WorldWideScience

Sample records for rapidly disrupts immunity

  1. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer.

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress - a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.

  2. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  3. Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity.

    Science.gov (United States)

    Davenport, A J; Cross, R S; Watson, K A; Liao, Y; Shi, W; Prince, H M; Beavis, P A; Trapani, J A; Kershaw, M H; Ritchie, D S; Darcy, P K; Neeson, P J; Jenkins, M R

    2018-02-27

    Chimeric antigen receptor T (CAR-T) cells are effective serial killers with a faster off-rate from dying tumor cells than CAR-T cells binding target cells through their T cell receptor (TCR). Here we explored the functional consequences of CAR-mediated signaling using a dual-specific CAR-T cell, where the same cell was triggered via TCR (tcrCTL) or CAR (carCTL). The carCTL immune synapse lacked distinct LFA-1 adhesion rings and was less reliant on LFA to form stable conjugates with target cells. carCTL receptors associated with the synapse were found to be disrupted and formed a convoluted multifocal pattern of Lck microclusters. Both proximal and distal receptor signaling pathways were induced more rapidly and subsequently decreased more rapidly in carCTL than in tcrCTL. The functional consequence of this rapid signaling in carCTL cells included faster lytic granule recruitment to the immune synapse, correlating with faster detachment of the CTL from the target cell. This study provides a mechanism for how CAR-T cells can debulk large tumor burden quickly and may contribute to further refinement of CAR design for enhancing the quality of signaling and programming of the T cell. Copyright © 2018 the Author(s). Published by PNAS.

  4. Smooth and Controlled Recovery Planning of Disruptions in Rapid Transit Networks

    NARCIS (Netherlands)

    Cadarso, L.; Marin, A.; Maroti, G.

    2015-01-01

    This paper studies the disruption management problem of rapid transit rail networks. We consider an integrated model for the recovery of the timetable and the rolling stock schedules. We propose a new approach to deal with large-scale disruptions: we limit the number of simultaneous schedule changes

  5. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  6. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  7. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  8. Disrupted rapid eye movement sleep predicts poor declarative memory performance in post-traumatic stress disorder.

    Science.gov (United States)

    Lipinska, Malgorzata; Timol, Ridwana; Kaminer, Debra; Thomas, Kevin G F

    2014-06-01

    Successful memory consolidation during sleep depends on healthy slow-wave and rapid eye movement sleep, and on successful transition across sleep stages. In post-traumatic stress disorder, sleep is disrupted and memory is impaired, but relations between these two variables in the psychiatric condition remain unexplored. We examined whether disrupted sleep, and consequent disrupted memory consolidation, is a mechanism underlying declarative memory deficits in post-traumatic stress disorder. We recruited three matched groups of participants: post-traumatic stress disorder (n = 16); trauma-exposed non-post-traumatic stress disorder (n = 15); and healthy control (n = 14). They completed memory tasks before and after 8 h of sleep. We measured sleep variables using sleep-adapted electroencephalography. Post-traumatic stress disorder-diagnosed participants experienced significantly less sleep efficiency and rapid eye movement sleep percentage, and experienced more awakenings and wake percentage in the second half of the night than did participants in the other two groups. After sleep, post-traumatic stress disorder-diagnosed participants retained significantly less information on a declarative memory task than controls. Rapid eye movement percentage, wake percentage and sleep efficiency correlated with retention of information over the night. Furthermore, lower rapid eye movement percentage predicted poorer retention in post-traumatic stress disorder-diagnosed individuals. Our results suggest that declarative memory consolidation is disrupted during sleep in post-traumatic stress disorder. These data are consistent with theories suggesting that sleep benefits memory consolidation via predictable neurobiological mechanisms, and that rapid eye movement disruption is more than a symptom of post-traumatic stress disorder. © 2014 European Sleep Research Society.

  9. Extinction order and altered community structure rapidly disrupt ecosystem functioning.

    Science.gov (United States)

    Larsen, Trond H; Williams, Neal M; Kremen, Claire

    2005-05-01

    By causing extinctions and altering community structure, anthropogenic disturbances can disrupt processes that maintain ecosystem integrity. However, the relationship between community structure and ecosystem functioning in natural systems is poorly understood. Here we show that habitat loss appeared to disrupt ecosystem functioning by affecting extinction order, species richness and abundance. We studied pollination by bees in a mosaic of agricultural and natural habitats in California and dung burial by dung beetles on recently created islands in Venezuela. We found that large-bodied bee and beetle species tended to be both most extinction-prone and most functionally efficient, contributing to rapid functional loss. Simulations confirmed that extinction order led to greater disruption of function than predicted by random species loss. Total abundance declined with richness and also appeared to contribute to loss of function. We demonstrate conceptually and empirically how the non-random response of communities to disturbance can have unexpectedly large functional consequences.

  10. Effect of skin barrier disruption on immune responses to topically applied cross-reacting material, CRM(197), of diphtheria toxin.

    Science.gov (United States)

    Godefroy, S; Peyre, M; Garcia, N; Muller, S; Sesardic, D; Partidos, C D

    2005-08-01

    The high accessibility of the skin and the presence of immunocompetent cells in the epidermis makes this surface an attractive route for needle-free administration of vaccines. However, the lining of the skin by the stratum corneum is a major obstacle to vaccine delivery. In this study we examined the effect of skin barrier disruption on the immune responses to the cross-reacting material CRM(197), a nontoxic mutant of diphtheria toxin (DTx) that is considered as a vaccine candidate. Application of CRM(197), together with cholera toxin (CT), onto the tape-stripped skin of mice elicited antibody responses that had anti-DTx neutralizing activity. Vaccine delivery onto mildly ablated skin or intact skin did not elicit any detectable anti-CRM(197) antibodies. Mice immunized with CRM(197) alone onto the tape-stripped skin mounted a vigorous antigen-specific proliferative response. In contrast, the induction of cellular immunity after CRM(197) deposition onto mildly ablated or intact skin was adjuvant dependent. Furthermore, epidermal cells were activated and underwent apoptosis that was more pronounced when the stratum corneum was removed by tape stripping. Overall, these findings highlight the potential for transcutaneous delivery of CRM(197) and establish a correlation between the degree of barrier disruption and levels of antigen-specific immune responses. Moreover, these results provide the first evidence that the development of a transcutaneous immunization strategy for diphtheria, based on simple and practical methods to disrupt the skin barrier, is feasible.

  11. The application of automatic chemiluminescence machine in rapid immune detection

    International Nuclear Information System (INIS)

    Lin Aizhen; Li Xuanwei; Chen Binhong; Li Zhenqian; Chen Zhaoxuan

    2004-01-01

    Objective: To provide high-quality, rapid and dependable result for clinical practice, and give satisfactory service to patients of different economical status by supplementation with other labeling immune examination. With an innovative attitude, we carried out efficient technical reform on ACS180 automatic chemiluminescence machine, making it possible for patients to complete the whole process including examination, check-out, diagnosis and getting drugs. The reported will be issued within an hour, thus a rapid immune detection service was established in out-patients department. Methods: 1. ACS-180 automatic chemiluminescence machine is used based on the principle of chemiluminescence immune methods. 2. The reagents are provided by Ciba-Comig Company of USA, composed of anti acridinium ester antibody of liquid phase and particulate antigen of solid phase wrapped in magnetic powder. 3. Calibration and quality control: high and low concentration are set for each calibration fluid with attached standard curve. Product for quality controlling includes three concentration of low, moderate and high. Results: 1. rapid machine detection for sample: serum is replaced with plasma coagulated by heparin, and comparison among series of methods using serum or plasma suggest no significant difference exists. 2. The problem about fasting detection: chemiluminescence machine measure optical density directly, with the results hardly being influenced by turbidity. But attention should be paid to the treatment of lipid turbid samples. 3. Other innovations: (1) direct placement of sample tube on machine: a cushion is placed on sample plate to transfer sample to machine directly after centrifugation, saving time and reducing the accident in sample transference. (2) for HCG quantification in blood and urine, 'gold criteria' is used firstly in screening to determine approximately the dilution range, with an advantage of saving time and reagent as well as accuracy. (3) we design a

  12. Ex vivo cytosolic delivery of functional macromolecules to immune cells.

    Directory of Open Access Journals (Sweden)

    Armon Sharei

    Full Text Available Intracellular delivery of biomolecules, such as proteins and siRNAs, into primary immune cells, especially resting lymphocytes, is a challenge. Here we describe the design and testing of microfluidic intracellular delivery systems that cause temporary membrane disruption by rapid mechanical deformation of human and mouse immune cells. Dextran, antibody and siRNA delivery performance is measured in multiple immune cell types and the approach's potential to engineer cell function is demonstrated in HIV infection studies.

  13. Rapid, portable detection of endocrine disrupting chemicals through ligand-nuclear hormone receptor interactions.

    Science.gov (United States)

    Hunt, J Porter; Schinn, Song-Min; Jones, Matthew D; Bundy, Bradley C

    2017-12-04

    Endocrine disrupting chemicals (EDC) are structurally diverse compounds that can interact with nuclear hormone receptors, posing significant risk to human and ecological health. Unfortunately, many conventional biosensors have been too structure-specific, labor-intensive or laboratory-oriented to detect broad ranges of EDC effectively. Recently, several technological advances are providing more rapid, portable, and affordable detection of endocrine-disrupting activity through ligand-nuclear hormone receptor interactions. Here, we overview these recent advances applied to EDC biosensors - including cell lyophilization, cell immobilization, cell-free systems, smartphone-based signal detection, and improved competitive binding assays.

  14. Mechanical disruption of tumors by iron particles and magnetic field application results in increased anti-tumor immune responses.

    Directory of Open Access Journals (Sweden)

    Myriam N Bouchlaka

    Full Text Available The primary tumor represents a potential source of antigens for priming immune responses for disseminated disease. Current means of debulking tumors involves the use of cytoreductive conditioning that impairs immune cells or removal by surgery. We hypothesized that activation of the immune system could occur through the localized release of tumor antigens and induction of tumor death due to physical disruption of tumor architecture and destruction of the primary tumor in situ. This was accomplished by intratumor injection of magneto-rheological fluid (MRF consisting of iron microparticles, in Balb/c mice bearing orthotopic 4T1 breast cancer, followed by local application of a magnetic field resulting in immediate coalescence of the particles, tumor cell death, slower growth of primary tumors as well as decreased tumor progression in distant sites and metastatic spread. This treatment was associated with increased activation of DCs in the draining lymph nodes and recruitment of both DCs and CD8(+T cells to the tumor. The particles remained within the tumor and no toxicities were observed. The immune induction observed was significantly greater compared to cryoablation. Further anti-tumor effects were observed when MRF/magnet therapy was combined with systemic low dose immunotherapy. Thus, mechanical disruption of the primary tumor with MRF/magnetic field application represents a novel means to induce systemic immune activation in cancer.

  15. An overview of estrogen-associated endocrine disruption in fishes: evidence of effects on reproductive and immune physiology

    Science.gov (United States)

    Iwanowicz, L.R.; Blazer, V.S.

    2011-01-01

    Simply and perhaps intuitively defined, endocrine disruption is the abnormal modulation of normal hormonal physiology by exogenous chemicals. In fish, endocrine disruption of the reproductive system has been observed worldwide in numerous species and is known to affect both males and females. Observations of biologically relevant endocrine disruption most commonly occurs near waste water treatment plant outfalls, pulp and paper mills, and areas of high organic loading sometimes associated with agricultural practices. Estrogenic endocrine disrupting chemicals (EEDCs) have received an overwhelmingly disproportionate amount of scientific attention compared to other EDCs in recent years. In male fishes, exposure to EEDCs can lead to the induction of testicular oocytes (intersex), measurable plasma vitellogenin protein, altered sex steroid profiles, abnormal spawning behavior, skewed population sex ratios, and lessened reproductive success. Interestingly, contemporary research purports that EDCs modulate aspects of non-reproductive physiology including immune function. Here we present an overview of endocrine disruption in fishes associated with estrogenic compounds, implications of this phenomenon, and examples of EDC related research findings by our group in the Potomac River Watershed, USA.

  16. Disruptive Intelligence - How to gather Information to deal with disruptive innovations

    NARCIS (Netherlands)

    Vriens, D.J.; Solberg Søilen, K.

    2014-01-01

    Disruptive innovations are innovations that have the capacity to transform a whole business into one with products that are more accessible and affordable (cf. Christensen et al. 2009). As Christensen et al. argue no business is immune to such disruptive innovations. If these authors are right, it

  17. Disruptions in JET

    International Nuclear Information System (INIS)

    Wesson, J.A.; Gill, R.D.; Hugon, M.

    1989-01-01

    In JET, both high density and low-q operation are limited by disruptions. The density limit disruptions are caused initially by impurity radiation. This causes a contraction of the plasma temperature profile and leads to an MHD unstable configuration. There is evidence of magnetic island formation resulting in minor disruptions. After several minor disruptions, a major disruption with a rapid energy quench occurs. This event takes place in two stages. In the first stage there is a loss of energy from the central region. In the second stage there is a more rapid drop to a very low temperature, apparently due to a dramatic increase in impurity radiation. The final current decay takes place in the resulting cold plasma. During the growth of the MHD instability the initially rotating mode is brought to rest. This mode locking is believed to be due to an electromagnetic interaction with the vacuum vessel and external magnetic field asymmetries. The low-q disruptions are remarkable for the precision with which they occur at q ψ = 2. These disruptions do not have extended precursors or minor disruptions. The instability grows and locks rapidly. The energy quench and current decay are generally similar to those of the density limit. (author). 43 refs, 35 figs, 3 tabs

  18. Digital disruption ?syndromes.

    Science.gov (United States)

    Sullivan, Clair; Staib, Andrew

    2017-05-18

    The digital transformation of hospitals in Australia is occurring rapidly in order to facilitate innovation and improve efficiency. Rapid transformation can cause temporary disruption of hospital workflows and staff as processes are adapted to the new digital workflows. The aim of this paper is to outline various types of digital disruption and some strategies for effective management. A large tertiary university hospital recently underwent a rapid, successful roll-out of an integrated electronic medical record (EMR). We observed this transformation and propose several digital disruption "syndromes" to assist with understanding and management during digital transformation: digital deceleration, digital transparency, digital hypervigilance, data discordance, digital churn and post-digital 'depression'. These 'syndromes' are defined and discussed in detail. Successful management of this temporary digital disruption is important to ensure a successful transition to a digital platform. What is known about this topic? Digital disruption is defined as the changes facilitated by digital technologies that occur at a pace and magnitude that disrupt established ways of value creation, social interactions, doing business and more generally our thinking. Increasing numbers of Australian hospitals are implementing digital solutions to replace traditional paper-based systems for patient care in order to create opportunities for improved care and efficiencies. Such large scale change has the potential to create transient disruption to workflows and staff. Managing this temporary disruption effectively is an important factor in the successful implementation of an EMR. What does this paper add? A large tertiary university hospital recently underwent a successful rapid roll-out of an integrated electronic medical record (EMR) to become Australia's largest digital hospital over a 3-week period. We observed and assisted with the management of several cultural, behavioural and

  19. The impact of shift work induced chronic circadian disruption on IL-6 and TNF-α immune responses

    Directory of Open Access Journals (Sweden)

    Spallek Michael

    2010-07-01

    Full Text Available Abstract AIM Sleep disturbances induce proinflammatory immune responses, which might increase cardiovascular disease risk. So far the effects of acute sleep deprivation and chronic sleep illnesses on the immune system have been investigated. The particular impact of shift work induced chronic circadian disruption on specific immune responses has not been addressed so far. Methods Pittsburgh-Sleep-Quality-Index (PSQI questionnaire and blood sampling was performed by 225 shift workers and 137 daytime workers. As possible markers the proinflammatory cytokines IL-6 and TNF-α and lymphocyte cell count were investigated. A medical examination was performed and biometrical data including age, gender, height, weight, waist and hip circumference and smoking habits were collected by a structured interview. Results Shift workers had a significantly higher mean PSQI score than day workers (6.73 vs. 4.66; p Conclusion Shift work induces chronic sleep debt. Our data reveals that chronic sleep debt might not always lead to an activation of the immune system, as we did not observe differences in lymphocyte count or level of IL-6 or TNF-α serum concentration between shift workers and day workers. Therefore chronic sleep restriction might be eased by a long-term compensating immune regulation which (in healthy protects against an overstimulation of proinflammatory immune mechanisms and moderates metabolic changes, as they are known from short-term sleep deprivation or sleep related breathing disorders.

  20. Simulated bacterial infection disrupts the circadian fluctuation of immune cells in wrinkle-lipped bats (Chaerephon plicatus

    Directory of Open Access Journals (Sweden)

    Philipp Weise

    2017-08-01

    Full Text Available Background Leukocyte concentrations follow a circadian pattern in mammals, with elevated values at times of potential contact with pathogens and parasites. We hypothesized that this pattern is disturbed after an immune challenge. Methods In Thailand, we captured wrinkle-lipped bats (Chaerephon plicatus, when they returned to their colony at dawn. We challenged half of the animals (experimental group with bacterial lipopolysaccharides and treated the others only with the carrier liquid (control group. We then compared body mass changes and differences in circulating immune cell counts at 8 h post-treatment. Results In experimental animals, we observed an increase in total leukocyte and neutrophil numbers of 17% and 95%, respectively. In control animals, concentrations of leukocytes decreased by 44% and those of neutrophils remained constant. Experimental treatment had no effect on lymphocytes, yet changes in eosinophil numbers were explained by sex. Eosinophils decreased by 66% in females and by 62% in males. Basophils and monocytes were rarest among all observed cell types and analysis was either impossible because of low numbers or yielded no significant effects, respectively. Discussion Our findings show that a simulated bacterial infection triggered a neutrophil-associated immune response in wrinkle-lipped bats, indicating a disruption of the diurnal fluctuation of immune cells. Our study suggests that bats exhibit circadian rhythms in immune cell counts. The magnitude of these fluctuations may vary across species according to specific-specific infection risks associated with colony sizes or specific roosting habits.

  1. Proteinase 3 on apoptotic cells disrupts immune silencing in autoimmune vasculitis

    Science.gov (United States)

    Millet, Arnaud; Martin, Katherine R.; Bonnefoy, Francis; Saas, Philippe; Mocek, Julie; Alkan, Manal; Terrier, Benjamin; Kerstein, Anja; Tamassia, Nicola; Satyanarayanan, Senthil Kumaran; Ariel, Amiram; Ribeil, Jean-Antoine; Guillevin, Loïc; Cassatella, Marco A.; Mueller, Antje; Thieblemont, Nathalie; Lamprecht, Peter; Mouthon, Luc; Perruche, Sylvain; Witko-Sarsat, Véronique

    2015-01-01

    Granulomatosis with polyangiitis (GPA) is a systemic necrotizing vasculitis that is associated with granulomatous inflammation and the presence of anti-neutrophil cytoplasmic antibodies (ANCAs) directed against proteinase 3 (PR3). We previously determined that PR3 on the surface of apoptotic neutrophils interferes with induction of antiinflammatory mechanisms following phagocytosis of these cells by macrophages. Here, we demonstrate that enzymatically active membrane-associated PR3 on apoptotic cells triggered secretion of inflammatory cytokines, including granulocyte CSF (G-CSF) and chemokines. This response required the IL-1R1/MyD88 signaling pathway and was dependent on the synthesis of NO, as macrophages from animals lacking these pathways did not exhibit a PR3-associated proinflammatory response. The PR3-induced microenvironment facilitated recruitment of inflammatory cells, such as macrophages, plasmacytoid DCs (pDCs), and neutrophils, which were observed in close proximity within granulomatous lesions in the lungs of GPA patients. In different murine models of apoptotic cell injection, the PR3-induced microenvironment instructed pDC-driven Th9/Th2 cell generation. Concomitant injection of anti-PR3 ANCAs with PR3-expressing apoptotic cells induced a Th17 response, revealing a GPA-specific mechanism of immune polarization. Accordingly, circulating CD4+ T cells from GPA patients had a skewed distribution of Th9/Th2/Th17. These results reveal that PR3 disrupts immune silencing associated with clearance of apoptotic neutrophils and provide insight into how PR3 and PR3-targeting ANCAs promote GPA pathophysiology. PMID:26436651

  2. Investing in Immunity: Prepandemic Immunization to Combat Future Influenza Pandemics.

    Science.gov (United States)

    Goodman, Jesse L

    2016-02-15

    We are unlikely, with current technologies, to have sufficient pandemic influenza vaccine ready in time to impact the first wave of the next pandemic. Emerging data show that prior immunization with an immunologically distinct hemagglutinin of the same subtype offers the potential to "prime" recipients for rapid protection with a booster dose, years later, of a vaccine then manufactured to match the pandemic strain. This article proposes making prepandemic priming vaccine(s) available for voluntary use, particularly to those at high risk of early occupational exposure, such as first responders and healthcare workers, and to others maintaining critical infrastructure. In addition to providing faster protection and potentially reducing social disruption, being able, early in a pandemic, to immunize those who had received prepandemic vaccine with one dose of the pandemic vaccine, rather than the 2 doses typically required, would reduce the total doses of pandemic vaccine then needed, extending vaccine supplies. Published by Oxford University Press for the Infectious Diseases Society of America 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  3. Innate lymphoid cells: models of plasticity for immune homeostasis and rapid responsiveness in protection.

    Science.gov (United States)

    Almeida, F F; Belz, G T

    2016-09-01

    Innate lymphoid cells (ILCs) have stormed onto the immune landscape as "newly discovered" cell types. These tissue-resident sentinels are enriched at mucosal surfaces and engage in complex cross talk with elements of the adaptive immune system and microenvironment to orchestrate immune homeostasis. Many parallels exist between innate cells and T cells leading to the initial partitioning of ILCs into rather rigid subsets that reflect their "adaptive-like" effector cytokines profiles. ILCs themselves, however, have unique attributes that are only just beginning to be elucidated. These features result in complementarity with, rather than complete duplication of, functions of the adaptive immune system. Key transcription factors determine the pathway of differentiation of progenitors towards an ILC1, ILC2, or ILC3 subset. Once formed, flexibility in the responses of these subsets to stimuli unexpectedly allows transdifferentation between the different subsets and the acquisition of altered phenotypes and function. This provides a mechanism for rapid innate immune responsiveness. Here, we discuss the models of differentiation for maintenance and activation of tissue-resident ILCs in maintaining immune homeostasis and protection.

  4. Participation of hypothalamic CB1 receptors in reproductive axis disruption during immune challenge.

    Science.gov (United States)

    Surkin, P N; Di Rosso, M E; Correa, F; Elverdin, J C; Genaro, A M; De Laurentiis, A; Fernández-Solari, J

    2017-08-01

    Immune challenge inhibits reproductive function and endocannabinoids (eCB) modulate sexual hormones. However, no studies have been performed to assess whether the eCB system mediates the inhibition of hormones that control reproduction as a result of immune system activation during systemic infections. For that reason, we evaluated the participation of the hypothalamic cannabinoid receptor CB1 on the hypothalamic-pituitary-gonadal (HPG) axis activity in rats submitted to immune challenge. Male adult rats were treated i.c.v. administration with a CB1 antagonist/inverse agonist (AM251) (500 ng/5 μL), followed by an i.p. injection of lipopolysaccharide (LPS) (5 mg/kg) 15 minutes later. Plasmatic, hypothalamic and adenohypophyseal pro-inflammatory cytokines, hormones and neuropeptides were assessed 90 or 180 minutes post-LPS. The plasma concentration of tumour necrosis factor α and adenohypophyseal mRNA expression of Tnfα and Il1β increased 90 and 180 minutes post i.p. administration of LPS. However, cytokine mRNA expression in the hypothalamus increased only 180 minutes post-LPS, suggesting an inflammatory delay in this organ. CB1 receptor blockade with AM251 increased LPS inflammatory effects, particularly in the hypothalamus. LPS also inhibited the HPG axis by decreasing gonadotrophin-releasing hormone hypothalamic content and plasma levels of luteinising hormone and testosterone. These disruptor effects were accompanied by decreased hypothalamic Kiss1 mRNA expression and prostaglandin E2 content, as well as by increased gonadotrophin-inhibitory hormone (Rfrp3) mRNA expression. All these disruptive effects were prevented by the presence of AM251. In summary, our results suggest that, in male rats, eCB mediate immune challenge-inhibitory effects on reproductive axis at least partially via hypothalamic CB1 activation. In addition, this receptor also participates in homeostasis recovery by modulating the inflammatory process taking place after LPS

  5. Prenatal Alcohol Exposure and the Developing Immune System

    OpenAIRE

    Gauthier, Theresa W.

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensiv...

  6. Disruption of IL-21 signaling affects T cell-B cell interactions and abrogates protective humoral immunity to malaria.

    Directory of Open Access Journals (Sweden)

    Damián Pérez-Mazliah

    2015-03-01

    Full Text Available Interleukin-21 signaling is important for germinal center B-cell responses, isotype switching and generation of memory B cells. However, a role for IL-21 in antibody-mediated protection against pathogens has not been demonstrated. Here we show that IL-21 is produced by T follicular helper cells and co-expressed with IFN-γ during an erythrocytic-stage malaria infection of Plasmodium chabaudi in mice. Mice deficient either in IL-21 or the IL-21 receptor fail to resolve the chronic phase of P. chabaudi infection and P. yoelii infection resulting in sustained high parasitemias, and are not immune to re-infection. This is associated with abrogated P. chabaudi-specific IgG responses, including memory B cells. Mixed bone marrow chimeric mice, with T cells carrying a targeted disruption of the Il21 gene, or B cells with a targeted disruption of the Il21r gene, demonstrate that IL-21 from T cells signaling through the IL-21 receptor on B cells is necessary to control chronic P. chabaudi infection. Our data uncover a mechanism by which CD4+ T cells and B cells control parasitemia during chronic erythrocytic-stage malaria through a single gene, Il21, and demonstrate the importance of this cytokine in the control of pathogens by humoral immune responses. These data are highly pertinent for designing malaria vaccines requiring long-lasting protective B-cell responses.

  7. Plasma membrane disruption: repair, prevention, adaptation

    Science.gov (United States)

    McNeil, Paul L.; Steinhardt, Richard A.

    2003-01-01

    Many metazoan cells inhabit mechanically stressful environments and, consequently, their plasma membranes are frequently disrupted. Survival requires that the cell rapidly repair or reseal the disruption. Rapid resealing is an active and complex structural modification that employs endomembrane as its primary building block, and cytoskeletal and membrane fusion proteins as its catalysts. Endomembrane is delivered to the damaged plasma membrane through exocytosis, a ubiquitous Ca2+-triggered response to disruption. Tissue and cell level architecture prevent disruptions from occurring, either by shielding cells from damaging levels of force, or, when this is not possible, by promoting safe force transmission through the plasma membrane via protein-based cables and linkages. Prevention of disruption also can be a dynamic cell or tissue level adaptation triggered when a damaging level of mechanical stress is imposed. Disease results from failure of either the preventive or resealing mechanisms.

  8. Prenatal Alcohol Exposure and the Developing Immune System.

    Science.gov (United States)

    Gauthier, Theresa W

    2015-01-01

    Evidence from research in humans and animals suggest that ingesting alcohol during pregnancy can disrupt the fetal immune system and result in an increased risk of infections and disease in newborns that may persist throughout life. Alcohol may have indirect effects on the immune system by increasing the risk of premature birth, which itself is a risk factor for immune-related problems. Animal studies suggest that alcohol exposure directly disrupts the developing immune system. A comprehensive knowledge of the mechanisms underlying alcohol's effects on the developing immune system only will become clear once researchers establish improved methods for identifying newborns exposed to alcohol in utero.

  9. Rapid host immune response and viral dynamics in herpes simplex virus-2 infection

    Science.gov (United States)

    Schiffer, Joshua T; Corey, Lawrence

    2014-01-01

    Herpes Simplex Virus-2 (HSV-2) is episodically shed throughout the human genital tract. While high viral load correlates with development of genital ulcers, shedding also commonly occurs even when ulcers are not present, allowing for silent transmission during coitus and contributing to high seroprevalence of HSV-2 worldwide. Frequent viral reactivation occurs despite diverse and complementary host and viral mechanisms within ganglionic tissue that predispose towards latency, suggesting that viral replication may be constantly occurring in a small minority of neurons within the ganglia. Within genital mucosa, the in vivo expansion and clearance rates of HSV-2 are extremely rapid. Resident dendritic cells and memory HSV-specific T cells persist at prior sites of genital tract reactivation, and in conjunction with prompt innate recognition of infected cells, lead to rapid containment of infected cells. Shedding episodes vary greatly in duration and severity within a single person over time: this heterogeneity appears best explained by variation in the densities of host immunity across the genital tract. The fact that immune responses usually control viral replication in genital skin prior to development of lesions provides optimism that enhancing such responses could lead to effective vaccines and immunotherapies. PMID:23467247

  10. Immunity's fourth dimension: approaching the circadian-immune connection.

    Science.gov (United States)

    Arjona, Alvaro; Silver, Adam C; Walker, Wendy E; Fikrig, Erol

    2012-12-01

    The circadian system ensures the generation and maintenance of self-sustained ~24-h rhythms in physiology that are linked to internal and environmental changes. In mammals, daily variations in light intensity and other cues are integrated by a hypothalamic master clock that conveys circadian information to peripheral molecular clocks that orchestrate physiology. Multiple immune parameters also vary throughout the day and disruption of circadian homeostasis is associated with immune-related disease. Here, we discuss the molecular links between the circadian and immune systems and examine their outputs and disease implications. Understanding the mechanisms that underlie circadian-immune crosstalk may prove valuable for devising novel prophylactic and therapeutic interventions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Detection of immunotoxic effects of estrogenic and androgenic endocrine disrupting compounds using splenic immune cells of the female three-spined stickleback, Gasterosteus aculeatus (L.).

    Science.gov (United States)

    Bado-Nilles, A; Techer, R; Porcher, J M; Geffard, A; Gagnaire, B; Betoulle, S; Sanchez, W

    2014-09-01

    Today, the list of endocrine disrupting compounds (EDCs) in freshwater and marine environments that mimic or block endogenous hormones is expanding at an alarming rate. As immune and reproductive systems may interact in a bidirectional way, some authors proposed the immune capacities as attractive markers to evaluate the hormonal potential of environmental samples. Thus, the present work proposed to gain more knowledge on direct biological effects of natural and EDCs on female fish splenic leucocyte non-specific immune activities by using ex vivo assays. After determining the optimal required conditions to analyze splenic immune responses, seven different EDCs were tested ex vivo at 0.01, 1 and 100nM over 12h on the leucocyte functions of female three-spined stickleback, Gasterosteus aculeatus. In summary, we found that natural hormones acted as immunostimulants, whilst EDCs were immunosuppressive. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Rapid Extraction of Genomic DNA from Medically Important Yeasts and Filamentous Fungi by High-Speed Cell Disruption

    OpenAIRE

    Müller, Frank-Michael C.; Werner, Katherine E.; Kasai, Miki; Francesconi, Andrea; Chanock, Stephen J.; Walsh, Thomas J.

    1998-01-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolatio...

  13. Mobile Technology in the Perioperative Arena: Rapid Evolution and Future Disruption.

    Science.gov (United States)

    Rothman, Brian S; Gupta, Rajnish K; McEvoy, Matthew D

    2017-03-01

    Throughout the history of medicine, physicians have relied upon disruptive innovations and technologies to improve the quality of care delivered, patient outcomes, and patient satisfaction. The implementation of mobile technology in health care is quickly becoming the next disruptive technology. We first review the history of mobile technology over the past 3 decades, discuss the impact of hardware and software, explore the rapid expansion of applications (apps), and evaluate the adoption of mobile technology in health care. Next, we discuss how technology serves as the vehicle that can transform traditional didactic learning into one that adapts to the learning behavior of the student by using concepts such as the flipped classroom, just-in-time learning, social media, and Web 2.0/3.0. The focus in this modern education paradigm is shifting from teacher-centric to learner-centric, including providers and patients, and is being delivered as context-sensitive, or semantic, learning. Finally, we present the methods by which connected health systems via mobile devices increase information collection and analysis from patients in both clinical care and research environments. This enhanced patient and provider connection has demonstrated benefits including reducing unnecessary hospital readmissions, improved perioperative health maintenance coordination, and improved care in remote and underserved areas. A significant portion of the future of health care, and specifically perioperative medicine, revolves around mobile technology, nimble learners, patient-specific information and decision-making, and continuous connectivity between patients and health care systems. As such, an understanding of developing or evaluating mobile technology likely will be important for anesthesiologists, particularly with an ever-expanding scope of practice in perioperative medicine.

  14. Alzheimer’s disease Aβ assemblies mediating rapid disruption of synaptic plasticity and memory

    Directory of Open Access Journals (Sweden)

    Klyubin Igor

    2012-07-01

    Full Text Available Abstract Alzheimer’s disease (AD is characterized by episodic memory impairment that often precedes clinical diagnosis by many years. Probing the mechanisms of such impairment may provide much needed means of diagnosis and therapeutic intervention at an early, pre-dementia, stage. Prior to the onset of significant neurodegeneration, the structural and functional integrity of synapses in mnemonic circuitry is severely compromised in the presence of amyloidosis. This review examines recent evidence evaluating the role of amyloid-ß protein (Aβ in causing rapid disruption of synaptic plasticity and memory impairment. We evaluate the relative importance of different sizes and conformations of Aβ, including monomer, oligomer, protofibril and fibril. We pay particular attention to recent controversies over the relevance to the pathophysiology of AD of different water soluble Aβ aggregates and the importance of cellular prion protein in mediating their effects. Current data are consistent with the view that both low-n oligomers and larger soluble assemblies present in AD brain, some of them via a direct interaction with cellular prion protein, cause synaptic memory failure. At the two extremes of aggregation, monomers and fibrils appear to act in vivo both as sources and sinks of certain metastable conformations of soluble aggregates that powerfully disrupt synaptic plasticity. The same principle appears to apply to other synaptotoxic amyloidogenic proteins including tau, α-synuclein and prion protein.

  15. Rapid extraction of genomic DNA from medically important yeasts and filamentous fungi by high-speed cell disruption.

    Science.gov (United States)

    Müller, F M; Werner, K E; Kasai, M; Francesconi, A; Chanock, S J; Walsh, T J

    1998-06-01

    Current methods of DNA extraction from different fungal pathogens are often time-consuming and require the use of toxic chemicals. DNA isolation from some fungal organisms is difficult due to cell walls or capsules that are not readily susceptible to lysis. We therefore investigated a new and rapid DNA isolation method using high-speed cell disruption (HSCD) incorporating chaotropic reagents and lysing matrices in comparison to standard phenol-chloroform (PC) extraction protocols for isolation of DNA from three medically important yeasts (Candida albicans, Cryptococcus neoformans, and Trichosporon beigelii) and two filamentous fungi (Aspergillus fumigatus and Fusarium solani). Additional extractions by HSCD were performed on Saccharomyces cerevisiae, Pseudallescheria boydii, and Rhizopus arrhizus. Two different inocula (10(8) and 10(7) CFU) were compared for optimization of obtained yields. The entire extraction procedure was performed on as many as 12 samples within 1 h compared to 6 h for PC extraction. In comparison to the PC procedure, HSCD DNA extraction demonstrated significantly greater yields for 10(8) CFU of C. albicans, T. beigelii, A. fumigatus, and F. solani (P extraction and PC extraction. For 10(7) CFU of T. beigelii, PC extraction resulted in a greater yield than did HSCD (P fungi than for yeasts by the HSCD extraction procedure (P extraction procedure, differences were not significant. For all eight organisms, the rapid extraction procedure resulted in good yield, integrity, and quality of DNA as demonstrated by restriction fragment length polymorphism, PCR, and random amplified polymorphic DNA. We conclude that mechanical disruption of fungal cells by HSCD is a safe, rapid, and efficient procedure for extracting genomic DNA from medically important yeasts and especially from filamentous fungi.

  16. The scaffold protein RACK1 is a target of endocrine disrupting chemicals (EDCs) with important implication in immunity

    Energy Technology Data Exchange (ETDEWEB)

    Buoso, Erica; Galasso, Marilisa; Ronfani, Melania [Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia (Italy); Papale, Angela; Galbiati, Valentina [Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (Italy); Eberini, Ivano [Laboratorio di Biochimica e Biofisica Computazionale, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan (Italy); Marinovich, Marina [Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (Italy); Racchi, Marco [Dipartimento di Scienze del Farmaco, Università degli Studi di Pavia, Viale Taramelli 12/14, 27100 Pavia (Italy); Corsini, Emanuela, E-mail: emanuela.corsini@unimi.it [Laboratory of Toxicology, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano (Italy)

    2017-06-15

    We recently demonstrated the existence of a complex hormonal balance between steroid hormones in the control of RACK1 (Receptor for Activated C Kinase 1) expression and immune activation, suggesting that this scaffold protein may also be targeted by endocrine disrupting chemicals (EDCs). As a proof of concept, we investigated the effect of the doping agent nandrolone, an androgen receptor (AR) agonist, and of p,p′DDT (dichlorodiphenyltrichloroethane) and its main metabolite p,p′DDE (dichlorodiphenyldichloroethylene), a weak and strong AR antagonist, respectively, on RACK1 expression and innate immune response. In analogy to endogenous androgens, nandrolone induced a dose-related increase in RACK1 transcriptional activity and protein expression, resulting in increased LPS-induced IL-8 and TNF-α production and proliferation in THP-1 cells. Conversely, p,p′DDT and p,p′DDE significantly decrease RACK1 expression, LPS-induced cytokine production and CD86 expression; with p,p′DDE exerting a stronger repressor effect than p,p′DDT, consistent with its stronger AR antagonistic effect. These results indicate that RACK1 could be a relevant target of EDCs, responding in opposite ways to agonist or antagonist of AR, representing a bridge between the endocrine system and the innate immune system. - Highlights: • RACK1 expression can be induced by AR agonists with a consequent enhancement of the response to LPS. • RACK1 can be negatively modulated by the AR antagonists DDT and its main metabolite p,p′DDE. • RACK1 can be a relevant target of EDCs, representing a bridge between the endocrine system and the immune system.

  17. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  18. Nutritional components regulate the gut immune system and its association with intestinal immune disease development.

    Science.gov (United States)

    Lamichhane, Aayam; Kiyono, Hiroshi; Kunisawa, Jun

    2013-12-01

    The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  19. Apnea-induced rapid eye movement sleep disruption impairs human spatial navigational memory.

    Science.gov (United States)

    Varga, Andrew W; Kishi, Akifumi; Mantua, Janna; Lim, Jason; Koushyk, Viachaslau; Leibert, David P; Osorio, Ricardo S; Rapoport, David M; Ayappa, Indu

    2014-10-29

    Hippocampal electrophysiology and behavioral evidence support a role for sleep in spatial navigational memory, but the role of particular sleep stages is less clear. Although rodent models suggest the importance of rapid eye movement (REM) sleep in spatial navigational memory, a similar role for REM sleep has never been examined in humans. We recruited subjects with severe obstructive sleep apnea (OSA) who were well treated and adherent with continuous positive airway pressure (CPAP). Restricting CPAP withdrawal to REM through real-time monitoring of the polysomnogram provides a novel way of addressing the role of REM sleep in spatial navigational memory with a physiologically relevant stimulus. Individuals spent two different nights in the laboratory, during which subjects performed timed trials before and after sleep on one of two unique 3D spatial mazes. One night of sleep was normally consolidated with use of therapeutic CPAP throughout, whereas on the other night, CPAP was reduced only in REM sleep, allowing REM OSA to recur. REM disruption via this method caused REM sleep reduction and significantly fragmented any remaining REM sleep without affecting total sleep time, sleep efficiency, or slow-wave sleep. We observed improvements in maze performance after a night of normal sleep that were significantly attenuated after a night of REM disruption without changes in psychomotor vigilance. Furthermore, the improvement in maze completion time significantly positively correlated with the mean REM run duration across both sleep conditions. In conclusion, we demonstrate a novel role for REM sleep in human memory formation and highlight a significant cognitive consequence of OSA. Copyright © 2014 the authors 0270-6474/14/3414571-07$15.00/0.

  20. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    Science.gov (United States)

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycling of honey bee colonies. To understand the physiological states of honey bees used for long-term pollination in greenhouses, we characterized their gene expression profiles by microarray. We found that the greenhouse environment changes the gene expression profiles and induces immune-suppression and oxidative stress in honey bees. In fact, the increase of the number of Nosema microsporidia and protein carbonyl content was observed in honey bees during pollination in greenhouses. Thus, honey bee colonies are likely to collapse during pollination in greenhouses when heavily infested with pathogens. Degradation of honey bee habitat by changing the outside environment of the colony, during pollination services for example, imposes negative impacts on honey bees. Thus, worldwide use of honey bees for crop pollination in general could be one of reasons for the decline of managed honey bee colonies. PMID:22393496

  1. Magnetohydrodynamic simulations of density-limit disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kleva, R.G.; Drake, J.F.; Denton, R.E.

    1990-01-01

    Magnetohydrodynamic simulations are presented which demonstrate that density limit disruptions can be triggered by edge radiation which destabilizes a q = 1 kink followed by a q = 2 tearing mode. A bubble of cold plasma is injected from the edge into the center by the q = 1 kink. The q = 2 mode then broadens the current profile and throws the hot plasma to the wall. The MHD simulations presented are the first to successfully reproduce several key features of density limit disruptions including (1) the rapid drop in the central temperature, (2) the rapid expansion of the current profile, (3) the m = 1 cold bubble which is seen to be injected from the edge into the center during density limit disruptions on JET, and (4) disruptions in sawtoothing discharges. (author)

  2. Apps for immunization: Leveraging mobile devices to place the individual at the center of care.

    Science.gov (United States)

    Wilson, Kumanan; Atkinson, Katherine M; Westeinde, Jacqueline

    2015-01-01

    Mobile technology and applications (apps) have disrupted several industries including healthcare. The advantage of apps, being personally focused and permitting bidirectional communication, make them well suited to address many immunization challenges. As of April 25, 2015 searching the Android app store with the words 'immunize app' and 'immunization app' in Canada yielded 225 apps. On the Apple App Store a similar search produced 98 results. These include apps that provide immunization related information, permit vaccine tracking both for individuals and for animals, assist with the creation of customized schedules and identification of vaccine clinics and serve as sources of education. The diverse functionality of mobile apps creates the potential for transformation of immunization practice both at a personal level and a system level. For individuals, mobile apps offer the opportunity for better record keeping, assistance with the logistics of vaccination, and novel ways of communicating with and receiving information from public health officials. For the system, mobile apps offer the potential to improve the quality of information residing in immunization information systems and program evaluation, facilitate harmonization of immunization information between individuals, health care providers and public health as well as reduce vaccine hesitancy. As mobile technology continues to rapidly evolve there will emerge new ways in which apps can enhance immunization practice.

  3. Visual in-pile fuel disruption experiments

    International Nuclear Information System (INIS)

    Cano, G.L.; Ostensen, R.W.; Young, M.F.

    1978-01-01

    In a loss-of-flow (LOF) accident in an LMFBR, the mode of disruption of fuel may determine the probability of a subsequent energetic excursion. To investigate these phenomena, in-pile disruption of fission-heated irradiated fuel pellets was recorded by high speed cinematography. Instead of fuel frothing or dust-cloud breakup (as used in the SAS code) massive and very rapid fuel swelling, not predicted by analytical models, occurred. These tests support massive fuel swelling as the initial mode of fuel disruption in a LOF accident. (author)

  4. Lethal inflammasome activation by a multi-drug resistant pathobiont upon antibiotic disruption of the microbiota

    Science.gov (United States)

    Ayres, Janelle S.; Trinidad, Norver J.; Vance, Russell E.

    2012-01-01

    The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobionts, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant E. coli pathobiont that expanded dramatically in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system. PMID:22522562

  5. Endocrine Disrupting Contaminants—Beyond the Dogma

    Science.gov (United States)

    Guillette, Louis J.

    2006-01-01

    Descriptions of endocrine disruption have largely been associated with wildlife and driven by observations documenting estrogenic, androgenic, antiandrogenic, and antithyroid actions. These actions, in response to exposure to ecologically relevant concentrations of various environmental contaminants, have now been established in numerous vertebrate species. However, many potential mechanisms and endocrine actions have not been studied. For example, the DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane] metabolite, p,p′-DDE [1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene] is known to disrupt prostaglandin synthesis in the uterus of birds, providing part of the explanation for DDT-induced egg shell thinning. Few studies have examined prostaglandin synthesis as a target for endocrine disruption, yet these hormones are active in reproduction, immune responses, and cardiovascular physiology. Future studies must broaden the basic science approach to endocrine disruption, thereby expanding the mechanisms and endocrine end points examined. This goal should be accomplished even if the primary influence and funding continue to emphasize a narrower approach based on regulatory needs. Without this broader approach, research into endocrine disruption will become dominated by a narrow dogma, focusing on a few end points and mechanisms. PMID:16818240

  6. Disruption of Protein Mannosylation Affects Candida guilliermondii Cell Wall, Immune Sensing, and Virulence

    Directory of Open Access Journals (Sweden)

    María J. Navarro-Arias

    2016-12-01

    Full Text Available The fungal cell wall contains glycoproteins that interact with the host immune system. In the prominent pathogenic yeast Candida albicans, Pmr1 acts as a Golgi-resident ion pump that provides cofactors to mannosyltransferases, regulating the synthesis of mannans attached to glycoproteins. To gain insight into a putative conservation of such a crucial process within opportunistic yeasts, we were particularly interested in studying the role of the PMR1 homolog in a low-virulent species that rarely causes candidiasis, Candida guilliermondii. We disrupted C. guilliermondii PMR1 and found that loss of Pmr1 affected cell growth and morphology, biofilm formation, susceptibility to cell wall perturbing agents, mannan levels, and the wall composition and organization. Despite there was a significant increment in the amount of β1,3-glucan exposed at the wall surface, this positively influenced only the ability of the mutant to stimulate IL-10 production by human monocytes, suggesting that recognition of both mannan and β1,3-glucan, is required to stimulate strong levels of pro-inflammatory cytokines. Accordingly, our results indicate C. guilliermondii sensing by monocytes was critically dependent on the recognition of N-linked mannans and β1,3-glucan, as reported in other Candida species. In addition, chemical remotion of cell wall O-linked mannans was found to positively influence the recognition of C. guilliermondii by human monocytes, suggesting that O-linked mannans mask other cell wall components from immune cells. This observation contrasts with that reported in C. albicans. Finally, mice infected with C. guilliermondii pmr1 null mutant cells had significantly lower fungal burdens compared to animals challenged with the parental strain. Accordingly, the null mutant showed inability to kill larvae in the Galleria mellonella infection model. This study thus demonstrates that mannans are relevant for the C. guilliermondii-host interaction, with

  7. Disruption of gut homeostasis by opioids accelerates HIV disease progression

    Directory of Open Access Journals (Sweden)

    Jingjing eMeng

    2015-06-01

    Full Text Available Cumulative studies during the past 30 years have established the correlation between opioid abuse and human immunodeficiency virus (HIV infection. Further studies also demonstrate that opioid addiction is associated with faster progression to AIDS in patients. Recently, it was revealed that disruption of gut homeostasis and subsequent microbial translocation play important roles in pathological activation of the immune system during HIV infection and contributes to accelerated disease progression. Similarly, opioids have been shown to modulate gut immunity and induce gut bacterial translocation. This review will explore the mechanisms by which opioids accelerate HIV disease progression by disrupting gut homeostasis. Better understanding of these mechanisms will facilitate the search for new therapeutic interventions to treat HIV infection especially in opioid abusing population.

  8. Endocrine Disrupting Chemicals and Disease Susceptibility

    Science.gov (United States)

    Schug, Thaddeus T.; Janesick, Amanda; Blumberg, Bruce; Heindel, Jerrold J.

    2011-01-01

    Environmental chemicals have significant impacts on biological systems. Chemical exposures during early stages of development can disrupt normal patterns of development and thus dramatically alter disease susceptibility later in life. Endocrine disrupting chemicals (EDCs) interfere with the body's endocrine system and produce adverse developmental, reproductive, neurological, cardiovascular, metabolic and immune effects in humans. A wide range of substances, both natural and man-made, are thought to cause endocrine disruption, including pharmaceuticals, dioxin and dioxin-like compounds, polychlorinated biphenyls, DDT and other pesticides, and components of plastics such as bisphenol A (BPA) and phthalates. EDCs are found in many everyday products– including plastic bottles, metal food cans, detergents, flame retardants, food additives, toys, cosmetics, and pesticides. EDCs interfere with the synthesis, secretion, transport, activity, or elimination of natural hormones. This interference can block or mimic hormone action, causing a wide range of effects. This review focuses on the mechanisms and modes of action by which EDCs alter hormone signaling. It also includes brief overviews of select disease endpoints associated with endocrine disruption. PMID:21899826

  9. Zinc and immunity: An essential interrelation.

    Science.gov (United States)

    Maares, Maria; Haase, Hajo

    2016-12-01

    The significance of the essential trace element zinc for immune function has been known for several decades. Zinc deficiency affects immune cells, resulting in altered host defense, increased risk of inflammation, and even death. The micronutrient zinc is important for maintenance and development of immune cells of both the innate and adaptive immune system. A disrupted zinc homeostasis affects these cells, leading to impaired formation, activation, and maturation of lymphocytes, disturbed intercellular communication via cytokines, and weakened innate host defense via phagocytosis and oxidative burst. This review outlines the connection between zinc and immunity by giving a survey on the major roles of zinc in immune cell function, and their potential consequences in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Antibiotic-Induced Gut Microbiota Disruption Decreases TNF-alpha Release by Mononuclear Cells in Healthy Adults

    NARCIS (Netherlands)

    Lankelma, Jacqueline M.; Belzer, Clara; Hoogendijk, Arie J.; de Vos, Alex F.; de Vos, Willem M.; van der Poll, Tom; Wiersinga, W. Joost

    2016-01-01

    OBJECTIVES: Broad-spectrum antibiotics disrupt the intestinal microbiota. The microbiota is essential for physiological processes, such as the development of the gut immune system. Recent murine data suggest that the intestinal microbiota also modulates systemic innate immune responses; however,

  11. Disruption Physics and Mitigation on DIII-D

    International Nuclear Information System (INIS)

    Whyte, D.G.; Humphreys, D.A.; Kellman, A.G.

    2005-01-01

    The contributions of the DIII-D tokamak toward the understanding and control of disruptions are reviewed. Disruptions are found to be deterministic, and the underlying causes of disruption can therefore be predicted and avoided. With sufficiently rapid detection, possible damage from disruptions can be mitigated using an understanding of disruption phenomenology and plasma physics. Regimes of high β are readily available in DIII-D and provide access to relatively high energy density disruptions, despite DIII-D's moderate magnetic field and size. DIII-D, with all-graphite wall armor and wall conditioning between discharges, has proven highly resilient to the deleterious effects that disruptions can have on plasma operations. Simultaneously, exploitation and adaptation of DIII-D's extensive core and edge plasma diagnostic set have allowed for unique plasma measurements during disruptions. These measurements have tied into the development of several physical models used to understand aspects of disruptions, such as magnetohydrodynamic growth at the disruption onset, radiation energy balance through the thermal quench, and halo currents during the current quench. Based on this fundamental understanding, DIII-D has developed techniques to mitigate the harmful effects of disruptions by radiative dissipation of the plasma energy and extrapolated these techniques for possible use on larger devices like ITER

  12. Antibiotic-Induced Gut Microbiota Disruption Decreases TNF-α Release by Mononuclear Cells in Healthy Adults

    NARCIS (Netherlands)

    Lankelma, Jacqueline M.; Belzer, Clara; Hoogendijk, Arie J.; Vos, de Alex F.; Vos, de Willem M.; Poll, van der Tom; Wiersinga, W.J.

    2016-01-01

    Objectives:Broad-spectrum antibiotics disrupt the intestinal microbiota. The microbiota is essential for physiological processes, such as the development of the gut immune system. Recent murine data suggest that the intestinal microbiota also modulates systemic innate immune responses; however,

  13. New Clox Systems for rapid and efficient gene disruption in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Shahida Shahana

    Full Text Available Precise genome modification is essential for the molecular dissection of Candida albicans, and is yielding invaluable information about the roles of specific gene functions in this major fungal pathogen of humans. C. albicans is naturally diploid, unable to undergo meiosis, and utilizes a non-canonical genetic code. Hence, specialized tools have had to be developed for gene disruption in C. albicans that permit the deletion of both target alleles, and in some cases, the recycling of the Candida-specific selectable markers. Previously, we developed a tool based on the Cre recombinase, which recycles markers in C. albicans with 90-100% efficiency via site-specific recombination between loxP sites. Ironically, the utility of this system was hampered by the extreme efficiency of Cre, which prevented the construction in Escherichia coli of stable disruption cassettes carrying a methionine-regulatable CaMET3p-cre gene flanked by loxP sites. Therefore, we have significantly enhanced this system by engineering new Clox cassettes that carry a synthetic, intron-containing cre gene. The Clox kit facilitates efficient transformation and marker recycling, thereby simplifying and accelerating the process of gene disruption in C. albicans. Indeed, homozygous mutants can be generated and their markers resolved within two weeks. The Clox kit facilitates strategies involving single marker recycling or multi-marker gene disruption. Furthermore, it includes the dominant NAT1 marker, as well as URA3, HIS1 and ARG4 cassettes, thereby permitting the manipulation of clinical isolates as well as genetically marked strains of C. albicans. The accelerated gene disruption strategies afforded by this new Clox system are likely to have a profound impact on the speed with which C. albicans pathobiology can be dissected.

  14. Rapid identification of genes controlling virulence and immunity in malaria parasites

    KAUST Repository

    Abkallo, Hussein M.

    2017-07-13

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic drivers of medically relevant phenotypes within malaria parasites via a single experiment at single gene or allele resolution. In a proof of principle study, we found that a previously undescribed single nucleotide polymorphism in the binding domain of the erythrocyte binding like protein (EBL) conferred a dramatic change in red blood cell invasion in mutant rodent malaria parasites Plasmodium yoelii. In the same experiment, we implicated merozoite surface protein 1 (MSP1) and other polymorphic proteins, as the major targets of strain-specific immunity. Using allelic replacement, we provide functional validation of the substitution in the EBL gene controlling the growth rate in the blood stages of the parasites.

  15. Disruption of Early Tumor Necrosis Factor Alpha Signaling Prevents Classical Activation of Dendritic Cells in Lung-Associated Lymph Nodes and Development of Protective Immunity against Cryptococcal Infection

    Directory of Open Access Journals (Sweden)

    Jintao Xu

    2016-07-01

    Full Text Available Anti-tumor necrosis factor alpha (anti-TNF-α therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans. We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4+ T cells in the lung-associated lymph nodes (LALN of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance.

  16. Rapid eye movement sleep deprivation disrupts consolidation but not reconsolidation of novel object recognition memory in rats.

    Science.gov (United States)

    Chen, Lin; Tian, Shaowen; Ke, Jie

    2014-03-20

    There is increasing evidence that sleep plays a critical role in memory consolidation. However, there are comparatively few studies that have assessed the relationship between sleep and memory reconsolidation. In the present study, we explored the effects of rapid eye movement sleep deprivation (RSD) on the consolidation (experiment 1) and reconsolidation (experiment 2) of novel object recognition memory in rats. In experiment 1 behavioral procedure involved two training phases: sample and test. Rats were subjected to 6h RSD starting either immediately after sample (exposed to 2 objects) or 6h later. In experiment 2 behavioral procedure involved three training phases: sample, reactivation and test. Rats were subjected to 6h RSD starting either immediately after reactivation (exposed to the same 2 sample objects to reactivate the memory trace) or 6h later. Results from experiment 1 showed that post-sample RSD from 0 to 6h but not 6 to 12h disrupted novel object recognition memory consolidation. However, we found that post-reactivation RSD whether from 0 to 6h or 6 to 12h had no effect on novel object recognition memory reconsolidation in experiment 2. The results indicated that RSD selectively disrupted consolidation of novel object recognition memory, suggesting a dissociation effect of RSD on consolidation and reconsolidation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. [Saccharomyces boulardii modulates dendritic cell properties and intestinal microbiota disruption after antibiotic treatment].

    Science.gov (United States)

    Collignon, A; Sandré, C; Barc, M-C

    2010-09-01

    Saccharomyces boulardii is a non-pathogenic yeast with biotherapeutic properties that has been used successfully to prevent and to treat various infectious and antibiotic-associated diarrheas. The intestinal microbiota is responsible for colonization resistance and immune response to pathogens but can be disrupted by antibiotics and lose its barrier effect. Dendritic cells (DCs) are professional antigen-presenting cells of the immune system with the ability to initiate a primary immune response or immune tolerance. In a human microbiota-associated mouse model, we evaluated the influence of S. boulardii on the composition of the microbiota and on the properties of dendritic cells in normal homeostatic conditions and after antibiotic-induced stress. The DCs were derived from splenic precursors. Membrane antigen expression and phagocytosis of FITC-latex beads by DCs were evaluated by flow cytometry. The molecular analysis of the microbiota was performed with fluorescence in situ hybridization (FISH) combined with flow cytometry or confocal microscopy using group specific 16S rRNA targeted probes. This evaluation was conducted during and after a 7-day oral treatment with amoxicillin-clavulanic acid alone and in combination with the administration of the yeast. The antibiotic treatment increased the phagocytic activity of DCs. Their antigen presenting function (MHC class II antigen and CD 86 costimulatory molecule membrane expression) was up-regulated. This reflects a functional activation of DCs. In the presence of S. boulardii, the modification of membrane antigen expression was down regulated. To correlate these modifications to the microbiota disruption, we analyzed in parallel the composition of the intestinal microbiota. As previously shown, the amoxicillin-clavulanic acid treatment, both alone and with S. boulardii, did not quantitatively alter the total microbiota. In contrast, after one day of the antibiotic treatment the Clostridium coccoides group decreased

  18. Host Innate Immunity against Hepatitis E Virus and Viral Evasion Mechanisms.

    Science.gov (United States)

    Kang, Sangmin; Myoung, Jinjong

    2017-10-28

    Hepatitis E virus (HEV) infections cause epidemic or sporadic acute hepatitis, which are mostly self-limiting. However, viral infection in immunocompromised patients and pregnant women may result in serious consequences, such as chronic hepatitis and liver damage, mortality of the latter of which reaches up to 20-30%. Type I interferon (IFN)-induced antiviral immunity is known to be the first-line defense against virus infection. Upon HEV infection in the cell, the virus genome is recognized by pathogen recognition receptors, leading to rapid activation of intracellular signaling cascades. Expression of type I IFN triggers induction of a barrage of IFN-stimulated genes, helping the cells cope with viral infection. Interestingly, some of the HEV-encoded genes seem to be involved in disrupting signaling cascades for antiviral immune responses, and thus crippling cytokine/chemokine production. Antagonistic mechanisms of type I IFN responses by HEV have only recently begun to emerge, and in this review, we summarize known HEV evasion strategies and compare them with those of other hepatitis viruses.

  19. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites.

    Science.gov (United States)

    Knutie, Sarah A; Wilkinson, Christina L; Kohl, Kevin D; Rohr, Jason R

    2017-07-20

    Changes in the early-life microbiota of hosts might affect infectious disease risk throughout life, if such disruptions during formative times alter immune system development. Here, we test whether an early-life disruption of host-associated microbiota affects later-life resistance to infections by manipulating the microbiota of tadpoles and challenging them with parasitic gut worms as adults. We find that tadpole bacterial diversity is negatively correlated with parasite establishment in adult frogs: adult frogs that had reduced bacterial diversity as tadpoles have three times more worms than adults without their microbiota manipulated as tadpoles. In contrast, adult bacterial diversity during parasite exposure is not correlated with parasite establishment in adult frogs. Thus, in this experimental setup, an early-life disruption of the microbiota has lasting reductions on host resistance to infections, which is possibly mediated by its effects on immune system development. Our results support the idea that preventing early-life disruption of host-associated microbiota might confer protection against diseases later in life.Early-life microbiota alterations can affect infection susceptibility later in life, in animal models. Here, Knutie et al. show that manipulating the microbiota of tadpoles leads to increased susceptibility to parasitic infection in adult frogs, in the absence of substantial changes in the adults' microbiota.

  20. The cytoskeleton is disrupted by the bacterial effector HrpZ, but not by the bacterial PAMP flg22, in tobacco BY-2 cells.

    Science.gov (United States)

    Guan, Xin; Buchholz, Günther; Nick, Peter

    2013-04-01

    Plant innate immunity is composed of two layers. Basal immunity is triggered by pathogen-associated molecular patterns (PAMPs) such as the flagellin-peptide flg22 and is termed PAMP-triggered immunity (PTI). In addition, effector-triggered immunity (ETI) linked with programmed cell death and cytoskeletal reorganization can be induced by pathogen-derived factors, such as the Harpin proteins originating from phytopathogenic bacteria. To get insight into the link between cytoskeleton and PTI or ETI, this study followed the responses of actin filaments and microtubules to flg22 and HrpZ in vivo by spinning-disc confocal microscopy in GFP-tagged marker lines of tobacco BY-2. At a concentration that clearly impairs mitosis, flg22 can induce only subtle cytoskeletal responses. In contrast, HrpZ causes a rapid and massive bundling of actin microfilaments (completed in ~20 min, i.e. almost simultaneously with extracellular alkalinization), which is followed by progressive disintegration of actin cables and cytoplasmic microtubules, a loss of cytoplasmic structure, and vacuolar disintegration. Cytoskeletal disruption is proposed as an early event that discriminates HrpZ-triggered ETI-like defence from flg22-triggered PTI.

  1. Density turbulence and disruption phenomena in TEXTOR

    International Nuclear Information System (INIS)

    Waidmann, G.; Kuang, G.; Jadoul, M.

    1992-01-01

    Disruptive processes are observed in tokamak plasmas not only at the operating limits (density limit or q-limit) but can be found under a variety of experimental conditions. Large forces are exerted then on vessel components and support structures. The sudden release of stored plasma energy presents a serious erosion problem for the first wall already in the next generation of large tokamak machines. Strong energy losses from the plasma and an influx of impurities are already present in minor plasma disruptions which do not immediately lead to a plasma current termination. The rapid loss of energy confinement was investigated within the framework of a systematic study on plasma disruption phenomena in TEXTOR. (author) 4 refs., 4 figs

  2. Overvoltage protection for magnetic system during disruption in tokamak

    International Nuclear Information System (INIS)

    Zhang, Ming; Li, Xiaolong; He, Yang; Zhang, Jun; Chen, Zhongyong; Yu, Kexun

    2015-01-01

    Highlights: • We investigate the way to limit the plasma disruption overvoltage by using the MOVs. • An overvoltage model of plasma disruption is introduced. • The overvoltage protection scheme has been verified by disruption experiments. • The overvoltage during plasma disruption can be limited to 330 V. - Abstract: During a plasma disruption the magnetic flux in the tokamak changes rapidly, which in most cases will cause high-voltage surges among the magnetic systems and may bring severe damage to the components if there is no overvoltage protection. This paper investigates the way to limit the plasma disruption overvoltage and absorb the energy with the use of metal oxide varistors (MOVs). An overvoltage model of plasma disruption is introduced which can be used for the simulation of plasma disruption and the analysis of the overvoltage. The effectiveness of the overvoltage protection system is validated with disruption experiments. It shows that by optimizing the varistors voltage, the overvoltage during plasma disruption can be limited to an ideal low value. Now the overvoltage protection system has been deployed in J-TEXT tokamak and serves well for daily experiments.

  3. Pentraxins and immunity

    Directory of Open Access Journals (Sweden)

    Priya Nagar

    2014-01-01

    Full Text Available Pentraxin-3 (PTX3 is a multifactorial protein involved in immunity and inflammation, which is rapidly produced and released by several cell types in response to inflammatory signals. It may be suggested that PTX3 is related to periodontal tissue inflammation. Its salivary concentrations may have a diagnostic potential. Pentraxin-3 (PTX3 is an ancient family of multifactorial proteins involved in immunity and inflammation. They are rapidly produced and released by various types of cells when there are indications of inflammation. PTX3 is related to inflammation in the periodontal tissue and it can be suggested that salivary concentrations may be used for diagnosing the same.

  4. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition.

    Science.gov (United States)

    Deaver, Jessica A; Eum, Sung Y; Toborek, Michal

    2018-01-01

    Disrupted circadian rhythms and alterations of the gut microbiome composition were proposed to affect host health. Therefore, the aim of this research was to identify whether these events are connected and if circadian rhythm disruption by abnormal light-dark (LD) cycles affects microbial community gene expression and host vulnerability to intestinal dysfunction. Mice were subjected to either a 4-week period of constant 24-h light or of normal 12-h LD cycles. Stool samples were collected at the beginning and after the circadian rhythm disruption. A metatranscriptomic analysis revealed an increase in Ruminococcus torques , a bacterial species known to decrease gut barrier integrity, and a decrease in Lactobacillus johnsonii , a bacterium that helps maintain the intestinal epithelial cell layer, after circadian rhythm disruption. In addition, genes involved in pathways promoting host beneficial immune responses were downregulated, while genes involved in the synthesis and transportation of the endotoxin lipopolysaccharide were upregulated in mice with disrupted circadian cycles. Importantly, these mice were also more prone to dysfunction of the intestinal barrier. These results further elucidate the impact of light-cycle disruption on the gut microbiome and its connection with increased incidence of disease in response to circadian rhythm disturbances.

  5. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin.

    Science.gov (United States)

    Li, Zhi; Gothard, Elizabeth; Coles, Mark C; Ambler, Carrie A

    2018-01-01

    In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s), by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  6. High-risk Long QT Syndrome Mutations in the Kv7.1 (KCNQ1) Pore Disrupt the Molecular Basis for Rapid K+ Permeation

    Science.gov (United States)

    Burgess, Don E.; Bartos, Daniel C.; Reloj, Allison R.; Campbell, Kenneth S.; Johnson, Jonathan N.; Tester, David J.; Ackerman, Michael J.; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J.; Ohno, Seiko; Horie, Minoru; Delisle, Brian P.

    2012-01-01

    Type 1 long QT syndrome (LQT1) syndrome is caused by loss-of-function mutations in the KCNQ1, which encodes the K+ channel (Kv7.1) that underlies the slowly activating delayed rectifier K+ current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss-of-function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confer a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated non-functional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamic simulations (MDS) of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K+-K+ repulsive forces required for rapid K+ permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K+ channel selectivity filter. PMID:23092362

  7. High-risk long QT syndrome mutations in the Kv7.1 (KCNQ1) pore disrupt the molecular basis for rapid K(+) permeation.

    Science.gov (United States)

    Burgess, Don E; Bartos, Daniel C; Reloj, Allison R; Campbell, Kenneth S; Johnson, Jonathan N; Tester, David J; Ackerman, Michael J; Fressart, Véronique; Denjoy, Isabelle; Guicheney, Pascale; Moss, Arthur J; Ohno, Seiko; Horie, Minoru; Delisle, Brian P

    2012-11-13

    Type 1 long QT syndrome (LQT1) is caused by loss-of-function mutations in the KCNQ1 gene, which encodes the K(+) channel (Kv7.1) that underlies the slowly activating delayed rectifier K(+) current in the heart. Intragenic risk stratification suggests LQT1 mutations that disrupt conserved amino acid residues in the pore are an independent risk factor for LQT1-related cardiac events. The purpose of this study is to determine possible molecular mechanisms that underlie the loss of function for these high-risk mutations. Extensive genotype-phenotype analyses of LQT1 patients showed that T322M-, T322A-, or G325R-Kv7.1 confers a high risk for LQT1-related cardiac events. Heterologous expression of these mutations with KCNE1 revealed they generated nonfunctional channels and caused dominant negative suppression of WT-Kv7.1 current. Molecular dynamics simulations of analogous mutations in KcsA (T85M-, T85A-, and G88R-KcsA) demonstrated that they disrupted the symmetrical distribution of the carbonyl oxygen atoms in the selectivity filter, which upset the balance between the strong attractive and K(+)-K(+) repulsive forces required for rapid K(+) permeation. We conclude high-risk LQT1 mutations in the pore likely disrupt the architectural and physical properties of the K(+) channel selectivity filter.

  8. Novel immune-modulator identified by a rapid, functional screen of the parapoxvirus ovis (Orf virus genome

    Directory of Open Access Journals (Sweden)

    McGuire Michael J

    2012-01-01

    Full Text Available Abstract Background The success of new sequencing technologies and informatic methods for identifying genes has made establishing gene product function a critical rate limiting step in progressing the molecular sciences. We present a method to functionally mine genomes for useful activities in vivo, using an unusual property of a member of the poxvirus family to demonstrate this screening approach. Results The genome of Parapoxvirus ovis (Orf virus was sequenced, annotated, and then used to PCR-amplify its open-reading-frames. Employing a cloning-independent protocol, a viral expression-library was rapidly built and arrayed into sub-library pools. These were directly delivered into mice as expressible cassettes and assayed for an immune-modulating activity associated with parapoxvirus infection. The product of the B2L gene, a homolog of vaccinia F13L, was identified as the factor eliciting immune cell accumulation at sites of skin inoculation. Administration of purified B2 protein also elicited immune cell accumulation activity, and additionally was found to serve as an adjuvant for antigen-specific responses. Co-delivery of the B2L gene with an influenza gene-vaccine significantly improved protection in mice. Furthermore, delivery of the B2L expression construct, without antigen, non-specifically reduced tumor growth in murine models of cancer. Conclusion A streamlined, functional approach to genome-wide screening of a biological activity in vivo is presented. Its application to screening in mice for an immune activity elicited by the pathogen genome of Parapoxvirus ovis yielded a novel immunomodulator. In this inverted discovery method, it was possible to identify the adjuvant responsible for a function of interest prior to a mechanistic study of the adjuvant. The non-specific immune activity of this modulator, B2, is similar to that associated with administration of inactivated particles to a host or to a live viral infection. Administration

  9. HIV-associated disruption of tight and adherens junctions of oral epithelial cells facilitates HSV-1 infection and spread.

    Directory of Open Access Journals (Sweden)

    Irna Sufiawati

    Full Text Available Herpes simplex virus (HSV types 1 and 2 are the most common opportunistic infections in HIV/AIDS. In these immunocompromised individuals, HSV-1 reactivates and replicates in oral epithelium, leading to oral disorders such as ulcers, gingivitis, and necrotic lesions. Although the increased risk of HSV infection may be mediated in part by HIV-induced immune dysfunction, direct or indirect interactions of HIV and HSV at the molecular level may also play a role. In this report we show that prolonged interaction of the HIV proteins tat and gp120 and cell-free HIV virions with polarized oral epithelial cells leads to disruption of tight and adherens junctions of epithelial cells through the mitogen-activated protein kinase signaling pathway. HIV-induced disruption of oral epithelial junctions facilitates HSV-1 paracellular spread between the epithelial cells. Furthermore, HIV-associated disruption of adherens junctions exposes sequestered nectin-1, an adhesion protein and critical receptor for HSV envelope glycoprotein D (gD. Exposure of nectin-1 facilitates binding of HSV-1 gD, which substantially increases HSV-1 infection of epithelial cells with disrupted junctions over that of cells with intact junctions. Exposed nectin-1 from disrupted adherens junctions also increases the cell-to-cell spread of HSV-1 from infected to uninfected oral epithelial cells. Antibodies to nectin-1 and HSV-1 gD substantially reduce HSV-1 infection and cell-to-cell spread, indicating that HIV-promoted HSV infection and spread are mediated by the interaction of HSV gD with HIV-exposed nectin-1. Our data suggest that HIV-associated disruption of oral epithelial junctions may potentiate HSV-1 infection and its paracellular and cell-to-cell spread within the oral mucosal epithelium. This could be one of the possible mechanisms of rapid development of HSV-associated oral lesions in HIV-infected individuals.

  10. Antibiotic-induced gut microbiota disruption during human endotoxemia: a randomised controlled study.

    Science.gov (United States)

    Lankelma, Jacqueline M; Cranendonk, Duncan R; Belzer, Clara; de Vos, Alex F; de Vos, Willem M; van der Poll, Tom; Wiersinga, W Joost

    2017-09-01

    The gut microbiota is essential for the development of the intestinal immune system. Animal models have suggested that the gut microbiota also acts as a major modulator of systemic innate immunity during sepsis. Microbiota disruption by broad-spectrum antibiotics could thus have adverse effects on cellular responsiveness towards invading pathogens. As such, the use of antibiotics may attribute to immunosuppression as seen in sepsis. We aimed to test whether disruption of the gut microbiota affects systemic innate immune responses during endotoxemia in healthy subjects. In this proof-of-principle intervention trial, 16 healthy young men received either no treatment or broad-spectrum antibiotics (ciprofloxacin, vancomycin and metronidazole) for 7 days, after which all were administered lipopolysaccharide intravenously to induce a transient sepsis-like syndrome. At various time points, blood and faeces were sampled. Gut microbiota diversity was significantly lowered by the antibiotic treatment in all subjects. Clinical parameters, neutrophil influx, cytokine production, coagulation activation and endothelial activation during endotoxemia were not different between antibiotic-pretreated and control individuals. Antibiotic treatment had no impact on blood leucocyte responsiveness to various Toll-like receptor ligands and clinically relevant causative agents of sepsis ( Streptococcus pneumoniae, Klebsiella pneumoniae, Escherichia coli ) during endotoxemia. These findings suggest that gut microbiota disruption by broad-spectrum antibiotics does not affect systemic innate immune responses in healthy subjects during endotoxemia in humans, disproving our hypothesis. Further research is needed to test this hypothesis in critically ill patients. These data underline the importance of translating findings in mice to humans. ClinicalTrials.gov (NCT02127749; Pre-results). Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a

  11. Fuel-disruption experiments under high-ramp-rate heating conditions

    International Nuclear Information System (INIS)

    Wright, S.A.; Worledge, D.H.; Cano, G.L.; Mast, P.K.; Briscoe, F.

    1983-10-01

    This topical report presents the preliminary results and analysis of the High Ramp Rate fuel-disruption experiment series. These experiments were performed in the Annular Core Research Reactor at Sandia National Laboratories to investigate the timing and mode of fuel disruption during the prompt-burst phase of a loss-of-flow accident. High-speed cinematography was used to observe the timing and mode of the fuel disruption in a stack of five fuel pellets. Of the four experiments discussed, one used fresh mixed-oxide fuel, and three used irradiated mixed-oxide fuel. Analysis of the experiments indicates that in all cases, the observed disruption occurred well before fuel-vapor pressure was high enough to cause the disruption. The disruption appeared as a rapid spray-like expansion and occurred near the onset of fuel melting in the irradiated-fuel experiments and near the time of complete fuel melting in the fresh-fuel experiment. This early occurrence of fuel disruption is significant because it can potentially lower the work-energy release resulting from a prompt-burst disassembly accident

  12. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  13. The location of splenic NKT cells favours their rapid activation by blood-borne antigen

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-01-01

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses. PMID:22505026

  14. The location of splenic NKT cells favours their rapid activation by blood-borne antigen.

    Science.gov (United States)

    Barral, Patricia; Sánchez-Niño, María Dolores; van Rooijen, Nico; Cerundolo, Vincenzo; Batista, Facundo D

    2012-05-16

    Natural killer T (NKT) cells play an important role in mounting protective responses to blood-borne infections. However, though the spleen is the largest blood filter in the body, the distribution and dynamics of NKT cells within this organ are not well characterized. Here we show that the majority of NKT cells patrol around the marginal zone (MZ) and red pulp (RP) of the spleen. In response to lipid antigen, these NKT cells become arrested and rapidly produce cytokines, while the small proportion of NKT cells located in the white pulp (WP) exhibit limited activation. Importantly, disruption of the splenic MZ by chemical or genetic approaches results in a severe reduction in NKT cell activation indicating the need of cooperation between both MZ macrophages and dendritic cells for efficient NKT cell responses. Thus, the location of splenic NKT cells in the MZ and RP facilitates their access to blood-borne antigen and enables the rapid initiation of protective immune responses.

  15. Inactivated Influenza Vaccine That Provides Rapid, Innate-Immune-System-Mediated Protection and Subsequent Long-Term Adaptive Immunity.

    Science.gov (United States)

    Chua, Brendon Y; Wong, Chinn Yi; Mifsud, Edin J; Edenborough, Kathryn M; Sekiya, Toshiki; Tan, Amabel C L; Mercuri, Francesca; Rockman, Steve; Chen, Weisan; Turner, Stephen J; Doherty, Peter C; Kelso, Anne; Brown, Lorena E; Jackson, David C

    2015-10-27

    The continual threat to global health posed by influenza has led to increased efforts to improve the effectiveness of influenza vaccines for use in epidemics and pandemics. We show in this study that formulation of a low dose of inactivated detergent-split influenza vaccine with a Toll-like receptor 2 (TLR2) agonist-based lipopeptide adjuvant (R4Pam2Cys) provides (i) immediate, antigen-independent immunity mediated by the innate immune system and (ii) significant enhancement of antigen-dependent immunity which exhibits an increased breadth of effector function. Intranasal administration of mice with vaccine formulated with R4Pam2Cys but not vaccine alone provides protection against both homologous and serologically distinct (heterologous) viral strains within a day of administration. Vaccination in the presence of R4Pam2Cys subsequently also induces high levels of systemic IgM, IgG1, and IgG2b antibodies and pulmonary IgA antibodies that inhibit hemagglutination (HA) and neuraminidase (NA) activities of homologous but not heterologous virus. Improved primary virus nucleoprotein (NP)-specific CD8(+) T cell responses are also induced by the use of R4Pam2Cys and are associated with robust recall responses to provide heterologous protection. These protective effects are demonstrated in wild-type and antibody-deficient animals but not in those depleted of CD8(+) T cells. Using a contact-dependent virus transmission model, we also found that heterologous virus transmission from vaccinated mice to naive mice is significantly reduced. These results demonstrate the potential of adding a TLR2 agonist to an existing seasonal influenza vaccine to improve its utility by inducing immediate short-term nonspecific antiviral protection and also antigen-specific responses to provide homologous and heterologous immunity. The innate and adaptive immune systems differ in mechanisms, specificities, and times at which they take effect. The innate immune system responds within hours of

  16. [Regulatory Mechanisms of PD-L1 Expression and Its Role in Immune Evasion].

    Science.gov (United States)

    Kataoka, Keisuke

    2017-11-01

    Immune checkpoint blockade therapy using anti-PD-1 or anti-PD-L1 antibodies can unleash anti-tumor immunity and induce durable remission in a variety ofhuman cancers. However, the regulatory mechanisms of PD-L1 expression mediating immune evasion ofcancer cells have not been fully elucidated, including the genetic alterations causing PD-L1 overexpression. Recently, we have reported a novel genetic mechanism ofimmune evasion associated with structural variations(SVs)disrupting the 3'-untranslated region(UTR)ofthe PD-L1 gene in various malignancies, such as aggressive lymphomas and gastrointestinal cancers. Despite a heterogenous nature ofthese SVs, they are closely associated with a marked upregulation of PD-L1 expression, which augments tumor growth and escape from anti-tumor immunity. Here we present an overview of the regulatory mechanisms of PD-L1 expression in cancer cells, highlighting the genetic mechanisms of PD-L1 constitutive activation, with specific focus on PD-L1 3'-UTR disruption.

  17. Visual observations of fuel disruption in in-pile LMFBR accident experiments

    International Nuclear Information System (INIS)

    Wright, S.A.; Mast, P.K.

    1982-01-01

    Sandia National Laboratories has been investigating initiation phase phenomena in a series of Fuel Disruption (FD) experiments since 1977. In this program high speed cinematography is used to observe fuel disruption in in-pile experiments that simulate loss of flow accidents. Thus, these experiments provide high resolution measurements of initial fuel and clad motion with prototypic materials and prototypic heating conditions. The main objective of the FD experiment is to determine the timing (relative to fuel temperature) and the mode of fuel disruption under LOF heating conditions. Observed modes of disruption include fuel swelling, solid state breakup, cracking, ejection of a molten fuel jet, slumping, and rapid expansion of small particles. Because the temperature and character of the fuel at disruption are known, disruption can be correlated with the mechanisms driving the disruption such as fuel vapor pressure, molten fuel expansion, fission gases, and impurity gases

  18. Fuel disruption mechanisms determined in-pile in the ACRR

    International Nuclear Information System (INIS)

    Wright, S.A.; Fischer, E.A.

    1984-09-01

    Over thirty in-pile experiments were performed to investigate fuel disruption behavior for LMFBR loss of flow (LOF) accidents. These experiments reproduced the heating transients for a variety of accidents ranging from slow LOF accidents to rapid LOF-driven-TOP accidents. In all experiments the timing and mode of the fuel disruption were observed with a high speed camera, enabling detailed comparisons with a fuel pin code, SANDPIN. This code transient intra- and inter-granular fission gas behavior to predict the macroscopic fuel behavior, such as fission gas induced swelling and frothing, cracking and breakup of solid fuel, and fuel vapor pressure driven dispersal. This report reviews the different modes of fuel disruption as seen in the experiments and then describes the mechanism responsible for the disruption. An analysis is presented that describes a set of conditions specifying the mode of fuel disruption and the heating conditions required to produce the disruption. The heating conditions are described in terms of heating rate (K/s), temperature gradient, and fuel temperature. A fuel disruption map is presented which plots heating rate as a function of fuel temperature to illustrate the different criteria for disruption. Although this approach to describing fuel disruption oversimplifies the fission gas processes modeled by SANDPIN, it does illustrate the criteria used to determine which fuel disruption mechanism is dominant and on what major fission gas parameters it depends

  19. Immune System: An Emerging Player in Mediating Effects of Endocrine Disruptors on Metabolic Health.

    Science.gov (United States)

    Bansal, Amita; Henao-Mejia, Jorge; Simmons, Rebecca A

    2018-01-01

    The incidence of metabolic disorders like type 2 diabetes and obesity continues to increase. In addition to the well-known contributors to these disorders, such as food intake and sedentary lifestyle, recent research in the exposure science discipline provides evidence that exposure to endocrine-disrupting chemicals like bisphenol A and phthalates via multiple routes (e.g., food, drink, skin contact) also contribute to the increased risk of metabolic disorders. Endocrine-disrupting chemicals (EDCs) can disrupt any aspect of hormone action. It is becoming increasingly clear that EDCs not only affect endocrine function but also adversely affect immune system function. In this review, we focus on human, animal, and in vitro studies that demonstrate EDC exposure induces dysfunction of the immune system, which, in turn, has detrimental effects on metabolic health. These findings highlight how the immune system is emerging as a novel player by which EDCs may mediate their effects on metabolic health. We also discuss studies highlighting mechanisms by which EDCs affect the immune system. Finally, we consider that a better understanding of the immunomodulatory roles of EDCs will provide clues to enhance metabolic function and contribute toward the long-term goal of reducing the burden of environmentally induced diabetes and obesity. Copyright © 2018 Endocrine Society.

  20. Quantitative Methods for Measuring Repair Rates and Innate-Immune Cell Responses in Wounded Mouse Skin

    Directory of Open Access Journals (Sweden)

    Zhi Li

    2018-02-01

    Full Text Available In skin wounds, innate-immune cells clear up tissue debris and microbial contamination, and also secrete cytokines and other growth factors that impact repair process such as re-epithelialization and wound closure. After injury, there is a rapid influx and efflux of immune cells at wound sites, yet the function of each innate cell population in skin repair is still under investigation. Flow cytometry is a valuable research tool for detecting and quantifying immune cells; however, in mouse back skin, the difficulty in extracting immune cells from small area of skin due to tissue complexity has made cytometric analysis an underutilized tool. In this paper, we provide detailed methods on the digestion of lesion-specific skin without disrupting antigen expression followed by multiplex cell staining that allows for identification of seven innate-immune populations, including rare subsets such as group-3 innate lymphoid cells (ILC3s, by flow-cytometry analysis. Furthermore, when studying the functions of immune cells to tissue repair an important metric to monitor is size of the wound opening. Normal wounds close steadily albeit at non-linear rates, while slow or stalled wound closure can indicate an underlying problem with the repair process. Calliper measurements are difficult and time-consuming to obtain and can require repeated sedation of experimental animals. We provide advanced methods for measuring of wound openness; digital 3D image capture and semi-automated image processing that allows for unbiased, reliable measurements that can be taken repeatedly over time.

  1. Origins of adaptive immunity.

    Science.gov (United States)

    Liongue, Clifford; John, Liza B; Ward, Alister

    2011-01-01

    Adaptive immunity, involving distinctive antibody- and cell-mediated responses to specific antigens based on "memory" of previous exposure, is a hallmark of higher vertebrates. It has been argued that adaptive immunity arose rapidly, as articulated in the "big bang theory" surrounding its origins, which stresses the importance of coincident whole-genome duplications. Through a close examination of the key molecules and molecular processes underpinning adaptive immunity, this review suggests a less-extreme model, in which adaptive immunity emerged as part of longer evolutionary journey. Clearly, whole-genome duplications provided additional raw genetic materials that were vital to the emergence of adaptive immunity, but a variety of other genetic events were also required to generate some of the key molecules, whereas others were preexisting and simply co-opted into adaptive immunity.

  2. Tidal Disruption Events from Eccentric Nuclear Disks

    Science.gov (United States)

    Wernke, Heather N.; Madigan, Ann-Marie

    2018-04-01

    Stars that get too close to a supermassive black hole are in danger of being tidally disrupted. Stellar two-body relaxation is commonly assumed to be the main driver of these events. Recent work has shown, however, that secular gravitational torques from eccentric nuclear disks can push stars to extreme eccentricities at much higher rates than predicted by two-body relaxation. This work did not include the effects of general relativity, however, which could quench secular torques via rapid apsidal precession. Here we show that, for a star in danger of disruption, general relativity acts on a timescale of less than an orbital period. This short timescale means that general relativity does not have enough time to have a major effect on the orbit. When driven by secular torques from eccentric nuclear disks, tidal disruption event rates are not affected by general relativity.

  3. Epicutaneous Immunization with Type II Collagen Inhibits both Onset and Progression of Chronic Collagen-Induced Arthritis

    OpenAIRE

    Strid, Jessica; Tan, Lee Aun; Strobel, Stephan; Londei, Marco; Callard, Robin

    2007-01-01

    Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA) in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII) inh...

  4. Just one look: Direct gaze briefly disrupts visual working memory.

    Science.gov (United States)

    Wang, J Jessica; Apperly, Ian A

    2017-04-01

    Direct gaze is a salient social cue that affords rapid detection. A body of research suggests that direct gaze enhances performance on memory tasks (e.g., Hood, Macrae, Cole-Davies, & Dias, Developmental Science, 1, 67-71, 2003). Nonetheless, other studies highlight the disruptive effect direct gaze has on concurrent cognitive processes (e.g., Conty, Gimmig, Belletier, George, & Huguet, Cognition, 115(1), 133-139, 2010). This discrepancy raises questions about the effects direct gaze may have on concurrent memory tasks. We addressed this topic by employing a change detection paradigm, where participants retained information about the color of small sets of agents. Experiment 1 revealed that, despite the irrelevance of the agents' eye gaze to the memory task at hand, participants were worse at detecting changes when the agents looked directly at them compared to when the agents looked away. Experiment 2 showed that the disruptive effect was relatively short-lived. Prolonged presentation of direct gaze led to recovery from the initial disruption, rather than a sustained disruption on change detection performance. The present study provides the first evidence that direct gaze impairs visual working memory with a rapidly-developing yet short-lived effect even when there is no need to attend to agents' gaze.

  5. Disruption-induced poloidal currents in the tokamak wall

    International Nuclear Information System (INIS)

    Pustovitov, V.D.

    2017-01-01

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  6. Disruption-induced poloidal currents in the tokamak wall

    Energy Technology Data Exchange (ETDEWEB)

    Pustovitov, V.D., E-mail: Pustovitov_VD@nrcki.ru [National Research Centre ‘Kurchatov Institute’, Pl. Kurchatova 1, Moscow 123182 (Russian Federation); National Research Nuclear University MEPhI, Kashirskoe sh. 31, Moscow 115409, Russia (Russian Federation)

    2017-04-15

    Highlights: • Induction effects during disruptions and rapid transient events in tokamaks. • Plasma-wall electromagnetic interaction. • Flux-conserving evolution of plasma equilibrium. • Poloidal current induced in the vacuum vessel wall in a tokamak. • Complete analytical derivations and estimates. - Abstract: The poloidal current induced in the tokamak wall during fast transient events is analytically evaluated. The analysis is based on the electromagnetic relations coupled with plasma equilibrium equations. The derived formulas describe the consequences of both thermal and current quenches. In the final form, they give explicit dependence of the wall current on the plasma pressure and current. A comparison with numerical results of Villone et al. [F. Villone, G. Ramogida, G. Rubinacci, Fusion Eng. Des. 93, 57 (2015)] for IGNITOR is performed. Our analysis confirms the importance of the effects described there. The estimates show that the disruption-induced poloidal currents in the wall should be necessarily taken into account in the studies of disruptions and disruption mitigation in ITER.

  7. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    Science.gov (United States)

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K

    2018-01-01

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.

  8. Development of disruption thermal analysis code DREAM

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi [Kawasaki Heavy Industries Ltd., Kobe (Japan); Seki, Masahiro

    1989-07-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author).

  9. Development of disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayahsi, Takeshi; Seki, Masahiro.

    1989-01-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing componenets such as first wall and divertor/limiter are subjected to a intensse heat load in a short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs. It causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes and radiation heat loss in required in the design of these components. This paper describes the computer code DREAM, developed to perform the disruption thermal analysis, taking phase changes and radiation into account. (author)

  10. Commercial herbal medicines used as African traditional medicines: Ngoma Herbal Tonic Immune Booster interferes with a rapid urine drug screening test.

    Science.gov (United States)

    Mothibe, M E; Osuch, E; Kahler-Venter, C P

    2017-08-25

    The prevalent use of African traditional medicine by the general public has been reported. With commercialisation and marketing, some of the herbal medicines (HMs) used are readily available over the counter, most of them promoted as immune boosters. These commercial HMs have not been taken through clinical trials and other tests that would validate their composition and safety, and other properties such as their effect on laboratory diagnostic tests. To investigate the cross-reactivity of selected HMs with commonly tested drugs of abuse (DoA) using a qualitative rapid urinalysis assay. The six HMs selected were bought from local pharmacies. A rapid urinalysis screening test was performed with the Instant View Multi-Drug of Abuse Test kit from Labstix Diagnostics. Drug-free urine (DFU) was pooled from samples donated by healthy volunteers. Urine samples that had tested positive for DoA were obtained from a pharmacology laboratory. Aliquots of the urine samples were spiked with the HMs in neat and diluted form, and tested at various time intervals. The results for the DFU samples spiked with the HMs remained negative. There were no significant changes in pH or specific gravity of the samples. The results of samples that had tested positive for tetrahydrocannabinol (THC) were not altered by five of the HMs when spiked at 40% v/v. The HM Ngoma Herbal Tonic Immune Booster caused false-negative results for the THC test. An important finding is that the herbal mixture Ngoma Herbal Tonic Immune Booster caused false-negative results for the cannabinoid screening test. It adds to the list of substances that may be potential adulterants of urine for screening tests.

  11. Disruption of M-T5, a novel myxoma virus gene member of poxvirus host range superfamily, results in dramatic attenuation of myxomatosis in infected European rabbits.

    Science.gov (United States)

    Mossman, K; Lee, S F; Barry, M; Boshkov, L; McFadden, G

    1996-07-01

    Myxoma virus is a pathogenic poxvirus that induces a lethal myxomatosis disease profile in European rabbits, which is characterized by fulminating lesions at the primary site of inoculation, rapid dissemination to secondary internal organs and peripheral external sites, and supervening gram-negative bacterial infection. Here we describe the role of a novel myxoma virus protein encoded by the M-T5 open reading frame during pathogenesis. The myxoma virus M-T5 protein possesses no significant sequence homology to nonviral proteins but is a member of a larger poxviral superfamily designated host range proteins. An M-T5- mutant virus was constructed by disruption of both copies of the M-T5 gene followed by insertion of the selectable marker p7.5Ecogpt. Although the M-T5- deletion mutant replicated with wild-type kinetics in rabbit fibroblasts, infection of a rabbit CD4+ T-cell line (RL5) with the myxoma virus M-T5- mutant virus resulted in the rapid and complete cessation of both host and viral protein synthesis, accompanied by the manifestation of all the classical features of programmed cell death. Infection of primary rabbit peripheral mononuclear cells with the myxoma virus M-T5-mutant virus resulted in the apoptotic death of nonadherent lymphocytes but not adherent monocytes. Within the European rabbit, disruption of the M-T5 open reading frame caused a dramatic attenuation of the rapidly lethal myxomatosis infection, and none of the infected rabbits displayed any of the characteristic features of myxomatosis. The two most significant histological observations in rabbits infected with the M-T5-mutant virus were (i) the lack of progression of the infection past the primary site of inoculation, coupled with the establishment of a rapid and effective inflammatory reaction, and (ii) the inability of the virus to initiate a cellular reaction within secondary immune organs. We conclude that M-T5 functions as a critical virulence factor by allowing productive infection of

  12. Population growth changes targets for immunization.

    Science.gov (United States)

    Tuljapurkar, S; John, A M

    1995-01-01

    The faster the rate of population growth in developing countries, the less likely it is that current protocols for immunization against measles, rubella, and mumps will eradicate these childhood diseases. Standard protocols (timing, percentage of children to be immunized) do not take into account the rapid rates of population growth in developing countries (3.0% per year on average in sub-Saharan Africa and 2.0% in the rest of Africa, in Latin America, and in Asia, excluding China). Most public health planning models in this area were created based on static infant populations. The World Health Organization advises vaccinating at least 85% of children aged 6 to 9 months, a 3-month immunization window during which maternal antibodies are low (so the vaccination takes) and herd immunity is high (the probability that a child will encounter the disease is low because most children have been immunized). In practice, the immunization window in developing countries is 1 year or more. More susceptible children are present than assumed by the models. A larger number of susceptible babies are added each year during rapid population growth. As the age range for immunization widens, a higher percentage of children must be vaccinated to eradicate disease (chart). The proportion of each birth cohort that must be immunized rises as the population growth rate increases. At zero population growth, 94% must be vaccinated; at population growth rates greater than 3%, 98% must be vaccinated.

  13. Trauma equals danger—damage control by the immune system

    Science.gov (United States)

    Stoecklein, Veit M.; Osuka, Akinori; Lederer, James A.

    2012-01-01

    Traumatic injuries induce a complex host response that disrupts immune system homeostasis and predisposes patients to opportunistic infections and inflammatory complications. The response to injuries varies considerably by type and severity, as well as by individual variables, such as age, sex, and genetics. These variables make studying the impact of trauma on the immune system challenging. Nevertheless, advances have been made in understanding how injuries influence immune system function as well as the immune cells and pathways involved in regulating the response to injuries. This review provides an overview of current knowledge about how traumatic injuries affect immune system phenotype and function. We discuss the current ideas that traumatic injuries induce a unique type of a response that may be triggered by a combination of endogenous danger signals, including alarmins, DAMPs, self-antigens, and cytokines. Additionally, we review and propose strategies for redirecting injury responses to help restore immune system homeostasis. PMID:22654121

  14. Regulation of immune responsiveness in vivo by disrupting an early T-cell signaling event using a cell-permeable peptide.

    Directory of Open Access Journals (Sweden)

    David M Guimond

    Full Text Available The inducible T cell kinase (ITK regulates type 2 (Th2 cytokines that provide defense against certain parasitic and bacterial infections and are involved in the pathogenesis of lung inflammation such as allergic asthma. Activation of ITK requires the interaction of its SH3 domain with the poly-proline region of its signaling partner, the SH2 domain containing leukocyte phosphoprotein of 76 kilodaltons (SLP-76. The specific disruption of the ITK-SH3/SLP-76 poly-proline interaction in vitro by a cell-permeable competitive inhibitor peptide (R9-QQP interferes with the activation of ITK and the transduction of its cellular functions in T lymphocytes. In the present investigation, we assessed the effects of R9-QQP treatment on the induction of an in vivo immune response as represented by lung inflammation in a murine model of allergic asthma. We found that mice treated with R9-QQP and sensitized and challenged with the surrogate allergen ovalbumin (OVA display significant inhibition of lung inflammation in a peptide-specific manner. Thus, parameters of the allergic response, such as airway hyper-responsiveness, suppression of inflammatory cell infiltration, reduction of bronchial mucus accumulation, and production of relevant cytokines from draining lymph nodes were significantly suppressed. These findings represent the first demonstration of the biological significance of the interaction between ITK and SLP-76 in the induction of an immune response in a whole animal model and specifically underscore the significance of the ITK-SH3 domain interaction with the poly-proline region of SLP-76 in the development of an inflammatory response. Furthermore, the experimental approach of intracellular peptide-mediated inhibition might be applicable to the study of other important intracellular interactions thus providing a paradigm for dissecting signal transduction pathways.

  15. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity

    OpenAIRE

    Ciss?, Yasmine M.; Russart, Kathryn L.G.; Nelson, Randy J.

    2017-01-01

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to eit...

  16. High contaminant loads in Lake Apopka's riparian wetland disrupt gene networks involved in reproduction and immune function in largemouth bass.

    Science.gov (United States)

    Martyniuk, Christopher J; Doperalski, Nicholas J; Prucha, Melinda S; Zhang, Ji-Liang; Kroll, Kevin J; Conrow, Roxanne; Barber, David S; Denslow, Nancy D

    2016-09-01

    Lake Apopka (FL, USA) has elevated levels of some organochlorine pesticides in its sediments and a portion of its watershed has been designated a US Environmental Protection Agency Superfund site. This study assessed reproductive endpoints in Florida largemouth bass (LMB) (Micropterus salmoides floridanus) after placement into experimental ponds adjacent to Lake Apopka. LMB collected from a clean reference site (DeLeon Springs) were stocked at two periods of time into ponds constructed in former farm fields on the north shore of the lake. LMB were stocked during early and late oogenesis to determine if there were different effects of contamination on LMB that may be attributed to their reproductive stage. LMB inhabiting the ponds for ~4months had anywhere from 2 to 800 times higher contaminant load for a number of organochlorine pesticides (e.g. p, p'-DDE, methoxychlor) compared to control animals. Gonadosomatic index and plasma vitellogenin were not different between reproductively-stage matched LMB collected at reference sites compared to those inhabiting the ponds. However, plasma 17β-estradiol was lower in LMB inhabiting the Apopka ponds compared to ovary stage-matched LMB from the St. Johns River, a site used as a reference site. Sub-network enrichment analysis revealed that genes related to reproduction (granulosa function, oocyte development), endocrine function (steroid metabolism, hormone biosynthesis), and immune function (T cell suppression, leukocyte accumulation) were differentially expressed in the ovaries of LMB placed into the ponds. These data suggest that (1) LMB inhabiting the Apopka ponds showed disrupted reproduction and immune responses and that (2) gene expression profiles provided site-specific information by discriminating LMB from different macro-habitats. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. RAPID APPRAISAL OF ROUTINE IMMUNIZATION COVERAGE IN A NEWLY FORMED DISTRICT OF UTTAR PRADESH

    Directory of Open Access Journals (Sweden)

    S K Kaushal

    2011-12-01

    Full Text Available Background Immunization is a proven cost effective intervention to reduce the child mortality & morbidity. As per DLHS-3(2007-08 only 30.3% of children are fully immunized in Uttar Pradesh. A new district, Kanshi Ram Nagar was created on 15 April 2008 within Etah district. Objective To assess the primary immunization status & dropout rate. To find out reasons for immunization default. To study the difference, if any between high risk & low risk block. Material & methods A cross sectional, observational study was undertaken in two blocks (Patiyali and Amanpur of Kanshi Ram Nagar District by interviewing 210 respondent mothers in each block, by using ‘30’ cluster sampling technique with help of predesigned, pretested schedule. Result: The percentages of fully immunized children were 50% in Patiyali & 44.08% in Amanpur block. ANM & ASHA were observed as main informer to the community. Immunization status was poor in Muslims and in female children. The highest covered antigen found was BCG and lowest was DPT-3 in both the blocks. The overall dropout rate was 36.52% for Patiyali & 32.96 % for Amanpur block. The main reasons for dropout identified were, non-cooperation of health workers and community were not aware about the need of Immunization in both the blocks. However the differential findings in among the blocks were statistically not significant. Conclusion However lesser number of children were left untouched for immunization services but the percentage of incomplete immunization was found high due to poor cooperation of health worker and unawareness about need of immunization in community

  18. Rapid Assay of Cellular Immunity in Q Fever.

    Science.gov (United States)

    1995-10-01

    measuring CMI Measurement of CMI has been accomplished by many different methods both in vitro and in vivo (Clough & Roth , 1995). Some methods are...also become chronic with endocarditis as the main symptom and can result in death. Vaccines are being developed and have shown encouraging success in...rickettsial diseases with strong cellular immune responses following infection. The efficacy of a vaccine against Rocky Mountain spotted fever, R

  19. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  20. MHD stability, operational limits and disruptions

    International Nuclear Information System (INIS)

    1999-01-01

    The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and

  1. The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.

    Science.gov (United States)

    Smith, Eric E; Malik, Harmit S

    2009-05-01

    Apolipoprotein L1 (APOL1) is a human protein that confers immunity to Trypanosoma brucei infections but can be countered by a trypanosome-encoded antagonist SRA. APOL1 belongs to a family of programmed cell death genes whose proteins can initiate host apoptosis or autophagic death. We report here that all six members of the APOL gene family (APOL1-6) present in humans have rapidly evolved in simian primates. APOL6, furthermore, shows evidence of an adaptive sweep during recent human evolution. In each APOL gene tested, we found rapidly evolving codons in or adjacent to the SRA-interacting protein domain (SID), which is the domain of APOL1 that interacts with SRA. In APOL6, we also found a rapidly changing 13-amino-acid cluster in the membrane-addressing domain (MAD), which putatively functions as a pH sensor and regulator of cell death. We predict that APOL genes are antagonized by pathogens by at least two distinct mechanisms: SID antagonists, which include SRA, that interact with the SID of various APOL proteins, and MAD antagonists that interact with the MAD hinge base of APOL6. These antagonists either block or prematurely cause APOL-mediated programmed cell death of host cells to benefit the infecting pathogen. These putative interactions must occur inside host cells, in contrast to secreted APOL1 that trafficks to the trypanosome lysosome. Hence, the dynamic APOL gene family appears to be an important link between programmed cell death of host cells and immunity to pathogens.

  2. NIH Common Fund - Disruptive Proteomics Technologies - Challenges and Opportunities | Office of Cancer Clinical Proteomics Research

    Science.gov (United States)

    This Request for Information (RFI) is directed toward determining how best to accelerate research in disruptive proteomics technologies. The Disruptive Proteomics Technologies (DPT) Working Group of the NIH Common Fund wishes to identify gaps and opportunities in current technologies and methodologies related to proteome-wide measurements.  For the purposes of this RFI, “disruptive” is defined as very rapid, very significant gains, similar to the "disruptive" technology development that occurred in DNA sequencing technology.

  3. Pauci-immune necrotizing glomerulonephritis

    NARCIS (Netherlands)

    Rutgers, Abraham; Sanders, Jan S F; Stegeman, Coen A; Kallenberg, Cees G M

    Pauci-immune necrotizing glomerulonephritis is the most frequent cause of rapidly progressive glomerulonephritis and, in most cases, is associated with antineutrophil cytoplasmic antibodies (ANCA). It is either the renal manifestation of Wegener's granulomatosis, microscopic polyangiitis of

  4. The immune self: a selectionist theory of recognition, learning, and remembering within the immune system.

    Science.gov (United States)

    Kradin, R L

    1995-01-01

    In this paper, I have briefly explored metaphors shared by the immune and nervous systems and shown that this exercise can lead to the elucidation of common principles of organization, as well as to predictions concerning how the immune system functions. Metaphor itself undoubtedly reflects the way in which we categorize and retrieve information 44], so it is not surprising that the deep processes of language tend to sample information from related data categories. Although the nervous and immune systems are obviously not the same and metaphors are indeed just that, my primary goal has been to suggest that by virtue of their having evolved in parallel over millions of years, the nervous and immune systems currently use the same archetypal principles and strategies to address related challenges in information processing and retrieval. Ultimately, nature is conservative. One need only look at a tree, a river, the airways, or the vascular bed in order to see how a fractal pattern of repetitive dichotomous branching has been used by each, in order to optimize the transport of fluids over large distances [45]. While each system has had to adopt different materials in order to solve the problem, the shape of their solutions is remarkably alike. In the immune and nervous systems, the elements used to produce optimal functional responses are also quite different, but again the solutions have been achieved by comparable strategies. I am certain that these two great systems of information processing, each responding with vastly different kinetics, will prove to be far more integrally interdependent than has been previously recognized. For example, should a swift response by the immune system be required in an overwhelming invasion by microbial pathogens, the immune system may be able to cooperate with the rapidly reacting nervous system to rid the host of the invaders. In this regard, we have shown that the beta-adrenergic hormone epinephrine rapidly increases the traffic of

  5. Disruption of River Networks in Nature and Models

    Science.gov (United States)

    Perron, J. T.; Black, B. A.; Stokes, M.; McCoy, S. W.; Goldberg, S. L.

    2017-12-01

    Many natural systems display especially informative behavior as they respond to perturbations. Landscapes are no exception. For example, longitudinal elevation profiles of rivers responding to changes in uplift rate can reveal differences among erosional mechanisms that are obscured while the profiles are in equilibrium. The responses of erosional river networks to perturbations, including disruption of their network structure by diversion, truncation, resurfacing, or river capture, may be equally revealing. In this presentation, we draw attention to features of disrupted erosional river networks that a general model of landscape evolution should be able to reproduce, including the consequences of different styles of planetary tectonics and the response to heterogeneous bedrock structure and deformation. A comparison of global drainage directions with long-wavelength topography on Earth, Mars, and Saturn's moon Titan reveals the extent to which persistent and relatively rapid crustal deformation has disrupted river networks on Earth. Motivated by this example and others, we ask whether current models of river network evolution adequately capture the disruption of river networks by tectonic, lithologic, or climatic perturbations. In some cases the answer appears to be no, and we suggest some processes that models may be missing.

  6. Disruption, vertical displacement event and halo current characterization for ITER

    International Nuclear Information System (INIS)

    Wesley, J.; Fujisawa, N.; Ortolani, S.; Putvinski, S.; Rosenbluth, M.N.

    1997-01-01

    Characteristics, in ITER, of plasma disruptions, vertical displacement events (VDEs) and the conversion of plasma current to runaway electron current in a disruption are presented. In addition to the well known potential of disruptions to produce rapid thermal energy and plasma current quenches and theoretical predictions that show the likelihood of ∼ 50% runaway conversion, an assessment of VDE and halo current characteristics in vertically elongated tokamaks shows that disruptions in ITER will result in VDEs with peak in-vessel halo currents of up to 50% of the predisruption plasma current and with toroidal peaking factors (peak/average current density) of up to 4:1. However, the assessment also shows an inverse correlation between the halo current magnitude and the toroidal peaking factor; hence, ITER VDEs can be expected to have a product of normalized halo current magnitude times toroidal peaking factor of ≤ 75%. (author). 3 refs, 2 figs, 3 tabs

  7. Human immunodeficiency virus-associated disruption of mucosal barriers and its role in HIV transmission and pathogenesis of HIV/AIDS disease

    Science.gov (United States)

    Tugizov, Sharof

    2016-01-01

    Abstract Oral, intestinal and genital mucosal epithelia have a barrier function to prevent paracellular penetration by viral, bacterial and other pathogens, including human immunodeficiency virus (HIV). HIV can overcome these barriers by disrupting the tight and adherens junctions of mucosal epithelia. HIV-associated disruption of epithelial junctions may also facilitate paracellular penetration and dissemination of other viral pathogens. This review focuses on possible molecular mechanisms of HIV-associated disruption of mucosal epithelial junctions and its role in HIV transmission and pathogenesis of HIV and acquired immune deficiency syndrome (AIDS). PMID:27583187

  8. Beryllium and graphite performance in ITER during a disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Ehst, D.A.; Gahl, J.

    1994-01-01

    Plasma disruptions are considered one of the most limiting factors for successful operation of magnetic fusion reactors. During a disruption, a sharp, rapid release of energy strikes components such as the divertor or limiter plates. Severe surface erosion and melting of these components may then occur. The amount of material eroded from both ablation and melting is important to the reactor design and component lifetime. The anticipated performance of both beryllium and graphite as plasma-facing materials during such abnormal events is analyzed and compared. Recent experimental data obtained with both plasma guns and electron beams are carefully evaluated and compared to results of analytical modeling, including vapor shielding effect. Initial results from plasma gun experiments indicate that the Be erosion rate is about five times larger than that for a graphite material under the same disruption conditions. Key differences between simulation experiments and reactor disruption on the net erosion rate, and consequently on the lifetime of the divertor plate, are discussed in detail. The advantages and disadvantages of Be over graphite as a divertor plasma-facing material are discussed. ((orig.))

  9. Beryllium and graphite performance in ITER during a disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Ehst, D.A.; Gahl, J.

    1993-09-01

    Plasma disruptions are considered one of the most limiting factors for successful operation of magnetic fusion reactors. During a disruption, a sharp, rapid release of energy strikes components such as the divertor or limiter plates. Severe surface erosion and melting of these components may then occur. The amount of material eroded from both ablation and melting is important to the reactor design and component lifetime. The anticipated performance of both beryllium and graphite as plasma-facing materials during such abnormal events is analyzed and compared. Recent experimental data obtained with both plasma guns and electron beams are carefully evaluated and compared to results of analytical modeling, including vapor shielding effect. Initial results from plasma gun experiments indicate that the Be erosion rate is about five times larger than that for a graphite material under the same disruption conditions. Key differences between simulation experiments and reactor disruption on the net erosion rate, and consequently on the lifetime of the divertor plate, are discussed in detail. The advantages and disadvantages of Be over graphite as a divertor plasma-facing material are discussed

  10. Tidal disruption of fuzzy dark matter subhalo cores

    Science.gov (United States)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  11. The habitat disruption induces immune-suppression and oxidative stress in honey bees

    OpenAIRE

    Morimoto, Tomomi; Kojima, Yuriko; Toki, Taku; Komeda, Yayoi; Yoshiyama, Mikio; Kimura, Kiyoshi; Nirasawa, Keijiro; Kadowaki, Tatsuhiko

    2011-01-01

    The honey bee is a major insect used for pollination of many commercial crops worldwide. Although the use of honey bees for pollination can disrupt the habitat, the effects on their physiology have never been determined. Recently, honey bee colonies have often collapsed when introduced in greenhouses for pollination in Japan. Thus, suppressing colony collapses and maintaining the number of worker bees in the colonies is essential for successful long-term pollination in greenhouses and recycli...

  12. Functional comparison of innate immune signaling pathways in primates.

    Directory of Open Access Journals (Sweden)

    Luis B Barreiro

    2010-12-01

    Full Text Available Humans respond differently than other primates to a large number of infections. Differences in susceptibility to infectious agents between humans and other primates are probably due to inter-species differences in immune response to infection. Consistent with that notion, genes involved in immunity-related processes are strongly enriched among recent targets of positive selection in primates, suggesting that immune responses evolve rapidly, yet providing only indirect evidence for possible inter-species functional differences. To directly compare immune responses among primates, we stimulated primary monocytes from humans, chimpanzees, and rhesus macaques with lipopolysaccharide (LPS and studied the ensuing time-course regulatory responses. We find that, while the universal Toll-like receptor response is mostly conserved across primates, the regulatory response associated with viral infections is often lineage-specific, probably reflecting rapid host-virus mutual adaptation cycles. Additionally, human-specific immune responses are enriched for genes involved in apoptosis, as well as for genes associated with cancer and with susceptibility to infectious diseases or immune-related disorders. Finally, we find that chimpanzee-specific immune signaling pathways are enriched for HIV-interacting genes. Put together, our observations lend strong support to the notion that lineage-specific immune responses may help explain known inter-species differences in susceptibility to infectious diseases.

  13. Characterization of plasma current quench during disruptions at HL-2A

    Science.gov (United States)

    Zhu, Jinxia; Zhang, Yipo; Dong, Yunbo; HL-2A Team

    2017-05-01

    The most essential assumptions of physics for the evaluation of electromagnetic forces on the plasma-facing components due to a disruption-induced eddy current are characteristics of plasma current quenches including the current quench rate or its waveforms. The characteristics of plasma current quenches at HL-2A have been analyzed during spontaneous disruptions. Both linear decay and exponential decay are found in the disruptions with the fastest current quenches. However, there are two stages of current quench in the slow current quench case. The first stage with an exponential decay and the second stage followed by a rapid linear decay. The faster current quench rate corresponds to the faster movement of plasma displacement. The parameter regimes on the current quench time and the current quench rates have been obtained from disruption statistics at HL-2A. There exists no remarkable difference for distributions obtained between the limiter and the divertor configuration. This data from HL-2A provides basic data of the derivation of design criteria for a large-sized machine during the current decay phase of the disruptions.

  14. Social media disruptive change in healthcare : Responses of healthcare providers?

    NARCIS (Netherlands)

    Smailhodzic, E.; Boonstra, A.; Langley, D.J.

    2016-01-01

    Social media represent specific types of technologies that are end-user driven and end-users are able to drive disruptive change giving little time to organizations to react. With rapid and powerful emergence of social media communities in healthcare, this sector is faced with new and alternative

  15. Social media disruptive change in healthcare : responses of healthcare providers

    NARCIS (Netherlands)

    Smailhodzic, Edin; Boonstra, Albert; Langley, David

    Social media represent specific types of technologies that are end-user driven and end-users are able to drive disruptive change giving little time to organizations to react. With rapid and powerful emergence of social media communities in healthcare, this sector is faced with new and alternative

  16. Immune function in arctic mammals

    DEFF Research Database (Denmark)

    Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer

    2018-01-01

    Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus...... the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can...... contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility....

  17. Frosted branch angiitis associated with rapidly progressive glomerulonephritis.

    Directory of Open Access Journals (Sweden)

    Gupta Amod

    2002-01-01

    Full Text Available Simultaneous occurrence of frosted branch angiitis and immune-mediated rapidly progressive glomerulonephritis is reported. The two diseases possibly share a common immune mechanism. Patients of frosted branch angiitis should undergo complete systemic evaluation including renal function tests even if the patient is systemically asymptomatic.

  18. Immunological dynamics associated with rapid virological response during the early phase of type I interferon therapy in patients with chronic hepatitis C.

    Science.gov (United States)

    Lee, Jae-Won; Kim, Won; Kwon, Eun-Kyung; Kim, Yuri; Shin, Hyun Mu; Kim, Dong-Hyun; Min, Chan-Ki; Choi, Ji-Yeob; Lee, Won-Woo; Choi, Myung-Sik; Kim, Byeong Gwan; Cho, Nam-Hyuk

    2017-01-01

    Type I interferons (IFNs) play an important role in antiviral immunity as well as immunopathogenesis of diverse chronic viral infections. However, the precise mechanisms regulating the multifaceted effects of type I IFNs on the immune system and pathological inflammation still remain unclear. In order to assess the immunological dynamics associated with rapid viral clearance in chronic hepatitis C patients during the acute phase of type I IFN therapy, we analyzed multiple parameters of virological and immunological responses in a cohort of 59 Korean hepatitis C patients who received pegylated IFN-α and ribavirin (IFN/RBV). Most of the Korean patients had favorable alleles in the IFN-λ loci for responsiveness to IFN/RBV (i.e., C/C in rs12979860, T/T in rs8099917, and TT/TT in rs368234815). Rapid virological response (RVR) was determined mainly by the hepatitis C virus genotype. Among the cytokines analyzed, higher plasma levels of IL-17A and FGF were observed in non-RVR patients infected with viral genotype 1 and IP-10 was consistently elevated in RVR group infected with genotype 2 during the early phase of antiviral therapy. In addition, these three cytokines were correlated each other, suggesting a functional linkage of the cytokines in antiviral responses during IFN/RBV therapy. A low baseline frequencies of regulatory T cells and γδ T cells, but high level of group 2 innate lymphoid cells, in peripheral bloods were also significantly associated with the RVR group, implicating a potential role of the cellular immunity during the early phase of IFN/RBV therapy. Therefore, the immunological programs established by chronic hepatitis C and rapid disruption of the delicate balance by exogenous type I IFN might be associated with the subsequent virological outcomes in chronic hepatitis C patients.

  19. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  20. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  1. Gene disruption of Plasmodium falciparum p52 results in attenuation of malaria liver stage development in cultured primary human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Ben C L van Schaijk

    Full Text Available Difficulties with inducing sterile and long lasting protective immunity against malaria with subunit vaccines has renewed interest in vaccinations with attenuated Plasmodium parasites. Immunizations with sporozoites that are attenuated by radiation (RAS can induce strong protective immunity both in humans and rodent models of malaria. Recently, in rodent parasites it has been shown that through the deletion of a single gene, sporozoites can also become attenuated in liver stage development and, importantly, immunization with these sporozoites results in immune responses identical to RAS. The promise of vaccination using these genetically attenuated sporozoites (GAS depends on translating the results in rodent malaria models to human malaria. In this study, we perform the first essential step in this transition by disrupting, p52, in P. falciparum an ortholog of the rodent parasite gene, p36p, which we had previously shown can confer long lasting protective immunity in mice. These P. falciparum P52 deficient sporozoites demonstrate gliding motility, cell traversal and an invasion rate into primary human hepatocytes in vitro that is comparable to wild type sporozoites. However, inside the host hepatocyte development is arrested very soon after invasion. This study reveals, for the first time, that disrupting the equivalent gene in both P. falciparum and rodent malaria Plasmodium species generates parasites that become similarly arrested during liver stage development and these results pave the way for further development of GAS for human use.

  2. Emergency Management involving Critical Infrastructure Disruptions: operationalizing the deployment of resilience capabilities

    DEFF Research Database (Denmark)

    Trucco, P.; Petrenj, B.; Kozin, Igor

    2016-01-01

    , and/or rapidly recover from a potentially disruptive event. The study proposes a novel approach to integrating the resilience capacities of CI into the EM cycle, which facilitates emergency services and CI operators to collaborate in addressing resilience improvement measures, while planning to cope...... with CI disruptions. It grounds on a previously published comprehensive framework which reflects the main characteristics of such emergencies (e.g. interdependent, multi-sectoral, multi-stakeholder) and supports the identification, assessment and development of specific technical and organizational...

  3. The Pursuit of Profit or Prestige: What the Diffusion of MOOCs Can Tell Us about Disruptive Innovation in US Higher Education

    Science.gov (United States)

    Pheatt, Lara E.

    2017-01-01

    Disruptive innovations are used to lower costs and augment access to high-quality, affordable higher education, but little systematic research is available on the topic. Higher education institutions use disruptive innovations to save students time and money. To understand the process of disruptive innovation, I investigated the rapid diffusion of…

  4. MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells.

    Science.gov (United States)

    Jones, Russell G; Pearce, Edward J

    2017-05-16

    Tissue-resident immune cells must balance survival in peripheral tissues with the capacity to respond rapidly upon infection or tissue damage, and in turn couple these responses with intrinsic metabolic control and conditions in the tissue microenvironment. The serine/threonine kinase mammalian/mechanistic target of rapamycin (mTOR) is a central integrator of extracellular and intracellular growth signals and cellular metabolism and plays important roles in both innate and adaptive immune responses. This review discusses the function of mTOR signaling in the differentiation and function of tissue-resident immune cells, with focus on the role of mTOR as a metabolic sensor and its impact on metabolic regulation in innate and adaptive immune cells. We also discuss the impact of metabolic constraints in tissues on immune homeostasis and disease, and how manipulating mTOR activity with drugs such as rapamycin can modulate immunity in these contexts. Copyright © 2017. Published by Elsevier Inc.

  5. Ocular surface immunity: homeostatic mechanisms and their disruption in dry eye disease.

    Science.gov (United States)

    Barabino, Stefano; Chen, Yihe; Chauhan, Sunil; Dana, Reza

    2012-05-01

    The tear film, lacrimal glands, corneal and conjunctival epithelia and Meibomian glands work together as a lacrimal functional unit (LFU) to preserve the integrity and function of the ocular surface. The integrity of this unit is necessary for the health and normal function of the eye and visual system. Nervous connections and systemic hormones are well known factors that maintain the homeostasis of the ocular surface. They control the response to internal and external stimuli. Our and others' studies show that immunological mechanisms also play a pivotal role in regulating the ocular surface environment. Our studies demonstrate how anti-inflammatory factors such as the expression of vascular endothelial growth factor receptor-3 (VEGFR-3) in corneal cells, immature corneal resident antigen-presenting cells, and regulatory T cells play an active role in protecting the ocular surface. Dry eye disease (DED) affects millions of people worldwide and negatively influences the quality of life for patients. In its most severe forms, DED may lead to blindness. The etiology and pathogenesis of DED remain largely unclear. Nonetheless, in this review we summarize the role of the disruption of afferent and efferent immunoregulatory mechanisms that are responsible for the chronicity of the disease, its symptoms, and its clinical signs. We illustrate current anti-inflammatory treatments for DED and propose that prevention of the disruption of immunoregulatory mechanisms may represent a promising therapeutic strategy towards controlling ocular surface inflammation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Investigating Disruption

    DEFF Research Database (Denmark)

    Lundgaard, Stine Schmieg; Rosenstand, Claus Andreas Foss

    This book shares knowledge collected from 2015 and onward within the Consortium for Digital Disruption anchored at Aalborg University (www.dd.aau.dk). Evidenced by this publication, the field of disruptive innovation research has gone through several stages of operationalizing the theory. In recent...... years, researchers are increasingly looking back towards the origins of the theory in attempts to cure it from its most obvious flaws. This is especially true for the use of the theory in making predictions about future disruptions. In order to continue to develop a valuable theory of disruption, we...... find it useful to first review what the theory of disruptive innovation initially was, how it has developed, and where we are now. A cross section of disruptive innovation literature has been reviewed in order to form a general foundation from which we might better understand the changing world...

  7. MANAGING DISRUPTIVE BEHAVIOR OF STUDENTS IN LANGUAGE CLASSROOM

    Directory of Open Access Journals (Sweden)

    Siti Khasinah

    2017-05-01

    Full Text Available This article describes students’ disruptive behaviors in language classroom that may greatly affect language teaching and learning process, especially in ESL or EFL classes. Teachers should know what disruptive behavior is to enable them to deal with problems occurred in their classroom or to take preventive actions to keep their students well-behaved during the class. This can reduce the occurrence of misbehavior of students in their classroom. To prevent disruption in the classroom, teachers should establish behavioral expectations in the first day of the semester and the expectations can be based on students attendance, arrivals and departures, class participation, full English speaking, and other appropriate conducts in the syllabus and discuss them at the outset of the term. The agreement is then assigned as a learning contract or a code of conducts with which bounds the whole class. Consequently, whenever students are misbehaved, teachers and other students will directly know and recognize that the behaviors are out of the code. There are factors reasoning students to behave badly, so teachers as trouble solvers have to find appropriate strategies that are effective in helping students keep the code. Otherwise, the disruptions will escalate quickly and the problems will increase in numbers rapidly and finally, teachers will have to work very hard to avoid teaching failure and “losing face” when they cannot manage the disruption as listed in the expectation.

  8. Hydrogeologic effects of natural disruptive events on nuclear waste repositories

    International Nuclear Information System (INIS)

    Davis, S.N.

    1980-06-01

    Some possible hydrogeologic effects of disruptive events that may affect repositories for nuclear waste are described. A very large number of combinations of natural events can be imagined, but only those events which are judged to be most probable are covered. Waste-induced effects are not considered. The disruptive events discussed above are placed into four geologic settings. Although the geology is not specific to given repository sites that have been considered by other agencies, the geology has been generalized from actual field data and is, therefore, considered to be physically reasonable. The geologic settings considered are: (1) interior salt domes of the Gulf Coast, (2) bedded salt of southeastern New Mexico, (3) argillaceous rocks of southern Nevanda, and (4) granitic stocks of the Basin and Range Province. Log-normal distributions of permeabilities of rock units are given for each region. Chapters are devoted to: poresity and permeability of natural materials, regional flow patterns, disruptive events (faulting, dissolution of rock forming minerals, fracturing from various causes, rapid changes of hydraulic regimen); possible hydrologic effects of disruptive events; and hydraulic fracturing

  9. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  10. Tokamak plasma current disruption infrared control system

    International Nuclear Information System (INIS)

    Kugel, H.W.; Ulrickson, M.

    1987-01-01

    This patent describes a device for magnetically confining a plasma driven by a plasma current and contained within a toroidal vacuum chamber, the device having an inner toroidal limiter on an inside wall of the vacuum chamber and an arrangement for the rapid prediction and control in real time of a major plasma disruption. The arrangement is described which includes: scanning means sensitive to infrared radiation emanating from within the vacuum chamber, the infrared radiation indicating the temperature along a vertical profile of the inner toroidal limiter. The scanning means is arranged to observe the infrared radiation and to produce in response thereto an electrical scanning output signal representative of a time scan of temperature along the vertical profile; detection means for analyzing the scanning output signal to detect a first peaked temperature excursion occurring along the profile of the inner toroidal limiter, and to produce a detection output signal in repsonse thereto, the detection output signal indicating a real time prediction of a subsequent major plasma disruption; and plasma current reduction means for reducing the plasma current driving the plasma, in response to the detection output signal and in anticipation of a subsequent major plasma disruption

  11. A bacterial E3 ubiquitin ligase targets a host protein kinase to disrupt plant immunity.

    Science.gov (United States)

    Rosebrock, Tracy R; Zeng, Lirong; Brady, Jennifer J; Abramovitch, Robert B; Xiao, Fangming; Martin, Gregory B

    2007-07-19

    Many bacterial pathogens of plants and animals use a type III secretion system to deliver diverse virulence-associated 'effector' proteins into the host cell. The mechanisms by which these effectors act are mostly unknown; however, they often promote disease by suppressing host immunity. One type III effector, AvrPtoB, expressed by the plant pathogen Pseudomonas syringae pv. tomato, has a carboxy-terminal domain that is an E3 ubiquitin ligase. Deletion of this domain allows an amino-terminal region of AvrPtoB (AvrPtoB(1-387)) to be detected by certain tomato varieties leading to immunity-associated programmed cell death. Here we show that a host kinase, Fen, physically interacts with AvrPtoB(1-387 )and is responsible for activating the plant immune response. The AvrPtoB E3 ligase specifically ubiquitinates Fen and promotes its degradation in a proteasome-dependent manner. This degradation leads to disease susceptibility in Fen-expressing tomato lines. Various wild species of tomato were found to exhibit immunity in response to AvrPtoB(1-387 )and not to full-length AvrPtoB. Thus, by acquiring an E3 ligase domain, AvrPtoB has thwarted a highly conserved host resistance mechanism.

  12. Dynein Clusters into Lipid Microdomains on Phagosomes to Drive Rapid Transport toward Lysosomes.

    Science.gov (United States)

    Rai, Ashim; Pathak, Divya; Thakur, Shreyasi; Singh, Shampa; Dubey, Alok Kumar; Mallik, Roop

    2016-02-11

    Diverse cellular processes are driven by motor proteins that are recruited to and generate force on lipid membranes. Surprisingly little is known about how membranes control the force from motors and how this may impact specific cellular functions. Here, we show that dynein motors physically cluster into microdomains on the membrane of a phagosome as it matures inside cells. Such geometrical reorganization allows many dyneins within a cluster to generate cooperative force on a single microtubule. This results in rapid directed transport of the phagosome toward microtubule minus ends, likely promoting phagolysosome fusion and pathogen degradation. We show that lipophosphoglycan, the major molecule implicated in immune evasion of Leishmania donovani, inhibits phagosome motion by disrupting the clustering and therefore the cooperative force generation of dynein. These findings appear relevant to several pathogens that prevent phagosome-lysosome fusion by targeting lipid microdomains on phagosomes. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Physical and metallurgical phenomena during simulations of plasma disruptions

    International Nuclear Information System (INIS)

    Brossa, F.; Cambini, M.; Quataert, D.; Rigon, G.; Schiller, P.

    1988-01-01

    The metallographic analysis executed on austenitic stainless steel specimens subjected to simulated plasma disruptions allows us to present a complete picture of the most important phenomena. (i) The experiments show that for the calculation of melt layer and evaporation it is necessary to take considerable convection in the melt layer into account. (ii) The rapid solidification of the melt layer leads to a change in the crystalline structure and to the formation of cracks. (iii) Alloying elements with a high vapour pressure evaporate preferentially. (iv) The stresses generated during cooling induce in some case phase changes. (v) During neutron irradiation helium is formed in all first wall materials by (n, α) processes. This helium forms bubbles under disruptions. (orig.)

  14. Nuclear Power Learning and Deployment Rates; Disruption and Global Benefits Forgone

    OpenAIRE

    Peter A. Lang

    2017-01-01

    This paper presents evidence of the disruption of a transition from fossil fuels to nuclear power, and finds the benefits forgone as a consequence are substantial. Learning rates are presented for nuclear power in seven countries, comprising 58% of all power reactors ever built globally. Learning rates and deployment rates changed in the late-1960s and 1970s from rapidly falling costs and accelerating deployment to rapidly rising costs and stalled deployment. Historical nuclear global capacit...

  15. From immunotoxicity to carcinogenicity: the effects of carbamate pesticides on the immune system.

    Science.gov (United States)

    Dhouib, Ines; Jallouli, Manel; Annabi, Alya; Marzouki, Soumaya; Gharbi, Najoua; Elfazaa, Saloua; Lasram, Mohamed Montassar

    2016-05-01

    The immune system can be the target of many chemicals, with potentially severe adverse effects on the host's health. In the literature, carbamate (CM) pesticides have been implicated in the increasing prevalence of diseases associated with alterations of the immune response, such as hypersensitivity reactions, some autoimmune diseases and cancers. CMs may initiate, facilitate, or exacerbate pathological immune processes, resulting in immunotoxicity by induction of mutations in genes coding for immunoregulatory factors and modifying immune tolerance. In the present study, direct immunotoxicity, endocrine disruption and inhibition of esterases activities have been introduced as the main mechanisms of CMs-induced immune dysregulation. Moreover, the evidence on the relationship between CM pesticide exposure, dysregulation of the immune system and predisposition to different types of cancers, allergies, autoimmune and infectious diseases is criticized. In addition, in this review, we will discuss the relationship between immunotoxicity and cancer, and the advances made toward understanding the basis of cancer immune evasion.

  16. Digital Disruption

    DEFF Research Database (Denmark)

    Rosenstand, Claus Andreas Foss

    det digitale domæne ud over det niveau, der kendetegner den nuværende debat, så præsenteres der ny viden om digital disruption. Som noget nyt udlægges Clayton Christens teori om disruptiv innovation med et særligt fokus på små organisationers mulighed for eksponentiel vækst. Specielt udfoldes...... forholdet mellem disruption og den stadig accelererende digitale udvikling i konturerne til ny teoridannelse om digital disruption. Bogens undertitel ”faretruende og fascinerende forandringer” peger på, at der er behov for en nuanceret debat om digital disruption i modsætning til den tone, der er slået an i...... videre kalder et ”disruption-råd”. Faktisk er rådet skrevet ind i 2016 regeringsgrundlaget for VLK-regeringen. Disruption af organisationer er ikke et nyt fænomen; men hastigheden, hvormed det sker, er stadig accelererende. Årsagen er den globale mega-trend: Digitalisering. Og derfor er specielt digital...

  17. Molasses as a possible cause of an ''endocrine disruptive syndrome'' in calves

    Directory of Open Access Journals (Sweden)

    M.S. Masgoret

    2009-09-01

    Full Text Available During the mid 1990s a potentially serious, chronic syndrome was reported in well-managed beef and dairy herds from unrelated parts of South Africa. Farmers reported that it manifested as various combinations of decreased production, decreased weaning masses, apparent immune breakdown in previously immunocompetent animals, increased reproductive disorders, various mineral imbalances in non-deficient areas and goitre, noticeable as enlarged thyroid glands. The farmers associated this syndrome with certain batches of sugar cane molasses and molasses-based products. The syndrome was reminiscent of an ''endocrine disruptive syndrome''. The objective of this study was to evaluate the suspected endocrine disruptive effect of molasses included in cattle feed. Using existing in vitro assays, four batches of molasses syrup were screened for possible inclusion in a calf feeding trial. Two batches were selected for the trial. Thirty-two, 4- to 6-week-old, weaned Holstein bull calves were included in the single phase, three treatment, parallel design experiment. In two of the groups of calves, two different batches of molasses were included in their rations respectively. The control group was fed a ration to which no molasses was added, but which was balanced for energy and mineral content. The mass gain of the calves was recorded over the 6-month study period. The calves were clinically examined every week and clinical pathology parameters, immune responses and endocrine effects were regularly evaluated. Even though endocrine disrupting effects were detected with the in vitro screening assays, these could not be reproduced in the calves in the experiment. The two batches of molasses utilized in the calf feeding trial did not induce major differences in any of the parameters measured, with the exception of a lower mass gain in one of the molasses-fed groups (Group 1, which tended towards significance. The results of the study indicate that the two batches

  18. The role of intestinal microbiota and the immune system.

    Science.gov (United States)

    Purchiaroni, F; Tortora, A; Gabrielli, M; Bertucci, F; Gigante, G; Ianiro, G; Ojetti, V; Scarpellini, E; Gasbarrini, A

    2013-02-01

    The human gut is an ecosystem consisting of a great number of commensal bacteria living in symbiosis with the host. Several data confirm that gut microbiota is engaged in a dynamic interaction with the intestinal innate and adaptive immune system, affecting different aspects of its development and function. To review the immunological functions of gut microbiota and improve knowledge of its therapeutic implications for several intestinal and extra-intestinal diseases associated to dysregulation of the immune system. Significant articles were identified by literature search and selected based on content, including atopic diseases, inflammatory bowel diseases and treatment of these conditions with probiotics. Accumulating evidence indicates that intestinal microflora has protective, metabolic, trophic and immunological functions and is able to establish a "cross-talk" with the immune component of mucosal immunity, comprising cellular and soluble elements. When one or more steps in this fine interaction fail, autoimmune or auto-inflammatory diseases may occur. Furthermore, it results from the data that probiotics, used for the treatment of the diseases caused by the dysregulation of the immune system, can have a beneficial effect by different mechanisms. Gut microbiota interacts with both innate and adaptive immune system, playing a pivotal role in maintenance and disruption of gut immune quiescence. A cross talk between the mucosal immune system and endogenous microflora favours a mutual growth, survival and inflammatory control of the intestinal ecosystem. Based on these evidences, probiotics can be used as an ecological therapy in the treatment of immune diseases.  

  19. Disruption?

    DEFF Research Database (Denmark)

    2016-01-01

    This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray......This is a short video on the theme disruption and entrepreneurship. It takes the form of an interview with John Murray...

  20. Immunity to fish rhabdoviruses

    Science.gov (United States)

    Purcell, Maureen K.; Laing, Kerry J.; Winton, James R.

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non-virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  1. Immunity to fish rhabdoviruses.

    Science.gov (United States)

    Purcell, Maureen K; Laing, Kerry J; Winton, James R

    2012-01-01

    Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN) system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M) protein to mediate host-cell shutoff and the non‑virion (NV) protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  2. Immunity to Fish Rhabdoviruses

    Directory of Open Access Journals (Sweden)

    Maureen K. Purcell

    2012-01-01

    Full Text Available Members of the family Rhabdoviridae are single-stranded RNA viruses and globally important pathogens of wild and cultured fish and thus relatively well studied in their respective hosts or other model systems. Here, we review the protective immune mechanisms that fish mount in response to rhabdovirus infections. Teleost fish possess the principal components of innate and adaptive immunity found in other vertebrates. Neutralizing antibodies are critical for long-term protection from fish rhabdoviruses, but several studies also indicate a role for cell-mediated immunity. Survival of acute rhabdoviral infection is also dependent on innate immunity, particularly the interferon (IFN system that is rapidly induced in response to infection. Paradoxically, rhabdoviruses are sensitive to the effects of IFN but virulent rhabdoviruses can continue to replicate owing to the abilities of the matrix (M protein to mediate host-cell shutoff and the non‑virion (NV protein to subvert programmed cell death and suppress functional IFN. While many basic features of the fish immune response to rhabdovirus infections are becoming better understood, much less is known about how factors in the environment affect the ecology of rhabdovirus infections in natural populations of aquatic animals.

  3. Effects of sleep disruption and high fat intake on glucose metabolism in mice.

    Science.gov (United States)

    Ho, Jacqueline M; Barf, R Paulien; Opp, Mark R

    2016-06-01

    Poor sleep quality or quantity impairs glycemic control and increases risk of disease under chronic conditions. Recovery sleep may offset adverse metabolic outcomes of accumulated sleep debt, but the extent to which this occurs is unclear. We examined whether recovery sleep improves glucose metabolism in mice subjected to prolonged sleep disruption, and whether high fat intake during sleep disruption exacerbates glycemic control. Adult male C57BL/6J mice were subjected to 18-h sleep fragmentation daily for 9 days, followed by 1 day of recovery. During sleep disruption, one group of mice was fed a high-fat diet (HFD) while another group was fed standard laboratory chow. Insulin sensitivity and glucose tolerance were assessed by insulin and glucose tolerance testing at baseline, after 3 and 7 days of sleep disruption, and at the end of the protocol after 24h of undisturbed sleep opportunity (recovery). To characterize changes in sleep architecture that are associated with sleep debt and recovery, we quantified electroencephalogram (EEG) recordings during sleep fragmentation and recovery periods from an additional group of mice. We now report that 9 days of 18-h daily sleep fragmentation significantly reduces rapid eye movement sleep (REMS) and non-rapid eye movement sleep (NREMS). Mice respond with increases in REMS, but not NREMS, during the daily 6-h undisturbed sleep opportunity. However, both REMS and NREMS increase significantly during the 24-h recovery period. Although sleep disruption alone has no effect in this protocol, high fat feeding in combination with sleep disruption impairs glucose tolerance, effects that are reversed by recovery sleep. Insulin sensitivity modestly improves after 3 days of sleep fragmentation and after 24h of recovery, with significantly greater improvements in mice exposed to HFD during sleep disruption. Improvements in both glucose tolerance and insulin sensitivity are associated with NREMS rebound, raising the possibility that this

  4. Immune System Dysregulation and Latent Herpesvirus Reactivation During Winterover at Concordia Station, Dome C, Antarctica

    Science.gov (United States)

    Crucian, B. E.; Feuerecker, M.; Salam, A. P.; Rybka, A.; Stowe, R. P.; Morrels, M.; Meta, S. K.; Quiriarte, H.; Quintens, Roel; Thieme, U.; hide

    2011-01-01

    Immune system dysregulation occurs during spaceflight and consists of altered peripheral leukocyte distribution, reductions in immunocyte function and altered cytokine production profiles. Causes may include stress, confinement, isolation, and disrupted circadian rhythms. All of these factors may be replicated to some degree in terrestrial environments. NASA is currently evaluating the potential for a ground-based analog for immune dysregulation, which would have utility for mechanistic investigations and countermeasures evaluation. For ground-based space physiology research, the choice of terrestrial analog must carefully match the system of interest. Antarctica winter-over, consisting of prolonged durations in an extreme/dangerous environment, station-based habitation, isolation and disrupted circadian rhythms, is potentially a good ground-analog for spaceflight-associated immune dysregulation. Of all Antarctica bases, the French-Italian Concordia Station, may be the most appropriate to replicate spaceflight/exploration conditions. Concordia is an interior base located in harsh environmental conditions, and has been constructed to house small, international crews in a station-environment similar to what should be experienced by deep space astronauts. The ESA-NASA CHOICE study assessed innate and adaptive immunity, viral reactivation and stress factors during Concordia winterover deployment. The study was conducted over two winterover missions in 2009 and 2010. Final study data from NASA participation in these missions will be presented.

  5. Indian Hedgehog Suppresses a Stromal Cell–Driven Intestinal Immune Response

    Directory of Open Access Journals (Sweden)

    B. Florien Westendorp

    2018-01-01

    Conclusions: We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast-derived CXCL12, and migration of immune cells into the lamina propria.

  6. Cationic peptide exposure enhances pulsed-electric-field-mediated membrane disruption.

    Science.gov (United States)

    Kennedy, Stephen M; Aiken, Erik J; Beres, Kaytlyn A; Hahn, Adam R; Kamin, Samantha J; Hagness, Susan C; Booske, John H; Murphy, William L

    2014-01-01

    The use of pulsed electric fields (PEFs) to irreversibly electroporate cells is a promising approach for destroying undesirable cells. This approach may gain enhanced applicability if the intensity of the PEF required to electrically disrupt cell membranes can be reduced via exposure to a molecular deliverable. This will be particularly impactful if that reduced PEF minimally influences cells that are not exposed to the deliverable. We hypothesized that the introduction of charged molecules to the cell surfaces would create regions of enhanced transmembrane electric potential in the vicinity of each charged molecule, thereby lowering the PEF intensity required to disrupt the plasma membranes. This study will therefore examine if exposure to cationic peptides can enhance a PEF's ability to disrupt plasma membranes. We exposed leukemia cells to 40 μs PEFs in media containing varying concentrations of a cationic peptide, polyarginine. We observed the internalization of a membrane integrity indicator, propidium iodide (PI), in real time. Based on an individual cell's PI fluorescence versus time signature, we were able to determine the relative degree of membrane disruption. When using 1-2 kV/cm, exposure to >50 μg/ml of polyarginine resulted in immediate and high levels of PI uptake, indicating severe membrane disruption, whereas in the absence of peptide, cells predominantly exhibited signatures indicative of no membrane disruption. Additionally, PI entered cells through the anode-facing membrane when exposed to cationic peptide, which was theoretically expected. Exposure to cationic peptides reduced the PEF intensity required to induce rapid and irreversible membrane disruption. Critically, peptide exposure reduced the PEF intensities required to elicit irreversible membrane disruption at normally sub-electroporation intensities. We believe that these cationic peptides, when coupled with current advancements in cell targeting techniques will be useful tools in

  7. Time course of ongoing activity during neuritis and following axonal transport disruption.

    Science.gov (United States)

    Satkeviciute, Ieva; Goodwin, George; Bove, Geoffrey M; Dilley, Andrew

    2018-05-01

    Local nerve inflammation (neuritis) leads to ongoing activity and axonal mechanical sensitivity (AMS) along intact nociceptor axons and disrupts axonal transport. This phenomenon forms the most feasible cause of radiating pain, such as sciatica. We have previously shown that axonal transport disruption without inflammation or degeneration also leads to AMS but does not cause ongoing activity at the time point when AMS occurs, despite causing cutaneous hypersensitivity. However, there have been no systematic studies of ongoing activity during neuritis or noninflammatory axonal transport disruption. In this study, we present the time course of ongoing activity from primary sensory neurons following neuritis and vinblastine-induced axonal transport disruption. Whereas 24% of C/slow Aδ-fiber neurons had ongoing activity during neuritis, few (disruption of axonal transport without inflammation does not lead to ongoing activity in sensory neurons, including nociceptors, but does cause a rapid and transient development of AMS. Because it is proposed that AMS underlies mechanically induced radiating pain, and a transient disruption of axonal transport (as previously reported) leads to transient AMS, it follows that processes that disrupt axonal transport, such as neuritis, must persist to maintain AMS and the associated symptoms. NEW & NOTEWORTHY Many patients with radiating pain lack signs of nerve injury on clinical examination but may have neuritis, which disrupts axonal transport. We have shown that axonal transport disruption does not induce ongoing activity in primary sensory neurons but does cause transient axonal mechanical sensitivity. The present data complete a profile of key axonal sensitivities following axonal transport disruption. Collectively, this profile supports that an active peripheral process is necessary for maintained axonal sensitivities.

  8. Candesartan ameliorates impaired fear extinction induced by innate immune activation.

    Science.gov (United States)

    Quiñones, María M; Maldonado, Lizette; Velazquez, Bethzaly; Porter, James T

    2016-02-01

    Patients with post-traumatic stress disorder (PTSD) tend to show signs of a relatively increased inflammatory state suggesting that activation of the immune system may contribute to the development of PTSD. In the present study, we tested whether activation of the innate immune system can disrupt acquisition or recall of auditory fear extinction using an animal model of PTSD. Male adolescent rats received auditory fear conditioning in context A. The next day, an intraperitoneal injection of lipopolysaccharide (LPS; 100 μg/kg) prior to auditory fear extinction in context B impaired acquisition and recall of extinction. LPS (100 μg/kg) given after extinction training did not impair extinction recall suggesting that LPS did not affect consolidation of extinction. In contrast to cued fear extinction, contextual fear extinction was not affected by prior injection of LPS (100 μg/kg). Although LPS also reduced locomotion, we could dissociate the effects of LPS on extinction and locomotion by using a lower dose of LPS (50 μg/kg) which impaired locomotion without affecting extinction. In addition, 15 h after an injection of 250 μg/kg LPS in adult rats, extinction learning and recall were impaired without affecting locomotion. A sub-chronic treatment with candesartan, an angiotensin II type 1 receptor blocker, prevented the LPS-induced impairment of extinction in adult rats. Our results demonstrate that activation of the innate immune system can disrupt auditory fear extinction in adolescent and adult animals. These findings also provide direction for clinical studies of novel treatments that modulate the innate immune system for stress-related disorders like PTSD. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Study of density fluctuations during MHD activity, soft landing discharges and major disruptions in TEXTOR using CO2 laser collective scattering

    International Nuclear Information System (INIS)

    Boileau, A.; Van Andel, H.W.H.; Hellermann, M. von; Rogister, A.

    1987-01-01

    A modulation of microturbulence is observed in TEXTOR during low mode number MHD activity using CO 2 laser collective scattering. This is accomplished by a strong enhancement of density fluctuations near ka s approx. = 3 at the end of soft landing discharges and a displacement of the frequency spectrum towards lower frequencies. The increase is most significant for rapid rampdown of the plasma current accompanied by strong MHD activity but also occurs when the latter is not detected. The evolution of microturbulence is also studied during major plasma disruptions. It was found that disruptions without MHD precursor oscillations are characterized by a rapid increase in the density fluctuations starting approx. 100 ms before plasma disruption. (author)

  10. Interplay between intrinsic plasma rotation and magnetic island evolution in disruptive discharges

    Energy Technology Data Exchange (ETDEWEB)

    Ronchi, G.; Severo, J. H. F. [Universidade de São Paulo, Instituto de Física (Brazil); Salzedas, F. [Universidade do Porto, Faculdade de Engenharia (Portugal); Galvão, R. M. O., E-mail: rgalvao@if.usp.br; Sanada, E. K. [Universidade de São Paulo, Instituto de Física (Brazil)

    2016-05-15

    The behavior of the intrinsic toroidal rotation of the plasma column during the growth and eventual saturation of m/n = 2/1 magnetic islands, triggered by programmed density rise, has been carefully investigated in disruptive discharges in TCABR. The results show that, as the island starts to grow and rotate at a speed larger than that of the plasma column, the angular frequency of the intrinsic toroidal rotation increases and that of the island decreases, following the expectation of synchronization. As the island saturates at a large size, just before a major disruption, the angular speed of the intrinsic rotation decreases quite rapidly, even though the island keeps still rotating at a reduced speed. This decrease of the toroidal rotation is quite reproducible and can be considered as an indicative of disruption.

  11. Axisymmetric disruption dynamics including current profile changes in the ASDEX-Upgrade tokamak

    International Nuclear Information System (INIS)

    Nakamura, Y.; Pautasso, G.; Gruber, O.; Jardin, S.C.

    2002-01-01

    Axisymmetric MHD simulations have revealed a new driving mechanism that governs the vertical displacement event (VDE) dynamics in tokamak disruptions. A rapid flattening of the plasma current profile during the disruption plays a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges. This dragging effect, due to an abrupt change in the current profile, is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the plasma current quench, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)

  12. Characterization of axisymmetric disruption dynamics toward VDE avoidance in tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.; Yoshino, R.; Granetz, R.S.; Pautasso, G.; Gruber, O.; Jardin, S.C.

    2003-01-01

    Experiments and axisymmetric MHD simulations on tokamak disruptions have explicated the underlying mechanisms of Vertical Displacement Events (VDEs) and a diversity of disruption dynamics. First, the neutral point, which is known as an advantageous vertical plasma position to avoiding VDEs during the plasma current quench, is shown to be fairly insensitive to plasma shape and current profile parameters. Secondly, a rapid flattening of the plasma current profile frequently seen at thermal quench is newly clarified to play a substantial role in dragging a single null-diverted plasma vertically towards the divertor. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom diverted discharges. This dragging effect is absent in up-down symmetric limiter discharges. These simulation results are consistent with experiments. Together with the attractive force that arises from passive shell currents and essentially vanishes at the neutral point, the dragging effect explains many details of the VDE dynamics over the whole period of the disruptive termination. (author)

  13. A new approach for disruption management in airline operations control

    CERN Document Server

    Castro, António J M; Oliveira, Eugénio

    2014-01-01

    Most of the research efforts dealing with airline scheduling have been done on off-line plan optimization.  However, nowadays, with the increasingly complex and huge traffic at airports, the real challenge is how to react to unexpected events that may cause plan-disruptions, leading to flight delays. Moreover these disruptive events usually affect at least three different dimensions of the situation: the aircraft assigned to the flight, the crew assignment and, often forgotten, the passengers’ journey and satisfaction. This book includes answers to this challenge and proposes the use of the Multi-agent System paradigm to rapidly compose a multi-faceted solution to the disruptive event taking into consideration possible preferences of those three key aspects of the problem. Negotiation protocols taking place between agents that are experts in solving the different problem dimensions, combination of different utility functions and, not less important, the inclusion of the human in the automatic decision-maki...

  14. Dim light at night increases immune function in Nile grass rats, a diurnal rodent.

    Science.gov (United States)

    Fonken, Laura K; Haim, Achikam; Nelson, Randy J

    2012-02-01

    With the widespread adoption of electrical lighting during the 20th century, human and nonhuman animals became exposed to high levels of light at night for the first time in evolutionary history. This divergence from the natural environment may have significant implications for certain ecological niches because of the important influence light exerts on the circadian system. For example, circadian disruption and nighttime light exposure are linked to changes in immune function. The majority of studies investigating the effects of light exposure and circadian disruption on the immune system use nocturnal rodents. In diurnal species, many hormones and immune parameters vary with secretion patterns 180° out of phase to those of nocturnal rodents. Thus, the authors investigated the effects of nighttime light exposure on immunocompetence in diurnal Nile grass rats (Arvicanthis niloticus). Rats were housed in either standard 14-h light (L):10-h dark (D) cycles with L ∼150 lux and D 0 lux or dim light at night (dLAN) cycles of LD 14:10 with L ∼150 lux and D 5 lux for 3 wks, then tested for plasma bactericidal capacity, as well as humoral and cell-mediated immune responses. Rats exposed to dLAN showed increased delayed-type hypersensitivity pinna swelling, which is consistent with enhanced cell-mediated immune function. dLAN rats similarly showed increased antibody production following inoculation with keyhole lymphocyte hemocyanin (KLH) and increased bactericidal capacity. Daytime corticosterone concentrations were elevated in grass rats exposed to nighttime dim light, which may have influenced immunological measures. Overall, these results indicate nighttime light affects immune parameters in a diurnal rodent.

  15. New Players in Immunity to Tuberculosis: The Host Microbiome, Lung Epithelium, and Innate Immune Cells

    Science.gov (United States)

    Gupta, Nancy; Kumar, Rakesh; Agrawal, Babita

    2018-01-01

    Tuberculosis (TB) is a highly contagious infection and devastating chronic disease, causing 10.4 million new infections and 1.8 million deaths every year globally. Efforts to control and eradicate TB are hampered by the rapid emergence of drug resistance and limited efficacy of the only available vaccine, BCG. Immunological events in the airways and lungs are of major importance in determining whether exposure to Mycobacterium tuberculosis (Mtb) results in successful infection or protective immunity. Several studies have demonstrated that the host microbiota is in constant contact with the immune system, and thus continually directs the nature of immune responses occurring during new infections. However, little is known about its role in the eventual outcome of the mycobacterial infection. In this review, we highlight the changes in microbial composition in the respiratory tract and gut that have been linked to the alteration of immune responses, and to the risk, prevention, and treatment of TB. In addition, we summarize our current understanding of alveolar epithelial cells and the innate immune system, and their interaction with Mtb during early infection. Extensive studies are warranted to fully understand the all-inclusive role of the lung microbiota, its interaction with epithelium and innate immune responses and resulting adaptive immune responses, and in the pathogenesis and/or protection from Mtb infection. Novel interventions aimed at influencing the microbiota, the alveolar immune system and innate immunity will shape future strategies of prevention and treatment for TB. PMID:29692778

  16. Development of CD4 T cell dependent immunity against N. brasiliensis infection

    Directory of Open Access Journals (Sweden)

    Marina eHarvie

    2013-03-01

    Full Text Available Of all the microbial infections relevant to mammals the relationship between parasitic worms and what constitutes and regulates a host protective immune response is perhaps the most complex and evolved. Nippostrongylus brasiliensis is a tissue migrating parasitic roundworm of rodents that exemplifies many of the salient features of parasitic worm infection, including parasite development through sequential larval stages as it migrates through specific tissue sites. Immune competent hosts respond to infection by N. brasiliensis with a rapid and selective development of a profound Th2 immune response that appears able to confer life long protective immunity against reinfection. This review details how the lung can be the site of migrating nematode immune killing and the gut a site of rapid immune mediated clearance of worms. Furthermore it appears that N. brasiliensis induced responses in the lung are sufficient for conferring immunity in lung and gut while infection of the gut only confers immunity in the gut. This review also covers the role of IL-4, STAT6 and the innate cytokines IL-25, IL-33 and TSLP in the generation of CD4-mediated immunity against N. brasiliensis reinfection and discusses what cytokines might be involved in mediated killing or expulsion of helminth parasites.

  17. Modulation of Immune Functions by Foods

    Directory of Open Access Journals (Sweden)

    Shuichi Kaminogawa

    2004-01-01

    Full Text Available Evidence is rapidly accumulating as to the beneficial effects of foods. However, it is not always clear whether the information is based on data evaluated impartially in a scientific fashion. Human research into whether foods modulate immune functions in either intervention studies or randomized controlled trials can be classified into three categories according to the physical state of subjects enrolled for investigation: (i studies examining the effect of foods in healthy individuals; (ii studies analyzing the effect of foods on patients with hypersensitivity; and (iii studies checking the effect of foods on immunocompromized subjects, including patients who had undergone surgical resection of cancer and newborns. The systematization of reported studies has made it reasonable to conclude that foods are able to modulate immune functions manifesting as either innate immunity (phagocytic activity, NK cell activity or acquired immunity (T cell response, antibody production. Moreover, improvement of immune functions by foods can normalize the physical state of allergic patients or cancer patients, and may reduce the risk of diseases in healthy individuals. Therefore, it is valuable to assess the immune-modulating abilities of foods by measuring at least one parameter of either innate or acquired immunity.

  18. Innate and Adaptive Immunity to Mucorales.

    Science.gov (United States)

    Ghuman, Harlene; Voelz, Kerstin

    2017-09-05

    Mucormycosis is an invasive fungal infection characterised by rapid filamentous growth, which leads to angioinvasion, thrombosis, and tissue necrosis. The high mortality rates (50-100%) associated with mucormycosis are reflective of not only the aggressive nature of the infection and the poor therapeutics currently employed, but also the failure of the human immune system to successfully clear the infection. Immune effector interaction with Mucorales is influenced by the developmental stage of the mucormycete spore. In a healthy immune environment, resting spores are resistant to phagocytic killing. Contrarily, swollen spores and hyphae are susceptible to damage and degradation by macrophages and neutrophils. Under the effects of immune suppression, the recruitment and efficacy of macrophage and neutrophil activity against mucormycetes is considerably reduced. Following penetration of the endothelial lining, Mucorales encounter platelets. Platelets adhere to both mucormycete spores and hyphae, and exhibit germination suppression and hyphal damage capacity in vitro. Dendritic cells are activated in response to Mucorales hyphae only, and induce adaptive immunity. It is crucial to further knowledge regarding our immune system's failure to eradicate resting spores under intact immunity and inhibit fungal growth under immunocompromised conditions, in order to understand mucormycosis pathogenicity and enhance therapeutic strategies for mucormycosis.

  19. Treatment of Osteomyelitis: A Case for Disruption of the Affected Adjacent Periosteum.

    Science.gov (United States)

    Hudson, John W; Daly, Austin P; Foster, Michael

    2017-10-01

    To evaluate the response of mandibular osteomyelitis treated by surgical decortication with disruption of the affected adjacent periosteum in concert with long-term targeted antibiotic therapy. The hypothesis is that, by removing the buccal cortical plate and disrupting the hypertrophically inflamed adjacent periosteum, the medullary bone will be brought in contact with bleeding tissue and circulating immunologic factors and antibiotics, which will promote definitive resolution. A retrospective review was conducted of 7 patient charts with associated radiographs from November 2010 to August 2016 treated by the first author at the University of Tennessee Medical Center (Knoxville, TN). Patients with chronic suppurative or nonsuppurative osteomyelitis of the mandible without condylar involvement or pathologic fracture were selected and treated with decortication with periosteal disruption in combination with long-term targeted antibiotic therapy. Seven patients (3 women and 4 men; mean age, 60 yr) underwent decortication with periosteal disruption of the affected area and received at least 6 weeks of targeted intravenous antibiotics. Computed tomography was performed preoperatively and a repeat study was performed after completion of antibiotics. In each case, post-treatment imaging showed definitive resolution after treatment with decortication in concert with disruption of the inflamed hypertrophic periosteum and intravenous antibiotics. Debridement of the infected cortical bone with restoration of the blood supply through disruption of the adjacent periosteum provided definitive resolution of mandibular osteomyelitis in the 7 patients treated. The hypothesis is that disruption of the affected adjacent periosteum reintroduces an immune-mediated response in concert with improved antibiotic delivery to and penetrance of the diseased mandible, aiding in definitive resolution. Decortication with periosteal disruption allows for preservation of the inferior alveolar

  20. Observation of disruptions in tokamak plasma under the influence of resonant helical magnetic fields

    International Nuclear Information System (INIS)

    Araujo, M.; Vannucci, A.; Caldas, I.

    1996-01-01

    Disruptive instabilities were investigated in the small tokamak TBR-1 during the application of resonant helical magnetic fields created by external helical windings. Indications were found that the main triggering mechanism of the disruptions was the rapid increase of the m=2/n=1 mode which, apparently after reaching a certain amplitude, interacts with other resistive modes: the internal 1/1 mode in the case of minor disruptions. After the coupling, the growth of the associated islands would create a chaotic field line distribution in the region between the corresponding rational magnetic surfaces which caused the gross particle transport and, finally, destroyed the confinement. In addition, investigations on higher Z eff discharges in which a mixture of helium and hydrogen was used resulted in much more unstable plasmas but apparently did not alter basic characteristics of the disruptions

  1. Immune globulins are effective in severe pediatric Guillain-Barré syndrome.

    Science.gov (United States)

    Shahar, E; Shorer, Z; Roifman, C M; Levi, Y; Brand, N; Ravid, S; Murphy, E G

    1997-01-01

    The effect of high-dose intravenous immune globulins was evaluated in an open prospective multicenter study of 26 children with severe Guillain-Barré syndrome. They presented with mild to moderate flaccid weakness of extremities, with cranial nerve involvement (20) and sensory impairment (22). All children rapidly deteriorated in 2-16 days (mean 6) to become bedridden, and 2 children also developed respiratory failure requiring artificial ventilation (Disability Grading Scale 4-5). Immune globulins were then administered at a total dose of 2 gm/kg, on 2 consecutive days, without adverse effects requiring discontinuation of therapy. Marked and rapid improvement was noted in 25 children, who improved by 1 to 2 Disability Grade Scales ventilator. Eighteen children recovered by 2 weeks. The rest recuperated in a period of four months, including a child who was artificially ventilated for 4 weeks. The uniform rapid improvement and recovery associated with immune globulins contrasts with the slow recovery course in severe natural cases. We conclude that immune globulins are effective and safe in severe childhood-onset Guillain-Barré syndrome and therefore may serve as the initial treatment of choice.

  2. Ion heating at the disruptive instability in the LT-3 Tokamak

    International Nuclear Information System (INIS)

    Bell, M.G.; Hutchinson, I.H.

    1976-01-01

    Measurements of the ion temperature and the toroidal current density and electric field during the disruptive instability in LT-3 are presented. Rapid ion heating and strong current inhibition have been observed. Fluctuation measurements suggest that these effects may be attributable to the excitation of ion cyclotron drift waves in the plasma

  3. Rice Snl6, a cinnamoyl-CoA reductase-like gene family member, is required for NH1-mediated immunity to Xanthomonas oryzae pv. oryzae.

    Directory of Open Access Journals (Sweden)

    Rebecca S Bart

    2010-09-01

    Full Text Available Rice NH1 (NPR1 homolog 1 is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo, constitutive expression of defense related genes and enhanced benzothiadiazole (BTH- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.

  4. Modeling of thermal effects on TIBER II divertor during plasma disruptions

    International Nuclear Information System (INIS)

    Bruhn, M.L.; Perkins, L.J.

    1987-01-01

    Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs

  5. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Directory of Open Access Journals (Sweden)

    Genevieve E Martin

    Full Text Available Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women.This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+ T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays.HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001, soluble CD163 (sCD163, p = 0.001, sCD14 (p = 0.022, neopterin (p = 0.029 and an increased proportion of CD16(+ monocytes (p = 0.009 compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+ monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002 suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+ T lymphocytes.Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  6. Age-associated changes in monocyte and innate immune activation markers occur more rapidly in HIV infected women.

    Science.gov (United States)

    Martin, Genevieve E; Gouillou, Maelenn; Hearps, Anna C; Angelovich, Thomas A; Cheng, Allen C; Lynch, Fiona; Cheng, Wan-Jung; Paukovics, Geza; Palmer, Clovis S; Novak, Richard M; Jaworowski, Anthony; Landay, Alan L; Crowe, Suzanne M

    2013-01-01

    Aging is associated with immune dysfunction and the related development of conditions with an inflammatory pathogenesis. Some of these immune changes are also observed in HIV infection, but the interaction between immune changes with aging and HIV infection are unknown. Whilst sex differences in innate immunity are recognized, little research into innate immune aging has been performed on women. This cross-sectional study of HIV positive and negative women used whole blood flow cytometric analysis to characterize monocyte and CD8(+) T cell subsets. Plasma markers of innate immune activation were measured using standard ELISA-based assays. HIV positive women exhibited elevated plasma levels of the innate immune activation markers CXCL10 (p<0.001), soluble CD163 (sCD163, p = 0.001), sCD14 (p = 0.022), neopterin (p = 0.029) and an increased proportion of CD16(+) monocytes (p = 0.009) compared to uninfected controls. Levels of the innate immune aging biomarkers sCD163 and the proportion of CD16(+) monocytes were equivalent to those observed in HIV negative women aged 14.5 and 10.6 years older, respectively. CXCL10 increased with age at an accelerated rate in HIV positive women (p = 0.002) suggesting a synergistic effect between HIV and aging on innate immune activation. Multivariable modeling indicated that age-related increases in innate immune biomarkers CXCL10 and sCD163 are independent of senescent changes in CD8(+) T lymphocytes. Quantifying the impact of HIV on immune aging reveals that HIV infection in women confers the equivalent of a 10-14 year increase in the levels of innate immune aging markers. These changes may contribute to the increased risk of inflammatory age-related diseases in HIV positive women.

  7. Influencing mucosal homeostasis and immune responsiveness: the impact of nutrition and pharmaceuticals.

    Science.gov (United States)

    van't Land, Belinda; Schijf, Marcel A; Martin, Rocio; Garssen, Johan; van Bleek, Grada M

    2011-09-01

    Both nutrition and orally ingested drugs pass the gastrointestinal mucosa and may affect the balance between the mucosal immune system and microbial community herein, i.e. affecting composition of the microbial community as well as the status of local immune system that controls microbial composition and maintains mucosal integrity. Numerous ways are known by which the microbial community stimulates mammalian host's immune system and vice versa. The communication between microbiota and immune system is principally mediated by interaction of bacterial components with pattern recognition receptors expressed by intestinal epithelium and various local antigen-presenting cells, resulting in activation or modulation of both innate and adaptive immune responses. Current review describes some of the factors influencing development and maintenance of a proper mucosal/immune balance, with special attention to Toll like receptor signaling and regulatory T cell development. It further describes examples (antibiotic use, HIV and asthma will be discussed) showing that disruption of the balance can be linked to immune function failure. The therapeutic potential of nutritional pharmacology herein is the main focus of discussion. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Dim light at night interferes with the development of the short-day phenotype and impairs cell-mediated immunity in Siberian hamsters (Phodopus sungorus).

    Science.gov (United States)

    Aubrecht, Taryn G; Weil, Zachary M; Nelson, Randy J

    2014-10-01

    Winter is a challenging time to survive and breed outside of the tropics. Animals use day length (photoperiod) to regulate seasonally appropriate adaptations in anticipation of challenging winter conditions. The net result of these photoperiod-mediated adjustments is enhanced immune function and increased survival. Thus, the ability to discriminate day length information is critical for survival and reproduction in small animals. However, during the past century, urban and suburban development has rapidly expanded and filled the night sky with light from various sources, obscuring crucial light-dark signals, which alters physiological interpretation of day lengths. Furthermore, reduced space, increased proximity to people, and the presence of light at night may act as stressors for small animals. Whereas acute stressors typically enhance immune responses, chronic exposure to stressors often impairs immune responses. Therefore, we hypothesized that the combination of dim light at night and chronic stress interferes with enhanced cell-mediated immunity observed during short days. Siberian hamsters (Phodopus sungorus) were assigned to short or long days with dark nights (0 lux) or dim (5 lux) light at night for 10 weeks. Following 2 weeks of chronic restraint (6 hr/day), a model of chronic stress, delayed type hypersensitivity (DTH) responses were assessed. Both dim light at night and restraint reduced the DTH response. Dim light at night during long nights produced an intermediate short day phenotype. These results suggest the constant presence of light at night could negatively affect survival of photoperiodic rodents by disrupting the timing of breeding and immune responses. © 2014 Wiley Periodicals, Inc.

  9. Rapid emergence of free-riding behavior in new pediatric immunization programs.

    Directory of Open Access Journals (Sweden)

    Chris T Bauch

    Full Text Available BACKGROUND: Mathematical models have formalized how free-rider effects can threaten the stability of high vaccine coverage levels under established voluntary vaccination programs. However, little research has addressed the question of when free-riding begins to develop when a new vaccine is first introduced in a population. METHODOLOGY/PRINCIPAL FINDINGS: Here, we combine a game theoretical model of vaccinating behavior with an age-structured compartmental model to analyze rational vaccinating behavior in the first years of a universal immunization program, where a new vaccine is free to all children of a specified age. The model captures how successive birth cohorts face different epidemiological landscapes that have been shaped by the vaccinating decisions of previous birth cohorts, resulting in a strategic interaction between individuals in different birth cohorts. The model predicts a Nash equilibrium coverage level of for the first few birth cohorts under the new program. However, free-riding behavior emerges very quickly, with the Nash equilibrium vaccine coverage dropping significantly within 2-5 years after program initiation. Subsequently, a rich set of coupled dynamics between infection prevalence and vaccinating behaviors is possible, ranging from relatively stable (but reduced coverage in later birth cohorts to wide fluctuations in vaccine coverage from one birth cohort to the next. Individual tolerance for vaccine risk also starts out at relatively high levels before dropping significantly within a few years. CONCLUSIONS/SIGNIFICANCE: These results suggest that even relatively new immunization programs can be vulnerable to drops in vaccine coverage caused by vaccine scares and exacerbated by herd immunity effects, necessitating vigilance from the start.

  10. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  11. Engineering synthetic vaccines using cues from natural immunity

    Science.gov (United States)

    Irvine, Darrell J.; Swartz, Melody A.; Szeto, Gregory L.

    2013-11-01

    Vaccines aim to protect against or treat diseases through manipulation of the immune response, promoting either immunity or tolerance. In the former case, vaccines generate antibodies and T cells poised to protect against future pathogen encounter or attack diseased cells such as tumours; in the latter case, which is far less developed, vaccines block pathogenic autoreactive T cells and autoantibodies that target self tissue. Enormous challenges remain, however, as a consequence of our incomplete understanding of human immunity. A rapidly growing field of research is the design of vaccines based on synthetic materials to target organs, tissues, cells or intracellular compartments; to co-deliver immunomodulatory signals that control the quality of the immune response; or to act directly as immune regulators. There exists great potential for well-defined materials to further our understanding of immunity. Here we describe recent advances in the design of synthetic materials to direct immune responses, highlighting successes and challenges in prophylactic, therapeutic and tolerance-inducing vaccines.

  12. Abnormal immune system development and function in schizophrenia helps reconcile diverse findings and suggests new treatment and prevention strategies.

    Science.gov (United States)

    Anders, Sherry; Kinney, Dennis K

    2015-08-18

    Extensive research implicates disturbed immune function and development in the etiology and pathology of schizophrenia. In addition to reviewing evidence for immunological factors in schizophrenia, this paper discusses how an emerging model of atypical immune function and development helps explain a wide variety of well-established - but puzzling - findings about schizophrenia. A number of theorists have presented hypotheses that early immune system programming, disrupted by pre- and perinatal adversity, often combines with abnormal brain development to produce schizophrenia. The present paper focuses on the hypothesis that disruption of early immune system development produces a latent immune vulnerability that manifests more fully after puberty, when changes in immune function and the thymus leave individuals more susceptible to infections and immune dysfunctions that contribute to schizophrenia. Complementing neurodevelopmental models, this hypothesis integrates findings on many contributing factors to schizophrenia, including prenatal adversity, genes, climate, migration, infections, and stress, among others. It helps explain, for example, why (a) schizophrenia onset is typically delayed until years after prenatal adversity, (b) individual risk factors alone often do not lead to schizophrenia, and (c) schizophrenia prevalence rates actually tend to be higher in economically advantaged countries. Here we discuss how the hypothesis explains 10 key findings, and suggests new, potentially highly cost-effective, strategies for treatment and prevention of schizophrenia. Moreover, while most human research linking immune factors to schizophrenia has been correlational, these strategies provide ethical ways to experimentally test in humans theories about immune function and schizophrenia. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Immune Reconstitution Inflammatory Syndrome (IRIS): What pathologists should know.

    Science.gov (United States)

    Nelson, Ann Marie; Manabe, Yukari C; Lucas, Sebastian B

    2017-07-01

    Antiretroviral therapy has significantly improved the quality and length of life for those patients able to access effective and sustained treatment. The resulting restoration of the immune response is associated with a change in the clinical presentation of opportunistic infections, and the histologic reaction to pathogens. A complex combination of alterations in host response across the stages of HIV infection has been documented over the past 3 decades. The defects are seen in both acute and chronic phases of inflammation and involve innate and adaptive immunity. In advanced stages of HIV infection, the marked disruption of lymphoid tissue and loss of follicular dendritic cells limits the host's ability to process antigen and mount specific responses to pathogens. There are qualitative and quantitative defects in CD4 T cells due to HIV infection. The resulting indirect effects include loss of cytokine production, dysregulation of B-cell function, loss of cellular mediated immunity and "holes" in the immunologic repertoire that may not be restored with the use of antiretroviral therapy. Immune reconstitution allows the host to respond to and control infection, but a significant number of patients will have atypical inflammatory syndromes during the recovery period. We briefly discuss the impact of HIV infection on the immune system and give an overview of the spectrum of conditions attributed to the Immune Reconstitution Inflammatory syndrome (IRIS). Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Radiative response on massive noble gas injection for Runaway suppression in disruptive plasmas

    International Nuclear Information System (INIS)

    Reiter, Bernhard

    2010-01-01

    The most direct way to avoid the formation of a relativistic electron beam under the influence of an electric field in a highly conducting plasma, is to increase the electron density to a value, where the retarding collisional force balances the accelerating one. In a disruptive tokamak plasma, rapid cooling induces a high electric field, which could easily violate the force balance and push electrons into the relativistic regime. Such relativistic electrons, the so-called runaways, accumulate many MeV's and can cause substantial damage when they hit the wall. This thesis is based on the principle of rapidly fueling the plasma for holding the force balance even under the influence of high electric fields typical for disruptions. The method of injecting high amounts of noble gas particles into the plasma from a close distance is put into practice in the ASDEX Upgrade fusion test facility. In the framework of this thesis, a multi-channel photometer system based on 144 AXUV detectors in a toroidal stereo measurement setup was built. It kept its promise to provide new insights into the transport mechanisms in a disruptive plasma under the influence of strong radiative interaction dynamics between injected matter and the hot plasma.

  15. The influence of a conducting wall on disruptions in HBT-EP

    International Nuclear Information System (INIS)

    Kombargi, R.

    1997-01-01

    The characteristics of long wavelength magnetohydrodynamic (MHD) disruptive instabilities have been studied in a tokamak device with segmented and movable conducting walls. Coupling between the wall and the plasma was varied by systematically adjusting the radial position, b, of the conducting plates relative to the plasma surface of minor radius a. By pre-selecting the total plasma current ramp rate (dI p /dt), disruptive instabilities driven either by large edge currents or high plasma pressure were studied. Specifically, three types of disruptions caused by both external (to the plasma) and internal instabilities were obtained by changing the plasma-wall separation (b/a) and the temporal evolution of the total plasma current. The properties of these disruptions were examined using a variety of magnetic pickup coils and arrays of soft x-ray detectors. Experiments demonstrated that rapidly developing, low-n kink instabilities were suppressed if the conducting wall was positioned sufficiently near the plasma (b/a p /dt > 0) was maintained. Conducting wall stabilization of fast growing external instabilities was observed in discharges with high edge current and in plasmas with β-values near the ideal MED stability boundary. When the conducting wall was near the plasma surface and as the current profile evolved in time (dI p /dt < 0), slowly growing internal instabilities would also lead to disruptions. Disruption mechanisms for plasmas with b/a=1.52 and b/a=1.07 were compared. Differences in the precursor modes, the speed of the thermal collapse and the chronological sequence of events were found. In summary, the disruptions with an external character were eliminated when the conducting wall was moved from b/a=1.52 to b/a<1.2. Internal disruptions could not be averted even with b/a=1.07

  16. Systematic literature review comparing rapid 3-dose administration of the GSK tick-borne encephalitis vaccine with other primary immunization schedules.

    Science.gov (United States)

    Galgani, Ilaria; Bunge, Eveline M; Hendriks, Lisa; Schludermann, Christopher; Marano, Cinzia; De Moerlooze, Laurence

    2017-09-01

    Tick-borne encephalitis (TBE), which is endemic across large regions of Europe and Asia, is most effectively prevented through vaccination. Three-dose primary TBE vaccination schedules are either rapid (0,7,21-days) or conventional (0,28-84-days, 9-12-months). The second dose can also be administered at 14 days for faster priming and sero-protection). Areas covered: We used a three-step selection process to identify 21 publications comparing the immunogenicity and/or safety of different schedules. Expert commentary: Priming with two or three TBE vaccine doses was highly immunogenic. After conventional priming (0-28 days), 95% adults and ≥95% children had neutralization test (NT) titers ≥10 at 14 days post-dose-2 compared with 92% adults and 99% children at 21 days post-dose-3 (rapid schedule). Most subjects retained NT titers ≥10 at day 300. A single booster dose induced a strong immune response in all subjects irrespective of primary vaccination schedule or elapsed time since priming. GMT peaked at 42 days post-dose-1 (i.e., 21 days post-dose 3 [rapid-schedule], or 14-28 days post-dose-2 [conventional-schedule]), and declined thereafter. Adverse events were generally rare and declined with increasing doses. In the absence of data to recommend one particular schedule, the regimen choice will remain at the physician's discretion, based on patient constraints and availability.

  17. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennise

    2001-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory 'CpG motifs' to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  18. Rapid Induction of Protective Immunity Against Biothreat Agents Using CPG-Based Oligonucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennis

    2003-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory "CpG motifs' to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  19. Rapid Induction of Protective Immunity Against Biothreat Agens Using CPG-Based Oglionucleotides

    National Research Council Canada - National Science Library

    Klinman, Dennis

    1999-01-01

    This research project examines the ability of synthetic oligonucleotides (ODN) containing immunostimulatory 'CpG' motifs to trigger the innate immune system, thereby improving the host's ability to survive infection by biowarfare agents...

  20. Characterization of axisymmetric disruption dynamics toward VDE avoidance in tokamaks

    International Nuclear Information System (INIS)

    Nakamura, Y.

    2002-01-01

    Disruption experiments on Alcator C-Mod and ASDEX-Upgrade tokamaks and axisymmetric MHD simulations using the TSC have explicated the underlying mechanisms of Vertical Displacement Events (VDEs) and a diversity of disruption dynamics. First, the neutral point, which is known as an initial vertical plasma position advantageous to VDE avoidance, is shown to be fairly insensitive to plasma shape and current profile parameters, while the VDE rate significantly depends on those parameters. Secondly, it is clarified that a rapid flattening of the plasma current profile frequently seen at the thermal quench drags a single null-diverted, up-down asymmetric plasma vertically toward divertor, whereas the dragging effect is absent in up-down symmetric limiter discharges. As a consequence, the occurrence of downward-going VDEs predominates over the upward-going ones in bottom-diverted discharges, being consistent with experiments in ASDEX-Upgrade. Together with the attractive force that arises from passive shell currents induced by the current quench and vanishes at the neutral point, the dragging effect explains many details of the VDE dynamics over the whole period of disruptive termination. (author)

  1. Immune Signaling and Antimicrobial Peptide Expression in Lepidoptera

    Directory of Open Access Journals (Sweden)

    Heidi Goodrich-Blair

    2013-07-01

    Full Text Available Many lepidopteran insects are agricultural pests that affect stored grains, food and fiber crops. These insects have negative ecological and economic impacts since they lower crop yield, and pesticides are expensive and can have off-target effects on beneficial arthropods. A better understanding of lepidopteran immunity will aid in identifying new targets for the development of specific insect pest management compounds. A fundamental aspect of immunity, and therefore a logical target for control, is the induction of antimicrobial peptide (AMP expression. These peptides insert into and disrupt microbial membranes, thereby promoting pathogen clearance and insect survival. Pathways leading to AMP expression have been extensively studied in the dipteran Drosophila melanogaster. However, Diptera are an important group of pollinators and pest management strategies that target their immune systems is not recommended. Recent advances have facilitated investigation of lepidopteran immunity, revealing both conserved and derived characteristics. Although the general pathways leading to AMP expression are conserved, specific components of these pathways, such as recognition proteins have diverged. In this review we highlight how such comparative immunology could aid in developing pest management strategies that are specific to agricultural insect pests.

  2. Disruptions in Tokamaks

    International Nuclear Information System (INIS)

    Bondeson, A.

    1987-01-01

    This paper discusses major and minor disruptions in Tokamaks. A number of models and numerical simulations of disruptions based on resistive MHD are reviewed. A discussion is given of how disruptive current profiles are correlated with the experimentally known operational limits in density and current. It is argued that the q a =2 limit is connected with stabilization of the m=2/n=1 tearing mode for a approx.< 2.7 by resistive walls and mode rotation. Experimental and theoretical observations indicate that major disruptions usually occur in at least two phases, first a 'predisruption', or loss of confinement in the region 1 < q < 2, leaving the q approx.= 1 region almost unaffected, followed by a final disruption of the central part, interpreted here as a toroidal n = 1 external kink mode. (author)

  3. Control, pressure perturbations, displacements, and disruptions in highly elongated tokamak plasmas

    International Nuclear Information System (INIS)

    Marcus, F.B.; Hofmann, F.; Tonetti, G.; Jardin, S.C.; Noll, P.

    1989-06-01

    The control and evolution of highly elongated tokamak plasmas with large growth rates are simulated with the axisymmetric, resistive MHD code TSC in the geometry of the TCV tokamak. Pressure perturbations such as sawteeth and externally programmed displacements create initial velocity perturbations which may be stabilized by low power, rapid response coils inside the passively stabilizing vacuum vessel, together with slower shaping coils outside the vessel. Vertical disruption induced voltages and forces on the rapid coils and vessel are investigated, and a model is proposed for an additional vertical force due to poloidal currents. (author) 6 figs., 1 tab., 26 refs

  4. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  5. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  6. Immunity to community: what can immune pathways tell us about disease patterns in corals?

    Science.gov (United States)

    Mydlarz, L. D.; Fuess, L.; Pinzon, J. C.; Weil, E.

    2016-02-01

    Predicting species composition and abundances is one of the most fundamental questions in ecology. This question is even more pressing in marine ecology and coral reefs since communities are changing at a rapid pace due to climate-related changes. Increases in disease prevalence and severity are just some of the consequences of these environmental changes. Particularly in coral reef ecosystems, diseases are increasing and driving region-wide population collapses. It has become clear, however, that not all reefs or coral species are affected by disease equally. In fact, the Caribbean is a concentrated area for diseases. The patterns in which disease manifests itself on an individual reef are also proving interesting, as not all coral species are affected by disease equally. Some species are host to different diseases, but seem to successfully fight them reducing mortality. Other species are disproportionately infected on any given reef and experience high mortality due to disease. We are interested in the role immunity can play in directing these patterns and are evaluating coral immunity using several novel approaches. We exposed 4 species of corals with different disease susceptibilities to immune stimulators and quantified of coral immunity using a combination of full transcriptome sequencing and protein activity assays for gene to phenotype analysis. We also mapped gene expression changes onto immune pathways (i.e. melanin-cascade, antimicrobial peptide synthesis, complement cascade, lectin-opsonization) to evaluate expression of immune pathways between species. In our preliminary data we found many immune genes in the disease susceptible Orbicella faveolata underwent changes in gene expression opposite of the predictions and may disply `dysfunctional' patterns of expression. We will present expression data for 4 species of coral and assess how these transcriptional and protein immune responses are related to disease susceptibility in nature, thus scaling up

  7. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities.

    Science.gov (United States)

    Silver, Daniel J; Sinyuk, Maksim; Vogelbaum, Michael A; Ahluwalia, Manmeet S; Lathia, Justin D

    2016-02-01

    During brain neoplasia, malignant cells subjugate the immune system to provide an environment that favors tumor growth. These mechanisms capitalize on tumor-promoting functions of various immune cell types and typically result in suppression of tumor immune rejection. Immunotherapy efforts are underway to disrupt these mechanisms and turn the immune system against developing tumors. While many of these therapies are already in early-stage clinical trials, understanding how these therapies impact various tumor cell populations, including self-renewing cancer stem cells, may help to predict their efficacy and clarify their mechanisms of action. Moreover, interrogating the biology of glioma cell, cancer stem cell, and immune cell interactions may provide additional therapeutic targets to leverage against disease progression. In this review, we begin by highlighting a series of investigations into immune cell-mediated tumor promotion that do not parse the tumor into stem and non-stem components. We then take a closer look at the immune-suppressive mechanisms derived specifically from cancer stem cell interactions with the immune system and end with an update on immunotherapy and cancer stem cell-directed clinical trials in glioblastoma. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. As-CATH1-6, novel cathelicidins with potent antimicrobial and immunomodulatory properties from Alligator sinensis, play pivotal roles in host antimicrobial immune responses.

    Science.gov (United States)

    Chen, Yan; Cai, Shasha; Qiao, Xue; Wu, Mali; Guo, Zhilai; Wang, Renping; Kuang, Yi-Qun; Yu, Haining; Wang, Yipeng

    2017-08-10

    Crocodilians are regarded as possessing a powerful immune system. However, the composition and action of the crocodilian immune system have remained unclear until now. Cathelicidins, the principal family of host defense peptides, play pivotal roles in vertebrate immune defense against microbial invasions. However, cathelicidins from crocodilians have not been extensively studied to date. In the present study, six novel cathelicidins (As-CATH1-6) were identified and characterized from the endangered Chinese alligator ( Alligator sinensis ). As-CATH1-6 exhibit no sequence similarity with any of the known cathelicidins. Structure analysis indicated that As-CATH1-3 adopt a random coil secondary conformation, whereas As-CATH4-6 were predicted to mainly adopt an amphipathic α-helix conformation. Among them, As-CATH4-6 exhibited potent, broad-spectrum and rapid antimicrobial activity by inducing the disruption of cell membrane integrity. They also exhibited strong ability to prevent the formation of bacterial biofilms and eradicate preformed biofilms. Furthermore, As-CATH4-6 exhibited potent anti-inflammatory activity by inhibiting the lipopolysaccharide (LPS)-induced production of nitric oxide (NO) and pro-inflammatory cytokines in mouse peritoneal macrophages. They directly neutralized LPS toxicity and therefore inhibited the binding of LPS to the TLR4 receptor and the subsequent activation of inflammatory response pathways. In a peritonitis mice model, As-CATH2-6 provided effective protection against bacterial infection through enhanced immune cell recruitment. In the host Chinese alligator, As-CATH1-6 are mainly expressed in immune organs and epithelial tissues. Bacterial infection significantly enhances their expression, which implies an important role in host anti-infective response. Taken together, the diversity and multiple functions of As-CATH1-6 partially reveal the powerful immune system of the Chinese alligator. © 2017 The Author(s). Published by Portland

  9. Combined local and systemic immunization is essential for durable T-cell mediated heterosubtypic immunity against influenza A virus

    DEFF Research Database (Denmark)

    Uddbäck, Ida Elin Maria; Pedersen, Line M I; Pedersen, Sara R

    2016-01-01

    nucleoprotein have previously been found to induce short-term protection in mice. In this study we confirm that systemic (subcutaneous (s.c.) immunization rapidly induced heterosubtypic protection predominantly mediated by CD8 T cells, but within three months clinical protection completely disappeared. Local......The threat from unpredictable influenza virus pandemics necessitates the development of a new type of influenza vaccine. Since the internal proteins are highly conserved, induction of T cells targeting these antigens may provide the solution. Indeed, adenoviral (Ad) vectors expressing flu...... (intranasal (i.n.)) immunization elicited delayed, but more lasting protection despite relatively inefficient immunization. However, by far, the most robust protection was induced by simultaneous, combined (i.n. + s.c.) vaccination, and, notably, in this case clinical protection lasted at least 8 months...

  10. Thermal deposition analysis during disruptions on DIII-D using infrared scanners

    International Nuclear Information System (INIS)

    Lee, R.L.; Hyatt, A.W.; Kellman, A.G.; Taylor, P.L.; Lasnier, C.J.

    1995-12-01

    The DIII-D tokamak generates plasma discharges with currents up to 3 MA and auxiliary input power up to 20 MW from neutral beams and 4 MW from radio frequency systems. In a disruption, a rapid loss of the plasma current and internal thermal energy occurs and the energy is deposited onto the torus graphite wall. Quantifying the spatial and temporal characteristics of the heat deposition is important for engineering and physics-related issues, particularly for designing future machines such as ITER. Using infrared scanners with a time resolution of 120 micros, measurements of the heat deposition onto the all-graphite walls of DIII-D during two types of disruptions have been made. Each scanner contains a single point detector sensitive to 8--12 microm radiation, allowing surface temperatures from 20 C to 2,000 C to be measured. A zinc selenide window that transmits in the infrared is used as the vacuum window. Views of the upper and lower divertor regions and the centerpost provide good coverage of the first wall for single and double null divertor discharges. During disruptions, the thermal energy is not deposited evenly onto the inner surface of the tokamak, but is deposited primarily in the divertor region when operating diverted discharges. Analysis of the heat deposition during a radiative collapse disruption of a 1.5 MA discharge revealed power densities of 300--350 MW/m 2 in the divertor region. During the thermal quench of the disruption, the energy deposited onto the divertor region was more than 70% of the stored thermal energy in the discharge prior to the disruption. The spatial distribution and temporal behavior of power deposition during high β disruptions will also be presented

  11. A role of the adaptive immune system in glucose homeostasis.

    Science.gov (United States)

    Bronsart, Laura L; Contag, Christopher H

    2016-01-01

    The immune system, including the adaptive immune response, has recently been recognized as having a significant role in diet-induced insulin resistance. In this study, we aimed to determine if the adaptive immune system also functions in maintaining physiological glucose homeostasis in the absence of diet-induced disease. SCID mice and immunocompetent control animals were phenotypically assessed for variations in metabolic parameters and cytokine profiles. Additionally, the glucose tolerance of SCID and immunocompetent control animals was assessed following introduction of a high-fat diet. SCID mice on a normal chow diet were significantly insulin resistant relative to control animals despite having less fat mass. This was associated with a significant increase in the innate immunity-stimulating cytokines granulocyte colony-stimulating factor, monocyte chemoattractant protein 1 (MCP1), and MCP3. Additionally, the SCID mouse phenotype was exacerbated in response to a high-fat diet as evidenced by the further significant progression of glucose intolerance. These results support the notion that the adaptive immune system plays a fundamental biological role in glucose homeostasis, and that the absence of functional B and T cells results in disruption in the concentrations of various cytokines associated with macrophage proliferation and recruitment. Additionally, the absence of functional B and T cells is not protective against diet-induced pathology.

  12. Wound Disruption Following Colorectal Operations.

    Science.gov (United States)

    Moghadamyeghaneh, Zhobin; Hanna, Mark H; Carmichael, Joseph C; Mills, Steven; Pigazzi, Alessio; Nguyen, Ninh T; Stamos, Michael J

    2015-12-01

    Postoperative wound disruption is associated with high morbidity and mortality. We sought to identify the risk factors and outcomes of wound disruption following colorectal resection. The American College of Surgeons National Surgical Quality Improvement Program (NSQIP) database was used to examine the clinical data of patients who underwent colorectal resection from 2005 to 2013. Multivariate regression analysis was performed to identify risk factors of wound disruption. We sampled a total of 164,297 patients who underwent colorectal resection. Of these, 2073 (1.3 %) had wound disruption. Patients with wound disruption had significantly higher mortality (5.1 vs. 1.9 %, AOR: 1.46, P = 0.01). The highest risk of wound disruption was seen in patients with wound infection (4.8 vs. 0.9 %, AOR: 4.11, P disruption such as chronic steroid use (AOR: 1.71, P disruption compared to open surgery (AOR: 0.61, P disruption occurs in 1.3 % of colorectal resections, and it correlates with mortality of patients. Wound infection is the strongest predictor of wound disruption. Chronic steroid use, obesity, severe COPD, prolonged operation, non-elective admission, and serum albumin level are strongly associated with wound disruption. Utilization of the laparoscopic approach may decrease the risk of wound disruption when possible.

  13. [The role of the innate immune system in atopic dermatitis].

    Science.gov (United States)

    Volz, T; Kaesler, S; Skabytska, Y; Biedermann, T

    2015-02-01

    The mechanisms how the innate immune system detects microbes and mounts a rapid immune response have been more and more elucidated in the past years. Subsequently it has been shown that innate immunity also shapes adaptive immune responses and determines their quality that can be either inflammatory or tolerogenic. As atopic dermatitis is characterized by disturbances of innate and adaptive immune responses, colonization with pathogens and defects in skin barrier function, insight into mechanisms of innate immunity has helped to understand the vicious circle of ongoing skin inflammation seen in atopic dermatitis patients. Elucidating general mechanisms of the innate immune system and its functions in atopic dermatitis paves the way for developing new therapies. Especially the novel insights into the human microbiome and potential functional consequences make the innate immune system a very fundamental and promising target. As a result atopic dermatitis manifestations can be attenuated or even resolved. These currently developed strategies will be introduced in the current review.

  14. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7

    Directory of Open Access Journals (Sweden)

    Vanessa M. D’Costa

    2015-09-01

    Full Text Available Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  15. Rapid immune colloidal gold strip for cetacean meat restraining illegal trade and consumption: implications for conservation and public health.

    Science.gov (United States)

    Lo, Chieh; Chin, Li-Te; Chu, Chi-Shih; Wang, Yu-Ting; Chan, Kun-Wei; Yang, Wei-Cheng

    2013-01-01

    The consumption of cetacean meat is geographically common and often of undetermined sustainability. Besides, it can expose humans to contaminants and zoonotic pathogens. The illegality of possessing cetacean meat was likely under-reported in some countries due to lack of attention paid by the officials although DNA analysis of market products helped to show such practices. We developed two monoclonal antibodies against synthetic peptides of myoglobin (Mb) for constructing a rapid immune colloidal gold strip. Only cetacean Mb is capable of binding to both antibodies and presents positive signal while the Mb from other animals can bind only 1 of the antibodies and presents negative result. The strip for cetacean meat would be an applicable and cost-effective test for field inspectors and even the general public. It contributes to increase the reporting capacity and coverage of illegal cetacean meat possession, which has implications for global cetacean conservation and public health.

  16. Endocrine Disrupting Chemicals (EDCs)

    Science.gov (United States)

    ... Center Pacientes y Cuidadores Hormones and Health The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) Steroid and Hormone ... Hormones and Health › Endocrine Disrupting Chemicals (EDCs) The Endocrine System Hormones Endocrine Disrupting Chemicals (EDCs) EDCs Myth vs. ...

  17. Lung Homeostasis: Influence of Age, Microbes, and the Immune System.

    Science.gov (United States)

    Lloyd, Clare M; Marsland, Benjamin J

    2017-04-18

    Pulmonary immune homeostasis is maintained by a network of tissue-resident cells that continually monitor the external environment, and in health, instruct tolerance to innocuous inhaled particles while ensuring that efficient and rapid immune responses can be mounted against invading pathogens. Here we review the multiple pathways that underlie effective lung immunity in health, and discuss how these may be affected by external environmental factors and contribute to chronic inflammation during disease. In this context, we examine the current understanding of the impact of the microbiota in immune development and function and in the setting of the threshold for immune responses that maintains the balance between tolerance and chronic inflammation in the lung. We propose that host interactions with microbes are critical for establishing the immune landscape of the lungs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Energy flux to the TEXTOR limiters during disruptions

    International Nuclear Information System (INIS)

    Finken, K.H.; Baek, W.Y.; Dippel, K.H.; Boedo, J.A.; Gray, D.S.

    1992-01-01

    Rapidly changing heat fluxes deposited on the limiter blades are observed during disruptions by infrared (IR) scanners. These scanners are a suitable tool for the analysis of these heat fluxes because they provide both spatial and temporal information with sufficient resolution. Several new features of the power flux to the plasma facing surfaces during a disruption have been found. The disruptive heat flux occurs on three different time-scales. The fastest ones are for heat bursts with a duration of ≤0.1 ms; several of these bursts form a thermal quench of about one millisecond duration, and some of these thermal quenches are found to occur during the current decay phase. Power flux densities of the order of 50 MW/m 2 have been observed during a burst. The spatial extent of the area on which this power is deposited during a burst is larger than or equal to the size of half an ALT-II blade, i.e. about 1 m in the toroidal direction. Simultaneous measurements with two cameras show that the correlation length of a single burst is smaller than half the toroidal circumference, probably of the order of half a blade or a full blade length. This is consistent with plasma islands of low mode number. The typical heat deposition patterns at the limiter blades for normal discharges are preserved during a disruption. The magnetic structure near the plasma surface can therefore not be destroyed completely during the thermal quench. The power flux follows the field lines. However, the power e-folding length is about a factor of two to three times larger than under normal discharge conditions. (author). 27 refs, 9 figs

  19. Single-cell technologies to study the immune system.

    Science.gov (United States)

    Proserpio, Valentina; Mahata, Bidesh

    2016-02-01

    The immune system is composed of a variety of cells that act in a coordinated fashion to protect the organism against a multitude of different pathogens. The great variability of existing pathogens corresponds to a similar high heterogeneity of the immune cells. The study of individual immune cells, the fundamental unit of immunity, has recently transformed from a qualitative microscopic imaging to a nearly complete quantitative transcriptomic analysis. This shift has been driven by the rapid development of multiple single-cell technologies. These new advances are expected to boost the detection of less frequent cell types and transient or intermediate cell states. They will highlight the individuality of each single cell and greatly expand the resolution of current available classifications and differentiation trajectories. In this review we discuss the recent advancement and application of single-cell technologies, their limitations and future applications to study the immune system. © 2015 The Authors. Immunology Published by John Wiley & Sons Ltd.

  20. Disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.; Batha, S.H.; Bell, M.G.; Bitter, M.; Budny, R.; Bush, C.E.; Efthimion, P.C.; Hawryluk, R.J.; Hill, K.W.; Hosea, J.; Jobes, F.C.; Johnson, D.W.; Levinton, F.; Mansfield, D.; Meade, D.; Medley, S.S.; Monticello, D.; Mueller, D.; Nagayama, Y.; Owens, D.K.; Park, H.; Park, W.; Post, D.E.; Schivell, J.; Strachan, J.D.; Taylor, G.; Ulrickson, M.; Goeler, S. von; Wilfrid, E.; Wong, K.L.; Yamada, M.; Young, K.M.; Zarnstorff, M.C.; Zweben, S.J.; Drake, J.F.; Kleva, R.G.; Fleischmann, H.H.

    1993-03-01

    For a successful reactor, it will be useful to predict the occurrence of disruptions and to understand disruption effects including how a plasma disrupts onto the wall and how reproducibly it does so. Studies of disruptions on TFTR at both high-β pol and high-density have shown that, in both types, a fast growing m/n=1/1 mode plays an important role. In highdensity disruptions, a newly observed fast m/n = 1/1 mode occurs early in the thermal decay phase. For the first time in TFTR q-profile measurements just prior to disruptions have been made. Experimental studies of heat deposition patterns on the first wall of TFTR due to disruptions have provided information on MHD phenomena prior to or during the disruption, how the energy is released to the wall, and the reproducibility of the heat loads from disruptions. This information is important in the design of future devices such as ITER. Several new processes of runaway electron generation are theoretically suggested and their application to TFTR and ITER is considered, together with a preliminary assessment of x-ray data from runaways generated during disruptions

  1. The receptor kinase FER is a RALF-regulated scaffold controlling plant immune signaling

    NARCIS (Netherlands)

    Stegmann, Martin; Monaghan, Jacqueline; Smakowska-Luzan, Elwira; Rovenich, Hanna; Lehner, Anita; Holton, Nicholas; Belkhadir, Youssef; Zipfel, Cyril

    2017-01-01

    In plants, perception of invading pathogens involves cell-surface immune receptor kinases. Here, we report that the Arabidopsis SITE-1 PROTEASE (S1P) cleaves endogenous RAPID ALKALINIZATION FACTOR (RALF) propeptides to inhibit plant immunity. This inhibition is mediated by the malectin-like receptor

  2. Evasion of the Immune Response by Trypanosoma cruzi during Acute Infection

    Science.gov (United States)

    Cardoso, Mariana S.; Reis-Cunha, João Luís; Bartholomeu, Daniella C.

    2016-01-01

    Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as glycosylphosphatidylinositol-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the coexpression of several related, but not identical, epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi

  3. Evasion of the immune response by Trypanosoma cruzi during acute infection

    Directory of Open Access Journals (Sweden)

    Mariana Santos Cardoso

    2016-01-01

    Full Text Available Trypanosoma cruzi is the etiologic agent of Chagas disease, a neglected tropical disease that affects millions of people mainly in Latin America. To establish a life-long infection, T. cruzi must subvert the vertebrate host’s immune system, using strategies that can be traced to the parasite’s life cycle. Once inside the vertebrate host, metacyclic trypomastigotes rapidly invade a wide variety of nucleated host cells in a membrane-bound compartment known as the parasitophorous vacuole, which fuses to lysosomes, originating the phagolysosome. In this compartment, the parasite relies on a complex network of antioxidant enzymes to shield itself from lysosomal oxygen and nitrogen reactive species. Lysosomal acidification of the parasitophorous vacuole is an important factor that allows trypomastigote escape from the extremely oxidative environment of the phagolysosome to the cytoplasm, where it differentiates into amastigote forms. In the cytosol of infected macrophages, oxidative stress instead of being detrimental to the parasite, favors amastigote burden, which then differentiates into bloodstream trypomastigotes. Trypomastigotes released in the bloodstream upon the rupture of the host cell membrane express surface molecules, such as calreticulin and GP160 proteins, which disrupt initial and key components of the complement pathway, while others such as GPI-mucins stimulate immunoregulatory receptors, delaying the progression of a protective immune response. After an immunologically silent entry at the early phase of infection, T. cruzi elicits polyclonal B cell activation, hypergammaglobulinemia, and unspecific anti-T. cruzi antibodies, which are inefficient in controlling the infection. Additionally, the co-expression of several related but not identical epitopes derived from trypomastigote surface proteins delays the generation of T. cruzi-specific neutralizing antibodies. Later in the infection, the establishment of an anti-T. cruzi CD8

  4. [Immune dysfunction and cognitive deficit in stress and physiological aging (Part I): Pathogenesis and risk factors].

    Science.gov (United States)

    Pukhal'skiĭ, A L; Shmarina, G V; Aleshkin, V A

    2014-01-01

    The concept of stressful cognitive dysfunction, which is under consideration in this review, allows picking out several therapeutic targets. The brain, immune and endocrine systems being the principal adaptive systems in the body permanently share information both in the form of neural impulses and soluble mediators. The CNS differs from other organs due to several peculiarities that affect local immune surveillance. The brain cells secluded from the blood flow by a specialized blood-brain-barrier (BBB) can endogenously express pro- and anti-inflammatory cytokines without the intervention of the immune system. In normal brain the cytokine signaling rather contributes to exclusive brain function (e.g. long-term potentiation, synaptic plasticity, adult neurogenesis) than serves as immune communicator. The stress of different origin increases the serum cytokine levels and disrupts BBB. As a result peripheral cytokines penetrate into the brain where they begin to perform new functions. Mass intrusion of biologically active peptides having a lot of specific targets alters the brain work that we can observe both in humans and in animal experiments. In addition owing to BBB disruption dendritic cells and T cells also penetrate into the brain where they take up a perivascular position. The changes observed in stressed subject may accumulate during repeated episodes of stress forming a picture typical of the aging brain. Moreover long-term stress as well as physiological aging result in hormonal and immunological disturbances including hypothalamic-pituitary-adrenal axis depletion, regulatory T-cell accumulation and dehydroepiandrosterone decrease.

  5. The role of rare innate immune cells in Type 2 immune activation against parasitic helminths.

    Science.gov (United States)

    Webb, Lauren M; Tait Wojno, Elia D

    2017-09-01

    The complexity of helminth macroparasites is reflected in the intricate network of host cell types that participate in the Type 2 immune response needed to battle these organisms. In this context, adaptive T helper 2 cells and the Type 2 cytokines interleukin (IL)-4, IL-5, IL-9 and IL-13 have been the focus of research for years, but recent work has demonstrated that the innate immune system plays an essential role. Some innate immune cells that promote Type 2 immunity are relatively abundant, such as macrophages and eosinophils. However, we now appreciate that more rare cell types including group 2 innate lymphoid cells, basophils, mast cells and dendritic cells make significant contributions to these responses. These cells are found at low frequency but they are specialized to their roles - located at sites such as the skin, lung and gut, where the host combats helminth parasites. These cells respond rapidly and robustly to worm antigens and worm-induced damage to produce essential cytokines, chemokines, eicosanoids and histamine to activate damaged epithelium and to recruit other effectors. Thus, a greater understanding of how these cells operate is essential to understand how the host protects itself during helminth infection.

  6. Carbendazim has the potential to induce oxidative stress, apoptosis, immunotoxicity and endocrine disruption during zebrafish larvae development.

    Science.gov (United States)

    Jiang, Jinhua; Wu, Shenggan; Wang, Yanhua; An, Xuehua; Cai, Leiming; Zhao, Xueping; Wu, Changxing

    2015-10-01

    Increasing evidence have suggested deleterious effects of carbendazim on reproduction, apoptosis, immunotoxicity and endocrine disruption in mice and rats, however, the developmental toxicity of carbendazim to aquatic organisms remains obscure. In the present study, we utilized zebrafish as an environmental monitoring model to characterize the effects of carbendazim on expression of genes related to oxidative stress, apoptosis, immunotoxicity and endocrine disruption during larval development. Different trends in gene expression were observed upon exposing the larvae to 4, 20, 100, and 500 μg/L carbendazim for 4 and 8d. The mRNA levels of catalase, glutathione peroxidase and manganese superoxide dismutase (CAT, GPX, and Mn/SOD) were up-regulated after exposure to different concentrations of carbendazim for 4 or 8d. The up-regulation of p53, Apaf1, Cas8 and the down-regulation of Bcl2, Mdm2, Cas3 in the apoptosis pathway, as well as the increased expression of cytokines and chemokines, including CXCL-C1C, CCL1, IL-1b, IFN, IL-8, and TNFα, suggested carbendazim might trigger apoptosis and immune response during zebrafish larval development. In addition, the alteration of mRNA expression of VTG, ERα, ERβ1, ERβ2, TRα, TRβ, Dio1, and Dio2 indicated the potential of carbendazim to induce endocrine disruption in zebrafish larvae. These data suggested that carbendazim could simultaneously induce multiple responses during zebrafish larval development, and bidirectional interactions among oxidative stress, apoptosis pathway, immune and endocrine systems might be present. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Wallerian degeneration: the innate-immune response to traumatic nerve injury

    Directory of Open Access Journals (Sweden)

    Rotshenker Shlomo

    2011-08-01

    Full Text Available Abstract Traumatic injury to peripheral nerves results in the loss of neural functions. Recovery by regeneration depends on the cellular and molecular events of Wallerian degeneration that injury induces distal to the lesion site, the domain through which severed axons regenerate back to their target tissues. Innate-immunity is central to Wallerian degeneration since innate-immune cells, functions and molecules that are produced by immune and non-immune cells are involved. The innate-immune response helps to turn the peripheral nerve tissue into an environment that supports regeneration by removing inhibitory myelin and by upregulating neurotrophic properties. The characteristics of an efficient innate-immune response are rapid onset and conclusion, and the orchestrated interplay between Schwann cells, fibroblasts, macrophages, endothelial cells, and molecules they produce. Wallerian degeneration serves as a prelude for successful repair when these requirements are met. In contrast, functional recovery is poor when injury fails to produce the efficient innate-immune response of Wallerian degeneration.

  8. BINARY DISRUPTION BY MASSIVE BLACK HOLES: HYPERVELOCITY STARS, S STARS, AND TIDAL DISRUPTION EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J.; Geller, Margaret J.; Brown, Warren R., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu, E-mail: mgeller@cfa.harvard.edu, E-mail: wbrown@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2012-04-20

    We examine whether disrupted binary stars can fuel black hole growth. In this mechanism, tidal disruption produces a single hypervelocity star (HVS) ejected at high velocity and a former companion star bound to the black hole. After a cluster of bound stars forms, orbital diffusion allows the black hole to accrete stars by tidal disruption at a rate comparable to the capture rate. In the Milky Way, HVSs and the S star cluster imply similar rates of 10{sup -5} to 10{sup -3} yr{sup -1} for binary disruption. These rates are consistent with estimates for the tidal disruption rate in nearby galaxies and imply significant black hole growth from disrupted binaries on 10 Gyr timescales.

  9. New insights into enterocin CRL35: mechanism of action and immunity revealed by heterologous expression in Escherichia coli.

    Science.gov (United States)

    Barraza, Daniela E; Ríos Colombo, Natalia S; Galván, Adriana E; Acuña, Leonardo; Minahk, Carlos J; Bellomio, Augusto; Chalón, Miriam C

    2017-09-01

    The role of the class IIa bacteriocin membrane receptor protein remains unclear, and the following two different mechanisms have been proposed: the bacteriocin could interact with the receptor changing it to an open conformation or the receptor might act as an anchor allowing subsequent bacteriocin insertion and membrane disruption. Bacteriocin-producing cells synthesize an immunity protein that forms an inactive bacteriocin-receptor-immunity complex. To better understand the molecular mechanism of enterocin CRL35, the peptide was expressed as the suicidal probe EtpM-enterocin CRL35 in Escherichia coli, a naturally insensitive microorganism since it does not express the receptor. When the bacteriocin is anchored to the periplasmic face of the plasma membrane through the bitopic membrane protein, EtpM , E. coli cells depolarize and die. Moreover, co-expression of the immunity protein prevents the deleterious effect of EtpM-enterocin CRL35. The binding and anchoring of the bacteriocin to the membrane has demonstrated to be a sufficient condition for its membrane insertion. The final step of membrane disruption by EtpM-enterocin CRL35 is independent from the receptor, which means that the mannose PTS might not be involved in the pore structure. In addition, the immunity protein can protect even in the absence of the receptor. © 2017 John Wiley & Sons Ltd.

  10. Toward Improved Parenting Interventions for Disruptive Child Behavior : Engaging Disadvantaged Families and Searching for Effective Elements

    NARCIS (Netherlands)

    Leijten, P.H.O.

    2014-01-01

    Parenting interventions are a promising strategy to prevent antisocial behavior in society. Evidence accumulates that parenting interventions can reduce disruptive child behavior, and insight rapidly increases into which families they benefit most. At the same time, however, several high risk

  11. Genome-wide analysis of differential transcriptional and epigenetic variability across human immune cell types

    DEFF Research Database (Denmark)

    Ecker, Simone; Chen, Lu; Pancaldi, Vera

    2017-01-01

    Background: A healthy immune system requires immune cells that adapt rapidly to environmental challenges. This phenotypic plasticity can be mediated by transcriptional and epigenetic variability. Results: We apply a novel analytical approach to measure and compare transcriptional and epigenetic v...

  12. Immunity to poliovirus after infection and vaccination

    NARCIS (Netherlands)

    Herremans, Martina Maria Petronella Theresia

    1999-01-01

    The aim of this thesis was defined as the study of the contribution of IPV vaccination to the induction of a) protection against poliovirus infection and b) mucosal immunity.We have described the development of new immunological tools for the rapid detection of poliovirus-specific antibodies and

  13. Statistical analysis of JET disruptions

    International Nuclear Information System (INIS)

    Tanga, A.; Johnson, M.F.

    1991-07-01

    In the operation of JET and of any tokamak many discharges are terminated by a major disruption. The disruptive termination of a discharge is usually an unwanted event which may cause damage to the structure of the vessel. In a reactor disruptions are potentially a very serious problem, hence the importance of studying them and devising methods to avoid disruptions. Statistical information has been collected about the disruptions which have occurred at JET over a long span of operations. The analysis is focused on the operational aspects of the disruptions rather than on the underlining physics. (Author)

  14. Rapid parallel evolution overcomes global honey bee parasite.

    Science.gov (United States)

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  15. Disruptions in DIII-D

    International Nuclear Information System (INIS)

    Reiman, A.; Taylor, P.; Kellman, A.; LaHaye, R.

    1996-01-01

    We report on the results of a statistical analysis of the DIII-D disruption data base, and on an examination of a selected subset of the shots to determine the likely causes of disruptions. The statistical analysis focuses on the dependence of the disruption rate on key dimensionless parameters. We find that the disruption frequency is high at modest values of the parameters, and that it can be relatively low at operational limits. For example, the disruption frequency in an ITER relevant regime (β N /l i ∼ 2, 3 G > 0.6, where n G is the Greenwald limit) is approximately 23%. For this range of q, the disruption frequency rises only modestly to about 35% at the β limit, consistent with previous observations of a soft β limit for this q regime. For the range 6 95 G G < .9) in all q regimes we have studied. The location of the minimum moves to higher density with increasing q

  16. Recovery of the immune system after exercise.

    Science.gov (United States)

    Peake, Jonathan M; Neubauer, Oliver; Walsh, Neil P; Simpson, Richard J

    2017-05-01

    The notion that prolonged, intense exercise causes an "open window" of immunodepression during recovery after exercise is well accepted. Repeated exercise bouts or intensified training without sufficient recovery may increase the risk of illness. However, except for salivary IgA, clear and consistent markers of this immunodepression remain elusive. Exercise increases circulating neutrophil and monocyte counts and reduces circulating lymphocyte count during recovery. This lymphopenia results from preferential egress of lymphocyte subtypes with potent effector functions [e.g., natural killer (NK) cells, γδ T cells, and CD8 + T cells]. These lymphocytes most likely translocate to peripheral sites of potential antigen encounter (e.g., lungs and gut). This redeployment of effector lymphocytes is an integral part of the physiological stress response to exercise. Current knowledge about changes in immune function during recovery from exercise is derived from assessment at the cell population level of isolated cells ex vivo or in blood. This assessment can be biased by large changes in the distribution of immune cells between blood and peripheral tissues during and after exercise. Some evidence suggests that reduced immune cell function in vitro may coincide with changes in vivo and rates of illness after exercise, but more work is required to substantiate this notion. Among the various nutritional strategies and physical therapies that athletes use to recover from exercise, carbohydrate supplementation is the most effective for minimizing immune disturbances during exercise recovery. Sleep is an important aspect of recovery, but more research is needed to determine how sleep disruption influences the immune system of athletes. Copyright © 2017 the American Physiological Society.

  17. Catastrophic Disruption of Comet ISON

    Science.gov (United States)

    Keane, Jacqueline V.; Milam, Stefanie N.; Coulson, Iain M.; Kleyna, Jan T.; Sekanina, Zdenek; Kracht, Rainer; Riesen, Timm-Emmanuel; Meech, Karen J.; Charnley, Steven B.

    2016-01-01

    We report submillimeter 450 and 850 microns dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31-0.08 au prior to perihelion on 2013 November 28 (rh?=?0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60? (greater than 10(exp 5) km in the anti-solar direction. Deconvolution of the November 28.04 850 microns image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing approximately 5.2?×?10(exp 10) kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  18. Disruption model

    International Nuclear Information System (INIS)

    Murray, J.G.; Bronner, G.

    1982-07-01

    Calculations of disruption time and energy dissipation have been obtained by simulating the plasma as an electrical conducting loop that varies in resistivity, current density, major radius. The calculations provide results which are in good agreement with experimental observations. It is believed that this approach allows engineering designs for disruptions to be completed in large tokamaks such as INTOR or FED

  19. Immunization of chickens with an agonistic monoclonal anti-chicken CD40 antibody-hapten complex: rapid and robust IgG response induced by a single subcutaneous injection.

    Science.gov (United States)

    Chen, Chang-Hsin; Abi-Ghanem, Daad; Waghela, Suryakant D; Chou, Wen-Ko; Farnell, Morgan B; Mwangi, Waithaka; Berghman, Luc R

    2012-04-30

    Producing diagnostic antibodies in chicken egg yolk represents an alternate animal system that offers many advantages including high productivity at low cost. Despite being an excellent counterpart to mammalian antibodies, chicken IgG from yolk still represents an underused resource. The potential of agonistic monoclonal anti-CD40 antibodies (mAb) as a powerful immunological adjuvant has been demonstrated in mammals, but not in chickens. We recently reported an agonistic anti-chicken CD40 mAb (designated mAb 2C5) and showed that it may have potential as an immunological adjuvant. In this study, we examined the efficacy of targeting a short peptide to chicken CD40 [expressed by the antigen-presenting cells (APCs)] in enhancing an effective IgG response in chickens. For this purpose, an immune complex consisting of one streptavidin molecule, two directionally biotinylated mAb 2C5 molecules, and two biotinylated peptide molecules was produced. Chickens were immunized subcutaneously with doses of this complex ranging from 10 to 90 μg per injection once, and relative quantification of the peptide-specific IgG response showed that the mAb 2C5-based complex was able to elicit a strong IgG response as early as four days post-immunization. This demonstrates that CD40-targeting antigen to chicken APCs can significantly enhance antibody responses and induce immunoglobulin isotype-switching. This immunization strategy holds promise for rapid production of hapten-specific IgG in chickens. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Internal disruption in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    A review of results of experimental and theoretical investigations of internal disruption in tokamaks is given. Specific features of various types of saw-tooth oscillations are described and their classification is performed. Theoretical models of the process of development of internal disruption instability are discussed. Effect of internal disruption on parameters of plasma, confined in tokamak, is considered. Scalings of period and amplitude of saw-tooth oscillations, as well as version radius are presented. Different methods for stabilizing instability of internal disruption are described

  1. Internal disruptions in tokamaks

    International Nuclear Information System (INIS)

    Kuvshinov, B.N.; Savrukhin, P.V.

    1990-01-01

    Experimental and theoretical studies of the phenomenon of internal disruptions in tokamaks are reviewed. A classification scheme is introduced and the features of different types of sawtooth oscillations are described. A theoretical model for the development of the internal disruption instability is discussed. The effect of internal disruptions on the parameters of plasma confined in tokamaks is discussed. Scaling laws for the period and amplitude of sawtooth oscillations, as well as for the inversion radius, are presented. Different methods of stabilizing the internal disruption instability are described

  2. A potential disruptive technology in vaccine development: gene-based vaccines and their application to infectious diseases.

    Science.gov (United States)

    Kaslow, David C

    2004-10-01

    Vaccine development requires an amalgamation of disparate disciplines and has unique economic and regulatory drivers. Non-viral gene-based delivery systems, such as formulated plasmid DNA, are new and potentially disruptive technologies capable of providing 'cheaper, simpler, and more convenient-to-use' vaccines. Typically and somewhat ironically, disruptive technologies have poorer product performance, at least in the near-term, compared with the existing conventional technologies. Because successful product development requires that the product's performance must meet or exceed the efficacy threshold for a desired application, the appropriate selection of the initial product applications for a disruptive technology is critical for its successful evolution. In this regard, the near-term successes of gene-based vaccines will likely be for protection against bacterial toxins and acute viral and bacterial infections. Recent breakthroughs, however, herald increasing rather than languishing performance improvements in the efficacy of gene-based vaccines. Whether gene-based vaccines ultimately succeed in eliciting protective immunity in humans to persistent intracellular pathogens, such as HIV, malaria and tuberculosis, for which the conventional vaccine technologies have failed, remains to be determined. A success against any one of the persistent intracellular pathogens would be sufficient proof that gene-based vaccines represent a disruptive technology against which future vaccine technologies will be measured.

  3. Disruption of circumstellar discs by large-scale stellar magnetic fields

    Science.gov (United States)

    ud-Doula, Asif; Owocki, Stanley P.; Kee, Nathaniel Dylan

    2018-05-01

    Spectropolarimetric surveys reveal that 8-10% of OBA stars harbor large-scale magnetic fields, but thus far no such fields have been detected in any classical Be stars. Motivated by this, we present here MHD simulations for how a pre-existing Keplerian disc - like that inferred to form from decretion of material from rapidly rotating Be stars - can be disrupted by a rotation-aligned stellar dipole field. For characteristic stellar and disc parameters of a near-critically rotating B2e star, we find that a polar surface field strength of just 10 G can significantly disrupt the disc, while a field of 100 G, near the observational upper limit inferred for most Be stars, completely destroys the disc over just a few days. Our parameter study shows that the efficacy of this magnetic disruption of a disc scales with the characteristic plasma beta (defined as the ratio between thermal and magnetic pressure) in the disc, but is surprisingly insensitive to other variations, e.g. in stellar rotation speed, or the mass loss rate of the star's radiatively driven wind. The disc disruption seen here for even a modest field strength suggests that the presumed formation of such Be discs by decretion of material from the star would likely be strongly inhibited by such fields; this provides an attractive explanation for why no large-scale fields are detected from such Be stars.

  4. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular disrupting agent, combretastatin A4 phosphate in mice.

    OpenAIRE

    Welford, Abigail F.; Biziato, Daniela; Coffelt, Seth B.; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M.; Lewis, Claire E.

    2011-01-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA...

  5. Expression of CD markers' in immune thrombocytopenic purpura: prognostic approaches.

    Science.gov (United States)

    Behzad, Masumeh Maleki; Asnafi, Ali Amin; Jaseb, Kaveh; Jalali Far, Mohammad Ali; Saki, Najmaldin

    2017-12-01

    Immune Thrombocytopenic Purpura (ITP) is a common autoimmune bleeding disorder characterized by a reduction in peripheral blood platelet counts. In this disease, autoantibodies (Auto-Abs) are produced against platelet GPIIb/GPIIIa by B cells, which require interaction with T cells. In this review, the importance of B and T lymphocytes in ITP prognosis has been studied. Relevant literature was identified by a PubMed search (1990-2016) of English-language papers using the terms B and T lymphocyte, platelet, CD markers and immune thrombocytopenic purpura. T and B lymphocytes are the main immune cells in the body. Defective function causes disrupted balance of different subgroups of lymphocytes, and abnormal expression of surface markers of these cells results in self-tolerance dysfunction, as well as induction of Auto-Abs against platelet glycoproteins (PG). Given the role of B and T cells in production of autoantibodies against PG, it can be stated that the detection of changes in CD markers' expression in these cells can be a good approach for assessing prognosis in ITP patients. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  6. A Force-Activated Trip Switch Triggers Rapid Dissociation of a Colicin from Its Immunity Protein

    Science.gov (United States)

    Farrance, Oliver E.; Hann, Eleanore; Kaminska, Renata; Housden, Nicholas G.; Derrington, Sasha R.; Kleanthous, Colin; Radford, Sheena E.; Brockwell, David J.

    2013-01-01

    Colicins are protein antibiotics synthesised by Escherichia coli strains to target and kill related bacteria. To prevent host suicide, colicins are inactivated by binding to immunity proteins. Despite their high avidity (Kd≈fM, lifetime ≈4 days), immunity protein release is a pre-requisite of colicin intoxication, which occurs on a timescale of minutes. Here, by measuring the dynamic force spectrum of the dissociation of the DNase domain of colicin E9 (E9) and immunity protein 9 (Im9) complex using an atomic force microscope we show that application of low forces (force-triggered increase in off-rate a trip bond. Using mutational analysis, we elucidate the mechanism of this switch in affinity. We show that the N-terminal region of E9, which has sparse contacts with the hydrophobic core, is linked to an allosteric activator region in E9 (residues 21–30) whose remodelling triggers immunity protein release. Diversion of the force transduction pathway by the introduction of appropriately positioned disulfide bridges yields a force resistant complex with a lifetime identical to that measured by ensemble techniques. A trip switch within E9 is ideal for its function as it allows bipartite complex affinity, whereby the stable colicin:immunity protein complex required for host protection can be readily converted to a kinetically unstable complex whose dissociation is necessary for cellular invasion and competitor death. More generally, the observation of two force phenotypes for the E9:Im9 complex demonstrates that force can re-sculpt the underlying energy landscape, providing new opportunities to modulate biological reactions in vivo; this rationalises the commonly observed discrepancy between off-rates measured by dynamic force spectroscopy and ensemble methods. PMID:23431269

  7. Symposium on disruptive instabilities at Garching

    International Nuclear Information System (INIS)

    Lackner, K.

    1979-01-01

    The phenomenon of disruptive instabilities was investigated with a special care at the IPP at Garching. After lectures and panel sessions it appears suitable, to subdivide the disruptive phenomena into four classes: 1. The internal disruption (the socalled saw-tooth oscillators). 2. the socalled reconnection disruptions. 3. The large disruptions. 4. The small disruptions. The four appearance forms of the phenomena are briefly explained. (GG) [de

  8. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish.

    Science.gov (United States)

    Chiao, Chuan-Chin; Chubb, Charles; Hanlon, Roger T

    2007-07-01

    Disruptive body coloration is a primary camouflage tactic of cuttlefish. Because rapid changeable coloration of cephalopods is guided visually, we can present different visual backgrounds (e.g., computer-generated, two-dimensional prints) and video record the animal's response by describing and grading its body pattern. We showed previously that strength of cuttlefish disruptive patterning depends on the size, contrast, and density of discrete light elements on a homogeneous dark background. Here we report five experiments on the interactions of these and other features. Results show that Weber contrast of light background elements is--in combination with element size--a powerful determinant of disruptive response strength. Furthermore, the strength of disruptive patterning decreases with increasing mean substrate intensity (with other factors held constant). Interestingly, when element size, Weber contrast and mean substrate intensity are kept constant, strength of disruptive patterning depends on the configuration of clusters of small light elements. This study highlights the interactions of multiple features of natural microhabitats that directly influence which camouflage pattern a cuttlefish will choose.

  9. Survey of disruption causes at JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Alper, B.; Hender, T.C.; Riccardo, V.; Buratti, P.; Koslowski, H.R.

    2011-01-01

    A survey has been carried out into the causes of all 2309 disruptions over the last decade of JET operations. The aim of this survey was to obtain a complete picture of all possible disruption causes, in order to devise better strategies to prevent or mitigate their impact. The analysis allows the effort to avoid or prevent JET disruptions to be more efficient and effective. As expected, a highly complex pattern of chain of events that led to disruptions emerged. It was found that the majority of disruptions had a technical root cause, for example due to control errors, or operator mistakes. These bring a random, non-physics, factor into the occurrence of disruptions and the disruption rate or disruptivity of a scenario may depend more on technical performance than on physics stability issues. The main root cause of JET disruptions was nevertheless due to neo-classical tearing modes that locked, closely followed in second place by disruptions due to human error. The development of more robust operational scenarios has reduced the JET disruption rate over the last decade from about 15% to below 4%. A fraction of all disruptions was caused by very fast, precursorless unpredictable events. The occurrence of these disruptions may set a lower limit of 0.4% to the disruption rate of JET. If one considers on top of that human error and all unforeseen failures of heating or control systems this lower limit may rise to 1.0% or 1.6%, respectively.

  10. Convergence of the innate and adaptive immunity during human aging

    Directory of Open Access Journals (Sweden)

    Branca Isabel Pereira

    2016-11-01

    Full Text Available Aging is associated with profound changes in the human immune system, a phenomenon referred to as immunosenescence. This complex immune remodeling affects the adaptive immune system and the CD8+ T cell compartment in particular, leading to the accumulation of terminally differentiated T cells, which can rapidly exert their effector functions at the expenses of a limited proliferative potential. In this review we will discuss evidence suggesting that senescent αβCD8+ T cells acquire the hallmarks of innate-like T cells and use recently acquired NK cell receptors as an alternative mechanism to mediate rapid effector functions. These cells concomitantly lose expression of co-stimulatory receptors and exhibit decreased TCR signaling suggesting a functional shift away from antigen specific activation. The convergence of innate and adaptive features in senescent T cells challenges the classic division between innate and adaptive immune systems. Innate-like T cells are particularly important for stress and tumor surveillance and we propose a new role for these cells in aging, where the acquisition of innate-like functions may represent a beneficial adaptation to an increased burden of malignancy with age, although it may also pose a higher risk of autoimmune disorders.

  11. Synthetic Immunology: Hacking Immune Cells to Expand Their Therapeutic Capabilities.

    Science.gov (United States)

    Roybal, Kole T; Lim, Wendell A

    2017-04-26

    The ability of immune cells to survey tissues and sense pathologic insults and deviations makes them a unique platform for interfacing with the body and disease. With the rapid advancement of synthetic biology, we can now engineer and equip immune cells with new sensors and controllable therapeutic response programs to sense and treat diseases that our natural immune system cannot normally handle. Here we review the current state of engineered immune cell therapeutics and their unique capabilities compared to small molecules and biologics. We then discuss how engineered immune cells are being designed to combat cancer, focusing on how new synthetic biology tools are providing potential ways to overcome the major roadblocks for treatment. Finally, we give a long-term vision for the use of synthetic biology to engineer immune cells as a general sensor-response platform to precisely detect disease, to remodel disease microenvironments, and to treat a potentially wide range of challenging diseases.

  12. Epigenetic regulation of non-lymphoid cells by Bisphenol-A, a model endocrine disrupter: Potential Implications for Immunoregulation

    Directory of Open Access Journals (Sweden)

    Deena eKhan

    2015-06-01

    Full Text Available Endocrine disrupting chemicals (EDC abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical and consumer product industries. Many of the EDCs such as Bisphenol A (BPA have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.

  13. Designing Endocrine Disruption Out of the Next Generation of Chemicals.

    Science.gov (United States)

    Schug, T T; Abagyan, R; Blumberg, B; Collins, T J; Crews, D; DeFur, P L; Dickerson, S M; Edwards, T M; Gore, A C; Guillette, L J; Hayes, T; Heindel, J J; Moores, A; Patisaul, H B; Tal, T L; Thayer, K A; Vandenberg, L N; Warner, J; Watson, C S; Saal, F S Vom; Zoeller, R T; O'Brien, K P; Myers, J P

    2013-01-01

    A central goal of green chemistry is to avoid hazard in the design of new chemicals. This objective is best achieved when information about a chemical's potential hazardous effects is obtained as early in the design process as feasible. Endocrine disruption is a type of hazard that to date has been inadequately addressed by both industrial and regulatory science. To aid chemists in avoiding this hazard, we propose an endocrine disruption testing protocol for use by chemists in the design of new chemicals. The Tiered Protocol for Endocrine Disruption (TiPED) has been created under the oversight of a scientific advisory committee composed of leading representatives from both green chemistry and the environmental health sciences. TiPED is conceived as a tool for new chemical design, thus it starts with a chemist theoretically at "the drawing board." It consists of five testing tiers ranging from broad in silico evaluation up through specific cell- and whole organism-based assays. To be effective at detecting endocrine disruption, a testing protocol must be able to measure potential hormone-like or hormone-inhibiting effects of chemicals, as well as the many possible interactions and signaling sequellae such chemicals may have with cell-based receptors. Accordingly, we have designed this protocol to broadly interrogate the endocrine system. The proposed protocol will not detect all possible mechanisms of endocrine disruption, because scientific understanding of these phenomena is advancing rapidly. To ensure that the protocol remains current, we have established a plan for incorporating new assays into the protocol as the science advances. In this paper we present the principles that should guide the science of testing new chemicals for endocrine disruption, as well as principles by which to evaluate individual assays for applicability, and laboratories for reliability. In a 'proof-of-principle' test, we ran 6 endocrine disrupting chemicals (EDCs) that act via

  14. Statistical analysis of disruptions in JET

    International Nuclear Information System (INIS)

    De Vries, P.C.; Johnson, M.F.; Segui, I.

    2009-01-01

    The disruption rate (the percentage of discharges that disrupt) in JET was found to drop steadily over the years. Recent campaigns (2005-2007) show a yearly averaged disruption rate of only 6% while from 1991 to 1995 this was often higher than 20%. Besides the disruption rate, the so-called disruptivity, or the likelihood of a disruption depending on the plasma parameters, has been determined. The disruptivity of plasmas was found to be significantly higher close to the three main operational boundaries for tokamaks; the low-q, high density and β-limit. The frequency at which JET operated close to the density-limit increased six fold over the last decade; however, only a small reduction in disruptivity was found. Similarly the disruptivity close to the low-q and β-limit was found to be unchanged. The most significant reduction in disruptivity was found far from the operational boundaries, leading to the conclusion that the improved disruption rate is due to a better technical capability of operating JET, instead of safer operations close to the physics limits. The statistics showed that a simple protection system was able to mitigate the forces of a large fraction of disruptions, although it has proved to be at present more difficult to ameliorate the heat flux.

  15. Improvements in disruption prediction at ASDEX Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Aledda, R., E-mail: raffaele.aledda@diee.unica.it; Cannas, B., E-mail: cannas@diee.unica.it; Fanni, A., E-mail: fanni@diee.unica.it; Pau, A., E-mail: alessandro.pau@diee.unica.it; Sias, G., E-mail: giuliana.sias@diee.unica.it

    2015-10-15

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  16. Improvements in disruption prediction at ASDEX Upgrade

    International Nuclear Information System (INIS)

    Aledda, R.; Cannas, B.; Fanni, A.; Pau, A.; Sias, G.

    2015-01-01

    Highlights: • A disruption prediction system for AUG, based on a logistic model, is designed. • The length of the disruptive phase is set for each disruption in the training set. • The model is tested on dataset different from that used during the training phase. • The generalization capability and the aging of the model have been tested. • The predictor performance is compared with the locked mode detector. - Abstract: In large-scale tokamaks disruptions have the potential to create serious damage to the facility. Hence disruptions must be avoided, but, when a disruption is unavoidable, minimizing its severity is mandatory. A reliable detection of a disruptive event is required to trigger proper mitigation actions. To this purpose machine learning methods have been widely studied to design disruption prediction systems at ASDEX Upgrade. The training phase of the proposed approaches is based on the availability of disrupted and non-disrupted discharges. In literature disruptive configurations were assumed appearing into the last 45 ms of each disruption. Even if the achieved results in terms of correct predictions were good, it has to be highlighted that the choice of such a fixed temporal window might have limited the prediction performance. In fact, it generates confusing information in cases of disruptions with disruptive phase different from 45 ms. The assessment of a specific disruptive phase for each disruptive discharge represents a relevant issue in understanding the disruptive events. In this paper, the Mahalanobis distance is applied to define a specific disruptive phase for each disruption, and a logistic regressor has been trained as disruption predictor. The results show that enhancements on the achieved performance on disruption prediction are possible by defining a specific disruptive phase for each disruption.

  17. The dynamics of naturally acquired immunity to Plasmodium falciparum infection.

    Directory of Open Access Journals (Sweden)

    Mykola Pinkevych

    Full Text Available Severe malaria occurs predominantly in young children and immunity to clinical disease is associated with cumulative exposure in holoendemic settings. The relative contribution of immunity against various stages of the parasite life cycle that results in controlling infection and limiting disease is not well understood. Here we analyse the dynamics of Plasmodium falciparum malaria infection after treatment in a cohort of 197 healthy study participants of different ages in order to model naturally acquired immunity. We find that both delayed time-to-infection and reductions in asymptomatic parasitaemias in older age groups can be explained by immunity that reduces the growth of blood stage as opposed to liver stage parasites. We found that this mechanism would require at least two components - a rapidly acting strain-specific component, as well as a slowly acquired cross-reactive or general immunity to all strains. Analysis and modelling of malaria infection dynamics and naturally acquired immunity with age provides important insights into what mechanisms of immune control may be harnessed by malaria vaccine strategists.

  18. Mycobacterium tuberculosis lipoproteins in virulence and immunity - fighting with a double-edged sword.

    Science.gov (United States)

    Becker, Katja; Sander, Peter

    2016-11-01

    Bacterial lipoproteins are secreted membrane-anchored proteins characterized by a lipobox motif. This lipobox motif directs post-translational modifications at the conserved cysteine through the consecutive action of three enzymes: Lgt, LspA and Lnt, which results in di- or triacylated forms. Lipoproteins are abundant in all bacteria including Mycobacterium tuberculosis and often involved in virulence and immunoregulatory processes. On the one hand, disruption of the biosynthesis pathway of lipoproteins leads to attenuation of M. tuberculosis in vivo, and mycobacteria deficient for certain lipoproteins have been assessed as attenuated live vaccine candidates. On the other hand, several mycobacterial lipoproteins form immunodominant antigens which promote an immune response. Some of these have been explored in DNA or subunit vaccination approaches against tuberculosis. The immune recognition of specific lipoproteins, however, might also benefit long-term survival of M. tuberculosis through immune modulation, while others induce protective responses. Exploiting lipoproteins as vaccines is thus a complex matter which requires deliberative investigation. The dual role of lipoproteins in the immunity to and pathogenicity of mycobacteria is discussed here. © 2016 Federation of European Biochemical Societies.

  19. Disruption prediction at JET

    International Nuclear Information System (INIS)

    Milani, F.

    1998-12-01

    The sudden loss of the plasma magnetic confinement, known as disruption, is one of the major issue in a nuclear fusion machine as JET (Joint European Torus). Disruptions pose very serious problems to the safety of the machine. The energy stored in the plasma is released to the machine structure in few milliseconds resulting in forces that at JET reach several Mega Newtons. The problem is even more severe in the nuclear fusion power station where the forces are in the order of one hundred Mega Newtons. The events that occur during a disruption are still not well understood even if some mechanisms that can lead to a disruption have been identified and can be used to predict them. Unfortunately it is always a combination of these events that generates a disruption and therefore it is not possible to use simple algorithms to predict it. This thesis analyses the possibility of using neural network algorithms to predict plasma disruptions in real time. This involves the determination of plasma parameters every few milliseconds. A plasma boundary reconstruction algorithm, XLOC, has been developed in collaboration with Dr. D. O'Brien and Dr. J. Ellis capable of determining the plasma wall/distance every 2 milliseconds. The XLOC output has been used to develop a multilayer perceptron network to determine plasma parameters as l i and q ψ with which a machine operational space has been experimentally defined. If the limits of this operational space are breached the disruption probability increases considerably. Another approach for prediction disruptions is to use neural network classification methods to define the JET operational space. Two methods have been studied. The first method uses a multilayer perceptron network with softmax activation function for the output layer. This method can be used for classifying the input patterns in various classes. In this case the plasma input patterns have been divided between disrupting and safe patterns, giving the possibility of

  20. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance.

    Science.gov (United States)

    Daley, Donnele; Mani, Vishnu R; Mohan, Navyatha; Akkad, Neha; Ochi, Atsuo; Heindel, Daniel W; Lee, Ki Buom; Zambirinis, Constantinos P; Pandian, Gautam Sd Balasubramania; Savadkar, Shivraj; Torres-Hernandez, Alejandro; Nayak, Shruti; Wang, Ding; Hundeyin, Mautin; Diskin, Brian; Aykut, Berk; Werba, Gregor; Barilla, Rocky M; Rodriguez, Robert; Chang, Steven; Gardner, Lawrence; Mahal, Lara K; Ueberheide, Beatrix; Miller, George

    2017-05-01

    The progression of pancreatic oncogenesis requires immune-suppressive inflammation in cooperation with oncogenic mutations. However, the drivers of intratumoral immune tolerance are uncertain. Dectin 1 is an innate immune receptor crucial for anti-fungal immunity, but its role in sterile inflammation and oncogenesis has not been well defined. Furthermore, non-pathogen-derived ligands for dectin 1 have not been characterized. We found that dectin 1 is highly expressed on macrophages in pancreatic ductal adenocarcinoma (PDA). Dectin 1 ligation accelerated the progression of PDA in mice, whereas deletion of Clec7a-the gene encoding dectin 1-or blockade of dectin 1 downstream signaling was protective. We found that dectin 1 can ligate the lectin galectin 9 in mouse and human PDA, which results in tolerogenic macrophage programming and adaptive immune suppression. Upon disruption of the dectin 1-galectin 9 axis, CD4 + and CD8 + T cells, which are dispensable for PDA progression in hosts with an intact signaling axis, become reprogrammed into indispensable mediators of anti-tumor immunity. These data suggest that targeting dectin 1 signaling is an attractive strategy for developing an immunotherapy for PDA.

  1. CATASTROPHIC DISRUPTION OF COMET ISON

    Energy Technology Data Exchange (ETDEWEB)

    Keane, Jacqueline V.; Kleyna, Jan T.; Riesen, Timm-Emmanuel; Meech, Karen J. [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Milam, Stefanie N.; Charnley, Steven B. [Astrochemistry Laboratory, NASA GSFC, MS 690, Greenbelt, MD 20771 (United States); Coulson, Iain M. [Joint Astronomy Center, 660 North Aohoku Place, Hilo, HI 96720 (United States); Sekanina, Zdenek [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Kracht, Rainer, E-mail: keane@ifa.hawaii.edu [Ostlandring 53, D-25335 Elmshorn, Schleswig-Holstein (Germany)

    2016-11-10

    We report submillimeter 450 and 850 μ m dust continuum observations for comet C/2012 S1 (ISON) obtained at heliocentric distances 0.31–0.08 au prior to perihelion on 2013 November 28 ( r {sub h} = 0.0125 au). These observations reveal a rapidly varying dust environment in which the dust emission was initially point-like. As ISON approached perihelion, the continuum emission became an elongated dust column spread out over as much as 60″ (>10{sup 5} km) in the anti-solar direction. Deconvolution of the November 28.04 850 μ m image reveals numerous distinct clumps consistent with the catastrophic disruption of comet ISON, producing ∼5.2 × 10{sup 10} kg of submillimeter-sized dust. Orbital computations suggest that the SCUBA-2 emission peak coincides with the comet's residual nucleus.

  2. The immune system, natural autoantibodies and general homeostasis in health and disease.

    Science.gov (United States)

    Poletaev, A; Boura, P

    2011-10-01

    It is generally accepted that the destination of the immune system is not only to discriminate between self and non-self but also to mount responses against non-self. During the last decades, it became evident that weak self-reactivity is a necessary condition for immune homeostasis. Natural self reactivity and the internal image created by autoantibodies, participate greatly to the maintenance of homeostasis. Under conditions of increased or altered antigenic pressure, the homeostatic status is disrupted and the organism becomes vulnerable to the emergence of diseases. "Immunculus" is the self-reactive and interconnected entity of the immune system, provided by a complicated network of natural autoantibobies of different specificity, as a mosaic picture. Quantitative changes in each part of the image are related to variations of expression of relative antigens. The immune system takes in account image information from the continuous screening of the antigenic status and compares between presented state and the desired (optimal) one. Substantial and prolonged deviations from the optimal state, triggers the induction of compensatory and reparative processes, aiming to restore molecular and functional homeostasis. So, natural autoimmunity through the ability of natural a-Abs to induce mechanisms of natural and acquired immunity, aims to prevent pathogenic processes and maintain or restore health status.

  3. Strengthening health system to improve immunization for migrants in China.

    Science.gov (United States)

    Fang, Hai; Yang, Li; Zhang, Huyang; Li, Chenyang; Wen, Liankui; Sun, Li; Hanson, Kara; Meng, Qingyue

    2017-07-01

    Immunization is the most cost-effective method to prevent and control vaccine-preventable diseases. Migrant population in China has been rising rapidly, and their immunization status is poor. China has tried various strategies to strengthen its health system, which has significantly improved immunization for migrants. This study applied a qualitative retrospective review method aiming to collect, analyze and synthesize health system strengthening experiences and practices about improving immunizations for migrants in China. A conceptual framework of Theory of Change was used to extract the searched literatures. 11 searched literatures and 4 national laws and policies related to immunizations for migrant children were carefully studied. China mainly employed 3 health system strengthening strategies to significantly improve immunization for migrant population: stop charging immunization fees or immunization insurance, manage immunization certificates well, and pay extra attentions on immunization for special children including migrant children. These health system strengthening strategies were very effective, and searched literatures show that up-to-date and age-appropriate immunization rates were significantly improved for migrant children. Economic development led to higher migrant population in China, but immunization for migrants, particularly migrant children, were poor. Fortunately various health system strengthening strategies were employed to improve immunization for migrants in China and they were rather successful. The experiences and lessons of immunization for migrant population in China might be helpful for other developing countries with a large number of migrant population.

  4. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae.

    Science.gov (United States)

    Bao, Zehua; Xiao, Han; Liang, Jing; Zhang, Lu; Xiong, Xiong; Sun, Ning; Si, Tong; Zhao, Huimin

    2015-05-15

    One-step multiple gene disruption in the model organism Saccharomyces cerevisiae is a highly useful tool for both basic and applied research, but it remains a challenge. Here, we report a rapid, efficient, and potentially scalable strategy based on the type II Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-CRISPR associated proteins (Cas) system to generate multiple gene disruptions simultaneously in S. cerevisiae. A 100 bp dsDNA mutagenizing homologous recombination donor is inserted between two direct repeats for each target gene in a CRISPR array consisting of multiple donor and guide sequence pairs. An ultrahigh copy number plasmid carrying iCas9, a variant of wild-type Cas9, trans-encoded RNA (tracrRNA), and a homology-integrated crRNA cassette is designed to greatly increase the gene disruption efficiency. As proof of concept, three genes, CAN1, ADE2, and LYP1, were simultaneously disrupted in 4 days with an efficiency ranging from 27 to 87%. Another three genes involved in an artificial hydrocortisone biosynthetic pathway, ATF2, GCY1, and YPR1, were simultaneously disrupted in 6 days with 100% efficiency. This homology-integrated CRISPR (HI-CRISPR) strategy represents a powerful tool for creating yeast strains with multiple gene knockouts.

  5. Adenoviral vector immunity: its implications and circumvention strategies.

    Science.gov (United States)

    Ahi, Yadvinder S; Bangari, Dinesh S; Mittal, Suresh K

    2011-08-01

    Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations.

  6. Gut Microbiota-Immune System Crosstalk and Pancreatic Disorders

    Directory of Open Access Journals (Sweden)

    D. Pagliari

    2018-01-01

    Full Text Available Gut microbiota is key to the development and modulation of the mucosal immune system. It plays a central role in several physiological functions, in the modulation of inflammatory signaling and in the protection against infections. In healthy states, there is a perfect balance between commensal and pathogens, and microbiota and the immune system interact to maintain gut homeostasis. The alteration of such balance, called dysbiosis, determines an intestinal bacterial overgrowth which leads to the disruption of the intestinal barrier with systemic translocation of pathogens. The pancreas does not possess its own microbiota, and it is believed that inflammatory and neoplastic processes affecting the gland may be linked to intestinal dysbiosis. Increasing research evidence testifies a correlation between intestinal dysbiosis and various pancreatic disorders, but it remains unclear whether dysbiosis is the cause or an effect. The analysis of specific alterations in the microbiome profile may permit to develop novel tools for the early detection of several pancreatic disorders, utilizing samples, such as blood, saliva, and stools. Future studies will have to elucidate the mechanisms by which gut microbiota is modulated and how it tunes the immune system, in order to be able to develop innovative treatment strategies for pancreatic disorders.

  7. Monitoring-induced disruption in skilled typewriting.

    Science.gov (United States)

    Snyder, Kristy M; Logan, Gordon D

    2013-10-01

    It is often disruptive to attend to the details of one's expert performance. The current work presents four experiments that utilized a monitor to report protocol to evaluate the sufficiency of three accounts of monitoring-induced disruption. The inhibition hypothesis states that disruption results from costs associated with preparing to withhold inappropriate responses. The dual-task hypothesis states that disruption results from maintaining monitored information in working memory. The implicit-explicit hypothesis states that disruption results from explicitly monitoring details of performance that are normally implicit. The findings suggest that all three hypotheses are sufficient to produce disruption, but inhibition and dual-task costs are not necessary. Experiment 1 showed that monitoring to report was disruptive even when there was no requirement to inhibit. Experiment 2 showed that maintaining information in working memory caused some disruption but much less than monitoring to report. Experiment 4 showed that monitoring to inhibit was more disruptive than monitoring to report, suggesting that monitoring is more disruptive when it is combined with other task requirements, such as inhibition. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  8. Parental Exposure to Dim Light at Night Prior to Mating Alters Offspring Adaptive Immunity.

    Science.gov (United States)

    Cissé, Yasmine M; Russart, Kathryn L G; Nelson, Randy J

    2017-03-31

    Exposure to dim light at night (dLAN) disrupts natural light/dark cycles and impairs endogenous circadian rhythms necessary to maintain optimal biological function, including the endocrine and immune systems. We have previously demonstrated that white dLAN compromises innate and cell mediated immune responses in adult Siberian hamsters (Phodopus sungorus). We hypothesized that dLAN has transgenerational influences on immune function. Adult male and female Siberian hamsters were exposed to either dark nights (DARK) or dLAN (~5 lux) for 9 weeks, then paired in full factorial design, mated, and thereafter housed under dark nights. Offspring were gestated and reared in dark nights, then tested as adults for cell-mediated and humoral immunity. Maternal exposure to dLAN dampened delayed type hypersensitivity (DTH) responses in male offspring. Maternal and paternal exposure to dLAN reduced DTH responses in female offspring. IgG antibodies to a novel antigen were elevated in offspring of dams exposed to dLAN. Paternal exposure to dLAN decreased splenic endocrine receptor expression and global methylation in a parental sex-specific manner. Together, these data suggest that exposure to dLAN has transgenerational effects on endocrine-immune function that may be mediated by global alterations in the epigenetic landscape of immune tissues.

  9. [Effect of immune modulation on immunogenic and protective activity of a live plague vaccine].

    Science.gov (United States)

    Karal'nik, B V; Ponomareva, T S; Deriabin, P N; Denisova, T G; Mel'nikova, N N; Tugambaev, T I; Atshabar, B B; Zakarian, S B

    2014-01-01

    Comparative evaluation of the effect of polyoxidonium and betaleukin on immunogenic and protective activity of a live plague vaccine in model animal experiments. Plague vaccine EV, polyoxidonium, betaleukin, erythrocytic antigenic diagnosticum for determination of F1 antibodies and immune reagents for detection of lymphocytes with F1 receptors (LFR) in adhesive test developed by the authors were used. The experiments were carried out in 12 rabbits and 169 guinea pigs. Immune modulation accelerated the appearance and disappearance of LFR (early phase) and ensured a more rapid and intensive antibody formation (effector phase). Activation by betaleukin is more pronounced than by polyoxidonium. The more rapid and intensive was the development of early phase, the more effective was antibody response to the vaccine. Immune modulation in the experiment with guinea pigs significantly increased protective activity of the vaccine. The use of immune modulators increased immunogenic (in both early and effector phases of antigen-specific response) and protective activity of the EV vaccine. A connection between the acceleration of the first phase of antigen-specific response and general intensity of effector phase of immune response to the EV vaccine was detected. ,

  10. Politisk disruption

    DEFF Research Database (Denmark)

    Tække, Jesper

    2018-01-01

    Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på.......Dette blogindlæg giver en kort analyse af hvordan de sociale medier ved at give en ny tid har åbnet for den disruption af de politiske processer som især Trump stå som et eksempel på....

  11. Artificial Immune Ecosystems: the role of expert-based learning in artificial cognition

    Directory of Open Access Journals (Sweden)

    Pierre Parrend

    2018-03-01

    Full Text Available The rapid evolution of IT ecosystems significantly challenges the security models our infrastructures rely on. Beyond the old dichotomy between open and closed systems, it is now necessary to handle securely the interaction between heterogeneous devices building dynamic ecosystems. To this regard, bio-inspired approaches provide a rich set of conceptual tools, but they have failed to lay the basis for robust and efficient solutions. Our research effort intends to revisit the contribution of artificial immune system research to bring immune properties: security, resilience, distribution, memory, into IT infrastructures. Artificial immune ecosystems support a comprehensive model for anomaly detection and characterization, but their cognitive capacity are limited by the state of the art in machine learning and the rapid evolution of cybersecurity threats so far. We therefore propose to enrich the cognitive process with expert-based learning for reinforcement, classification and investigation. Application to system supervision using system logs and supervision time series confirms the relevance and performance of this model.

  12. Local and integral disruption forces on the tokamak wall

    Science.gov (United States)

    Pustovitov, V. D.; Kiramov, D. I.

    2018-04-01

    The disruption-induced forces on the tokamak wall are evaluated analytically within the standard large-aspect-ratio model that implies axisymmetry, circular plasma and wall, and absence of halo currents. Additionally, the ideal-wall reaction is assumed. The disruptions are modelled as rapid changes in the plasma pressure (thermal quench (TQ)) and net current (current quench (CQ)). The force distribution over the poloidal angle is found as a function of these inputs. The derived formulas allow comparison of the TQ- and CQ-produced forces calculated differently, with and without account of the poloidal current induced in the wall. The latter variant represents the inherent property of the codes treating the wall as a set of toroidal filaments. It is proved here that such a simplification leads to unacceptably large errors in the simulated forces for both TQs and CQs. It is also shown that the TQ part of the force must prevail over that due to CQ in the high-β scenarios developed for JT-60SA and ITER.

  13. Two-dimensional disruption thermal analysis code DREAM

    International Nuclear Information System (INIS)

    Yamazaki, Seiichiro; Kobayashi, Takeshi; Seki, Masahiro.

    1988-08-01

    When a plasma disruption takes place in a tokamak type fusion reactor, plasma facing components such as first wall and divertor/limiter are subjected to an intense heat load with very high heat flux and short duration. At the surface of the wall, temperature rapidly rises, and melting and evaporation occurs, it causes reduction of wall thickness and crack initiation/propagation. As lifetime of the components is significantly affected by them, the transient analysis in consideration of phase changes (melting/evaporation) and radiation heat loss is required in the design of these components. This paper describes the computer code DREAM developed to perform the two-dimensional transient thermal analysis that takes phase changes and radiation into account. The input and output of the code and a sample analysis on a disruption simulation experiment are also reported. The user's input manual is added as an appendix. The profiles and time variations of temperature, and melting and evaporated thicknesses of the material subjected to intense heat load can be obtained, using this computer code. This code also gives the temperature data for elastoplastic analysis with FEM structural analysis codes (ADINA, MARC, etc.) to evaluate the thermal stress and crack propagation behavior within the wall materials. (author)

  14. Towards a Disruptive Digital Platform Model

    DEFF Research Database (Denmark)

    Kazan, Erol

    that digital platforms leverage on three strategic design elements (i.e., business, architecture, and technology design) to create supportive conditions for facilitating disruption. To shed light on disruptive digital platforms, I opted for payment platforms as my empirical context and unit of analysis......Digital platforms are layered modular information technology architectures that support disruption. Digital platforms are particularly disruptive, as they facilitate the quick release of digital innovations that may replace established innovations. Yet, despite their support for disruption, we have...... not fully understood how such digital platforms can be strategically designed and configured to facilitate disruption. To that end, this thesis endeavors to unravel disruptive digital platforms from the supply perspective that are grounded on strategic digital platform design elements. I suggest...

  15. Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage.

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C; Wood, Bruce W

    2006-02-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan.

  16. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine

    International Nuclear Information System (INIS)

    Yoshikawa, Tomoaki; Imazu, Susumu; Gao Jianqing; Hayashi, Kazuyuki; Tsuda, Yasuhiro; Shimokawa, Mariko; Sugita, Toshiki; Niwa, Takako; Oda, Atushi; Akashi, Mitsuru; Tsutsumi, Yasuo; Mayumi, Tadanori; Nakagawa, Shinsaku

    2004-01-01

    In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen

  17. Thigmotaxis Mediates Trail Odour Disruption.

    Science.gov (United States)

    Stringer, Lloyd D; Corn, Joshua E; Sik Roh, Hyun; Jiménez-Pérez, Alfredo; Manning, Lee-Anne M; Harper, Aimee R; Suckling, David M

    2017-05-10

    Disruption of foraging using oversupply of ant trail pheromones is a novel pest management application under investigation. It presents an opportunity to investigate the interaction of sensory modalities by removal of one of the modes. Superficially similar to sex pheromone-based mating disruption in moths, ant trail pheromone disruption lacks an equivalent mechanistic understanding of how the ants respond to an oversupply of their trail pheromone. Since significant compromise of one sensory modality essential for trail following (chemotaxis) has been demonstrated, we hypothesised that other sensory modalities such as thigmotaxis could act to reduce the impact on olfactory disruption of foraging behaviour. To test this, we provided a physical stimulus of thread to aid trailing by Argentine ants otherwise under disruptive pheromone concentrations. Trail following success was higher using a physical cue. While trail integrity reduced under continuous over-supply of trail pheromone delivered directly on the thread, provision of a physical cue in the form of thread slightly improved trail following and mediated trail disruption from high concentrations upwind. Our results indicate that ants are able to use physical structures to reduce but not eliminate the effects of trail pheromone disruption.

  18. Neutrophils in Homeostasis, Immunity, and Cancer.

    Science.gov (United States)

    Nicolás-Ávila, José Ángel; Adrover, José M; Hidalgo, Andrés

    2017-01-17

    Neutrophils were among the first leukocytes described and visualized by early immunologists. Prominent effector functions during infection and sterile inflammation classically placed them low in the immune tree as rapid, mindless aggressors with poor regulatory functions. This view is currently under reassessment as we uncover new aspects of their life cycle and identify transcriptional and phenotypic diversity that endows them with regulatory properties that extend beyond their lifetime in the circulation. These properties are revealing unanticipated roles for neutrophils in supporting homeostasis, as well as complex disease states such as cancer. We focus this review on these emerging functions in order to define the true roles of neutrophils in homeostasis, immunity, and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Prenatal immune challenge is an environmental risk factor for brain and behavior change relevant to schizophrenia: evidence from MRI in a mouse model.

    Directory of Open Access Journals (Sweden)

    Qi Li

    Full Text Available OBJECTIVES: Maternal infection during pregnancy increases risk of severe neuropsychiatric disorders, including schizophrenia and autism, in the offspring. The most consistent brain structural abnormality in patients with schizophrenia is enlarged lateral ventricles. However, it is unknown whether the aetiology of ventriculomegaly in schizophrenia involves prenatal infectious processes. The present experiments tested the hypothesis that there is a causal relationship between prenatal immune challenge and emergence of ventricular abnormalities relevant to schizophrenia in adulthood. METHOD: We used an established mouse model of maternal immune activation (MIA by the viral mimic PolyI:C administered in early (day 9 or late (day 17 gestation. Automated voxel-based morphometry mapped cerebrospinal fluid across the whole brain of adult offspring and the results were validated by manual region-of-interest tracing of the lateral ventricles. Parallel behavioral testing determined the existence of schizophrenia-related sensorimotor gating abnormalities. RESULTS: PolyI:C-induced immune activation, in early but not late gestation, caused marked enlargement of lateral ventricles in adulthood, without affecting total white and grey matter volumes. This early exposure disrupted sensorimotor gating, in the form of prepulse inhibition. Identical immune challenge in late gestation resulted in significant expansion of 4(th ventricle volume but did not disrupt sensorimotor gating. CONCLUSIONS: Our results provide the first experimental evidence that prenatal immune activation is an environmental risk factor for adult ventricular enlargement relevant to schizophrenia. The data indicate immune-associated environmental insults targeting early foetal development may have more extensive neurodevelopmental impact than identical insults in late prenatal life.

  20. Supply disruption cost for power network planning

    International Nuclear Information System (INIS)

    Kjoelle, G.H.

    1992-09-01

    A description is given of the method of approach to calculate the total annual socio-economic cost of power supply disruption and non-supplied energy, included the utilities' cost for planning. The total socio-economic supply disruption cost is the sum of the customers' disruption cost and the utilities' cost for failure and disruption. The mean weighted disruption cost for Norway for one hour disruption is NOK 19 per kWh. The customers' annual disruption cost is calculated with basis in the specific disruption cost referred to heavy load (January) and dimensioning maximum loads. The loads are reduced by factors taking into account the time variations of the failure frequency, duration, the loads and the disruption cost. 6 refs

  1. Cyanohepatotoxins influence on the neuroendocrine and immune systems in fish - a short review.

    Science.gov (United States)

    Sieroslawska, Anna; Rymuszka, Anna

    2009-01-01

    Cyanotoxins are the metabolites of cyanobacteria, belonging to different chemical groups and of diverse mechanisms of toxicity. Generally, they are divided into hepatotoxins, neurotoxins and dermatotoxins/irritant toxins. There is a growing evidence, that besides the above mentioned toxicity, exposure to cyanotoxins may also induce other effects, among others the disruption of neuroendocrine and immune systems. The purpose of that paper is to sum up the current information obtained from the literature and from our own studies about the influence of cyanohepatotoxins on neuroendocrine and immune systems of fish. From the presented data it appears, that microcystins, nodularin and cylindrospermopsin, except for their hepatotoxic activity, are potent to exert such effects as HPI axis activation resulting in physiological and behavioural changes, disturbances in thyroid hormones release/metabolism, as well as impairment of immune responses in fish. However the studies in that area are still incomplete and many questions remain to be answered, especially what consequences for fish population health status it brings.

  2. Co-ordinating innate and adaptive immunity to viral infection: mobility is the key

    DEFF Research Database (Denmark)

    Wern, Jeanette Erbo; Thomsen, Allan Randrup

    2009-01-01

    The host counters a viral infection through a complex response made up of components belonging to both the innate and the adaptive immune system. In this report, we review the mechanisms underlying this response, how it is induced and how it is co-ordinated. As cell-cell communication represents...... the very essence of immune system physiology, a key to a rapid, efficient and optimally regulated immune response is the ability of the involved cells to rapidly shift between a stationary and a mobile state, combined with stringent regulation of cell migration during the mobile state. Through the co......-ordinated recruitment of different cell types intended to work in concert, cellular co-operation is optimized particularly under conditions that may involve rare cells. Consequently, a major focus is placed on presenting an overview of the co-operative events and the associated cell migration, which is essential...

  3. The Role of Alternative Splicing in the Control of Immune Homeostasis and Cellular Differentiation.

    Science.gov (United States)

    Yabas, Mehmet; Elliott, Hannah; Hoyne, Gerard F

    2015-12-22

    Alternative splicing of pre-mRNA helps to enhance the genetic diversity within mammalian cells by increasing the number of protein isoforms that can be generated from one gene product. This provides a great deal of flexibility to the host cell to alter protein function, but when dysregulation in splicing occurs this can have important impact on health and disease. Alternative splicing is widely used in the mammalian immune system to control the development and function of antigen specific lymphocytes. In this review we will examine the splicing of pre-mRNAs yielding key proteins in the immune system that regulate apoptosis, lymphocyte differentiation, activation and homeostasis, and discuss how defects in splicing can contribute to diseases. We will describe how disruption to trans-acting factors, such as heterogeneous nuclear ribonucleoproteins (hnRNPs), can impact on cell survival and differentiation in the immune system.

  4. NKT Cell Networks in the Regulation of Tumor Immunity

    Science.gov (United States)

    Robertson, Faith C.; Berzofsky, Jay A.; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting. PMID:25389427

  5. NKT cell networks in the regulation of tumor immunity.

    Science.gov (United States)

    Robertson, Faith C; Berzofsky, Jay A; Terabe, Masaki

    2014-01-01

    CD1d-restricted natural killer T (NKT) cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II) have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic, and myeloid lineage cells, as well as adaptive populations, especially CD8(+) and CD4(+) T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host's ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  6. NKT cell networks in the regulation of tumor immunity

    Directory of Open Access Journals (Sweden)

    Faith C Robertson

    2014-10-01

    Full Text Available CD1d-restricted natural killer T (NKT cells lie at the interface between the innate and adaptive immune systems and are important mediators of immune responses and tumor immunosurveillance. These NKT cells uniquely recognize lipid antigens, and their rapid yet specific reactions influence both innate and adaptive immunity. In tumor immunity, two NKT subsets (type I and type II have contrasting roles in which they not only cross-regulate one another, but also impact innate immune cell populations, including natural killer, dendritic and myeloid lineage cells, as well as adaptive populations, especially CD8+ and CD4+ T cells. The extent to which NKT cells promote or suppress surrounding cells affects the host’s ability to prevent neoplasia and is consequently of great interest for therapeutic development. Data have shown the potential for therapeutic use of NKT cell agonists and synergy with immune response modifiers in both pre-clinical studies and preliminary clinical studies. However, there is room to improve treatment efficacy by further elucidating the biological mechanisms underlying NKT cell networks. Here, we discuss the progress made in understanding NKT cell networks, their consequent role in the regulation of tumor immunity, and the potential to exploit that knowledge in a clinical setting.

  7. Disrupting the Industry with Play

    DEFF Research Database (Denmark)

    Lund, Henrik Hautop

    2016-01-01

    or two ago. This is significantly disrupting the industry in several market sectors. This paper describes the components of the playware and embodied artificial intelligence research that has led to disruption in the industrial robotics sector, and which points to the next disruption of the health care...

  8. Complement: a key system for immune surveillance and homeostasis.

    Science.gov (United States)

    Ricklin, Daniel; Hajishengallis, George; Yang, Kun; Lambris, John D

    2010-09-01

    Nearly a century after the significance of the human complement system was recognized, we have come to realize that its functions extend far beyond the elimination of microbes. Complement acts as a rapid and efficient immune surveillance system that has distinct effects on healthy and altered host cells and foreign intruders. By eliminating cellular debris and infectious microbes, orchestrating immune responses and sending 'danger' signals, complement contributes substantially to homeostasis, but it can also take action against healthy cells if not properly controlled. This review describes our updated view of the function, structure and dynamics of the complement network, highlights its interconnection with immunity at large and with other endogenous pathways, and illustrates its multiple roles in homeostasis and disease.

  9. Naturally acquired immunity to Plasmodium falciparum malaria in Africa

    DEFF Research Database (Denmark)

    Hviid, Lars

    2005-01-01

    Infection by Plasmodium falciparum parasites can lead to substantial protective immunity to malaria, and available evidence suggest that acquisition of protection against some severe malaria syndromes can be fairly rapid. Although these facts have raised hopes that the development of effective...... protective immunity to P. falciparum malaria is acquired following natural exposure to the parasites is beginning to emerge, not least thanks to studies that have combined clinical and epidemiological data with basic immunological research. This framework involves IgG with specificity for clonally variant...... antigens on the surface of the infected erythrocytes, can explain some of the difficulties in relating particular immune responses with specificity for well-defined antigenic targets to clinical protection, and suggests a radically new approach to controlling malaria-related morbidity and mortality...

  10. Cell disruption for microalgae biorefineries.

    Science.gov (United States)

    Günerken, E; D'Hondt, E; Eppink, M H M; Garcia-Gonzalez, L; Elst, K; Wijffels, R H

    2015-01-01

    Microalgae are a potential source for various valuable chemicals for commercial applications ranging from nutraceuticals to fuels. Objective in a biorefinery is to utilize biomass ingredients efficiently similarly to petroleum refineries in which oil is fractionated in fuels and a variety of products with higher value. Downstream processes in microalgae biorefineries consist of different steps whereof cell disruption is the most crucial part. To maintain the functionality of algae biochemicals during cell disruption while obtaining high disruption yields is an important challenge. Despite this need, studies on mild disruption of microalgae cells are limited. This review article focuses on the evaluation of conventional and emerging cell disruption technologies, and a comparison thereof with respect to their potential for the future microalgae biorefineries. The discussed techniques are bead milling, high pressure homogenization, high speed homogenization, ultrasonication, microwave treatment, pulsed electric field treatment, non-mechanical cell disruption and some emerging technologies. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Yersinia type III effectors perturb host innate immune responses

    Science.gov (United States)

    Pha, Khavong; Navarro, Lorena

    2016-01-01

    The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type III secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The three human pathogenic Yersinia spp. (Y. pestis, Y. enterocolitica, and Y. pseudotuberculosis) are Gram-negative bacteria that share in common a 70 kb virulence plasmid which encodes the T3SS. Translocation of the Yersinia effector proteins (YopE, YopH, YopT, YopM, YpkA/YopO, and YopP/J) into the target host cell results in disruption of the actin cytoskeleton to inhibit phagocytosis, downregulation of proinflammatory cytokine/chemokine production, and induction of cellular apoptosis of the target cell. Over the past 25 years, studies on the Yersinia effector proteins have unveiled tremendous knowledge of how the effectors enhance Yersinia virulence. Recently, the long awaited crystal structure of YpkA has been solved providing further insights into the activation of the YpkA kinase domain. Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia

  12. Cell membrane disruption stimulates cAMP and Ca2+ signaling to potentiate cell membrane resealing in neighboring cells

    Directory of Open Access Journals (Sweden)

    Tatsuru Togo

    2017-12-01

    Full Text Available Disruption of cellular plasma membranes is a common event in many animal tissues, and the membranes are usually rapidly resealed. Moreover, repeated membrane disruptions within a single cell reseal faster than the initial wound in a protein kinase A (PKA- and protein kinase C (PKC-dependent manner. In addition to wounded cells, recent studies have demonstrated that wounding of Madin-Darby canine kidney (MDCK cells potentiates membrane resealing in neighboring cells in the short-term by purinergic signaling, and in the long-term by nitric oxide/protein kinase G signaling. In the present study, real-time imaging showed that cell membrane disruption stimulated cAMP synthesis and Ca2+ mobilization from intracellular stores by purinergic signaling in neighboring MDCK cells. Furthermore, inhibition of PKA and PKC suppressed the ATP-mediated short-term potentiation of membrane resealing in neighboring cells. These results suggest that cell membrane disruption stimulates PKA and PKC via purinergic signaling to potentiate cell membrane resealing in neighboring MDCK cells.

  13. Major disruption process in tokamak

    International Nuclear Information System (INIS)

    Kurita, Gen-ichi; Azumi, Masafumi; Tuda, Takashi; Takizuka, Tomonori; Tsunematsu, Toshihide; Tokuda, Shinji; Itoh, Kimitaka; Takeda, Tatsuoki

    1981-11-01

    The major disruption in a cylindrical tokamak is investigated by using the multi-helicity code, and the destabilization of the 3/2 mode by the mode coupling with the 2/1 mode is confirmed. The evolution of the magnetic field topology caused by the major disruption is studied in detail. The effect of the internal disruption on the 2/1 magnetic island width is also studied. The 2/1 magnetic island is not enhanced by the flattening of the q-profile due to the internal disruption. (author)

  14. Plasma disruption modeling and simulation

    International Nuclear Information System (INIS)

    Hassanein, A.

    1994-01-01

    Disruptions in tokamak reactors are considered a limiting factor to successful operation and reliable design. The behavior of plasma-facing components during a disruption is critical to the overall integrity of the reactor. Erosion of plasma facing-material (PFM) surfaces due to thermal energy dump during the disruption can severely limit the lifetime of these components and thus diminish the economic feasibility of the reactor. A comprehensive understanding of the interplay of various physical processes during a disruption is essential for determining component lifetime and potentially improving the performance of such components. There are three principal stages in modeling the behavior of PFM during a disruption. Initially, the incident plasma particles will deposit their energy directly on the PFM surface, heating it to a very high temperature where ablation occurs. Models for plasma-material interactions have been developed and used to predict material thermal evolution during the disruption. Within a few microseconds after the start of the disruption, enough material is vaporized to intercept most of the incoming plasma particles. Models for plasma-vapor interactions are necessary to predict vapor cloud expansion and hydrodynamics. Continuous heating of the vapor cloud above the material surface by the incident plasma particles will excite, ionize, and cause vapor atoms to emit thermal radiation. Accurate models for radiation transport in the vapor are essential for calculating the net radiated flux to the material surface which determines the final erosion thickness and consequently component lifetime. A comprehensive model that takes into account various stages of plasma-material interaction has been developed and used to predict erosion rates during reactor disruption, as well during induced disruption in laboratory experiments

  15. Individual trajectories in stress covary with immunity during recovery from cancer diagnosis and treatments.

    Science.gov (United States)

    Thornton, Lisa M; Andersen, Barbara L; Crespin, Timothy R; Carson, William E

    2007-02-01

    Research connects stressful events with altered immune regulation, but the role of subjective stress is uncertain. Using a longitudinal design, we provide a statistically powerful test of the relationship between subjective stress (perceived stress, emotional distress) and immunity (T cell blastogenesis, natural killer cell cytotoxicity, [NKCC]) as individuals adjust to a severe stressor, a cancer diagnosis and its treatments. Women with regional breast cancer (N=113) were assessed at diagnosis/surgery and reassessed 4, 8, 12, and 18 months later. Latent growth curve analysis tested two hypotheses: (1) initial levels of subjective stress will correlate inversely with initial levels of immunity, and (2) rate of change in subjective stress will correlate inversely with rate of change in immunity. As predicted by Hypothesis 1, participants with high initial subjective stress showed poor initial blastogenesis. As predicted by Hypothesis 2, participants exhibiting an early, rapid decline in subjective stress also showed rapid improvement in NKCC. Follow-up analyses revealed perceived stress to be strongly related to immune function, while emotional distress was not. This is the first study to investigate trajectories in stress and immunity during recovery from a major stressor. Results imply that NK and T cells are sensitive to different aspects of the stress response. While T cell blastogenesis correlated with initial (peak) subjective stress, NKCC correlated with change (improvement) in subjective stress. These data highlight the importance of subjective stress, particularly stress appraisals, in the immune response to a major stressor.

  16. Disrupt mig vel: Fire gode råd om disruption

    DEFF Research Database (Denmark)

    Rydén, Pernille; Ringberg, Torsten; Østergaard Jacobsen, Per

    2017-01-01

    Forandring. Ønsket om at være teknologisk foran, kommer ofte til at ske på bekostning af fokus på kundernes oplevelser. Lighedstegnet mellem disruption og ny teknologi er kun den halve sandhed.......Forandring. Ønsket om at være teknologisk foran, kommer ofte til at ske på bekostning af fokus på kundernes oplevelser. Lighedstegnet mellem disruption og ny teknologi er kun den halve sandhed....

  17. Heterosubtypic immunity to influenza A virus infections in mallards may explain existence of multiple virus subtypes.

    Directory of Open Access Journals (Sweden)

    Neus Latorre-Margalef

    Full Text Available Wild birds, particularly duck species, are the main reservoir of influenza A virus (IAV in nature. However, knowledge of IAV infection dynamics in the wild bird reservoir, and the development of immune responses, are essentially absent. Importantly, a detailed understanding of how subtype diversity is generated and maintained is lacking. To address this, 18,679 samples from 7728 Mallard ducks captured between 2002 and 2009 at a single stopover site in Sweden were screened for IAV infections, and the resulting 1081 virus isolates were analyzed for patterns of immunity. We found support for development of homosubtypic hemagglutinin (HA immunity during the peak of IAV infections in the fall. Moreover, re-infections with the same HA subtype and related prevalent HA subtypes were uncommon, suggesting the development of natural homosubtypic and heterosubtypic immunity (p-value = 0.02. Heterosubtypic immunity followed phylogenetic relatedness of HA subtypes, both at the level of HA clades (p-value = 0.04 and the level of HA groups (p-value = 0.05. In contrast, infection patterns did not support specific immunity for neuraminidase (NA subtypes. For the H1 and H3 Clades, heterosubtypic immunity showed a clear temporal pattern and we estimated within-clade immunity to last at least 30 days. The strength and duration of heterosubtypic immunity has important implications for transmission dynamics of IAV in the natural reservoir, where immune escape and disruptive selection may increase HA antigenic variation and explain IAV subtype diversity.

  18. Disrupting Business

    DEFF Research Database (Denmark)

    Cox, Geoff; Bazzichelli, Tatiana

    Disruptive Business explores some of the interconnections between art, activism and the business concept of disruptive innovation. With a backdrop of the crisis of financial capitalism, austerity cuts in the cultural sphere, the idea is to focus on potential art strategies in relation to a broken...... economy. In a perverse way, we ask whether this presents new opportunities for cultural producers to achieve more autonomy over their production process. If it is indeed possible, or desirable, what alternative business models emerge? The book is concerned broadly with business as material for reinvention...

  19. Sleep disruption in chronic rhinosinusitis.

    Science.gov (United States)

    Mahdavinia, Mahboobeh; Schleimer, Robert P; Keshavarzian, Ali

    2017-05-01

    Chronic rhinosinusitis (CRS) is a common disease of the upper airways and paranasal sinuses with a marked decline in quality of life (QOL). CRS patients suffer from sleep disruption at a significantly higher proportion (60 to 75%) than in the general population (8-18 %). Sleep disruption in CRS causes decreased QOL and is linked to poor functional outcomes such as impaired cognitive function and depression. Areas covered: A systematic PubMed/Medline search was done to assess the results of studies that have investigated sleep and sleep disturbances in CRS. Expert commentary: These studies reported sleep disruption in most CRS patients. The main risk factors for sleep disruption in CRS include allergic rhinitis, smoking, and high SNOT-22 total scores. The literature is inconsistent with regard to the prevalence of sleep-related disordered breathing (e.g. obstructive sleep apnea) in CRS patients. Although nasal obstruction is linked to sleep disruption, the extent of sleep disruption in CRS seems to expand beyond that expected from physical blockage of the upper airways alone. Despite the high prevalence of sleep disruption in CRS, and its detrimental effects on QOL, the literature contains a paucity of studies that have investigated the mechanisms underlying this major problem in CRS.

  20. Clinical Evaluation of Rapid Diagnostic Test Kit for Scrub Typhus with Improved Performance.

    Science.gov (United States)

    Kim, Young-Jin; Park, Sungman; Premaratna, Ranjan; Selvaraj, Stephen; Park, Sang-Jin; Kim, Sora; Kim, Donghwan; Kim, Min Soo; Shin, Dong Hoon; Choi, Kyung-Chan; Kwon, Soon-Hwan; Seo, Wonjun; Lee, Nam Taek; Kim, Seung-Han; Kang, Heui Keun; Kim, Yoon-Won

    2016-08-01

    Diagnosis of scrub typhus is challenging due to its more than twenty serotypes and the similar clinical symptoms with other acute febrile illnesses including leptospirosis, murine typhus and hemorrhagic fever with renal syndrome. Accuracy and rapidity of a diagnostic test to Orientia tsutsugamushi is an important step to diagnose this disease. To discriminate scrub typhus from other diseases, the improved ImmuneMed Scrub Typhus Rapid Diagnostic Test (RDT) was evaluated in Korea and Sri Lanka. The sensitivity at the base of each IgM and IgG indirect immunofluorescent assay (IFA) in Korean patients was 98.6% and 97.1%, and the specificity was 98.2% and 97.7% respectively. The sensitivity and specificity for retrospective diagnosis at the base of IFA in Sri Lanka was 92.1% and 96.1%. ImmuneMed RDT was not reactive to any serum from seventeen diseases including hemorrhagic fever with renal syndrome (n = 48), leptospirosis (n = 23), and murine typhus (n = 48). ImmuneMed RDT shows superior sensitivity (98.6% and 97.1%) compared with SD Bioline RDT (84.4% at IgM and 83.3% at IgG) in Korea. The retrospective diagnosis of ImmuneMed RDT exhibits 94.0% identity with enzyme-linked Immunosorbent assay (ELISA) using South India patient serum samples. These results suggest that this RDT can replace other diagnostic tests and is applicable for global diagnosis of scrub typhus. This rapid and accurate diagnosis will be beneficial for diagnosing and managing scrub typhus.

  1. The Epitranscriptome and Innate Immunity.

    Directory of Open Access Journals (Sweden)

    Mary A O'Connell

    2015-12-01

    Full Text Available Our knowledge of the variety and abundances of RNA base modifications is rapidly increasing. Modified bases have critical roles in tRNAs, rRNAs, translation, splicing, RNA interference, and other RNA processes, and are now increasingly detected in all types of transcripts. Can new biological principles associated with this diversity of RNA modifications, particularly in mRNAs and long non-coding RNAs, be identified? This review will explore this question by focusing primarily on adenosine to inosine (A-to-I RNA editing by the adenine deaminase acting on RNA (ADAR enzymes that have been intensively studied for the past 20 years and have a wide range of effects. Over 100 million adenosine to inosine editing sites have been identified in the human transcriptome, mostly in embedded Alu sequences that form potentially innate immune-stimulating dsRNA hairpins in transcripts. Recent research has demonstrated that inosine in the epitranscriptome and ADAR1 protein establish innate immune tolerance for host dsRNA formed by endogenous sequences. Innate immune sensors that detect viral nucleic acids are among the readers of epitranscriptome RNA modifications, though this does preclude a wide range of other modification effects.

  2. Modeling of thermal effects on TIBER II [Tokamak Ignition/Burn Experimental Reactor] divertor during plasma disruption

    International Nuclear Information System (INIS)

    Bruhn, M.L.; Perkins, L.J.

    1987-01-01

    Mapping the disruption power flow from the mid-plane of the TIBER Engineering Test Reactor to its divertor and calculating the resulting thermal effects are accomplished through the modification and coupling of three presently existing computer codes. The resulting computer code TADDPAK (Thermal Analysis Divertor during Disruption PAcKage) provides three-dimensional graphic presentations of time and positional dependent thermal effects on a poloidal cross section of the double-null-divertor configured reactor. These thermal effects include incident heat flux, surface temperature, vaporization rate, total vaporization, and melting depth. The dependence of these thermal effects on material choice, disruption pulse shape, and the characteristic thickness of the plasma scrape-off layer is determined through parametric analysis with TADDPAK. This computer code is designed to be a convenient, rapid, and user-friendly modeling tool which can be easily adapted to most tokamak double-null-divertor reactor designs. 14 refs

  3. Phytochemicals for taming agitated immune-endocrine-neural axis.

    Science.gov (United States)

    Patel, Seema

    2017-07-01

    Homeostasis of immune-endocrine-neural axis is paramount for human health. If this axis gets agitated due to age, genetic variations, environmental exposures or lifestyle assaults, a cascade of adverse reactions occurs in human body. Cytokines, hormones and neurotransmitters, the effector molecules of this axis behave erratically, leading to a gamut of neural, endocrine, autoimmune, and metabolic diseases. Current panel of drugs can tackle some of them but not in a sustainable, benign way as a myriad of side effects, causal of them have been documented. In this context, phytochemicals, the secondary metabolites of plants seem beneficial. These bioactive constituents encompassing polyphenols, alkaloids, flavonoids, terpenoids, tannins, lignans, stilbenoids (resveratrol), saponins, polysaccharides, glycosides, and lectins etc. have been proven to exert antioxidant, anti-inflammatory, hypolipidemic, hypotensive, antidiabetic, anticancer, immunomodulatory, anti-allergic, analgesic, hepatoprotective, neuroprotective, dermatoprotective, and antimicrobial properties, among a litany of other biological effects. This review presents a holistic perspective of common afflictions resultant of immune-endocrine-neural axis disruption, and the phytochemicals capable of restoring their normalcy and mitigating the ailments. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. The radiation asymmetry in MGI rapid shutdown on J-TEXT tokamak

    Science.gov (United States)

    Tong, Ruihai; Chen, Zhongyong; Huang, Duwei; Cheng, Zhifeng; Zhang, Xiaolong; Zhuang, Ge; J-TEXT Team

    2017-10-01

    Disruptions, the sudden termination of tokamak fusion plasmas by instabilities, have the potential to cause severe material wall damage to large tokamaks like ITER. The mitigation of disruption damage is an essential part of any fusion reactor system. Massive gas injection (MGI) rapid shutdown is a technique in which large amounts of noble gas are injected into the plasma in order to safely radiate the plasma energy evenly over the entire plasma-facing first wall. However, the radiated energy during the thermal quench (TQ) in massive gas injection (MGI) induced disruptions is found toroidal asymmetric, and the degrees of asymmetry correlate with the gas penetration and MGI induced magnetohydrodynamics (MHD) activities. A toroidal and poloidal array of ultraviolet photodiodes (AXUV) has been developed to investigate the radiation asymmetry on J-TEXT tokamak. Together with the upgraded mirnov probe arrays, the relation between MGI triggered MHD activities with radiation asymmetry is studied.

  5. Chromatin versus pathogens: the function of epigenetics in plant immunity

    Science.gov (United States)

    Ding, Bo; Wang, Guo-Liang

    2015-01-01

    To defend against pathogens, plants have developed a sophisticated innate immunity that includes effector recognition, signal transduction, and rapid defense responses. Recent evidence has demonstrated that plants utilize the epigenetic control of gene expression to fine-tune their defense when challenged by pathogens. In this review, we highlight the current understanding of the molecular mechanisms of histone modifications (i.e., methylation, acetylation, and ubiquitination) and chromatin remodeling that contribute to plant immunity against pathogens. Functions of key histone-modifying and chromatin remodeling enzymes are discussed. PMID:26388882

  6. Understanding disruptions in tokamaksa)

    Science.gov (United States)

    Zakharov, Leonid E.; Galkin, Sergei A.; Gerasimov, Sergei N.; contributors, JET-EFDA

    2012-05-01

    This paper describes progress achieved since 2007 in understanding disruptions in tokamaks, when the effect of plasma current sharing with the wall was introduced into theory. As a result, the toroidal asymmetry of the plasma current measurements during vertical disruption event (VDE) on the Joint European Torus was explained. A new kind of plasma equilibria and mode coupling was introduced into theory, which can explain the duration of the external kink 1/1 mode during VDE. The paper presents first results of numerical simulations using a free boundary plasma model, relevant to disruptions.

  7. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity.

    Science.gov (United States)

    Park, Chang-Jin; Seo, Young-Su

    2015-12-01

    As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs) functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs) or resistance (R) proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER) HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  8. Heat Shock Proteins: A Review of the Molecular Chaperones for Plant Immunity

    Directory of Open Access Journals (Sweden)

    Chang-Jin Park

    2015-12-01

    Full Text Available As sessile organisms, plants are exposed to persistently changing stresses and have to be able to interpret and respond to them. The stresses, drought, salinity, chemicals, cold and hot temperatures, and various pathogen attacks have interconnected effects on plants, resulting in the disruption of protein homeostasis. Maintenance of proteins in their functional native conformations and preventing aggregation of non-native proteins are important for cell survival under stress. Heat shock proteins (HSPs functioning as molecular chaperones are the key components responsible for protein folding, assembly, translocation, and degradation under stress conditions and in many normal cellular processes. Plants respond to pathogen invasion using two different innate immune responses mediated by pattern recognition receptors (PRRs or resistance (R proteins. HSPs play an indispensable role as molecular chaperones in the quality control of plasma membrane-resident PRRs and intracellular R proteins against potential invaders. Here, we specifically discuss the functional involvement of cytosolic and endoplasmic reticulum (ER HSPs/chaperones in plant immunity to obtain an integrated understanding of the immune responses in plant cells.

  9. Thyroid effects of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Boas, Malene; Feldt-Rasmussen, Ulla; Main, Katharina M

    2012-01-01

    In recent years, many studies of thyroid-disrupting effects of environmental chemicals have been published. Of special concern is the exposure of pregnant women and infants, as thyroid disruption of the developing organism may have deleterious effects on neurological outcome. Chemicals may exert ...... thyroid-disrupting effects, and there is emerging evidence that also phthalates, bisphenol A, brominated flame retardants and perfluorinated chemicals may have thyroid disrupting properties....

  10. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    Science.gov (United States)

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  11. Hantavirus-induced disruption of the endothelial barrier: neutrophils are on the payroll.

    Science.gov (United States)

    Schönrich, Günther; Krüger, Detlev H; Raftery, Martin J

    2015-01-01

    Viral hemorrhagic fever caused by hantaviruses is an emerging infectious disease for which suitable treatments are not available. In order to improve this situation a better understanding of hantaviral pathogenesis is urgently required. Hantaviruses infect endothelial cell layers in vitro without causing any cytopathogenic effect and without increasing permeability. This implies that the mechanisms underlying vascular hyperpermeability in hantavirus-associated disease are more complex and that immune mechanisms play an important role. In this review we highlight the latest developments in hantavirus-induced immunopathogenesis. A possible contribution of neutrophils has been neglected so far. For this reason, we place special emphasis on the pathogenic role of neutrophils in disrupting the endothelial barrier.

  12. Rupture, Invasion and Inflammatory Destruction of the Intestinal Barrier by Shigella: The Yin and Yang of Innate Immunity

    Directory of Open Access Journals (Sweden)

    Philippe J Sansonetti

    2006-01-01

    Full Text Available Shigella is a Gram-negative bacterial species of the family Enterobacteriaceae that causes bacillary dysentery in humans. This acute colitis reflects the capacity of the microorganism to disrupt, invade and cause the inflammatory destruction of the intestinal epithelium. The pathogenesis of the Shigella infection can be seen as a disruption of the homeostatic balance that protects the gut against inflammation in the presence of its commensal flora. This provides the unified view that enteroinvasive pathogens allow for the identification of key signalling molecules and pathways involved in the regulation of intestinal inflammation, and more generally, in the regulation of the innate and adaptive immune response.

  13. Clonal Selection Based Artificial Immune System for Generalized Pattern Recognition

    Science.gov (United States)

    Huntsberger, Terry

    2011-01-01

    The last two decades has seen a rapid increase in the application of AIS (Artificial Immune Systems) modeled after the human immune system to a wide range of areas including network intrusion detection, job shop scheduling, classification, pattern recognition, and robot control. JPL (Jet Propulsion Laboratory) has developed an integrated pattern recognition/classification system called AISLE (Artificial Immune System for Learning and Exploration) based on biologically inspired models of B-cell dynamics in the immune system. When used for unsupervised or supervised classification, the method scales linearly with the number of dimensions, has performance that is relatively independent of the total size of the dataset, and has been shown to perform as well as traditional clustering methods. When used for pattern recognition, the method efficiently isolates the appropriate matches in the data set. The paper presents the underlying structure of AISLE and the results from a number of experimental studies.

  14. Rapid identification of genes controlling virulence and immunity in malaria parasites

    KAUST Repository

    Abkallo, Hussein M.; Martinelli, Axel; Inoue, Megumi; Ramaprasad, Abhinay; Xangsayarath, Phonepadith; Gitaka, Jesse; Tang, Jianxia; Yahata, Kazuhide; Zoungrana, Augustin; Mitaka, Hayato; Acharjee, Arita; Datta, Partha P.; Hunt, Paul; Carter, Richard; Kaneko, Osamu; Mustonen, Ville; Illingworth, Christopher J. R.; Pain, Arnab; Culleton, Richard

    2017-01-01

    Identifying the genetic determinants of phenotypes that impact disease severity is of fundamental importance for the design of new interventions against malaria. Here we present a rapid genome-wide approach capable of identifying multiple genetic

  15. Rapid analysis for 567 pesticides and endocrine disrupters by GC/MS using deconvolution reporting software

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, P.; Szelewski, M.; Meng, Chin-Kai [Agilent Technologies, Wilmington, DE (United States)

    2004-09-15

    More than 700 pesticides are approved for use around the world, many of which are suspected endocrine disrupters. Other pesticides, though no longer used, persist in the environment where they bioaccumulate in the flora and fauna. Analytical methods target only a subset of the possible compounds. The analysis of food and environmental samples for pesticides is usually complicated by the presence of co-extracted natural products. Food or tissue extracts can be exceedingly complex matrices that require several stages of sample cleanup prior to analysis. Even then, it can be difficult to detect trace levels of contaminants in the presence of the remaining matrix. For efficiency, multi-residue methods (MRMs) must be used to analyze for most pesticides. Traditionally, these methods have relied upon gas chromatography (GC) with a constellation of element-selective detectors to locate pesticides in the midst of a variable matrix. GC with mass spectral detection (GC/MS) has been widely used for confirmation of hits. Liquid chromatography (LC) has been used for those compounds that are not amenable to GC. Today, more and more pesticide laboratories are relying upon LC with mass spectral detection (LC/MS) and GC/MS as their primary analytical tools. Still, most MRMs are target compound methods that look for a small subset of the possible pesticides. Any compound not on the target list is likely to be missed by these methods. Using the techniques of retention time locking (RTL) and RTL database searching together with spectral deconvolution, a method has been developed to screen for 567 pesticides and suspected endocrine disrupters in a single GC/MS analysis. Spectral deconvolution helps to identify pesticides even when they co-elute with matrix compounds while RTL helps to eliminate false positives and gives greater confidence in the results.

  16. Disruption of a Regulatory Network Consisting of Neutrophils and Platelets Fosters Persisting Inflammation in Rheumatic Diseases.

    Science.gov (United States)

    Maugeri, Norma; Rovere-Querini, Patrizia; Manfredi, Angelo A

    2016-01-01

    A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of neutrophil extracellular traps (NETs) and immunothrombosis. Moreover, it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodeling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here, we discuss recent evidence that implicates the prototypic damage-associated molecular pattern/alarmin, the high mobility group box 1 (HMGB1) protein in systemic vasculitis and in the vascular inflammation associated with systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.

  17. Disruptive innovation as an entrepreneurial process

    NARCIS (Netherlands)

    Chandra, Y.; Yang, S.-J.S.; Singh, P.; Prajogo, D.; O'Neill, P.; Rahman, S.

    2008-01-01

    Research on conditions and causal mechanisms that influence disruptive innovation has been relatively unexplored in the extant research in disruptive innovation. By re-conceptualizing disruptive innovation as an entrepreneurial process at product, firm and industry levels, this paper draws on

  18. Automatic location of disruption times in JET

    Science.gov (United States)

    Moreno, R.; Vega, J.; Murari, A.

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  19. Automatic location of disruption times in JET.

    Science.gov (United States)

    Moreno, R; Vega, J; Murari, A

    2014-11-01

    The loss of stability and confinement in tokamak plasmas can induce critical events known as disruptions. Disruptions produce strong electromagnetic forces and thermal loads which can damage fundamental components of the devices. Determining the disruption time is extremely important for various disruption studies: theoretical models, physics-driven models, or disruption predictors. In JET, during the experimental campaigns with the JET-C (Carbon Fiber Composite) wall, a common criterion to determine the disruption time consisted of locating the time of the thermal quench. However, with the metallic ITER-like wall (JET-ILW), this criterion is usually not valid. Several thermal quenches may occur previous to the current quench but the temperature recovers. Therefore, a new criterion has to be defined. A possibility is to use the start of the current quench as disruption time. This work describes the implementation of an automatic data processing method to estimate the disruption time according to this new definition. This automatic determination allows both reducing human efforts to locate the disruption times and standardizing the estimates (with the benefit of being less vulnerable to human errors).

  20. Search and Disrupt

    DEFF Research Database (Denmark)

    Ørding Olsen, Anders

    . However, incumbent sources engaged in capability reconfiguration to accommodate disruption improve search efforts in disruptive technologies. The paper concludes that the value of external sources is contingent on more than their knowledge. Specifically, interdependence of sources in search gives rise...... to influence from individual strategic interests on the outcomes. More generally, this points to the need for understanding the two-way influence of sources, rather than viewing external search as one-way knowledge accessing....

  1. The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, α-zearalanol, and genistein): Effects on interferon-γ

    International Nuclear Information System (INIS)

    Calemine, Jillian; Zalenka, Julie; Karpuzoglu-Sahin, Ebru; Ward, Daniel L.; Lengi, Andrea; Ahmed, S. Ansar

    2003-01-01

    The immune system is a potential target for estrogenic endocrine disrupters. To date, there is limited information on whether estrogenic endocrine disruptors modulate the immune system of aged individuals. To address this issue, groups of 74-week-old mice were given nine oral doses of selected estrogenic endocrine disrupters: diethylstilbestrol (DES, 3 μg/100 g bw), α-zearalanol (0.5 mg/100 g bw), or genistein (0.15 mg/100 g bw) in corn oil, or corn oil alone, over 2.5 weeks. Both developmental (thymus) and mature (spleen) lymphoid organs were affected, although specific effects varied with the chemical. DES significantly decreased thymocyte numbers. However, relative percentages of thymocyte subsets were not altered. While splenic cellularity and percentages of T and B cells were unchanged, splenocytes from DES-exposed mice had significantly decreased ability to proliferate in response to Concanavalin-A (Con-A). Con-A-activated splenocytes from mice treated with genistein or α-zearalanol had decreased levels of interferon-γ (IFNγ) protein in their culture supernatants compared to similar cultures from oil-treated mice. RT-PCR analysis of Con-A-activated splenocytes revealed that the expression of IFNγ gene is altered by DES or genistein treatment. Together, these results suggest that estrogenic endocrine disruptors modulate the immune system of aged mice

  2. Pursuing minimally disruptive medicine: disruption from illness and health care-related demands is correlated with patient capacity.

    Science.gov (United States)

    Boehmer, Kasey R; Shippee, Nathan D; Beebe, Timothy J; Montori, Victor M

    2016-06-01

    Chronic conditions burden patients with illness and treatments. We know little about the disruption of life by the work of dialysis in relation to the resources patients can mobilize, that is, their capacity, to deal with such demands. We sought to determine the disruption of life by dialysis and its relation to patient capacity to cope. We administered a survey to 137 patients on dialysis at an academic medical center. We captured disruption from illness and treatment, and physical, mental, personal, social, financial, and environmental aspects of patient capacity using validated scales. Covariates included number of prescriptions, hours spent on health care, existence of dependents, age, sex, and income level. On average, patients reported levels of capacity and disruption comparable to published levels. In multivariate regression models, limited physical, financial, and mental capacity were significantly associated with greater disruption. Patients in the top quartile of disruption had lower-than-expected physical, financial, and mental capacity. Our sample generally had capacity comparable to other populations and may be able to meet the demands imposed by treatment. Those with reduced physical, financial, and mental capacity reported higher disruption and represent a vulnerable group that may benefit from innovations in minimally disruptive medicine. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A high force of plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in papua new guinean children.

    Directory of Open Access Journals (Sweden)

    Cristian Koepfli

    Full Text Available When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax ((molFOB, i.e. the number of genetically distinct blood-stage infections over time, and compared it to previously reported values for P. falciparum.P. vivax (molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1-4.5 years.On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with mol FOB (incidence rate ratio (IRR = 1.99, 95% confidence interval (CI95 [1.80, 2.19], (molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001 compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02.P. vivax (molFOB is considerably higher than P. falciparum (molFOB (5.5 clones/child/year-at-risk. The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria.

  4. Cancer immunotherapy: Opportunities and challenges in the rapidly evolving clinical landscape.

    Science.gov (United States)

    Emens, Leisha A; Ascierto, Paolo A; Darcy, Phillip K; Demaria, Sandra; Eggermont, Alexander M M; Redmond, William L; Seliger, Barbara; Marincola, Francesco M

    2017-08-01

    Cancer immunotherapy is now established as a powerful way to treat cancer. The recent clinical success of immune checkpoint blockade (antagonists of CTLA-4, PD-1 and PD-L1) highlights both the universal power of treating the immune system across tumour types and the unique features of cancer immunotherapy. Immune-related adverse events, atypical clinical response patterns, durable responses, and clear overall survival benefit distinguish cancer immunotherapy from cytotoxic cancer therapy. Combination immunotherapies that transform non-responders to responders are under rapid development. Current challenges facing the field include incorporating immunotherapy into adjuvant and neoadjuvant cancer therapy, refining dose, schedule and duration of treatment and developing novel surrogate endpoints that accurately capture overall survival benefit early in treatment. As the field rapidly evolves, we must prioritise the development of biomarkers to guide the use of immunotherapies in the most appropriate patients. Immunotherapy is already transforming cancer from a death sentence to a chronic disease for some patients. By making smart, evidence-based decisions in developing next generation immunotherapies, cancer should become an imminently treatable, curable and even preventable disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Measles immune suppression: lessons from the macaque model.

    Directory of Open Access Journals (Sweden)

    Rory D de Vries

    Full Text Available Measles remains a significant childhood disease, and is associated with a transient immune suppression. Paradoxically, measles virus (MV infection also induces robust MV-specific immune responses. Current hypotheses for the mechanism underlying measles immune suppression focus on functional impairment of lymphocytes or antigen-presenting cells, caused by infection with or exposure to MV. We have generated stable recombinant MVs that express enhanced green fluorescent protein, and remain virulent in non-human primates. By performing a comprehensive study of virological, immunological, hematological and histopathological observations made in animals euthanized at different time points after MV infection, we developed a model explaining measles immune suppression which fits with the "measles paradox". Here we show that MV preferentially infects CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, resulting in high infection levels in these populations. After the peak of viremia MV-infected lymphocytes were cleared within days, followed by immune activation and lymph node enlargement. During this period tuberculin-specific T-lymphocyte responses disappeared, whilst strong MV-specific T-lymphocyte responses emerged. Histopathological analysis of lymphoid tissues showed lymphocyte depletion in the B- and T-cell areas in the absence of apoptotic cells, paralleled by infiltration of T-lymphocytes into B-cell follicles and reappearance of proliferating cells. Our findings indicate an immune-mediated clearance of MV-infected CD45RA(- memory T-lymphocytes and follicular B-lymphocytes, which causes temporary immunological amnesia. The rapid oligoclonal expansion of MV-specific lymphocytes and bystander cells masks this depletion, explaining the short duration of measles lymphopenia yet long duration of immune suppression.

  6. A simple method for determining polymeric IgA-containing immune complexes.

    Science.gov (United States)

    Sancho, J; Egido, J; González, E

    1983-06-10

    A simplified assay to measure polymeric IgA-immune complexes in biological fluids is described. The assay is based upon the specific binding of a secretory component for polymeric IgA. In the first step, multimeric IgA (monomeric and polymeric) immune complexes are determined by the standard Raji cell assay. Secondly, labeled secretory component added to the assay is bound to polymeric IgA-immune complexes previously fixed to Raji cells, but not to monomeric IgA immune complexes. To avoid false positives due to possible complement-fixing IgM immune complexes, prior IgM immunoadsorption is performed. Using anti-IgM antiserum coupled to CNBr-activated Sepharose 4B this step is not time-consuming. Polymeric IgA has a low affinity constant and binds weakly to Raji cells, as Scatchard analysis of the data shows. Thus, polymeric IgA immune complexes do not bind to Raji cells directly through Fc receptors, but through complement breakdown products, as with IgG-immune complexes. Using this method, we have been successful in detecting specific polymeric-IgA immune complexes in patients with IgA nephropathy (Berger's disease) and alcoholic liver disease, as well as in normal subjects after meals of high protein content. This new, simple, rapid and reproducible assay might help to study the physiopathological role of polymeric IgA immune complexes in humans and animals.

  7. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  8. Site requirements and kinetics of immune-dependent elimination of intravascularly administered lung stage schistosomula in mice immunized with highly irradiated cercariae of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Mangold, B.L.; Dean, D.A.; Coulson, P.S.; Wilson, R.A.

    1986-01-01

    Experiments were performed to compare the migration and survival of 75Se-labeled schistosomes, introduced by percutaneous cercarial exposure or by intravascular administration of 7-day-old lung stage schistosomula, in control and irradiated cercaria-immunized mice. Schistosomula were intravascularly introduced into the lungs, systemic organs and liver by injection via the femoral vein (FV), left ventricle (LV), and superior mesenteric vein (SMV), respectively. The fate of challenge larvae was examined by autoradiography of host tissues and by recovery of adult worms. It was found that both normal and immune elimination were site-dependent. In control mice 45%-60% of cercarial penetrants and lung schistosomula injected into the FV and LV were recoverable as adult worms, while a significantly greater number (70%-85%) were recoverable when lung schistosomula were injected into the SMV. In immunized mice, parasites introduced as either cercariae or FV-injected schistosomula were both highly sensitive to immune elimination. LV-injected schistosomula were also sensitive but to a slightly lesser degree. In contrast, schistosomula placed directly in the liver by SMV injection were totally insensitive to immune elimination. It was concluded that elimination of schistosomula in irradiated cercaria-immunized mice occurs in the lungs and/or in the systemic organs, but not in the liver. Also, it was concluded that immune elimination is not a rapid process, since more than 7 days were required after intravascular challenge for the development of demonstrable differences between control and immunized mice

  9. Nickel Deficiency Disrupts Metabolism of Ureides, Amino Acids, and Organic Acids of Young Pecan Foliage[OA

    Science.gov (United States)

    Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.

    2006-01-01

    The existence of nickel (Ni) deficiency is becoming increasingly apparent in crops, especially for ureide-transporting woody perennials, but its physiological role is poorly understood. We evaluated the concentrations of ureides, amino acids, and organic acids in photosynthetic foliar tissue from Ni-sufficient (Ni-S) versus Ni-deficient (Ni-D) pecan (Carya illinoinensis [Wangenh.] K. Koch). Foliage of Ni-D pecan seedlings exhibited metabolic disruption of nitrogen metabolism via ureide catabolism, amino acid metabolism, and ornithine cycle intermediates. Disruption of ureide catabolism in Ni-D foliage resulted in accumulation of xanthine, allantoic acid, ureidoglycolate, and citrulline, but total ureides, urea concentration, and urease activity were reduced. Disruption of amino acid metabolism in Ni-D foliage resulted in accumulation of glycine, valine, isoleucine, tyrosine, tryptophan, arginine, and total free amino acids, and lower concentrations of histidine and glutamic acid. Ni deficiency also disrupted the citric acid cycle, the second stage of respiration, where Ni-D foliage contained very low levels of citrate compared to Ni-S foliage. Disruption of carbon metabolism was also via accumulation of lactic and oxalic acids. The results indicate that mouse-ear, a key morphological symptom, is likely linked to the toxic accumulation of oxalic and lactic acids in the rapidly growing tips and margins of leaflets. Our results support the role of Ni as an essential plant nutrient element. The magnitude of metabolic disruption exhibited in Ni-D pecan is evidence of the existence of unidentified physiological roles for Ni in pecan. PMID:16415214

  10. Intestinal innate antiviral immunity and immunobiotics: beneficial effects against rotavirus infection

    Directory of Open Access Journals (Sweden)

    Julio Villena

    2016-12-01

    Full Text Available The mucosal tissues of the gastrointestinal tract are the main portal entry of pathogens such as rotavirus (RVs, which is a leading cause of death due to diarrhea among young children across the globe and a major cause of severe acute intestinal infection in livestock animals. The interactions between intestinal epithelial cells (IECs and immune cells with RVs have been studied for several years, and now it is known that the innate immune responses triggered by this virus can have both beneficial and detrimental effects for the host. It was demonstrated that natural RVs infection in infants and experimental challenges in mice result in the intestinal activation of pattern recognition receptors (PRRs like Toll-like receptor 3 (TLR3 and striking secretion of pro-inflammatory mediators that can lead to increased local tissue damage and immunopathology. Therefore, modulating desregulated intestinal immune responses triggered by PRRs activation are a significant promise for reducing the burden of RVs diseases. The ability of immunoregulatory probiotic microorganisms (immunobiotics to protect against intestinal infections such as those caused by RVs, are among the oldest effects studied for these important group of beneficial microbes. In this review, we provide an update of the current status on the modulation of intestinal antiviral innate immunity by immunobiotics, and their beneficial impact on RVs infection. In addition, we describe the research of our group that demonstrated the capacity of immunobiotic strains to beneficially modulated TLR3-triggered immune response in IECs, reduce the disruption of intestinal homeostasis caused by intraepithelial lymphocytes, and improve the resistance to RVs infections.

  11. Structured Literature Review of digital disruption literature

    DEFF Research Database (Denmark)

    Vesti, Helle; Rosenstand, Claus Andreas Foss; Gertsen, Frank

    2018-01-01

    Digital disruption is a term/phenomenon frequently appearing in innovation management literature. However, no academic consensus exists as to what it entails; conceptual nor theoretical. We use the SLR-method (Structured Literature Review) to investigate digital disruption literature. A SLR......-study conducted in 2017 revealed some useful information on how disruption and digital disruption literature has developed over a specific period. However, this study was less representative of papers addressing digital disruption; which is the in-depth subject of this paper. To accommodate this, we intend...... to conduct a similar SLR-study assembling a body literature having digital disruption as the only common denominator...

  12. Mechanistic evaluation of endocrine disrupting chemicals

    DEFF Research Database (Denmark)

    Taxvig, Camilla

    BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent for the ...... metabolising system using liver S9 mixtures or hepatic rat microsomes could be a convenient method for the incorporation of metabolic aspects into in vitro testing for endocrine disrupting effects.......BACKGROUND: This PhD project is part of the research area concerning effects of endocrine disrupters at the National Food Institute at DTU in Denmark. Endocrine disrupting chemicals (EDCs) have proved to be important for improper development of the male reproductive organs and subsequent......, to be able to detect effects and predict mixture effects. In addition, a new hypothesis have emerge concerning a potential role of exposure to endocrine disrupting chemicals, and the development of obesity and obesity related diseases. AIM: This PhD project aimed to gain more information regarding...

  13. IL-6 trans-Signaling-Dependent Rapid Development of Cytotoxic CD8+ T Cell Function

    Directory of Open Access Journals (Sweden)

    Jan P. Böttcher

    2014-09-01

    Full Text Available Immune control of infections with viruses or intracellular bacteria relies on cytotoxic CD8+ T cells that use granzyme B (GzmB for elimination of infected cells. During inflammation, mature antigen-presenting dendritic cells instruct naive T cells within lymphoid organs to develop into effector T cells. Here, we report a mechanistically distinct and more rapid process of effector T cell development occurring within 18 hr. Such rapid acquisition of effector T cell function occurred through cross-presenting liver sinusoidal endothelial cells (LSECs in the absence of innate immune stimulation and known costimulatory signaling. Rather, interleukin-6 (IL-6 trans-signaling was required and sufficient for rapid induction of GzmB expression in CD8+ T cells. Such LSEC-stimulated GzmB-expressing CD8+ T cells further responded to inflammatory cytokines, eliciting increased and protracted effector functions. Our findings identify a role for IL-6 trans-signaling in rapid generation of effector function in CD8+ T cells that may be beneficial for vaccination strategies.

  14. Adenovirus-Vectored Vaccine as a Rapid-Response Tool Against Avian Influenza Pandemic

    International Nuclear Information System (INIS)

    Van Kampen, K. R.; Tang, D. C.

    2007-01-01

    Influenza viruses in nature undergo genetic mutation and reassortment. Three pandemics of avian influenza in man were recorded in the twentieth century. Highly pathogenic avian influenza (HPAI) viruses currently in circulation pose a threat for another world-wide pandemic, if they become transmissible from man to man. Manufacturing protective vaccines using current egg-based technology is often difficult due to the virulence of the virus and its adverse effects on the embryonating egg substrate. New technologies allow the creation of safe and protective pandemic influenza vaccines without the need for egg based substrates. These technologies allow new vaccines to be created in less than one month. Manufacturing is in tissue culture, not eggs. Vaccine can be administered to man non-invasively, without adjuvants, eliciting a rapid and protective immune response. Protective immunity against avian influenza (AI) virus was elicited in chickens by single-dose in ovo vaccination with a replication-competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad5)-derived vector encoding an H5N9 avian influenza virus hemagglutinin. Vaccinated chickens were protected against both H5N1 and H5N2 HPAI virus challenges. Mass-administration of this bird flu vaccine can be streamlined with available robotic in ovo injectors. Vaccination using this vaccine could protect the the largest host reservoir (chickens) and greatly reduce the exposure of man to avian influenza. In addition, Ad5-vectored vaccines can be produced rapidly and the safety margin of a non-replicating vector is superior to that of a replicating counterpart. Furthermore, this mode of vaccination is compatible with epidemiological surveys of natural AI virus infections. In addition to mass immunization of poultry, both animals and humans have been effectively immunized by intranasal administration of Ad5-vectored influenza vaccines without any appreciable side effects, even in mice and human volunteers with

  15. Overview of core disruptive accidents

    International Nuclear Information System (INIS)

    Marchaterre, J.F.

    1977-01-01

    An overview of the analysis of core-disruptive accidents is given. These analyses are for the purpose of understanding and predicting fast reactor behavior in severe low probability accident conditions, to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features. The methods are used to analyze core-disruptive accidents from initiating event to complete core disruption, the effects of the accident on reactor structures and the resulting radiological consequences are described

  16. The function of the Mediator complex in plant immunity.

    Science.gov (United States)

    An, Chuanfu; Mou, Zhonglin

    2013-03-01

    Upon pathogen infection, plants undergo dramatic transcriptome reprogramming to shift from normal growth and development to immune response. During this rapid process, the multiprotein Mediator complex has been recognized as an important player to fine-tune gene-specific and pathway-specific transcriptional reprogramming by acting as an adaptor/coregulator between sequence-specific transcription factor and RNA polymerase II (RNAPII). Here, we review current understanding of the role of five functionally characterized Mediator subunits (MED8, MED15, MED16, MED21 and MED25) in plant immunity. All these Mediator subunits positively regulate resistance against leaf-infecting biotrophic bacteria or necrotrophic fungi. While MED21 appears to regulate defense against fungal pathogens via relaying signals from upstream regulators and chromatin modification to RNAPII, the other four Mediator subunits locate at different positions of the defense network to convey phytohormone signal(s). Fully understanding the role of Mediator in plant immunity needs to characterize more Mediator subunits in both Arabidopsis and other plant species. Identification of interacting proteins of Mediator subunits will further help to reveal their specific regulatory mechanisms in plant immunity.

  17. Passive immunization of guinea-pigs with llama single-domain antibody fragments against foot-and-mouth disease

    NARCIS (Netherlands)

    Harmsen, M.M.; Solt, van C.B.; Fijten, H.P.D.; Keulen, van L.; Rosalia, R.A.; Weerdmeester, K.; Cornelissen, A.H.M.; Bruin, de M.G.M.; Eble, P.L.; Dekker, A.

    2007-01-01

    Foot-and-mouth disease (FMD) is a highly contagious disease that occasionally causes outbreaks in Europe. There is a need for therapies that provide rapid protection against FMD in outbreak situations. We aim to provide such rapid protection by passive immunization with llama single-domain antibody

  18. Disruption studies in ASDEX Upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.

    2002-01-01

    Disruption generate large thermal and mechanical stresses on the tokamak components. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/ predictive methods must be developed further. The study of disruptions on ASDEX Upgrade is focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon and learning to avoid it or to predict its occurrence (with neural networks, for example) and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows to dimension or reinforce the machine components to withstand these loads and to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions. (author)

  19. The neonicotinoid insecticide Clothianidin adversely affects immune signaling in a human cell line.

    Science.gov (United States)

    Di Prisco, Gennaro; Iannaccone, Marco; Ianniello, Flora; Ferrara, Rosalba; Caprio, Emilio; Pennacchio, Francesco; Capparelli, Rosanna

    2017-10-18

    Clothianidin is a widely used neonicotinoid insecticide, which is a potent agonist of the nicotinic acetylcholine receptor in insects. This neurotoxic compound has a negative impact on insect immunity, as it down-regulates the activation of the transcription factor NF-κB. Given the evolutionary conserved role of NF-κB in the modulation of the immune response in the animal kingdom, here we want to assess any effect of Clothianidin on vertebrate defense barriers. In presence of this neonicotinoid insecticide, a pro-inflammatory challenge with LPS on the human monocytic cell line THP-1 results both in a reduced production of the cytokine TNF-α and in a down-regulation of a reporter gene under control of NF-κB promoter. This finding is corroborated by a significant impact of Clothianidin on the transcription levels of different immune genes, characterized by a core disruption of TRAF4 and TRAF6 that negatively influences NF-κB signaling. Moreover, exposure to Clothianidin concurrently induces a remarkable up-regulation of NGFR, which supports the occurrence of functional ties between the immune and nervous systems. These results suggest a potential risk of immunotoxicity that neonicotinoids may have on vertebrates, which needs to be carefully assessed at the organism level.

  20. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, A.; Chettri, J. K.

    2017-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  1. Secondary immune response of rainbow trout following repeated immersion vaccination

    DEFF Research Database (Denmark)

    Jaafar, R. M.; Al-Jubury, Azmi; Chettri, Jiwan Kumar

    2018-01-01

    Teleosts are able to raise a protective immune response, comprising both innate and adaptive elements, against various pathogens. This is the basis for a widespread use of vaccines, administered as injection or immersion, in the aquaculture industry. It has been described that repeated injection...... vaccination of fish raises a secondary immune response, consisting of rapid, accelerated and increased antibody reaction. This study reports how rainbow trout responds to repeated immersion vaccination against yersiniosis (ERM) caused by the bacterial pathogen Yersinia ruckeri. It was found that rainbow trout...... does not raise a classical secondary response following repeated immersion vaccination. Serum antibody titres were merely slightly increased even after three immunizations, using 30-s immersion into a bacterin consisting of formalin-inactivated Y. ruckeri (serotype O1, biotypes 1 and 2), performed over...

  2. Sperm competition, immunity, selfish genes and cancer.

    Science.gov (United States)

    Lewis, Z; Price, T A R; Wedell, N

    2008-10-01

    Sperm competition is widespread and has played an important role in shaping male reproductive characters such as testis size and numbers of sperm produced, and this is reflected in the rapid evolution of many reproductive genes. Additionally, sperm competition has been implicated in the rapid evolution of seminal fluids. However, our understanding of the molecular basis of many traits thought to be important in sperm competition is rudimentary. Furthermore, links between sperm competition and a range of issues not directly related to reproduction are only just beginning to be explored. These include associations between sperm competition and selfish genes, immunity and diseases such as cancer.We briefly review these topics and suggest areas we consider worthy of additional research.

  3. Disruptive event analysis: volcanism and igneous intrusion

    International Nuclear Information System (INIS)

    Crowe, B.M.

    1979-01-01

    Three basic topics are addressed for the disruptive event analysis: first, the range of disruptive consequences of a radioactive waste repository by volcanic activity; second, the possible reduction of the risk of disruption by volcanic activity through selective siting of a repository; and third, the quantification of the probability of repository disruption by volcanic activity

  4. Routine Responses to Disruption of Routines

    Science.gov (United States)

    Guha, Mahua

    2015-01-01

    "Organisational routines" is a widely studied research area. However, there is a dearth of research on disruption of routines. The few studies on disruption of routines discussed problem-solving activities that are carried out in response to disruption. In contrast, this study develops a theory of "solution routines" that are a…

  5. Disruption Mitigation System Developments and Design for ITER

    Energy Technology Data Exchange (ETDEWEB)

    Baylor, Larry R. [ORNL; Barbier, Charlotte N. [ORNL; Bull, Nora D. [ORNL; Combs, Stephen Kirk [ORNL; Fisher, Paul W. [ORNL; Kiss, Gabor [ITER Organization, Cadarache, France; Ericson, Milton Nance [ORNL; Wilgen, John B. [ORNL; Maruyama, So [ITER Organization, Cadarache, France; Meitner, Steven J. [ORNL; Lyttle, Mark S. [ORNL; Rasmussen, David A. [ORNL; Carmichael, Justin R. [ORNL; Smith, Stephen Fulton [ORNL

    2015-09-01

    A disruption mitigation system (DMS) is under design for ITER to inject sufficient material deeply into the plasma for rapid plasma thermal shutdown and collisional suppression of any resulting runaway electrons. Progress on the development and design of both a shattered pellet injector (SPI) that produces large solid cryogenic pellets to provide reliable deep penetration of material and a fast opening high flow rate gas valve for massive gas injection (MGI) is presented. Cryogenic pellets of deuterium and neon up to 25 mm in size have been formed and accelerated with a prototype injector and a full scale prototype MGI valve is now in testing. Implications of the design with respect to response time and reliability at the proposed injector locations on ITER are discussed.

  6. The disruption management model.

    Science.gov (United States)

    McAlister, James

    2011-10-01

    Within all organisations, business continuity disruptions present a set of dilemmas that managers may not have dealt with before in their normal daily duties. The disruption management model provides a simple but effective management tool to enable crisis management teams to stay focused on recovery in the midst of a business continuity incident. The model has four chronological primary headlines, which steer the team through a quick-time crisis decision-making process. The procedure facilitates timely, systematic, rationalised and justified decisions, which can withstand post-event scrutiny. The disruption management model has been thoroughly tested within an emergency services environment and is proven to significantly support clear and concise decision making in a business continuity context.

  7. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    Science.gov (United States)

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke. Published by Elsevier Ltd.

  8. Sustainable Disruption Management

    DEFF Research Database (Denmark)

    Vaaben, Bo Valdemar

    The world we live in is globalized. Goods are seldom made in the place where they are used or consumed, and we do increasingly travel to other countries for either business or pleasure. In our everyday lives we rely on well-functioning global transportations systems to continue the standard...... in the same way, when operation is disrupted. Never the less, we may recall that the Suez Canal was closed due to riots in Egypt, that the fuel price was impacted by threats of closing of the Strait of Hormuz, and we do from time to time hear about acts of piracy outside the coast of Somalia. All...... papers combining disruption management and flight planning through an integrated optimization approach. An additional contribution of the thesis is to show how flexible flight speeds can be used to improve recovery from disruptions, while at the same time allowing an airline to trade off fuel costs...

  9. The Role of Innate Lymphoid Cells in Immune-Mediated Liver Diseases

    Science.gov (United States)

    Liu, Meifang; Zhang, Cai

    2017-01-01

    Innate lymphoid cells (ILCs) are a recently identified group of innate immune cells lacking antigen-specific receptors that can mediate immune responses and regulate tissue homeostasis and inflammation. ILCs comprise group 1 ILCs, group 2 ILCs, and group 3 ILCs. These ILCs usually localize at mucosal surfaces and combat pathogens by the rapid release of certain cytokines. However, the uncontrolled activation of ILCs can also lead to damaging inflammation, especially in the gut, lung, and skin. Although the physiological and pathogenic roles of ILCs in liver diseases have been attracting increasing attention recently, there has been no systematic review regarding the roles of ILCs in immune-mediated liver diseases. Here, we review the relationships between the ILC subsets and their functions in immune-mediated liver diseases, and discuss their therapeutic potential based on current knowledge about the functional roles of these cells in liver diseases. PMID:28659927

  10. Disruption and Distinctiveness in Higher Education

    Science.gov (United States)

    Purcell, Wendy

    2014-01-01

    "Disruption"--while an evocative word triggering feelings of anxiety and perhaps even fear--also signals renewal and growth. The Higher Education (HE) sector in England has experienced some profound disruption over the years, and yet has emerged stronger and renewed in many ways. The impact of recent disruptive forces, from fees to the…

  11. Hantavirus-induced disruption of the endothelial barrier: Neutrophils are on the payroll

    Directory of Open Access Journals (Sweden)

    Günther eSchönrich

    2015-03-01

    Full Text Available Viral hemorrhagic fever caused by hantaviruses is an emerging infectious disease for which suita-ble treatments are not available. In order to improve this situation a better understanding of han-taviral pathogenesis is urgently required. Hantaviruses infect endothelial cell layers in vitro with-out causing any cytopathogenic effect and without increasing permeability. This implies that the mechanisms underlying vascular hyperpermeability in hantavirus-associated disease are more complex and that immune mechanisms play an important role. In this review we highlight the lat-est developments in hantavirus-induced immunopathogenesis. A possible contribution of neutro-phils has been neglected so far. For this reason, we place special emphasis on the pathogenic role of neutrophils in disrupting the endothelial barrier.

  12. Crosstalk between bone niche and immune system: osteoimmunology signaling as a potential target for cancer treatment.

    Science.gov (United States)

    Criscitiello, Carmen; Viale, Giulia; Gelao, Lucia; Esposito, Angela; De Laurentiis, Michele; De Placido, Sabino; Santangelo, Michele; Goldhirsch, Aron; Curigliano, Giuseppe

    2015-02-01

    There is a well recognized link between the bone and the immune system and in recent years there has been a major effort to elucidate the multiple functions of the molecules expressed in both bone and immune cells. Several molecules that were initially identified and studied in the immune system have been shown to have essential functions also in the bone. An interdisciplinary field embracing immune and bone biology has been brought together and called "osteoimmunology". The co-regulation of the skeletal and immune systems strikingly exemplifies the extreme complexity of such an interaction. Their interdependency must be considered in designing therapeutic approaches for either of the two systems. In other words, it is necessary to think of the osteoimmune system as a complex physiological unit. Denosumab was originally introduced to specifically target bone resorption, but it is now under evaluation for its effect on the long term immune response. Similarly, our current and still growing knowledge of the intimate link between the immune system and bone will be beneficial for the safety of drugs targeting either of these integrated systems. Given the large number of molecules exerting functions on both the skeletal and immune systems, osteoimmunological understanding is becoming increasingly important. Both bone and immune systems are frequently disrupted in cancer; and they may be crucial in regulating tumor growth and progression. Some therapies - such as bisphosphonates and receptor activator of NF-κB ligand (RANKL) targeted drugs - that aim at reducing pathologic osteolysis in cancer may interact with the immune system, thus providing potential favorable effects on survival. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Microbial Disruption of Autophagy Alters Expression of the RISC Component AGO2, a Critical Regulator of the miRNA Silencing Pathway.

    Science.gov (United States)

    Sibony, Michal; Abdullah, Majd; Greenfield, Laura; Raju, Deepa; Wu, Ted; Rodrigues, David M; Galindo-Mata, Esther; Mascarenhas, Heidi; Philpott, Dana J; Silverberg, Mark S; Jones, Nicola L

    2015-12-01

    Autophagy is implicated in Crohn's disease (CD) pathogenesis. Recent evidence suggests autophagy regulates the microRNA (miRNA)-induced silencing complex (miRISC). Therefore, autophagy may play a novel role in CD by regulating expression of miRISC, thereby altering miRNA silencing. As microbes associated with CD can alter autophagy, we hypothesized that microbial disruption of autophagy affects the critical miRISC component AGO2. AGO2 expression was assessed in epithelial and immune cells, and intestinal organoids with disrupted autophagy. Microarray technology was used to determine the expression of downstream miRNAs in cells with defective autophagy. Increased AGO2 was detected in autophagy-deficient ATG5-/- and ATG16-/- mouse embryonic fibroblast cells (MEFs) in comparison with wild-type MEFs. Chemical agents and VacA toxin, which disrupt autophagy, increased AGO2 expression in MEFs, epithelial cells lines, and human monocytes, respectively. Increased AGO2 was also detected in ATG7-/- intestinal organoids, in comparison with wild-type organoids. Five miRNAs were differentially expressed in autophagy-deficient MEFs. Pathway enrichment analysis of the differentially expressed miRNAs implicated signaling pathways previously associated with CD. Taken together, our results suggest that autophagy is involved in the regulation of the critical miRISC component AGO2 in epithelial and immune cells and primary intestinal epithelial cells. We propose a mechanism by which autophagy alters miRNA expression, which likely impacts the regulation of CD-associated pathways. Furthermore, as enteric microbial products can manipulate autophagy and AGO2, our findings suggest a novel mechanism by which enteric microbes could influence miRNA to promote disease.

  14. Neural-net disruption predictor in JT-60U

    International Nuclear Information System (INIS)

    Yoshino, R.

    2003-01-01

    The prediction of major disruptions caused by the density limit, the plasma current ramp-down with high internal inductance l i , the low density locked mode and the β-limit has been investigated in JT-60U. The concept of 'stability level', newly proposed in this paper to predict the occurrence of a major disruption, is calculated from nine input parameters every 2 ms by the neural network and the start of a major disruption is predicted when the stability level decreases to a certain level, the 'alarm level'. The neural network is trained in two steps. It is first trained with 12 disruptive and six non-disruptive shots (total of 8011 data points). Second, the target output data for 12 disruptive shots are modified and the network is trained again with additional data points generated by the operator. The 'neural-net disruption predictor' obtained has been tested for 300 disruptive shots (128 945 data points) and 1008 non-disruptive shots (982 800 data points) selected from nine years of operation (1991-1999) of JT-60U. Major disruptions except for those caused by the -limit have been predicted with a prediction success rate of 97-98% at 10 ms prior to the disruption and higher than 90% at 30 ms prior to the disruption while the false alarm rate is 2.1% for non-disruptive shots. This prediction performance has been confirmed for 120 disruptive shots (56 163 data points), caused by the density limit, as well as 1032 non-disruptive shots (1004 611 data points) in the last four years of operation (1999-2002) of JT-60U. A careful selection of the input parameters supplied to the network and the newly developed two-step training of the network have reduced the false alarm rate resulting in a considerable improvement of the prediction success rate. (author)

  15. Characteristics of disruptive plasma current decay in the HT-2 tokamak

    International Nuclear Information System (INIS)

    Abe, Mitsushi; Takeuchi, Kazuhiro; Otsuka, Michio

    1993-01-01

    Motions of plasma current channel and time evolutions of eddy current distribution on the vacuum vessel during disruptive plasma current decay were studied experimentally in the Hitachi tokamak HT-2. The plasmas are vertically elongated and circularly shaped plasmas. A disruptive plasma current decay has three phases. During the first phase, a large displacement of the plasma position without plasma current decay is observed. Rapid plasma current decay is observed during the second phase and the decay rate is roughly constant with time. The eddy current distribution is like that due to the shell effect which creates a poloidal field to reduce the plasma displacement. During the third phase, the plasma current decays exponentially. The second phase is observed in slightly elongated and high plasma current (> 20 kA) circularly shaped plasmas. The plasma current decay rates in the second phase depend on the plasma cross sectional shape, but they do not in the third phase. The magnetic axis moves from the plasma area to the vacuum vessel wall between the second and third phases. (author)

  16. Probabilistic analysis of tokamak plasma disruptions

    International Nuclear Information System (INIS)

    Sanzo, D.L.; Apostolakis, G.E.

    1985-01-01

    An approximate analytical solution to the heat conduction equations used in modeling component melting and vaporization resulting from plasma disruptions is presented. This solution is then used to propagate uncertainties in the input data characterizing disruptions, namely, energy density and disruption time, to obtain a probabilistic description of the output variables of interest, material melted and vaporized. (orig.)

  17. Streptococcal Immunity Is Constrained by Lack of Immunological Memory following a Single Episode of Pyoderma.

    Directory of Open Access Journals (Sweden)

    Manisha Pandey

    2016-12-01

    Full Text Available The immunobiology underlying the slow acquisition of skin immunity to group A streptococci (GAS, is not understood, but attributed to specific virulence factors impeding innate immunity and significant antigenic diversity of the type-specific M-protein, hindering acquired immunity. We used a number of epidemiologically distinct GAS strains to model the development of acquired immunity. We show that infection leads to antibody responses to the serotype-specific determinants on the M-protein and profound protective immunity; however, memory B cells do not develop and immunity is rapidly lost. Furthermore, antibodies do not develop to a conserved M-protein epitope that is able to induce immunity following vaccination. However, if re-infected with the same strain within three weeks, enduring immunity and memory B-cells (MBCs to type-specific epitopes do develop. Such MBCs can adoptively transfer protection to naïve recipients. Thus, highly protective M-protein-specific MBCs may never develop following a single episode of pyoderma, contributing to the slow acquisition of immunity and to streptococcal endemicity in at-risk populations.

  18. Gas jet disruption mitigation studies on Alcator C-Mod

    International Nuclear Information System (INIS)

    Granetz, R.; Whyte, D.G.; Izzo, V.A.; Biewer, T.; Reinke, M.L.; Terry, J.; Bader, A.; Bakhtiari, M.; Jernigan, T.; Wurden, G.

    2006-01-01

    Damaging effects of disruptions are a major concern for Alcator C-Mod, ITER and future tokamak reactors. High-pressure noble gas jet injection is a mitigation technique which potentially satisfies the operational requirements of fast response time and reliability, while still being benign to subsequent discharges. Disruption mitigation experiments using an optimized gas jet injection system are being carried out on Alcator C-Mod to study the physics of gas jet penetration into high pressure plasmas, as well as the ability of the gas jet impurities to convert plasma energy into radiation on timescales consistent with C-Mod's fast quench times, and to reduce halo currents given C-Mod's high-current density. The dependence of impurity penetration and effectiveness on noble gas species (He, Ne, Ar, Kr) is also being studied. It is found that the high-pressure neutral gas jet does not penetrate deeply into the C-Mod plasma, and yet prompt core thermal quenches are observed on all gas jet shots. 3D MHD modelling of the disruption physics with NIMROD shows that edge cooling of the plasma triggers fast growing tearing modes which rapidly produce a stochastic region in the core of the plasma and loss of thermal energy. This may explain the apparent effectiveness of the gas jet in C-Mod despite its limited penetration. The higher-Z gases (Ne, Ar, Kr) also proved effective at reducing halo currents and decreasing thermal deposition to the divertor surfaces. In addition, noble gas jet injection proved to be benign for plasma operation with C-Mod's metal (Mo) wall, actually improving the reliability of the startup in the following discharge

  19. Rapid Forgetting Results from Competition over Time between Items in Visual Working Memory

    Science.gov (United States)

    Pertzov, Yoni; Manohar, Sanjay; Husain, Masud

    2017-01-01

    Working memory is now established as a fundamental cognitive process across a range of species. Loss of information held in working memory has the potential to disrupt many aspects of cognitive function. However, despite its significance, the mechanisms underlying rapid forgetting remain unclear, with intense recent debate as to whether it is…

  20. Dim light at night does not disrupt timing or quality of sleep in mice.

    Science.gov (United States)

    Borniger, Jeremy C; Weil, Zachary M; Zhang, Ning; Nelson, Randy J

    2013-10-01

    Artificial nighttime illumination has recently become commonplace throughout the world; however, in common with other animals, humans have not evolved in the ecological context of chronic light at night. With prevailing evidence linking the circadian, endocrine, immune, and metabolic systems, understanding these relationships is important to understanding the etiology and progression of several diseases. To eliminate the covariate of sleep disruption in light at night studies, researchers often use nocturnal animals. However, the assumption that light at night does not affect sleep in nocturnal animals remains unspecified. To test the effects of light at night on sleep, we maintained Swiss-Webster mice in standard light/dark (LD) or dim light at night (DLAN) conditions for 8-10 wks and then measured electroencephalogram (EEG) and electromyogram (EMG) biopotentials via wireless telemetry over the course of two consecutive days to determine differences in sleep timing and homeostasis. Results show no statistical differences in total percent time, number of episodes, maximum or average episode durations in wake, slow-wave sleep (SWS), or rapid eye movement (REM) sleep. No differences were evident in SWS delta power, an index of sleep drive, between groups. Mice kept in DLAN conditions showed a relative increase in REM sleep during the first few hours after the dark/light transition. Both groups displayed normal 24-h circadian rhythms as measured by voluntary running wheel activity. Groups did not differ in body mass, but a marked negative correlation of body mass with percent time spent awake and a positive correlation of body mass with time spent in SWS was evident. Elevated body mass was also associated with shorter maximum wake episode durations, indicating heavier animals had more trouble remaining in the wake vigilance state for extended periods of time. Body mass did not correlate with activity levels, nor did activity levels correlate with time spent in

  1. Enhanced Autoimmunity Associated with Induction of Tumor Immunity in Thyroiditis-Susceptible Mice

    Science.gov (United States)

    Kari, Suresh; Flynn, Jeffrey C.; Zulfiqar, Muhammad; Snower, Daniel P.; Elliott, Bruce E.

    2013-01-01

    Background: Immunotherapeutic modalities to bolster tumor immunity by targeting specific sites of the immune network often result in immune dysregulation with adverse autoimmune sequelae. To understand the relative risk for opportunistic autoimmune disorders, we studied established breast cancer models in mice resistant to experimental autoimmune thyroiditis (EAT). EAT is a murine model of Hashimoto's thyroiditis, an autoimmune syndrome with established MHC class II control of susceptibility. The highly prevalent Hashimoto's thyroiditis is a prominent autoimmune sequela in immunotherapy, and its relative ease of diagnosis and treatment could serve as an early indicator of immune dysfunction. Here, we examined EAT-susceptible mice as a combined model for induction of tumor immunity and EAT under the umbrella of disrupted regulatory T cell (Treg) function. Methods: Tumor immunity was evaluated in female CBA/J mice after depleting Tregs by intravenous administration of CD25 monoclonal antibody and/or immunizing with irradiated mammary adenocarcinoma cell line A22E-j before challenge; the role of T cell subsets was determined by injecting CD4 and/or CD8 antibodies after tumor immunity induction. Tumor growth was monitored 3×/week by palpation. Subsequent EAT was induced by mouse thyroglobulin (mTg) injections (4 daily doses/week over 4 weeks). For some experiments, EAT was induced before establishing tumor immunity by injecting mTg+interleukin-1, 7 days apart. EAT was evaluated by mTg antibodies and thyroid infiltration. Results: Strong resistance to tumor challenge after Treg depletion and immunization with irradiated tumor cells required participation of both CD4+ and CD8+ T cells. This immunity was not altered by induction of mild thyroiditis with our protocol of Treg depletion and adjuvant-free, soluble mTg injections. However, the increased incidence of mild thyroiditis can be directly related to Treg depletion needed to achieve strong tumor immunity. Moreover

  2. From Digital Disruption to Business Model Scalability

    DEFF Research Database (Denmark)

    Nielsen, Christian; Lund, Morten; Thomsen, Peter Poulsen

    2017-01-01

    This article discusses the terms disruption, digital disruption, business models and business model scalability. It illustrates how managers should be using these terms for the benefit of their business by developing business models capable of achieving exponentially increasing returns to scale...... will seldom lead to business model scalability capable of competing with digital disruption(s)....... as a response to digital disruption. A series of case studies illustrate that besides frequent existing messages in the business literature relating to the importance of creating agile businesses, both in growing and declining economies, as well as hard to copy value propositions or value propositions that take...

  3. Dissolving Microneedle Arrays for Transdermal Delivery of Amphiphilic Vaccines.

    Science.gov (United States)

    An, Myunggi; Liu, Haipeng

    2017-07-01

    Amphiphilic vaccine based on lipid-polymer conjugates is a new type of vaccine capable of self-delivering to the immune system. When injected subcutaneously, amphiphilic vaccines efficiently target antigen presenting cells in the lymph nodes (LNs) via a unique albumin-mediated transport and uptake mechanism and induce potent humoral and cellular immune responses. However, whether this new type of vaccine can be administrated via a safe, convenient microneedle-based transdermal approach remains unstudied. For such skin barrier-disruption systems, a simple application of microneedle arrays (MNs) is desired to disrupt the stratum corneum, and for rapid and pain-free self-administration of vaccines into the skin, the anatomic place permeates with an intricate mesh of lymphatic vessels draining to LNs. Here the microneedle transdermal approach is combined with amphiphilic vaccines to create a simple delivery approach which efficiently traffic molecular vaccines into lymphatics and draining LNs. The rapid release of amphiphilic vaccines into epidermis upon application of dissolving MNs to the skin of mice generates potent cellular and humoral responses, comparable or superior to those elicited by traditional needle-based immunizations. The results suggest that the amphiphilic vaccines delivered by dissolving MNs can provide a simple and safer vaccination method with enhanced vaccine efficacy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. β limit disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.; Janos, A.; Bell, M.; Budny, R.V.; Bush, C.E.; Manickam, J.; Mynick, H.; Nazikian, R.; Taylor, G.

    1994-11-01

    A disruptive β limit (β = plasma pressure/magnetic pressure) is observed in high performance plasmas in TFTR. The MHD character of these disruptions differs substantially from the disruptions in high density plasmas (density limit disruptions) on TFTR. The high β disruptions can occur with less than a milliseconds warning in the form of a fast growing precursor. The precursor appears to be an external kink or internal (m,n)=(1,1) kink strongly coupled through finite β effects and toroidal terms to higher m components. It does not have the open-quote cold bubble close-quote structure found in density limit disruptions. There is also no evidence for a change in the internal inductance, i.e., a major reconnection of the flux, at the time of the thermal quench

  5. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    Unlimited Distribution 13. SUPPLEMENTARY NOTES 14. ABSTRACT Maintenance of long - term immunological memory against pathogens is crucial for the rapid...highly expressed in memory B cells in mice, and Atg7 is required for maintenance of long - term memory B cells needed to protect against influenza...AWARD NUMBER: W81XWH-16-1-0361 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Farrah

  6. High-throughput sequencing reveals key genes and immune homeostatic pathways activated in myeloid dendritic cells by Porphyromonas gingivalis 381 and its fimbrial mutants.

    Science.gov (United States)

    Arjunan, P; El-Awady, A; Dannebaum, R O; Kunde-Ramamoorthy, G; Cutler, C W

    2016-02-01

    The human microbiome consists of highly diverse microbial communities that colonize our skin and mucosal surfaces, aiding in maintenance of immune homeostasis. The keystone pathogen Porphyromonas gingivalis induces a dysbiosis and disrupts immune homeostasis through as yet unclear mechanisms. The fimbrial adhesins of P. gingivalis facilitate biofilm formation, invasion of and dissemination by blood dendritic cells; hence, fimbriae may be key factors in disruption of immune homeostasis. In this study we employed RNA-sequencing transcriptome profiling to identify differentially expressed genes (DEGs) in human monocyte-derived dendritic cells (MoDCs) in response to in vitro infection/exposure by Pg381 or its isogenic mutant strains that solely express minor-Mfa1 fimbriae (DPG3), major-FimA fimbriae (MFI) or are deficient in both fimbriae (MFB) relative to uninfected control. Our results yielded a total of 479 DEGs that were at least two-fold upregulated and downregulated in MoDCs significantly (P ≤ 0.05) by all four strains and certain DEGs that were strain-specific. Interestingly, the gene ontology biological and functional analysis shows that the upregulated genes in DPG3-induced MoDCs were more significant than other strains and associated with inflammation, immune response, anti-apoptosis, cell proliferation, and other homeostatic functions. Both transcriptome and quantitative polymerase chain reaction results show that DPG3, which solely expresses Mfa1, increased ZNF366, CD209, LOX1, IDO1, IL-10, CCL2, SOCS3, STAT3 and FOXO1 gene expression. In conclusion, we have identified key DC-mediated immune homeostatic pathways that could contribute to dysbiosis in periodontal infection with P. gingivalis. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. 3rd Annual Disruptive Technology Conference

    Science.gov (United States)

    2006-09-07

    Panel -- The Warfighter’s Perspective The Impact of Disruptive Technologies on Joint Warfighting MG Michael Vane, USA, Vice Director for Force...Structure, Resources & Assessment, Joint Staff, J-8 Panel -- Perspectives of Change: Identifying the Emerging Commercial Disruptive Technologies Decision...Mark Lucas, Board Member OSGeo, RadiantBlue Technologies Panel -- The Search for Disruptive Technologies - a “Blue Force” Multiplier Advanced

  8. Intestinal absorption of dinitrophenyl-lysine and effect of immunization with dinitrophenylated bovine serum albumin

    International Nuclear Information System (INIS)

    Shimura, Fumio; Shimura, Junko; Shimazaki, Shigeki; Hosoya, Norimasa

    1983-01-01

    The intestinal absorption of dinitrophenyl-lysine (DNP-lys) was studied with a special interest on the role of the immune system in the absorption of small molecules which are recognized as nonself. [ 3 H]-DNP- lys was rapidly absorbed by ligated intestinal loops in situ via a saturable and unique route. When [ 3 H]-DNP-lys was preincubated with the immume serum obtained from rats immunized with dinitrophenylated bovine serum albumin (DNP-BSA), the [ 3 H]-DNP-lys absorption was depressed. The absorption of [ 3 H]-DNP-lys in DNP-BSA-immunized rats was depressed compared to the control. The results obtained suggest that the immune system play a role in avoiding the absorption of small molecules with antigenicity. (author)

  9. A Simple and Rapid Gene Disruption Strategy in Mycobacterium abscessus: On the Design and Application of Glycopeptidolipid Mutants.

    Science.gov (United States)

    Viljoen, Albertus; Gutiérrez, Ana Victoria; Dupont, Christian; Ghigo, Eric; Kremer, Laurent

    2018-01-01

    Little is known about the disease-causing genetic determinants that are used by Mycobacterium abscessus , increasingly acknowledged as an important emerging pathogen, notably in cystic fibrosis. The presence or absence of surface exposed glycopeptidolipids (GPL) conditions the smooth (S) or rough (R) M. abscessus subsp. abscessus ( M. abscessus ) variants, respectively, which are characterized by distinct infective programs. However, only a handful of successful gene knock-out and conditional mutants have been reported in M. abscessus , testifying that genetic manipulation of this mycobacterium is difficult. To facilitate gene disruption and generation of conditional mutants in M. abscessus , we have designed a one-step single cross-over system that allows the rapid and simple generation of such mutants. Cloning of as small as 300 bp of the target gene allows for efficient homologous recombination to occur without additional exogenous recombination-promoting factors. The presence of tdTomato on the plasmids allows easily sifting out the large background of mutants spontaneously resistant to antibiotics. Using this strategy in the S genetic background and the target gene mmpL4a , necessary for GPL synthesis and transport, nearly 100% of red fluorescent clones exhibited a rough morphotype and lost GPL on the surface, suggesting that most red fluorescent colonies obtained after transformation incorporated the plasmid through homologous recombination into the chromosome. This system was further exploited to generate another strain with reduced GPL levels to explore how the presence of these cell wall-associated glycolipids influences M. abscessus hydrophobicity as well as virulence in the zebrafish model of infection. This mutant exhibited a more pronounced killing phenotype in zebrafish embryos compared to its S progenitor and this effect correlated with the production of abscesses in the central nervous system. Overall, these results suggest that the near

  10. Immune checkpoint inhibitor-induced gastrointestinal and hepatic injury: pathologists' perspective.

    Science.gov (United States)

    Karamchandani, Dipti M; Chetty, Runjan

    2018-04-27

    Immune checkpoint inhibitors (CPIs) are a relatively new class of 'miracle' dugs that have revolutionised the treatment and prognosis of some advanced-stage malignancies, and have increased the survival rates significantly. This class of drugs includes cytotoxic T lymphocyte antigen-4 inhibitors such as ipilimumab; programmed cell death protein-1 inhibitors such as nivolumab, pembrolizumab and avelumab; and programmed cell death protein ligand-1 inhibitors such as atezolizumab. These drugs stimulate the immune system by blocking the coinhibitory receptors on the T cells and lead to antitumoural response. However, a flip side of these novel drugs is immune-related adverse events (irAEs), secondary to immune-mediated process due to disrupted self-tolerance. The irAEs in the gastrointestinal (GI) tract/liver may result in diarrhoea, colitis or hepatitis. An accurate diagnosis of CPI-induced colitis and/or hepatitis is essential for optimal patient management. As we anticipate greater use of these drugs in the future given the significant clinical response, pathologists need to be aware of the spectrum of histological findings that may be encountered in GI and/or liver biopsies received from these patients, as well as differentiate them from its histopathological mimics. This present review discusses the clinical features, detailed histopathological features, management and the differential diagnosis of the luminal GI and hepatic irAEs that may be encountered secondary to CPI therapy. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  11. Disruption of a regulatory network consisting of neutrophils and platelets fosters persisting inflammation in rheumatic diseases

    Directory of Open Access Journals (Sweden)

    Norma eMaugeri

    2016-05-01

    Full Text Available A network of cellular interactions that involve blood leukocytes and platelets maintains vessel homeostasis. It plays a critical role in the response to invading microbes by recruiting intravascular immunity and through the generation of Neutrophil Extracellular Traps (NETs and immunothrombosis. Moreover it enables immune cells to respond to remote chemoattractants by crossing the endothelial barrier and reaching sites of infection. Once the network operating under physiological conditions is disrupted, the reciprocal activation of cells in the blood and the vessel walls determines the vascular remodelling via inflammatory signals delivered to stem/progenitor cells. A deregulated leukocyte/mural cell interaction is an early critical event in the natural history of systemic inflammation. Despite intense efforts, the signals that initiate and sustain the immune-mediated vessel injury, or those that enforce the often-prolonged phases of clinical quiescence in patients with vasculitis, have only been partially elucidated. Here we discuss recent evidence that implicates the prototypic Damage-Associated Molecular Pattern/ alarmin, the High Mobility Group Box 1 (HMGB1 protein in systemic vasculitis and in the vascular inflammation associated to systemic sclerosis. HMGB1 could represent a player in the pathogenesis of rheumatic diseases and an attractive target for molecular interventions.

  12. The Neurodevelopmental Basis of Early Childhood Disruptive Behavior: Irritable and Callous Phenotypes as Exemplars.

    Science.gov (United States)

    Wakschlag, Lauren S; Perlman, Susan B; Blair, R James; Leibenluft, Ellen; Briggs-Gowan, Margaret J; Pine, Daniel S

    2018-02-01

    The arrival of the Journal's 175th anniversary occurs at a time of recent advances in research, providing an ideal opportunity to present a neurodevelopmental roadmap for understanding, preventing, and treating psychiatric disorders. Such a roadmap is particularly relevant for early-childhood-onset neurodevelopmental conditions, which emerge when experience-dependent neuroplasticity is at its peak. Employing a novel developmental specification approach, this review places recent neurodevelopmental research on early childhood disruptive behavior within the historical context of the Journal. The authors highlight irritability and callous behavior as two core exemplars of early disruptive behavior. Both phenotypes can be reliably differentiated from normative variation as early as the first years of life. Both link to discrete pathophysiology: irritability with disruptions in prefrontal regulation of emotion, and callous behavior with abnormal fear processing. Each phenotype also possesses clinical and predictive utility. Based on a nomologic net of evidence, the authors conclude that early disruptive behavior is neurodevelopmental in nature and should be reclassified as an early-childhood-onset neurodevelopmental condition in DSM-5. Rapid translation from neurodevelopmental discovery to clinical application has transformative potential for psychiatric approaches of the millennium. [AJP at 175: Remembering Our Past As We Envision Our Future November 1938: Electroencephalographic Analyses of Behavior Problem Children Herbert Jasper and colleagues found that brain abnormalities revealed by EEG are a potential causal factor in childhood behavioral disorders. (Am J Psychiatry 1938; 95:641-658 )].

  13. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Skin Immunization Obviates Alcohol-Related Immune Dysfunction

    Directory of Open Access Journals (Sweden)

    Rhonda M. Brand

    2015-11-01

    Full Text Available Alcoholics suffer from immune dysfunction that can impede vaccine efficacy. If ethanol (EtOH-induced immune impairment is in part a result of direct exposure of immune cells to EtOH, then reduced levels of exposure could result in less immune dysfunction. As alcohol ingestion results in lower alcohol levels in skin than blood, we hypothesized that the skin immune network may be relatively preserved, enabling skin-targeted immunizations to obviate the immune inhibitory effects of alcohol consumption on conventional vaccines. We employed the two most common chronic EtOH mouse feeding models, the liver-damaging Lieber-DeCarli (LD and liver-sparing Meadows-Cook (MC diets, to examine the roles of EtOH and/or EtOH-induced liver dysfunction on alcohol related immunosuppression. Pair-fed mice were immunized against the model antigen ovalbumin (OVA by DNA immunization or against flu by administering the protein-based influenza vaccine either systemically (IV, IM, directly to liver (hydrodynamic, or cutaneously (biolistic, ID. We measured resulting tissue EtOH levels, liver stress, regulatory T cell (Treg, and myeloid-derived suppressor cell (MDSC populations. We compared immune responsiveness by measuring delayed-type hypersensitivity (DTH, antigen-specific cytotoxic T lymphocyte (CTL, and antibody induction as a function of delivery route and feeding model. We found that, as expected, and independent of the feeding model, EtOH ingestion inhibits DTH, CTL lysis, and antigen-specific total IgG induced by traditional systemic vaccines. On the other hand, skin-targeted vaccines were equally immunogenic in alcohol-exposed and non-exposed subjects, suggesting that cutaneous immunization may result in more efficacious vaccination in alcohol-ingesting subjects.

  15. The Effects of Disruption on Strategic Management

    DEFF Research Database (Denmark)

    Drejer, Anders

    2017-01-01

    There is a lot of interest in Disruption these days even though the concept itself is still under formation. Disruption can be traced back to the idea of disruptive technological change and the late 1990s but has reemerged in the public eye in current years under guises such as Big Data......, Digitalization, Globalization and much more. Furthermore, the effects of disruption are now being felt by organizations and industries all over the world. In this paper, we will try to outline and illustrate some of those effects using the case-study of an international, Danish, SME. The case company has been...... forced to face some challenges caused by disruption and in the process of doing so has changed its strategy process significantly towards a more learning based approach to strategic management. Keywords: disruption; case- study; SME; strategy process....

  16. ALTERNATE MECHANISMS OF INITIAL PATTERN RECOGNITION DRIVE DIFFERENTIAL IMMUNE RESPONSES TO RELATED POXVIRUSES

    Science.gov (United States)

    O’Gorman, William E.; Sampath, Padma; Simonds, Erin F.; Sikorski, Rachel; O’Malley, Mark; Krutzik, Peter O.; Chen, Hannah; Panchanathan, Vijay; Chaudhri, Geeta; Karupiah, Gunasegaran; Lewis, David B.; Thorne, Steve H.; Nolan, Garry P.

    2010-01-01

    Summary Although vaccinia virus infection results in induction of a robust immunizing response, many closely related poxviruses such as variola (smallpox) and ectromelia (mousepox) are highly pathogenic in their natural hosts. We developed a strategy to map the activation of key signaling networks in vivo and applied this approach to define and compare the earliest signaling events elicited by poxvirus infections in mice. Vaccinia induced rapid TLR2-dependent responses leading to IL-6 production, which then initiated STAT3 signaling in dendritic cells and T cells. In contrast, ectromelia did not induce TLR2 activation and profound mouse strain-dependent responses were observed. In resistant C57BL/6 mice, the STAT1 and STAT3 pathways were rapidly activated, whereas in susceptible BALB/c mice, IL-6-dependent STAT3 activation did not occur. These results indicate that vaccination with vaccinia is dependent on rapid TLR2 and IL-6 driven responses and link the earliest immune signaling events to the outcome of infection. PMID:20709294

  17. Migration and child immunization in Nigeria: individual- and community-level contexts

    Directory of Open Access Journals (Sweden)

    Antai Diddy

    2010-03-01

    Full Text Available Abstract Background Vaccine-preventable diseases are responsible for severe rates of morbidity and mortality in Africa. Despite the availability of appropriate vaccines for routine use on infants, vaccine-preventable diseases are highly endemic throughout sub-Saharan Africa. Widespread disparities in the coverage of immunization programmes persist between and within rural and urban areas, regions and communities in Nigeria. This study assessed the individual- and community-level explanatory factors associated with child immunization differentials between migrant and non-migrant groups. Methods The proportion of children that received each of the eight vaccines in the routine immunization schedule in Nigeria was estimated. Multilevel multivariable regression analysis was performed using a nationally representative sample of 6029 children from 2735 mothers aged 15-49 years and nested within 365 communities. Odds ratios with 95% confidence intervals were used to express measures of association between the characteristics. Variance partition coefficients and Wald statistic i.e. the ratio of the estimate to its standard error were used to express measures of variation. Results Individual- and community contexts are strongly associated with the likelihood of receiving full immunization among migrant groups. The likelihood of full immunization was higher for children of rural non-migrant mothers compared to children of rural-urban migrant mothers. Findings provide support for the traditional migration perspectives, and show that individual-level characteristics, such as, migrant disruption (migration itself, selectivity (demographic and socio-economic characteristics, and adaptation (health care utilization, as well as community-level characteristics (region of residence, and proportion of mothers who had hospital delivery are important in explaining the differentials in full immunization among the children. Conclusion Migration is an important

  18. IMMUNITY STATE IN THE OFFSPRING OF RATS EXPOSED ANTIGENS TOXOPLASMA GONDII

    Directory of Open Access Journals (Sweden)

    T. F. Sokolova

    2014-01-01

    Full Text Available Today the questions about possibility of development disturbances in the immune system of the fetus and the newborn in chronic toxoplasmosis are poorly understood. Aim of research: to detect immunological disturbances in the offspring of rats which have been administered antigens T. gondii.Two series of experiments was performed. In these experiments white female Wistar rats in the III trimester of pregnancy have been administered corpuscular antigen T. gondii. The 60 days-old offspring of these rats have been included in study group of 137 animals. CD3+ cells count was performed in peripherical blood and standard suspension of splenocytesrats offspring. Peripherical blood cells count was performed in the blood of the rats offspring. In the second experiment rats offspring have been administered sheep erythrocytes in 5 days, before euthanasia. In spleen of this rats antigen-produced cells was counted.In control group was included 118 animals, which was born from white female Wistar rats have been administered 0,9% NaCl solution. CD3+ cells was detected in Cytomics FC500 flow cytometry analyzer (Beckman Coulter,USA by use rats origne-specifed monoclonal antibodies Anti-Rat CD3-FITC (Beckman Coulter,USA. Hematological parameters was assessed by use hematological analyzer Excell-22 (USA.We observed, that CD3+ lymphocytes and antigen-produced cells was decreased in test group (degress of decrease CD3+ cells was 17,2%; р = 0,003 in spleen vs. control group, degress of decrease antigen-produced cells was 27,3%; р = 0,03 vs. control group. Number of leukocytes was increased in in test group (34,5%; р = 0,009 vs. control group. Power and strength correlation pleiades between studied blood and spenal markers were higher in in test group vs. control group (∑Gi = 16; ∑Di = 4,38 vs. ∑Gi = 13; ∑Di = 2,28. This phenomenon is probably due to the development adaptive reactions disruption in the immune system and development

  19. Immune response of T cells during herpes simplex virus type 1 (HSV-1) infection.

    Science.gov (United States)

    Zhang, Jie; Liu, Huan; Wei, Bin

    Herpes simplex virus type 1 (HSV-1), a neurotropic member of the alphaherpes virus family, is among the most prevalent and successful human pathogens. HSV-1 can cause serious diseases at every stage of life including fatal disseminated disease in newborns, cold sores, eye disease, and fatal encephalitis in adults. HSV-1 infection can trigger rapid immune responses, and efficient inhibition and clearance of HSV-1 infection rely on both the innate and adaptive immune responses of the host. Multiple strategies have been used to restrict host innate immune responses by HSV-1 to facilitate its infection in host cells. The adaptive immunity of the host plays an important role in inhibiting HSV-1 infections. The activation and regulation of T cells are the important aspects of the adaptive immunity. They play a crucial role in host-mediated immunity and are important for clearing HSV-1. In this review, we examine the findings on T cell immune responses during HSV-1 infection, which hold promise in the design of new vaccine candidates for HSV-1.

  20. Arsenic mediated disruption of promyelocytic leukemia protein nuclear bodies induces ganciclovir susceptibility in Epstein-Barr positive epithelial cells

    International Nuclear Information System (INIS)

    Sides, Mark D.; Block, Gregory J.; Shan, Bin; Esteves, Kyle C.; Lin, Zhen; Flemington, Erik K.; Lasky, Joseph A.

    2011-01-01

    Promyelocytic leukemia protein nuclear bodies (PML NBs) have been implicated in host immune response to viral infection. PML NBs are targeted for degradation during reactivation of herpes viruses, suggesting that disruption of PML NB function supports this aspect of the viral life cycle. The Epstein-Barr virus (EBV) Latent Membrane Protein 1 (LMP1) has been shown to suppress EBV reactivation. Our finding that LMP1 induces PML NB immunofluorescence intensity led to the hypothesis that LMP1 may modulate PML NBs as a means of maintaining EBV latency. Increased PML protein and morphometric changes in PML NBs were observed in EBV infected alveolar epithelial cells and nasopharyngeal carcinoma cells. Treatment with low dose arsenic trioxide disrupted PML NBs, induced expression of EBV lytic proteins, and conferred ganciclovir susceptibility. This study introduces an effective modality to induce susceptibility to ganciclovir in epithelial cells with implications for the treatment of EBV associated pathologies.

  1. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  2. Hepatitis C, innate immunity and alcohol: friends or foes?

    Science.gov (United States)

    Osna, Natalia A; Ganesan, Murali; Kharbanda, Kusum K

    2015-02-05

    Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV)-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling-a crucial point for activation of anti-viral genes to protect cells from virus-and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  3. Hepatitis C, Innate Immunity and Alcohol: Friends or Foes?

    Directory of Open Access Journals (Sweden)

    Natalia A. Osna

    2015-02-01

    Full Text Available Hepatitis C and alcohol are the most widespread causes of liver disease worldwide. Approximately 80% of patients with a history of hepatitis C and alcohol abuse develop chronic liver injury. Alcohol consumption in hepatitis C virus (HCV-infected patients exacerbates liver disease leading to rapid progression of fibrosis, cirrhosis and even hepatocellular carcinoma. Hepatocytes are the main sites of HCV-infection and ethanol metabolism, both of which generate oxidative stress. Oxidative stress levels affect HCV replication and innate immunity, resulting in a greater susceptibility for HCV-infection and virus spread in the alcoholic patients. In this review paper, we analyze the effects of ethanol metabolism and other factors on HCV replication. In addition, we illustrate the mechanisms of how HCV hijacks innate immunity and how ethanol exposure regulates this process. We also clarify the effects of HCV and ethanol metabolism on interferon signaling—a crucial point for activation of anti-viral genes to protect cells from virus—and the role that HCV- and ethanol-induced impairments play in adaptive immunity which is necessary for recognition of virally-infected hepatocytes. In conclusion, ethanol exposure potentiates the suppressive effects of HCV on innate immunity, which activates viral spread in the liver and finally, leads to impairments in adaptive immunity. The dysregulation of immune response results in impaired elimination of HCV-infected cells, viral persistence, progressive liver damage and establishment of chronic infection that worsens the outcomes of chronic hepatitis C in alcoholic patients.

  4. U.S. Immunization program adult immunization activities and resources

    Science.gov (United States)

    Woods, LaDora O.; Bridges, Carolyn B.; Graitcer, Samuel B.; Lamont, Brock

    2016-01-01

    ABSTRACT Adults are recommended to receive vaccines based on their age, medical conditions, prior vaccinations, occupation and lifestyle. However, adult immunization coverage is low in the United States and lags substantially below Healthy People 2020 goals. To assess activities and resources designated for adult immunization programs by state and local health department immunization programs in the United States, we analyzed 2012 and 2013 data from the Centers for Disease Control and Prevention's (CDC) Program Annual Reports and Progress Assessments (PAPA) survey of CDC-funded immunization programs. Fifty-six of 64 funded US immunization programs' responses were included in the analysis. Eighty-two percent of (n = 46) programs reported having a designated adult immunization coordinator in 2012 and 73% (n = 41) in 2013. Of the 46 coordinators reported in 2012, 30% (n = 14) spent more than 50% of their time on adult immunization activities, and only 24% (n = 10) of the 41 adult coordinators in 2013 spent more than 50% of their time on adult immunization activities. In 2012, 23% (n = 13) of the 56 programs had a separate immunization coalition for adults and 68% (n = 38) included adult issues in their overall immunization program coalition. In 2013, 25% (n = 14) had a separate adult immunization coalition while 57% (n = 32) incorporated adult immunizations into their overall immunization program coalition. The results indicate substantial variation across the US in public health infrastructure to support adult immunizations. Continued assessment of adult immunization resources and activities will be important in improving adult immunization coverage levels though program support. With many programs having limited resources dedicated to improving adult immunization rates in the in US, efforts by the health departments to collaborate with providers and other partners in their jurisdictions to increase awareness, increase the use of proven strategies to improve

  5. Jet disruption in wide-angle tailed radio galaxies

    International Nuclear Information System (INIS)

    Burns, J.O.; Norman, M.L.; Clarke, D.A.

    1986-01-01

    The mechanisms responsible for the bending of the jets and tails of wide-angle tailed (WAT) radio galaxies in clusters are investigated theoretically, with a focus on sharp bends and rapid jet disruption. Large (1 Mpc) and small (200 kpc) WATs are differentiated, and it is suggested that the jet-tail transition in large WATs is due to collisions between the jet and cool clouds of the intracluster medium (ICM). The transition in small WATs is attributed to the passage of the jet through a planar Mach disk perpendicular to the jet flow direction. Such a disk is shown in numerical simulations to form when there is a shocklike jump in ambient pressure at the ISM/ICM interface; the origins of such a jump are explored. 14 references

  6. A high efficiency gene disruption strategy using a positive-negative split selection marker and electroporation for Fusarium oxysporum.

    Science.gov (United States)

    Liang, Liqin; Li, Jianqiang; Cheng, Lin; Ling, Jian; Luo, Zhongqin; Bai, Miao; Xie, Bingyan

    2014-11-01

    The Fusarium oxysporum species complex consists of fungal pathogens that cause serial vascular wilt disease on more than 100 cultivated species throughout the world. Gene function analysis is rapidly becoming more and more important as the whole-genome sequences of various F. oxysporum strains are being completed. Gene-disruption techniques are a common molecular tool for studying gene function, yet are often a limiting step in gene function identification. In this study we have developed a F. oxysporum high-efficiency gene-disruption strategy based on split-marker homologous recombination cassettes with dual selection and electroporation transformation. The method was efficiently used to delete three RNA-dependent RNA polymerase (RdRP) genes. The gene-disruption cassettes of three genes can be constructed simultaneously within a short time using this technique. The optimal condition for electroporation is 10μF capacitance, 300Ω resistance, 4kV/cm field strength, with 1μg of DNA (gene-disruption cassettes). Under these optimal conditions, we were able to obtain 95 transformants per μg DNA. And after positive-negative selection, the transformants were efficiently screened by PCR, screening efficiency averaged 85%: 90% (RdRP1), 85% (RdRP2) and 77% (RdRP3). This gene-disruption strategy should pave the way for high throughout genetic analysis in F. oxysporum. Copyright © 2014 Elsevier GmbH. All rights reserved.

  7. Effector-triggered immunity: from pathogen perception to robust defense.

    Science.gov (United States)

    Cui, Haitao; Tsuda, Kenichi; Parker, Jane E

    2015-01-01

    In plant innate immunity, individual cells have the capacity to sense and respond to pathogen attack. Intracellular recognition mechanisms have evolved to intercept perturbations by pathogen virulence factors (effectors) early in host infection and convert it to rapid defense. One key to resistance success is a polymorphic family of intracellular nucleotide-binding/leucine-rich-repeat (NLR) receptors that detect effector interference in different parts of the cell. Effector-activated NLRs connect, in various ways, to a conserved basal resistance network in order to transcriptionally boost defense programs. Effector-triggered immunity displays remarkable robustness against pathogen disturbance, in part by employing compensatory mechanisms within the defense network. Also, the mobility of some NLRs and coordination of resistance pathways across cell compartments provides flexibility to fine-tune immune outputs. Furthermore, a number of NLRs function close to the nuclear chromatin by balancing actions of defense-repressing and defense-activating transcription factors to program cells dynamically for effective disease resistance.

  8. Enteric Virome Sensing—Its Role in Intestinal Homeostasis and Immunity

    Directory of Open Access Journals (Sweden)

    Rebecca N. Metzger

    2018-03-01

    Full Text Available Pattern recognition receptors (PRRs sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  9. Enteric Virome Sensing-Its Role in Intestinal Homeostasis and Immunity.

    Science.gov (United States)

    Metzger, Rebecca N; Krug, Anne B; Eisenächer, Katharina

    2018-03-23

    Pattern recognition receptors (PRRs) sensing commensal microorganisms in the intestine induce tightly controlled tonic signaling in the intestinal mucosa, which is required to maintain intestinal barrier integrity and immune homeostasis. At the same time, PRR signaling pathways rapidly trigger the innate immune defense against invasive pathogens in the intestine. Intestinal epithelial cells and mononuclear phagocytes in the intestine and the gut-associated lymphoid tissues are critically involved in sensing components of the microbiome and regulating immune responses in the intestine to sustain immune tolerance against harmless antigens and to prevent inflammation. These processes have been mostly investigated in the context of the bacterial components of the microbiome so far. The impact of viruses residing in the intestine and the virus sensors, which are activated by these enteric viruses, on intestinal homeostasis and inflammation is just beginning to be unraveled. In this review, we will summarize recent findings indicating an important role of the enteric virome for intestinal homeostasis as well as pathology when the immune system fails to control the enteric virome. We will provide an overview of the virus sensors and signaling pathways, operative in the intestine and the mononuclear phagocyte subsets, which can sense viruses and shape the intestinal immune response. We will discuss how these might interact with resident enteric viruses directly or in context with the bacterial microbiome to affect intestinal homeostasis.

  10. Antibody Production From Immunized Rabbits By Brucella Abortus

    International Nuclear Information System (INIS)

    Sadi, Suharni

    2002-01-01

    In this research Brucella abortus was used as antigen which was made by killing the bacteria in boiling water for 1 hour and then add 0.5% phenol. The suspension of bacteria of 6x10 8 cells/mm 3 was used as antigen. Rabbits of about 3 months old were injected with 0.50 mI of the antigen by intradermal route with an interval of two weeks. The animals were divided in three groups i.e. A (control group), B (immunization group) and C (immunization and irradiation group). In C group, the animals were first immunized by the antigen and then 2 days later were irradiated by a low dose of 0.50 Gy of gamma rays. Each group consisted of 3 animals. Parameters were observed by weighing the animals, counting leucocyte and lymphocyte cells, and anaIysing the antisera. The research were done two times, included immunization I x, boostered 4 x and analysed 5x. The results obtained were as follows: A (control group) yielded 2.34 g/dl of non specific antibody, B (immunization group) yielded 3.22 g/dI of specific antibody, C (immunization and irradiation group) yielded 3.50 g/dl of spesific antibody. The leucocyte cells of A, B , and C group were 8.240, 7.887, and 8.120 cells/mm 3, respectively. The lymphocyte cells of A, B, and C group were 69%, respectively. The weigh of A, B, and C group were 1.44; 1.53; and l.41 kg, respectively. The purpose of this research was prepared to produce the diagnostic reagen (RIA Kit) for a rapid detection of animals disease especially brucellosis. It seemed that C group (the combination of immunization and irradiation treatments) yielded the highest value of antibody production compared to another group

  11. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature

    Science.gov (United States)

    Naik, Shruti; Bouladoux, Nicolas; Linehan, Jonathan L.; Han, Seong-Ji; Harrison, Oliver J.; Wilhelm, Christoph; Conlan, Sean; Himmelfarb, Sarah; Byrd, Allyson L.; Deming, Clayton; Quinones, Mariam; Brenchley, Jason M.; Kong, Heidi H.; Tussiwand, Roxanne; Murphy, Kenneth M.; Merad, Miriam; Segre, Julia A; Belkaid, Yasmine

    2015-01-01

    The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity1–4. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges5–7. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A+ CD8+ T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies. PMID:25539086

  12. Structural defects and variations in the HIV-1 nef gene from rapid, slow and non-progressor children.

    Science.gov (United States)

    Casartelli, Nicoletta; Di Matteo, Gigliola; Argentini, Claudio; Cancrini, Caterina; Bernardi, Stefania; Castelli, Guido; Scarlatti, Gabriella; Plebani, Anna; Rossi, Paolo; Doria, Margherita

    2003-06-13

    Evaluation of sequence evolution as well as structural defects and mutations of the human immunodeficiency virus-type 1 (HIV-1) nef gene in relation to disease progression in infected children. We examined a large number of nef alleles sequentially derived from perinatally HIV-1-infected children with different rates of disease progression: six non-progressors (NPs), four rapid progressors (RPs), and three slow progressors (SPs). Nef alleles (182 total) were isolated from patients' peripheral blood mononuclear cells (PBMCs), sequenced and analysed for their evolutionary pattern, frequency of mutations and occurrence of amino acid variations associated with different stages of disease. The evolution rate of the nef gene apparently correlated with CD4+ decline in all progression groups. Evidence for rapid viral turnover and positive selection for changes were found only in two SPs and two RPs respectively. In NPs, a higher proportion of disrupted sequences and mutations at various functional motifs were observed. Furthermore, NP-derived Nef proteins were often changed at residues localized in the folded core domain at cytotoxic T lymphocytes (CTL) epitopes (E(105), K(106), E(110), Y(132), K(164), and R(200)), while other residues outside the core domain are more often changed in RPs (A(43)) and SPs (N(173) and Y(214)). Our results suggest a link between nef gene functions and the progression rate in HIV-1-infected children. Moreover, non-progressor-associated variations in the core domain of Nef, together with the genetic analysis, suggest that nef gene evolution is shaped by an effective immune system in these patients.

  13. Atopic dermatitis: immune deviation, barrier dysfunction, IgE autoreactivity and new therapies

    Directory of Open Access Journals (Sweden)

    Masutaka Furue

    2017-07-01

    Full Text Available Atopic dermatitis (AD is a chronic or chronically relapsing, eczematous, severely pruritic skin disorder mostly associated with IgE elevation and skin barrier dysfunction due to decreased filaggrin expression. The lesional skin of AD exhibits Th2- and Th22-deviated immune reactions that are progressive during disease chronicity. Th2 and Th22 cytokines further deteriorate the skin barrier by inhibiting filaggrin expression. Some IgEs are reactive to self-antigens. The IgE autoreactivity may precipitate the chronicity of AD. Upon activation of the ORAI1 calcium channel, atopic epidermis releases large amounts of thymic stromal lymphopoietin (TSLP, which initiates the Th2 and Th22 immune response. Th2-derived interleukin-31 and TSLP induce an itch sensation. Taken together, TSLP/Th2/Th22 pathway is a promising target for developing new therapeutics for AD. Enhancing filaggrin expression using ligands for the aryl hydrocarbon receptor may also be an adjunctive measure to restore the disrupted barrier function specifically for AD.

  14. Towards a Framework of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    2014-01-01

    Digital platforms are disruptive information technology (IT) artifacts that erode conventional business logic associated with traditional market structures. This paper presents a framework for examining the disruptive potential of digital platforms whereby we postulate that the strategic interplay...... digital platforms purposely decouple platform layers, to foster open innovation and accelerate market disruption. This paper therefore represents a first concrete step aimed at unravelling the disruptive potential of digital platforms....... of governance regimes and platform layers is deterministic of whether disruptive derivatives are permitted to flourish. This framework has been employed in a comparative case study between centralized (i.e., PayPal) and decentralized (i.e., Coinkite) digital payment platforms to illustrate its applicability...

  15. Real-time disruption handling at ASDEX upgrade

    International Nuclear Information System (INIS)

    Zehetbauer, Th.; Pautasso, G.; Tichmann, C.; Egorov, S.; Lorenz, A.; Mertens, V.; Neu, G.; Raupp, G.; Treutterer, W.; Zasche, D.

    2001-01-01

    A neural network for prediction of disruptions has been developed at ASDEX Upgrade with the goal to mitigate or avoid these. The novel idea is to compute the remaining time-to-disruption to indicate the stability level of the discharge. The neural network has been specified, trained and then implemented within the real-time plasma control system. The current version of the system terminates the discharge with an impurity pellet when the computed time-to-disruption falls below a threshold of 80 ms. Routine operation shows that disruptions are recognized reliably. Vessel currents and forces are considerably reduced. The system will be enhanced to avoid disruptions with a soft landing initiated in time

  16. Family Disruptions

    Science.gov (United States)

    ... Spread the Word Shop AAP Find a Pediatrician Family Life Medical Home Family Dynamics Adoption & Foster Care ... Life Listen Español Text Size Email Print Share Family Disruptions Page Content Article Body No matter how ...

  17. Toxins in botanical dietary supplements: blue cohosh components disrupt cellular respiration and mitochondrial membrane potential.

    Science.gov (United States)

    Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B; Khan, Ikhlas A; Nagle, Dale G; Zhou, Yu-Dong

    2014-01-24

    Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA "black box" warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3), exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage.

  18. Toxins in Botanical Dietary Supplements: Blue Cohosh Components Disrupt Cellular Respiration and Mitochondrial Membrane Potential

    Science.gov (United States)

    Datta, Sandipan; Mahdi, Fakhri; Ali, Zulfiqar; Jekabsons, Mika B.; Khan, Ikhlas A.; Nagle, Dale G.; Zhou, Yu-Dong

    2014-01-01

    Certain botanical dietary supplements have been associated with idiosyncratic organ-specific toxicity. Similar toxicological events, caused by drug-induced mitochondrial dysfunction, have forced the withdrawal or U.S. FDA “Black Box” warnings of major pharmaceuticals. To assess the potential mitochondrial liability of botanical dietary supplements, extracts from 352 authenticated plant samples used in traditional Chinese, Ayurvedic, and Western herbal medicine were evaluated for the ability to disrupt cellular respiration. Blue cohosh (Caulophyllum thalictroides) methanol extract exhibited mitochondriotoxic activity. Used by some U.S. midwives to help induce labor, blue cohosh has been associated with perinatal stroke, acute myocardial infarction, congestive heart failure, multiple organ injury, and neonatal shock. The potential link between mitochondrial disruption and idiosyncratic herbal intoxication prompted further examination. The C. thalictroides methanol extract and three saponins, cauloside A (1), saponin PE (2), and cauloside C (3) exhibited concentration- and time-dependent mitochondriotoxic activities. Upon treatment, cell respiration rate rapidly increased and then dramatically decreased within minutes. Mechanistic studies revealed that C. thalictroides constituents impair mitochondrial function by disrupting membrane integrity. These studies provide a potential etiological link between this mitochondria-sensitive form of cytotoxicity and idiosyncratic organ damage. PMID:24328138

  19. Immunization Information System and Informatics to Promote Immunizations: Perspective From Minnesota Immunization Information Connection.

    Science.gov (United States)

    Muscoplat, Miriam Halstead; Rajamani, Sripriya

    2017-01-01

    The vision for management of immunization information is availability of real-time consolidated data and services for all ages, to clinical, public health, and other stakeholders. This is being executed through Immunization Information Systems (IISs), which are population-based and confidential computerized systems present in most US states and territories. Immunization Information Systems offer many functionalities, such as immunization assessment reports, client follow-up, reminder/recall feature, vaccine management tools, state-supplied vaccine ordering, comprehensive immunization history, clinical decision support/vaccine forecasting and recommendations, data processing, and data exchange. This perspective article will present various informatics tools in an IIS, in the context of the Minnesota Immunization Information Connection.

  20. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis

    Directory of Open Access Journals (Sweden)

    Barbara C. Mindt

    2018-04-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  1. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue Homeostasis.

    Science.gov (United States)

    Mindt, Barbara C; Fritz, Jörg H; Duerr, Claudia U

    2018-01-01

    Group 2 innate lymphoid cells (ILC2) represent an evolutionary rather old but only recently identified member of the family of innate lymphoid cells and have received much attention since their detailed description in 2010. They can orchestrate innate as well as adaptive immune responses as they interact with and influence several immune and non-immune cell populations. Moreover, ILC2 are able to rapidly secrete large amounts of type 2 cytokines that can contribute to protective but also detrimental host immune responses depending on timing, location, and physiological context. Interestingly, ILC2, despite their scarcity, are the dominant innate lymphoid cell population in the lung, indicating a key role as first responders and amplifiers upon immune challenge at this site. In addition, the recently described tissue residency of ILC2 further underlines the importance of their respective microenvironment. In this review, we provide an overview of lung physiology including a description of the most prominent pulmonary resident cells together with a review of known and potential ILC2 interactions within this unique environment. We will further outline recent observations regarding pulmonary ILC2 during immune challenge including respiratory infections and discuss different models and approaches to study ILC2 biology in the lung.

  2. Serratia marcescens Induces Apoptotic Cell Death in Host Immune Cells via a Lipopolysaccharide- and Flagella-dependent Mechanism*

    Science.gov (United States)

    Ishii, Kenichi; Adachi, Tatsuo; Imamura, Katsutoshi; Takano, Shinya; Usui, Kimihito; Suzuki, Kazushi; Hamamoto, Hiroshi; Watanabe, Takeshi; Sekimizu, Kazuhisa

    2012-01-01

    Injection of Serratia marcescens into the blood (hemolymph) of the silkworm, Bombyx mori, induced the activation of c-Jun NH2-terminal kinase (JNK), followed by caspase activation and apoptosis of blood cells (hemocytes). This process impaired the innate immune response in which pathogen cell wall components, such as glucan, stimulate hemocytes, leading to the activation of insect cytokine paralytic peptide. S. marcescens induced apoptotic cell death of silkworm hemocytes and mouse peritoneal macrophages in vitro. We searched for S. marcescens transposon mutants with attenuated ability to induce apoptosis of silkworm hemocytes. Among the genes identified, disruption mutants of wecA (a gene involved in lipopolysaccharide O-antigen synthesis), and flhD and fliR (essential genes in flagella synthesis) showed reduced motility and impaired induction of mouse macrophage cell death. These findings suggest that S. marcescens induces apoptosis of host immune cells via lipopolysaccharide- and flagella-dependent motility, leading to the suppression of host innate immunity. PMID:22859304

  3. Disruption modeling in support of ITER

    International Nuclear Information System (INIS)

    Bandyopadhyay, I.

    2015-01-01

    Plasma current disruptions and Vertical Displacement Events (VDEs) are one of the major concerns in any tokamak as they lead to large electromagnetic forces to tokamak first wall components and vacuum vessel. Their occurrence also means disruption to steady state operations of tokamaks. Thus future fusion reactors like ITER must ensure that disruptions and VDEs are minimized. However, since there is still finite probability of their occurrence, one must be able to characterize disruptions and VDEs and able to predict, for example, the plasma current quench time and halo current amplitude, which mainly determine the magnitude of the electromagnetic forces. There is a concerted effort globally to understand and predict plasma and halo current evolution during disruption in tokamaks through MHD simulations. Even though Disruption and VDEs are often 3D MHD perturbations in nature, presently they are mostly simulated using 2D axisymmetric MHD codes like the Tokamak Simulation Code (TSC) and DINA. These codes are also extensively benchmarked against experimental data in present day tokamaks to improve these models and their ability to predict these events in ITER. More detailed 3D models like M3D are only recently being developed, but they are yet to be benchmarked against experiments, as also they are massively computationally exhaustive

  4. Disrupted PI3K p110δ Signaling Dysregulates Maternal Immune Cells and Increases Fetal Mortality In Mice

    Directory of Open Access Journals (Sweden)

    Jens Kieckbusch

    2015-12-01

    Full Text Available Maternal immune cells are an integral part of reproduction, but how they might cause pregnancy complications remains elusive. Macrophages and their dual function in inflammation and tissue repair are thought to play key yet undefined roles. Altered perinatal growth underpins adult morbidity, and natural killer (NK cells may sustain fetal growth by establishing the placental blood supply. Using a mouse model of genetic inactivation of PI3K p110δ, a key intracellular signaling molecule in leukocytes, we show that p110δ regulates macrophage dynamics and NK-cell-mediated arterial remodeling. The uterus of dams with inactive p110δ had decreased IFN-γ and MHC class IIlow macrophages but enhanced IL-6. Poor vascular remodeling and a pro-inflammatory uterine milieu resulted in fetal death or growth retardation. Our results provide one mechanism that explains how imbalanced adaptations of maternal innate immune cells to gestation affect offspring well-being with consequence perinatally and possibly into adulthood.

  5. Tribbles ortholog NIPI-3 and bZIP transcription factor CEBP-1 regulate a Caenorhabditis elegans intestinal immune surveillance pathway.

    Science.gov (United States)

    McEwan, Deborah L; Feinbaum, Rhonda L; Stroustrup, Nicholas; Haas, Wilhelm; Conery, Annie L; Anselmo, Anthony; Sadreyev, Ruslan; Ausubel, Frederick M

    2016-12-07

    Many pathogens secrete toxins that target key host processes resulting in the activation of immune pathways. The secreted Pseudomonas aeruginosa toxin Exotoxin A (ToxA) disrupts intestinal protein synthesis, which triggers the induction of a subset of P. aeruginosa-response genes in the nematode Caenorhabditis elegans. We show here that one ToxA-induced C. elegans gene, the Tribbles pseudokinase ortholog nipi-3, is essential for host survival following exposure to P. aeruginosa or ToxA. We find that NIPI-3 mediates the post-developmental expression of intestinal immune genes and proteins and primarily functions in parallel to known immune pathways, including p38 MAPK signaling. Through mutagenesis screening, we identify mutants of the bZIP C/EBP transcription factor cebp-1 that suppress the hypersusceptibility defects of nipi-3 mutants. NIPI-3 is a negative regulator of CEBP-1, which in turn negatively regulates protective immune mechanisms. This pathway represents a previously unknown innate immune signaling pathway in intestinal epithelial cells that is involved in the surveillance of cellular homeostasis. Because NIPI-3 and CEBP-1 are also essential for C. elegans development, NIPI-3 is analogous to other key innate immune signaling molecules such as the Toll receptors in Drosophila that have an independent role during development.

  6. Disrupted Disclosure

    DEFF Research Database (Denmark)

    Krause Hansen, Hans; Uldam, Julie

    appearances become challenged through disruptive disclosures in mediaenvironments characterized by multiple levels of visibility, with companies both observing andbeing observed by civil society groups that criticize them; (c) why and how the mobilization aroundtransparency and ensuing practices...

  7. SPRYSEC effectors: a versatile protein-binding platform to disrupt plant innate immunity

    Directory of Open Access Journals (Sweden)

    Amalia Diaz-Granados

    2016-10-01

    Full Text Available Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These round worms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.

  8. UBXN1 Interferes with Rig-I-like Receptor-Mediated Antiviral Immune Response by Targeting MAVS

    Directory of Open Access Journals (Sweden)

    Penghua Wang

    2013-04-01

    Full Text Available RNA viruses are sensed by RIG-I-like receptors (RLRs, which signal through a mitochondria-associated adaptor molecule, MAVS, resulting in systemic antiviral immune responses. Although RLR signaling is essential for limiting RNA virus replication, it must be stringently controlled to prevent damage from inflammation. We demonstrate here that among all tested UBX-domain-containing protein family members, UBXN1 exhibits the strongest inhibitory effect on RNA-virus-induced type I interferon response. UBXN1 potently inhibits RLR- and MAVS-induced, but not TLR3-, TLR4-, or DNA-virus-induced innate immune responses. Depletion of UBXN1 enhances virus-induced innate immune responses, including those resulting from RNA viruses such as vesicular stomatitis, Sendai, West Nile, and dengue virus infection, repressing viral replication. Following viral infection, UBXN1 is induced, binds to MAVS, interferes with intracellular MAVS oligomerization, and disrupts the MAVS/TRAF3/TRAF6 signalosome. These findings underscore a critical role of UBXN1 in the modulation of a major antiviral signaling pathway.

  9. Host translational inhibition by Pseudomonas aeruginosa Exotoxin A Triggers an immune response in Caenorhabditis elegans.

    Science.gov (United States)

    McEwan, Deborah L; Kirienko, Natalia V; Ausubel, Frederick M

    2012-04-19

    Intestinal epithelial cells are exposed to both innocuous and pathogenic microbes, which need to be distinguished to mount an effective immune response. To understand the mechanisms underlying pathogen recognition, we investigated how Pseudomonas aeruginosa triggers intestinal innate immunity in Caenorhabditis elegans, a process independent of Toll-like pattern recognition receptors. We show that the P. aeruginosa translational inhibitor Exotoxin A (ToxA), which ribosylates elongation factor 2 (EF2), upregulates a significant subset of genes normally induced by P. aeruginosa. Moreover, immune pathways involving the ATF-7 and ZIP-2 transcription factors, which protect C. elegans from P. aeruginosa, are required for preventing ToxA-mediated lethality. ToxA-responsive genes are not induced by enzymatically inactive ToxA protein but can be upregulated independently of ToxA by disruption of host protein translation. Thus, C. elegans has a surveillance mechanism to recognize ToxA through its effect on protein translation rather than by direct recognition of either ToxA or ribosylated EF2. Copyright © 2012 Elsevier Inc. All rights reserved.

  10. Immune regulation following pediatric cardiac surgery - What goes up must come down

    NARCIS (Netherlands)

    Schadenberg, A.W.L.

    2013-01-01

    The immune system is a dynamic system that is designed to respond rapidly to potential harmful stimuli. Following activation tight control mechanisms are in place to avoid collateral damage. Cardiac surgery is well known to induce an acute systemic inflammatory response and therefore, elective

  11. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

    Science.gov (United States)

    Westendorp, B Florien; Büller, Nikè V J A; Karpus, Olga N; van Dop, Willemijn A; Koster, Jan; Versteeg, Rogier; Koelink, Pim J; Snel, Clinton Y; Meisner, Sander; Roelofs, Joris J T H; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E; van den Brink, Gijs R

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Hedgehog activity was modulated genetically in both cell type-specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast

  12. Camouflage and Misdirection: The Full-On Assault of Ebola Virus Disease

    Science.gov (United States)

    Misasi, John; Sullivan, Nancy J.

    2014-01-01

    Ebolaviruses cause a severe hemorrhagic fever syndrome that is rapidly fatal to humans and non-human primates. Ebola protein interactions with host cellular proteins disrupt Type I and Type II interferon responses, RNAi anti-viral responses, antigen presentation, T-cell mediated antibody responses, humoral antibodies and cell mediated immunity. This multifaceted approach to evasion and suppression of innate and adaptive immune responses in their target hosts leads to the severe immune dysregulation and “cytokine storm” that is characteristic of fatal ebolavirus infection. Here we highlight some of the processes by which Ebola interacts with its mammalian hosts to evade anti-viral defenses. PMID:25417101

  13. Epicutaneous immunization with type II collagen inhibits both onset and progression of chronic collagen-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jessica Strid

    Full Text Available Epicutaneous immunization is a potential non-invasive technique for antigen-specific immune-modulation. Topical application of protein antigens to barrier-disrupted skin induces potent antigen-specific immunity with a strong Th2-bias. In this study, we investigate whether the autoimmune inflammatory response of chronic collagen-induced arthritis (CCIA in DBA/1-TCR-beta Tg mice can be modified by epicutaneous immunization. We show that epicutaneous immunization with type II collagen (CII inhibited development and progression of CCIA and, importantly, also ameliorated ongoing disease as indicated by clinical scores of disease severity, paw swelling and joints histology. Treated mice show reduced CII-driven T cell proliferation and IFN-gamma production, as well as significantly lower levels of CII-specific IgG2a serum antibodies. In contrast, CII-driven IL-4 production and IgE antibody levels were increased consistent with skewing of the CII response from Th1 to Th2 in treated mice. IL-4 production in treated mice was inversely correlated with disease severity. Moreover, T cells from treated mice inhibited proliferation and IFN-gamma production by T cells from CCIA mice, suggesting induction of regulatory T cells that actively inhibit effector responses in arthritic mice. The levels of CD4(+CD25(+ T cells were however not increased following epicutaneous CII treatment. Together, these results suggest that epicutaneous immunization may be used as an immune-modulating procedure to actively re-programme pathogenic Th1 responses, and could have potential as a novel specific and simple treatment for chronic autoimmune inflammatory diseases such as rheumatoid arthritis.

  14. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    Science.gov (United States)

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  15. Disruption studies on ASDEX upgrade

    International Nuclear Information System (INIS)

    Pautasso, G.; Egorov, S.; Finken, K.H.

    2003-01-01

    Disruptions generate large thermal and mechanical stresses on the tokamak components and are occasionally responsible for damages to the machine. For a future reactor disruptions have a significant impact on the design since all loading conditions must be analyzed in accordance with stricter design criteria (due to safety or difficult maintenance). Therefore the uncertainties affecting the predicted stresses must be reduced as much as possible with a more comprehensive set of measurements and analyses in this generation of experimental machines, and avoidance/predictive methods must be developed further. Disruption studies on ASDEX Upgrade are focused on these subjects, namely on: (1) understanding the physical mechanisms leading to this phenomenon in order to learn to avoid it or to predict its occurrence and to mitigate its effects; (2) analyzing the effects of disruptions on the machine to determine the functional dependence of the thermal and mechanical loads upon the discharge parameters. This allows, firstly, to dimension or reinforce the machine components to withstand these loads and, secondly, to extrapolate them to tokamaks still in the design phase; (3) learning to mitigate the consequence of disruptions, i.e. thermal loads, mechanical forces and runaways with injection of impurity pellets or gas. This paper is focused on most recent results concerning points, i.e. on the analysis of the degree of asymmetry of the forces and on the use of impurity puff for mitigation

  16. Biosensor discovery of thyroxine transport disrupting chemicals

    International Nuclear Information System (INIS)

    Marchesini, Gerardo R.; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J.

    2008-01-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds

  17. Biosensor discovery of thyroxine transport disrupting chemicals.

    Science.gov (United States)

    Marchesini, Gerardo R; Meimaridou, Anastasia; Haasnoot, Willem; Meulenberg, Eline; Albertus, Faywell; Mizuguchi, Mineyuki; Takeuchi, Makoto; Irth, Hubertus; Murk, Albertinka J

    2008-10-01

    Ubiquitous chemicals may interfere with the thyroid system that is essential in the development and physiology of vertebrates. We applied a surface plasmon resonance (SPR) biosensor-based screening method for the fast screening of chemicals with thyroxine (T4) transport disrupting activity. Two inhibition assays using the main thyroid hormone transport proteins, T4 binding globulin (TBG) and transthyretin (TTR), in combination with a T4-coated biosensor chip were optimized and automated for screening chemical libraries. The transport protein-based biosensor assays were rapid, high throughput and bioeffect-related. A library of 62 chemicals including the natural hormones, polychlorinated biphenyls (PCBs), polybrominated diphenylethers (PBDEs) and metabolites, halogenated bisphenol A (BPA), halogenated phenols, pharmaceuticals, pesticides and other potential environmentally relevant chemicals was tested with the two assays. We discovered ten new active compounds with moderate to high affinity for TBG with the TBG assay. Strikingly, the most potent binding was observed with hydroxylated metabolites of the brominated diphenyl ethers (BDEs) BDE 47, BDE 49 and BDE 99, that are commonly found in human plasma. The TTR assay confirmed the activity of previously identified hydroxylated metabolites of PCBs and PBDEs, halogenated BPA and genistein. These results show that the hydroxylated metabolites of the ubiquitous PBDEs not only target the T4 transport at the TTR level, but also, and to a great extent, at the TBG level where most of the T4 in humans is circulating. The optimized SPR biosensor-based transport protein assay is a suitable method for high throughput screening of large libraries for potential thyroid hormone disrupting compounds.

  18. Syndromes of rapidly progressive cognitive decline-our experience

    Directory of Open Access Journals (Sweden)

    Sadanandavalli Retnaswami Chandra

    2017-01-01

    Full Text Available Background: Dementias are fairly slowly progressive degenerative diseases of brain for which treatment options are very less and carry a lot of burden on family and society. A small percentage of them are rapidly progressive and mostly carry a different course outcome. However, there are no definite criteria other than the time line for these patients. Aims: The aim of this was to identify and categorize the causes and course of rapidly progressive dementias seen in our center. Settings and Design: Patients who presented with rapid deterioration of cognitive functions within weeks to 1 year between 2011 and December 2016 were evaluated. Patients and Methods: All patients underwent all mandatory tests for dementia including brain imaging. Complete vasculitis workup, autoimmune encephalitis profile including Voltage Gated Potassium Channel, N-methyl-D-aspartic acid receptor, glutamic acid-decarboxylase, thyroid-peroxidase antibody, cerebrospinal fluid, and other special tests such as duodenal biopsy and paraneoplastic workup were done based on clinical indications. Results and Conclusions: Out of 144 patients 42 had immune-mediated encephalopathy, 18 had Creutzfeldt-Jakob disease, 3 had Vitamin B12 deficiency, 63 had infection with neurocysticercosis, 7 had tuberculosis, 2 had HIV, 1 had herpes simplex encephalitis, 1 had neurosyphilis, 1 Whipples disease, 1 had Subacute Sclerosing Panencephalitis, 1 had Mass lesion, 3 had Frontotemporal dementia, and 3 had small vessel disease. Good majority of these patients have infective and immune-mediated causes and less number belong to degenerative group. Therefore, caution is needed to look for treatable cause as it carries a different treatment options and outcome.

  19. Imbalanced immune homeostasis in immune thrombocytopenia.

    Science.gov (United States)

    Yazdanbakhsh, Karina

    2016-04-01

    Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder resulting from low platelet counts caused by inadequate production as well as increased destruction by autoimmune mechanisms. As with other autoimmune disorders, chronic ITP is characterized by perturbations of immune homeostasis with hyperactivated effector cells as well as defective regulatory arm of the adaptive immune system, which will be reviewed here. Interestingly, some ITP treatments are associated with restoring the regulatory imbalance, although it remains unclear whether the immune system is redirected to a state of tolerance once treatment is discontinued. Understanding the mechanisms that result in breakdown of immune homeostasis in ITP will help to identify novel pathways for restoring tolerance and inhibiting effector cell responses. This information can then be translated into developing therapies for averting autoimmunity not only in ITP but also many autoimmune disorders. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Immunizing Children

    Directory of Open Access Journals (Sweden)

    Geraldine Jody Macdonald

    2014-11-01

    Full Text Available This article addresses the complex contexts within which Canadian health professionals engage in immunizing children and focuses on the Canadian practice guidelines and current scientific evidence that direct Canadian health professional competencies. The article begins by presenting two current global vaccine initiatives and links these to immunization in Canada. A selected literature review identifies current best immunization practices. With the purpose of promoting quality improvement, three key Canadian immunization competencies for health professional are highlighted: communication with parents, including those who are experiencing vaccine hesitancy; administration of immunizing agents; and documentation of immunizations. Health professionals are encouraged to reflect on immunization competencies and ensure evidence-based practices underpin vaccine delivery in their primary care settings.

  1. Disruptive technologies and transportation : final report.

    Science.gov (United States)

    2016-06-01

    Disruptive technologies refer to innovations that, at first, may be considered unproven, lacking refinement, relatively unknown, or even impractical, but ultimately they supplant existing technologies and/or applications. In general, disruptive techn...

  2. Emerging and Disruptive Technologies.

    Science.gov (United States)

    Kricka, Larry J

    2016-08-01

    Several emerging or disruptive technologies can be identified that might, at some point in the future, displace established laboratory medicine technologies and practices. These include increased automation in the form of robots, 3-D printing, technology convergence (e.g., plug-in glucose meters for smart phones), new point-of-care technologies (e.g., contact lenses with sensors, digital and wireless enabled pregnancy tests) and testing locations (e.g., Retail Health Clinics, new at-home testing formats), new types of specimens (e.g., cell free DNA), big biology/data (e.g., million genome projects), and new regulations (e.g., for laboratory developed tests). In addition, there are many emerging technologies (e.g., planar arrays, mass spectrometry) that might find even broader application in the future and therefore also disrupt current practice. One interesting source of disruptive technology may prove to be the Qualcomm Tricorder XPrize, currently in its final stages.

  3. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  4. Cellular Immune Response Against Firefly Luciferase After Sleeping Beauty–Mediated Gene Transfer In Vivo

    Science.gov (United States)

    Podetz-Pedersen, Kelly M.; Vezys, Vaiva; Somia, Nikunj V.; Russell, Stephen J.

    2014-01-01

    Abstract The Sleeping Beauty (SB) transposon system has been shown to mediate new gene sequence integration resulting in long-term expression. Here the effectiveness of hyperactive SB100X transposase was tested, and we found that hydrodynamic co-delivery of a firefly luciferase transposon (pT2/CaL) along with SB100X transposase (pCMV-SB100X) resulted in remarkably sustained, high levels of luciferase expression. However, after 4 weeks there was a rapid, animal-by-animal loss of luciferase expression that was not observed in immunodeficient mice. We hypothesized that this sustained, high-level luciferase expression achieved using the SB100X transposase elicits an immune response in pT2/CaL co-administered mice, which was supported by the rapid loss of luciferase expression upon challenge of previously treated animals and in naive animals adoptively transferred with splenocytes from previously treated animals. Specificity of the immune response to luciferase was demonstrated by increased cytokine expression in splenocytes after exposure to luciferase peptide in parallel with MHC I–luciferase peptide tetramer binding. This anti-luciferase immune response observed following continuous, high-level luciferase expression in vivo clearly impacts its use as an in vivo reporter. As both an immunogen and an extremely sensitive reporter, luciferase is also a useful model system for the study of immune responses following in vivo gene transfer and expression. PMID:25093708

  5. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  6. Single-dose mucosal immunization with a candidate universal influenza vaccine provides rapid protection from virulent H5N1, H3N2 and H1N1 viruses.

    Directory of Open Access Journals (Sweden)

    Graeme E Price

    2010-10-01

    Full Text Available The sudden emergence of novel influenza viruses is a global public health concern. Conventional influenza vaccines targeting the highly variable surface glycoproteins hemagglutinin and neuraminidase must antigenically match the emerging strain to be effective. In contrast, "universal" vaccines targeting conserved viral components could be used regardless of viral strain or subtype. Previous approaches to universal vaccination have required protracted multi-dose immunizations. Here we evaluate a single dose universal vaccine strategy using recombinant adenoviruses (rAd expressing the conserved influenza virus antigens matrix 2 and nucleoprotein.In BALB/c mice, administration of rAd via the intranasal route was superior to intramuscular immunization for induction of mucosal responses and for protection against highly virulent H1N1, H3N2, or H5N1 influenza virus challenge. Mucosally vaccinated mice not only survived, but had little morbidity and reduced lung virus titers. Protection was observed as early as 2 weeks post-immunization, and lasted at least 10 months, as did antibodies and lung T cells with activated phenotypes. Virus-specific IgA correlated with but was not essential for protection, as demonstrated in studies with IgA-deficient animals.Mucosal administration of NP and M2-expressing rAd vectors provided rapid and lasting protection from influenza viruses in a subtype-independent manner. Such vaccines could be used in the interval between emergence of a new virus strain and availability of strain-matched vaccines against it. This strikingly effective single-dose vaccination thus represents a candidate off-the-shelf vaccine for emergency use during an influenza pandemic.

  7. Microbial Invasion vs. Tick Immune Regulation.

    Science.gov (United States)

    Sonenshine, Daniel E; Macaluso, Kevin R

    2017-01-01

    Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016). Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013). Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008), few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency) and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription) also occur in ticks (Gulia-Nuss et al., 2016). Recognition of pathogen-associated molecular patterns (PAMPs) on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs), e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester-containing proteins

  8. Microbial Invasion vs. Tick Immune Regulation

    Directory of Open Access Journals (Sweden)

    Daniel E. Sonenshine

    2017-09-01

    Full Text Available Ticks transmit a greater variety of pathogenic agents that cause disease in humans and animals than any other haematophagous arthropod, including Lyme disease, Rocky Mountain spotted fever, human granulocytic anaplasmosis, babesiosis, tick-borne encephalitis, Crimean Congo haemorhagic fever, and many others (Gulia-Nuss et al., 2016. Although diverse explanations have been proposed to explain their remarkable vectorial capacity, among the most important are their blood feeding habit, their long term off-host survival, the diverse array of bioactive molecules that disrupt the host's natural hemostatic mechanisms, facilitate blood flow, pain inhibitors, and minimize inflammation to prevent immune rejection (Hajdušek et al., 2013. Moreover, the tick's unique intracellular digestive processes allow the midgut to provide a relatively permissive microenvironment for survival of invading microbes. Although tick-host-pathogen interactions have evolved over more than 300 million years (Barker and Murrell, 2008, few microbes have been able to overcome the tick's innate immune system, comprising both humoral and cellular processes that reject them. Similar to most eukaryotes, the signaling pathways that regulate the innate immune response, i.e., the Toll, IMD (Immunodeficiency and JAK-STAT (Janus Kinase/ Signal Transducers and Activators of Transcription also occur in ticks (Gulia-Nuss et al., 2016. Recognition of pathogen-associated molecular patterns (PAMPs on the microbial surface triggers one or the other of these pathways. Consequently, ticks are able to mount an impressive array of humoral and cellular responses to microbial challenge, including anti-microbial peptides (AMPs, e.g., defensins, lysozymes, microplusins, etc., that directly kill, entrap or inhibit the invaders. Equally important are cellular processes, primarily phagocytosis, that capture, ingest, or encapsulate invading microbes, regulated by a primordial system of thioester

  9. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care

    Directory of Open Access Journals (Sweden)

    Lidia Łysenko

    2017-08-01

    Full Text Available Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt “bedside” diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.

  10. Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases.

    Science.gov (United States)

    Mang, Hyunggon; Feng, Baomin; Hu, Zhangjian; Boisson-Dernier, Aurélien; Franck, Christina M; Meng, Xiangzong; Huang, Yanyan; Zhou, Jinggeng; Xu, Guangyuan; Wang, Taotao; Shan, Libo; He, Ping

    2017-12-01

    Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction. © 2017 American Society of Plant Biologists. All rights reserved.

  11. Immune disorders in sepsis and their treatment as a significant problem of modern intensive care.

    Science.gov (United States)

    Łysenko, Lidia; Leśnik, Patrycja; Nelke, Kamil; Gerber, Hanna

    2017-08-22

    Despite the great advances in the treatment of sepsis over the past 20 years, sepsis remains the main cause of death in intensive care units. In the context of new possibilities of treating sepsis, a comprehensive response of the immune system to the infection, immunosuppression, in particular, has in recent years gained considerable interest. There is vast evidence pointing to the correlation between comorbid immunosuppression and an increased risk of recurrent infections and death. Immune disorders may impact the clinical course of sepsis. This applies in particular to patients with deteriorated clinical response to infections. They usually suffer from comorbidities and conditions accompanied by immunosuppression. Sepsis disrupts innate and adaptive immunity. The key to diagnose the immune disorders in sepsis and undertake targeted immunomodulatory therapy is to define the right biomarkers and laboratory methods, which permit prompt "bedside" diagnosis. Flow cytometry is a laboratory tool that meets these criteria. Two therapeutic methods are currently being suggested to restore the immune homeostasis of sepsis patients. Excessive inflammatory response may be controlled through extracorporeal blood purification techniques, in large part derived from renal replacement therapy. These are such techniques as high-volume haemofiltration, cascade haemofiltration, plasma exchange, coupled plasma filtration and adsorption, high-absorption membranes, high cut-off membranes. The main task of theses techniques is the selective elimination of middle molecular weight molecules, such as cytokines. Pharmacotherapy with the use of such immunostimulants as interleukin 7, granulocyte-macrophage colony-stimulating factor, interferon gamma, PD-1, PD-L1 and CTLA-4 antagonists, intravenous immunoglobulins may help fight immunosuppressive immune disorders.

  12. Shift work and cancer risk: potential mechanistic roles of circadian disruption, light at night, and sleep deprivation.

    Science.gov (United States)

    Haus, Erhard L; Smolensky, Michael H

    2013-08-01

    Shift work that includes a nighttime rotation has become an unavoidable attribute of today's 24-h society. The related disruption of the human circadian time organization leads in the short-term to an array of jet-lag-like symptoms, and in the long-run it may contribute to weight gain/obesity, metabolic syndrome/type II diabetes, and cardiovascular disease. Epidemiologic studies also suggest increased cancer risk, especially for breast cancer, in night and rotating female shift workers. If confirmed in more controlled and detailed studies, the carcinogenic effect of night and shift work will constitute additional serious medical, economic, and social problems for a substantial proportion of the working population. Here, we examine the possible multiple and interconnected cancer-promoting mechanisms as a consequence of shift work, i.e., repeated disruption of the circadian system, pineal hormone melatonin suppression by exposure to light at night, sleep-deprivation-caused impairment of the immune system, plus metabolic changes favoring obesity and generation of proinflammatory reactive oxygen species. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. The Logic of Digital Platform Disruption

    DEFF Research Database (Denmark)

    Kazan, Erol; Tan, Chee-Wee; Lim, Eric T. K.

    Digital platforms are disruptive IT artifacts, because they facilitate the quick release of innovative platform derivatives from third parties (e.g., apps). This study endeavours to unravel the disruptive potential, caused by distinct designs and configurations of digital platforms on market...... environments. We postulate that the disruptive potential of digital platforms is determined by the degree of alignment among the business, technology and platform profiles. Furthermore, we argue that the design and configuration of the aforementioned three elements dictates the extent to which open innovation...... is permitted. To shed light on the disruptive potential of digital platforms, we opted for payment platforms as our unit of analysis. Through interviews with experts and payment providers, we seek to gain an in-depth appreciation of how contemporary digital payment platforms are designed and configured...

  14. Transmitted/Founder Viruses Rapidly Escape from CD8+ T Cell Responses in Acute Hepatitis C Virus Infection.

    Science.gov (United States)

    Bull, Rowena A; Leung, Preston; Gaudieri, Silvana; Deshpande, Pooja; Cameron, Barbara; Walker, Melanie; Chopra, Abha; Lloyd, Andrew R; Luciani, Fabio

    2015-05-01

    The interaction between hepatitis C virus (HCV) and cellular immune responses during very early infection is critical for disease outcome. To date, the impact of antigen-specific cellular immune responses on the evolution of the viral population establishing infection and on potential escape has not been studied. Understanding these early host-virus dynamics is important for the development of a preventative vaccine. Three subjects who were followed longitudinally from the detection of viremia preseroconversion until disease outcome were analyzed. The evolution of transmitted/founder (T/F) viruses was undertaken using deep sequencing. CD8(+) T cell responses were measured via enzyme-linked immunosorbent spot (ELISpot) assay using HLA class I-restricted T/F epitopes. T/F viruses were rapidly extinguished in all subjects associated with either viral clearance (n = 1) or replacement with viral variants leading to establishment of chronic infection (n = 2). CD8(+) T cell responses against 11 T/F epitopes were detectable by 33 to 44 days postinfection, and 5 of these epitopes had not previously been reported. These responses declined rapidly in those who became chronically infected and were maintained in the subject who cleared infection. Higher-magnitude CD8(+) T cell responses were associated with rapid development of immune escape variants at a rate of up to 0.1 per day. Rapid escape from CD8(+) T cell responses has been quantified for the first time in the early phase of primary HCV infection. These rapid escape dynamics were associated with higher-magnitude CD8(+) T cell responses. These findings raise questions regarding optimal selection of immunogens for HCV vaccine development and suggest that detailed analysis of individual epitopes may be required. A major limitation in our detailed understanding of the role of immune response in HCV clearance has been the lack of data on very early primary infection when the transmitted viral variants successfully establish

  15. Disruptive coloration in woodland camouflage: evaluation of camouflage effectiveness due to minor disruptive patches

    Science.gov (United States)

    Selj, Gorm K.; Heinrich, Daniela H.

    2016-10-01

    We present results from an observer based photosimulation study of generic camouflage patterns, intended for military uniforms, where three near-identical patterns have been compared. All the patterns were prepared with similar effective color, but were different in how the individual pattern patches were distributed throughout the target. We did this in order to test if high contrast (black) patches along the outline of the target would enhance the survivability when exposed to human observers. In the recent years it has been shown that disruptive coloration in the form of high contrast patches are capable of disturbing an observer by creating false edges of the target and consequently enhance target survivability. This effect has been shown in different forms in the Animal Kingdom, but not to the same extent in camouflaged military targets. The three patterns in this study were i) with no disruptive preference, ii) with a disruptive patch along the outline of the head and iii) with a disruptive patch on the outline of one of the shoulders. We used a high number of human observers to assess the three targets in 16 natural (woodland) backgrounds by showing images of one of the targets at the time on a high definition pc screen. We found that the two patterns that were thought to have a minor disruptive preference to the remaining pattern were more difficult to detect in some (though not all) of the 16 scenes and were also better in overall performance when all the scenes were accounted for.

  16. Lifetime evaluation of plasma-facing materials during a tokamak disruption

    International Nuclear Information System (INIS)

    Hassanein, A.; Konkashbaev, I.

    1995-09-01

    Erosion losses of plasma-facing materials in a tokamak reactor during major disruptions, giant ELMS, and large power excursions are serious concerns that influence component survivability and overall lifetime. Two different mechanisms lead to material erosion during these events: surface vaporization and loss of the melt layer. Hydrodynamics and radiation transport in the rapidly developed vapor-cloud region above the exposed area are found to control and determine the net erosion thickness from surface vaporization. A comprehensive self-consistent kinetic model has been developed in which the time-dependent optical properties and the radiation field of the vapor cloud are calculated in order to correctly estimate the radiation flux at the divertor surface. The developed melt layer of metallic divertor materials will, however, be free to move and can be eroded away due to various forces. , Physical mechanisms that affect surface vaporization and cause melt layer erosion are integrated in a comprehensive model. It is found that for metallic components such as beryllium and tungsten, lifetime due to these abnormal events will be controlled and dominated by the evolution and hydrodynamics of the melt layer during the disruption. The dependence of divertor plate lifetime on various aspects of plasma/material interaction physics is discussed

  17. The Role of Epigenetic Regulation in Transcriptional Memory in the Immune System.

    Science.gov (United States)

    Woodworth, A M; Holloway, A F

    The immune system is exquisitely poised to identify, respond to, and eradicate pathogens from the body, as well as to produce a more rapid and augmented response to a subsequent encounter with the pathogen. These cellular responses rely on the highly coordinated and rapid activation of gene expression programs as well as the ability of the cell to retain a memory of the initial gene response. It is clear that chromatin structure and epigenetic mechanisms play a crucial role in determining these gene responses, and in fact the immune system has proved an instructive model for investigating the multifaceted mechanisms through which the chromatin landscape contributes to gene expression programs. These mechanisms include modifications to the DNA and histone proteins, the positioning, composition, and remodeling of nucleosomes, as well as the formation of higher-order chromatin structures. Moreover, it is now apparent that epigenetic mechanisms also provide an instrument by which cells can retain memory of the initial transcriptional response, "priming" the genome so that it can respond more quickly to subsequent exposure to the signal. Here, we use the immune system as a model to demonstrate the complex interplay between transcription factors and the chromatin landscape required to orchestrate precise gene responses to external stimuli and further to demonstrate how these interactions can establish memory of past transcriptional events. We focus on what we have learnt from the immune system and how this can inform our understanding of other cellular systems. © 2017 Elsevier Inc. All rights reserved.

  18. Design, synthesis, and biological evaluation of the first podophyllotoxin analogues as potential vascular-disrupting agents.

    Science.gov (United States)

    Labruère, Raphaël; Gautier, Benoît; Testud, Marlène; Seguin, Johanne; Lenoir, Christine; Desbène-Finck, Stéphanie; Helissey, Philippe; Garbay, Christiane; Chabot, Guy G; Vidal, Michel; Giorgi-Renault, Sylviane

    2010-12-03

    We designed and synthesized two novel series of azapodophyllotoxin analogues as potential antivascular agents. A linker was inserted between the trimethoxyphenyl ring E and the tetracyclic ABCD moiety of the 4-aza-1,2-didehydropodophyllotoxins. In the first series, the linker enables free rotation between the two moieties; in the second series, conformational restriction of the E nucleus was considered. We have identified several new compounds with inhibitory activity toward tubulin polymerization similar to that of CA-4 and colchicine, while displaying low cytotoxic activity against normal and/or cancer cells. An aminologue and a methylenic analogue were shown to disrupt endothelial cell cords on Matrigel at subtoxic concentrations, and an original assay of drug washout allowed us to demonstrate the rapid reversibility of this effect. These two new analogues are promising leads for the development of vascular-disrupting agents in the podophyllotoxin series.

  19. Disruptive School Peers and Student Outcomes

    DEFF Research Database (Denmark)

    Kristoffersen, Jannie H. G.; Krægpøth, Morten; Nielsen, Helena Skyt

    2015-01-01

    This paper estimates how peers’ achievement gains are affected by the presence of potentially disruptive and emotionally sensitive children in the school-cohort. We exploit that some children move between schools and thus generate variation in peer composition in the receiving school-cohort. We...... identify three groups of potentially disruptive and emotionally sensitive children from detailed Danish register data: children with divorced parents, children with parents convicted of crime, and children with a psychiatric diagnosis. We find that adding potentially disruptive children lowers the academic...

  20. Disruptive School Peers and Student Outcomes

    DEFF Research Database (Denmark)

    Kristoffersen, Jannie H. Grøne; Krægpøth, Morten; Nielsen, Helena Skyt

    This paper estimates how peers’ achievement gains are affected by the presence of potentially disruptive and emotionally sensitive children in the school-cohort. We exploit that some children move between schools and thus generate variation in peer composition in the receiving school-cohort. We...... identify three groups of potentially disruptive and emotionally sensitive children from detailed Danish register data: children with divorced parents, children with parents convicted of crime, and children with a psychiatric diagnosis. We find that adding potentially disruptive children lowers the academic...

  1. Disruptive School Peers and Student Outcomes

    DEFF Research Database (Denmark)

    Kristoffersen, Jannie H. G.; Krægpøth, Morten Visby; Skyt Nielsen, Helena

    This paper estimates how peers’ achievement gains are affected by the presence of potentially disruptive and emotionally sensitive children in the school-cohort. We exploit that some children move between schools and thus generate variation in peer composition in the receiving schoolcohort. We...... identify three groups of potentially disruptive and emotionally sensitive children from detailed Danish register data: children with divorced parents, children with parents convicted of crime, and children with a psychiatric diagnosis. We find that adding potentially disruptive children lowers the academic...

  2. Phenomenology of high density disruptions in the TFTR tokamak

    International Nuclear Information System (INIS)

    Fredrickson, E.D.; McGuire, K.M.; Bell, M.G.

    1993-01-01

    Studies of high density disruptions on TFTR, including a comparison of minor and major disruptions at high density, provide important new information regarding the nature of the disruption mechanism. Further, for the first time, an (m,n)=(1,1) 'cold bubble' precursor to high density disruptions has been experimentally observed in the electron temperature profile. The precursor to major disruptions resembles the 'vacuum bubble' model of disruptions first proposed by B.B. Kadomtsev and O.P. Pogutse (Sov. Phys. - JETP 38 (1974) 283). (author). Letter-to-the-editor. 25 refs, 3 figs

  3. Paper-based immune-affinity arrays for detection of multiple mycotoxins in cereals.

    Science.gov (United States)

    Li, Li; Chen, Hongpu; Lv, Xiaolan; Wang, Min; Jiang, Xizhi; Jiang, Yifei; Wang, Heye; Zhao, Yongfu; Xia, Liru

    2018-03-01

    Mycotoxins produced by different species of fungi may coexist in cereals and feedstuffs, and could be highly toxic for humans and animals. For quantification of multiple mycotoxins in cereals, we developed a paper-based mycotoxin immune-affinity array. First, paper-based microzone arrays were fabricated by photolithography. Then, monoclonal mycotoxin antibodies were added in a copolymerization reaction with a cross-linker to form an immune-affinity monolith on the paper-based microzone array. With use of a competitive immune-response format, paper-based mycotoxin immune-affinity arrays were successfully applied to detect mycotoxins in samples. The detection limits for deoxynivalenol, zearalenone, T-2 toxin, and HT-2 toxin were 62.7, 10.8, 0.36, and 0.23 μg·kg -1 , respectively, which meet relevant requirements for these compounds in food. The recovery rates were 81-86% for deoxynivalenol, 89-117% for zearalenone, 79-86% for T-2 toxin, and 78-83% for HT-2 toxin, and showed the paper-based immune-affinity arrays had good reproducibility. In summary, the paper-based mycotoxin immune-affinity array provides a sensitive, rapid, accurate, stable, and convenient platform for detection of multiple mycotoxins in agro-foods. Graphical abstract Paper-based immune-affinity monolithic array. DON deoxynivalenol, HT-2 HT-2 toxin, T-2 T-2 toxin, PEGDA polyethylene glycol diacrylate, ZEN zearalenone.

  4. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  5. Serotonergic Chemosensory Neurons Modify the C. elegans Immune Response by Regulating G-Protein Signaling in Epithelial Cells

    Science.gov (United States)

    Anderson, Alexandra; Laurenson-Schafer, Henry; Partridge, Frederick A.; Hodgkin, Jonathan; McMullan, Rachel

    2013-01-01

    The nervous and immune systems influence each other, allowing animals to rapidly protect themselves from changes in their internal and external environment. However, the complex nature of these systems in mammals makes it difficult to determine how neuronal signaling influences the immune response. Here we show that serotonin, synthesized in Caenorhabditis elegans chemosensory neurons, modulates the immune response. Serotonin released from these cells acts, directly or indirectly, to regulate G-protein signaling in epithelial cells. Signaling in these cells is required for the immune response to infection by the natural pathogen Microbacterium nematophilum. Here we show that serotonin signaling suppresses the innate immune response and limits the rate of pathogen clearance. We show that C. elegans uses classical neurotransmitters to alter the immune response. Serotonin released from sensory neurons may function to modify the immune system in response to changes in the animal's external environment such as the availability, or quality, of food. PMID:24348250

  6. Impact of pharmacists providing immunizations on adolescent influenza immunization.

    Science.gov (United States)

    Robison, Steve G

    2016-01-01

    To determine if the Oregon law change in 2011 to allow pharmacists to immunize adolescents 11 to 17 years of age increased influenza immunizations or changed existing immunization venues. With the use of Oregon's ALERT Immunization Information System (IIS), 2 measures of impact were developed. First, the change in adolescent age 11-17 influenza immunizations before (2007-2010) and after (2011-2014) the pharmacy law change was evaluated against a reference cohort (aged 7-10) not affected by the law. Community pharmacies were also compared with other types of influenza immunization sites within one of the study influenza seasons (2013-2014). From 2007 to 2014, adolescent influenza immunizations at community pharmacies increased from 36 to 6372 per year. After the 2011 pharmacy law change, adolescents aged 11 to 17 were more likely to receive an influenza immunization compared with the reference population (odds ratio, 1.21; 95% CI, 1.19-1.22). Analysis of the 2013-2014 influenza season suggests that community pharmacies immunized a different population of adolescents than other providers. The 2011 change in Oregon law allowed pharmacists to increase the total of influenza immunizations given to adolescents. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  7. Disrupting reconsolidation: pharmacological and behavioral manipulations

    NARCIS (Netherlands)

    Soeter, M.; Kindt, M.

    2011-01-01

    We previously demonstrated that disrupting reconsolidation by pharmacological manipulations "deleted" the emotional expression of a fear memory in humans. If we are to target reconsolidation in patients with anxiety disorders, the disruption of reconsolidation should produce content-limited

  8. Effects of Endotoxin and Psychological Stress on Redox Physiology, Immunity and Feather Corticosterone in Greenfinches.

    Directory of Open Access Journals (Sweden)

    Richard Meitern

    Full Text Available Assessment of costs accompanying activation of immune system and related neuroendocrine pathways is essential for understanding the selective forces operating on these systems. Here we attempted to detect such costs in terms of disruption to redox balance and interference between different immune system components in captive wild-caught greenfinches (Carduelis chloris. Study birds were subjected to an endotoxin-induced inflammatory challenge and temporary exposure to a psychological stressor (an image of a predator in a 2*2 factorial experiment. Injection of bacterial endotoxin resulted in up-regulation of two markers of antioxidant protection - erythrocyte glutathione, and plasma oxygen radical absorbance (OXY. These findings suggest that inflammatory responses alter redox homeostasis. However, no effect on markers of oxidative damage to proteins or DNA in erythrocytes could be detected. We found no evidence that the endotoxin injection interfered with antibody production against Brucella abortus antigen or the intensity of chronic coccidiosis. The hypothesis of within-immune system trade-offs as a cost of immunity was thus not supported in our model system. We showed for the first time that administration of endotoxin can reduce the level of corticosterone deposited into feathers. This finding suggests a down-regulation of the corticosterone secretion cascade due to an endotoxin-induced immune response, a phenomenon that has not been reported previously. Exposure to the predator image did not affect any of the measured physiological parameters.

  9. Disruption Management in Passenger Railway Transportation

    DEFF Research Database (Denmark)

    Jespersen-Groth, Julie; Potthoff, Daniel; Clausen, Jens

    This paper deals with disruption management in passenger railway transportation. In the disruption management process, many actors belonging to different organizations play a role. In this paper we therefore describe the process itself and the roles of the different actors. Furthermore, we discuss...... the three main subproblems in railway disruption management: timetable adjustment, and rolling stock and crew re-scheduling. Next to a general description of these problems, we give an overview of the existing literature and we present some details of the specific situations at DSB S-tog and NS....... These are the railway operators in the suburban area of Copenhagen, Denmark, and on the main railway lines in the Netherlands, respectively. Since not much research has been carried out yet on Operations Research models for disruption management in the railway context, models and techniques that have been developed...

  10. Mucosal tolerance disruption favors disease progression in an extraorbital lacrimal gland excision model of murine dry eye.

    Science.gov (United States)

    Guzmán, Mauricio; Keitelman, Irene; Sabbione, Florencia; Trevani, Analía S; Giordano, Mirta N; Galletti, Jeremías G

    2016-10-01

    Dry eye is a highly prevalent immune disorder characterized by a dysfunctional tear film and a Th1/Th17 T cell response at the ocular surface. The specificity of these pathogenic effector T cells remains to be determined, but auto-reactivity is considered likely. However, we have previously shown that ocular mucosal tolerance to an exogenous antigen is disrupted in a scopolamine-induced murine dry eye model and that it is actually responsible for disease progression. Here we report comparable findings in an entirely different murine model of dry eye that involves resection of the extraorbital lacrimal glands but no systemic muscarinic receptor blockade. Upon ocular instillation of ovalbumin, a delayed breakdown in mucosal tolerance to this antigen was observed in excised but not in sham-operated mice, which was mediated by interferon γ- and interleukin 17-producing antigen-specific T cells. Consistently, antigen-specific regulatory T cells were detectable in sham-operated but not in excised mice. As for other models of ocular surface disorders, epithelial activation of the NF-κB pathway by desiccating stress was determinant in the mucosal immune outcome. Underscoring the role of mucosal tolerance disruption in dry eye pathogenesis, its prevention by a topical NF-κB inhibitor led to reduced corneal damage in excised mice. Altogether these results show that surgically originated desiccating stress also initiates an abnormal Th1/Th17 T cell response to harmless exogenous antigens that reach the ocular surface. This event might actually contribute to corneal damage and challenges the conception of dry eye as a strictly autoimmune disease. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A case for change: disruption in academic medicine.

    Science.gov (United States)

    Kahn, Marc J; Maurer, Ralph; Wartman, Steven A; Sachs, Benjamin P

    2014-09-01

    Disruptive technologies allow less expensive and more efficient processes to eventually dominate a market sector. The academic health center's tripartite mission of education, clinical care, and research is threatened by decreasing revenues and increasing expenses and is, as a result, ripe for disruption. The authors describe current disruptive technologies that threaten traditional operations at academic health centers and provide a prescription not only to survive, but also to prosper, in the face of disruptive forces.

  12. Estimating Burden and Disease Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union

    DEFF Research Database (Denmark)

    Trasande, Leonardo; Zoeller, R. Thomas; Hass, Ulla

    2015-01-01

    Rapidly increasing evidence has documented that endocrine-disrupting chemicals (EDCs) contribute substantially to disease and disability. Objective: The objective was to quantify a range of health and economic costs that can be reasonably attributed to EDC exposures in the European Union (EU......). Design: A Steering Committee of scientists adapted the Intergovernmental Panel on Climate Change weight-of-evidence characterization for probability of causation based upon levels of available epidemiological and toxicological evidence for one or more chemicals contributing to disease by an endocrine...

  13. Immune responses of ducks infected with duck Tembusu virus

    Directory of Open Access Journals (Sweden)

    Ning eLi

    2015-05-01

    Full Text Available Duck Tembusu virus (DTMUV can cause serious disease in ducks, characterized by reduced egg production. Although the virus has been isolated and detection methods developed, the host immune responses to DTMUV infection are unclear. Therefore, we systematically examined the expression of immune-related genes and the viral distribution in DTMUV-infected ducks, using quantitative real-time PCR. Our results show that DTMUV replicates quickly in many tissues early in infection, with the highest viral titers in the spleen 1 day after infection. Rig-1, Mda5, and Tlr3 are involved in the host immune response to DTMUV, and the expression of proinflammatory cytokines (Il-1β, -2, -6, Cxcl8 and antiviral proteins (Mx, Oas, etc. are also upregulated early in infection. The expression of Il-6 increased most significantly in the tissues tested. The upregulation of Mhc-I was observed in the brain and spleen, but the expression of Mhc-II was upregulated in the brain and downregulated in the spleen. The expression of the interferons was also upregulated to different degrees in the spleen but that of the brain was various. Our study suggests that DTMUV replicates rapidly in various tissues and that the host immune responses are activated early in infection. However, the overexpression of cytokines may damage the host. These results extend our understanding of the immune responses of ducks to DTMUV infection, and provide insight into the pathogenesis of DTMUV attributable to host factors.

  14. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    Directory of Open Access Journals (Sweden)

    Laura Wegener Parfrey

    Full Text Available Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  15. A benign helminth alters the host immune system and the gut microbiota in a rat model system.

    Science.gov (United States)

    Wegener Parfrey, Laura; Jirků, Milan; Šíma, Radek; Jalovecká, Marie; Sak, Bohumil; Grigore, Karina; Jirků Pomajbíková, Kateřina

    2017-01-01

    Helminths and bacteria are major players in the mammalian gut ecosystem and each influences the host immune system and health. Declines in helminth prevalence and bacterial diversity appear to play a role in the dramatic rise of immune mediated inflammatory diseases (IMIDs) in western populations. Helminths are potent modulators of immune system and their reintroduction is a promising therapeutic avenue for IMIDs. However, the introduction of helminths represents a disturbance for the host and it is important to understand the impact of helminth reintroduction on the host, including the immune system and gut microbiome. We tested the impact of a benign tapeworm, Hymenolepis diminuta, in a rat model system. We find that H. diminuta infection results in increased interleukin 10 gene expression in the beginning of the prepatent period, consistent with induction of a type 2 immune response. We also find induction of humoral immunity during the patent period, shown here by increased IgA in feces. Further, we see an immuno-modulatory effect in the small intestine and spleen in patent period, as measured by reductions in tissue immune cells. We observed shifts in microbiota community composition during the patent period (beta-diversity) in response to H. diminuta infection. However, these compositional changes appear to be minor; they occur within families and genera common to both treatment groups. There was no change in alpha diversity. Hymenolepis diminuta is a promising model for helminth therapy because it establishes long-term, stable colonization in rats and modulates the immune system without causing bacterial dysbiosis. These results suggest that the goal of engineering a therapeutic helminth that can safely manipulate the mammalian immune system without disrupting the rest of the gut ecosystem is in reach.

  16. When Disruptive Approaches Meet Disruptive Technologies: Learning at a Distance.

    Science.gov (United States)

    Gibson, Chere Campbell

    2000-01-01

    Reviews research on constructivism in learning and selection of learning strategies. Suggests linking constructivism with instructional technologies for continuing medical education in order to "disrupt" reactive, habitual ways of learning and encourage active engagement. (SK)

  17. Application of the Disruption Predictor Feature Developer to developing a machine-portable disruption predictor

    Science.gov (United States)

    Parsons, Matthew; Tang, William; Feibush, Eliot

    2016-10-01

    Plasma disruptions pose a major threat to the operation of tokamaks which confine a large amount of stored energy. In order to effectively mitigate this damage it is necessary to predict an oncoming disruption with sufficient warning time to take mitigative action. Machine learning approaches to this problem have shown promise but require further developments to address (1) the need for machine-portable predictors and (2) the availability of multi-dimensional signal inputs. Here we demonstrate progress in these two areas by applying the Disruption Predictor Feature Developer to data from JET and NSTX, and discuss topics of focus for ongoing work in support of ITER. The author is also supported under the Fulbright U.S. Student Program as a graduate student in the department of Nuclear, Plasma and Radiological Engineering at the University of Illinois at Urbana-Champaign.

  18. Vaginal immunization to elicit primary T-cell activation and dissemination.

    Directory of Open Access Journals (Sweden)

    Elena Pettini

    Full Text Available Primary T-cell activation at mucosal sites is of utmost importance for the development of vaccination strategies. T-cell priming after vaginal immunization, with ovalbumin and CpG oligodeoxynucleotide adjuvant as model vaccine formulation, was studied in vivo in hormone-synchronized mice and compared to the one induced by the nasal route. Twenty-four hours after both vaginal or nasal immunization, antigen-loaded dendritic cells were detected within the respective draining lymph nodes. Vaginal immunization elicited a strong recruitment of antigen-specific CD4(+ T cells into draining lymph nodes that was more rapid than the one observed following nasal immunization. T-cell clonal expansion was first detected in iliac lymph nodes, draining the genital tract, and proliferated T cells disseminated towards distal lymph nodes and spleen similarly to what observed following nasal immunization. T cells were indeed activated by the antigen encounter and acquired homing molecules essential to disseminate towards distal lymphoid organs as confirmed by the modulation of CD45RB, CD69, CD44 and CD62L marker expression. A multi-type Galton Watson branching process, previously used for in vitro analysis of T-cell proliferation, was applied to model in vivo CFSE proliferation data in draining lymph nodes 57 hours following immunization, in order to calculate the probabilistic decision of a cell to enter in division, rest in quiescence or migrate/die. The modelling analysis indicated that the probability of a cell to proliferate was higher following vaginal than nasal immunization. All together these data show that vaginal immunization, despite the absence of an organized mucosal associated inductive site in the genital tract, is very efficient in priming antigen-specific CD4(+ T cells and inducing their dissemination from draining lymph nodes towards distal lymphoid organs.

  19. FAR-TECH's Nanoparticle Plasma Jet System and its Application to Disruptions, Deep Fueling, and Diagnostics

    Science.gov (United States)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2012-10-01

    Hyper-velocity plasma jets have potential applications in tokamaks for disruption mitigation, deep fueling and diagnostics. Pulsed power based solid-state sources and plasma accelerators offer advantages of rapid response and mass delivery at high velocities. Fast response is critical for some disruption mitigation scenario needs, while high velocity is especially important for penetration into tokamak plasma and its confining magnetic field, as in the case of deep fueling. FAR-TECH is developing the capability of producing large-mass hyper-velocity plasma jets. The prototype solid-state source has produced: 1) >8.4 mg of H2 gas only, and 2) >25 mg of H2 and >180 mg of C60 in a H2/C60 gas mixture. Using a coaxial plasma gun coupled to the source, we have successfully demonstrated the acceleration of composite H/C60 plasma jets, with momentum as high as 0.6 g.km/s, and containing an estimated C60 mass of ˜75 mg. We present the status of FAR-TECH's nanoparticle plasma jet system and discuss its application to disruptions, deep fueling, and diagnostics. A new TiH2/C60 solid-state source capable of generating significantly higher quantities of H2 and C60 in <0.5 ms will be discussed.

  20. Mechanical algal disruption for efficient biodiesel extraction

    Science.gov (United States)

    Krehbiel, Joel David

    Biodiesel from algae provides several benefits over current biodiesel feedstocks, but the energy requirements of processing algae into a useable fuel are currently so high as to be prohibitive. One route to improving this is via disruption of the cells prior to lipid extraction, which can significantly increase energy recovery. Unfortunately, several obvious disruption techniques require more energy than can be gained. This dissertation examines the use of microbubbles to improve mechanical disruption of algal cells using experimental, theoretical, and computational methods. New laboratory experiments show that effective ultrasonic disruption of algae is achieved by adding microbubbles to an algal solution. The configuration studied flows the solution through a tube and insonifies a small section with a high-pressure ultrasound wave. Previous biomedical research has shown effective cell membrane damage on animal cells with similar methods, but the present research is the first to extend such study to algal cells. Results indicate that disruption increases with peak negative pressure between 1.90 and 3.07 MPa and with microbubble concentration up to 12.5 x 107 bubbles/ml. Energy estimates of this process suggest that it requires only one-fourth the currently most-efficient laboratory-scale disruption process. Estimates of the radius near each bubble that causes disruption (i.e. the disruption radius) suggest that it increases with peak negative pressure and is near 9--20 microm for all cases tested. It is anticipated that these procedures can be designed for better efficiency and efficacy, which will be facilitated by identifying the root mechanisms of the bubble-induced disruption. We therefore examine whether bubble expansion alone creates sufficient cell deformation for cell rupture. The spherically-symmetric Marmottant model for bubble dynamics allows estimation of the flow regime under experimental conditions. Bubble expansion is modeled as a point source of

  1. Induction of antitumor immunity through xenoplacental immunization

    Directory of Open Access Journals (Sweden)

    Agadjanyan Michael G

    2006-05-01

    Full Text Available Abstract Historically cancer vaccines have yielded suboptimal clinical results. We have developed a novel strategy for eliciting antitumor immunity based upon homology between neoplastic tissue and the developing placenta. Placenta formation shares several key processes with neoplasia, namely: angiogenesis, activation of matrix metalloproteases, and active suppression of immune function. Immune responses against xenoantigens are well known to break self-tolerance. Utilizing xenogeneic placental protein extracts as a vaccine, we have successfully induced anti-tumor immunity against B16 melanoma in C57/BL6 mice, whereas control xenogeneic extracts and B16 tumor extracts where ineffective, or actually promoted tumor growth, respectively. Furthermore, dendritic cells were able to prime tumor immunity when pulsed with the placental xenoantigens. While vaccination-induced tumor regression was abolished in mice depleted of CD4 T cells, both CD4 and CD8 cells were needed to adoptively transfer immunity to naïve mice. Supporting the role of CD8 cells in controlling tumor growth are findings that only freshly isolated CD8 cells from immunized mice were capable of inducing tumor cell caspases-3 activation ex vivo. These data suggest feasibility of using xenogeneic placental preparations as a multivalent vaccine potently targeting not just tumor antigens, but processes that are essential for tumor maintenance of malignant potential.

  2. Gene disruption in Salmonella typhimurim by modified λ Red disruption system.

    Science.gov (United States)

    Ahani Azari, A; Zahraei Salehi, T; Nayeri Fasaei, B; Alebouyeh, M

    2015-01-01

    There are many techniques to knock out directed genes in bacteria, some of which have been described in Salmonella species. In this study, a combination of SOEing PCR method and the λ Red disruption system were used to disrupt phoP gene in wild type and standard strains of Salmonella typhimurium. Three standards PCR and one fusion PCR reactions were performed to construct a linear DNA including upstream and downstream of phoP gene and Kanamycin cassette. As a template plasmid, we used pKD4 which carries kanamycin gene flanked by FRT (FLP recognition target) sites. The resulting construct was electroporated into prepared competent cells of S. typhimurium. The transformants colonies related to the standard strain appeared on the LB-Km-agar plates after incubation, but there was no colony on LB-Km-agar plates corresponding to the wild type strain. The failure in transformation of the wild type strain may be because of inflexibility of the λ Red disruption system in this strain or its unique restriction-modification system. However, by this construct we are able to generate phoP mutant in many of the Salmonella species due to high homology of the phoP gene which exists in different species.

  3. Biomaterials innovation for next generation ex vivo immune tissue engineering.

    Science.gov (United States)

    Singh, Ankur

    2017-06-01

    Primary and secondary lymphoid organs are tissues that facilitate differentiation of B and T cells, leading to the induction of adaptive immune responses. These organs are present in the body from birth and are also recognized as locations where self-reactive B and T cells can be eliminated during the natural selection process. Many insights into the mechanisms that control the process of immune cell development and maturation in response to infection come from the analysis of various gene-deficient mice that lack some or all hallmark features of lymphoid tissues. The complexity of such animal models limits our ability to modulate the parameters that control the process of immune cell development, differentiation, and immunomodulation. Engineering functional, living immune tissues using biomaterials can grant researchers the ability to reproduce immunological events with tunable parameters for more rapid development of immunotherapeutics, cell-based therapy, and enhancing our understanding of fundamental biology as well as improving efforts in regenerative medicine. Here the author provides his review and perspective on the bioengineering of primary and secondary lymphoid tissues, and biomaterials innovation needed for the construction of these immune organs in tissue culture plates and on-chip. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. The Role of the Immune System in Obesity and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Payal S. Patel

    2013-01-01

    Full Text Available The innate immune system provides organisms with rapid and well-coordinated protection from foreign pathogens. However, under certain conditions of metabolic dysfunction, components of the innate immune system may be activated in the absence of external pathogens, leading to pathologic consequences. Indeed, there appears to be an intimate relationship between metabolic diseases and immune dysfunction; for example, macrophages are prime players in the initiation of a chronic inflammatory state in obesity which leads to insulin resistance. In response to increases in free fatty acid release from obese adipose depots, M1-polarized macrophages infiltrate adipose tissues. These M1 macrophages trigger inflammatory signaling and stress responses within cells that signal through JNK or IKKβ pathways, leading to insulin resistance. If overnutrition persists, mechanisms that counteract inflammation (such as M2 macrophages and PPAR signaling are suppressed, and the inflammation becomes chronic. Although macrophages are a principal constituent of obese adipose tissue inflammation, other components of the immune system such as lymphocytes and mast cells also contribute to the inflammatory cascade. Thus it is not merely an increased mass of adipose tissue that directly leads to attenuation of insulin action, but rather adipose tissue inflammation activated by the immune system in obese individuals that leads to insulin resistance.

  5. Targeting methionine cycle as a potential therapeutic strategy for immune disorders.

    Science.gov (United States)

    Li, Heng; Lu, Huimin; Tang, Wei; Zuo, Jianping

    2017-08-23

    Methionine cycle plays an essential role in regulating many cellular events, especially transmethylation reactions, incorporating the methyl donor S-adenosylmethionine (SAM). The transmethylations and substances involved in the cycle have shown complicated effects and mechanisms on immunocytes developments and activations, and exert crucial impacts on the pathological processes in immune disorders. Areas covered: Methionine cycle has been considered as an effective means of drug developments. This review discussed the role of methionine cycle in immune responses and summarized the potential therapeutic strategies based on the cycle, including SAM analogs, methyltransferase inhibitors, S-adenosylhomocysteine hydrolase (SAHH) inhibitors, adenosine receptors specific agonists or antagonists and homocysteine (Hcy)-lowering reagents, in treating human immunodeficiency virus (HIV) infections, systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), multiple sclerosis (MS), systemic sclerosis (SSc) and other immune disorders. Expert opinion: New targets and biomarkers grown out of methionine cycle have developed rapidly in the past decades. However, impacts of epigenetic regulations on immune disorders are unclear and whether the substances in methionine cycle can be clarified as biomarkers remains controversial. Therefore, further elucidation on the role of epigenetic regulations and substances in methionine cycle may contribute to exploring the cycle-derived biomarkers and drugs in immune disorders.

  6. Disruption Management in Passenger Railway Transportation

    DEFF Research Database (Denmark)

    Groth, Julie Jespersen; Potthoff, Daniel; Clausen, Jens

    2009-01-01

    This paper deals with disruption management in passenger railway transportation. In the disruption management process, many actors belonging to different organizations play a role. In this paper we therefore describe the process itself and the roles of the different actors. Furthermore, we discuss...

  7. Integrated Circuit Immunity

    Science.gov (United States)

    Sketoe, J. G.; Clark, Anthony

    2000-01-01

    This paper presents a DOD E3 program overview on integrated circuit immunity. The topics include: 1) EMI Immunity Testing; 2) Threshold Definition; 3) Bias Tee Function; 4) Bias Tee Calibration Set-Up; 5) EDM Test Figure; 6) EMI Immunity Levels; 7) NAND vs. and Gate Immunity; 8) TTL vs. LS Immunity Levels; 9) TP vs. OC Immunity Levels; 10) 7805 Volt Reg Immunity; and 11) Seventies Chip Set. This paper is presented in viewgraph form.

  8. Structured Literature Review of disruptive innovation theory within the digital domain

    DEFF Research Database (Denmark)

    Vesti, Helle; Nielsen, Christian; Rosenstand, Claus Andreas Foss

    2017-01-01

    The area of interest is disruption is the digital domain. The research questions are: How has the disruption and digital disruption literature developed over time? What is the research focus into disruption regarding the digital domain and how has this changed over time? Which methods are being...... utilized in research regarding disruption and digital disruption? Where are the key contributors to disruption in general and in digital disruption? Is there a future for digital disruption research? The method is a Structured Literature Review (SLR). The contribution is the results of an analysis of 95...... publications within the field of disruption in the digital domain and disruptive innovation theory in general. Works of twelve practitioners and 83 academics are investigated....

  9. Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease.

    Science.gov (United States)

    Ilan, Yaron

    2016-01-01

    Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.

  10. Disruption mitigation studies in DIII-D

    International Nuclear Information System (INIS)

    Taylor, P.L.; Kellman, A.G.; Evans, T.E.

    1999-01-01

    Data on the discharge behavior, thermal loads, halo currents, and runaway electrons have been obtained in disruptions on the DIII-D tokamak. These experiments have also evaluated techniques to mitigate the disruptions while minimizing runaway electron production. Experiments injecting cryogenic impurity killer pellets of neon and argon and massive amounts of helium gas have successfully reduced these disruption effects. The halo current generation, scaling, and mitigation are understood and are in good agreement with predictions of a semianalytic model. Results from killer pellet injection have been used to benchmark theoretical models of the pellet ablation and energy loss. Runaway electrons are often generated by the pellets and new runaway generation mechanisms, modifications of the standard Dreicer process, have been found to explain the runaways. Experiments with the massive helium gas puff have also effectively mitigated disruptions without the formation of runaway electrons that can occur with killer pellets

  11. Rapid biodiesel production using wet microalgae via microwave irradiation

    International Nuclear Information System (INIS)

    Wahidin, Suzana; Idris, Ani; Shaleh, Sitti Raehanah Muhamad

    2014-01-01

    Highlights: • Lipid was directly extracted from wet microalgae using microwave irradiation. • The microwave irradiation and water bath-assisted solvent extraction are applied. • Cell walls are significantly disrupted under microwave irradiation. • Highly disrupted cell walls led to higher biodiesel yield in microwave irradiation. • Microwave irradiation is a promising direct technique with high biodiesel yields. - Abstract: The major challenges for industrial commercialized biodiesel production from microalgae are the high cost of downstream processing such as dewatering and drying, utilization of large volumes of solvent and laborious extraction processes. In order to address these issues the microwave irradiation method was used to produce biodiesel directly from wet microalgae biomass. This alternative method of biodiesel production from wet microalgae biomass is compared with the conventional water bath-assisted solvent extraction. The microwave irradiation extracted more lipids and high biodiesel conversion was obtained compared to the water bath-assisted extraction method due to the high cell disruption achieved and rapid transesterification. The total content of lipid extracted from microwave irradiation and water bath-assisted extraction were 38.31% and 23.01% respectively. The biodiesel produced using microwave irradiation was higher (86.41%) compared to the conventional method. Thus microwave irradiation is an attractive and promising technology to be used in the extraction and transesterification process for efficient biodiesel production

  12. Longitudinal association between marital disruption and child BMI and obesity.

    Science.gov (United States)

    Arkes, Jeremy

    2012-08-01

    This research examines whether family disruptions (i.e., divorces and separation) contribute to children's weight problems. The sample consists of 7,299 observations for 2,333 children, aged 5-14, over the 1986-2006 period, from a US representative sample from the Child and Young Adult Survey accompanying the National Longitudinal Survey of Youth (NLSY). The study uses individual-fixed-effects models in a longitudinal framework to compare children's BMI and weight problems before and after a disruption. Furthermore, besides doing a before-after comparison for children, the study also estimates the effects at various periods relative to the disruption in order to examine whether children are affected before the disruption and whether any effects change as time passes from the disruption, as some effects may be temporary or slow to develop. Despite having a larger sample than the previous studies, the results provide no evidence that, on average, children's BMI and BMI percentile scores (measured with continuous outcomes) are affected before the disruption, after the disruption, and as time passes from the disruption, relative to a baseline period a few years before the disruption. However, children experiencing a family disruption do have an increased risk of obesity (having a BMI percentile score of 95 or higher) in the two years leading up to the disruption as well as after the disruption, and as time passes from the disruption.

  13. Molecular breeding of the Mureka-non-forming sake koji mold from Aspergillus oryzae by the disruption of the mreA gene.

    Science.gov (United States)

    Kubodera, Takafumi; Yamashita, Nobuo; Nishimura, Akira

    2003-01-01

    Mureka-non-forming sake koji molds were constructed from an Aspergillus oryzae industrial strain by the disruption of the mreA gene using a host-vector system with the ptrA gene as a dominant selectable marker. All of the mreA gene disruptants obtained retained the advantages of the host strain in terms of the brewing characteristics, while their isoamyl alcohol oxidase (IAAOD) activities were significantly lower than that of the host strain. Sake brewing was successfully carried out using the koji prepared with the disruptants, followed by storage of the resultant non-pasteurized sake (nama-shu). The isovaleraldehyde (i-Val) concentration in the sake brewed the host strain increased rapidly and reached the threshold values for mureka, 1.8 ppm and 2.6 ppm after storage at 20 degrees C for 42 d and 63 d, respectively, while those of the disruptants were less than 0.5 ppm even after storage at 20 degrees C or 30 degrees C for 63 d. In the sensory evaluation of the sake stored at 20 degrees C or 30 degrees C for 63 d, all members of the panel recognized the strong mureka flavor of the sake brewed with the host strain, while they did not detect this flavor in the sake brewed with the disruptants. Thus, we concluded that the mreA gene disruptants can be used for the production of sake in which mureka is not formed.

  14. The impact of sport related stressors on immunity and illness risk in team-sport athletes.

    Science.gov (United States)

    Keaney, Lauren C; Kilding, Andrew E; Merien, Fabrice; Dulson, Deborah K

    2018-06-19

    Elite team-sport athletes are frequently exposed to stressors that have the potential to depress immunity and increase infection risk. Therefore, the purpose of this review is to describe how team-sport stressors impact upon immune responses, along with exploring whether alterations in these markers have the potential to predict upper respiratory tract illness symptoms. Narrative review. Salivary secretory immunoglobulin A (SIgA) and T-cell markers have been shown to predict infection risk in individual endurance athletes. Papers discussing the impact of team-sport stressors on SIgA and T-cells were discussed in the review, studies discussing other aspects of immunity were excluded. Journal articles were sourced from PubMed, Web of science and Scopus. Key search terms included team-sport athletes, stressors, immunity, T-cells, cytokines, SIgA and upper respiratory illness. Most team-sport stressors appear to increase risk for illness. An association between reduced SIgA and increased illness incidence has been demonstrated. Intensive training and competition periods have been shown to reduce SIgA, however, it is less clear how additional stressors including extreme environmental conditions, travel, psychological stress, sleep disturbance and poor nutrition affect immune responses. Monitoring SIgA may provide an assessment of a team-sport athletes risk status for developing upper respiratory tract symptoms, however there is currently not enough evidence to suggest SIgA alone can predict illness. Team-sport stressors challenge immunity and it is possible that the combination of stressors could have a compounding effect on immunodepression and infection risk. Given that illness can disrupt training and performance, further research is required to better elucidate how stressors individually and collectively influence immunity and illness. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  15. Sideways wall force produced during tokamak disruptions

    Science.gov (United States)

    Strauss, H.; Paccagnella, R.; Breslau, J.; Sugiyama, L.; Jardin, S.

    2013-07-01

    A critical issue for ITER is to evaluate the forces produced on the surrounding conducting structures during plasma disruptions. We calculate the non-axisymmetric ‘sideways’ wall force Fx, produced in disruptions. Simulations were carried out of disruptions produced by destabilization of n = 1 modes by a vertical displacement event (VDE). The force depends strongly on γτwall, where γ is the mode growth rate and τwall is the wall penetration time, and is largest for γτwall = constant, which depends on initial conditions. Simulations of disruptions caused by a model of massive gas injection were also performed. It was found that the wall force increases approximately offset linearly with the displacement from the magnetic axis produced by a VDE. These results are also obtained with an analytical model. Disruptions are accompanied by toroidal variation of the plasma current Iφ. This is caused by toroidal variation of the halo current, as verified computationally and analytically.

  16. Early depletion of proliferating B cells of germinal center in rapidly progressive simian immunodeficiency virus infection

    International Nuclear Information System (INIS)

    Zhang Zhiqiang; Casimiro, Danilo R.; Schleif, William A.; Chen, Minchun; Citron, Michael; Davies, Mary-Ellen; Burns, Janine; Liang, Xiaoping; Fu, Tong-Ming; Handt, Larry; Emini, Emilio A.; Shiver, John W.

    2007-01-01

    Lack of virus specific antibody response is commonly observed in both HIV-1-infected humans and SIV-infected monkeys with rapid disease progression. However, the mechanisms underlying this important observation still remain unclear. In a titration study of a SIVmac239 viral stock, three out of six animals with viral inoculation rapidly progressed to AIDS within 5 months. Unexpectedly, there was no obvious depletion of CD4 + T cells in both peripheral and lymph node (LN) compartments in these animals. Instead, progressive depletion of proliferating B cells and disruption of the follicular dendritic cell (FDC) network in germinal centers (GC) was evident in the samples collected at as early as 20 days after viral challenge. This coincided with undetectable, or weak and transient, virus-specific antibody responses over the course of infection. In situ hybridization of SIV RNA in the LN samples revealed a high frequency of SIV productively infected cells and large amounts of accumulated viral RNA in the GCs in these animals. Early severe depletion of GC proliferating B cells and disruption of the FDC network may thus result in an inability to mount a virus-specific antibody response in rapid progressors, which has been shown to contribute to accelerated disease progression of SIV infection

  17. Simulation of the scrape-off layer plasma during a disruption

    International Nuclear Information System (INIS)

    Rognlien, T.D.; Crotinger, J.A.; Porter, G.D.; Smith, G.R.; Kellman, A.G.; Taylor, P.L.

    1996-01-01

    The evolution of the scrape-off layer (SOL) during a disruption in the DIII-D tokamak is modeled using the 2-D UEDGE transport code. The focus is on the thermal quench phase when most of the energy content of the discharge is rapidly transported across the magnetic separatrix where it then flows to material surfaces or is radiated. Comparisons between the simulation and an experiment on the DIII-D tokamak are made with the heat flux to the divertor plate, and temperature and density profiles at the SOL midplane. The temporal response of the separate electron and ion heat-flux components to the divertor plate is calculated. The sensitivity of the solution to assumptions of electron heat-flux models and impurity radiation is investigated

  18. Criteria for initiation of tokamak disruptions

    International Nuclear Information System (INIS)

    Hopcraft, K.I.; Turner, M.F.

    1986-01-01

    The process by which a tokamak plasma evolves from an equilibrium state containing a saturated magnetic island to one which is disruptively unstable is discussed and illustrated by numerical simulation of a resistive magnetoplasma. Those elements which are required to initiate a disruption are delineated

  19. Inventory strategies to manage supply disruptions

    NARCIS (Netherlands)

    Atan, Z.; Snyder, L.V.; Gurnani, H.; Mehrotra, H.; Ray, S.

    2012-01-01

    Disruptions in supply chains occur routinely—both large ones, due to natural disasters, labor strikes, or terrorist attacks, and small ones, due to machine breakdowns, supplier stockouts, or quality problems (to name a few examples). Companies whose supply processes are affected by disruptions may

  20. Lipid accumulation, oxidative stress and immune-related molecules affected by tributyltin exposure in muscle tissues of rare minnow (Gobiocypris rarus).

    Science.gov (United States)

    Zhang, Jiliang; Zhang, Chunnuan; Ma, Dongdong; Liu, Min; Huang, Shuntao

    2017-12-01

    Tributyltin (TBT) is reported to induce adipogenesis in fish, which might affect nutritional qualities and health status. Muscle tissues account for the majority of body mass, and have been described as a major site of fat deposition and an immunologically active organ. Therefore, the present study aims to evaluate whether chronic exposures of TBT, at environmental concentrations of 1, 10 and 100 ng/L, affects lipid accumulation, oxidative stress and immune status in muscle tissues of rare minnow (Gobiocypris rarus). After 60 d of exposure, TBT increased contents of total lipid, total cholesterol, triglyceride and fatty acids in muscle tissues. Interestingly, TBT exposure disrupted fatty acid composition and increased contents of unsaturated fatty acids (such as eicosapentaenoic acid and docosahexaenoic acid) in muscle tissues, which might be a response to preserve membrane functions from TBT exposure. Meanwhile, the concentrations of hepatic fatty acid desaturase 2 (Δ6-desaturase) and stearoyl-CoA desaturase (Δ9-desaturase) were increased after TBT exposure, which might contribute the increase of unsaturated fatty acids. Furthermore, TBT increased muscle lipid peroxidation products, antioxidant enzymes (superoxide dismutase, catalase and glutathione peroxidase), and the expression of immune-related molecules (tumor necrosis factor alpha, interleukin 1 beta and nuclear factor kappa B) in muscle tissues. The disruption of TBT on the lipid accumulation, oxidative stress and immune-toxic effects in muscle tissues of fish might reduce nutritional qualities, and affect growth and health status, which might pose a constant and serious threat to fish and result in economic loss in aquaculture. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    International Nuclear Information System (INIS)

    Tonk, Elisa C.M.; Verhoef, Aart; Gremmer, Eric R.; Loveren, Henk van; Piersma, Aldert H.

    2012-01-01

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 at doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the

  2. Relative sensitivity of developmental and immune parameters in juvenile versus adult male rats after exposure to di(2-ethylhexyl) phthalate

    Energy Technology Data Exchange (ETDEWEB)

    Tonk, Elisa C.M., E-mail: ilse.tonk@rivm.nl [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Verhoef, Aart; Gremmer, Eric R. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Loveren, Henk van [Department of Toxicogenomics, Maastricht University, Maastricht (Netherlands); Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Piersma, Aldert H. [Laboratory for Health Protection Research, National Institute for Public Health and the Environment (RIVM), Bilthoven (Netherlands); Institute for Risk Assessment Sciences, Veterinary Faculty, Utrecht University, Utrecht (Netherlands)

    2012-04-01

    The developing immune system displays a relatively high sensitivity as compared to both general toxicity parameters and to the adult immune system. In this study we have performed such comparisons using di(2-ethylhexyl) phthalate (DEHP) as a model compound. DEHP is the most abundant phthalate in the environment and perinatal exposure to DEHP has been shown to disrupt male sexual differentiation. In addition, phthalate exposure has been associated with immune dysfunction as evidenced by effects on the expression of allergy. Male wistar rats were dosed with corn oil or DEHP by gavage from postnatal day (PND) 10–50 or PND 50–90 at doses between 1 and 1000 mg/kg/day. Androgen-dependent organ weights showed effects at lower dose levels in juvenile versus adult animals. Immune parameters affected included TDAR parameters in both age groups, NK activity in juvenile animals and TNF-α production by adherent splenocytes in adult animals. Immune parameters were affected at lower dose levels compared to developmental parameters. Overall, more immune parameters were affected in juvenile animals compared to adult animals and effects were observed at lower dose levels. The results of this study show a relatively higher sensitivity of juvenile versus adult rats. Furthermore, they illustrate the relative sensitivity of the developing immune system in juvenile animals as compared to general toxicity and developmental parameters. This study therefore provides further argumentation for performing dedicated developmental immune toxicity testing as a default in regulatory toxicology. -- Highlights: ► In this study we evaluate the relative sensitivities for DEHP induced effects. ► Results of this study demonstrate the age-dependency of DEHP toxicity. ► Functional immune parameters were more sensitive than structural immune parameters. ► Immune parameters were affected at lower dose levels than developmental parameters. ► Findings demonstrate the susceptibility of the

  3. Nonlinear disruption of ecological interactions in response to nitrogen deposition.

    Science.gov (United States)

    Ochoa-Hueso, Raúl

    2016-10-01

    Global environmental change (GEC) is affecting species interactions and causing a rapid decline in biodiversity. In this study, I present a new Ecosystem Disruption Index to quantify the impacts of simulated nitrogen (N) deposition (0, 10, 20, and 50 kg N·ha -1 ·yr -1  + 6-7 kg N·ha -1 ·yr -1 background) on abiotic and biotic ecological interactions. This comparative index is based on pairwise linear and quadratic regression matrices. These matrices, calculated at the N treatment level, were constructed using a range of abiotic and biotic ecosystem constituents: soil pH, shrub cover, and the first component of several separate principal component analyses using soil fertility data (total carbon and N) and community data (annual plants, microorganisms, biocrusts, edaphic fauna) for a total of seven ecosystem constituents. Four years of N fertilization in a semiarid shrubland completely disrupted the network of ecological interactions, with a greater proportional increase in ecosystem disruption at low N addition levels. Biotic interactions, particularly those involving microbes, shrubs, and edaphic fauna, were more prone to be lost in response to N, whereas interactions involving soil properties were more resilient. In contrast, edaphic fauna was the only group directly affected by N addition, with mites and collembolans increasing their abundance with up to 20 kg N·ha -1 ·yr -1 and then decreasing, which supports the idea of higher-trophic-level organisms being more sensitive to disturbance due to more complex links with other ecosystem constituents. Future experimental studies evaluating the impacts of N deposition, and possibly other GEC drivers, on biodiversity and biotic and abiotic interactions may be able to explain results more effectively in the context of ecological networks as a key feature of ecosystem sensitivity. © 2016 by the Ecological Society of America.

  4. Erosion products in disruption simulation experiments

    International Nuclear Information System (INIS)

    Safronov, V.; Arkhipov, N.; Bakhtin, V.; Barsuk, V.; Kurkin, S.; Mironova, E.; Toporkov, D.; Vasenin, S.; Zhitlukhin, A.; Arkhipov, I.; Werle, H.; Wuerz, H.

    1998-01-01

    Erosion of divertor materials under tokamak disruption event presents a serious problem of ITER technology. Erosion restricts the divertor lifetime and leads to production of redeposited layers of the material retaining large amount of tritium, which is a major safety issue for future fusion reactor. Since ITER disruptive heat loads are not achievable in existing tokamaks, material erosion is studied in special simulation experiments. Till now the simulation experiments have focused mainly on investigation of shielding effect and measurement of erosion rate. In the present work the properties of eroded and redeposited graphite are studied under condition typical for hard ITER disruption. (author)

  5. Effect of music on mealtime disruptions.

    Science.gov (United States)

    Hooper, Jeff; Carson, Derek; Lindsay, Bill

    People with learning disabilities can disrupt mealtimes with non-cooperative, aggressive and self-injurious behaviours that challenge other people to tolerate and manage them. These behaviours appear to arise because the proximity of other people, and the heightened activity and noise of a dining room, causes anxiety and agitation. To examine how delivering calming background music via headphones affected anxiety-driven behaviours that disrupted mealtimes. A sample of 30 adults with mild, moderate or severe learning disabilities were videotaped during mealtimes on two consecutive days. On the first day, half the group ate without any calming music while the other half sat opposite them wearing earphones and listening to calming music. On the second day, the non-music and music groups swapped around. Of the participants who tolerated the earphones, only three showed disruptive behaviour; all three had been sitting at the table waiting for their food. With so few examples, meaningful inferential analysis was not possible. However, there were signs that calming music had a positive effect on disruptive mealtime behaviours. It eliminated physical harm, complaining and verbal repetition in one person, and stopped another from shouting/swearing. It also reduced the incidence of shouting/swearing, restlessness and vocalising. Calming music and reduced waiting at tables for food may reduce disruptive behaviours.

  6. Rapid eye movement sleep behavior disorder and rapid eye movement sleep without atonia in narcolepsy

    DEFF Research Database (Denmark)

    Dauvilliers, Yves; Jennum, Poul; Plazzi, Giuseppe

    2013-01-01

    Narcolepsy is a rare disabling hypersomnia disorder that may include cataplexy, sleep paralysis, hypnagogic hallucinations, and sleep-onset rapid eye movement (REM) periods, but also disrupted nighttime sleep by nocturnal awakenings, and REM sleep behavior disorder (RBD). RBD is characterized...... by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with neurodegenerative disorders including Parkinsonisms, but is also reported in narcolepsy in up to 60% of patients. RBD in patients with narcolepsy is, however...... with narcolepsy often present dissociated sleep features including RSWA, increased density of phasic chin EMG and frequent shift from REM to NREM sleep, with or without associated clinical RBD. Most patients with narcolepsy with cataplexy lack the hypocretin neurons in the lateral hypothalamus. Tonic and phasic...

  7. Aggregate formation affects ultrasonic disruption of microalgal cells.

    Science.gov (United States)

    Wang, Wei; Lee, Duu-Jong; Lai, Juin-Yih

    2015-12-01

    Ultrasonication is a cell disruption process of low energy efficiency. This study dosed K(+), Ca(2+) and Al(3+) to Chlorella vulgaris cultured in Bold's Basal Medium at 25°C and measured the degree of cell disruption under ultrasonication. Adding these metal ions yielded less negatively charged surfaces of cells, while with the latter two ions large and compact cell aggregates were formed. The degree of cell disruption followed: control=K(+)>Ca(2+)>Al(3+) samples. Surface charges of cells and microbubbles have minimal effects on the microbubble number in the proximity of the microalgal cells. Conversely, cell aggregates with large size and compact interior resist cell disruption under ultrasonication. Staining tests revealed high diffusional resistance of stains over the aggregate interior. Microbubbles may not be effective generated and collapsed inside the compact aggregates, hence leading to low cell disruption efficiencies. Effective coagulation/flocculation in cell harvesting may lead to adverse effect on subsequent cell disruption efficiency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Adaptation in the innate immune system and heterologous innate immunity.

    Science.gov (United States)

    Martin, Stefan F

    2014-11-01

    The innate immune system recognizes deviation from homeostasis caused by infectious or non-infectious assaults. The threshold for its activation seems to be established by a calibration process that includes sensing of microbial molecular patterns from commensal bacteria and of endogenous signals. It is becoming increasingly clear that adaptive features, a hallmark of the adaptive immune system, can also be identified in the innate immune system. Such adaptations can result in the manifestation of a primed state of immune and tissue cells with a decreased activation threshold. This keeps the system poised to react quickly. Moreover, the fact that the innate immune system recognizes a wide variety of danger signals via pattern recognition receptors that often activate the same signaling pathways allows for heterologous innate immune stimulation. This implies that, for example, the innate immune response to an infection can be modified by co-infections or other innate stimuli. This "design feature" of the innate immune system has many implications for our understanding of individual susceptibility to diseases or responsiveness to therapies and vaccinations. In this article, adaptive features of the innate immune system as well as heterologous innate immunity and their implications are discussed.

  9. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  10. Management of posterior urethral disruption injuries.

    Science.gov (United States)

    Myers, Jeremy B; McAninch, Jack W

    2009-03-01

    Posterior urethral disruption is a traumatic injury to the male urethra, which most often results from pelvic fracture. After trauma, the distraction defect between the two ends of the urethra often scars and becomes fibrotic, blocking the urethra and bladder emptying. Increasing evidence suggests that many posterior urethral disruptions occur at the junction between the membranous urethra and the bulbar urethra, which is distal to the rhabdosphincter. In the acute setting, when a posterior urethral disruption is suspected, retrograde urethrography should be performed. Posterior urethral disruptions can be managed acutely by realignment of the urethra over a urethral catheter or by placement of a suprapubic catheter for bladder drainage only. Once fibrosis has stabilized, the patient can undergo posterior urethroplasty. In most cases, this procedure can be performed via a perineal approach in a single-stage surgery. The results of this single-stage perineal urethroplasty are excellent, and a patent urethra can be re-established in the majority of men who undergo surgery.

  11. Time scales in tidal disruption events

    Directory of Open Access Journals (Sweden)

    Krolik J.

    2012-12-01

    Full Text Available We explore the temporal structure of tidal disruption events pointing out the corresponding transitions in the lightcurves of the thermal accretion disk and of the jet emerging from such events. The hydrodynamic time scale of the disrupted star is the minimal time scale of building up the accretion disk and the jet and it sets a limit on the rise time. This suggest that Swift J1644+57, that shows several flares with a rise time as short as a few hundred seconds could not have arisen from a tidal disruption of a main sequence star whose hydrodynamic time is a few hours. The disrupted object must have been a white dwarf. A second important time scale is the Eddington time in which the accretion rate changes form super to sub Eddington. It is possible that such a transition was observed in the light curve of Swift J2058+05. If correct this provides interesting constraints on the parameters of the system.

  12. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Fueloep, T.; Smith, H.; Anderson, D.; Lisak, M.; Eriksson, L.-G.

    2005-01-01

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially filamented. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (author)

  13. Early Life Exposure to Endocrine Disrupting Chemicals and Childhood Obesity and Neurodevelopment

    Science.gov (United States)

    Braun, Joseph M.

    2017-01-01

    Endocrine disrupting chemicals (EDCs) may increase the risk of childhood diseases by disrupting hormonally mediated processes critical for growth and development during gestation, infancy, or childhood. The fetus, infant, and child may have enhanced sensitivity to environmental stressors like EDCs due to rapid development and greater exposure to some EDCs that results from their developmentally appropriate behavior, anatomy, and physiology. This review summarizes epidemiological studies examining the relations of early-life exposure to bisphenol A (BPA), phthalates, triclosan, and perfluoroalkyl substance (PFAS) with childhood neurobehavioral disorders and obesity. The available epidemiological evidence suggests that prenatal exposure to several of these ubiquitous EDCs is associated with adverse neurobehavior (BPA and phthalates) and excess adiposity or increased risk of obesity/overweight (PFAS). Quantifying the effects of EDC mixtures, improving EDC exposure assessment, reducing bias from confounding, identifying periods of heightened vulnerability, and elucidating the presence and nature of sexually dimorphic EDC effects would result in stronger inferences from epidemiological studies. Ultimately, better estimates of the causal effects of EDC exposures on child health could help identify susceptible sub-populations and lead to public health interventions to reduce these exposures. PMID:27857130

  14. On the Disruption of Star Clusters in a Hierarchical Interstellar Medium

    Science.gov (United States)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2010-03-01

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  15. ON THE DISRUPTION OF STAR CLUSTERS IN A HIERARCHICAL INTERSTELLAR MEDIUM

    International Nuclear Information System (INIS)

    Elmegreen, Bruce G.; Hunter, Deidre A.

    2010-01-01

    The distribution of the number of clusters as a function of mass M and age T suggests that clusters get eroded or dispersed in a regular way over time, such that the cluster number decreases inversely as an approximate power law with T within each fixed interval of M. This power law is inconsistent with standard dispersal mechanisms such as cluster evaporation and cloud collisions. In the conventional interpretation, it requires the unlikely situation where diverse mechanisms stitch together over time in a way that is independent of environment or M. Here, we consider another model in which the large-scale distribution of gas in each star-forming region plays an important role. We note that star clusters form with positional and temporal correlations in giant cloud complexes, and suggest that these complexes dominate the tidal force and collisional influence on a cluster during its first several hundred million years. Because the cloud complex density decreases regularly with position from the cluster birth site, the harassment and collision rates between the cluster and the cloud pieces decrease regularly with age as the cluster drifts. This decrease is typically a power law of the form required to explain the mass-age distribution. We reproduce this distribution for a variety of cases, including rapid disruption, slow erosion, combinations of these two, cluster-cloud collisions, cluster disruption by hierarchical disassembly, and partial cluster disruption. We also consider apparent cluster mass loss by fading below the surface brightness limit of a survey. In all cases, the observed log M-log T diagram can be reproduced under reasonable assumptions.

  16. Social isolation disrupts innate immune responses in both male and female prairie voles and enhances agonistic behavior in female prairie voles (Microtus ochrogaster).

    Science.gov (United States)

    Scotti, Melissa-Ann L; Carlton, Elizabeth D; Demas, Gregory E; Grippo, Angela J

    2015-04-01

    Psychosocial stress, specifically social isolation, is an important risk factor for the development of a variety of psychological and physiological disorders. Changes in immune function have been hypothesized to mediate this relationship. The current study used the prairie vole (Microtus ochrogaster) model of isolation-induced depressive-like behavior to test whether social isolation led to changes in innate immune function. Specifically, we used hemolytic complement (CH50) and bacteria killing assays to assess innate immunity, in paired or singly housed male and female prairie voles. Further, in a second experiment we tested whether females exposed to an additional short-term social stressor, a resident-intruder trial, would show changes in immune function as well as enhanced hypothalamic pituitary axis (HPA) activity as indicated by elevated plasma corticosterone levels. Socially isolated animals, regardless of sex, had significantly reduced CH50s and bacteria killing ability. Socially isolated females exposed to a resident-intruder stressor also showed reduced CH50s and bacteria killing ability as well as significant increases in aggressive behavior, however, they did not show elevated circulating corticosterone levels. Collectively, these data will help inform our understanding of the relationship between social isolation and physiological and psychological health. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. DISRUPTIVE TECHNOLOGIES: AN EXPANDED VIEW

    OpenAIRE

    JAMES M. UTTERBACK; HAPPY J. ACEE

    2005-01-01

    The term "disruptive technology" as coined by Christensen (1997, The Innovator's Dilemma; How New Technologies Cause Great Firms to Fail. Harvard Business School Press) refers to a new technology having lower cost and performance measured by traditional criteria, but having higher ancillary performance. Christensen finds that disruptive technologies may enter and expand emerging market niches, improving with time and ultimately attacking established products in their traditional markets. This...

  18. Demographic buffering: titrating the effects of birth rate and imperfect immunity on epidemic dynamics.

    Science.gov (United States)

    Morris, Sinead E; Pitzer, Virginia E; Viboud, Cécile; Metcalf, C Jessica E; Bjørnstad, Ottar N; Grenfell, Bryan T

    2015-03-06

    Host demography can alter the dynamics of infectious disease. In the case of perfectly immunizing infections, observations of strong sensitivity to demographic variation have been mechanistically explained through analysis of the susceptible-infected-recovered (SIR) model that assumes lifelong immunity following recovery from infection. When imperfect immunity is incorporated into this framework via the susceptible-infected-recovered-susceptible (SIRS) model, with individuals regaining full susceptibility following recovery, we show that rapid loss of immunity is predicted to buffer populations against the effects of demographic change. However, this buffering is contrary to the dependence on demography recently observed for partially immunizing infections such as rotavirus and respiratory syncytial virus. We show that this discrepancy arises from a key simplification embedded in the SIR(S) framework, namely that the potential for differential immune responses to repeat exposures is ignored. We explore the minimum additional immunological information that must be included to reflect the range of observed dependencies on demography. We show that including partial protection and lower transmission following primary infection is sufficient to capture more realistic reduced levels of buffering, in addition to changes in epidemic timing, across a range of partially and fully immunizing infections. Furthermore, our results identify key variables in this relationship, including R0.

  19. Multistage Logistic Network Optimization under Disruption Risk

    OpenAIRE

    Rusman, Muhammad

    2013-01-01

    Getting over disruptions risk has been a challenging issue for many companies under the globalization that will link to potential external source such as demand uncertainties, natural disasters, and terrorist attacks. The disruption is an unexpected event that disturbs normal flows of products and materials within a supply chain. The disruption at one members of supply chain will propagate the offers and finally affect significant impacts on the entire chain. If we look back...

  20. Dual antibody therapy to harness the innate anti-tumor immune response to enhance antibody targeting of tumors.

    Science.gov (United States)

    Chester, Cariad; Marabelle, Aurelien; Houot, Roch; Kohrt, Holbrook E

    2015-04-01

    Cancer immunotherapy is a rapidly evolving field that offers a novel paradigm for cancer treatment: therapies focus on enhancing the immune system's innate and adaptive anti-tumor response. Early immunotherapeutics have achieved impressive clinical outcomes and monoclonal antibodies are now integral to therapeutic strategies in a variety of cancers. However, only recently have antibodies targeting innate immune cells entered clinical development. Innate immune effector cells play important roles in generating and maintaining antitumor immunity. Antibody-dependent cell-mediated cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP) are important innate immune mechanisms for tumor eradication. These cytolytic processes are initiated by the detection of a tumor-targeting antibody and can be augmented by activating co-stimulatory pathways or blocking inhibitory signals on innate immune cells. The combination of FDA-approved monoclonal antibodies with innate effector-targeting antibodies has demonstrated potent preclinical therapeutic synergy and early-phase combinatorial clinical trials are ongoing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Club cells surviving influenza A virus infection induce temporary nonspecific antiviral immunity.

    Science.gov (United States)

    Hamilton, Jennifer R; Sachs, David; Lim, Jean K; Langlois, Ryan A; Palese, Peter; Heaton, Nicholas S

    2016-04-05

    A brief window of antigen-nonspecific protection has been observed after influenza A virus (IAV) infection. Although this temporary immunity has been assumed to be the result of residual nonspecific inflammation, this period of induced immunity has not been fully studied. Because IAV has long been characterized as a cytopathic virus (based on its ability to rapidly lyse most cell types in culture), it has been a forgone conclusion that directly infected cells could not be contributing to this effect. Using a Cre recombinase-expressing IAV, we have previously shown that club cells can survive direct viral infection. We show here not only that these cells can eliminate all traces of the virus and survive but also that they acquire a heightened antiviral response phenotype after surviving. Moreover, we experimentally demonstrate temporary nonspecific viral immunity after IAV infection and show that surviving cells are required for this phenotype. This work characterizes a virally induced modulation of the innate immune response that may represent a new mechanism to prevent viral diseases.

  2. Disrupted Sleep : From Molecules to Cognition

    NARCIS (Netherlands)

    Van Someren, Eus J W; Cirelli, Chiara; Dijk, Derk-Jan; Van Cauter, Eve; Schwartz, Sophie; Chee, Michael W L

    2015-01-01

    UNLABELLED: Although the functions of sleep remain to be fully elucidated, it is clear that there are far-reaching effects of its disruption, whether by curtailment for a single night, by a few hours each night over a long period, or by disruption in sleep continuity. Epidemiological and

  3. T cell immunity

    OpenAIRE

    Emel Bülbül Başkan

    2013-01-01

    Since birth, our immune system is constantly bombarded with self-antigens and foreign pathogens. To stay healthy, complex immune strategies have evolved in our immune system to maintain self-tolerance and to defend against foreign pathogens. Effector T cells are the key players in steering the immune responses to execute immune functions. While effector T cells were initially identified to be immune promoting, recent studies unraveled negative regulatory functions of effector T cells...

  4. Practice Oriented Algorithmic Disruption Management in Passenger Railways

    NARCIS (Netherlands)

    J.C. Wagenaar (Joris)

    2016-01-01

    markdownabstractHow to deal with a disruption is a question railway companies face on a daily basis. This thesis focusses on the subject how to handle a disruption such that the passenger service is upheld as much as possible. The current mathematical models for disruption management can not yet be

  5. Disruption characteristics in PDX with limiter and divertor discharges

    International Nuclear Information System (INIS)

    Couture, P.; McGuire, K.

    1986-09-01

    A comparison has been made between the characteristics of disruptions with limiter and divertor configurations in PDX. A large data base on disruptions has been collected over four years of machine operation, and a total of 15,000 discharges are contained in the data file. It was found that divertor discharges have less disruptions during ramp up and flattop of the plasma current. However, for divertor discharges a large number of fast, low current disruptions take place during the current ramp down. These disruptions are probably caused by the deformation of the plasma shape

  6. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

    DEFF Research Database (Denmark)

    Koenen, RR; Hundelshausen, P; Nesmelova, IV

    2009-01-01

    Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXC...... monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects......) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities...... compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating...

  7. Disruption mitigation on Tore Supra

    International Nuclear Information System (INIS)

    Martin, G.; Sourd, F.; Saint-Laurent, F.; Bucalossi, J.; Eriksson, L.G.

    2004-01-01

    During disruptions, the plasma energy is lost on the first wall within 1 ms, forces up to hundred tons are applied to the structures and kA of electrons are accelerated up to 50 MeV (runaway electrons). Already sources of concern in present day tokamaks, extrapolation to ITER shows the necessity of mitigation procedures, to avoid serious damages to in-vessel components. Massive gas injection was proposed, and encouraging tests have been done on Textor and DIII-D. Similar experiments where performed on Tore Supra, with the goal to validate their effect on runaway electrons, observed during the majority of disruptions. 0.1 mole of helium was injected within 5 ms in ohmic plasmas, up to 1.2 MA, either stable, or in a pre-disruptive phase (argon puffing). Beneficial effects where obtained: reduction of the current fall rate and eddy currents, total disappearance of runaway electrons and easy recovery for the next pulse, without noticeable helium pollution of following plasmas. Analysis of the 4 ms period between injection and disruption indicates that to reach these goals, one need to inject enough helium to keep it only partially ionised. It corresponds to 0.1 g for Tore Supra, and extrapolate to hundreds of grams for ITER. (authors)

  8. Disruption mitigation on Tore Supra

    International Nuclear Information System (INIS)

    Martin, G.; Sourd, F.; Saint-Laurent, F.; Bucalossi, J.; Eriksson, L.G.

    2005-01-01

    During disruptions, the plasma energy is lost on the first wall within 1 ms, forces up to hundred tons are applied to the structures and kA of electrons are accelerated up to 50 MeV (runaway electrons). Already sources of concern in present day tokamaks, extrapolation to ITER shows the necessity of mitigation procedures, to avoid serious damages to in-vessel components. Massive gas injection was proposed, and encouraging tests have been done on Textor and DIII-D. Similar experiments where performed on Tore Supra, with the goal to validate their effect on runaway electrons, observed during the majority of disruptions. 0.1 mole of helium was injected within 5 ms in ohmic plasmas, up to 1.2 MA, either stable, or in a pre-disruptive phase (argon puffing). Beneficial effects where obtained: reduction of the current fall rate and eddy currents, total disappearance of runaway electrons and easy recovery for the next pulse, without noticeable helium pollution of following plasmas. Analysis of the 4 ms period between injection and disruption indicates that to reach these goals, one need to inject enough helium to keep it only partially ionised. It correspond to 0.1 g for Tore Supra, and extrapolate to hundred's of grams for ITER. (author)

  9. Abnormal energy deposition on the wall through plasma disruptions

    International Nuclear Information System (INIS)

    Yamazaki, K.; Schmidt, G.L.

    1984-07-01

    The dissipation of plasma kinetic and magnetic energy during sawtooth oscillstions and disruptions in tokamaks is analyzed using Kadomtsev's disruption model and the plasma-circuit equations. New simple scalings of several characteristic times are obtained for sawteeth and for thermal and magnetic energy quenches of disruptions. The abnormal energy deposition on the wall during major or minor disruptions, estimated from this analysis, is compared with bolometric measurements in the PDX tokamak. Especially, magnetic energy dissipation during current termination period is shown to be reduced by the strong coupling of the plasma current with external circuits. These analyses are found to be useful to predict the phenomenological behavior of plasma disruptions in large future tokamaks, and to estimate abnormal heat deposition on the wall during plasma disruptions. (author)

  10. Measuring polio immunity to plan immunization activities.

    Science.gov (United States)

    Voorman, Arend; Lyons, Hil M

    2016-11-21

    The Global Polio Eradication Initiative is closer than ever to achieving a polio-free world. Immunization activities must still be carried out in non-endemic countries to maintain population immunity at levels which will stop poliovirus from spreading if it is re-introduced from still-infected areas. In areas where there is no active transmission of poliovirus, programs must rely on surrogate indicators of population immunity to determine the appropriate immunization activities, typically caregiver-reported vaccination history obtained from non-polio acute flaccid paralysis patients identified through polio surveillance. We used regression models to examine the relationship between polio vaccination campaigns and caregiver-reported polio vaccination history. We find that in many countries, vaccination campaigns have a surprisingly weak impact on these commonly used indicators. We conclude that alternative criteria and data, such as routine immunization indicators from vaccination records or household surveys, should be considered for planning polio vaccination campaigns, and that validation of such surrogate indicators is necessary if they are to be used as the basis for program planning and risk assessment. We recommend that the GPEI and similar organizations consider or continue devoting additional resources to rigorously study population immunity and campaign effectiveness in at-risk countries. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Disruptions and Their Mitigation in TEXTOR

    International Nuclear Information System (INIS)

    Finken, K.H.; Jaspers, R.; Kraemer-Flecken, A.; Savtchkov, A.; Lehnen, M.; Waidmann, G.

    2005-01-01

    Disruptions remain a major concern for tokamak devices, particularly for large machines. The critical issues are the induced (halo) currents and the resulting forces, the excessive heating of exposed surfaces by the instantaneous power release, and the possible occurrence of highly energetic runaway electrons. The key topics of the investigations on TEXTOR in the recent years concerned (a) the power deposition pattern recorded by a fast infrared scanner, (b) the runaway generation measured by synchrotron radiation in the infrared spectral region, (c) method development for 'healing' discharges that are going to disrupt, and (d) massive gas puffing for mitigating the adverse effects of disruptions

  12. Understanding Internal Accountability in Nigeria’s Routine Immunization System: Perspectives From Government Officials at the National, State, and Local Levels

    Directory of Open Access Journals (Sweden)

    Daniel J. Erchick

    2017-07-01

    Full Text Available Background Routine immunization coverage in Nigeria has remained low, and studies have identified a lack of accountability as a barrier to high performance in the immunization system. Accountability lies at the heart of various health systems strengthening efforts recently launched in Nigeria, including those related to immunization. Our aim was to understand the views of health officials on the accountability challenges hindering immunization service delivery at various levels of government. Methods A semi-structured questionnaire was used to interview immunization and primary healthcare (PHC officials from national, state, local, and health facility levels in Niger State in north central Nigeria. Individuals were selected to represent a range of roles and responsibilities in the immunization system. The questionnaire explored concepts related to internal accountability using a framework that organizes accountability into three axes based upon how they drive change in the health system. Results Respondents highlighted accountability challenges across multiple components of the immunization system, including vaccine availability, financing, logistics, human resources, and data management. A major focus was the lack of clear roles and responsibilities both within institutions and between levels of government. Delays in funding, especially at lower levels of government, disrupted service delivery. Supervision occurred less frequently than necessary, and the limited decision space of managers prevented problems from being resolved. Motivation was affected by the inability of officials to fulfill their responsibilities. Officials posited numerous suggestions to improve accountability, including clarifying roles and responsibilities, ensuring timely release of funding, and formalizing processes for supervision, problem solving, and data reporting. Conclusion Weak accountability presents a significant barrier to performance of the routine immunization

  13. Immune infiltrates as predictive markers of survival in pancreatic cancer patients

    Directory of Open Access Journals (Sweden)

    Maria Pia eProtti

    2013-08-01

    Full Text Available Pancreatic cancer is a devastating disease with dismal prognosis. The tumor microenvironment is composed by multiple cell types, molecular factors and extracellular matrix forming a strong desmoplastic reaction, which is a hallmark of the disease. A complex cross-talk between tumor cells and the stroma exists with reciprocal influence that dictates tumor progression and ultimately the clinical outcome. In this context, tumor infiltrating immune cells through secretion of chemokine and cytokines exert an important regulatory role. Here we review the correlation between the immune infiltrates, evaluated on tumor samples of pancreatic cancer patients underwent surgical resection, and disease free and/or overall survival after surgery. Specifically, we focus on tumor infiltrating lymphocytes, mast cells and macrophages that all contribute to a Th2-type inflammatory and immunosuppressive microenvironment. In these patients tumor immune infiltrates not only do not contribute to disease eradication but rather the features of Th2-type inflammation and immunosuppression is significantly associated with more rapid disease progression and reduced survival.

  14. Disrupted Sleep: From Molecules to Cognition

    NARCIS (Netherlands)

    van Someren, E.J.; Cirelli, C.; Dijk, D.J.; Van Cauter, E.; Schwartz, S.; Chee, M.W.L.

    2015-01-01

    Although the functions of sleep remain to be fully elucidated, it is clear that there are far-reaching effects of its disruption, whether by curtailment for a single night, by a few hours each night over a long period, or by disruption in sleep continuity. Epidemiological and experimental studies of

  15. Cost Sharing in the Prevention of Supply Chain Disruption

    Directory of Open Access Journals (Sweden)

    Wen Wang

    2017-01-01

    Full Text Available We examine the influence of cost-sharing mechanism on the disruption prevention investment in a supply chain with unreliable suppliers. When a supply chain faces considerable loss following a disruption, supply chain members are motivated toward investing in manners that reduce their disruption probability. In improving supply chain reliability, the cost-sharing mechanism must be set appropriately to realize the efficiency of the disruption prevention investment. In a supply chain where the focal manufacturing company has its own subsidiary supplier and an outsourcing supplier, we analyze different forms of cost-sharing mechanisms when both suppliers confront disruption risks. Through the cost-sharing mechanisms presented in this study, supply chain members can improve their reliability via disruption prevention investments without considerably increasing the total supply chain cost. We present two concepts, the cost-sharing structure and the cost-sharing ratio, in this study. As the two key components of cost-sharing mechanism, these two elements constitute a practicable cost allocation mechanism to facilitate disruption prevention.

  16. Immune effects of the neurotoxins ciguatoxins and brevetoxins.

    Science.gov (United States)

    Pierre, Ophelie; Misery, Laurent; Talagas, Matthieu; Le Garrec, Raphaele

    2018-01-25

    Ciguatoxins (CTXs) and brevetoxins (PbTxs) are phycotoxins that can accumulate along the marine food chain and thus cause seafood poisoning in humans, namely "ciguatera fish poisoning" (CFP) and "neurotoxic shellfish poisoning" (NSP), respectively. CFP is characterized by early gastrointestinal symptoms and typical sensory disorders (paraesthesia, pain, pruritus and cold dysaesthesia), which can persist several weeks and, in some cases, several months or years. NSP is considered a mild form of CFP with similar but less severe symptoms. After inhaled exposure, PbTxs can also cause respiratory tract irritation in healthy subjects and asthma exacerbations in predisposed subjects, whose respiratory functions may be disrupted for several days following PbTx inhalation. Mechanistically, it is well established that CTX- or PbTx-induced disturbances are primarily mainly due to voltage-gated sodium channel activation in sensory and motor peripheral nervous system. However, little is known about the pathophysiology or a potential individual susceptibility to long lasting effects of CFP/NSP. In addition to their action on the nervous system, PbTxs and CTXs were also shown to exert effects on the immune system. However, their role in the pathophysiology of syndromes induced by CTX or PbTx exposure is poorly documented. The aim of this review is to inventory the literature thus far on the inflammatory and immune effects of PbTxs and CTXs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Induction of resistance to viral infections in the domestic cat by stimulation of the immune system

    OpenAIRE

    Robert-Tissot, C

    2011-01-01

    Broadening the understanding of mechanisms linked to innate immunity is of primordial importance in a time of continuous emergence of rapidly spreading viral diseases. The domestic cat represents an ideal model for the study of host-virus interactions, as it is an outbred species naturally susceptible to many viruses sharing biological properties with those affecting humans. Additionally, due to their acquisition of infallible transmission strategies, rapid propagation of ...

  18. Impact of Disruptive Innovations on Mobile Telecom Industry in Lebanon

    Directory of Open Access Journals (Sweden)

    Wael Bakhit

    2016-04-01

    Full Text Available The telecommunication industry is different from other industries in the basis of innovation rate. This industry continuously provides end users with new technological generations and disruptive technologies. Due to the complexity of the nature of the product served, telecommunication industry is an important case to study in order to explain the real reasons for the challenges facing telecom companies. Researching in this area will explain why some companies survive while others fail. The wide range served technology innovations is most likely to result in rapid mutation of consumers’ spending habits thus directly influencing the mobile phone companies. The aim of this is to test the reliability of innovations and its impact on companies’ profitability. For that purpose, a survey with 200 end users and 20 employees from two telecom providers (“Alfa, and “Touch” was conducted to investigate various disruptive and conventional means and their impact on the financial performance of telecom industry. The results show that most of the revenue of telecom industry comes from usage of data while the industry is lacking for competition, and quality services while charging high tariffs for customers. Currently customers are migrating to data, therefore performing a pressure on the industry to improve its services. To conclude, network operators need to decide what to they want to sacrifice and how far they want to go to reach targeted results.

  19. Immunizations challenge healthcare personnel and affects immunization rates.

    Science.gov (United States)

    Strohfus, Pamela K; Kim, Susan C; Palma, Sara; Duke, Russell A; Remington, Richard; Roberts, Caleb

    2017-02-01

    This study measured 1. medical office immunization rates and 2. health care personnel competency in managing vaccine practices before and after evidence-based immunization education was provided. This descriptive study compared 32 family medicine and pediatric offices and 178 medical assistants, licensed practical nurses, registered nurses, nurse practitioners, and physicians in knowledge-based testing pre-education, post-education, and 12-months post-education. Immunization rates were assessed before and 18-months post-education. Immunization rates increased 10.3% - 18months post-education; knowledge increased 7.8% - 12months post-education. Family medicine offices, licensed practical nurses, and medical assistants showed significant knowledge deficits before and 12-months post-education. All demographic groups scored less in storage/handling 12-months post-education. This study is one of the first studies to identify competency challenges in effective immunization delivery among medical assistants, licensed practical nurses, and family medicine offices. Formal and continuous education in immunization administration and storage/handling is recommended among these select groups. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Life history, immunity, Peto's paradox and tumours in birds.

    Science.gov (United States)

    Møller, A P; Erritzøe, J; Soler, J J

    2017-05-01

    Cancer and tumours may evolve in response to life-history trade-offs between growth and duration of development on one hand, and between growth and maintenance of immune function on the other. Here, we tested whether (i) bird species with slow developmental rates for their body size experience low incidence of tumours because slow development allows for detection of rapid proliferation of cell lineages. We also test whether (ii) species with stronger immune response during development are more efficient at detecting tumour cells and hence suffer lower incidence of tumours. Finally, we tested Peto's paradox, that there is a positive relationship between tumour incidence and body mass. We used information on developmental rates and body mass from the literature and of tumour incidence (8468 birds) and size of the bursa of Fabricius for 7659 birds brought to a taxidermist in Denmark. We found evidence of the expected negative relationship between incidence of tumours and developmental rates and immunity after controlling for the positive association between tumour incidence and body size. These results suggest that evolution has modified the incidence of tumours in response to life history and that Peto's paradox may be explained by covariation between body mass, developmental rates and immunity. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.