chen, Jiaying; Xu, Jianlong; Zhou, Hua; Teng, Sheng; Dong, Yanjun

    2016-12-01

    High temperature affects a broad spectrum of cellular components and metabolism in plants. The Deg/HtrA family of ATP-independent serine endopeptidases is present in nearly all organisms. Deg proteases are required for the survival of Escherichia coli at high temperatures. However, it is still unclear whether rice Deg proteases are required for chloroplast development under high temperatures. In this study, we reported the first rice deg mutant tcm5 (thermo-sensitive chlorophyll-deficient mutant 5) that has an albino phenotype, defective chloroplasts and could not survive after the 4-5 leaf seedling stage when grown at high temperature (32 °C). However, when grown at low temperatures (20 °C), tcm5 has a normal phenotype. Map-based cloning showed that TCM5 encoding a chloroplast-targeted Deg protease protein. The TCM5 transcripts were highly expressed in all green tissues and undetectable in other tissues, showing the tissue-specific expression. In tcm5 mutants grown at high temperatures, the transcript levels of certain genes associated with chloroplast development especially PSII-associated genes were severely affected, but recovered to normal levels at low temperatures. These results showed important role of TCM5 for chloroplast development under high temperatures. The TCM5 encodes chloroplast-targeted Deg protease protein which is important for chloroplast development and the maintenance of PSII function and its disruption would lead to a defective chloroplast and affected expression levels of genes associated with chloroplast development and photosynthesis at early rice seedling stage under high temperatures.

  1. Purification and characterization of thermostable monomeric chloroplastic Cu/Zn superoxide dismutase from Chenopodium murale.

    Science.gov (United States)

    Sundaram, Sabarinath; Khanna, Sunil; Khanna-Chopra, Renu

    2009-07-01

    Superoxide dismutase is the first line of defense against oxidative stress and thus helps in maintaining the cellular integrity. Chenopodium murale, a weed species adapted to widely varying climatic conditions faces extremes of temperatures ranging from 4 °C to 45 °C (Tmax) during growth and development. From this plant, we have purified a thermostable chloroplastic Cu/Zn superoxide dismutase (Chl Cu/Zn SOD) to homogeneity using minimal steps. Incubation of lysed chloroplasts at 70 °C for 1h reduced the interference of cytosolic SOD isoforms and reduced the protein content by 75 %. Chloroplastic SOD was purified from the heat stable fraction by gel filtration chromatography. The purified enzyme had a native molecular weight of 24 kDa, a half-life of 47.9 min at 80 °C and showed a single band at 24 kDa on SDS-PAGE. The N-terminus contained the conserved amino acids of chl Cu-Zn SOD. The Chl Cu/Zn SOD protein and its activity were enhanced under very high temperatures, high light intensities and in water stress/recovered C. murale plants under controlled environment conditions. Chl Cu/Zn SOD was also one of the predominant isoforms throughout growing period in field grown plants and declined during senescence. The Chl Cu/Zn SOD activity increased with the increase in ambient temperature and peaked in April with a 45 °C Tmax. These results clearly indicate that the chloroplastic Cu/Zn SOD is stably expressed at extreme environmental conditions. The presence of stable monomeric chloroplastic Cu/Zn SOD might help the plants to maintain the cellular homeostatis against adverse environmental conditions.

  2. A set of primers for analyzing chloroplast DNA diversity in Citrus and related genera.

    Science.gov (United States)

    Cheng, Yunjiang; de Vicente, M Carmen; Meng, Haijun; Guo, Wenwu; Tao, Nengguo; Deng, Xiuxin

    2005-06-01

    Chloroplast simple sequence repeat (cpSSR) markers in Citrus were developed and used to analyze chloroplast diversity of Citrus and closely related genera. Fourteen cpSSR primer pairs from the chloroplast genomes of tobacco (Nicotiana tabacum L.) and Arabidopsis were found useful for analyzing the Citrus chloroplast genome (cpDNA) and recoded with the prefix SPCC (SSR Primers for Citrus Chloroplast). Eleven of the 14 primer pairs revealed some degree of polymorphism among 34 genotypes of Citrus, Fortunella, Poncirus and some of their hybrids, with polymorphism information content (PIC) values ranging from 0.057 to 0.732, and 18 haplotypes were identified. The cpSSR data were analyzed with NTSYS-pc software, and the genetic relationships suggested by the unweighted pair group method based on arithmetic means (UPGMA) dendrogram were congruent with previous taxonomic investigations: the results showed that all samples fell into seven major clusters, i.e., Citrus medica L., Poncirus, Fortunella, C. ichangensis Blanco, C. reticulata Swingle, C. aurantifolia (Christm.) Swingle and C. grandis (L.) Osbeck. The results of previous studies combined with our cpSSR analyses revealed that: (1) Calamondin (C. madurensis Swingle) is the result of hybridization between kumquat (Fortunella) and mandarin (C. reticulata), where kumquat acted as the female parent; (2) Ichang papeda (C. ichangensis) has a unique taxonomic status; and (3) although Bendiguangju mandarin (C. reticulata) and Satsuma mandarin (C. reticulata) are similar in fruit shape and leaf morphology, they have different maternal parents. Bendiguangju mandarin has the same cytoplasm as sweet orange (C. sinensis), whereas Satsuma mandarin has the cytoplasm of C. reticulata. Seventeen PCR products from SPCC1 and 21 from SPCC11 were cloned and sequenced. The results revealed that mononucleotide repeats as well as insertions and deletions of small segments of DNA were associated with SPCC1 polymorphism, whereas polymorphism

  3. Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress.

    Science.gov (United States)

    Vasilikiotis, C; Melis, A

    1994-07-19

    A daily occurrence in the life of a plant is the function of a photosystem II (PSII) damage and repair cycle in chloroplasts. This unique phenomenon involves the frequent turnover of D1, the 32-kDa reaction-center protein of PSII (chloroplast psbA gene product). In the model organism Dunaliella salina (a green alga), growth under low light (100 mol of photons per m2 per sec) entails damage, degradation, and replacement of D1 every 7 hr. Growth under irradiance stress (2200 micromol of photons per m2 per sec) entails damage to D1 every 20 min. The rate of de novo D1 biosynthesis under conditions of both low light and irradiance stress was found to be fairly constant on a per chloroplast or cell basis. The response of D. salina to the enhanced rate of damage entails an accumulation of photodamaged centers (80% of all PSII) and the formation of thylakoid membranes containing a smaller quantity of photosystem I (PSI) centers (about 10% of that in cells grown under low light). These changes contribute to a shift in the PSII/PSI ratio from 1.4:1 under low-light conditions to 15:1 under irradiance stress. The accumulation of photodamaged PSII under irradiance stress reflects a chloroplast inability to match the rate of D1 degradation or turnover with the rate of damage for individual PSII complexes. The altered thylakoid membrane organization ensures that a small fraction of PSII centers remains functional under irradiance stress and sustains electron flow from H2O to ferredoxin with rates sufficient for chloroplast photosynthesis and cell growth.

  4. Stable megadalton TOC-TIC supercomplexes as major mediators of protein import into chloroplasts.

    Science.gov (United States)

    Chen, Lih-Jen; Li, Hsou-Min

    2017-10-01

    Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC-TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN-PAGE) system to detect and resolve megadalton (MD)-sized complexes. Using this optimized system, the outer-membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880-kD TOC complex and a previously undetected 1-MD complex. Two-dimensional BN-PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880-kD to 1.3-MD region. During active preprotein import, preproteins were transported mostly through the 1-MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody-shift assays showed that the 1-MD complex is a TOC-TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25-MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC-TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  5. The Complete Chloroplast Genome Sequences of the Medicinal Plant Forsythia suspensa (Oleaceae

    Directory of Open Access Journals (Sweden)

    Wenbin Wang

    2017-10-01

    Full Text Available Forsythia suspensa is an important medicinal plant and traditionally applied for the treatment of inflammation, pyrexia, gonorrhea, diabetes, and so on. However, there is limited sequence and genomic information available for F. suspensa. Here, we produced the complete chloroplast genomes of F. suspensa using Illumina sequencing technology. F. suspensa is the first sequenced member within the genus Forsythia (Oleaceae. The gene order and organization of the chloroplast genome of F. suspensa are similar to other Oleaceae chloroplast genomes. The F. suspensa chloroplast genome is 156,404 bp in length, exhibits a conserved quadripartite structure with a large single-copy (LSC; 87,159 bp region, and a small single-copy (SSC; 17,811 bp region interspersed between inverted repeat (IRa/b; 25,717 bp regions. A total of 114 unique genes were annotated, including 80 protein-coding genes, 30 tRNA, and four rRNA. The low GC content (37.8% and codon usage bias for A- or T-ending codons may largely affect gene codon usage. Sequence analysis identified a total of 26 forward repeats, 23 palindrome repeats with lengths >30 bp (identity > 90%, and 54 simple sequence repeats (SSRs with an average rate of 0.35 SSRs/kb. We predicted 52 RNA editing sites in the chloroplast of F. suspensa, all for C-to-U transitions. IR expansion or contraction and the divergent regions were analyzed among several species including the reported F. suspensa in this study. Phylogenetic analysis based on whole-plastome revealed that F. suspensa, as a member of the Oleaceae family, diverged relatively early from Lamiales. This study will contribute to strengthening medicinal resource conservation, molecular phylogenetic, and genetic engineering research investigations of this species.

  6. High-Throughput Sequencing of Three Lemnoideae (Duckweeds) Chloroplast Genomes from Total DNA

    Science.gov (United States)

    Wang, Wenqin; Messing, Joachim

    2011-01-01

    Background Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. Methods We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs) using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. Conclusions This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power. PMID:21931804

  7. High-throughput sequencing of three Lemnoideae (duckweeds chloroplast genomes from total DNA.

    Directory of Open Access Journals (Sweden)

    Wenqin Wang

    Full Text Available BACKGROUND: Chloroplast genomes provide a wealth of information for evolutionary and population genetic studies. Chloroplasts play a particularly important role in the adaption for aquatic plants because they float on water and their major surface is exposed continuously to sunlight. The subfamily of Lemnoideae represents such a collection of aquatic species that because of photosynthesis represents one of the fastest growing plant species on earth. METHODS: We sequenced the chloroplast genomes from three different genera of Lemnoideae, Spirodela polyrhiza, Wolffiella lingulata and Wolffia australiana by high-throughput DNA sequencing of genomic DNA using the SOLiD platform. Unfractionated total DNA contains high copies of plastid DNA so that sequences from the nucleus and mitochondria can easily be filtered computationally. Remaining sequence reads were assembled into contiguous sequences (contigs using SOLiD software tools. Contigs were mapped to a reference genome of Lemna minor and gaps, selected by PCR, were sequenced on the ABI3730xl platform. CONCLUSIONS: This combinatorial approach yielded whole genomic contiguous sequences in a cost-effective manner. Over 1,000-time coverage of chloroplast from total DNA were reached by the SOLiD platform in a single spot on a quadrant slide without purification. Comparative analysis indicated that the chloroplast genome was conserved in gene number and organization with respect to the reference genome of L. minor. However, higher nucleotide substitution, abundant deletions and insertions occurred in non-coding regions of these genomes, indicating a greater genomic dynamics than expected from the comparison of other related species in the Pooideae. Noticeably, there was no transition bias over transversion in Lemnoideae. The data should have immediate applications in evolutionary biology and plant taxonomy with increased resolution and statistical power.

  8. A chloroplast pump model for the CO2 concentrating mechanism in the diatom Phaeodactylum tricornutum.

    Science.gov (United States)

    Hopkinson, Brian M

    2014-09-01

    Prior analysis of inorganic carbon (Ci) fluxes in the diatom Phaeodactylum tricornutum has indicated that transport of Ci into the chloroplast from the cytoplasm is the major Ci flux in the cell and the primary driving force for the CO2 concentrating mechanism (CCM). This flux drives the accumulation of Ci in the chloroplast stroma and generates a CO2 deficit in the cytoplasm, inducing CO2 influx into the cell. Here, the "chloroplast pump" model of the CCM in P. tricornutum is formalized and its consistency with data on CO2 and HCO3 (-) uptake rates, carbonic anhydrase (CA) activity, intracellular Ci concentration, intracellular pH, and RubisCO characteristics is assessed. The chloroplast pump model can account for the major features of the data. Analysis of photosynthetic and Ci uptake rates as a function of external Ci concentration shows that the model has the most difficulty obtaining sufficiently low cytoplasmic CO2 concentrations to support observed CO2 uptake rates at low external Ci concentrations and achieving high rates of photosynthesis. There are multiple ways in which model parameters can be varied, within a plausible range, to match measured rates of photosynthesis and CO2 uptake. To increase CO2 uptake rates, CA activity can be increased, kinetic characteristics of the putative chloroplast pump can be enhanced to increase HCO3 (-) export, or the cytoplasmic pH can be raised. To increase the photosynthetic rate, the permeability of the pyrenoid to CO2 can be reduced or RubisCO content can be increased.

  9. Chloroplast-derived enzyme cocktails hydrolyse lignocellulosic biomass and release fermentable sugars.

    Science.gov (United States)

    Verma, Dheeraj; Kanagaraj, Anderson; Jin, Shuangxia; Singh, Nameirakpam D; Kolattukudy, Pappachan E; Daniell, Henry

    2010-04-01

    It is widely recognized that biofuel production from lignocellulosic materials is limited by inadequate technology to efficiently and economically release fermentable sugars from the complex multi-polymeric raw materials. Therefore, endoglucanases, exoglucanase, pectate lyases, cutinase, swollenin, xylanase, acetyl xylan esterase, beta glucosidase and lipase genes from bacteria or fungi were expressed in Escherichia coli or tobacco chloroplasts. A PCR-based method was used to clone genes without introns from Trichoderma reesei genomic DNA. Homoplasmic transplastomic lines showed normal phenotype and were fertile. Based on observed expression levels, up to 49, 64 and 10, 751 million units of pectate lyases or endoglucanase can be produced annually, per acre of tobacco. Plant production cost of endoglucanase is 3100-fold, and pectate lyase is 1057 or 1480-fold lower than the same recombinant enzymes sold commercially, produced via fermentation. Chloroplast-derived enzymes had higher temperature stability and wider pH optima than enzymes expressed in E. coli. Plant crude-extracts showed higher enzyme activity than E. coli with increasing protein concentration, demonstrating their direct utility without purification. Addition of E. coli extracts to the chloroplast-derived enzymes significantly decreased their activity. Chloroplast-derived crude-extract enzyme cocktails yielded more (up to 3625%) glucose from filter paper, pine wood or citrus peel than commercial cocktails. Furthermore, pectate lyase transplastomic plants showed enhanced resistance to Erwina soft rot. This is the first report of using plant-derived enzyme cocktails for production of fermentable sugars from lignocellulosic biomass. Limitations of higher cost and lower production capacity of fermentation systems are addressed by chloroplast-derived enzyme cocktails.

  10. Mitochondria, Chloroplasts in Animal and Plant Cells: Significance of Conformational Matching.

    Science.gov (United States)

    Stefano, George B; Snyder, Christopher; Kream, Richard M

    2015-07-17

    Many commonalities between chloroplasts and mitochondria exist, thereby suggesting a common origin via a bacterial ancestor capable of enhanced ATP-dependent energy production functionally linked to cellular respiration and photosynthesis. Accordingly, the molecular evolution/retention of the catalytic Qo quinol oxidation site of cytochrome b complexes as the tetrapeptide PEWY sequence functionally underlies the common retention of a chemiosmotic proton gradient mechanism for ATP synthesis in cellular respiration and photosynthesis. Furthermore, the dual regulatory targeting of mitochondrial and chloroplast gene expression by mitochondrial transcription termination factor (MTERF) proteins to promote optimal energy production and oxygen consumption further advances these evolutionary contentions. As a functional consequence of enhanced oxygen utilization and production, significant levels of reactive oxygen species (ROS) may be generated within mitochondria and chloroplasts, which may effectively compromise cellular energy production following prolonged stress/inflammationary conditions. Interestingly, both types of organelles have been identified in selected animal cells, most notably specialized digestive cells lining the gut of several species of Sacoglossan sea slugs. Termed kleptoplasty or kleptoplastic endosymbiosis, functional chloroplasts from algal food sources are internalized and stored within digestive cells to provide the host with dual energy sources derived from mitochondrial and photosynthetic processes. Recently, the observation of internalized algae within embryonic tissues of the spotted salamander strongly suggest that developmental processes within a vertebrate organism may require photosynthetic endosymbiosis as an internal regulator. The dual presence of mitochondria and functional chloroplasts within specialized animal cells indicates a high degree of biochemical identity, stereoselectivity, and conformational matching that are the likely

  11. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus

    Directory of Open Access Journals (Sweden)

    Boore Jeffrey L

    2007-06-01

    Full Text Available Abstract Background The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage and Ranunculus macranthus (a basal eudicot. We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs and longer dispersed repeats (SDR, and patterns of nucleotide composition. Results The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides. Conclusion SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A

  12. Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus.

    Science.gov (United States)

    Raubeson, Linda A; Peery, Rhiannon; Chumley, Timothy W; Dziubek, Chris; Fourcade, H Matthew; Boore, Jeffrey L; Jansen, Robert K

    2007-06-15

    The number of completely sequenced plastid genomes available is growing rapidly. This array of sequences presents new opportunities to perform comparative analyses. In comparative studies, it is often useful to compare across wide phylogenetic spans and, within angiosperms, to include representatives from basally diverging lineages such as the genomes reported here: Nuphar advena (from a basal-most lineage) and Ranunculus macranthus (a basal eudicot). We report these two new plastid genome sequences and make comparisons (within angiosperms, seed plants, or all photosynthetic lineages) to evaluate features such as the status of ycf15 and ycf68 as protein coding genes, the distribution of simple sequence repeats (SSRs) and longer dispersed repeats (SDR), and patterns of nucleotide composition. The Nuphar [GenBank:NC_008788] and Ranunculus [GenBank:NC_008796] plastid genomes share characteristics of gene content and organization with many other chloroplast genomes. Like other plastid genomes, these genomes are A+T-rich, except for rRNA and tRNA genes. Detailed comparisons of Nuphar with Nymphaea, another Nymphaeaceae, show that more than two-thirds of these genomes exhibit at least 95% sequence identity and that most SSRs are shared. In broader comparisons, SSRs vary among genomes in terms of abundance and length and most contain repeat motifs based on A and T nucleotides. SSR and SDR abundance varies by genome and, for SSRs, is proportional to genome size. Long SDRs are rare in the genomes assessed. SSRs occur less frequently than predicted and, although the majority of the repeat motifs do include A and T nucleotides, the A+T bias in SSRs is less than that predicted from the underlying genomic nucleotide composition. In codon usage third positions show an A+T bias, however variation in codon usage does not correlate with differences in A+T-richness. Thus, although plastome nucleotide composition shows "A+T richness", an A+T bias is not apparent upon more in

  13. Effects of Cyanide on Rates and Products of Fatty Acid Synthesis by Chloroplasts Isolated from Spinacia oleracea1

    Science.gov (United States)

    Roughan, P. Grattan; Beevers, Harry

    1981-01-01

    Cyanide inhibited unesterified fatty acid synthesis but stimulated glyceride synthesis from [1-14C]acetate when Spinacia oleracea chloroplasts were incubated in basal media. Both unesterified fatty acid and glyceride accumulation were inhibited when chloroplasts were incubated in a diacylglycerol mode. Stimulation of chloroplast fatty acid synthesis by either exogenous coenzyme A or Triton X-100 was almost completely abolished in the presence of cyanide. Stearoyl-ACP desaturation is considered to be inhibited to a greater extent than is fatty acid synthesis de novo. PMID:16661794

  14. Phylogenetic analysis reveals five independent transfers of the chloroplast gene rbcL to the mitochondrial genome in angiosperms

    OpenAIRE

    Cummings, Michael P.; Nugent, Jacqueline M.; Olmstead, Richard G.; Palmer, Jeffrey D.

    2003-01-01

    We used the chloroplast gene rbcL as a model to study the frequency and relative timing of transfer of chloroplast sequences to the mitochondrial genome. Southern blot survey of 20 mitochondrial DNAs confirmed three previously reported groups of plants containing rbcL in their mitochondrion, while PCR studies identified a new mitochondrial rbcL. Published and newly determined mitochondrial and chloroplast rbcL sequences were used to reconstruct rbcL phylogeny. The results imply five or six se...

  15. Why, when, and how did yeast evolve alcoholic fermentation?

    Science.gov (United States)

    Dashko, Sofia; Zhou, Nerve; Compagno, Concetta; Piškur, Jure

    2014-09-01

    The origin of modern fruits brought to microbial communities an abundant source of rich food based on simple sugars. Yeasts, especially Saccharomyces cerevisiae, usually become the predominant group in these niches. One of the most prominent and unique features and likely a winning trait of these yeasts is their ability to rapidly convert sugars to ethanol at both anaerobic and aerobic conditions. Why, when, and how did yeasts remodel their carbon metabolism to be able to accumulate ethanol under aerobic conditions and at the expense of decreasing biomass production? We hereby review the recent data on the carbon metabolism in Saccharomycetaceae species and attempt to reconstruct the ancient environment, which could promote the evolution of alcoholic fermentation. We speculate that the first step toward the so-called fermentative lifestyle was the exploration of anaerobic niches resulting in an increased metabolic capacity to degrade sugar to ethanol. The strengthened glycolytic flow had in parallel a beneficial effect on the microbial competition outcome and later evolved as a "new" tool promoting the yeast competition ability under aerobic conditions. The basic aerobic alcoholic fermentation ability was subsequently "upgraded" in several lineages by evolving additional regulatory steps, such as glucose repression in the S. cerevisiae clade, to achieve a more precise metabolic control. © 2014 The Authors. FEMS Yeast Research published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  16. IR Spectroscopy of Gasses Evolved During Roasting Coffee Beans

    Science.gov (United States)

    Clain, Alexander; Capaldi, Xavier; Amanuel, Samuel

    2014-03-01

    We measured the IR spectra of the gasses that evolve during roasting of coffee beans. The spectra recorded at different temperature revealed that the intensity of certain IR bands increase as the temperature increases. For instance, the intensity of the CO2 band increased by a factor of four and reached a plateau as the roasting temperature approached 200°C. The intensity further increased as the temperature increased above 200°C, however, in two steps. Similarly the intensity of the OH bands monotonically increased until 200°C and then increased further in two rapid steps above 200°C. The temperature ranges where IR intensities change in two steps coincides with the temperature ranges where typically commercial roasting is done and where the first and second ``cracks'' are heard during roasting.

  17. Relationship between mRNA secondary structure and sequence variability in Chloroplast genes: possible life history implications

    Directory of Open Access Journals (Sweden)

    Seligmann Hervé

    2008-01-01

    Full Text Available Abstract Background Synonymous sites are freer to vary because of redundancy in genetic code. Messenger RNA secondary structure restricts this freedom, as revealed by previous findings in mitochondrial genes that mutations at third codon position nucleotides in helices are more selected against than those in loops. This motivated us to explore the constraints imposed by mRNA secondary structure on evolutionary variability at all codon positions in general, in chloroplast systems. Results We found that the evolutionary variability and intrinsic secondary structure stability of these sequences share an inverse relationship. Simulations of most likely single nucleotide evolution in Psilotum nudum and Nephroselmis olivacea mRNAs, indicate that helix-forming propensities of mutated mRNAs are greater than those of the natural mRNAs for short sequences and vice-versa for long sequences. Moreover, helix-forming propensity estimated by the percentage of total mRNA in helices increases gradually with mRNA length, saturating beyond 1000 nucleotides. Protection levels of functionally important sites vary across plants and proteins: r-strategists minimize mutation costs in large genes; K-strategists do the opposite. Conclusion Mrna length presumably predisposes shorter mRNAs to evolve under different constraints than longer mRNAs. The positive correlation between secondary structure protection and functional importance of sites suggests that some sites might be conserved due to packing-protection constraints at the nucleic acid level in addition to protein level constraints. Consequently, nucleic acid secondary structure a priori biases mutations. The converse (exposure of conserved sites apparently occurs in a smaller number of cases, indicating a different evolutionary adaptive strategy in these plants. The differences between the protection levels of functionally important sites for r- and K-strategists reflect their respective molecular adaptive

  18. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Sun Xuan

    2010-10-01

    Full Text Available Abstract Background The pathological hallmarks of Parkinson's disease (PD include the presence of alpha-synuclein (α-syn rich Lewy bodies and neurites and the loss of dopaminergic (DA neurons of the substantia nigra (SN. Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV, or green fluorescent protein (GFP, the latter to control for the possibility that high levels of protein in themselves might contribute to damage. Results We show that following a single 2 μl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%, and to a lesser extent by GFP (24%, compared to EV controls (both P P Conclusions In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and may not be specific for A53T α-syn. Future studies will thus be required to optimise the dose of

  19. Expression of human A53T alpha-synuclein in the rat substantia nigra using a novel AAV1/2 vector produces a rapidly evolving pathology with protein aggregation, dystrophic neurite architecture and nigrostriatal degeneration with potential to model the pathology of Parkinson's disease.

    Science.gov (United States)

    Koprich, James B; Johnston, Tom H; Reyes, M Gabriela; Sun, Xuan; Brotchie, Jonathan M

    2010-10-28

    The pathological hallmarks of Parkinson's disease (PD) include the presence of alpha-synuclein (α-syn) rich Lewy bodies and neurites and the loss of dopaminergic (DA) neurons of the substantia nigra (SN). Animal models of PD based on viral vector-mediated over-expression of α-syn have been developed and show evidence of DA toxicity to varying degrees depending on the type of virus used, its concentration, and the serotype of vector employed. To date these models have been variable, difficult to reproduce, and slow in their evolution to achieve a desired phenotype, hindering their use as a model for testing novel therapeutics. To address these issues we have taken a novel vector in this context, that can be prepared in high titer and which possesses an ability to produce neuronally-directed expression, with expression dynamics optimised to provide a rapid rise in gene product expression. Thus, in the current study, we have used a high titer chimeric AAV1/2 vector, to express human A53T α-syn, an empty vector control (EV), or green fluorescent protein (GFP), the latter to control for the possibility that high levels of protein in themselves might contribute to damage. We show that following a single 2 μl injection into the rat SN there is near complete coverage of the structure and expression of A53T α-syn or GFP appears throughout the striatum. Within 3 weeks of SN delivery of their respective vectors, aggregations of insoluble α-syn were observed in SN DA neurons. The numbers of DA neurons in the SN were significantly reduced by expression of A53T α-syn (52%), and to a lesser extent by GFP (24%), compared to EV controls (both P AAV1/2-A53T α-syn injection produced dystrophic neurites and a significant reduction in tyrosine hydroxylase levels (by 53%, P AAV1/2-GFP condition. In the current implementation of the model, we recapitulate the primary pathological hallmarks of PD, although a proportion of the SN damage may relate to general protein overload and

  20. Evolving wormhole geometries within nonlinear electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Arellano, Aaron V B [Facultad de Ciencias, Universidad Autonoma del Estado de Mexico, El Cerrillo, Piedras Blancas, CP 50200, Toluca (Mexico); Lobo, Francisco S N [Centro de Astronomia e Astrofisica da Universidade de Lisboa, Campo Grande, Ed C8 1749-016 Lisbon (Portugal)

    2006-10-21

    In this work, we explore the possibility of evolving (2 + 1) and (3 + 1)-dimensional wormhole spacetimes, conformally related to the respective static geometries, within the context of nonlinear electrodynamics. For (3 + 1)-dimensional spacetime, it is found that the Einstein field equation imposes a contracting wormhole solution and the obedience of the weak energy condition. Nevertheless, in the presence of an electric field, the latter presents a singularity at the throat; however, for a pure magnetic field the solution is regular. For (2 + 1)-dimensional case, it is also found that the physical fields are singular at the throat. Thus, taking into account the principle of finiteness, which states that a satisfactory theory should avoid physical quantities becoming infinite, one may rule out evolving (3 + 1)-dimensional wormhole solutions, in the presence of an electric field, and (2 + 1)-dimensional case coupled to nonlinear electrodynamics.

  1. Continual Learning through Evolvable Neural Turing Machines

    DEFF Research Database (Denmark)

    Lüders, Benno; Schläger, Mikkel; Risi, Sebastian

    2016-01-01

    Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENT......) approach is able to perform one-shot learning in a reinforcement learning task without catastrophic forgetting of previously stored associations.......Continual learning, i.e. the ability to sequentially learn tasks without catastrophic forgetting of previously learned ones, is an important open challenge in machine learning. In this paper we take a step in this direction by showing that the recently proposed Evolving Neural Turing Machine (ENTM...

  2. Designing Garments to Evolve Over Time

    DEFF Research Database (Denmark)

    Riisberg, Vibeke; Grose, Lynda

    2017-01-01

    This paper proposes a REDO of the current fashion paradigm by investigating how garments might be designed to evolve over time. The purpose is to discuss ways of expanding the traditional role of the designer to include temporal dimensions of creating, producing and using clothes and to suggest a...... to a REDO of design education, to further research and the future fashion and textile industry.......This paper proposes a REDO of the current fashion paradigm by investigating how garments might be designed to evolve over time. The purpose is to discuss ways of expanding the traditional role of the designer to include temporal dimensions of creating, producing and using clothes and to suggest...... a range of potential fashion futures that decouple from declining resources. In the first part literature on 'Past and Present' historical and current aspects of sustainability in fashion and textiles are presented. In the second part, three exploratory case studies are described: Two projects by students...

  3. Antibody therapeutics - the evolving patent landscape.

    Science.gov (United States)

    Petering, Jenny; McManamny, Patrick; Honeyman, Jane

    2011-09-01

    The antibody patent landscape has evolved dramatically over the past 30 years, particularly in areas of technology relating to antibody modification to reduce immunogenicity in humans or improve antibody function. In some cases antibody techniques that were developed in the 1980s are still the subject of patent protection in the United States or Canada. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The evolving epidemiology of inflammatory bowel disease.

    LENUS (Irish Health Repository)

    Shanahan, Fergus

    2009-07-01

    Epidemiologic studies in inflammatory bowel disease (IBD) include assessments of disease burden and evolving patterns of disease presentation. Although it is hoped that sound epidemiologic studies provide aetiological clues, traditional risk factor-based epidemiology has provided limited insights into either Crohn\\'s disease or ulcerative colitis etiopathogenesis. In this update, we will summarize how the changing epidemiology of IBD associated with modernization can be reconciled with current concepts of disease mechanisms and will discuss studies of clinically significant comorbidity in IBD.

  5. Directional Communication in Evolved Multiagent Teams

    Science.gov (United States)

    2013-06-10

    networks. Artificial Life, 15(2):185– 212, 2009. [23] K. O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies ...paper. 2.2 Neuroevolution of Augmenting Topologies The HyperNEAT approach is itself an extension of the original NEAT (Neu- roevolution of Augmenting ...Gauci and K. O. Stanley. Autonomous evolution of topographic regu- larities in artificial neural networks. Neural Computation, 22(7):1860–1898, 2010

  6. The Evolving Leadership Path of Visual Analytics

    Energy Technology Data Exchange (ETDEWEB)

    Kluse, Michael; Peurrung, Anthony J.; Gracio, Deborah K.

    2012-01-02

    This is a requested book chapter for an internationally authored book on visual analytics and related fields, coordianted by a UK university and to be published by Springer in 2012. This chapter is an overview of the leadship strategies that PNNL's Jim Thomas and other stakeholders used to establish visual analytics as a field, and how those strategies may evolve in the future.

  7. Raeder paratrigeminal neuralgia evolving to hemicrania continua.

    Science.gov (United States)

    Porzukowiak, Tina Renae

    2015-04-01

    Raeder paratrigeminal neuralgia is most commonly characterized as deep, boring, nonpulsatile, severe, unilateral facial and head pain in the distribution of the V1 area combined with ipsilateral oculosympathetic palsy and autonomic symptoms. Raeder paratrigeminal neuralgia evolving into hemicrania continua, a rare primary, chronic headache syndrome characterized by unilateral pain and response to indomethacin, has rarely been documented. The purpose of this case report is to contribute to the medical literature a single case of Raeder paratrigeminal neuralgia presenting as multiple cranial nerve palsies that evolved into hemicrania continua that was successfully treated with onabotulinumtoxinA. A 52-year-old white woman presented to the emergency department with the complaint of severe, aching, constant eye pain radiating to the V1 area for 1 week with associated ptosis and photophobia of the left eye. Ocular examination revealed involvement of cranial nerves II, III, V, and VI. Additional symptoms included ipsilateral lacrimation, eyelid edema, and rhinorrhea. Extensive medical work-up showed normal results. Raeder paratrigeminal neuralgia was diagnosed with multiple cranial nerve involvement; the headache component became chronic with periodic exacerbations of autonomic symptoms evolving to a diagnosis of hemicrania continua. The patient was intolerant to traditional indomethacin treatment, and the headache was successfully treated with onabotulinumtoxinA injections. Recognition of ipsilateral signs such as miosis, ptosis, hydrosis, eyelid edema, hyperemia, rhinorrhea, or nasal congestion is useful in the differential diagnosis of painful ophthalmoplegia, particularly in the diagnosis of Raeder paratrigeminal neuralgia and hemicrania continua. This case study illustrates a rare presentation of Raeder paratrigeminal neuralgia evolving into hemicrania continua presenting as a painful ophthalmoplegia with multiple cranial nerve involvement. The example supports the

  8. Evolvability of Amyloidogenic Proteins in Human Brain

    Science.gov (United States)

    Hashimoto, Makoto; Ho, Gilbert; Sugama, Shuei; Takamatsu, Yoshiki; Shimizu, Yuka; Takenouchi, Takato; Waragai, Masaaki; Masliah, Eliezer

    2018-01-01

     Currently, the physiological roles of amyloidogenic proteins (APs) in human brain, such as amyloid-β and α-synuclein, are elusive. Given that many APs arose by gene duplication and have been resistant against the pressures of natural selection, APs may be associated with some functions that are advantageous for survival of offspring. Nonetheless, evolvability is the sole physiological quality of APs that has been characterized in microorganisms such as yeast. Since yeast and human brain may share similar strategies in coping with diverse range of critical environmental stresses, the objective of this paper was to discuss the potential role of evolvability of APs in aging-associated neurodegenerative disorders, including Alzheimer’s disease and Parkinson’s disease. Given the heterogeneity of APs in terms of structure and cytotoxicity, it is argued that APs might be involved in preconditioning against diverse stresses in human brain. It is further speculated that these stress-related APs, most likely protofibrillar forms, might be transmitted to offspring via the germline, conferring preconditioning against forthcoming stresses. Thus, APs might represent a vehicle for the inheritance of the acquired characteristics against environmental stresses. Curiously, such a characteristic of APs is reminiscent of Charles Darwin’s ‘gemmules’, imagined molecules of heritability described in his pangenesis theory. We propose that evolvability might be a physiological function of APs during the reproductive stage and neurodegenerative diseases could be a by-product effect manifested later in aging. Collectively, our evolvability hypothesis may play a complementary role in the pathophysiology of APs with the conventional amyloid cascade hypothesis. PMID:29439348

  9. The chloroplast thylakoid membrane system is a molecular conveyor belt.

    Science.gov (United States)

    Critchley, C

    1988-10-01

    Light drives photosynthesis, but paradoxically light is also the most variable environmental factor influencing photosynthesis both qualitatively and quantitatively. The photosynthetic apparatus of higher plants is adaptable in the extreme, as exemplified by its capacity for acclimation to very bright sunny or deeply shaded conditions. It can also respond to rapid changes in light such as sunflecks. In this paper I offer a model that i) explains the thylakoid membrane organisation into grana stacks and stroma lamellae, ii) proposes a role for rapid D1 protein turnover and LHCII phosphorylation, and iii) suggests a mechanism for photoinhibition. I argue that the photosynthetic membrane system is dynamic in three dimensions, so much so that, in the light, it is in constant motion and operates in a manner somewhat analogous to a conveyor belt. D1 protein degradation is proposed to be the motor that drives this system. Photoinhibition is suggested to be due to the arrest of D1 protein turnover.

  10. High-order evolving surface finite element method for parabolic problems on evolving surfaces

    OpenAIRE

    Kovács, Balázs

    2016-01-01

    High-order spatial discretisations and full discretisations of parabolic partial differential equations on evolving surfaces are studied. We prove convergence of the high-order evolving surface finite element method, by showing high-order versions of geometric approximation errors and perturbation error estimates and by the careful error analysis of a modified Ritz map. Furthermore, convergence of full discretisations using backward difference formulae and implicit Runge-Kutta methods are als...

  11. Disordered Cold Regulated15 Proteins Protect Chloroplast Membranes during Freezing through Binding and Folding, But Do Not Stabilize Chloroplast Enzymes in Vivo1[W][OPEN

    Science.gov (United States)

    Thalhammer, Anja; Bryant, Gary; Sulpice, Ronan; Hincha, Dirk K.

    2014-01-01

    Freezing can severely damage plants, limiting geographical distribution of natural populations and leading to major agronomical losses. Plants native to cold climates acquire increased freezing tolerance during exposure to low nonfreezing temperatures in a process termed cold acclimation. This involves many adaptative responses, including global changes in metabolite content and gene expression, and the accumulation of cold-regulated (COR) proteins, whose functions are largely unknown. Here we report that the chloroplast proteins COR15A and COR15B are necessary for full cold acclimation in Arabidopsis (Arabidopsis thaliana). They protect cell membranes, as indicated by electrolyte leakage and chlorophyll fluorescence measurements. Recombinant COR15 proteins stabilize lactate dehydrogenase during freezing in vitro. However, a transgenic approach shows that they have no influence on the stability of selected plastidic enzymes in vivo, although cold acclimation results in increased enzyme stability. This indicates that enzymes are stabilized by other mechanisms. Recombinant COR15 proteins are disordered in water, but fold into amphipathic α-helices at high osmolyte concentrations in the presence of membranes, a condition mimicking molecular crowding induced by dehydration during freezing. X-ray scattering experiments indicate protein-membrane interactions specifically under such crowding conditions. The COR15-membrane interactions lead to liposome stabilization during freezing. Collectively, our data demonstrate the requirement for COR15 accumulation for full cold acclimation of Arabidopsis. The function of these intrinsically disordered proteins is the stabilization of chloroplast membranes during freezing through a folding and binding mechanism, but not the stabilization of chloroplastic enzymes. This indicates a high functional specificity of these disordered plant proteins. PMID:25096979

  12. Phylogenetic Resolution inJuglansBased on Complete Chloroplast Genomes and Nuclear DNA Sequences.

    Science.gov (United States)

    Dong, Wenpan; Xu, Chao; Li, Wenqing; Xie, Xiaoman; Lu, Yizeng; Liu, Yanlei; Jin, Xiaobai; Suo, Zhili

    2017-01-01

    Walnuts ( Juglans of the Juglandaceae) are well-known economically important resource plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from tropical to temperate zones and from Asia to Europe and Americas. There are about 21 species in Juglans . Classification of Juglans at section level is problematic, because the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and DNA markers severely inhibited the development of related researches. In this study, the complete chloroplast genomes and two nuclear DNA regions (the internal transcribed spacer and ubiquitin ligase gene) of 10 representative taxa of Juglans were used for comparative genomic analyses in order to deepen the understanding on the application value of genetic information for inferring the phylogenetic relationship of the genus. The Juglans chloroplast genomes possessed the typical quadripartite structure of angiosperms, consisting of a pair of inverted repeat regions separated by a large single-copy region and a small single-copy region. All the 10 chloroplast genomes possessed 112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions revealed that Juglans plants could be classified into three branches: (1) section Juglans , (2) section Cardiocaryon including J. cinerea which is closer to J. mandshurica , and (3) section Rhysocaryon . However, three branches with a different phylogenetic topology were recognized in Juglans using the complete chloroplast genome sequences: (1) section Juglans , (2) section Cardiocaryon , and (3) section Rhysocaryon plus J. cinerea . The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy except J. cinerea (section Trachycaryon ). Based on the complete chloroplast genome sequence data, the divergence time between section Juglans and section Cardiocaryon was 44.77 Mya, while section

  13. Phylogenetic Resolution in Juglans Based on Complete Chloroplast Genomes and Nuclear DNA Sequences

    Directory of Open Access Journals (Sweden)

    Wenpan Dong

    2017-06-01

    Full Text Available Walnuts (Juglans of the Juglandaceae are well-known economically important resource plants for the edible nuts, high-quality wood, and medicinal use, with a distribution from tropical to temperate zones and from Asia to Europe and Americas. There are about 21 species in Juglans. Classification of Juglans at section level is problematic, because the phylogenetic position of Juglans cinerea is disputable. Lacking morphological and DNA markers severely inhibited the development of related researches. In this study, the complete chloroplast genomes and two nuclear DNA regions (the internal transcribed spacer and ubiquitin ligase gene of 10 representative taxa of Juglans were used for comparative genomic analyses in order to deepen the understanding on the application value of genetic information for inferring the phylogenetic relationship of the genus. The Juglans chloroplast genomes possessed the typical quadripartite structure of angiosperms, consisting of a pair of inverted repeat regions separated by a large single-copy region and a small single-copy region. All the 10 chloroplast genomes possessed 112 unique genes arranged in the same order, including 78 protein-coding, 30 tRNA, and 4 rRNA genes. A combined sequence data set from two nuclear DNA regions revealed that Juglans plants could be classified into three branches: (1 section Juglans, (2 section Cardiocaryon including J. cinerea which is closer to J. mandshurica, and (3 section Rhysocaryon. However, three branches with a different phylogenetic topology were recognized in Juglans using the complete chloroplast genome sequences: (1 section Juglans, (2 section Cardiocaryon, and (3 section Rhysocaryon plus J. cinerea. The molecular taxonomy of Juglans is almost compatible to the morphological taxonomy except J. cinerea (section Trachycaryon. Based on the complete chloroplast genome sequence data, the divergence time between section Juglans and section Cardiocaryon was 44.77 Mya, while

  14. IDENTIFICATION OF PUTATIVE HYBRIDS AND NATURAL LINEAGES IN GENUS POTAMOGETON REVEALED BY CHLOROPLAST AND NUCLEAR DNA MARKERS

    National Research Council Canada - National Science Library

    Tao Zhang; Jianbo Wang

    2012-01-01

      Phylogenetic relations of hybrids and non-hybrid species in the genus Potamogeton were reconstructed based on three spacers and one intron of chloroplast sequences and nuclear sequences of 5S-NTS...

  15. Rice Chloroplast Genome Variation Architecture and Phylogenetic Dissection in Diverse Oryza Species Assessed by Whole-Genome Resequencing.

    Science.gov (United States)

    Tong, Wei; Kim, Tae-Sung; Park, Yong-Jin

    2016-12-01

    Chloroplast genome variations have been detected, despite its overall conserved structure, which has been valuable for plant population genetics and evolutionary studies. Here, we described chloroplast variation architecture of 383 rice accessions from diverse regions and different ecotypes, in order to mine the rice chloroplast genome variation architecture and phylogenetic. A total of 3677 variations across the chloroplast genome were identified with an average density of 27.33 per kb, in which wild rice showing a higher variation density than cultivated groups. Chloroplast genome nucleotide diversity investigation indicated a high degree of diversity in wild rice than in cultivated rice. Genetic distance estimation revealed that African rice showed a low level of breeding and connectivity with the Asian rice, suggesting the big distinction of them. Population structure and principal component analysis revealed the existence of clear clustering of African and Asian rice, as well as the indica and japonica in Asian cultivated rice. Phylogenetic analysis based on maximum likelihood and Bayesian inference methods and the population splits test suggested and supported the independent origins of indica and japonica within Asian cultivated rice. In addition, the African cultivated rice was thought to be domesticated differently from Asian cultivated rice. The chloroplast genome variation architecture in Asian and African rice are different, as well as within Asian or African rice. Wild rice and cultivated rice also have distinct nucleotide diversity or genetic distance. In chloroplast level, the independent origins of indica and japonica within Asian cultivated rice were suggested and the African cultivated rice was thought to be domesticated differently from Asian cultivated rice. These results will provide more candidate evidence for the further rice chloroplast genomic and evolution studies.

  16. Action of calcium ions on spinach (Spinacia oleracea) chloroplast fructose bisphosphatase and other enzymes of the Calvin cycle.

    Science.gov (United States)

    Charles, S A; Halliwell, B

    1980-01-01

    Thiol-treated spinach (Spinacia oleracea) chloroplast fructose bisphosphatase is powerfully inhibited by Ca2+ non-competitively with respect to its substrate, fructose 1,6-bisphosphate. 500 microM-Ca2+ causes virtually complete inhibition and the Ki is 40 microM. Severe inhibition of sedoheptulose bisphosphatase is also caused by Ca2+. A role for Ca2+ in regulation of the Calvin cycle in spinach chloroplasts is proposed. PMID:6258561

  17. Capturing chloroplast variation for molecular ecology studies: a simple next generation sequencing approach applied to a rainforest tree

    OpenAIRE

    McPherson, Hannah; van der Merwe, Marlien; Delaney, Sven K; Edwards, Mark A; Henry, Robert J; McIntosh, Emma; Rymer, Paul D; Milner, Melita L; Siow, Juelian; Rossetto, Maurizio

    2013-01-01

    Background With high quantity and quality data production and low cost, next generation sequencing has the potential to provide new opportunities for plant phylogeographic studies on single and multiple species. Here we present an approach for in silicio chloroplast DNA assembly and single nucleotide polymorphism detection from short-read shotgun sequencing. The approach is simple and effective and can be implemented using standard bioinformatic tools. Results The chloroplast genome of Toona ...

  18. Expression of fungal cutinase and swollenin in tobacco chloroplasts reveals novel enzyme functions and/or substrates.

    Directory of Open Access Journals (Sweden)

    Dheeraj Verma

    Full Text Available In order to produce low-cost biomass hydrolyzing enzymes, transplastomic lines were generated that expressed cutinase or swollenin within chloroplasts. While swollenin expressing plants were homoplasmic, cutinase transplastomic lines remained heteroplasmic. Both transplastomic lines showed interesting modifications in their phenotype, chloroplast structure, and functions. Ultrastructural analysis of chloroplasts from cutinase- and swollenin-expressing plants did not show typical lens shape and granal stacks. But, their thylakoid membranes showed unique scroll like structures and chloroplast envelope displayed protrusions, stretching into the cytoplasm. Unusual honeycomb structures typically observed in etioplasts were observed in mature chloroplasts expressing swollenin. Treatment of cotton fiber with chloroplast-derived swollenin showed enlarged segments and the intertwined inner fibers were irreversibly unwound and fully opened up due to expansin activity of swollenin, causing disruption of hydrogen bonds in cellulose fibers. Cutinase transplastomic plants showed esterase and lipase activity, while swollenin transplastomic lines lacked such enzyme activities. Higher plants contain two major galactolipids, monogalactosyldiacylglycerol (MGDG and digalactosyldiacylglycerol (DGDG, in their chloroplast thylakoid membranes that play distinct roles in their structural organization. Surprisingly, purified cutinase effectively hydrolyzed DGDG to MGDG, showing alpha galactosidase activity. Such hydrolysis resulted in unstacking of granal thylakoids in chloroplasts and other structural changes. These results demonstrate DGDG as novel substrate and function for cutinase. Both MGDG and DGDG were reduced up to 47.7% and 39.7% in cutinase and 68.5% and 67.5% in swollenin expressing plants. Novel properties and functions of both enzymes reported here for the first time should lead to better understanding and enhanced biomass hydrolysis.

  19. Starch degradation in chloroplasts isolated from C3 or CAM (crassulacean acid metabolism)-induced Mesembryanthemum crystallinum L.

    Science.gov (United States)

    Neuhaus, H E; Schulte, N

    1996-09-15

    C3 or crassulacean acid metabolism (CAM)-induced Mesembryanthemum crystallinum plants perform nocturnal starch degradation which is linear with time. To analyse the composition of metabolites released by isolated leaf chloroplasts during starch degradation we developed a protocol for the purification of starch-containing plastids. Isolated chloroplasts from C3 or CAM-induced M. crystallinum plants are also able to degrade starch. With respect to the endogenous starch content of isolated plastids the rate of starch degradation in intact leaves. The combined presence of Pi, ATP, and oxaloacetate is identified to be the most positive effector combination to induce starch mobilization. The metabolic flux through the oxidative pentose-phosphate pathway in chloroplasts isolated from CAM-induced M. crystallinum is less than 3.5% compared with other metabolic routes of starch degradation. Here we report that starch-degrading chloroplasts isolated from CAM-induced M. crystallinum plants use exogenously supplied oxaloacetate for the synthesis of malate. The main products of starch degradation exported into the incubation medium by these chloroplasts are glucose 6-phosphate, 3-phosphoglyceric acid, dihydroxyacetone phosphate and glucose. The identification of glucose 6-phosphate as an important metabolite released during starch degradation is in contrast to the observations made on all other types of plastids analysed so far, including chloroplasts isolated from M. crystallinum in the C3 state. Therefore, we analysed the transport properties of isolated chloroplasts from M. crystallinum. Surprisingly, both types of chloroplasts, isolated from either C3 or CAM-induced plants, are able to transport glucose 6-phosphate in counter exchange with endogenous Pi, indicating the presence of a glucose 6-phosphate translocator as recently demonstrated to occur in other types of plastids. The composition of metabolites released and the stimulatory effect of oxaloacetate on the rate of

  20. Delaying chloroplast turnover increases water-deficit stress tolerance through the enhancement of nitrogen assimilation in rice.

    Science.gov (United States)

    Sade, Nir; Umnajkitikorn, Kamolchanok; Rubio Wilhelmi, Maria Del Mar; Wright, Matthew; Wang, Songhu; Blumwald, Eduardo

    2017-07-27

    Abiotic stress-induced senescence in crops is a process particularly affecting the photosynthetic apparatus, decreasing photosynthetic activity and inducing chloroplast degradation. A pathway for stress-induced chloroplast degradation that involves the CHLOROPLAST VESICULATION (CV) gene was characterized in rice (Oryza sativa) plants. OsCV expression was up-regulated with the age of the plants and when plants were exposed to water-deficit conditions. The down-regulation of OsCV expression contributed to the maintenance of the chloroplast integrity under stress. OsCV-silenced plants displayed enhanced source fitness (i.e. carbon and nitrogen assimilation) and photorespiration, leading to water-deficit stress tolerance. Co-immunoprecipitation, intracellular co-localization, and bimolecular fluorescence demonstrated the in vivo interaction between OsCV and chloroplastic glutamine synthetase (OsGS2), affecting source-sink relationships of the plants under stress. Our results would indicate that the OsCV-mediated chloroplast degradation pathway is involved in the regulation of nitrogen assimilation during stress-induced plant senescence. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.