WorldWideScience

Sample records for rapidly cycled thermal

  1. Methods and compositions for rapid thermal cycling

    Science.gov (United States)

    Beer, Neil Reginald; Benett, William J.; Frank, James M.; Deotte, Joshua R.; Spadaccini, Christopher

    2015-10-27

    The rapid thermal cycling of a material is targeted. A microfluidic heat exchanger with an internal porous medium is coupled to tanks containing cold fluid and hot fluid. Fluid flows alternately from the cold tank and the hot tank into the porous medium, cooling and heating samples contained in the microfluidic heat exchanger's sample wells. A valve may be coupled to the tanks and a pump, and switching the position of the valve may switch the source and direction of fluid flowing through the porous medium. A controller may control the switching of valve positions based on the temperature of the samples and determined temperature thresholds. A sample tray for containing samples to be thermally cycled may be used in conjunction with the thermal cycling system. A surface or internal electrical heater may aid in heating the samples, or may replace the necessity for the hot tank.

  2. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    Energy Technology Data Exchange (ETDEWEB)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  3. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    Science.gov (United States)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  4. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    Science.gov (United States)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.

  5. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  6. Rapid Cycling and Its Treatment

    Science.gov (United States)

    ... Announcements Public Service Announcements Partnering with DBSA Rapid Cycling and its Treatment What is bipolar disorder? Bipolar ... to Depression and Manic Depression . What is rapid cycling? Rapid cycling is defined as four or more ...

  7. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen Skotte

    2013-01-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting...... steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence...

  8. A novel temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    DEFF Research Database (Denmark)

    Bu, Minqiang; R. Perch-Nielsen, Ivan; Sørensen, Karen Skotte

    We present a new temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with external heater and temperature sensor. The method employs optimized temperature overshooting and undershooting...... steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature dependent fluorescence...

  9. Thermal analysis of injection beam dump of high-intensity rapid-cycling synchrotron in J-PARC

    Science.gov (United States)

    Kamiya, J.; Saha, P. K.; Yamamoto, K.; Kinsho, M.; Nihei, T.

    2017-10-01

    The beam dump at the beam injection area in the J-PARC 3-GeV rapid cycling synchrotron (RCS) accepts beams that pass through the charge exchange foil without ideal electron stripping during the multi-turn beam injection. The injection beam dump consists of the beam pipe, beam stopper, radiation shield, and cooling mechanism. The ideal beam power into the injection beam dump is 400 W in the case of design RCS extraction beam power of 1 MW with a healthy foil, which has 99.7 % charge stripping efficiency. On the other hand, as a radiation generator, the RCS is permitted to be operated with maximum average beam power of 4 kW into the injection beam dump based on the radiation shielding calculation, in consideration of lower charge stripping efficiency due to the foil deterioration. In this research, to evaluate the health of the RCS injection beam dump system from the perspective of the heat generation, a thermal analysis was performed based on the actual configuration with sufficiently large region, including the surrounding concrete and soil. The calculated temperature and heat flux density distribution showed the validity of the mesh spacing and model range. The calculation result showed that the dumped 4 kW beam causes the temperature to increase up to 330, 400, and 140 °C at the beam pipe, beam stopper, and radiation shield, respectively. Although these high temperatures induce stress in the constituent materials, the calculated stress values were lower than the ultimate tensile strength of each material. Transient temperature analysis of the beam stopper, which simulated the sudden break of the charge stripper foil, demonstrated that one bunched beam pulse with the maximum beam power does not lead to a serious rise in the temperature of the beam stopper. Furthermore, from the measured outgassing rate of stainless steel at high temperature, the rise in beam line pressure due to additive outgassing from the heated beam pipe was estimated to have a negligible

  10. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  11. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  12. Rapid Update Cycle (RUC) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Update Cycle (RUC) weather forecast model was developed by the National Centers for Environmental Prediction (NCEP). On May 1, 2012, the RUC was replaced...

  13. Rapid Update Cycle (RUC) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Update Cycle (RUC) weather forecast model was developed by the National Centers for Environmental Prediction (NCEP). On May 1, 2012, the RUC was replaced...

  14. Influence of homo-buffer layers and post-deposition rapid thermal annealing upon atomic layer deposition grown ZnO at 100 °C with three-pulsed precursors per growth cycle

    Science.gov (United States)

    Cheng, Yung-Chen; Yuan, Kai-Yun; Chen, Miin-Jang

    2017-10-01

    ZnO main epilayers are deposited with three-pulsed precursors in every growth cycle at 100 °C on various thicknesses of 300 °C-grown homo-buffer layers by atomic layer deposition (ALD) on sapphire substrate. Samples are treated without and with post-deposition rapid thermal annealing (RTA). Two different annealing temperatures 300 and 1000 °C are utilized in the ambience of oxygen for 5 min. Extremely low background electron concentration 8.4 × 1014 cm-3, high electron mobility 62.1 cm2/V s, and pronounced enhancement of near bandgap edge photoluminescence (PL) are achieved for ZnO main epilayer with sufficient thickness of buffer layer (200 ALD cycles) and post-deposition RTA at 1000 °C. Effective block and remove of thermally unstable mobile defects and other crystal lattice imperfections are the agents of quality promotion of ZnO thin film.

  15. Thermal stress relaxation in magnesium composites during thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Trojanova, Z.; Lukac, P. (Karlova Univ., Prague (Czech Republic)); Kiehn, J.; Kainer, K.U.; Mordike, B.L. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany))

    1998-01-01

    It has been shown that the internal friction of Mg - Saffil metal matrix composites can be influenced by thermal stresses, if MMCc are submitted to thermal cycling between room temperature and an upper temperature of cycling. These stresses can be accommodated by generation and motion of dislocations giving the formation of the microplastic zones. The thermal stress relaxation depends on the upper temperature of cycling, the volume fraction of reinforcement and the matrix composition and can result in plastic deformation and strain hardening of the matrix without applied stress. The internal friction measurements can be used for non destructive investigation of processes which influence the mechanical properties. (orig.)

  16. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  17. Ultrafast Thermal Cycling of Solar Panels

    National Research Council Canada - National Science Library

    Wall, T

    1998-01-01

    Two new cyclers that utilize a novel hybrid approach to perform fast thermal cycling of solar panels have been built and are now operational in the Mechanics and Materials Technology Center at The Aerospace Corporation...

  18. Energy Band Diagram near the Interface of Aluminum Oxide on p-Si Fabricated by Atomic Layer Deposition without/with Rapid Thermal Cycle Annealing Determined by Capacitance-Voltage Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, N. [Department of Electrical Engineering, Kyoto University, Kyoto (Japan); Cesar, I.; Lamers, M.; Romijn, I.; Bakker, K.; Olson, C.; Oosterling Saynova, D.; Komatsu, Y.; Weeber, A. [ECN Solar Energy, Petten (Netherlands); Verbake, F.; Wiggers, M. [Philips Research, Eindhoven (Netherlands)

    2012-07-01

    We evaluated the fixed charge (Qf) and the interface state density (Dit) from the capacitance-voltage (C-V) measurement before and after rapid thermal cycle annealing (RTCA) using p-type silicon in which the passivation was performed with aluminum oxide (Al2O3) film by atomic layer deposition (ALD). From C-V measurement we obtained the surface potential (VS), accumulation and depletion width, and as a result, energy band diagrams were produced. It was determined that a barrier height of approximately 100 mV was induced by fixed negative charges in the Al2O3 layer near the interface to the p-type Si substrate. The field effect of the Al2O3 passivation layer created by RTCA strongly remains without depending on the gate voltage (VG)

  19. A thermal-cycling method for disaggregating monoclonal antibody oligomers.

    Science.gov (United States)

    Sadavarte, Rahul H; Ghosh, Raja

    2014-03-01

    Non-native oligomeric forms of biopharmaceutical proteins are therapeutically inactive, and potentially toxic and immunogenic, and therefore undesirable in pharmaceutical formulations. Immunoglobulin G class of antibodies are known to form stable nonnative oligomers through Fab-Fab interactions. In this paper, we investigate thermal-cycling as a technique for disaggregating antibody oligomers. Aggregate containing monoclonal antibody (mAb) samples were exposed to rapid heating and cooling cycles in a thermal-cycler. The heating phase of the thermal-cycle resulted in partial unfolding of the Fab domain, leading to the release of monomer from the oligomer complexes, whereas the rapid cooling that followed led to refolding and minimized the probability of protein reaggregation. The extent of mAb oligomer disaggregation was determined by size-exclusion chromatography and hydrophobic interaction membrane chromatography, whereas protein refolding was assessed by circular dichroism spectroscopy. The thermal-cycling technique in addition to being suitable for disaggregating protein oligomer samples could also potentially be useful for studying the mechanisms of protein aggregation and disaggregation. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  20. Growth of Creamed TNT on Thermal Cycling

    Science.gov (United States)

    1978-07-01

    on this page): No Limitation 14. DESCRIPTORS: Explosives ; Trinitrotoluene; Growth; Thermal Cycling; Thermal Expansion; Impurities; Eutectics. T5...Apparatus 2 2. Materials 2 RESULTS 3 Series 1 3 Series 2 4 Series 3 5 Observations from Dilatometer Rprnreig 5 Surface Changes Accompanying Growth 6...filling prematures than similar rounds which have not. It was proposed that this desensitisation might be a result of the explosive expanding

  1. Quadrupole magnet for a rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Witte, H. [Brookhaven National Lab. (BNL), Upton, NY (United States); Berg, J. S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  2. Influence of Thermal Cycling on Cryogenic Thermometers

    CERN Document Server

    Balle, C; Rieubland, Jean Michel; Suraci, A; Togny, F; Vauthier, N

    1999-01-01

    The stringent requirements on temperature control of the superconducting magnets for the Large Hadron Collider (LHC), impose that the cryogenic temperature sensors meet compelling demands such as long-term stability, radiation hardness, readout accuracy better than 5 mK at 1.8 K and compatibility with industrial control equipment. This paper presents the results concerning long-term stability of resistance temperature sensors submitted to cryogenic thermal cycles. For this task a simple test facility has been designed, constructed and put into operation for cycling simultaneously 115 cryogenic thermometers between 300 K and 4.2 K. A thermal cycle is set to last 71/4 hours: 3 hours for either cooling down or warming up the sensors and 1 respectively 1/4 hour at steady temperature conditions at each end of the temperature cycle. A Programmable Logic Controller (PLC) drives automatically this operation by reading 2 thermometers and actuating on 3 valves and 1 heater. The first thermal cycle was accomplished in a...

  3. Rapid thermal processing science and technology

    CERN Document Server

    Fair, Richard B

    1993-01-01

    This is the first definitive book on rapid thermal processing (RTP), an essential namufacturing technology for single-wafer processing in highly controlled environments. Written and edited by nine experts in the field, this book covers a range of topics for academics and engineers alike, moving from basic theory to advanced technology for wafer manufacturing. The book also provides new information on the suitability or RTP for thin film deposition, junction formation, silicides, epitaxy, and in situ processing. Complete discussions on equipment designs and comparisons between RTP and other

  4. Full cycle rapid scan EPR deconvolution algorithm

    Science.gov (United States)

    Tseytlin, Mark

    2017-08-01

    Rapid scan electron paramagnetic resonance (RS EPR) is a continuous-wave (CW) method that combines narrowband excitation and broadband detection. Sinusoidal magnetic field scans that span the entire EPR spectrum cause electron spin excitations twice during the scan period. Periodic transient RS signals are digitized and time-averaged. Deconvolution of absorption spectrum from the measured full-cycle signal is an ill-posed problem that does not have a stable solution because the magnetic field passes the same EPR line twice per sinusoidal scan during up- and down-field passages. As a result, RS signals consist of two contributions that need to be separated and postprocessed individually. Deconvolution of either of the contributions is a well-posed problem that has a stable solution. The current version of the RS EPR algorithm solves the separation problem by cutting the full-scan signal into two half-period pieces. This imposes a constraint on the experiment; the EPR signal must completely decay by the end of each half-scan in order to not be truncated. The constraint limits the maximum scan frequency and, therefore, the RS signal-to-noise gain. Faster scans permit the use of higher excitation powers without saturating the spin system, translating into a higher EPR sensitivity. A stable, full-scan algorithm is described in this paper that does not require truncation of the periodic response. This algorithm utilizes the additive property of linear systems: the response to a sum of two inputs is equal the sum of responses to each of the inputs separately. Based on this property, the mathematical model for CW RS EPR can be replaced by that of a sum of two independent full-cycle pulsed field-modulated experiments. In each of these experiments, the excitation power equals to zero during either up- or down-field scan. The full-cycle algorithm permits approaching the upper theoretical scan frequency limit; the transient spin system response must decay within the scan

  5. High-speed thermal cycling system and method of use

    Science.gov (United States)

    Hansen, A.D.A.; Jaklevic, J.M.

    1996-04-16

    A thermal cycling system and method of use are described. The thermal cycling system is based on the circulation of temperature-controlled water directly to the underside of thin-walled polycarbonate plates. The water flow is selected from a manifold fed by pumps from heated reservoirs. The plate wells are loaded with typically 15-20 microliters of reagent mix for the PCR process. Heat transfer through the thin polycarbonate is sufficiently rapid that the contents reach thermal equilibrium with the water in less than 15 seconds. Complete PCR amplification runs of 40 three-step cycles have been performed in as little as 14.5 minutes, with the results showing substantially enhanced specificity compared to conventional technology requiring run times in excess of 100 minutes. The plate clamping station is designed to be amenable to robotic loading and unloading of the system. It includes a heated lid, thus eliminating the need for mineral oil overlay of the reactants. The present system includes three or more plate holder stations, fed from common reservoirs but operating with independent switching cycles. The system can be modularly expanded. 13 figs.

  6. Flexible thermal cycle test equipment for concentrator solar cells

    Science.gov (United States)

    Hebert, Peter H [Glendale, CA; Brandt, Randolph J [Palmdale, CA

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  7. Research on nanosatellite thermal cycling test applicability

    Directory of Open Access Journals (Sweden)

    Li Xiyuan

    2017-01-01

    Full Text Available In order to verify the spacecraft performance in extreme temperature and vacuum, and to screen spacecraft early defect, generally spacecraft TV (Thermal Vacuum test should be carried out before launch. Designed in small size and with low cost, nanosatellite is made from a large number of COTS (Commercial off the shelf components; therefore, the test should be low-cost, simple and quick. With the intention of screen out early defects of the product in lower cost, nanosatellite developers usually use TC (Thermal Cycling test to partially replace the TV test because TV test is more expensive. However, due to the air convection, TC test is different from TV test in heat transfer characteristics, which may be over-test or short-test in TC test. This paper aims to explore the applicability of different nanosatellites in TC/TV test. Using rule number analysis method, Heat Transfer model in vacuum and ambient environment has been built to analyse the characteristics of heat transfer under different temperature and characteristic length, and to deliver the recommended limits on using TC test instead of the TV test. The CFD and test methods are applied to verify the rule number analysis above.

  8. Study of a Liquid Plug-Flow Thermal Cycling Technique Using a Temperature Gradient-Based Actuator

    Directory of Open Access Journals (Sweden)

    Yusuke Fuchiwaki

    2014-10-01

    Full Text Available Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.

  9. Rapid cycling genomic selection in a multiparental tropical maize population

    Science.gov (United States)

    Genomic selection (GS) increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is th...

  10. Commercial aspects of rapid thermal processing (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.G.; Huffman, D.R. [Ensyn Technologies Inc., Greely, ON (Canada)

    1996-12-31

    In its broadest sense, Rapid Thermal Processing (RTP{sup TM}) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Scientifically, it is based on the general premise that products which result from the extremely rapid application of heat to a given feedstock are inherently more valuable than those which are produced when heat is applied much more slowly over longer periods of processing time. Commercial RTP{sup TM} activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. `bio-crude`) from biomass for fuel and chemical markets. Chemicals are of significant interest from an economical point of view since they typically have a higher value than fuel products. Liquid fuels are of interest for many reasons: (1) Liquid fuels do not have to be used immediately after production, such as is the case with hot combustion gases or combustible gases produced via gasification. This allows the decoupling of fuel production from the end-use (ie. the conversion of fuel to energy). (2) The higher energy density of liquid fuels vs. that of fuel gases and solid biomass results in a large reduction in the costs associated with storage and transportation. (3) The costs to retrofit an existing gas or oil fired combustion system are much lower than replacement with a solid fuel combustor. (4) In general, liquid fuel combustion is much more efficient, controllable, and cleaner than the combustion of solid fuels. (5) The production of liquid `bio-crude` permits the removal of ash from the biomass prior to combustion or other end-use applications. (6) Gas or liquid fuel-fired diesel or turbine engines cannot operate commercially on solid fuels. Although wood represents the biomass which is of principal commercial interest (including a vast array of wood residues

  11. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  12. Rapid cycling bipolar disorder: clinical characteristics and treatment options.

    Science.gov (United States)

    Coryell, William

    2005-01-01

    Approximately one of six patients who seek treatment for bipolar disorder present with a rapid cycling pattern. In comparison with other patients who have bipolar disorder, these individuals experience more affective morbidity in both the immediate and distant future and are more likely to experience recurrences despite treatment with lithium or anticonvulsants. Particular care should be given to distinguishing rapid cycling bipolar disorder from attention-deficit hyperactivity disorder in children or adolescents and from borderline personality disorder in adults. Perhaps four of five cases of rapid cycling resolve within a year, but the pattern may persist for many years in the remaining patients. As with bipolar disorder in general, depressive symptoms produce the most morbidity over time. Controlled studies have not established that antidepressants provoke switching or rapid cycling, but neither have they been shown consistently to have benefits in bipolar illness. Successful management will often require a sequence of trials with mood stabilizer drugs, beginning with lithium in treatment-naive patients. Efforts to minimise adverse effects, and the recognition that full benefits may not be apparent for several months, will make the premature abandonment of a potentially helpful treatment less likely. Placebo-controlled studies so far provide the most support for the use of lithium and lamotrigine as prophylactic agents. The combination of lithium and carbamazepine, valproate or lamotrigine for maintenance has some support from controlled studies, as does the adjunctive use of olanzapine.

  13. Rapid Cycling Genomic Selection in a Multiparental Tropical Maize Population

    Directory of Open Access Journals (Sweden)

    Xuecai Zhang

    2017-07-01

    Full Text Available Genomic selection (GS increases genetic gain by reducing the length of the selection cycle, as has been exemplified in maize using rapid cycling recombination of biparental populations. However, no results of GS applied to maize multi-parental populations have been reported so far. This study is the first to show realized genetic gains of rapid cycling genomic selection (RCGS for four recombination cycles in a multi-parental tropical maize population. Eighteen elite tropical maize lines were intercrossed twice, and self-pollinated once, to form the cycle 0 (C0 training population. A total of 1000 ear-to-row C0 families was genotyped with 955,690 genotyping-by-sequencing SNP markers; their testcrosses were phenotyped at four optimal locations in Mexico to form the training population. Individuals from families with the best plant types, maturity, and grain yield were selected and intermated to form RCGS cycle 1 (C1. Predictions of the genotyped individuals forming cycle C1 were made, and the best predicted grain yielders were selected as parents of C2; this was repeated for more cycles (C2, C3, and C4, thereby achieving two cycles per year. Multi-environment trials of individuals from populations C0, C1, C2, C3, and C4, together with four benchmark checks were evaluated at two locations in Mexico. Results indicated that realized grain yield from C1 to C4 reached 0.225 ton ha−1 per cycle, which is equivalent to 0.100 ton ha−1 yr−1 over a 4.5-yr breeding period from the initial cross to the last cycle. Compared with the original 18 parents used to form cycle 0 (C0, genetic diversity narrowed only slightly during the last GS cycles (C3 and C4. Results indicate that, in tropical maize multi-parental breeding populations, RCGS can be an effective breeding strategy for simultaneously conserving genetic diversity and achieving high genetic gains in a short period of time.

  14. Thermally regenerative hydrogen/oxygen fuel cell power cycles

    Science.gov (United States)

    Morehouse, J. H.

    1986-01-01

    Two innovative thermodynamic power cycles are analytically examined for future engineering feasibility. The power cycles use a hydrogen-oxygen fuel cell for electrical energy production and use the thermal dissociation of water for regeneration of the hydrogen and oxygen. The TDS (thermal dissociation system) uses a thermal energy input at over 2000 K to thermally dissociate the water. The other cycle, the HTE (high temperature electrolyzer) system, dissociates the water using an electrolyzer operating at high temperature (1300 K) which receives its electrical energy from the fuel cell. The primary advantages of these cycles is that they are basically a no moving parts system, thus having the potential for long life and high reliability, and they have the potential for high thermal efficiency. Both cycles are shown to be classical heat engines with ideal efficiency close to Carnot cycle efficiency. The feasibility of constructing actual cycles is investigated by examining process irreversibilities and device efficiencies for the two types of cycles. The results show that while the processes and devices of the 2000 K TDS exceed current technology limits, the high temperature electrolyzer system appears to be a state-of-the-art technology development. The requirements for very high electrolyzer and fuel cell efficiencies are seen as determining the feasbility of the HTE system, and these high efficiency devices are currently being developed. It is concluded that a proof-of-concept HTE system experiment can and should be conducted.

  15. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  16. Effect of thermal state and thermal comfort on cycling performance in the heat

    NARCIS (Netherlands)

    Schulze, E.; Daanen, H.A.M.; Levels, K.; Casadio, J.R.; Plews, D.J.; Kliding, A.E.; Siegel, R.; Laursen, P.B.

    2015-01-01

    Purpose: To determine the effect of thermal state and thermal comfort on cycling performance in the heat. Methods: Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial

  17. Fast thermal cycling-enhanced electromigration in power metallization

    NARCIS (Netherlands)

    Nguyen, Van Hieu; Salm, Cora; Krabbenborg, B.H.; Krabbenborg, B.H.; Bisschop, J.; Mouthaan, A.J.; Kuper, F.G.

    Fast thermal nterconnects used in power ICs are susceptible to short circuit failure due to a combination of fast thermal cycling and electromigration stresses. In this paper, we present a study of electromigration-induced extrusion short-circuit failure in a standard two level metallization

  18. Rapid cycling medical synchrotron and beam delivery system

    Science.gov (United States)

    Peggs, Stephen G [Port Jefferson, NY; Brennan, J Michael [East Northport, NY; Tuozzolo, Joseph E [Sayville, NY; Zaltsman, Alexander [Commack, NY

    2008-10-07

    A medical synchrotron which cycles rapidly in order to accelerate particles for delivery in a beam therapy system. The synchrotron generally includes a radiofrequency (RF) cavity for accelerating the particles as a beam and a plurality of combined function magnets arranged in a ring. Each of the combined function magnets performs two functions. The first function of the combined function magnet is to bend the particle beam along an orbital path around the ring. The second function of the combined function magnet is to focus or defocus the particle beam as it travels around the path. The radiofrequency (RF) cavity is a ferrite loaded cavity adapted for high speed frequency swings for rapid cycling acceleration of the particles.

  19. Eutectic mixtures of some fatty acids for latent heat storage: Thermal properties and thermal reliability with respect to thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Ahmet [Department of Chemistry, Gaziosmanpasa University, 60240 Tokat (Turkey)]. E-mail: asari@gop.edu.tr

    2006-06-15

    Accelerated thermal cycle tests have been conducted to study the change in melting temperatures and latent heats of fusion of the eutectic mixtures of lauric acid (LA)-myristic acid (MA), lauric acid (LA)-palmitic acid (PA) and myristic acid (MA)-stearic acid (SA) as latent heat storage materials. The thermal properties of these materials were determined by the differential scanning calorimetry (DSC) analysis method. The thermal reliability of the eutectic mixtures after melt/freeze cycles of 720, 1080 and 1460 was also evaluated using the DSC curves. The accelerated thermal cycle tests indicate that the melting temperatures usually tend to decrease, and the variations in the latent heats of fusion are irregular with increasing number of thermal cycles. Moreover, the probable reasons for the change in thermal properties of the eutectic mixtures after repeated thermal cycles were investigated. Fourier Transform Infrared (FT-IR) spectroscopic analysis indicates that the accelerated melt/freeze processes do not cause any degradation in the chemical structure of the mixtures. The change in thermal properties of the eutectic mixtures with increasing number of thermal cycles is only because of the presence of certain amounts of impurities in the fatty acids used in their preparation. It is concluded that the tested eutectic mixtures have reasonable thermal properties and thermal reliability as phase change materials (PCMs) for latent heat storage in any solar heating applications that include a four year utilization period.

  20. Damage Assessment of Stress-Thermal Cycled high temperature

    Science.gov (United States)

    Ju, Jae-Hyung; Prochazka, Michael; Ronke, Ben; Morgan, Roger; Shin, Eugence

    2004-01-01

    We report on the characterization of bismaleimide and polyimide carbon fiber composite, microcrack development under stress thermal cycling loading. Such cycles range from cryogenic temperatures associated with cryogenic fuel (LN, LOX) containment to high temperatures of 300 degrees Celsius associated with future hypervelocity aeropropulsion systems. Microcrack development thresholds as a function of temperature range of the thermal cycle; the number of cycles; the applied stress level imposed on the composite are reported. We have conducted stress-thermal cycles on thin bismaleimide-woven carbon fiber foils for three temperature range cycles: 1. Ambient temperature - -196 degrees celsius. 2. Ambient temperature - 150 degrees Celsius; 200 degrees Celsius; 250 degrees Celsius. 3. -196 degrees Celsius - 250 degrees Celsius. The Principle findings are that the full cycles from -196 degrees Celsius to to 250 degrees Celsius cause the most significant microcrack of development. These observations indicate that the high temperature portion of the cycle under load causes fiber-matrix interface failure and subsequent exposure to higher stresses at the cryogenic, low temperature region results in composite matrix microcracking as a result of the additional stresses associate with the fiber-matrix thermal expansion mismatch. Our initial studies for 12 ply PMR-II-50 polyimide/M60JB carbon fabric [0f,90f,90f,0f,0f,90f]ls composites will be presented. The stress-thermal cycle test procedure for these will be described. Moisture absorption characteristics between cycles will be used to monitor interconnected microcrack development. The applied stress level will be 75% of the composite cryogenic (-196 degrees Celsius) ultimate strength.

  1. Rapid Thermalization by Baryon Injection in Gauge/Gravity Duality

    CERN Document Server

    Hashimoto, Koji; Oka, Takashi

    2011-01-01

    Using the AdS/CFT correspondence for strongly coupled gauge theories, we calculate thermalization of mesons caused by a time-dependent change of a baryon number chemical potential. On the gravity side, the thermalization corresponds to a horizon formation on the probe flavor brane in the AdS throat. Since heavy ion collisions are locally approximated by a sudden change of the baryon number chemical potential, we discuss implication of our results to RHIC and LHC experiments, to find a rough estimate of rather rapid thermalization time-scale t_{th} < 1 [fm/c]. We also discuss universality of our analysis against varying gauge theories.

  2. Study on durability for thermal cycle of planar SOFC

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Motoo; Nakata, Kei-ichi; Wakayama, Sin-ichi [Tonen Corp., Saitama (Japan)] [and others

    1996-12-31

    TONEN CORPORATION has developed planar type SOFC since 1986. We demonstrated the output of 1.3 kW in 1991 and 5.1 kW in 1995. Simultaneously we have studied how to raise electric efficiency and reliability utilizing hydrogen and propane as fuel. Durability for thermal cycle is one of the most important problems of planar SOFC to make it more practical. The planar type SOFC is made up of separator, zirconia electrolyte and glass sealant. The thermal expansion of these components are expected to be the same value, however, they still possess small differences. In this situation, a thermal cycle causes a thermal stress due to the difference of the cell components and is often followed by a rupture in cell components, therefore, the analysis of the thermal stress should give us much useful information. The thermal cycle process consists of a heating up and cooling down procedure. Zirconia electrolyte is not bonded to the separator under the condition of the initial heating up procedure, and glass sealant becomes soft or melts and glass seals spaces between the zirconia and separator. The glass sealant becomes harder with the cooling down procedure. Moreover, zirconia is tightly bonded with separator below a temperature which is defined as a constraint temperature and thermal stress also occurs. This indicates that the heating up process relaxes the thermal stress and the cooling down increases it. In this paper, we simulated dependence of the stress on the sealing configuration, thermal expansion of sealant and constraint temperature of sealant glass. Furthermore, we presented SOFC electrical properties after a thermal cycle.

  3. Rapid magnetic hardening by rapid thermal annealing in NdFeB-based nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Chu, K.-T.; Jin, Z Q; Chakka, Vamsi M; Liu, J P [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2005-11-21

    A systematic study of heat treatments and magnetic hardening of NdFeB-based melt-spun nanocomposite ribbons have been carried out. Comparison was made between samples treated by rapid thermal annealing and by conventional furnace annealing. Heating rates up to 200 K s{sup -1} were adopted in the rapid thermal processing. It was observed that magnetic hardening can be realized in an annealing time as short as 1 s. Coercivity of 10.2 kOe in the nanocomposites has been obtained by rapid thermal annealing for 1 s, and prolonged annealing did not give any increase in coercivity. Detailed results on the effects of annealing time, temperature and heating rate have been obtained. The dependence of magnetic properties on the annealing parameters has been investigated. Structural characterization revealed that there is a close correlation between magnetic hardening and nanostructured morphology. The coercivity mechanism was also studied by analysing the magnetization minor loops.

  4. Effects of thermal cycling on aluminum metallization of power diodes

    DEFF Research Database (Denmark)

    Brincker, Mads; Pedersen, Kristian Bonderup; Kristensen, Peter Kjær

    2015-01-01

    Reconstruction of aluminum metallization on top of power electronic chips is a well-known wear out phenomenon under power cycling conditions. However, the origins of reconstruction are still under discussion. In the current study, a method for carrying out passive thermal cycling of power diodes...... is controlled and the device is not subjected to a current load the observed degradation of metallization and corresponding increase of resistance is purely induced by thermo-mechanical stress. A correlation between number of cycles, micro-structural evolution, and sheet resistance is found and conclusions...

  5. Weldability investigation steel P 91 by weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2015-07-01

    Full Text Available This paper elaborates results of hardness and impact energy of thermal cycle simulated specimens of high-alloy steel P 91 and their dependence on cooling time from 800 to 500 °C. Results were obtained by measuring hardness HV 1 and by experimental testing of Charpy notched specimens. Metallographic analysis of samples was performed on scanning electronic microscope.

  6. BOXTO as a real-time thermal cycling reporter dye

    Indian Academy of Sciences (India)

    PRAKASH

    BOXTO as a real-time thermal cycling reporter dye. ASHRAF I AHMAD. Department of Chemical and Biological Engineering-Molecular Biotechnology, Chalmers University of Technology,. 405 30 Göteborg, Sweden. (Fax, 46 31 773 3910; Email, ashraf.ahmad@molbiotech.chalmers.se). The unsymmetrical cyanine dyes ...

  7. Space-Charge Simulation of Integrable Rapid Cycling Synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Eldred, Jeffery [Fermilab; Valishev, Alexander [Fermilab

    2017-05-01

    Integrable optics is an innovation in particle accelerator design that enables strong nonlinear focusing without generating parametric resonances. We use a Synergia space-charge simulation to investigate the application of integrable optics to a high-intensity hadron ring that could replace the Fermilab Booster. We find that incorporating integrability into the design suppresses the beam halo generated by a mismatched KV beam. Our integrable rapid cycling synchrotron (iRCS) design includes other features of modern ring design such as low momentum compaction factor and harmonically canceling sextupoles. Experimental tests of high-intensity beams in integrable lattices will take place over the next several years at the Fermilab Integrable Optics Test Accelerator (IOTA) and the University of Maryland Electron Ring (UMER).

  8. Thermal cycling tests on surface-mount assemblies

    Science.gov (United States)

    Jennings, C. W.

    1988-03-01

    The capability of surface-mount (SM) solder joints to withstand various thermal cycle stresses was evaluated through electrical circuit resistance changes of a test pattern and by visual examination for cracks in the solder after exposure to thermal cycling. The joints connected different electrical components, primarily leadless-chip carriers (LCCs), and printed wiring-board (PWB) pads on different laminate substrates. Laminate compositions were epoxy-glass and polyimide-glass with and without copper/Invar/copper (CIC) inner layers, polyimide-quartz, epoxy-Kevlar, and polyimide-Kevlar. The most resistant joints were between small LCCs (24 and 48 pins) and polyimide-glass laminate with CIC inner layers. Processing in joint formation was found to be an important part of joint resistant. Thermal cycling was varied with respect to both time and temperature. A few resistors, capacitors, and inductors showed opens after 500 30-min cycles between -65 C and 125 C. Appreciable moisture contents were measured for laminate materials, especially those of polyimide-Kevlar after equilibration in 100 percent relative humidity at room temperature. If not removed or reduced, moisture can cause delamination in vapor-phase soldering.

  9. Thermal cycling tests on surface-mount assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Jennings, C.W.

    1988-03-01

    The capability of surface-mount (SM) solder joints to withstand various thermal cycle stresses was evaluated through electrical circuit resistance changes of a test pattern and by visual examination for cracks in the solder after exposure to thermal cycling. The joints connected different electrical components, primarily leadless-chip carriers (LCCs), and printed wiring-board (PWB) pads on different laminate substrates. Laminate compositions were epoxy-glass and polyimide-glass with and without copper/Invar/copper (CIC) inner layers, polyimide-quartz, epoxy-Kevlar, and polyimide-Kevlar. The most resistant joints were between small LCCs (24 and 48 pins) and polyimide-glass laminate with CIC inner layers. Processing in joint formation was found to be an important part of joint resistant. Thermal cycling was varied with respect to both time and temperature. A few resistors, capacitors, and inductors showed opens after 500 30-min cycles between -65/degree/C and 125/degree/C. Appreciable moisture contents were measured for laminate materials, especially those of polyimide-Kevlar after equilibration in 100/percent/ relative humidity at room temperature. If not removed or reduced, moisture can cause delamination in vapor-phase soldering. 17 refs, 12 figs.,10 tabs.

  10. Rapid thermal sintering of the metallizations of silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Laugier, A.; El Omari, H.; Boyeaux, J.P. [Institut National des Sciences Appliquees de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere; Hartiti, B.; Muller, J.C. [CNRS, Strasbourg (France). Lab. de Physique et Applications des Semiconducteurs; Nam, L.Q.; Sarti, D. [Photowatt International S.A., Bourgoin Jallieu (France)

    1994-12-31

    Rapid Thermal Processing (RTP) using radiation from tungsten halogen lamps as a heat source is a very promising candidate to replace conventional furnace annealing as it offers many advantages such as a reduced overall thermal budget and a lower gas consumption. In this paper the authors show that with moderate temperature, RTP can be used to obtain screen printed contacts with low contacts resistivity and without degrading the transport properties of the solar cell base region. They investigate on Polix multicrystalline solar cells the possibility to replace the conventional sintering by a RTP annealing of the Ag front grid and of the back Al/Ag contact in a single step performed after the antireflection coating deposition.

  11. Thermal stress cycling of GaAs solar cells

    Science.gov (United States)

    Janousek, B. K.; Francis, R. W.; Wendt, J. P.

    1985-01-01

    A thermal cycling experiment was performed on GaAs solar cells to establish the electrical and structural integrity of these cells under the temperature conditions of a simulated low-Earth orbit of 3-year duration. Thirty single junction GaAs cells were obtained and tests were performed to establish the beginning-of-life characteristics of these cells. The tests consisted of cell I-V power output curves, from which were obtained short-circuit current, open circuit voltage, fill factor, and cell efficiency, and optical micrographs, spectral response, and ion microprobe mass analysis (IMMA) depth profiles on both the front surfaces and the front metallic contacts of the cells. Following 5,000 thermal cycles, the performance of the cells was reexamined in addition to any factors which might contribute to performance degradation. It is established that, after 5,000 thermal cycles, the cells retain their power output with no loss of structural integrity or change in physical appearance.

  12. Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1996-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.

  13. Testing of High Thermal Cycling Stability of Low Strength Concrete as a Thermal Energy Storage Material

    Directory of Open Access Journals (Sweden)

    Chao Wu

    2016-09-01

    Full Text Available Concrete has the potential to become a solution for thermal energy storage (TES integrated in concentrating solar power (CSP systems due to its good thermal and mechanical properties and low cost of material. In this study, a low strength concrete (C20 is tested at high temperatures up to 600 °C. Specimens are thermally cycled at temperatures in the range of 400–300 °C, 500–300 °C, and 600–300 °C, which TES can reach in operation. For comparison, specimens also cycled at temperature in the range of 400–25 °C (room temperature, 500–25 °C, and 600–25 °C. It is found from the test results that cracks are not observed on the surfaces of concrete specimens until the temperature is elevated up to 500 °C. There is mechanical deterioration of concrete after exposure to high temperature, especially to high thermal cycles. The residual compressive strength of concrete after 10 thermal cycles between 600 °C and 300 °C is about 58.3%, but the specimens remain stable without spalling, indicating possible use of low strength concrete as a TES material.

  14. Biological aspects and candidate biomarkers for rapid-cycling in bipolar disorder: A systematic review.

    Science.gov (United States)

    Buoli, Massimiliano; Serati, Marta; Altamura, A Carlo

    2017-12-01

    Rapid-cycling bipolar disorder represents a frequent severe subtype of illness which has been associated with poor response to pharmacological treatment. Aim of the present article is to provide an updated review of biological markers associated with rapid-cycling bipolar disorder. A research in the main database sources has been conducted to identify relevant papers about the topic. Rapid-cycling bipolar disorder patients seem to have a more frequent family history for bipolar spectrum disorders (d range: 0.44-0.74) as well as an increased susceptibility to DNA damage or mRNA hypo-transcription (d range: 0.78-1.67) than non rapid-cycling ones. A susceptibility to hypothyroidism, which is exacerbated by treatment with lithium, is possible in rapid-cycling bipolar disorder, but further studies are needed to draw definitive conclusions. Rapid-cycling bipolar patients might have more insuline resistance as well as more severe brain changes in frontal areas (d range: 0.82-0.94) than non rapid-cycling ones. Many questions are still open about this topic. The first is whether the rapid-cycling is inheritable or is more generally the manifestation of a severe form of bipolar disorder. The second is whether some endocrine dysfunctions (diabetes and hypothyroidism) predispose to rapid-cycling or rapid-cycling is the consequence of drug treatment or medical comorbidities (e.g. obesity). Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Simulation and parametric optimisation of thermal power plant cycles

    Directory of Open Access Journals (Sweden)

    P. Ravindra Kumar

    2016-09-01

    Full Text Available The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement with single reheater is considered. The system is optimized in such a way that the percentage exergetic losses are reduced for the increase of the exergetic efficiency and higher fuel utilization. The plant cycles are simulated and optimized by using Cycle Tempo 5.0 simulation software tool. From the simulation study, it is observed that the thermal efficiency of the three different power plant cycles obtained as 41.40, 42.48 and 43.03%, respectively. The specific coal consumption for three different power plant cycles are 0.56, 0.55 and 0.54 Tonnes/MWh. The improvement in feed water temperatures at the inlet of steam generator of respective cycles are 291, 305 and 316 °C.

  16. The Rotary Zone Thermal Cycler: A Low-Power System Enabling Automated Rapid PCR

    Science.gov (United States)

    Bartsch, Michael S.; Renzi, Ronald F.; Van de Vreugde, James L.; Kim, Hanyoup; Knight, Daniel L.; Sinha, Anupama; Branda, Steven S.; Patel, Kamlesh D.

    2015-01-01

    Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling) to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC), a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR) system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR) amplification, and second strand cDNA synthesis. PMID:25826708

  17. The rotary zone thermal cycler: a low-power system enabling automated rapid PCR.

    Directory of Open Access Journals (Sweden)

    Michael S Bartsch

    Full Text Available Advances in molecular biology, microfluidics, and laboratory automation continue to expand the accessibility and applicability of these methods beyond the confines of conventional, centralized laboratory facilities and into point of use roles in clinical, military, forensic, and field-deployed applications. As a result, there is a growing need to adapt the unit operations of molecular biology (e.g., aliquoting, centrifuging, mixing, and thermal cycling to compact, portable, low-power, and automation-ready formats. Here we present one such adaptation, the rotary zone thermal cycler (RZTC, a novel wheel-based device capable of cycling up to four different fixed-temperature blocks into contact with a stationary 4-microliter capillary-bound sample to realize 1-3 second transitions with steady state heater power of less than 10 W. We demonstrate the utility of the RZTC for DNA amplification as part of a highly integrated rotary zone PCR (rzPCR system that uses low-volume valves and syringe-based fluid handling to automate sample loading and unloading, thermal cycling, and between-run cleaning functionalities in a compact, modular form factor. In addition to characterizing the performance of the RZTC and the efficacy of different online cleaning protocols, we present preliminary results for rapid single-plex PCR, multiplex short tandem repeat (STR amplification, and second strand cDNA synthesis.

  18. Optimizing the Environmental Performance of In Situ Thermal Remediation Technologies Using Life Cycle Assessment

    DEFF Research Database (Denmark)

    Lemming, Gitte; Nielsen, Steffen G.; Weber, Klaus

    2013-01-01

    in situ thermal remediation technologies (steam enhanced extraction, thermal conduction heating, electrical resistance heating, and radio frequency heating) in order to (1) compare the life-cycle environmental impacts and resource consumption associated with each thermal technology, and (2) identify...

  19. SRF Performance of CEBAF After Thermal Cycle to Ambient Temperature

    CERN Document Server

    Rimmer, Robert; Preble, Joseph P; Reece, Charles E

    2005-01-01

    In September 2003, in the wake of Hurricane Isabel, JLab was without power for four days after a tree fell on the main power lines feeding the site. This was long enough to lose insulating vacuum in the cryomodules and cryogenic systems resulting in the whole accelerator warming up and the total loss of the liquid helium inventory. This thermal cycle stressed many of the cryomodule components causing several cavities to become inoperable due to helium to vacuum leaks. At the same time the thermal cycle released years of adsorbed gas from the cold surfaces. Over the next days and weeks this gas was pumped away, the insulating vacuum was restored and the machine was cooled back down and re-commissioned. In a testament to the robustness of SRF technology, only a small loss in energy capability was apparent, although individual cavities had quite different field-emission characteristics compared to before the event. In Summer 2004 a section of the machine was again cycled to room temperature during the long maint...

  20. Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels

    Science.gov (United States)

    Hoffman, David J.; Scheiman, David A.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).

  1. Rapid Cycle Amine (RCA) 3.0 System Development

    Science.gov (United States)

    Chullen, Cinda; Campbell, Colin; Papale, William; Hawes, Kevin; Wichowski, Robert

    2015-01-01

    The Rapid Cycle Amine (RCA) 3.0 system is currently under development by NASA, the Lyndon B. Johnson Space Center (JSC) in conjunction with United Technologies Corporation Aerospace Systems (UTAS). The RCA technology is a new carbon dioxide (CO2) and humidity removal system that has been baselined for the Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System. The evolution of the RCA development has progressed through several iterations of technology readiness levels including RCA 1.0, RCA 2.0, and RCA 3.0 test articles. The RCA is an advancement over currently technologies due to its unique regeneration capability. The RCA is capable of simultaneously removing CO2 and humidity from an influent air steam and subsequent regeneration when exposed to a vacuum source. The RCA technology uses two solid amine sorbent beds in an alternating fashion to adsorb CO2 and water (uptake mode) and desorb CO2 and water (regeneration mode) at the same time. The two beds operate in an efficient manner so that while one bed is in the uptake mode, the other is in the regeneration mode, thus continuously providing an on-service sorbent bed by which CO2 and humidity may be removed. The RCA 2.0 and 3.0 test articles were designed with a novel valve assembly which allows for switching between uptake and regeneration modes with only one moving part while minimizing gas volume losses to the vacuum source by means of an internal pressure equalization step during actuation. The RCA technology also is low power, small, and has performed extremely well in all development testing thus far. A final design was selected for the RCA 3.0, fabricated, assembled, and performance tested in 2014 with delivery to NASAJSC in January 2015. This paper will provide an overview on the RCA 3.0 system design and results of pre-delivery testing with references to the development of RCA 1.0 and RCA 2.0.

  2. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    Science.gov (United States)

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  3. Thermal cycling characteristics of plasma synthesized mullite films

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, O.R.; Hou, P.Y.; Brown, I.G. [Lawrence Berkeley National Lab., CA (United States)

    1997-12-01

    The authors have developed a plasma-based technique for the synthesis of mullite and mullite-like films on silicon carbide substrate material. The method, which they refer to as MePIIID (for Metal Plasma Immersion Ion Implantation and Deposition), uses two vacuum arc plasma sources and simultaneous pulse biasing of the substrate in a low pressure oxygen atmosphere. The Al:Si ratio can be controlled via the separate plasma guns, and the film adhesion, structure and morphology can be controlled via the ion energy which in turn is controlled by the pulse bias voltage. The films are amorphous as-deposited, and crystalline mullite is formed by subsequent annealing at 1000 C for 2 hours in air. Adhesion between the aluminum-silicon oxide film and the substrate increases after this first annealing. They have tested the behavior of films when subjected to repetitive thermal cycling between room temperature and 1100 C, and found that the films retain their adhesion and quality. Here they review the plasma synthesis technique and the characteristics of the mullite films prepared in this way, and summarize the status of the thermal cycling experiments.

  4. Bond strength of hard chairside reline resins to a rapid polymerizing denture base resin before and after thermal cycling Resistência de união de resinas rígidas para reembasamento imediato a resina para base de prótese de rápida polimerização antes e após termociclagem

    Directory of Open Access Journals (Sweden)

    Karin Hermana Neppelenbroek

    2006-12-01

    Full Text Available PURPOSE: This study assessed the shear bond strength of 4 hard chairside reline resins (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard to a rapid polymerizing denture base resin (QC-20 processed using 2 polymerization cycles (A or B, before and after thermal cycling. MATERIALS AND METHODS: Cylinders (3.5 mm x 5.0 mm of the reline resins were bonded to cylinders of QC-20 polymerized using cycle A (boiling water-20 minutes or B (boiling water; remove heat-20 minutes; boiling water-20 minutes. For each reline resin/polymerization cycle combination, 10 specimens (groups CAt e CBt were thermally cycled (5 and 55 ºC; dwell time 30 seconds; 2,000 cycles; the other 10 were tested without thermal cycling (groups CAwt ad CBwt. Shear bond tests (0.5 mm/min were performed on the specimens and the failure mode was assessed. Data were analyzed by 3-way ANOVA and Newman-Keuls post-hoc test (alpha=.05. RESULTS: QC-20 resin demonstrated the lowest bond strengths among the reline materials (POBJETIVO: Esse estudo avaliou a resistência de união ao cisalhamento de 4 resinas rígidas para reembasamento imediato (Kooliner, Tokuso Rebase Fast, Duraliner II, Ufi Gel Hard a uma resina para base de prótese de rápida polimerização (QC-20 submetida a 2 ciclos de polimerização (A e B, antes e após termociclagem. MATERIAIS E MÉTODOS: Cilindros (3,5 mm x 5,0 mm das resinas reembasadoras foram unidas aos cilindros de resina QC-20 polimerizados pelo ciclo A (água fervente - 20 minutos ou B (água fervente; remoção do calor-20 minutos; água fervente-20 minutos. Para cada combinação resina reembasadora/ciclo de polimerização, 10 corpos-de-prova (grupos CAt e CBt foram termociclados (5 e 55 ºC; intervalo de tempo 30 segundos; 2.000 ciclos; os outros 10 foram testados sem termociclagem (grupos CAwt e CBwt. Os testes de resistência de união ao cisalhamento (0,5 mm/min foram realizados sobre os corpos-de-prova e o tipo de falha avaliado. Os dados foram

  5. A Rapid and Low-Cost PCR Thermal Cycler for Low Resource Settings.

    Directory of Open Access Journals (Sweden)

    Grace Wong

    Full Text Available Many modern molecular diagnostic assays targeting nucleic acids are typically confined to developed countries or to the national reference laboratories of developing-world countries. The ability to make technologies for the rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a revolutionary step forward in global health. Many molecular assays are also developed based on polymerase chain reactions (PCR, which require thermal cyclers that are relatively heavy (>20 pounds and need continuous electrical power. The temperature ramping speed of most economical thermal cyclers are relatively slow (2 to 3 °C/s so a polymerase chain reaction can take 1 to 2 hours. Most of all, these thermal cyclers are still too expensive ($2k to $4k for low-resource setting uses.In this article, we demonstrate the development of a low-cost and rapid water bath based thermal cycler that does not require active temperature control or continuous power supply during PCR. This unit costs $130 to build using commercial off-the-shelf items. The use of two or three vacuum-insulated stainless-steel Thermos food jars containing heated water (for denaturation and annealing/extension steps and a layer of oil on top of the water allow for significantly stabilized temperatures for PCR to take place. Using an Arduino-based microcontroller, we automate the "archaic" method of hand-transferring PCR tubes between water baths.We demonstrate that this innovative unit can deliver high speed PCR (17 s per PCR cycle with the potential to go beyond the 1,522 bp long amplicons tested in this study and can amplify from templates down to at least 20 copies per reaction. The unit also accepts regular PCR tubes and glass capillary tubes. The PCR efficiency of our thermal cycler is not different from other commercial thermal cyclers. When combined with a rapid nucleic acid detection approach, the thermos thermal cycler (TTC can enable on-site molecular

  6. Subcritical Thermal Convection of Liquid Metals in a Rapidly Rotating Sphere

    Science.gov (United States)

    Kaplan, E. J.; Schaeffer, N.; Vidal, J.; Cardin, P.

    2017-09-01

    Planetary cores consist of liquid metals (low Prandtl number Pr) that convect as the core cools. Here, we study nonlinear convection in a rotating (low Ekman number Ek) planetary core using a fully 3D direct numerical simulation. Near the critical thermal forcing (Rayleigh number Ra), convection onsets as thermal Rossby waves, but as Ra increases, this state is superseded by one dominated by advection. At moderate rotation, these states (here called the weak branch and strong branch, respectively) are smoothly connected. As the planetary core rotates faster, the smooth transition is replaced by hysteresis cycles and subcriticality until the weak branch disappears entirely and the strong branch onsets in a turbulent state at Ek <10-6. Here, the strong branch persists even as the thermal forcing drops well below the linear onset of convection (Ra =0.7 Racrit in this study). We highlight the importance of the Reynolds stress, which is required for convection to subsist below the linear onset. In addition, the Péclet number is consistently above 10 in the strong branch. We further note the presence of a strong zonal flow that is nonetheless unimportant to the convective state. Our study suggests that, in the asymptotic regime of rapid rotation relevant for planetary interiors, thermal convection of liquid metals in a sphere onsets through a subcritical bifurcation.

  7. Effects of Thermal Cycling and Thermal Aging on the Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals

    Energy Technology Data Exchange (ETDEWEB)

    Weil, K. Scott; Coyle, Christopher A.; Darsell, Jens T.; Xia, Gordon; Hardy, John S.

    2005-12-01

    Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4mol% CuO in silver. The brazed samples were exposure tested at 750°C for 200, 400, and 800hrs in both simulated fuel and air environments and thermally cycled at rapid rate (75°C/min) between room temperature and 750°C for as many as fifty cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800hrs of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800hrs of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze/electrolyte interface after 50 cycles.

  8. [Rapid Cycling in Bipolar Disorders: Symptoms, Background and Treatment Recommendations].

    Science.gov (United States)

    Köhler, Stephan; Friedel, Eva; Stamm, Thomas

    2017-04-01

    Rapid cycling bipolar disorder is encountered frequently in clinical practice with a lifetime prevalence of up to 31 %. Besides its association with greater illness severity, increased suicide and comorbidity rates, rapid cycling bipolar disorder has been closely associated with a longer and more complicated course of disease and inadequate treatment response compared to non-rapid cycling bipolar disorder. However rapid cycling does not serve as a stable characteristic of bipolar disorder, though its prevalence increases with illness duration. Female gender, hypothyreoidism and antidepressant medications have been suggested as correlates of rapid cycling bipolar disorder; however, the interaction amongst these factors make an interpretation of their causal relations difficult. Only very few data are available from randomized clinical trials that investigated the therapeutic options of rapid cycling bipolar disorder. Based on these trials, the therapeutic outcome of lithium is similar to that of the class of anticonvulsants. Positive treatment outcome reported for atypical neuroleptics is often based on pharmaceutical company-financed, placebo-controlled RCTS. Altogether independent prospective RCTs and head-to-head comparisons are lacking that can provide sufficient information on treatment response. In addition, the role of antidepressant treatment in the course and phase acceleration of bipolar disorder remains insufficiently understood. However, in the light of present empirical evidence, the use of antidepressant medication in the treatment of rapid cycling bipolar disorder has to be looked at highly critically. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Numerical Simulations of Thermal Convection in Rapidly Rotating Spherical Shell

    Energy Technology Data Exchange (ETDEWEB)

    Nenkov, Constantine; Peltier, Richard, E-mail: nenkov@atmosp.physics.utoronto.ca, E-mail: peltier@atmosp.physics.utoronto.ca [Department of Physics, University of Toronto Toronto, Ontario, M5S 1A7 (Canada)

    2010-11-01

    We present a novel numerical model used to simulate convection in the atmospheres of the Gas Giant planets Jupiter and Saturn. Nonlinear, three-dimensional, time-dependant solutions of the anelastic hydrodynamic equations are presented for a stratified, rotating spherical fluid shell heated from below. This new model is specified in terms of a grid-point based methodology which employs a hierarchy of tessellations of the regular icosahedron onto the sphere through the process of recurrent dyadic refinements of the spherical surface. We describe discretizations of the governing equations in which all calculations are performed in Cartesian coordinates in the local neighborhoods of the almost uniform icosahedral grid, a methodology which avoids the potential mathematical and numerical difficulties associated with the pole problem in spherical geometry. Using this methodology we have built our model in primitive equations formulation, whereas the three-dimensional vector velocity field and temperature are directly advanced in time. We show results of thermal convection in rapidly rotating spherical shell which leads to the formation of well pronounced prograde zonal jets at the equator, results which previous experiments with two-dimensional models in the limit of freely evolving turbulence were not able to achieve.

  10. Rapid-fire improvement with short-cycle kaizen.

    Science.gov (United States)

    Heard, E

    1999-05-01

    Continuous improvement is an attractive idea, but it is typically more myth than reality. SCK is no myth. It delivers dramatic improvements in traditional measures quickly. SCK accomplishes this via kaizens: rapid, repeated, time-compressed changes for the better in bite-sized chunks of the business.

  11. Experimental modeling of weld thermal cycle of the heat affected zone (HAZ

    Directory of Open Access Journals (Sweden)

    J. Kulhánek

    2016-10-01

    Full Text Available Contribution deals with experimental modeling of quick thermal cycles of metal specimens. In the introduction of contribution will be presented measured graphs of thermal cycle of heat affected zone (HAZ of weld. Next will be presented experimental simulation of measured thermal cycle on the standard specimens, useable for material testing. This approach makes possible to create material structures of heat affected zone of weld, big enough for standard material testing.

  12. CLPX NOAA FSL Rapid Update Cycle 20 km (RUC-20) Dataset, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Update Cycle analysis/model system at a 20-km horizontal resolution (RUC20) provides short-range numerical weather guidance for general forecasting, as...

  13. CLPX-Model: Rapid Update Cycle 40km (RUC-40) Model Output Reduced Data, Version 1

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Update Cycle, version 2 at 40km (RUC-2, known to the Cold Land Processes community as RUC40) model is a Mesoscale Analysis and Prediction System (MAPS)...

  14. CLPX NOAA FSL Rapid Update Cycle 20 km (RUC-20) Dataset

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Update Cycle analysis/model system at a 20-km horizontal resolution (RUC20) provides short-range numerical weather guidance for general forecasting, as...

  15. CLPX-Model: Rapid Update Cycle 40km (RUC-40) Model Output Reduced Data

    Data.gov (United States)

    National Aeronautics and Space Administration — The Rapid Update Cycle, version 2 at 40km (RUC-2, known to the Cold Land Processes community as RUC40) model is a Mesoscale Analysis and Prediction System (MAPS)...

  16. Comparison of treatment outcome using two definitions of rapid cycling in subjects with bipolar II disorder.

    Science.gov (United States)

    Amsterdam, Jay D; Lorenzo-Luaces, Lorenzo; DeRubeis, Robert J

    2017-02-01

    We examined differences in treatment outcome between Diagnostic and Statistical Manual Fourth Edition (DSM-IV)-defined rapid cycling and average lifetime-defined rapid cycling in subjects with bipolar II disorder. We hypothesized that, compared with the DSM-IV definition, the average lifetime definition of rapid cycling may better identify subjects with a history of more mood lability and a greater likelihood of hypomanic symptom induction during long-term treatment. Subjects ≥18 years old with a bipolar II major depressive episode (n=129) were categorized into DSM-IV- and average lifetime-defined rapid cycling and prospectively treated with either venlafaxine or lithium monotherapy for 12 weeks. Responders (n=59) received continuation monotherapy for six additional months. These exploratory analyses found moderate agreement between the two rapid-cycling definitions (κ=0.56). The lifetime definition captured subjects with more chronic courses of bipolar II depression, whereas the DSM-IV definition captured subjects with more acute symptoms of hypomania. There was no difference between rapid-cycling definitions with respect to the response to acute venlafaxine or lithium monotherapy. However, the lifetime definition was slightly superior to the DSM-IV definition in identifying subjects who went on to experience hypomanic symptoms during continuation therapy. Although sample sizes were limited, the findings suggest that the lifetime definition of rapid cycling may identify individuals with a chronic rapid-cycling course and may also be slightly superior to the DSM-IV definition in identifying individuals with hypomania during relapse-prevention therapy. These findings are preliminary in nature and need replication in larger, prospective, bipolar II studies. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Micro solid oxide fuel cell fabricated on porous stainless steel: a new strategy for enhanced thermal cycling ability

    Science.gov (United States)

    Kim, Kun Joong; Park, Byung Hyun; Kim, Sun Jae; Lee, Younki; Bae, Hongyeul; Choi, Gyeong Man

    2016-01-01

    Miniaturized solid oxide fuel cells (micro-SOFCs) are being extensively studied as a promising alternative to Li batteries for next generation portable power. A new micro-SOFC is designed and fabricated which shows enhanced thermal robustness by employing oxide-based thin-film electrode and porous stainless steel (STS) substrate. To deposit gas-tight thin-film electrolyte on STS, nano-porous composite oxide is proposed and applied as a new contact layer on STS. The micro-SOFC fabricated on composite oxide- STS dual layer substrate shows the peak power density of 560 mW cm−2 at 550 °C and maintains this power density during rapid thermal cycles. This cell may be suitable for portable electronic device that requires high power-density and fast thermal cycling. PMID:26928921

  18. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    Science.gov (United States)

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner. © The Author(s) 2014.

  19. Weldability prediction of high strength steel S960QL after weld thermal cycle simulation

    Directory of Open Access Journals (Sweden)

    M. Dunđer

    2014-10-01

    Full Text Available This paper presents weld thermal cycle simulation of high strength steel S960QL, and describes influence of cooling time t8/5 on hardness and impact toughness of weld thermal cycle simulated specimens. Furthermore, it presents analysis of characteristic fractions done by electron scanning microscope which can contribute to determination of welding parameters for S960QL steel.

  20. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to

  1. Nucleation of superconductivity under rapid cycling of an electric field

    Science.gov (United States)

    Bandyopadhyay, Malay

    2008-10-01

    The effect of an externally applied high-frequency oscillating electric field on the critical nucleation field of superconductivity in the bulk as well as at the surface of a superconductor is investigated in detail in this work. Starting from the linearized time-dependent Ginzburg-Landau (TDLG) theory, and using the variational principle, I have shown the analogy between a quantum harmonic oscillator with that of the nucleation of superconductivity in the bulk and a quantum double oscillator with that of the nucleation at the surface of a finite sample. The effective Hamiltonian approach of Cook et al (1985 Phys. Rev. A 31 564) is employed to incorporate the effect of an externally applied highly oscillating electric field. The critical nucleation field ratio is also calculated from the ground state energy method. The results obtained from these two approximate theories agree very well with the exact results for the case of an undriven system, which establishes the validity of these two approximate theories. It is observed that the highly oscillating electric field actually increases the bulk critical nucleation field (Hc2) as well as the surface critical nucleation field (Hc3) of superconductivity as compared to the case of absent electric field (ɛ0 = 0). But the externally applied rapidly oscillating electric field accentuates the surface critical nucleation field more than the bulk critical nucleation field, i.e. the increase of Hc3 is 1.6592 times larger than that of Hc2.

  2. Modelling and Improvement of Thermal Cycling in Power Electronics for Motor Drive Applications

    DEFF Research Database (Denmark)

    Vernica, Ionut; Ma, Ke; Blaabjerg, Frede

    2016-01-01

    cycling of power devices in a motor drive application and modelling their impact on the thermal stress. The motor drive system together with the thermal cycling in the power semiconductors have been modelled, and after investigating the dynamic behavior of the system, adverse temperature swings......It is well known that the dynamical change of the thermal stress in the power devices is one of the major factors that have influences on the overall efficiency and reliability of power electronics. The main objective of this paper consists of identifying the main parameters that affect the thermal...... are identified during the acceleration and deceleration periods of the motor. The main causes for these adverse thermal cycles have been presented and, consequently, the influence of the deceleration slope, modulation technique and reactive current on the thermal cycles has been analyzed. Finally, the improved...

  3. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  4. Economic optimization of a Kalina cycle for a parabolic trough solar thermal power plant

    DEFF Research Database (Denmark)

    Modi, Anish; Kærn, Martin Ryhl; Andreasen, J. G.

    2015-01-01

    technology for the conversion of solar thermal energy into electricity. In this paper, a Kalina cycle and a steam Rankine cycle are compared in terms of the total capital investment cost for use in a parabolic trough solar thermal power plant without storage. In order to minimize the total capital investment...... cost of the Kalina cycle power plant (the solar field plus the power cycle), an optimization was performed by varying the turbine outlet pressure, the separator inlet temperature and the separator inlet ammonia mass fraction. All the heat exchangers were modelled as shell and tube type using suitable......The Kalina cycle has recently seen increased interest as a replacement for the more traditional steam Rankine cycle for geothermal, solar, ocean thermal energy conversion and waste heat recovery applications. The Kalina cycle uses a mixture of ammonia and water as the working fluid. The ammonia...

  5. The effects of deep water cycling on planetary thermal evolution

    Science.gov (United States)

    Sandu, Constantin; Lenardic, Adrian; McGovern, Patrick

    2011-12-01

    We use a parameterized convection model to investigate the effects of deep water cycling on the thermal evolution of an Earth-like planet. The model incorporates two water reservoirs, a surface and an interior mantle reservoir. Exchange between the two is calculated using a mantle convection parameterization that allows for temperature- and water-dependent mantle viscosity together with internally self-consistent degassing and regassing parameterizations. The balance between degassing and regassing depends on the average spreading rate of tectonic plates, the amount of water partitioned into melt, the thickness of a mantle melt zone, and of a hydrated layer at the top of subducting plates. Degassing scales with melt zone thickness such that an early period of extensive melting would create a drier and more viscous mantle, shifting the solidus line in a direction that would reduce the melt zone thickness and the rate of mantle heat loss. Coupling a hydrated zone thickness-dependent regassing factor to the model, to mimic water delivery to the mantle via a serpentinized layer, allows for the potential of a reversing point where the overall water flow direction switches from degassing to regassing as the mantle cools. The water effect on viscosity creates a negative feedback that tends to regulate the final amount of water in the mantle so it is not strongly dependent on the initial amount of planetary water. The final amount of water in the surface reservoir is then determined by this feedback effect together with the initial water budget of the entire planet. This implies that if the initial water budget of a planet can be estimated, from planetary formation models, then the volume of surface water can be used to estimate the volume of water in the mantle of an Earth-like planet. Applying this methodology to the Earth leads to predictions for water concentration in the Earth's mantle that are in line with geochemical and petrological constraints.

  6. Effects of thermal cycling and thermal aging on the hermeticity and strength of silver-copper oxide air-brazed seals

    Energy Technology Data Exchange (ETDEWEB)

    Scott Weil, K.; Coyle, Christopher A.; Hardy, John S. [Energy Science and Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Darsell, Jens T. [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 (United States); Xia, Gordon G. [Environmental Technology Division, Pacific Northwest National Laboratory, Richland, WA 99352 (United States)

    2005-12-01

    Thermal cycle and exposure tests were conducted on ceramic-to-metal joints prepared by a new sealing technique. Known as reactive air brazing, this joining method is currently being considered for use in sealing various high-temperature solid-state electrochemical devices, including planar solid oxide fuel cells (pSOFC). In order to simulate a typical pSOFC application, test specimens were prepared by joining ceramic anode/electrolyte bilayers to metal washers, of the same composition as the common frame materials employed in pSOFC stacks, using a filler metal composed of 4mol% CuO in silver. The brazed samples were exposure tested at 750{sup o}C for 200, 400, and 800h in both simulated fuel and air environments and thermally cycled at rapid rate (75{sup o}Cmin{sup -1}) between room temperature and 750{sup o}C for as many as 50 cycles. Subsequent joint strength testing and microstructural analysis indicated that the samples exposure tested in air displayed little degradation with respect to strength, hermeticity, or microstructure out to 800h of exposure. Those tested in fuel showed no change in rupture strength or loss in hermeticity after 800h of high-temperature exposure, but did undergo microstructural change due to the dissolution of hydrogen into the silver-based braze material. Air-brazed specimens subjected to rapid thermal cycling exhibited no loss in joint strength or hermeticity, but displayed initial signs of seal delamination along the braze-electrolyte interface after 50 cycles. (author)

  7. A novel microfluidic system for the rapid analysis of protein thermal stability.

    Science.gov (United States)

    Yang, Xin; Liu, Jia; Xie, Ye Lei; Wang, Yang; Ying, Hong; Wu, Qiong; Huang, Wei; Jenkins, Gareth

    2014-06-07

    We describe a simple microfluidic device for the rapid analysis of protein thermal stability using a novel imaging method. The change in UV absorption upon thermal denaturation or aggregation of proteins is used to get a spatial image of proteins' folding or aggregation state along a linear temperature gradient.

  8. Firearm suppressor having enhanced thermal management for rapid heat dissipation

    Science.gov (United States)

    Moss, William C.; Anderson, Andrew T.

    2014-08-19

    A suppressor is disclosed for use with a weapon having a barrel through which a bullet is fired. The suppressor has an inner portion having a bore extending coaxially therethrough. The inner portion is adapted to be secured to a distal end of the barrel. A plurality of axial flow segments project radially from the inner portion and form axial flow paths through which expanding propellant gasses discharged from the barrel flow through. The axial flow segments have radially extending wall portions that define sections which may be filled with thermally conductive material, which in one example is a thermally conductive foam. The conductive foam helps to dissipate heat deposited within the suppressor during firing of the weapon.

  9. Thermal cycling tests of actively cooled beryllium copper joints

    Energy Technology Data Exchange (ETDEWEB)

    Roedig, M.; Duwe, R.; Linke, J.; Schuster, A.; Wiechers, B. [Forschungszentrum Juelich GmbH (Germany)

    1998-01-01

    Screening tests (steady state heating) and thermal fatigue tests with several kinds of beryllium-copper joints have been performed in an electron beam facility. Joining techniques under investigation were brazing with silver containing and silver-free braze materials, hot isostatic pressing (HIP) and diffusion bonding (hot pressing). Best thermal fatigue performance was found for the brazed samples. (author)

  10. To What Degree Thermal Cycles Affect Chalk Strength

    DEFF Research Database (Denmark)

    Livada, Tijana; Nermoen, Anders; Korsnes, Reidar Inger

    and water saturated chalk. Sixty disks of dry Kansas chalk exposed to different number of temperature cycles were tested for tensile strength using a Brazilian test. Changes in elastic properties as function of number of temperature cycles of the same chalk, but now saturated in water, were studied using...... triaxial cell experiments. For dry rock, no significant effects of temperature cycling was found on average tensile strength, however the range of the tensile failure stress is doubled for the samples exposed to 50 temperature cycles, as opposed to those to none. For water saturated cores, the temperature...

  11. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    Science.gov (United States)

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  12. The oncogene c-Myc coordinates regulation of metabolic networks to enable rapid cell cycle entry.

    Science.gov (United States)

    Morrish, Fionnuala; Neretti, Nicola; Sedivy, John M; Hockenbery, David M

    2008-04-15

    The c-myc proto-oncogene is rapidly activated by serum and regulates genes involved in metabolism and cell cycle progression. This gene is thereby uniquely poised to coordinate both the metabolic and cell cycle regulatory events required for cell cycle entry. However, this function of Myc has not been evaluated. Using a rat fibroblast model of isogenic cell lines, myc(-/-), myc(+/-), myc(+/+) and myc(-/-) cells with an inducible c-myc transgene (mycER), we show that the Myc protein programs cells to utilize both oxidative phosphorylation and glycolysis to drive cell cycle progression. We demonstrate this coordinate regulation of metabolic networks is essential, as specific inhibitors of these pathways block Myc-induced proliferation. Metabolic events temporally correlated with cell cycle entry include increased oxygen consumption, mitochondrial function, pyruvate and lactate production, and ATP generation. Treatment of normal cells with inhibitors of oxidative phosphorylation recapitulates the myc(-/-) phenotype, resulting in impaired cell cycle entry and reduced metabolism. Combined with a kinetic expression profiling analysis of genes linked to mitochondrial function, our study indicates that Myc's ability to coordinately regulate the mitochondrial metabolic network transcriptome is required for rapid cell cycle entry. This function of Myc may underlie the pervasive presence of Myc in many human cancers.

  13. Effect of Thermal Cycling on the Tensile Behavior of CF/AL Fiber Metal Laminates

    Directory of Open Access Journals (Sweden)

    Muhammad Farhan Noor

    2017-09-01

    Full Text Available The objective of this research work was to estimate the effect of thermal cycling on the tensile behavior of CARALL composites. Fiber metal laminates (FMLs, based on 2D woven carbon fabric and 2024-T3 Alclad aluminum alloy sheet, was manufactured by pressure molding technique followed by hand layup method. Before fabrication, aluminum sheets were anodized with phosphoric acid to produce micro porous alumina layer on surface. This micro-porous layer is beneficial to produce strong bonding between metal and fiber surfaces in FMLs. The effect of thermal cycling (-65 to +70ºC on the tensile behavior of Cf/Al based FML was studied. Tensile strength was increased after 10 thermal cycles, but it was slightly decreased to some extent after 30, and 50 thermal cycles. Tensile modulus also shown the similar behavior as that of tensile strength.

  14. Influence of micro-structural parameters and thermal cycling on the ...

    Indian Academy of Sciences (India)

    Keywords. Ultra high performance fibre reinforced cement-based composite; CARDIFRC; micro-structure; mechanical and fracture properties; thermal cycling. ... Author Affiliations. B L Karihaloo1. School of Engineering, Cardiff University, Cardiff, UK ...

  15. The Effects of Thermal Cycling on Gallium Nitride and Silicon Carbide Semiconductor Devices for Aerospace Use

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These Include radiation, extreme temperatures, thermal cycling, to name a few. Preliminary data obtained on new Gallium Nitride and Silicon Carbide power devices under exposure to radiation followed by long term thermal cycling are presented. This work was done in collaboration with GSFC and JPL in support of the NASA Electronic Parts and Packaging (NEPP) Program

  16. Demonstrated Ways to Use Rapid Cycling "Brassica Rapa" in Ecology Instruction and Research

    Science.gov (United States)

    Kelly, Martin G.

    2004-01-01

    The National Science Foundation has a long supported the use of "Wisconsin Fast Plants" (rapid cycling "B. rapa") in the teaching of Biology (K-12). I believe that the opportunity is at hand for biologists to significantly extend past efforts made by our colleagues at the K-12 level to higher education. Biology faculty can realize the many…

  17. Models for optimum thermo-ecological criteria of actual thermal cycles

    Directory of Open Access Journals (Sweden)

    Açikkalp Emin

    2013-01-01

    Full Text Available In this study, the ecological optimization point of irreversible thermal cycles (refrigerator, heat pump and power cycles was investigated. The importance of ecological optimization is to propose a way to use fuels and energy source more efficiently because of an increasing energy need and environmental pollution. It provides this by maximizing obtained (or minimizing supplied work and minimizing entropy generation for irreversible (actual thermal cycles. In this research, ecological optimization was defined for all basic irreversible thermal cycles, by using the first and second laws of thermodynamics. Finally, the ecological optimization was defined in thermodynamic cycles and results were given to show the effects of the cycles’ ecological optimization point, efficiency, COP and power output (or input, and exergy destruction.

  18. Quantum Performance of Thermal Machines over Many Cycles

    Science.gov (United States)

    Watanabe, Gentaro; Venkatesh, B. Prasanna; Talkner, Peter; del Campo, Adolfo

    2017-02-01

    The performance of quantum heat engines is generally based on the analysis of a single cycle. We challenge this approach by showing that the total work performed by a quantum engine need not be proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto engine based on a two-level system as the working substance that supplies power to an external oscillator.

  19. Quantum Performance of Thermal Machines over Many Cycles.

    Science.gov (United States)

    Watanabe, Gentaro; Venkatesh, B Prasanna; Talkner, Peter; Del Campo, Adolfo

    2017-02-03

    The performance of quantum heat engines is generally based on the analysis of a single cycle. We challenge this approach by showing that the total work performed by a quantum engine need not be proportional to the number of cycles. Furthermore, optimizing the engine over multiple cycles leads to the identification of scenarios with a quantum enhancement. We demonstrate our findings with a quantum Otto engine based on a two-level system as the working substance that supplies power to an external oscillator.

  20. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    Science.gov (United States)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  1. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  2. Efficient cycles for carbon capture CLC power plants based on thermally balanced redox reactors

    KAUST Repository

    Iloeje, Chukwunwike

    2015-10-01

    © 2015 Elsevier Ltd. The rotary reactor differs from most alternative chemical looping combustion (CLC) reactor designs because it maintains near-thermal equilibrium between the two stages of the redox process by thermally coupling channels undergoing oxidation and reduction. An earlier study showed that this thermal coupling between the oxidation and reduction reactors increases the efficiency by up to 2% points when implemented in a regenerative Brayton cycle. The present study extends this analysis to alternative CLC cycles with the objective of identifying optimal configurations and design tradeoffs. Results show that the increased efficiency from reactor thermal coupling applies only to cycles that are capable of exploiting the increased availability in the reduction reactor exhaust. Thus, in addition to the regenerative cycle, the combined CLC cycle and the combined-regenerative CLC cycle are suitable for integration with the rotary reactor. Parametric studies are used to compare the sensitivity of the different cycle efficiencies to parameters like pressure ratio, turbine inlet temperature, carrier-gas fraction and purge steam generation. One of the key conclusions from this analysis is that while the optimal efficiency for regenerative CLC cycle was the highest of the three (56% at 3. bars, 1200. °C), the combined-regenerative cycle offers a trade-off that combines a reasonably high efficiency (about 54% at 12. bars, 1200. °C) with much lower gas volumetric flow rate and consequently, smaller reactor size. Unlike the other two cycles, the optimal compressor pressure ratio for the regenerative cycle is weakly dependent on the design turbine inlet temperature. For the regenerative and combined regenerative cycles, steam production in the regenerator below 2× fuel flow rate improves exhaust recovery and consequently, the overall system efficiency. Also, given that the fuel side regenerator flow is unbalanced, it is more efficient to generate steam from the

  3. SUN-LIKE MAGNETIC CYCLES IN THE RAPIDLY ROTATING YOUNG SOLAR ANALOG HD 30495

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, Ricky [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000 (United States); Metcalfe, Travis S. [Space Science Institute, 4750 Walnut St. Suite 205, Boulder, CO 80301 (United States); Hall, Jeffrey C. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Henry, Gregory W., E-mail: egeland@ucar.edu [Center of Excellence in Information Systems, Tennessee State University, 3500 John A. Merritt Blvd., Box 9501, Nashville, TN 37209 (United States)

    2015-10-10

    A growing body of evidence suggests that multiple dynamo mechanisms can drive magnetic variability on different timescales, not only in the Sun but also in other stars. Many solar activity proxies exhibit a quasi-biennial (∼2 year) variation, which is superimposed upon the dominant 11 year cycle. A well-characterized stellar sample suggests at least two different relationships between rotation period and cycle period, with some stars exhibiting long and short cycles simultaneously. Within this sample, the solar cycle periods are typical of a more rapidly rotating star, implying that the Sun might be in a transitional state or that it has an unusual evolutionary history. In this work, we present new and archival observations of dual magnetic cycles in the young solar analog HD 30495, a ∼1 Gyr old G1.5 V star with a rotation period near 11 days. This star falls squarely on the relationships established by the broader stellar sample, with short-period variations at ∼1.7 years and a long cycle of ∼12 years. We measure three individual long-period cycles and find durations ranging from 9.6 to 15.5 years. We find the short-term variability to be intermittent, but present throughout the majority of the time series, though its occurrence and amplitude are uncorrelated with the longer cycle. These essentially solar-like variations occur in a Sun-like star with more rapid rotation, though surface differential rotation measurements leave open the possibility of a solar equivalence.

  4. Connection between maximum-work and maximum-power thermal cycles

    OpenAIRE

    Gonzalez-Ayala, Julian; Arias-Hernandez, L. A.; Angulo-Brown, F.

    2013-01-01

    We propose a new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible cycles. This linkage is built through a mapping between the exponents of a class of heat transfer laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the recovery of known results and to a wide and interesting set of new results for a class of thermal cycles. Among other results we find that it is possible to use analytically closed e...

  5. Life cycle analysis of underground thermal energy storage

    NARCIS (Netherlands)

    Tomasetta, Camilla; van Ree, Derk; Griffioen, Jasper

    2015-01-01

    Underground Thermal Energy Storage (UTES) systems are used to buffer the seasonal difference between heat and cold supply and demand and, therefore, represent an interesting option to conserve energy. Even though UTES are considered environmental friendly solutions they are not completely free of

  6. Influence of creep damage on the low cycle thermal-mechanical fatigue behavior of two tantalum base alloys

    Science.gov (United States)

    Sheffler, K. D.; Doble, G. S.

    1972-01-01

    Low cycle fatigue tests have been performed on the tantalum base alloys T-111 and ASTAR 811C with synchronized, independently programmed temperature and strain cycling. The thermal-mechanical cycles applied fell into three basic categories: these were isothermal cycling, in-phase thermal cycling, and out-of-phase thermal cycling. In-phase cycling was defined as tensile deformation associated with high temperature and compressive deformation with low temperature, while out-of-phase thermal cycling was defined as the reverse case. The in-phase thermal cycling had a pronounced detrimental influence on the fatigue life of both alloys, with the life reduction being greater in the solid solution strengthened T-111 alloy than in the carbide strengthened ASTAR 811C alloy. The out-of-phase tests also showed pronounced effects on the fatigue life of both alloys, although not as dramatic.

  7. Thermal cycling for restorative materials: does a standardized protocol exist in laboratory testing? A literature review.

    Science.gov (United States)

    Morresi, Anna Lucia; D'Amario, Maurizio; Capogreco, Mario; Gatto, Roberto; Marzo, Giuseppe; D'Arcangelo, Camillo; Monaco, Annalisa

    2014-01-01

    In vitro tests continue to be an indispensable method for the initial screening of dental materials. Thermal cycling is one of the most widely used procedures to simulate the physiological aging experienced by biomaterials in clinical practice. Consequently it is routinely employed in experimental studies to evaluate materials' performance. A literature review aimed to elucidate test parameters for in vitro aging of adhesive restorations was performed. This study aims to assess whether or not a standardized protocol of thermal cycling has been acknowledged from a review of the literature. An exhaustive literature search, examining the effect of thermal cycling on restorative dental materials, was performed with electronic database and by hand. The search was restricted to studies published from 1998 to August 2013. No language restrictions were applied. The search identified 193 relevant experimental studies. Only twenty-three studies had faithfully applied ISO standard. The majority of studies used their own procedures, showing only a certain consistency within the temperature parameter (5-55°C) and a great variability in the number of cycles and dwell time chosen. A wide variation in thermal cycling parameters applied in experimental studies has been identified. The parameters selected amongst these studies seem to be done on the basis of convenience for the authors in most cases. A comparison of results between studies would appear to be impossible. The available data suggest that further investigations will be required to ultimately develop a standardized thermal cycling protocol. © 2013 Elsevier Ltd. All rights reserved.

  8. Effect of thermal cycling and disinfection on colour stability of denture base acrylic resin.

    Science.gov (United States)

    Goiato, Marcelo C; Dos Santos, Daniela M; Baptista, Gabriella T; Moreno, Amália; Andreotti, Agda M; Bannwart, Lisiane C; Dekon, Stefan F C

    2013-12-01

    The purpose of this study was to investigate the effect of thermal cycling and disinfection on the colour change of denture base acrylic resin. Four different brands of acrylic resins were evaluated (Onda Cryl, QC 20, Classico and Lucitone). All brands were divided into four groups (n = 7) determined according to the disinfection procedure (microwave, Efferdent, 4% chlorhexidine or 1% hypochlorite). The treatments were conducted three times a week for 60 days. All specimens were thermal cycled between 5 and 55°C with 30-s dwell times for 1000 cycles before and after disinfection. The specimens' colour was measured with a spectrophotometer using the CIE L*a*b* system. The evaluations were conducted at baseline (B), after first thermal cycling (T1 ), after disinfection (D) and after second thermal cycling (T2 ). Colour differences (ΔE) were calculated between T1 and B (T1 B), D and B (DB), and T2 and B (T2 B) time-points.   The samples submitted to disinfection by microwave and Efferdent exhibited the highest values of colour change. There were significant differences on colour change between the time-points, except for the Lucitone acrylic resin. The thermal cycling and disinfection procedures significantly affected the colour stability of the samples. However, all values obtained for the acrylic resins are within acceptable clinical parameters. © 2012 John Wiley & Sons A/S and The Gerodontology Society. Published by John Wiley & Sons Ltd.

  9. Effect of thermal cycling and disinfection on microhardness of acrylic resin denture base.

    Science.gov (United States)

    Goiato, Marcelo Coelho; Dos Santos, Daniela Micheline; Baptista, Gabriella Trunckle; Moreno, Amália; Andreotti, Agda Marobo; Dekon, Stéfan Fiuza de Carvalho

    2013-04-01

    The purpose of this study was to investigate the effect of thermal cycling and disinfection on the microhardness of acrylic resins denture base. Four different brands of acrylic resins were evaluated: Onda Cryl, QC 20, Classico and Lucitone. Each brand of acrylic resin was divided into four groups (n = 7) according to the disinfection method (microwave, Efferdent, 4% chlorhexidine and 1% hypochlorite). Samples were disinfected during 60 days. Before and after disinfection, samples were thermal cycled between 5-55 °C with 30-s dwell times for 1000 cycles. The microhardness was measured using a microhardener, at baseline (B), after first thermal cycling (T1), after disinfection (D) and after second thermal cycling (T2). The microhardness values of all groups reduced over time. QC-20 acrylic resin exhibited the lowest microhardness values. At B and T1 periods, the acrylic resins exhibited statistically greater microhardness values when compared to D and T2 periods. It can be concluded that the microhardness values of the acrylic resins denture base were affected by the thermal cycling and disinfection procedures. However, all microhardness values obtained herein are within acceptable clinical limits for the acrylic resins.

  10. Thermal shock cycling effect on the compressive behaviour of human teeth.

    Science.gov (United States)

    Papanicolaou, G C; Kouveliotis, G; Nikolopoulou, F; Papaefthymiou, K P; Bairami, V; Portan, D V

    2015-02-26

    All ceramic veneers are a common choice that both dentists and patients make for anterior restorations. In the framework of the present study the residual compressive behavior of the above mentioned complex structures after being thermally shock cycled was investigated. An exponential decrease in both compressive stiffness and strength with the thermal shock cycle number was observed. Experimental findings were in good agreement with predicted values. Photomicrographs obtained revealed a different failure mechanism for the pristine and cycled teeth, which is indicative of the susceptible nature of restored teeth to thermal shock. A two-dimensional finite element model designed gave a better insight upon the stress fields in response of thermal or mechanical loadings developed in the oral cavity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Accelerated Thermal Cycling Test of Microencapsulated Paraffin Wax/Polyaniline Made by Simple Preparation Method for Solar Thermal Energy Storage

    Directory of Open Access Journals (Sweden)

    Mohammad Mehrali

    2013-04-01

    Full Text Available Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA. The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC. Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR, and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM. It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.

  12. The use of semiconductor processes for the design and characterization of a rapid thermal processor

    Science.gov (United States)

    Hodul, David; Metha, Sandeep

    1989-02-01

    While a variety of tools are used for the design of semiconductor equipment, processes themselves are often the most informative, providing a convenient and direct method for improving both the hardware and the process. Experiments have been done to evaluate the performance of a commercial rapid thermal processing (RTP) instrument. The effects of chamber geometry and optics as well as the time/temperature recipe were probed using rapid thermal oxidation (RTO), sintering of tungsten suicide and molybdenum silicide, and partial activation of implanted ions. We show how sheet resistance and film thickness maps can be used to determine the dynamic and static temperature uniformity.

  13. Microstructure evolution and thermal stability of rapidly solidified Al-Ni-Co-RE alloy

    Directory of Open Access Journals (Sweden)

    B. Karpe

    2013-07-01

    Full Text Available In the frame of this work, Al-5Ni-1Co-3RE (RE-Rare Earth (Mischmetal rapidly solidified ribbons were manufactured and analyzed. The morphology of the as-cast structure, as well as the microstructural features were analyzed by transmission electron microscopy (TEM and scanning electron microscopy (SEM. Thermal stability has been investigated by combination of four point scanning electrical resistivity measurement (ER, differential scanning calorimetry (DSC and microhardness measurement. From the results we can conclude, that Al-5Ni-1Co-3RE rapidly solidified alloys have good thermal stability due to very slow coarsening kinetics of precipitated particles.

  14. Connection between maximum-work and maximum-power thermal cycles.

    Science.gov (United States)

    Gonzalez-Ayala, Julian; Arias-Hernandez, L A; Angulo-Brown, F

    2013-11-01

    A new connection between maximum-power Curzon-Ahlborn thermal cycles and maximum-work reversible cycles is proposed. This linkage is built through a mapping between the exponents of a class of heat transfer laws and the exponents of a family of heat capacities depending on temperature. This connection leads to the recovery of known results and to a wide and interesting set of results for a class of thermal cycles. Among other results it was found that it is possible to use analytically closed expressions for maximum-work efficiencies to calculate good approaches to maximum-power efficiencies. Behind the proposed connection is an interpretation of endoreversibility hypothesis. Additionally, we suggest that certain reversible maximum-work cycles depending on working substance can be used as reversible landmarks for FTT maximum-power cycles, which also depend on working substance properties.

  15. Residual Tensile Property of Plain Woven Jute Fiber/Poly(Lactic Acid Green Composites during Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Hideaki Katogi

    2016-07-01

    Full Text Available This study investigated the residual tensile properties of plain woven jute fiber reinforced poly(lactic acid (PLA during thermal cycling. Temperature ranges of thermal cycling tests were 35–45 °C and 35–55 °C. The maximum number of cycles was 103 cycles. The quasi-static tensile tests of jute fiber, PLA, and composite were conducted after thermal cycling tests. Thermal mechanical analyses of jute fiber and PLA were conducted after thermal cycling tests. Results led to the following conclusions. For temperatures of 35–45 °C, tensile strength of composite at 103 cycles decreased 10% compared to that of composite at 0 cycles. For temperatures of 35–55 °C, tensile strength and Young’s modulus of composite at 103 cycles decreased 15% and 10%, respectively, compared to that of composite at 0 cycles. Tensile properties and the coefficient of linear expansion of PLA and jute fiber remained almost unchanged after thermal cycling tests. From observation of a fracture surface, the length of fiber pull out in the fracture surface of composite at 103 cycles was longer than that of composite at 0 cycles. Therefore, tensile properties of the composite during thermal cycling were decreased, probably because of the decrease of interfacial adhesion between the fiber and resin.

  16. A new concept of maternity blues : Is there a subgroup of women with rapid cycling mood symptoms?

    NARCIS (Netherlands)

    Pop, V.J.M.; Truijens, S.E.M.; Spek, V.R.M.; Wijnen, H. A.; van Son, M.J.M.; Bergink, V.

    2015-01-01

    Background Rapid cycling mood symptoms during the first postpartum week are an important aspect of maternity blues. The aim of this study is to identify women with these rapid cycling mood symptoms in the general population and to investigate possible risk factors of these symptoms. Methods The

  17. A graphic approach to include dissipative-like effects in reversible thermal cycles

    Science.gov (United States)

    Gonzalez-Ayala, Julian; Arias-Hernandez, Luis Antonio; Angulo-Brown, Fernando

    2017-05-01

    Since the decade of 1980's, a connection between a family of maximum-work reversible thermal cycles and maximum-power finite-time endoreversible cycles has been established. The endoreversible cycles produce entropy at their couplings with the external heat baths. Thus, this kind of cycles can be optimized under criteria of merit that involve entropy production terms. Meanwhile the relation between the concept of work and power is quite direct, apparently, the finite-time objective functions involving entropy production have not reversible counterparts. In the present paper we show that it is also possible to establish a connection between irreversible cycle models and reversible ones by means of the concept of "geometric dissipation", which has to do with the equivalent role of a deficit of areas between some reversible cycles and the Carnot cycle and actual dissipative terms in a Curzon-Ahlborn engine.

  18. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder

    OpenAIRE

    Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrin...

  19. Simulation and parametric optimisation of thermal power plant cycles

    OpenAIRE

    Kumar, P. Ravindra; Raju, V. Ramachandra; Kumar, N. Ravi

    2016-01-01

    The objective of the paper is to analyse parametric studies and optimum steam extraction pressures of three different (subcritical, supercritical and ultra-supercritical) coal fired power plant cycles at a particular main steam temperature of 600 °C by keeping the reheat temperature at 537 °C and condenser pressure at 0.09 bar as constant. In order to maximize the heat rate gain possible with supercritical and ultra-supercritical steam conditions, eight stages of feed water heater arrangement...

  20. Influence of specimens' geometry and materials on the thermal stresses in dental restorative materials during thermal cycling.

    Science.gov (United States)

    Fabris, Douglas; Souza, Júlio C M; Silva, Filipe S; Fredel, Márcio; Gasik, Michael; Henriques, Bruno

    2018-02-01

    Thermal cycling is widely used to simulate the aging of restorative materials corresponding to the changes of temperature in the oral cavity. However, test parameters present in literature vary considerably, which prevents comparison between different reports. The aim of this work is to assess the influence of the specimens' geometry and materials on the thermal stresses developed during thermal cycling tests. Finite elements method was used to simulate the conditions of thermal cycling tests for three different sample geometries: a three-points bending test sample, a cylinder rod and more complex shape of a restoration crown. Two different restorative systems were considered: all-ceramic (zirconia coupled with porcelain) and metal-ceramic (CoCrMo alloy coupled with porcelain). The stress state of each sample was evaluated throughout the test cycle. The results show that the sample geometry has great influence on the stress state, with difference of up to 230% in the maximum stress between samples of the same composition. The location of maximum stress also changed from the interface between materials to the external wall. Maximum absolute stress values were found to vary between 2 and 4MPa, which might not be critical even for ceramics. During multi-cycle testing these stresses would cause different fatigue in various locations. The zirconia-based specimens and zirconia-based restoration (crown) exhibited the most similar stress states. Thus it might be recommended to use these geometries for fast screening of the materials for this type of restorations. The selection of specimens' geometry and materials should be carefully considered when aging conditions close to clinical ones want to be simulated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Rapid imaging of free radicals in vivo using field cycled PEDRI.

    Science.gov (United States)

    Puwanich, P; Lurie, D J; Foster, M A

    1999-12-01

    Imaging of free radicals in vivo using an interleaved field-cycled proton-electron double-resonance imaging (FC-PEDRI) pulse sequence has recently been investigated. In this work, in order to reduce the EPR (electron paramagnetic resonance) irradiation power required and the imaging time, a centric reordered snapshot FC-PEDRI pulse sequence has been implemented. This is based on the FLASH pulse sequence with a very short repetition time and the use of centric reordering of the phase-encoding gradient, allowing the most significant free induction decay (FID) signals to be collected before the signal enhancement decays significantly. A new technique of signal phaseshift correction was required to eliminate ghost artefacts caused by the instability of the main magnetic field after field cycling. An FID amplitude correction scheme has also been implemented to reduce edge enhancement artefacts caused by the rapid change of magnetization population before reaching the steady state. Using the rapid pulse sequence, the time required for acquisition of a 64 x 64 pixel FC-PEDRI image was reduced to 6 s per image compared with about 2.5 min with the conventional pulse sequence. The EPR irradiation power applied to the sample was reduced by a factor of approximately 64. Although the resulting images obtained by the rapid pulse sequence have a lower signal to noise than those obtained by a normal interleaved FC-PEDRI pulse sequence, the results show that rapid imaging of free radicals in vivo using snapshot FC-PEDRI is possible.

  2. Deep greedy learning under thermal variability in full diurnal cycles

    Science.gov (United States)

    Rauss, Patrick; Rosario, Dalton

    2017-08-01

    We study the generalization and scalability behavior of a deep belief network (DBN) applied to a challenging long-wave infrared hyperspectral dataset, consisting of radiance from several manmade and natural materials within a fixed site located 500 m from an observation tower. The collections cover multiple full diurnal cycles and include different atmospheric conditions. Using complementary priors, a DBN uses a greedy algorithm that can learn deep, directed belief networks one layer at a time and has two layers form to provide undirected associative memory. The greedy algorithm initializes a slower learning procedure, which fine-tunes the weights, using a contrastive version of the wake-sleep algorithm. After fine-tuning, a network with three hidden layers forms a very good generative model of the joint distribution of spectral data and their labels, despite significant data variability between and within classes due to environmental and temperature variation occurring within and between full diurnal cycles. We argue, however, that more questions than answers are raised regarding the generalization capacity of these deep nets through experiments aimed at investigating their training and augmented learning behavior.

  3. Test bench for thermal cycling of 10 kV silicon carbide power modules

    DEFF Research Database (Denmark)

    Sønderskov, Simon Dyhr; Jørgensen, Asger Bjørn; Maarbjerg, Anders Eggert

    2016-01-01

    This paper presents a test bench for lifetime investigation of 10 kV silicon carbide power modules. The test bench subjects high voltage switching operation to the modules while power cycling. Thus both a thermal and electrical operating point is emulated. The power cycling setup features offline...... made to validate the performance of the on-state voltage measurement and the thermal model. Issues are revealed in the form of common mode currents in gate drive supply, which should be remedied. Finally a new operating point for power cycling is suggested to better stress the power modules....... measurement of on-state voltages and direct real-time measurement of die surface temperatures, enabled by fiber optical sensors, which are built into the power modules. A thermal model of the module prototypes, based on the temperature measurements, is established. Independent verification steps have been...

  4. Furnace for rapid thermal processing with optical switching film disposed between heater and reflector

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2000-01-01

    A furnace (1) for Rapid Thermal Processing of a wafer (7), characterized in that the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the

  5. Synthesis of B–Sb by rapid thermal annealing of B/Sb multilayer films

    Indian Academy of Sciences (India)

    layer with predetermined thickness of boron and antimony and subsequently subjecting the multilayer to rapid thermal annealing. The films were characterized by measuring microstructural, optical and compositional properties. 2. Experimental. Multilayer films of B and Sb were deposited onto Si and fused silica substrates ...

  6. A thermal model for the seasonal nitrogen cycle on Triton

    Science.gov (United States)

    Hansen, Candice J.; Paige, David A.

    1992-01-01

    The seasonal N2-cycle model presently used to characterize such observed phenomena on Triton as atmospheric pressure and surface albedo features at the time of the Voyager encounter incorporates diurnal and seasonal subsurface heat conduction, and can account for the heat capacity of N2 frost deposits. The results obtained by this model differ from those of previous studies in that they do not predict the seasonal freezing-out of the Triton atmosphere; even for a wide range of input parameters, the bright southern polar cap is seen as rather unlikely to be N2. The results support the microphysical arguments for the presence of either dark or smooth translucent N2 frosts on the Triton surface.

  7. Thermal cycling and electrochemical characteristics of solid oxide fuel cell supported on stainless steel with a new 3-phase composite anode

    Science.gov (United States)

    Dayaghi, Amir Masoud; Kim, Kun Joong; Kim, Sun Jae; Kim, Sunwoong; Bae, Hongyeul; Choi, Gyeong Man

    2017-06-01

    We report design, fabrication method, and fast thermal-cycling ability of solid oxide fuel cells (SOFCs) that use stainless steel (STS) as a support, and a new 3-phase anode. La and Ni co-doped SrTiO3 (La0.2Sr0.8Ti0.9Ni0.1O3-d, LSTN), replaces some of the Ni in conventional Ni-yttria stabilized zirconia (YSZ) anode; the resultant LSTN-YSZ-Ni 3-phase-composite anode is tested as a new reduction (or decomposition)-resistant anode of STS-supported SOFCs that can be co-fired with STS. A multi-layered cell with YSZ electrolyte (thickness ∼5 μm), composite anode, STS-cermet contact-layer, and STS support is designed, then fabricated by tape casting, lamination, and co-firing at 1250 °C in reducing atmosphere. The maximum power density (MPD) is 325 mW cm-2 at 650 °C; this is one of the highest among STS-supported cells fabricated by co-firing. The cell also shows stable open-circuit voltage and Ohmic resistance during 100 rapid thermal cycles between 170 and 600 °C. STS support minimizes stress and avoids cracking of electrolyte during rapid thermal cycling. The excellent MPD and stability during thermal cycles, and promising characteristics of SOFC as a power source for vehicle or mobile devices that requires rapid thermal cycles, are attributed to the new design of the cell with new anode structure.

  8. Hydrological and associated biogeochemical consequences of rapid global warming during the Paleocene-Eocene Thermal Maximum

    Science.gov (United States)

    Carmichael, Matthew J.; Inglis, Gordon N.; Badger, Marcus P. S.; Naafs, B. David A.; Behrooz, Leila; Remmelzwaal, Serginio; Monteiro, Fanny M.; Rohrssen, Megan; Farnsworth, Alexander; Buss, Heather L.; Dickson, Alexander J.; Valdes, Paul J.; Lunt, Daniel J.; Pancost, Richard D.

    2017-10-01

    The Paleocene-Eocene Thermal Maximum (PETM) hyperthermal, 56 million years ago (Ma), is the most dramatic example of abrupt Cenozoic global warming. During the PETM surface temperatures increased between 5 and 9 °C and the onset likely took < 20 kyr. The PETM provides a case study of the impacts of rapid global warming on the Earth system, including both hydrological and associated biogeochemical feedbacks, and proxy data from the PETM can provide constraints on changes in warm climate hydrology simulated by general circulation models (GCMs). In this paper, we provide a critical review of biological and geochemical signatures interpreted as direct or indirect indicators of hydrological change at the PETM, explore the importance of adopting multi-proxy approaches, and present a preliminary model-data comparison. Hydrological records complement those of temperature and indicate that the climatic response at the PETM was complex, with significant regional and temporal variability. This is further illustrated by the biogeochemical consequences of inferred changes in hydrology and, in fact, changes in precipitation and the biogeochemical consequences are often conflated in geochemical signatures. There is also strong evidence in many regions for changes in the episodic and/or intra-annual distribution of precipitation that has not widely been considered when comparing proxy data to GCM output. Crucially, GCM simulations indicate that the response of the hydrological cycle to the PETM was heterogeneous - some regions are associated with increased precipitation - evaporation (P - E), whilst others are characterised by a decrease. Interestingly, the majority of proxy data come from the regions where GCMs predict an increase in PETM precipitation. We propose that comparison of hydrological proxies to GCM output can be an important test of model skill, but this will be enhanced by further data from regions of model-simulated aridity and simulation of extreme precipitation

  9. Effects of Radiation and Long-Term Thermal Cycling on EPC 1001 Gallium Nitride Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Data obtained on long-term thermal cycling of new un-irradiated and irradiated samples of EPC1001 gallium nitride enhancement-mode transistors are presented. This work was done by a collaborative effort including GRC, GSFC, and support the NASA www.nasa.gov 1 JPL in of Electronic Parts and Packaging (NEPP) Program

  10. A study on the fracture mechanism of smart composite under thermal shock cycles using AE technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.K.; Lee, S.P. [School of Mechanical Engineering, Dongeui Univ., Busan (Korea); Park, Y.C. [School of Mechanical Engineering, Donga Univ., Busan (Korea)

    2005-07-01

    A smart material is used as spectacle frames and brassiere frames, and partly in medical supplies because of its shape memory effect. The smart composite can be used on the wing of an airplane instead of the existing aluminium to control crack propagation. In this study, the smart composite was fabricated by a hot press method. TiNi alloy as reinforcement and Al6061 as matrix were used, respectively. The mechanical properties of the smart composite under thermal shock cycles were evaluated. In addition, acoustic emission techniques were also used to clarify the damage behavior of the smart composite under thermal shock cycles nondestructively. (orig.)

  11. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2014-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  12. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  13. Thermal cycling and strain behaviour of AA6061-20% SiC(w) composite

    Energy Technology Data Exchange (ETDEWEB)

    Bonollo, F.; Ceschini, L.; Garagnani, G.L.; Persiani, F.; Zambon, A. (Padua Univ. (Italy). Dip. di Innovazione Meccanica e Gestionale Bologna Univ. (Italy). Ist. di Metallurgia Bologna Univ. (Italy). Dip. di Ingegneria delle Costruzioni Meccaniche, Nucleari, Aeronautiche e di Metallurgia)

    1992-12-01

    This paper describes a study on the effect of thermal cycling on the microstructure and mechanical properties of the fiber reinforced aluminium alloy composite, AA6061 - 20% SiC(w), tested between 100 and 450 degrees C under constant stress (0 to 30 MPa). The test specimens were obtained from extruded bars produced by powder metallurgy. Two specimen orientations were chosen and investigated - longitudinal and transverse. Thermal cycling, carried out by means of suitably designed and assembled test equipment, was aimed at the evaluation of elongation versus extrusion direction, and hardness variation (HR 330N) versus the number of cycles. The microstructural changes in the composite were analyzed by employing light microscopy, scanning electron microscopy, image analysis and transmission electron microscopy. It was observed that: thermal cycling under stress induced very high tensile elongations; significant deformations were also achieved without external loading; there was a correlation among the thermal cycling variables, specimen orientation and applied stress; a re-orientation process occurred along the applied stress direction.

  14. Effect of Thermal Cycling on the Tensile Behavior of Polymer Composites Reinforced by Basalt and Carbon Fibers

    Science.gov (United States)

    Khalili, S. Mohammad Reza; Najafi, Moslem; Eslami-Farsani, Reza

    2017-01-01

    The aim of the present work was to investigate the effect of thermal cycling on the tensile behavior of three types of polymer-matrix composites — a phenolic resin reinforced with woven basalt fibers, woven carbon fibers, and hybrid basalt and carbon fibers — in an ambient environment. For this purpose, tensile tests were performed on specimens previously subjected to a certain number of thermal cycles. The ultimate tensile strength of the specimen reinforced with woven basalt fibers had by 5% after thermal cycling, but the strength of the specimen with woven carbon fibers had reduced to a value by 11% higher than that before thermal cycling.

  15. Effects of mechanical and thermal cycling on composite and hybrid laminates with residual stresses

    Science.gov (United States)

    Daniel, I. M.; Liber, T.

    1977-01-01

    The effects of tensile load cycling and thermal cycling on residual stiffness and strength properties of the following composite and hybrid angle-ply laminates were studied: boron/epoxy, boron/polyimide, graphite/low-modulus epoxy, graphite/high-modulus epoxy, graphite/polyimide, S-glass/epoxy, graphite/Kevlar 49/epoxy, and graphite/S-glass/epoxy. Specimens of the first six types were mechanically cycled up to 90% of static strength. Those that survived 10 million cycles were tested statically to failure, and no significant changes in residual strength and modulus were noted. Specimens of all types were subjected to thermal cycling between room temperature and 411 K for the epoxy-matrix composites and 533 K for the polyimide-matrix composites. The residual strength and stiffness remained largely unchanged, except for the graphite/low-modulus epoxy, which showed reductions in both of approximately 35%. When low-temperature thermal cycling under tensile load was applied, there was a noticeable reduction in modulus and strength in the graphite/low-modulus epoxy and some strength reduction in the S-glass/epoxy.

  16. Relationship between social rhythms and mood in patients with rapid cycling bipolar disorder.

    Science.gov (United States)

    Ashman, S B; Monk, T H; Kupfer, D J; Clark, C H; Myers, F S; Frank, E; Leibenluft

    1999-04-19

    Disruptions in the sleep-wake cycle frequently characterize affective illness and have led to a number of theories linking sleep-wake and/or circadian rhythm disturbance to affective illness. Recently, researchers have expanded these chronobiological theories to include the role of lifestyle regularity, or daily social rhythms. In this study, the Social Rhythm Metric (SRM) was used to explore the relationship between social rhythms and mood in patients with rapid cycling bipolar disorder and to compare the social rhythms of patients with those of healthy control subjects. Patients' SRM scores and activity level indices were significantly lower than those of control subjects. In addition, the timing of five, mostly morning, activities was phase delayed in patients compared to control subjects. Patients also demonstrated a phase delay in the timing of morning activities during depression compared to hypomania or euthymia. The phase changes in the timing of morning activities are consistent with other data implicating morning zeitgebers in the pathophysiology of rapid cycling bipolar disorder.

  17. Characterization of a rapid thermal anneal TiNxOy/TiSi2 contact barrier

    Science.gov (United States)

    Ho, V. Q.

    1989-07-01

    In this paper, the physical and electrical properties of a TiNxOy/TiSi2 dual layer contact barrier are reported. The TiNxOy/TiSi2 barrier was formed by rapidly annealing a Ti thin film on Si in an N2 ambient. During this process, the Ti film surface reacts with N2 to form a TiNxOy skin layer and the bulk of the Ti film reacts with Si to form an underlying TiSi2 layer. The influences of rapid thermal anneal (RTA) conditions on the TiNxOy layer were investigated by varying the RTA temperature from 600 to 1100° C and cycle duration from 30 to 100 s. It is found that the resulting TiNxOy and TiSi2 layer thicknesses are dependent on RTA temperature and the starting Ti thickness. For a starting Ti thickness of 500Å, 150Å thick TiNxOy and 800Å thick TiSi2 are obtained after an RTA at 900° C for 30 s. The TiNxOy thickness is limited by a fast diffusion of Si into Ti to form TiSi2. When a Ti film is deposited on SiO2, Ti starts to react with SiO2 from 600° C and a significant reduction of the SiO2 thickness is observed after an RTA at 900° C. The resulting layer is composed of a surface TiNxOy layer followed by a complex layer of titanium oxide and titanium suicide. In addition, when Ti is depos-ited on TiSi2, thicker TiNxOy and TiSi2 layers are obtained after RTA. This is because the TiSi2 layer retards the diffusion of Si from the underlying substrate into the Ti layer. NMOSFETs were fabricated using the TiNxOy/TiSi2 as a contact barrier formed by RTA at 900° C for 30 s and a significant reduction of contact resistance was obtained. In addition, electromigration test at a high current density indicated that a significant improvement in mean time to failure (MTF) has been obtained with the barrier.

  18. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  19. A feasible thermal-cycle screening system for cryogenic semiconductor components

    Science.gov (United States)

    Wu, Ligang; Liu, Dafu; Huang, Yimin; Zhu, Sangen; Gong, Haimei

    2005-01-01

    For the limit of its lifetime, the Stirling cooler is operated on the intermittent mode in satellite in some cases. Thus such cryogenic semiconductor components as HgCdTe mid or long wavelength infrared (IR) detectors are subjected to thousands of repeated thermal cycles from below -173°C to room temperature. Therefore, a series of experiments focused on quality, performance and reliability are essential in order to satisfy the reasonable requirements. Accordingly, a feasible thermal cycle screening system is put forward. And a vast experimental data show that thermal cycle tests play the most effective role in the environment stress screen (ESS). In this paper, we introduce the system to help to study the main failure mechanisms and improve the performance of the semiconductor components. Such main failure mechanisms as solder-ball invalidation encountered commonly in the detector modules, which is due to the large thermal expansion coefficient mismatch among different materials. The thermal cycle system is based on the principle of heat exchange. We expect HgCdTe IR detectors be cooled to lower than -173°C and heated to room temperature in a few minutes. Above all, we simulate the heating and cooling system through finite element method (FEM). As a result, the computations reveal that the IR detectors can be heated and cooled at a higher rate than expected. A consequent design of the entire system is founded on the simulation. At last, we adjust the mechanical structure of heat exchange system to the adaptive state to accomplish the ESS. The thermal cycle screening system includes an autocontrol part and a test part. The autocontrol part is adopted to realize the heat exchange between IR detectors and the environment, and the test one to inspect the temperature and electrical parameters of these detectors. And at least four IR detector samples can be screened at one time.

  20. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD

    Science.gov (United States)

    Yang, Jiasheng; Zhao, Huayu; Zhong, Xinghua; Shao, Fang; Liu, Chenguang; Zhuang, Yin; Ni, Jinxing; Tao, Shunyan

    2017-01-01

    Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of 1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.

  1. Oscillatory Zoning of La- and Y- doped Titanite During Thermal Cycling Experiments

    Science.gov (United States)

    Wickland, T. D.; Glazner, A. F.

    2016-12-01

    Titanite is an important accessory mineral in silicic igneous rocks because it can hold a large proportion of the rare earth element (REE) budget compared to its modal abundance. It typically exhibits strong oscillatory zoning, suggesting variable thermal conditions or open-system addition during crystallization. We performed a set of thermal cycling experiments on La- and Y- (proxy for MREE) doped titanite in a basaltic melt and observed oscillatory zoned rims forming on preexisting, low-REE titanite seeds. Thermal cycling promotes crystal coarsening through precipitation-dissolution processes which may contribute to phenocrystic textures commonly seen in igneous rocks. Using a 1-atmosphere gas-mixing furnace, experiments were cycled ±10°C from 1220°C with a 96-minute period for 1-60 cycles. In these experiments, the number of oscillatory zones in titanite rims equaled the number of thermal cycles. Rims are typically 4-5 mm in wavelength and are euhedral compared to the core anhedral seeds. Oscillatory zones exist within sectored zones of titanite and consist of a bright and dark section determined by backscattered electron images. REE crystal/glass partition coefficients (D-values) determined by FE-microprobe reached 3 in the titanite rims and varied by 0.4 wt% across zones. D-values for Y are 2 orders of magnitude lower in experimentally grown titanite than in natural igneous titanite from silica-rich glass. Titanite incorporates large amounts (103-104 times chondrite) of REE by the coupled substitutions of Ca2+ + Ti4+ = (REE, Y)3+ + (Fe, Al) 3+. D-values negatively correlate with temperature and positively correlate with SiO2 glass content. Thus, high run temperatures and silica-poor glass ( 40 wt%) likely diminish experimental D-values. Although thermal cycling does not appear to increase REE uptake in the titanite-basalt system, it does correlate to the oscillatory zoning patterns common in igneous titanite.

  2. The Rapid Transit System That Achieves Higher Performance with Lower Life-Cycle Costs

    Science.gov (United States)

    Sone, Satoru; Takagi, Ryo

    In the age of traction system made of inverter and ac traction motors, distributed traction system with pure electric brake of regenerative mode has been recognised very advantageous. This paper proposes a new system as the lowest life-cycle cost system for high performance rapid transit, a new architecture and optimum parameters of power feeding system, and a new running method of trains. In Japan, these components of this proposal, i.e. pure electric brake and various countermeasures of reducing loss of regeneration have been already popular but not as yet the new running method for better utilisation of the equipment and for lower life-cycle cost. One example of what are proposed in this paper will be made as Tsukuba Express, which is under construction as the most modern commuter railway in Greater Tokyo area.

  3. Monitoring chemical degradation of thermally cycled glass-fibre composites using hyperspectral imaging

    Science.gov (United States)

    Papadakis, V. M.; Müller, B.; Hagenbeek, M.; Sinke, J.; Groves, R. M.

    2016-04-01

    Nowadays, the application of glass-fibre composites in light-weight structures is growing. Although mechanical characterizations of those structures are commonly performed in testing, chemical changes of materials under stresses have not yet been well documented. In the present work coupon tests and Hyperspectral Imaging (HSI) have been used to categorise possible chemical changes of glass-fibre reinforced polymers (GFRP) which are currently used in the aircraft industry. HSI is a hybrid technique that combines spectroscopy with imaging. It is able to detect chemical degradation of surfaces and has already been successfully applied in a wide range of fields including astronomy, remote sensing, cultural heritage and medical sciences. GFRP specimens were exposed to two different thermal loading conditions. One thermal loading condition was a continuous thermal exposure at 120°C for 24h, 48 h and 96h, i.e. ageing at a constant temperature. The other thermal loading condition was thermal cycling with three different numbers of cycles (4000, 8000, 12000) and two temperature ranges (0°C to 120°C and -25°C to 95°C). The effects of both conditions were measured using both HSI and interlaminar shear (ILSS) tests. No significant changes of the physical properties of the thermally cycled GFRP specimens were detected using interlaminar shear strength tests and optical microscopy. However, when using HIS, differences of the surface conditions were detected. The results showed that the different thermal loading conditions could be successfully clustered in different colours, using the HSI linear unmixing technique. Each different thermal loading condition showed a different chemical degradation level on its surface which was indicated using different colours.

  4. Study of a Rapid Cycling Synchrotron to replace the CERN PS Booster

    CERN Document Server

    Hanke, K; Angoletta, M E; Balhan, B; Bartmann, W; Benedikt, M; Borburgh, J; Bozzini, D; Carli, C; Dahlen, P; Dobers, T; Fitterer, M; Garoby, R; Gilardoni, S; Goddard, B; Hansen, J; Hermanns, T; Lopez-Hernandez, L A; Hourican, M; Jensen, S; Kosmicki, A; Meddahi, M; Mikulec, B; Newborough, A; Nonis, M; Olek, S; Paoluzzi, M; Pittet, S; Puccio, B; Raginel, V; Ruehl, I; Schönauer, H; Sermeus, L; Steerenberg, R; Tan, J; Tückmantel, J; Vretenar, M; Widorski, M

    2011-01-01

    CERN’s proton injector chain is undergoing a massive consolidation and upgrade program in order to deliver beams meeting the needs of the LHC Luminosity Upgrade. As an alternative to the upgrade of the existing Proton Synchrotron Booster (PSB), the construction of a Rapid Cycling Synchrotron (RCS) has been studied. This machine would replace the PSB and deliver beams to the LHC as well as to CERN’s rich fixed-target physics program. This paper summarizes the outcome of the feasibility study along with a tentative RCS design.

  5. Synergistic effects of ultraviolet radiation, thermal cycling and atomic oxygen on altered and coated Kapton surfaces

    Science.gov (United States)

    Dever, Joyce A.; Bruckner, Eric J.; Rodriguez, Elvin

    1992-01-01

    The photovoltaic (PV) power system for Space Station Freedom (SSF) uses solar array blankets which provide structural support for the solar cells and house the electrical interconnections. In the low earth orbital (LEO) environment where SSF will be located, surfaces will be exposed to potentially damaging environmental conditions including solar ultraviolet (UV) radiation, thermal cycling, and atomic oxygen. It is necessary to use ground based tests to determine how these environmental conditions would affect the mass loss and optical properties of candidate SSF blanket materials. Silicone containing, silicone coated, and SiO(x) coated polyimide film materials were exposed to simulated LEO environmental conditions to determine their durability and whether the environmental conditions of UV, thermal cycling and oxygen atoms act synergistically on these materials. A candidate PV blanket material called AOR Kapton, a polysiloxane polyimide cast from a solution mixture, shows an improvement in durability to oxygen atoms erosion after exposure to UV radiation or thermal cycling combined with UV radiation. This may indicate that the environmental conditions react synergistically with this material, and the damage predicted by exposure to atomic oxygen alone is more severe than that which would occur in LEO where atomic oxygen, thermal cycling and UV radiation are present together.

  6. Reducing dislocations in semiconductors utilizing repeated thermal cycling during multistage epitaxial growth

    Science.gov (United States)

    Fan, John C. C.; Tsaur, Bor-Yeu; Gale, Ronald P.; Davis, Frances M.

    1986-12-30

    Dislocation densities are reduced in growing semiconductors from the vapor phase by employing a technique of interrupting growth, cooling the layer so far deposited, and then repeating the process until a high quality active top layer is achieved. The method of interrupted growth, coupled with thermal cycling, permits dislocations to be trapped in the initial stages of epitaxial growth.

  7. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne

  8. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 160A

    Energy Technology Data Exchange (ETDEWEB)

    Walker, B. J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, D. T. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-06-06

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 160A which were measured by the Radiation Measurements Laboratory (RML).

  9. Transport properties of MnTe films with cracks produced in thermal cycling process

    Science.gov (United States)

    Yang, Liang; Wang, Zhenhua; Zhang, Zhidong

    2017-10-01

    As a promising material in antiferromagnetic spintronics, MnTe films manifested complex characteristics according to previous reports. In this work, we investigate in details the temperature dependence of resistivity of MnTe films grown on SiO2/Si substrate and focus on the divaricating of cooling and warming resistivity-temperature (R-T) curves. It is found that such a divaricating in resistivity is associated with cracks produced in thermal cycles. By comparing the crystalline character and the morphology before and after the cycles, we verify the appearance of cracks and the release of stress in the films. Based on the temperature dependence of thermal-expansion coefficient of Si and MnTe, the origin of the cracks is the mismatched thermal-expansion coefficient ( α). The humps, which only appear in the R-T curve of the first cooling process, are attributed to the produced cracks and/or the unreleased stress.

  10. Transport properties of MnTe films with cracks produced in thermal cycling process

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liang; Wang, Zhenhua; Zhang, Zhidong [Institute of Metal Research, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shenyang National Laboratory for Materials Science, Shenyang (China)

    2017-10-15

    As a promising material in antiferromagnetic spintronics, MnTe films manifested complex characteristics according to previous reports. In this work, we investigate in details the temperature dependence of resistivity of MnTe films grown on SiO{sub 2}/Si substrate and focus on the divaricating of cooling and warming resistivity-temperature (R-T) curves. It is found that such a divaricating in resistivity is associated with cracks produced in thermal cycles. By comparing the crystalline character and the morphology before and after the cycles, we verify the appearance of cracks and the release of stress in the films. Based on the temperature dependence of thermal-expansion coefficient of Si and MnTe, the origin of the cracks is the mismatched thermal-expansion coefficient (α). The humps, which only appear in the R-T curve of the first cooling process, are attributed to the produced cracks and/or the unreleased stress. (orig.)

  11. Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yoggwang 3,4 Units

    Energy Technology Data Exchange (ETDEWEB)

    Hong, S.Y.; Choi, K.H.; Jee, M.H.; Chung, S.I. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    The objective of the study ''Development of Thermal Performance Analysis Computer Program on Turbine Cycle of Yonggwang 3,4 Units'' is to utilize computerized program to the performance test of the turbine cycle or the analysis of the operational status of the thermal plants. In addition, the result can be applicable to the analysis of the thermal output at the abnormal status and be a powerful tool to find out the main problems for such cases. As a results, the output of this study can supply the way to confirm the technical capability to operate the plants efficiently and to obtain the economic gains remarkably. (author). 27 refs., 73 figs., 6 tabs.

  12. Finite Element Modeling of Thermal Cycling Induced Microcracking in Carbon/Epoxy Triaxial Braided Composites

    Science.gov (United States)

    Zhang, Chao; Binienda, Wieslaw K.; Morscher, Gregory; Martin, Richard E.

    2012-01-01

    The microcrack distribution and mass change in PR520/T700s and 3502/T700s carbon/epoxy braided composites exposed to thermal cycling was evaluated experimentally. Acoustic emission was utilized to record the crack initiation and propagation under cyclic thermal loading between -55 C and 120 C. Transverse microcrack morphology was investigated using X-ray Computed Tomography. Different performance of two kinds of composites was discovered and analyzed. Based on the observations of microcrack formation, a meso-mechanical finite element model was developed to obtain the resultant mechanical properties. The simulation results exhibited a decrease in strength and stiffness with increasing crack density. Strength and stiffness reduction versus crack densities in different orientations were compared. The changes of global mechanical behavior in both axial and transverse loading conditions were studied. Keywords: Thermal cycles; Microcrack; Finite Element Model; Braided Composite

  13. Multi-parameter fibre Bragg grating sensor-array for thermal vacuum cycling test

    Science.gov (United States)

    Cheng, L.; Ahlers, B.; Toet, P.; Casarosa, G.; Appolloni, M.

    2017-11-01

    strain transducer to generate strain via a dedicated feed through in the chamber. Thermocouples are used to log the temperature for comparison to the temperature FBG sensor. Extreme temperature ranges from -150°C and +70°C at a pressure down to 10-4 Pa (10-6 mbar) are covered as well as testing under ambient conditions. In total five thermal cycles during a week test are performed. The FBG temperature sensor test results performed in the ESA/ESTEC TV chamber reveal high reproducibility (within 1 °C) within the test temperature range without any evidence of hysteresis. Differences are detected to the previous calibration curve. Investigation is performed to find the cause of the discrepancy. Differences between the test set-ups are identified. Equipment of the TNO test is checked and excluded to be the cause. Additional experiments are performed. The discrepancy is most likely caused by a 'thermal shock' due to rapid cooling down to LN2 temperature, which results in a wavelength shift. Test data of the FBG strain sensor is analysed. The read-out of the FBG strain sensor varies with the temperature during the test. This can be caused by temperature induced changes in the mechanical setup (fastening of the mechanical parts) or impact of temperature to the mechanical strain transfer to the FBG. Improvements are identified and recommendations given for future activities.

  14. Solar panel thermal cycling testing by solar simulation and infrared radiation methods

    Science.gov (United States)

    Nuss, H. E.

    1980-01-01

    For the solar panels of the European Space Agency (ESA) satellites OTS/MAROTS and ECS/MARECS the thermal cycling tests were performed by using solar simulation methods. The performance data of two different solar simulators used and the thermal test results are described. The solar simulation thermal cycling tests for the ECS/MARECS solar panels were carried out with the aid of a rotatable multipanel test rig by which simultaneous testing of three solar panels was possible. As an alternative thermal test method, the capability of an infrared radiation method was studied and infrared simulation tests for the ultralight panel and the INTELSAT 5 solar panels were performed. The setup and the characteristics of the infrared radiation unit using a quartz lamp array of approx. 15 sq and LN2-cooled shutter and the thermal test results are presented. The irradiation uniformity, the solar panel temperature distribution, temperature changing rates for both test methods are compared. Results indicate the infrared simulation is an effective solar panel thermal testing method.

  15. A new concept of maternity blues: Is there a subgroup of women with rapid cycling mood symptoms?

    Science.gov (United States)

    Pop, Victor J M; Truijens, Sophie E M; Spek, Viola; Wijnen, Hennie A; van Son, Maarten J M; Bergink, Veerle

    2015-05-15

    Rapid cycling mood symptoms during the first postpartum week are an important aspect of maternity blues. The aim of this study is to identify women with these rapid cycling mood symptoms in the general population and to investigate possible risk factors of these symptoms. The Maternity Blues Scale (MBS) was validated in The Netherlands in 949 women at one week postpartum. Personal and family history of mood disorders and obstetric demographics were collected and the Edinburgh Postnatal Depression Scale (EPDS) was completed. A 16-item three-factor MBS solution was found: depression, negative and positive affect. The latter two were used to define a rapid cycling mood symptoms group. Using the 75th percentile cut-off, 20 (2%) women reported high negative/high positive affect (rapid cycling mood group) and 65 (7%) women were depressed (EPDS≥11). A previous episode of depression, major life events and instrumental delivery were independently related to depression (OR 3.5, 2.5 and 2.3, respectively) while only a history of depression in first-degree relatives was independently related to rapid cycling mood (OR 3.4, 95% CI 1.2-9.8). Limitations First, no syndromal diagnoses were obtained for depression and rapid cycling mood disorder. Second, history of depression was self-reported (not based on structural psychiatric interviews). Third, our study was not designed to study the longitudinal follow-up of women with rapid cycling mood symptoms. Conclusion the 16-item MBS could be useful in screening programs in detecting postpartum women at risk for (severe) mood disorders. Postpartum women with 'rapid cycling mood symptoms' can be identified with a possible more familiar form of mood disorder. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Rapid imaging of free radicals in vivo using hybrid FISP field-cycled PEDRI

    Science.gov (United States)

    Youngdee, Wiwat; Lurie, David J.; Foster, Margaret A.

    2002-04-01

    A new pulse sequence for rapid imaging of free radicals is presented which combines snapshot imaging methods and conventional field-cycled proton electron double resonance imaging (FC-PEDRI). The new sequence allows the number of EPR irradiation periods to be optimized to obtain an acceptable SNR and spatial resolution of free radical distribution in the final image while reducing the RF power deposition and increasing the temporal resolution. Centric reordered phase encoding has been employed to counter the problem of rapid decay of the Overhauser-enhanced signal. A phase-correction scheme has also been used to correct problems arising from instability of the magnetic field following field-cycling. In vivo experiments were carried out using triaryl methyl free radical contrast agent, injected at a dose of 0.214 mmol kg-1 body weight in anaesthetized adult male Sprague-Dawley rats. Transaxial images through the abdomen were collected using 1, 2, 4 and 8 EPR irradiation periods. Using 4 EPR irradiation periods it was possible to generate free radical distributions of acceptable SNR and resolution. The EPR power deposition is reduced by a factor of 16 and the acquisition time is reduced by a factor of 4 compared to an acquisition using the conventional FC-PEDRI pulse sequence.

  17. Effect of thermal cycling on martensitic transformation and mechanical strengthening of stainless steels – A phase-field study

    DEFF Research Database (Denmark)

    Yeddu, Hemantha Kumar; Shaw, Brian A.; Somers, Marcel A. J.

    2017-01-01

    A 3D elastoplastic phase-field model is used to study the effect of thermal cycling on martensitic transformationas well as on mechanical strengthening of both austenite and martensite in stainless steel. The results show that with an increasing number of thermal cycles, martensite becomes more...

  18. Modification of microstructure and micromagnetic properties in Gd-Fe thin films by rapid thermal processing

    OpenAIRE

    Talapatraa, A.; Chelvane, J. Arout; Satpati, B.; Kumar, S.; Mohanty, J.

    2017-01-01

    Impact of rapid thermal processing (RTP) on microstructure and magnetic properties of Gd-Fe thin films have been investigated with a special emphasis to magnetic microstructure. 100 nm thick amorphous Gd-Fe film shows elongated stripe domains with characteristic feature size of 122 nm, which signifies the development of perpendicular magnetic anisotropy (PMA) in this system. RTP at 550^oC for different time intervals viz. 5, 10, 15, 20 minutes induces the crystallization of Fe over the amorph...

  19. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    OpenAIRE

    Tang, Jianshi; Wang, Chiu-Yen; Xiu, Faxian; Zhou, Yi; Chen, Lih-Juann; Wang, Kang L.

    2011-01-01

    We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studie...

  20. Evolution of nano-structures of silver due to rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Shyamal, E-mail: shyamal.mondal@saha.ac.in; Bhattacharyya, S. R., E-mail: shyamal.mondal@saha.ac.in [Saha Institute of Nuclear Physics, 1/AF Bidhan Nagar, Kolkata-700064 (India)

    2014-04-24

    This report deals with rapid thermal annealing (RTA) effect on continuous silver film on Si(100) substrate. For this purpose silver films of different thicknesses were deposited and subsequently annealed at 500 and 800 °C. The as-deposited and annealed samples were investigated by scanning electron microscope (SEM). Formations of different nano-structures have been observed. Fragmentation of formed nanoislands also observed at temperature below melting temperature.

  1. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Popoolaa, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Oluwasegun, K.M. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Olorunniwo, O.E., E-mail: segun_nniwo@yahoo.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Atanda, P.O. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Aigbodion, V.S. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2016-05-05

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  2. Thermal enhancement of charge and discharge cycles for adsorbed natural gas storage

    KAUST Repository

    Rahman, Kazi Afzalur

    2011-07-01

    The usage of adsorbed natural gas (ANG) storage is hindered by the thermal management during the adsorption and desorption processes. An effective thermal enhancement is thus essential for the development of the ANG technology and the motivation for this study is the investigation of a gas storage system with internal thermal control. We employed a fin-tube type heat exchanger that is placed in a pressurized cylinder. A distributed-parameter model is used for the theoretical modeling and simulations are conducted at assorted charging and discharging conditions. These studies included the transient thermal behaviours of the elements within the ANG-charged cylinder and parameters such as pressure and temperature profiles of adsorbent have been obtained during charge and discharge cycles, and results are compared with a conventional compressed methane vessel. © 2011 Elsevier Ltd. All rights reserved.

  3. Thermal Stability of Hexamethyldisiloxane (MM for High-Temperature Organic Rankine Cycle (ORC

    Directory of Open Access Journals (Sweden)

    Markus Preißinger

    2016-03-01

    Full Text Available The design of efficient Organic Rankine Cycle (ORC units for the usage of industrial waste heat at high temperatures requires direct contact evaporators without intermediate thermal oil circuits. Therefore, the thermal stability of high-temperature working fluids gains importance. In this study, the thermal degradation of hexamethyldisiloxane (MM is investigated in an electrically heated tube. Qualitative results concerning remarks on degradation products as well as quantitative results like the annual degradation rate are presented. It is shown that MM is stable up to a temperature of 300 °C with annual degradation rates of less than 3.5%. Furthermore, the break of a silicon–carbon bond can be a main chemical reaction that influences the thermal degradation. Finally, it is discussed how the results may impact the future design of ORC units.

  4. Thermal energy storage for low grade heat in the organic Rankine cycle

    Science.gov (United States)

    Soda, Michael John

    Limits of efficiencies cause immense amounts of thermal energy in the form of waste heat to be vented to the atmosphere. Up to 60% of unrecovered waste heat is classified as low or ultra-low quality, making recovery difficult or inefficient. The organic Rankine cycle can be used to generate mechanical power and electricity from these low temperatures where other thermal cycles are impractical. A variety of organic working fluids are available to optimize the ORC for any target temperature range. San Diego State University has one such experimental ORC using R245fa, and has been experimenting with multiple expanders. One limitation of recovering waste heat is the sporadic or cyclical nature common to its production. This inconsistency makes sizing heat recovery ORC systems difficult for a variety of reasons including off-design-point efficiency loss, increased attrition from varying loads, unreliable outputs, and overall system costs. Thermal energy storage systems can address all of these issues by smoothing the thermal input to a constant and reliable level and providing back-up capacity for times when the thermal input is deactivated. Multiple types of thermal energy storage have been explored including sensible, latent, and thermochemical. Latent heat storage involves storing thermal energy in the reversible phase change of a phase change material, or PCM, and can have several advantages over other modalities including energy storage density, cost, simplicity, reliability, relatively constant temperature output, and temperature customizability. The largest obstacles to using latent heat storage include heat transfer rates, thermal cycling stability, and potentially corrosive PCMs. Targeting 86°C, the operating temperature of SDSU's experimental ORC, multiple potential materials were explored and tested as potential PCMs including Magnesium Chloride Hexahydrate (MgCl2˙6H2O), Magnesium Nitrate Hexahydrate (Mg(NO3)2˙6H 2O), montan wax, and carnauba wax. The

  5. Mining Available Data from the United States Environmental Protection Agency to Support Rapid Life Cycle Inventory Modeling of Chemical Manufacturing

    Science.gov (United States)

    Demands for quick and accurate life cycle assessments create a need for methods to rapidly generate reliable life cycle inventories (LCI). Data mining is a suitable tool for this purpose, especially given the large amount of available governmental data. These data are typically a...

  6. Failure Mechanisms of SAC/Fe-Ni Solder Joints During Thermal Cycling

    Science.gov (United States)

    Gao, Li-Yin; Liu, Zhi-Quan; Li, Cai-Fu

    2017-08-01

    Thermal cycling tests have been conducted on Sn-Ag-Cu/Fe- xNi ( x = 73 wt.% or 45 wt.%) and Sn-Ag-Cu/Cu solder joints according to the Joint Electron Device Engineering Council industrial standard to study their interfacial reliability under thermal stress. The interfacial intermetallic compounds formed for solder joints on Cu, Fe-73Ni, and Fe-45Ni were 4.5 μm, 1.7 μm, and 1.4 μm thick, respectively, after 3000 cycles, demonstrating excellent diffusion barrier effect of Fe-Ni under bump metallization (UBM). Also, two deformation modes, viz. solder extrusion and fatigue crack formation, were observed by scanning electron microscopy and three-dimensional x-ray microscopy. Solder extrusion dominated for solder joints on Cu, while fatigue cracks dominated for solder joints on Fe-45Ni and both modes were detected for those on Fe-73Ni. Solder joints on Fe-Ni presented inferior reliability during thermal cycling compared with those on Cu, with characteristic lifetime of 3441 h, 3190 h, and 1247 h for Cu, Fe-73Ni, and Fe-45Ni UBM, respectively. This degradation of the interfacial reliability for solder joints on Fe-Ni is attributed to the mismatch in coefficient of thermal expansion (CTE) at interconnection level. The CTE mismatch at microstructure level was also analyzed by electron backscatter diffraction for clearer identification of recrystallization-related deformation mechanisms.

  7. Evaluations of thermocline and half cycle figure of merit of a thermal energy storage tank

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2017-01-01

    Full Text Available Two main criteria that are commonly used to evaluate thermal energy storage systems are thermocline thickness and half cycle figure of merit. For the thermocline thickness, the preference is to achieve as thin as possible the thermocline thickness. While the preference for half cycle figure of merit is to achieve the value of greater than 90 per cent. These two criteria were used to evaluate a thermal storage system at University Teknologi PETRONAS district cooling plant. The capacity of the thermal energy storage tank of the plant is 10,000 RTh. Operating data was used for the evaluation. The values of evaluated thermocline thickness ranges from 2.248 meters to 5.445 meters with an average of 3.251 meters. These values are very much higher in comparison to findings of other studies. One possible reason is due to higher flow rates. For the half cycle figure of merit the evaluated values ranges from 0.9469 to 0.9847, with the average of 0.9698, which are within the acceptable range. For future work a model should be developed which could automatically evaluate both the thermocline thickness and half cycle figure of merit. This would enable both of these parameters to be continuously evaluated.

  8. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  9. Weldability examination of ASTM A 240 S41500 martensitic stainless steel by thermal cycles simulation testings

    Directory of Open Access Journals (Sweden)

    Alberto Velázquez-del Rosario

    2015-07-01

    Full Text Available The weldability assets of ASTM A 240 S41500 (ASTM A 240/A 240M martensitic stainless steel are presented through the study of the effects of single and double thermal weld cycles on mechanical properties and microstructure of base metal (BM and the artificial heat affected zone (HAZ created by thermal weld simulations. For single cycles, separate peak temperatures of 1000 ºC/12 s and 1350 ºC/12 s (cooling times: 12 s in both cases were evaluated, whilst two combinations of peak temperatures: (1350 ºC/5 s + 1000 ºC/5 s ºC and (1350 ºC/12 s + 1000 ºC/12 s ºC (cooling times: 5 s and 12 s, were applied for double cycles. Post weld heat treatment (PWHT with short and long holding times were applied and Vickers hardness, impact toughness and metallographic examinations were used in order to assess mechanical and metallographic properties in the as-simulated (no heat treated and postweld heat treated conditions. Best properties of the welded joint for double thermal weld cycles with long holding times were reached, which reveals the good weldability and applicability of the tested material in post weld heat treated conditions.

  10. Experimental validation of analytical models for a rapid determination of cycle parameters in thermoplastic injection molding

    Science.gov (United States)

    Pignon, Baptiste; Sobotka, Vincent; Boyard, Nicolas; Delaunay, Didier

    2017-10-01

    Two different analytical models were presented to determine cycle parameters of thermoplastics injection process. The aim of these models was to provide quickly a first set of data for mold temperature and cooling time. The first model is specific to amorphous polymers and the second one is dedicated to semi-crystalline polymers taking the crystallization into account. In both cases, the nature of the contact between the polymer and the mold could be considered as perfect or not (thermal contact resistance was considered). Results from models are compared with experimental data obtained with an instrumented mold for an acrylonitrile butadiene styrene (ABS) and a polypropylene (PP). Good agreements were obtained for mold temperature variation and for heat flux. In the case of the PP, the analytical crystallization times were compared with those given by a coupled model between heat transfer and crystallization kinetics.

  11. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, Guanguan; Zhou, Dao; Yang, Jian

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated....

  12. Transiently increased glutamate cycling in rat PFC is associated with rapid onset of antidepressant-like effects

    OpenAIRE

    Chowdhury, Golam M.I.; Zhang, Jie; Thomas, Monique; Banasr, Mounira; Ma, Xiaoxian; Pittman, Brian; Bristow, Linda; Schaeffer, Eric; Duman, Ronald; Rothman, Douglas; Behar, Kevin; Sanacora, Gerard

    2016-01-01

    Several drugs have recently been reported to induce rapid antidepressant effects in clinical trials and rodent models. Although the cellular mechanisms involved remain unclear, reports suggest that increased glutamate transmission contributes to these effects. Here, we demonstrate that the antidepressant-like efficacy of three unique drugs, with reported rapid onset antidepressant properties, is coupled with a rapid transient rise in glutamate cycling in medial prefronal cortex (mPFC) of awak...

  13. Theoretical study of thermally driven heat pumps based on double organic rankine cycle

    OpenAIRE

    Demierre, Jonathan; Favrat, Daniel

    2013-01-01

    Part of: Thermally driven heat pumps for heating and cooling. – Ed.: Annett Kühn – Berlin: Universitätsverlag der TU Berlin, 2013 ISBN 978-3-7983-2686-6 (print) ISBN 978-3-7983-2596-8 (online) urn:nbn:de:kobv:83-opus4-39458 [http://nbn-resolving.de/urn:nbn:de:kobv:83-opus4-39458] This study deals with a type of thermally driven heat pumps that consists of a reverse Rankine heat pump cycle, the compressor of which is driven by the turbine of a supercritical Organi...

  14. EXPERIMENTAL STUDY OF THE THERMAL BEHAVIOUR OF HYDROGEN TANKS DURING HYDROGEN CYCLING

    OpenAIRE

    DE MIGUEL ECHEVARRIA NEREA; Acosta Iborra, Beatriz; Moretto, Pietro; HARSKAMP Frederik; BONATO CHRISTIAN

    2013-01-01

    The thermal behaviour of several commercial hydrogen tanks has been studied during high pressure (70-84 MPa) hydrogen cycling. The temperature of the gas at different points inside the tank, the temperature at the bosses and the tank outer wall temperature have been measured under different filling and emptying conditions. From the experimental results, the effect of the filling rate (1.5-4 g/s) and the influence of the liner material in the thermal behaviour of the hydrogen tanks have been e...

  15. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Directory of Open Access Journals (Sweden)

    Fic Adam

    2015-03-01

    Full Text Available Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle, which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle. The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  16. Thermal analysis of heat and power plant with high temperature reactor and intermediate steam cycle

    Science.gov (United States)

    Fic, Adam; Składzień, Jan; Gabriel, Michał

    2015-03-01

    Thermal analysis of a heat and power plant with a high temperature gas cooled nuclear reactor is presented. The main aim of the considered system is to supply a technological process with the heat at suitably high temperature level. The considered unit is also used to produce electricity. The high temperature helium cooled nuclear reactor is the primary heat source in the system, which consists of: the reactor cooling cycle, the steam cycle and the gas heat pump cycle. Helium used as a carrier in the first cycle (classic Brayton cycle), which includes the reactor, delivers heat in a steam generator to produce superheated steam with required parameters of the intermediate cycle. The intermediate cycle is provided to transport energy from the reactor installation to the process installation requiring a high temperature heat. The distance between reactor and the process installation is assumed short and negligable, or alternatively equal to 1 km in the analysis. The system is also equipped with a high temperature argon heat pump to obtain the temperature level of a heat carrier required by a high temperature process. Thus, the steam of the intermediate cycle supplies a lower heat exchanger of the heat pump, a process heat exchanger at the medium temperature level and a classical steam turbine system (Rankine cycle). The main purpose of the research was to evaluate the effectiveness of the system considered and to assess whether such a three cycle cogeneration system is reasonable. Multivariant calculations have been carried out employing the developed mathematical model. The results have been presented in a form of the energy efficiency and exergy efficiency of the system as a function of the temperature drop in the high temperature process heat exchanger and the reactor pressure.

  17. Effect of prolonged thermal cycling on microleakage around Class V cavities restored with glass-ceramic inserts with different coefficients of thermal expansion: an in vitro study.

    Science.gov (United States)

    Santini, Ario; Ivanovic, Vladimir; Tan, Chuei Luan; Ibbetson, Richard

    2006-10-01

    The purpose of this in vitro study was to evaluate microleakage around Class V glass-ceramic restorations of different coefficients of thermal expansion after prolonged thermal cycling. One hundred and twenty noncarious extracted human premolars (patient age range 12-20 years) were randomly assigned to three groups. Standard Class V preparations were cut in the buccal surface using customised Cerana burs, size no. 3. Glass-ceramic inserts from two manufacturers (Cerana, Nordiska Dental AB, Helsingborg, Sweden; Beta-Quartz, Hager & Werken GmbH, Duisburg, Germany) were used to restore the cavities and were luted with a hybrid, high-viscous composite (Tetric Ceram, Ivoclar Vivadent, Schaan, Liechtenstein) and a bonding agent (Excite, Ivoclar Vivadent, Schaan, Liechtenstein). A control group, without inserts, was bulk-filled with the same composite used as the luting agent. In accordance with American Dental Association guidelines, half of the preparation was in enamel, half in dentine/cementum and had a mesio-distal width of 3 mm, an occluso-gingival height of 3 mm, and a depth of 2 mm. All margins had butt joints. Sixty teeth, selected at random, were not thermal cycled; the remaining 60 teeth were thermal cycled 4000 times between water baths held at 5 degrees C and 55 degrees C and the specimens prepared and examined for microleakage using 2.0% Procion Red (ICI, Slough, UK) dye, buffered at pH7, as a marker. The results were analysed using the Kruskal-Wallis test (ANOVA) at a 95% significance level. At the occlusal margins there was no significant difference in microleakage between the three groups (P>0.5) without thermal cycling. After thermal cycling, microleakage at the occlusal margins was significantly less around cavities restored with Cerana glass-ceramic inserts versus Beta-Quartz and Tetric Ceram (Pmicroleakge between the groups before thermal cycling (P>0.5). After thermal cycling, there was significantly less microleakage between Cerana inserts and

  18. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research

    Science.gov (United States)

    Musgrave, M. E.

    2000-01-01

    Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.

  19. Elevated levels of plasma brain derived neurotrophic factor in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Pedersen, Bente Klarlund; Kessing, Lars Vedel

    2014-01-01

    Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case-control desi......Impaired neuroplasticity may be implicated in the pathophysiology of bipolar disorder, involving peripheral alterations of the neurotrophins brain derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3). Evidence is limited by methodological issues and is based primarily on case...... were measured in 37 rapid cycling bipolar disorder patients and in 40 age- and gender matched healthy control subjects using enzyme-linked immunosorbent assay (ELISA). In a longitudinal design, repeated measurements of BDNF and NT-3 were evaluated in various affective states in bipolar disorder...

  20. Radiation and Thermal Cycling Effects on EPC1001 Gallium Nitride Power Transistors

    Science.gov (United States)

    Patterson, Richard L.; Scheick, Leif Z.; Lauenstein, Jean M.; Casey, Megan C.; Hammoud, Ahmad

    2012-01-01

    Electronics designed for use in NASA space missions are required to work efficiently and reliably under harsh environment conditions. These include radiation, extreme temperatures, and thermal cycling, to name a few. Information pertaining to performance of electronic parts and systems under hostile environments is very scarce, especially for new devices. Such data is very critical so that proper design is implemented in order to ensure mission success and to mitigate risks associated with exposure of on-board systems to the operational environment. In this work, newly-developed enhancement-mode field effect transistors (FET) based on gallium nitride (GaN) technology were exposed to various particles of ionizing radiation and to long-term thermal cycling over a wide temperature range. Data obtained on control (un-irradiated) and irradiated samples of these power transistors are presented and the results are discussed.

  1. Microstructural characterization and thermal cycling reliability of solders under isothermal aging and electrical current

    Science.gov (United States)

    Chauhan, Preeti Singh

    Solder joints on printed circuit boards provide electrical and mechanical connections between electronic devices and metallized patterns on boards. These solder joints are often the cause of failure in electronic packages. Solders age under storage and operational life conditions, which can include temperature, mechanical loads, and electrical current. Aging occurring at a constant temperature is called isothermal aging. Isothermal aging leads to coarsening of the bulk microstructure and increased interfacial intermetallic compounds at the solder-pad interface. The coarsening of the solder bulk degrades the creep properties of solders, whereas the voiding and brittleness of interfacial intermetallic compounds leads to mechanical weakness of the solder joint. Industry guidelines on solder interconnect reliability test methods recommend preconditioning the solder assemblies by isothermal aging before conducting reliability tests. The guidelines assume that isothermal aging simulates a "reasonable use period," but do not relate the isothermal aging levels with specific use conditions. Studies on the effect of isothermal aging on the thermal cycling reliability of tin-lead and tin-silver-copper solders are limited in scope, and results have been contradictory. The effect of electrical current on solder joints has been has mostly focused on current densities above 104A/cm2 with high ambient temperature (≥100oC), where electromigration, thermomigration, and Joule heating are the dominant failure mechanisms. The effect of current density below 104A/cm2 on temperature cycling fatigue of solders has not been established. This research provides the relation between isothermal aging and the thermal cycling reliability of select Sn-based solders. The Sn-based solders with 3%, 1%, and 0% silver content that have replaced tin-lead are studied and compared against tin-lead solder. The activation energy and growth exponents of the Arrhenius model for the intermetallic growth in

  2. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-12-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  3. Thermal Hydraulic Analysis of 3 MW TRIGA Research Reactor of Bangladesh Considering Different Cycles of Burnup

    Directory of Open Access Journals (Sweden)

    M.H. Altaf

    2014-12-01

    Full Text Available Burnup dependent steady state thermal hydraulic analysis of TRIGA Mark-II research reactor has been carried out utilizing coupled point kinetics, neutronics and thermal hydraulics code EUREKA-2/RR. From the previous calculations of neutronics parameters including percentage burnup of individual fuel elements performed so far for 700 MWD burnt core of TRIGA reactor showed that the fuel rod predicted as hottest at the beginning of cycle (fresh core was found to remain as the hottest until 200 MWD of burn, but, with the progress of core burn, the hottest rod was found to be shifted and another rod in the core became the hottest. The present study intends to evaluate the thermal hydraulic parameters of these hottest fuel rods at different cycles of burnup, from beginning to 700 MWD core burnt considering reactor operates under steady state condition. Peak fuel centerline temperature, maximum cladding and coolant temperatures of the hottest channels were calculated. It revealed that maximum temperature reported for fuel clad and fuel centerline found to lie below their melting points which indicate that there is no chance of burnout on the fuel cladding surface and no blister in the fuel meat throughout the considered cycles of core burnt.

  4. Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi: Simulations vs. Experiment

    Science.gov (United States)

    Manchiraju, Sivom; Gaydosh, Darrell; Benafan, Othmane; Noebe, Ronald; Vaidyanathan, Raj; Anderson, Peter M.

    2011-01-01

    A recent microstructure-based FEM model that couples crystal-based plasticity, the B2 MB190 phase transformation and anisotropic elasticity at the grain scale is calibrated to recent data for polycrystalline NiTi (49.9 at.% Ni). Inputs include anisotropic elastic properties, texture and differential scanning calorimetry data, as well as a subset of recent isothermal deformation and load-biased thermal cycling data. The model is assessed against additional experimental data. Several experimental trends are captured - in particular, the transformation strain during thermal cycling monotonically increases and reaches a peak with increasing bias stress. This is achieved, in part, by modifying the martensite hardening matrix proposed by Patoor et al. [Patoor E, Eberhardt A, Berveiller M. J Phys IV 1996;6:277]. Some experimental trends are underestimated - in particular, the ratcheting of macrostrain during thermal cycling. This may reflect a model limitation that transformation-plasticity coupling is captured on a coarse (grain) scale but not on a fine (martensitic plate) scale.

  5. Thermal Cycling and High-Temperature Corrosion Tests of Rare Earth Silicate Environmental Barrier Coatings

    Science.gov (United States)

    Darthout, Émilien; Gitzhofer, François

    2017-09-01

    Lutetium and yttrium silicates, enriched with an additional secondary zirconia phase, environmental barrier coatings were synthesized by the solution precursor plasma spraying process on silicon carbide substrates. A custom-made oven was designed for thermal cycling and water vapor corrosion testing. The oven can test four specimens simultaneously and allows to evaluate environmental barrier performances under similar corrosion kinetics compared to turbine engines. Coatings structural evolution has been observed by SEM on the polished cross sections, and phase composition has been analyzed by XRD. All coatings have been thermally cycled between 1300 °C and the ambient temperature, without spallation, due to their porosity and the presence of additional secondary phase which increases the thermal cycling resistance. During water vapor exposure at 1200 °C, rare earth disilicates showed a good stability, which is contradictory with the literature, due to impurities—such as Si- and Al-hydroxides—in the water vapor jets. The presence of vertical cracks allowed the water vapor to reach the substrate and then to corrode it. It has been observed that thin vertical cracks induced some spallation after 24 h of corrosion.

  6. Measured Thermal and Fast Neutron Fluence Rates for ATF-1 Holders During ATR Cycle 157D

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 157D which were measured by the Radiation Measurements Laboratory (RML) as requested by the Power Reactor Programs (ATR Experiments) Radiation Measurements Work Order. This report contains measurements of the fluence rates corresponding to the particular elevations relative to the 80-ft. core elevation. The data in this report consist of (1) a table of the ATR power history and distribution, (2) a hard copy listing of all thermal and fast neutron fluence rates, and (3) plots of both the thermal and fast neutron fluence rates. The fluence rates reported are for the average power levels given in the table of power history and distribution.

  7. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2013-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...... converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...... fluctuation of the power devices during wind gusts. It is concluded that the reactive power may change the thermal distribution of power devices. By properly controlling the reactive power, it is possible to achieve a more stable junction temperature in the power devices during the fluctuation of wind speed...

  8. Reactive power influence on the thermal cycling of multi-MW wind power inverter

    DEFF Research Database (Denmark)

    Ma, Ke; Liserre, Marco; Blaabjerg, Frede

    2012-01-01

    In this paper the reactive power influence on the thermal cycling of power devices in grid-connected inverter for 10 MW wind turbines is investigated. Restrained by the grid codes, the allowable reactive power ranges in relation to amplitude and phase angle of the load current for a single...... converter system are first presented at different wind speeds. Furthermore, the interaction between paralleled converter systems in a wind park is also considered and analyzed. By controlling the reactive power circulated among paralleled converters, a new concept is then proposed to stabilize the thermal...... fluctuation of the power devices during wind gusts. It is concluded that the reactive power may change the thermal distribution of power devices. By properly controlling the reactive power, it is possible to achieve a more stable junction temperature in the power devices during the fluctuation of wind speed...

  9. Technical and economic feasibility of a Thermal Gradient Utilization Cycle (TGUC) power plant

    Science.gov (United States)

    Raiji, A. M.; Renfroe, D. A.; Lalk, T. R.

    Power is generated by exploiting the natural atmospheric temperature gradient. A low grade energy source is used to vaporize a fluid which rises in a pipe to a higher elevation where it is condensed. The cycle is completed by passing the condensed liquid through a turbine as it returns to the lower elevation. A digital computer model was developed and used to simulate the operation of the cycle and to conduct a parameteric study. Life cycle cost analysis and energy analyses were conducted for the specific case of a TGUC using the ambient air at the lower elevation as an energy source. Although the cycle has a low thermal efficiency and is site specific, it is technically feasible. Variations in mass flow rate of the working fluid and elevation were found to affect the cycle power output to a large extent. The investment cost of a hypothetical 10 megawatt TGUC power plant was determined to be $3,080 per kilowatt, with life cycle busbar costs of electricity ranging from 47 to 55 Mills per kilowatt hour depending on the method of financing.

  10. Structural and compositional properties of CZTS thin films formed by rapid thermal annealing of electrodeposited layers

    Science.gov (United States)

    Lehner, J.; Ganchev, M.; Loorits, M.; Revathi, N.; Raadik, T.; Raudoja, J.; Grossberg, M.; Mellikov, E.; Volobujeva, O.

    2013-10-01

    In this work Cu2ZnSnS4 (CZTS) thin films were formed by rapid thermal annealing (RTA) of sequentially electrodeposited Cu-Zn and Sn films in 5% H2S containing atmosphere. Six different thermal profiles were used in the experiments. In three of these, the temperature ramping up was varied, while the variable in the other three profiles was the cooling down rate. The optimising parameters for RTA of electrodeposited films were found and annealed films were characterised by X-ray diffraction (XRD), micro-Raman spectroscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy (SEM+EDS). The material parameters such as lattice strain and crystallite size were also determined and the influence of annealing temperature and heating rate on these parameters was discussed.The pathway of MoS2 formation was investigated.

  11. Optical characteristics of GaAsSb alloy after rapid thermal annealing

    Science.gov (United States)

    Gao, Xian; Zhao, Fenghuan; Fang, Xuan; Tang, Jilong; Fang, Dan; Wang, Dengkui; Wang, Xiaohua; Wei, Zhipeng; Chen, Rui

    2017-11-01

    GaAsSb ternary alloy is a promising material for application in infrared optoelectronic devices. In this letter, the investigation of carrier recombination in the as-grown and rapid thermal annealing (RTA) treated GaAsSb samples has been carried out. It was found that after thermal treatment the emission of the GaAsSb material was enhanced and could be maintained up to room temperature. These phenomena can be ascribed to the decrease of non-radiative combination defects in the GaAsSb sample, which implies an improved crystal quality. Moreover, the localized exciton-longitudinal optical phonon interaction is slightly increased after RTA treatment. It is suggested that the interaction depends strongly on the localized states, and the photoluminescence emission intensity can be significantly increased after suitable RTA treatment. Promoting better optical emission in GaAsSb is very useful for its practical application.

  12. Thermal Cycling Behavior of Thermal Barrier Coatings with MCrAlY Bond Coat Irradiated by High-Current Pulsed Electron Beam.

    Science.gov (United States)

    Cai, Jie; Lv, Peng; Guan, Qingfeng; Xu, Xiaojing; Lu, Jinzhong; Wang, Zhiping; Han, Zhiyong

    2016-11-30

    Microstructural modifications of a thermally sprayed MCrAlY bond coat subjected to high-current pulsed electron beam (HCPEB) and their relationships with thermal cycling behavior of thermal barrier coatings (TBCs) were investigated. Microstructural observations revealed that the rough surface of air plasma spraying (APS) samples was significantly remelted and replaced by many interconnected bulged nodules after HCPEB irradiation. Meanwhile, the parallel columnar grains with growth direction perpendicular to the coating surface were observed inside these bulged nodules. Substantial Y-rich Al2O3 bubbles and varieties of nanocrystallines were distributed evenly on the top of the modified layer. A physical model was proposed to describe the evaporation-condensation mechanism taking place at the irradiated surface for generating such surface morphologies. The results of thermal cycling test showed that HCPEB-TBCs presented higher thermal cycling resistance, the spalling area of which after 200 cycles accounted for only 1% of its total area, while it was about 34% for APS-TBCs. The resulting failure mode, i.e., in particular, a mixed delamination crack path, was shown and discussed. The irradiated effects including compact remelted surface, abundant nanoparticles, refined columnar grains, Y-rich alumina bubbles, and deformation structures contributed to the formation of a stable, continuous, slow-growing, and uniform thermally grown oxide with strong adherent ability. It appeared to be responsible for releasing stress and changing the cracking paths, and ultimately greatly improving the thermal cycling behavior of HCPEB-TBCs.

  13. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling

    Science.gov (United States)

    Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo

    2015-01-01

    A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it’s up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process. PMID:26444687

  14. Thermal Modelling Analysis of Spiral Wound Supercapacitor under Constant-Current Cycling.

    Science.gov (United States)

    Wang, Kai; Li, Liwei; Yin, Huaixian; Zhang, Tiezhu; Wan, Wubo

    2015-01-01

    A three-dimensional modelling approach is used to study the effects of operating and ambient conditions on the thermal behaviour of the spiral wound supercapacitor. The transient temperature distribution during cycling is obtained by using the finite element method with an implicit predictor-multicorrector algorithm. At the constant current of 2A, the results show that the maximum temperature appears in core area. After 5 cycles, the maximum temperature is 34.5°C, while in steady state, it's up to 42.5°C. This paper further studies the relationship between the maximum temperature and charge-discharge current. The maximum temperature will be more than 60°C after 5 cycles at the current of 4A, and cooling measurements should be taken at that time. It can provide thoughts on inner temperature field distribution and structure design of the spiral wound supercapacitor in working process.

  15. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    National Research Council Canada - National Science Library

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm...

  16. Analysis of thermal cycles and microstructure of heat affected zone for a low alloy carbon steel pipe under multipass weld

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Tae Woan; Ha, Joon Wook; Kim, Dong Jin; Kim, Jeong Tae [Doosan Heavy Industries and Construction Co., Ltd., Changwon (Korea, Republic of)

    2002-03-01

    The purpose of this study is to analyze thermal cycles and to investigate microstructures of heat affected zones for a low alloy carbon steel pipe under a multipass weld. The commercial finite element code SYSWELD is used to compute thermal cycles during multipass weld. The numerical results such as thermal cycles and size of heat affected zone are compared with those of the experiment and the two results show a good agreement. In addition, the microstructure and hardness and investigated from the weldment in detail. The weakest location is founded at intercritical region near the base metal.

  17. Marginal adaptation of class V composite restorations submitted to thermal and mechanical cycling

    Directory of Open Access Journals (Sweden)

    Denise Sa Maia CASSELLI

    2013-01-01

    Full Text Available Objective This study evaluated the effect of the margin location and an adhesive system on the marginal adaptation of composite restorations. Material and Methods Class V cavities were prepared in bovine teeth with the gingival margin on the dentin and the incisal margin on the enamel. The cavities were restored with a micro-hybrid composite resin using an etch-and-rinse [Single Bond 2 (SB] or a self-etching adhesive [Clearfil SE Bond (CL]. After finishing and polishing the restorations, epoxy replicas were prepared. The marginal adaptation was analyzed using scanning electronic microscopy (SEM, 500 x magnification. The higher gap width in each margin was recorded (T0. After the first evaluation, the samples were submitted to thermal cycling (2,000 cycles of 5°C±2°C followed by 55°C±2°C – T1 and mechanical cycling (100,000 cycles of 50 kN and 2 Hz – T2. Replicas of samples were rebuilt after each cycling and analyzed under SEM. The data were submitted to Mann-Whitney, Wilcoxon and Friedman testing (α=0.05. Results The SB presented higher gaps in the dentin than the enamel, while there was no difference between the substrate for the CL. In the dentin, the CL showed better marginal sealing than the SB. The opposite occurred in the enamel. There were no significant differences between the baseline, thermal and mechanical cycling for any experimental condition. Conclusions The outcomes of the present study showed that the adhesive system and margin location have an important effect on the marginal adaptation of composite restorations.

  18. Morphology of oxygen precipitates in silicon wafers pre-treated by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Kot, D., E-mail: kot@ihp-microelectronics.com; Kissinger, G.; Schubert, M. A. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Sattler, A. [Siltronic AG, Hanns-Seidel-Platz 4, 81737 München (Germany)

    2014-05-05

    The morphology of oxygen precipitates in Czochralski silicon wafers pre-treated by rapid thermal annealing (RTA) and subjected to a heat treatment in the temperature range between 800 °C and 1000 °C was investigated by scanning transmission electron microscopy. The samples were pre-treated by RTA in order to establish a defined supersaturation of vacancies. It was found that in such vacancy-rich samples subjected to an annealing at 800 °C three dimensional dendrites are formed. Until now, it was known that during annealing at 800 °C plate-like oxygen precipitates are formed.

  19. Characterizing the Performance of a Proton-Transfer-Reaction Mass Spectrometer with a Rapid Cycling Tenax Preconcentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garland, S.P.; Alexander, M.L.

    2006-01-01

    Volatile organic compounds (VOCs) are species of interest for atmospheric modeling, worker chemical exposure and medical studies. Sometimes the required detection limits for these compounds is below the capability of existing real-time instrumentation. Preconcentrators have been implemented as an inexpensive way to amplify chemical signals and improve detection limits. Proton-transfer-reaction mass spectrometry (PTR-MS) has been used as a tool for studying low concentrations of VOCs, but it lacks the capability to differentiate chemical signal contributions from isobaric compounds. In this work, behavior of a newly designed Tenax TA preconcentrator when coupled with a PTRMS is characterized. This novel preconcentrator design allows rapid temperature cycling, maintaining near real-time response. The preconcentrator was exposed to a sample gas of toluene in varying concentrations and loading times between and then thermally desorbed for analysis by PTR-MS. The effects of preconcentrating multiple analytes simultaneously were also investigated as well as the chromatographic effects of the preconcentrator. A linear behavior was observed when the integrated ion count rates (ICPS) from thermal desorption peaks were regressed against both varying loading times at a constant toluene concentration and varying concentrations with constant loading times. From these trends, it is possible to determine the concentration of a VOC by knowing its ICPS from thermal desorption peaks from a known preconcentration time. Peak height ion count rates representing ultimate detectability were amplified by factors up to 257 times the original signal, extending the range of the PTR-MS from 50pptv to nearly 250 parts per quadrillion. This corresponds to an ultimate sensitivity of 200 parts per quadrillion with 20 minute time resolution. Quantitative preconcentrator behavior was demonstrated using ICPS from these ion peaks and were amplified as much as 148 times their original signal. Results

  20. Do thermal tolerances and rapid thermal responses contribute to the invasion potential of Bactrocera dorsalis (Diptera: Tephritidae)?

    Science.gov (United States)

    Pieterse, Welma; Terblanche, John S; Addison, Pia

    2017-04-01

    Bactrocera dorsalis (Hendel) (Diptera: Tephritidae) has shown remarkable range expansion over the past 10years and invaded several new continents including Africa. Here we report results of a detailed assessment of acute high and low temperature survival ability and the plasticity thereof, to test the hypothesis that traits of the thermal niche have contributed to the species' invasion ability. We also assess life-stage-related variation of thermal tolerances to determine potential stage-related environmental sensitivity. The temperatures at which c. 20% of the population survived of B. dorsalis were determined to be -6.5°C and 42.7°C, respectively, when using 2h exposures. Further, four life stages of B. dorsalis (egg, 3rd instar larvae, pupae and adults) were exposed to high and low discriminating temperatures to compare their thermal survival rates. The egg stage was found to be the most resistant life stage to both high and low temperatures, since 44±2.3% survived the low and 60±4.2% survived the high discriminating temperature treatments respectively. Finally, the potential for adult hardening responses to mediate tolerance of extremes was also considered using a diverse range of acute conditions (using 2h exposures to 15°C, 10°C and 5°C and 30°C, 35°C, 37°C and 39°C as hardening temperatures, and some treatments with and without recovery periods between hardening and discriminating temperature treatment). These showed that although some significant hardening responses could be detected in certain treatments (e.g. after exposure to 37°C and 39°C), the magnitude of this plasticity was generally low compared to two other wide-spread and more geographically-range-restricted con-familial species, Ceratitis capitata and C. rosa. In other words, Bactrocera dorsalis adults were unable to rapidly heat- or cold-harden to the same extent as the other Ceratitis species examined to date. These results suggest a narrower thermal niche in B. dorsalis compared

  1. Parasitic slow extraction of extremely weak beam from a high-intensity proton rapid cycling synchrotron

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Ye [University of Science and Technology of China, Hefei, Anhui 230029 (China); Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China); Tang, Jingyu, E-mail: tangjy@ihep.ac.cn [University of Science and Technology of China, Hefei, Anhui 230029 (China); Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China); Yang, Zheng; Jing, Hantao [Institute of High Energy Physics, CAS, Yuquan Road 19B, Beijing 100049 (China)

    2014-02-11

    This paper proposes a novel method to extract extremely weak beam from a high-intensity proton rapid cycling synchrotron (RCS) in the parasitic mode, while maintaining the normal fast extraction. The usual slow extraction method from a synchrotron by employing third-order resonance cannot be applied in a high-intensity RCS due to a very short flat-top at the extraction energy and the strict control on beam loss. The proposed parasitic slow extraction method moves the beam to scrape a scattering foil prior to the fast beam extraction by employing either a local orbit bump or momentum deviation or their combination, so that the halo part of the beam will be scattered. A part of the scattered particles will be extracted from the RCS and guided to the experimental area. The slow extraction process can last about a few milliseconds before the beam is extracted by the fast extraction system. The method has been applied to the RCS of China Spallation Neutron Source. With 1.6 GeV in the extraction energy, 62.5 μA in the average current and 25 Hz in the repetition rate for the RCS, the proton intensity by the slow extraction method can be up to 2×10{sup 4} protons per cycle or 5×10{sup 5} protons per second. The extracted beam has also a good time structure of approximately uniform in a spill which is required for many applications such as detector tests. Detailed studies including the scattering effect in the foil, the local orbit bump by the bump magnets and dispersive orbit bump by modifying the RF pattern, the multi-particle simulations by ORBIT and TURTLE codes, and some technical features for the extraction magnets are presented.

  2. Broadening of the thermal component of the prompt GRB emission due to rapid temperature evolution

    Science.gov (United States)

    Bharali, Priya; Sahayanathan, Sunder; Misra, Ranjeev; Boruah, Kalyanee

    2017-08-01

    The observations of the prompt emission of gamma ray bursts (GRB) by GLAST Burst Monitor (GBM), on board Fermi Gamma-ray Space Telescope, suggest the presence of a significant thermal spectral component, whose origin is not well understood. Recently, it has been shown that for long duration GRBs, the spectral width as defined as the logarithm of the ratio of the energies at which the spectrum falls to half its peak value, lie in the range of 0.84-1.3 with a median value of 1.07. Thus, while most of the GRB spectra are found to be too narrow to be explained by synchrotron emission from an electron distribution, they are also significantly broader than a blackbody spectrum whose width should be 0.54. Here, we consider the possibility that an intrinsic thermal spectrum from a fire-ball like model, may be observed to be broadened if the system undergoes a rapid temperature evolution. We construct a toy-model to show that for bursts with durations in the range 5-70 s, the widths of their 1 second time-averaged spectra can be at the most ≲ 0.557. Thus, while rapid temperature variation can broaden the detected spectral shape, the observed median value of ˜ 1.07 requires that there must be significant sub-photospheric emission and/or an anisotropic explosion to explain the broadening for most GRB spectra.

  3. Rapid response of the steatosis-sensing hepatokine LECT2 during diet-induced weight cycling in mice.

    Science.gov (United States)

    Chikamoto, Keita; Misu, Hirofumi; Takayama, Hiroaki; Kikuchi, Akihiro; Ishii, Kiyo-Aki; Lan, Fei; Takata, Noboru; Tajima-Shirasaki, Natsumi; Takeshita, Yumie; Tsugane, Hirohiko; Kaneko, Shuichi; Matsugo, Seiichi; Takamura, Toshinari

    2016-09-23

    Dieting often leads to body weight cycling involving repeated weight loss and regain. However, little information is available regarding rapid-response serum markers of overnutrition that predict body weight alterations during weight cycling. Here, we report the rapid response of serum leukocyte cell-derived chemotaxin 2 (LECT2), a hepatokine that induces insulin resistance in skeletal muscle, during diet-induced weight cycling in mice. A switch from a high-fat diet (HFD) to a regular diet (RD) in obese mice gradually decreased body weight but rapidly decreased serum LECT2 levels within 10 days. In contrast, a switch from a RD to a HFD rapidly elevated serum LECT2 levels. Serum LECT2 levels showed a positive correlation with liver triglyceride contents but not with adipose tissue weight. This study demonstrates the rapid response of LECT2 preceding body weight alterations during weight cycling in mice and suggests that measurement of serum LECT2 may be clinically useful in the management of obesity. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  5. Theoretical and experimental analysis of the vacuum pressure in a vacuum glazing after extreme thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Hyde, Trevor J.; Hewitt, Neil [Ulster Univ., Newtownabbey, Northern Ireland (United Kingdom). Centre for Sustainable Technologies; Eames, Philip C. [Warwick Univ., Coventry (United Kingdom). Warwick Inst. for Sustainable Energy and Resources

    2008-07-01

    Details of theoretical and experimental studies of the change in vacuum pressure within a vacuum glazing after extreme thermal cycling are presented. The vacuum glazing was fabricated at low temperature using an indium edge seal. It comprised two 4 mm thick 0.4 m by 0.4 m low-emittance glass panes separated by an array of stainless steel pillars with a diameter of 0.32 mm and a height of 0.2 mm. After thermal cycling in the temperature range -30 C to +50 C on one side of the sample, while maintaining 22 C on the other side, it was found that the glass to glass heat conductance of the sample had increased by 8.2%. The vacuum pressure within the evacuated gap was determined to have increased from 0.01 Pa to 0.15 Pa using the model of Corrucini. This is at the upper limit of the range where the effect of gas pressure on the thermal performance of vacuum glazing can be ignored. The degradation of vacuum level determined was corroborated by the change in glass surface temperatures. (orig.)

  6. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing

    Science.gov (United States)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-01

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  7. Activated Carbon Fibers "Thickly Overgrown" by Ag Nanohair Through Self-Assembly and Rapid Thermal Annealing.

    Science.gov (United States)

    Yan, Xuefeng; Xu, Sijun; Wang, Qiang; Fan, Xuerong

    2017-11-09

    Anisotropic nanomaterial-modified carbon fibers attract increasing attention because of their superior properties over traditional ones. In this study, activated carbon fibers (ACFs) "thickly overgrown" by Ag nanohair were prepared through self-assembly and rapid thermal annealing. Viscose fibers with well-dispersed silver nanoparticles (AgNPs) on surfaces were first prepared through self-assembly of hyperbranched poly(amino-amine) (HBPAA)-capped AgNPs on viscose surfaces. HBPAA endowed the AgNP surfaces with negative charges and abundant amino groups, allowing AgNPs to monodispersively self-assemble to fiber surfaces. Ag nanohair-grown ACFs were prepared by sequential pre-oxidation and carbonization. Because the carbonization furnace was open-ended, ACFs are immediately transferrable to the outside of the furnace. Therefore, the Ag liquid adsorbed by ACF pores squeezed out to form Ag nanowires through thermal contraction. FESEM characterization indicated that Ag nanohairs stood on ACF surface and grew from ACF caps. XPS and XRD characterization showed that Ag successfully assembled to fiber surfaces and retained its metallic state even after high-temperature carbonization. TG analysis suggested that Ag nanohair-grown ACFs maintained their excellent thermal stabilities. Finally, the fabricated ACFs showed excellent and durable antibacterial activities, and the developed method may provide a potential strategy for preparing metal nanowire-grown ACFs.

  8. Simulated Solar Flare X-Ray and Thermal Cycling Durability Evaluation of Hubble Space Telescope Thermal Control Candidate Replacement Materials

    Science.gov (United States)

    deGroh, Kim K.; Banks, Bruce A.; Sechkar, Edward A.; Scheiman, David A.

    1998-01-01

    During the Hubble Space Telescope (HST) second servicing mission (SM2), astronauts noticed that the multilayer insulation (MLI) covering the telescope was damaged. Large pieces of the outer layer of MLI (aluminized Teflon fluorinated ethylene propylene (Al-FEP)) were torn in several locations around the telescope. A piece of curled up Al-FEP was retrieved by the astronauts and was found to be severely embrittled, as witnessed by ground testing. Goddard Space Flight Center (GSFC) organized a HST MLI Failure Review Board (FRB) to determine the damage mechanism of FEP in the HST environment, and to recommend replacement insulation material to be installed on HST during the third servicing mission (SM3) in 1999. Candidate thermal control replacement materials were chosen by the FRB and tested for environmental durability under various exposures and durations. This paper describes durability testing of candidate materials which were exposed to charged particle radiation, simulated solar flare x-ray radiation and thermal cycling under load. Samples were evaluated for changes in solar absorptance and tear resistance. Descriptions of environmental exposures and durability evaluations of these materials are presented.

  9. Combined momentum collimation studies in a high-intensity rapid cycling proton synchrotron

    Directory of Open Access Journals (Sweden)

    Jing-Yu Tang

    2011-05-01

    Full Text Available Momentum collimation in a high-intensity rapid cycling synchrotron (RCS is a very important issue. Based on the two-stage collimation principle, a combined momentum collimation method is proposed and studied in detail here. The method makes use of the combination of secondary collimators in both the longitudinal and transverse planes. The primary collimator is placed at a high-dispersion location of an arc, and the longitudinal and transverse secondary collimators are in the same arc and in the adjacent downstream dispersion-free long straight section, respectively. The particles with positive momentum deviations will be scattered and degraded by a carbon scraper and then collected mainly by the transverse collimators, whereas the particles with negative momentum deviations will be scattered by a tantalum scraper and mainly collected by the longitudinal secondary collimators. This is to benefit from the different effects of protons passing through a high atomic number material and a low atomic number material, as the former produces relatively more scattering than the latter for the same energy loss. The studies also reveal that momentum collimation is strongly dependent on the transverse beam correlation that comes from the injection painting. The relevant requirements on the lattice design are also discussed, especially for compact rings. The multiparticle simulations using both TURTLE and ORBIT codes are presented to show the physical images of the collimation method, which was carried out with the input of the RCS of China Spallation Neutron Source.

  10. Obesity and obstetric complications are associated with rapid-cycling in Italian patients with bipolar disorder.

    Science.gov (United States)

    Buoli, Massimiliano; Dell'Osso, Bernardo; Caldiroli, Alice; Carnevali, Greta Silvia; Serati, Marta; Suppes, Trisha; Ketter, Terence A; Altamura, A Carlo

    2017-01-15

    Rapid cycling (RC) worsens the course of bipolar disorder (BD) being associated with poor response to pharmacotherapy. Previous studies identified clinical variables potentially associated with RCBD: however, in many cases, results were discordant or unreplicated. The present study was aimed to compare clinical variables between RC and non RC bipolar patients and to identify related risk factors. A sample of 238 bipolar patients was enrolled from 3 different community mental health centers. Descriptive analyses were performed on total sample, and patients were compared in terms of socio-demographic and clinical variables according to the presence of RC by multivariate analyses of variance (MANOVAs, continuous variables) or χ2 tests (qualitative variables). Binary logistic regression was performed to calculate odds ratios. Twenty-eight patients (11.8%) had RC. The two groups were not different in terms of age, age at onset, gender distribution, type of family history, type of substance use disorder, history of antidepressant therapy, main antidepressant, psychotic symptoms, comorbid anxiety disorders, suicide attempts, thyroid diseases, diabetes, type of BD, duration of untreated illness, illness duration, duration of antidepressant treatment and GAF scores. In contrast, RC patients had more often a history of obstetric complications (pobesity (pobesity and obstetric complications are risk factors for the development of RC in BD. In addition, lifetime MDMA misuse may be more frequent in RC bipolar patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics.

    Science.gov (United States)

    Chan, Kamfai; Wong, Pui-Yan; Yu, Peter; Hardick, Justin; Wong, Kah-Yat; Wilson, Scott A; Wu, Tiffany; Hui, Zoe; Gaydos, Charlotte; Wong, Season S

    2016-01-01

    The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR) and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR), thus expanding the TTC's ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC's performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings.

  12. A Rapid and Low-Cost PCR Thermal Cycler for Infectious Disease Diagnostics.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available The ability to make rapid diagnosis of infectious diseases broadly available in a portable, low-cost format would mark a great step forward in global health. Many molecular diagnostic assays are developed based on using thermal cyclers to carry out polymerase chain reaction (PCR and reverse-transcription PCR for DNA and RNA amplification and detection, respectively. Unfortunately, most commercial thermal cyclers are expensive and need continuous electrical power supply, so they are not suitable for uses in low-resource settings. We have previously reported a low-cost and simple approach to amplify DNA using vacuum insulated stainless steel thermoses food cans, which we have named it thermos thermal cycler or TTC. Here, we describe the use of an improved set up to enable the detection of viral RNA targets by reverse-transcription PCR (RT-PCR, thus expanding the TTC's ability to identify highly infectious, RNA virus-based diseases in low resource settings. The TTC was successful in demonstrating high-speed and sensitive detection of DNA or RNA targets of sexually transmitted diseases, HIV/AIDS, Ebola hemorrhagic fever, and dengue fever. Our innovative TTC costs less than $200 to build and has a capacity of at least eight tubes. In terms of speed, the TTC's performance exceeded that of commercial thermal cyclers tested. When coupled with low-cost endpoint detection technologies such as nucleic acid lateral-flow assay or a cell-phone-based fluorescence detector, the TTC will increase the availability of on-site molecular diagnostics in low-resource settings.

  13. Numerical simulations of thermal convection in rapidly rotating spherical fluid shells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Z.P.

    1992-01-01

    Numerical simulations of thermal convection in rapidly rotating spherical shells of Boussinesq fluid have been carried out with a nonlinear, three-dimensional, time-dependent spectral-transform code. The basic state is hydrostatic, spherically symmetric, and independent of time. The numerical methods, the numerical stability, and the adequacy of the spatial resolution were examined by a benchmarking study. A sequence of bifurcations from the onset of a steadily propagating convective state, to a periodic state, to a quasi-periodic state and thence a chaotic state has been found. Convective solutions at each stage along the route to chaos have been studied. The emphases are on the three-dimensional and time-dependent convective structures and associated mean zonal flow. The spherical shell is heated from both below and within. The boundaries are isothermal and stress-free. The author has also explored the consequences of imposing a spatially varying temperature anomaly on the upper surface of a spherical shell on thermal convection in the shell. The spherical shell is heated from below and cooled from above. The lower boundary is isothermal and both boundaries are rigid and impermeable. The results show that the patterns and amplitudes of the convective motions and associated mean zonal and meridional flows depend largely on the pattern and amplitude of the imposted thermal anomaly. The purpose of this study is to illustrate the influence of thermal conditions in the lower mantle on motions in the Earth's liquid outer core. The author has carried out numerical simulations at both high Taylor and Rayleigh numbers. The spherical shell is heated from below and cooled from above. The boundaries are isothermal and stress-free. Columnar rolls that are quasi-layered in cylindrical radius and associated banded mean zonal flow are obtained. The quasi-layered convective structure and the banded zonal wind are consequent upon both the high Taylor and Rayleigh numbers.

  14. Research on transient thermal process of a friction brake during repetitive cycles of operation

    Science.gov (United States)

    Slavchev, Yanko; Dimitrov, Lubomir; Dimitrov, Yavor

    2017-12-01

    Simplified models are used in the classical engineering analyses of the friction brake heating temperature during repetitive cycles of operation to determine basically the maximum and minimum brake temperatures. The objective of the present work is to broaden and complement the possibilities for research through a model that is based on the classical scheme of the Newton's law of cooling and improves the studies by adding a disturbance function for a corresponding braking process. A general case of braking in non-periodic repetitive mode is considered, for which a piecewise function is defined to apply pulse thermal loads to the system. Cases with rectangular and triangular waveforms are presented. Periodic repetitive braking process is also studied using a periodic rectangular waveform until a steady thermal state is achieved. Different numerical methods such as the Euler's method, the classical fourth order Runge-Kutta (RK4) and the Runge-Kutta-Fehlberg 4-5 (RKF45) are used to solve the non-linear differential equation of the model. The constructed model allows during pre-engineering calculations to be determined effectively the time for reaching the steady thermal state of the brake, to be simulated actual braking modes in vehicles and material handling machines, and to be accounted for the thermal impact when performing fatigue calculations.

  15. A Literature Review of Shock Sensitivity Changes of TATB Due to Thermal Cycling

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, Boyd [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Inst. of Mining and Technology, Socorro, NM (United States). Dept. of Mechanical Engineering

    2016-07-15

    Insensitive high explosives (IHEs) based on 1,3,5-triamino 2,4,6-trinitro-benzene (TATB) are the IHEs of choice for use in nuclear warheads over conventional high explosives when safety is the only consideration, because they are very insensitive to thermal or mechanical initiation stimuli. It is this inherent insensitivity to high temperatures, shock, and impact, which provides detonation design challenges when designing TATB explosive systems while at the same time providing a significant level of protection against accidental initiation. Although classified as IHE, over the past few years the focus on explosive safety has demonstrated that the shock sensitivity of TATB is influenced with respect to temperature. A number of studies have been performed on TATB and TATB formulations, plastic bonded explosives (PBX) 9502, and LX-17-01 (LX-17), which demonstrates the increase in shock sensitivity of the explosive after it has been preheated or thermally cycled over various temperature ranges. Many studies suggest the change in sensitivity is partly due to the decomposition rates of the temperature elevated TATB. Others point to the coefficient of thermal expansion, the crystalline structures of TATB and/or the combination of all factors, which create voids which can become active hot spots. During thermal cycling, TATB is known to undergo an irreversible increase in specific volume called ratchet growth. This increase in specific volume correlates to a decrease in density. This decrease in density and increase in volume, demonstrate the creations of additional void spaces which could serve as potential new initiation hot spots thus, increasing the overall sensitivity of the HE. This literature review evaluates the published works to understand why the shock sensitivity of TATB-based plastic bonded explosives (PBXs) changes with temperature.

  16. Environmental cycling of cellulosic thermal insulation and its influence on fire performance

    Science.gov (United States)

    Lawson, J. R.

    1984-08-01

    A study was conducted on climatological data for eleven cities located throughout the United States. Findings from this environmental study were used to develop conditioning cycles for a research project on the influence of environments on the fire performance of loose-fill cellulosic thermal insulation. Six cellulosic insulation materials with different compositions of fire retardant chemicals at an add-on level of 25% by weight were specially manufactured for this study. These materials were tested for fire performance using the smoldering combustion test and the attic flooring radiant panel test to establish a baseline. After the materials were exposed to the various environmental cycles, they were tested for fire performance. Results from these tests show that environmental exposure can have a significant effect on the fire performance of cellulosic insulation materials and indicates that long term fire protection provided by fire retardant compounds may be limited.

  17. Static behavior and the effects of thermal cycling in hybrid laminates

    Science.gov (United States)

    Liber, T. M.; Daniel, I. M.; Chamis, C. C.

    1977-01-01

    Static stiffness, strength and ultimate strain after thermal cycling were investigated for graphite/Kevlar 49/epoxy and graphite/S-glass/epoxy angle-ply laminates. Tensile stress-strain curves to failure and uniaxial tensile properties were determined, and theoretical predictions of modulus, Poisson's ratio and ultimate strain, based on linear lamination theory, constituent ply properties and measured strength, were made. No significant influence on tensile stress properties due to stacking sequence variations was observed. In general, specimens containing two 0-degree Kevlar or S-glass plies were found to behave linearly to failure, while specimens containing 4 0-degree Kevlar or S-glass plies showed some nonlinear behavior.

  18. Ex Situ Thermal Cycle Annealing of Molecular Beam Epitaxy Grown HgCdTe/Si Layers

    Science.gov (United States)

    2010-01-01

    matched bulk CdZnTe substrates. Recent work6 on CdTe/Si has shown that in situ thermal cycle annealing (TCA), where annealing is performed intermittently...was grown on a bulk CdZnTe substrate for comparison. The HgCdTe was grown at 185C, with a growth rate of 2 lm/h. The typical HgCdTe layer...Cd composition. The HgCdTe layers grown on bulk CdZnTe samples, which were subjected to annealing condi- tions similar to those for the HgCdTe layers

  19. Effect of Thermal Cycling on the Strength and Texture of Concrete for Nuclear Safety Structures

    Directory of Open Access Journals (Sweden)

    Š. Hošková

    2001-01-01

    Full Text Available The effect of thermal cycling (freezing and thawing on the texture and strength of two types of concrete is studied: 1. Concrete used for a containment structure at NPP Temelín (Czech Republic - so-called TEMELÍN concrete.2. Highly resistant PENLY concrete, which was used as a standard because of its high quality, proved by the research carried out in a European Commission project. The results for the two samples of concrete are compared.

  20. Effects of thermal and moisture cycling on the internal structure of stitched RTM laminates

    Science.gov (United States)

    Walker, Jeff; Roundy, Lance; Goering, Jon

    1993-01-01

    Conventional aerospace composites are strong and stiff in the directions parallel to the carbon fibers, but they are prone to delaminations and damage in the through-the-thickness directions. Recent research has shown that substantial improvements in damage tolerance are obtained from textile composites with Z-direction reinforcement provided by stitching, weaving, or braiding. Because of the mismatch in thermal and moisture expansion properties of the various material components, there is a potential for microcracks to develop in the resin matrix. These cracks can form to relieve the mechanical stresses that are generated during curing or in-service temperature cycles.

  1. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    Directory of Open Access Journals (Sweden)

    Jacek D. Wojcik

    2017-02-01

    Full Text Available The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage (TES integration into the power plant process cycle is considered as a possible solution for this issue. In this article, a technical feasibility study of TES integration into a 375-MW subcritical oil-fired conventional power plant is presented. Retrofitting is considered in order to avoid major changes in the power plant process cycle. The concept is tested based on the complete power plant model implemented in the ProTRAX software environment. Steam and water parameters are assessed for different TES integration scenarios as a function of the plant load level. The best candidate points for heat extraction in the TES charging and discharging processes are evaluated. The results demonstrate that the integration of TES with power plant cycle is feasible and provide a provisional guidance for the design of the TES system that will result in the minimal influence on the power plant cycle.

  2. Laser Soldering and Thermal Cycling Tests of Monolithic Silicon Pixel Chips

    CERN Document Server

    Strand, Frode Sneve

    2015-01-01

    An ALPIDE-1 monolithic silicon pixel sensor prototype has been laser soldered to a flex printed circuit using a novel interconnection technique using lasers. This technique is to be optimised to ensure stable, good quality connections between the sensor chips and the FPCs. To test the long-term stability of the connections, as well as study the effects on hit thresholds and noise in the sensor, it was thermally cycled in a climate chamber 1200 times. The soldered connections showed good qualities like even melting and good adhesion on pad/flex surfaces, and the chip remained in working condition for 1080 cycles. After this, a few connections failed, having cracks in the soldering tin, rendering the chip unusable. Threshold and noise characteristics seemed stable, except for the noise levels of sector 2 in the chip, for 1000 cycles in a temperature interval of "10^{\\circ}" and "50^{\\circ}" C. Still, further testing with wider temperature ranges and more cycles is needed to test the limitations of the chi...

  3. A Method to Teach Age-Specific Demography with Field Grown Rapid Cycling "Brassica rapa" (Wisconsin Fast Plants)

    Science.gov (United States)

    Kelly, Martin G.; Terrana, Sebastian

    2004-01-01

    In this paper, we demonstrate that rapid cycling "Brassica rapa" (Wisconsin Fast Plants) can be used in inquiry-based, student ecological fieldwork. We are the first to describe age-specific survival for field-grown Fast Plants and identify life history traits associated with individual survival. This experiment can be adapted by educators as a…

  4. A role for prostaglandins in rapid cycling suggested by episode-specific gene expression shifts in peripheral blood mononuclear cells

    DEFF Research Database (Denmark)

    Gurvich, Artem; Begemann, Martin; Dahm, Liane

    2014-01-01

    OBJECTIVES: Over 12% of patients with bipolar disorder exhibit rapid cycling. The underlying biological mechanisms of this extreme form of bipolar disease are still unknown. This study aimed at replicating and extending findings of our previously published case report, where an involvement of pro...

  5. Remission of classic rapid cycling bipolar disorder with levothyroxine augmentation therapy in a male patient having clinical hypothyroidism

    Directory of Open Access Journals (Sweden)

    Chen PH

    2015-02-01

    Full Text Available Pao-Huan Chen, Yu-Jui Huang Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan Abstract: The literature suggests that patients with bipolar disorder, particularly females, have greater vulnerability to rapid cycling features. Levothyroxine therapy might be potentially useful to attenuate mood instability in this patient group. In contrast, reports on male patients remain limited and controversial. Herein, we report a 32-year-old male patient who had bipolar 1 disorder for 12 years who developed a breakthrough rapid cycling course and first-onset clinical hypothyroidism at the age of 31 years during lithium therapy. After levothyroxine augmentation therapy was introduced, the patient had remission from the rapid cycling illness course along with normalization of serum levels of free T4 and thyroid stimulating hormone in the subsequent year. This observation suggested that investigation of both levothyroxine pharmacology and thyroid pathology in male patients with rapid cycling bipolar disorder might be of much value. Keywords: mood disorder, therapy, thyroid hormone

  6. Elevated levels of IL-6 and IL-18 in manic and hypomanic states in rapid cycling bipolar disorder patients

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Weikop, Pia; Kessing, Lars Vedel

    2015-01-01

    obtained in affective states of varying polarity during 6-12 months in 37 rapid cycling bipolar disorder patients and compared with repeated measurements in 40 age- and gender matched healthy control subjects, using rigorous laboratory-, clinical- and statistical methodology. Adjusting for demographical...

  7. Fast Plants for Finer Science--An Introduction to the Biology of Rapid-Cycling Brassica Campestris (rapa) L.

    Science.gov (United States)

    Tomkins, Stephen P.; Williams, Paul H.

    1990-01-01

    Rapid-cycling brassicas can be used in the classroom to teach concepts such as plant growth, tropisms, floral reproduction, pollination, embryonic development, and plant genetics. Directions on how to obtain them for classroom use and how they may be grown are included. Practical physiology and genetics exercises are listed. (KR)

  8. Optimisation of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    Central receiver solar thermal power plants are regarded as one of the promising ways to generate electricity in near future. They offer the possibility of using high temperatures and pressures to achieve high efficiencies with standard power cycles. A direct steam generation approach can be used...... for a central receiver solar thermal power plant with direct steam generation. The variation in the cycle performance with respect to the turbine inlet ammonia mass fraction and pressure and a comparison of the initial investment with that of the basic Rankine cycle are also presented. Only high live steam...... for such plants for improved performance. This approach can also be combined with using advanced power cycles like the Kalina cycle, which uses a zeotropic mixture of ammonia and water instead of pure water as the working fluid. This paper presents the optimisation of a particular Kalina cycle layout...

  9. Growth of Ni2Si by rapid thermal annealing: Kinetics and moving species

    Science.gov (United States)

    Ma, E.; Lim, B. S.; Nicolet, M.-A.; Natan, M.

    1987-10-01

    The growth kinetics is characterized and the moving species is identified for the formation of Ni2Si by Rapid Thermal Annealing (RTA) of sequentially deposited Si and Ni films on a Si substrate. The interfacial Ni2Si layer grows as the square root of time, indicating that the suicide growth process is diffusion-limited. The activation energy is 1.25±0.2 eV in the RTA temperature range of 350 450° C. The results extend those of conventional steady-state furnace annealing quite fittingly, and a common activation energy of 1.3±0.2 eV is deduced from 225° to 450° C. The marker experiment shows that Ni is the dominant moving species during Ni2Si formation by RTA, as is the case for furnace annealing. It is concluded that the two annealing techniques induce the same growth mechanisms in Ni2Si formation.

  10. Rapid thermal annealing and crystallization mechanisms study of silicon nanocrystal in silicon carbide matrix

    Directory of Open Access Journals (Sweden)

    Wan Zhenyu

    2011-01-01

    Full Text Available Abstract In this paper, a positive effect of rapid thermal annealing (RTA technique has been researched and compared with conventional furnace annealing for Si nanocrystalline in silicon carbide (SiC matrix system. Amorphous Si-rich SiC layer has been deposited by co-sputtering in different Si concentrations (50 to approximately 80 v%. Si nanocrystals (Si-NC containing different grain sizes have been fabricated within the SiC matrix under two different annealing conditions: furnace annealing and RTA both at 1,100°C. HRTEM image clearly reveals both Si and SiC-NC formed in the films. Much better "degree of crystallization" of Si-NC can be achieved in RTA than furnace annealing from the research of GIXRD and Raman analysis, especially in high-Si-concentration situation. Differences from the two annealing procedures and the crystallization mechanism have been discussed based on the experimental results.

  11. Rapid quantitation of thermal oxidation products in fats and oils by 1H-NMR spectroscopy.

    Science.gov (United States)

    Yang, C M; Grey, A A; Archer, M C; Bruce, W R

    1998-01-01

    This work describes the application of high-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy to the study of the thermal peroxidation of beef tallow and corn oil under standardized conditions. The approach provides a rapid, quantitative method for determining the degree of oxidation of unsaturated fatty acids in animal and vegetable fats and oils by quantitating the decreasing intensities of 1H-NMR peaks for allylic and olefinic protons in unsaturated fatty acid chains of triglycerides and the increasing peak intensities of hydroperoxide and saturated and alpha, beta-unsaturated aldehydic protons in relation to the less labile protons in the triglyceride molecule. Two-dimensional correlation spectroscopy analysis of highly oxidized beef tallow (180 degrees C for 24 h) suggested that the unsaturated aldehydes that persisted were apparently associated with carboxy groups.

  12. Influence of Rapid Thermal Annealing on the Characteristics of InGaN/GaN MQWs

    Directory of Open Access Journals (Sweden)

    Tian Yuan

    2016-01-01

    Full Text Available N-type InGaN/GaN multiple-quantum-wells (MQWs were grown on sapphire substrates by metal organic chemical vapor deposition (MOCVD. The crystal quality and optical properties of samples after rapid thermal annealing (RTA at different temperatures in a range from 400 to 800°C are investigated by X-ray diffraction (XRD and photoluminescence (PL spectrum. The experimental results show that the peaks of InGaN, InN and In can be observed in all samples. And the results are induced by the phase separation and In-clusters. The luminescence peak of the samples annealed showed a red shift. It is caused by strain stress relaxation during the RTA process. Furthermore, some defects can be eliminated and the best annealing temperature is from 500°C to 700°C.

  13. The effect of thermal cycling on the shear bond strength of porcelain/Ti-6Al-4V interfaces.

    Science.gov (United States)

    Sendão, Isabel A; Alves, Alexandra C; Galo, Rodrigo; Toptan, Fatih; Silva, Filipe S; Ariza, Edith

    2015-04-01

    The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 ± 1 and 60 ± 2°C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 ± 15.9, 52.2 ± 23.6, and 59.9 ± 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Effect of Thermal Cycle on the Formation of Intermetallic Compounds in Laser Welding of Aluminum-Steel Overlap Joints

    Science.gov (United States)

    Fan, J.; Thomy, C.; Vollertsen, F.

    The intermetallic compound (IMC) (or intermetallic phase layer) has a significant influence on the mechanical properties ofjoints between dissimilar metals obtained by thermal processes such as laser welding. Its formation is basically affected by thermal cycles in the joining or contact zone, where the IMC is formed. Within this study, the influence of the thermal cycle on the formation of the IMC during laser welding of an aluminum-steel (Al99.5-DC01) overlap joint was investigated. The temperature was measured directly by a thermocouple, and the weld seam was analyzed by scanning electron microscope (SEM). The influence of peak temperature, cooling time and the integral of the thermal cycle on the thickness of the IMC was identified and discussed. It was identified that cooling time has the biggest influence on the thickness of the IMC.

  15. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder.

    Science.gov (United States)

    Boker, Steven M; Leibenluft, Ellen; Deboeck, Pascal R; Virk, Gagan; Postolache, Teodor T

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual's data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD.

  16. Mood Oscillations and Coupling Between Mood and Weather in Patients with Rapid Cycling Bipolar Disorder

    Science.gov (United States)

    Boker, Steven M.; Leibenluft, Ellen; Deboeck, Pascal R.; Virk, Gagan; Postolache, Teodor T.

    2008-01-01

    Rapid Cycling Bipolar Disorder (RCBD) outpatients completed twice-daily mood self-ratings for 3 consecutive months. These ratings were matched with local measurements of atmospheric pressure, cloud cover, and temperature. Several alternative second order differential equation models were fit to the data in which mood oscillations in RCBD were allowed to be linearly coupled with daily weather patterns. The modeling results were consistent with an account of mood regulation that included intrinsic homeostatic regulation as well as coupling between weather and mood. Models were tested first in a nomothetic method where models were fit over all individuals and fit statistics of each model compared to one another. Since substantial individual differences in intrinsic dynamics were observed, the models were next fit using an ideographic method where each individual’s data were fit separately and best-fitting models identified. The best-fitting within-individual model for the largest number of individuals was also the best-fitting nomothetic model: temperature and the first derivative of temperature coupled to mood and no effect of barometric pressure or cloud cover. But this model was not the best-fitting model for all individuals, suggesting that there may be substantial individual differences in the dynamic association between weather and mood in RCBD patients. Heterogeneity in the parameters of the differential equation model of homeostatic equilibrium as well as the coupling of mood to an inherently unpredictable (i.e., nonstationary) process such as weather provide an alternative account for reported broadband frequency spectra of daily mood in RCBD. PMID:19266057

  17. Rapid Titration of Measles and Other Viruses: Optimization with Determination of Replication Cycle Length

    Science.gov (United States)

    Grigorov, Boyan; Rabilloud, Jessica; Lawrence, Philip; Gerlier, Denis

    2011-01-01

    Background Measles virus (MV) is a member of the Paramyxoviridae family and an important human pathogen causing strong immunosuppression in affected individuals and a considerable number of deaths worldwide. Currently, measles is a re-emerging disease in developed countries. MV is usually quantified in infectious units as determined by limiting dilution and counting of plaque forming unit either directly (PFU method) or indirectly from random distribution in microwells (TCID50 method). Both methods are time-consuming (up to several days), cumbersome and, in the case of the PFU assay, possibly operator dependent. Methods/Findings A rapid, optimized, accurate, and reliable technique for titration of measles virus was developed based on the detection of virus infected cells by flow cytometry, single round of infection and titer calculation according to the Poisson's law. The kinetics follow up of the number of infected cells after infection with serial dilutions of a virus allowed estimation of the duration of the replication cycle, and consequently, the optimal infection time. The assay was set up to quantify measles virus, vesicular stomatitis virus (VSV), and human immunodeficiency virus type 1 (HIV-1) using antibody labeling of viral glycoprotein, virus encoded fluorescent reporter protein and an inducible fluorescent-reporter cell line, respectively. Conclusion Overall, performing the assay takes only 24–30 hours for MV strains, 12 hours for VSV, and 52 hours for HIV-1. The step-by-step procedure we have set up can be, in principle, applicable to accurately quantify any virus including lentiviral vectors, provided that a virus encoded gene product can be detected by flow cytometry. PMID:21915289

  18. Characteristics of Turbulent Airflow Deduced from Rapid Surface Thermal Fluctuations: An Infrared Surface Anemometer

    Science.gov (United States)

    Aminzadeh, Milad; Breitenstein, Daniel; Or, Dani

    2017-12-01

    The intermittent nature of turbulent airflow interacting with the surface is readily observable in fluctuations of the surface temperature resulting from the thermal imprints of eddies sweeping the surface. Rapid infrared thermography has recently been used to quantify characteristics of the near-surface turbulent airflow interacting with the evaporating surfaces. We aim to extend this technique by using single-point rapid infrared measurements to quantify properties of a turbulent flow, including surface exchange processes, with a view towards the development of an infrared surface anemometer. The parameters for the surface-eddy renewal (α and β ) are inferred from infrared measurements of a single-point on the surface of a heat plate placed in a wind tunnel with prescribed wind speeds and constant mean temperatures of the surface. Thermally-deduced parameters are in agreement with values obtained from standard three-dimensional ultrasonic anemometer measurements close to the plate surface (e.g., α = 3 and β = 1/26 (ms)^{-1} for the infrared, and α = 3 and β = 1/19 (ms)^{-1} for the sonic-anemometer measurements). The infrared-based turbulence parameters provide new insights into the role of surface temperature and buoyancy on the inherent characteristics of interacting eddies. The link between the eddy-spectrum shape parameter α and the infrared window size representing the infrared field of view is investigated. The results resemble the effect of the sampling height above the ground in sonic anemometer measurements, which enables the detection of larger eddies with higher values of α . The physical basis and tests of the proposed method support the potential for remote quantification of the near-surface momentum field, as well as scalar-flux measurements in the immediate vicinity of the surface.

  19. Thermal Impact of Operating Conditions on the Performance of a Combined Cycle Gas Turbine

    Directory of Open Access Journals (Sweden)

    Thamir K. Ibrahim

    2012-08-01

    Full Text Available The combined cycle gas-turbine (CCGT power plant is a highly developed technology which generates electricalpower at high efficiencies. The first law of thermodynamics is used for energy analysis of the performance of theCCGT plant. The effects of varying the operating conditions (ambient temperature, compression ratio, turbine inlettemperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam on the performance of theCCGT (overall efficiency and total output power were investigated. The programming of the performance model forCCGT was developed utilizing MATLAB software. The simulation results for CCGT show that the overall efficiencyincreases with increases in the compression ratio and turbine inlet temperature and with decreases in ambienttemperature. The total power output increases with increases in the compression ratio, ambient temperature, andturbine inlet temperature. The peak overall efficiency was reached with a higher compression ratio and low ambienttemperature. The overall efficiencies for CCGT were very high compared to the thermal efficiency of GT plants. Theoverall thermal efficiency of the CCGT quoted was around 57%; hence, the compression ratios, ambient temperature,turbine inlet temperature, isentropic compressor and turbine efficiencies, and mass flow rate of steam have a stronginfluence on the overall performance of the CCGT cycle.

  20. Theoretical and experimental analysis of the vacuum pressure in a vacuum glazing after extreme thermal cycling

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Yueping; Hyde, Trevor; Hewitt, Neil [Centre for Sustainable Technologies, School of the Built Environment, University of Ulster, Newtownabbey, BT37 0QB N. Ireland (United Kingdom); Eames, Philip C. [Centre for Renewable Energy Research, University of Loughborough (United Kingdom)

    2009-09-15

    Details of theoretical and experimental studies of the change in vacuum pressure within a vacuum glazing after extreme thermal cycling are presented. The vacuum glazing was fabricated at low temperature using an indium-copper-indium edge seal. It comprised two 4 mm thick 0.4 m by 0.4 m glass panes with low-emittance coatings separated by an array of stainless steel support pillars spaced at 25 mm with a diameter of 0.4 mm and a height of 0.15 mm. Thermal cycling tests were undertaken in which the air temperature on one side of the sample was taken from -30 C to +50 C and back to -30 C 15 times while maintaining an air temperature of 22 C on the other side. After this test procedure, it was found that the glass to glass heat conductance at the centre glazing area had increased by 10.1% from which the vacuum pressure within the evacuated space was determined to have increased from the negligible level of less than 0.1 Pa to 0.16 Pa using the model of Corrucini. Previous research has shown that if the vacuum pressure is less than 0.1 Pa, the effect of conduction through the residual gas on the total glazing heat transfer is negligible. The degradation of vacuum level determined was corroborated by the change in glass surface temperatures. (author)

  1. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  2. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    Science.gov (United States)

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  3. Thermal analysis of a Phase Change Material for a Solar Organic Rankine Cycle

    Science.gov (United States)

    Iasiello, M.; Braimakis, K.; Andreozzi, A.; Karellas, S.

    2017-11-01

    Organic Rankine Cycle (ORC) is a promising technology for low temperature power generation, for example for the utilization of medium temperature solar energy. Since heat generated from solar source is variable throughout the day, the implementation of Thermal Energy Storage (TES) systems to guarantee the continuous operation of solar ORCs is a critical task, and Phase Change Materials (PCM) rely on latent heat to store large amounts of energy. In the present study, a thermal analysis of a PCM for a solar ORC is carried out. Three different types of PCMs are analyzed. The energy equation for the PCM is modeled by using the heat capacity method, and it is solved by employing a 1Dexplicit finite difference scheme. The solar source is modeled with a time-variable temperature boundary condition, with experimental data taken from the literature for two different solar collectors. Results are presented in terms of temperature profiles and stored energy. It has been shown that the stored energy depends on the heat source temperature, on the employed PCM and on the boundary conditions. It has been demonstrated that the use of a metal foam can drastically enhance the stored energy due to the higher overall thermal conductivity.

  4. Materials characterization of rapid thermal chemical vapor deposition of titanium disilicide

    Science.gov (United States)

    Gladden-Green, Dannellia Banay

    Technological advancements of novel processes and materials involving refractory metal silicides for ultra large scale integration is of paramount importance to the semiconductor industry. Scaling of devices to meet the demands for increased packing density and speed requires such novel processes and materials. Rapid thermal chemical vapor deposition (RTCVD) of titanium disilicide (TiSisb2) was investigated in an effort to meet some of the challenges of ultra large scale integration (ULSI) technology. Selective RTCVD of TiSisb2 offers an optimal technological vehicle for achieving contacts to ultra-shallow junctions. Of all of the metal silicides, TiSisb2 has the lowest resistivity and meets the microelectronics demands for a thermally stable contact. The research results presented in this dissertation explores the mechanisms of selective RTCVD of TiSisb2 in terms of thermodynamic trends and kinetic driving forces for nucleation and growth. The present research addresses the qualitative and quantitative parameters that affect the controlling mechanisms for nucleation and therefore the results provide significant data and theoretical insights into a state-of-the-art process. Just as the fundamental building block in understanding the kinetic constraints of a process lie in the realm of thermodynamic exploration, understanding the complex processes involved in RTCVD TiSisb2 begin with characterization of the mechanisms governing thin film nucleation. In this work, the early stages of growth are investigated as they offer insight into how process parameters are optimized to render desired silicide film properties. Equilibrium simulations have been used to model the CVD reaction with very good trend indicating accuracy. Empirical investigations of CVD TiSisb2 took place in a low-pressure rapid-thermal environment using the SiHsb4 + TiClsb4 gas system on silicon (100) substrates. Secondary ion mass spectroscopy (SIMS) has been used to qualify the benefits of vacuum and

  5. Computational fluid dynamic (CFD) investigation of thermal uniformity in a thermal cycling based calibration chamber for MEMS

    Science.gov (United States)

    Gui, Xulong; Luo, Xiaobing; Wang, Xiaoping; Liu, Sheng

    2015-12-01

    Micro-electrical-mechanical system (MEMS) has become important for many industries such as automotive, home appliance, portable electronics, especially with the emergence of Internet of Things. Volume testing with temperature compensation has been essential in order to provide MEMS based sensors with repeatability, consistency, reliability, and durability, but low cost. Particularly, in the temperature calibration test, temperature uniformity of thermal cycling based calibration chamber becomes more important for obtaining precision sensors, as each sensor is different before the calibration. When sensor samples are loaded into the chamber, we usually open the door of the chamber, then place fixtures into chamber and mount the samples on the fixtures. These operations may affect temperature uniformity in the chamber. In order to study the influencing factors of sample-loading on the temperature uniformity in the chamber during calibration testing, numerical simulation work was conducted first. Temperature field and flow field were simulated in empty chamber, chamber with open door, chamber with samples, and chamber with fixtures, respectively. By simulation, it was found that opening chamber door, sample size and number of fixture layers all have effects on flow field and temperature field. By experimental validation, it was found that the measured temperature value was consistent with the simulated temperature value.

  6. Exergy analysis of heat exchangers in the copper-chlorine thermochemical cycle to enhance thermal effectiveness and cycle efficiency

    National Research Council Canada - National Science Library

    Orhan, Mehmet F; Dincer, Ibrahim; Rosen, Marc A

    2011-01-01

    .... For this temperature level, the copper-chlorine (Cu-Cl) cycle is one of the most promising cycles that can be integrated with nuclear reactors for hydrogen production by decomposing water into its constituents...

  7. Characterization of tin crystal orientation evolution during thermal cycling in lead-free solder joints

    Science.gov (United States)

    Zhou, Bite

    To address the long term reliability of lead-free solder joints in electronic devices during thermal cycling, the fundamental understanding of deformation mechanisms was studied using polarized light optical microscopy (PLM), electron backscatter diffraction (EBSD) in scanning electron microscopy (SEM), and synchrotron X-ray diffraction (XRD). Near-eutectic Sn-3.0(wt %) Ag-0.5(wt %) Cu (SAC305) lead-free solder joints were assessed in three different package designs: low-strain plastic ball grid array (PBGA), medium-strain fine-pitch ball grid array (BGA), and high-strain wafer-level-chip-scale package (WLCSP). The effect of microstructure evolution on solder failure is correlated with dislocation slip activities. The major failure mode in lead-free solder joints during thermal cycling that causes the electrical failure of the device is cracking in the bulk Sn near the Si chip/solder interface. Microstructure and Sn grain orientation evolution usually precedes crack development. A combined approach of both statistical analysis of a large number of solder joints, and detailed studies of individual solder balls was used to investigate the causes of fracture. Sn crystal orientation evolution and its effect on deformation was characterized in solder joints with different thermal histories, and compared with those from other package designs with different effective strain levels. The relationship between the initial dominant and localized recrystallized Sn grain orientations on crack development was investigated. It is found that in the low-strain package design, cracking is strongly correlated with Sn grain orientations with the [001] direction (c-axis) nearly aligned with the chip/solder interface. But no cracks were observed in solder balls with dominant orientations that have the c-axis normal to the interface plane. In higher-strain packages, however, cracking occurred in a variety of Sn grain orientations, and even solder balls with dominant orientations that are

  8. Influence of different treatments of the ceramic surface and thermal cycling on the bond strength of brackets to ceramic

    Directory of Open Access Journals (Sweden)

    Fernando Guerra SÁEZ

    Full Text Available Abstract Objective To evaluate in vitro the effect of different treatments of the ceramic surface and thermal cycling on the shear bond strength (SBS of metallic brackets bonded to feldspathic ceramic. Material and method Ceramic cylinders were divided into four groups (n=4 according to the treatment of ceramic surface: G1-Clearfil Ceramic Primer silane and Transbond XT (CCPT; G2-etched with 10% hydrofluoric acid (HFA for 60 s, CCP and Transbond XT (ACCPT; G3-etched with 10% HFA for 60 s, Ambar Adhesive and Transbond XT (AAAT; and, G4 - etched with 10% HFA for 60 s, RelyX Ceramic Primer silane -RCP, adhesive primer Transbond and Transbond XT (ACPPT. Brackets were bonded to the cylinders with Transbond XT and light-activated for 40 s with LED Radii Plus. All specimens were stored in deionized water at 37 °C for 24 h, and two cylinders from each group were subject to 7,000 thermal cycles in a thermal cycler (5 °C/55 °C. After storage and thermal cycling, the SBS test was performed at a crosshead speed of 1 mm/min. Data were subjected to two-way ANOVA and Tukey’s post hoc test (α=0.05. Result The SBS of ACCPT was significantly higher than the other groups (p<0.05. The specimens submitted to thermal cycling showed significantly lower SBS than those without thermal cycling (p<0.05, regardless the ceramic surface treatment. The ARI showed predominance of score 0 for all groups. Conclusion Acid etching, CCP silane and Transbond XT method obtained the best results for bracket bonding. Thermal cycling reduced SBS for all groups. Score 0 was predominant for ARI in all groups.

  9. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    Energy Technology Data Exchange (ETDEWEB)

    Moon, B.M.; Lalevic, B. (Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, P. O. Box 909, Piscataway, New Jersey 08855-0909 (US)); Kear, B.H.; McCandlish, L.E. (Department of Mechanics and Materials Science, Rutgers, The State University of New Jersey, P. O. Box 909, Piscataway, New Jersey 08855-0909); Safari, A.; Meskoob, M. (Department of Ceramic Science and Engineering, Rutgers, The State University of New Jersey, P. O. Box 909, Piscataway, New Jersey 08855-0909)

    1989-10-02

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 {degree}C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K ({ital T}{sub {ital c}}(zero)=105 K). A detailed study of various processing techniques has been carried out.

  10. High-density Bi-Pb-Sr-Ca-Cu-O superconductor prepared by rapid thermal melt processing

    Science.gov (United States)

    Moon, B. M.; Lalevic, B.; Kear, B. H.; McCandlish, L. E.; Safari, A.; Meskoob, M.

    1989-10-01

    A high quality, dense Bi-Pb-Sr-Ca-Cu-O superconductor has been successfully synthesized by rapid thermal melt processing. Conventionally sintered pellets were melted at 1200 °C, cooled rapidly, and then annealed. As-melted samples exhibited semiconductor behavior, which upon annealing became superconducting at 115 K [Tc(zero)=105 K]. A detailed study of various processing techniques has been carried out.

  11. The asymptotic equivalence of fixed heat flux and fixed temperature thermal boundary conditions for rapidly rotating convection

    CERN Document Server

    Calkins, Michael A; Julien, Keith; Nieves, David; Driggs, Derek; Marti, Philippe

    2015-01-01

    The influence of fixed temperature and fixed heat flux thermal boundary conditions on rapidly rotating convection in the plane layer geometry is investigated for the case of stress-free mechanical boundary conditions. It is shown that whereas the leading order system satisfies fixed temperature boundary conditions implicitly, a double boundary layer structure is necessary to satisfy the fixed heat flux thermal boundary conditions. The boundary layers consist of a classical Ekman layer adjacent to the solid boundaries that adjust viscous stresses to zero, and a layer in thermal wind balance just outside the Ekman layers adjusts the temperature such that the fixed heat flux thermal boundary conditions are satisfied. The influence of these boundary layers on the interior geostrophically balanced convection is shown to be asymptotically weak, however. Upon defining a simple rescaling of the thermal variables, the leading order reduced system of governing equations are therefore equivalent for both boundary condit...

  12. Fast thermal cycling of acetanilide and magnesium chloride hexahydrate for indoor solar cooking

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A.; Al-Amir, S.; Al-Marzouki, F.M.; Faidah, Adel S.; Al-Ghamdi, A.A.; Al-Heniti, S. [Physics Dept., Faculty of Science, King Abdul Aziz Univ., P.O. Box 80203, Jeddah 21589 (Saudi Arabia)

    2009-12-15

    Solar cookers are broadly divided into a direct or focusing type, indirect or box-type and advanced solar cookers. The focusing and box-type solar cookers are for outdoor applications. The advanced solar cookers have the advantage of being usable indoors and thus solve one of the problems, which impede the social acceptance of solar cookers. The advanced type solar cookers are employing additional solar units that increase the cost. Therefore, the solar cooker must contain a heat storage medium to store thermal energy for use during off-sunshine hours. The main aim of this study is to investigate the influence of the melting/solidification fast cycling of the commercial grade acetanilide C{sub 8}H{sub 9}NO (T{sub m} = 116 C) and magnesium chloride hexahydrate MgCl{sub 2}.6H{sub 2}O (T{sub m} = 116.7 C) on their thermo-physical properties; such as melting point and latent heat of fusion, to be used as storage media inside solar cookers. Five hundred cycles have been performed. The thermo-physical properties are measured using the differential scanning calorimetric technique. The compatibility of the selected phase change materials (PCMs) with the containing material is also studied via the surface investigation, using the SIM technique, of aluminum and stainless steel samples embedded in the PCM during cycling. It is inferred that acetanilide is a promising PCM for cooking indoors and during low intensity solar radiation periods with good compatibility with aluminum as a containing material. However, MgCl{sub 2}.6H{sub 2}O is not stable during its thermal cycling (even with the extra water principle) due to the phase segregation problem; therefore, it is not recommended as a storage material inside solar cookers for cooking indoors. It is also indicated that MgCl{sub 2}.6H{sub 2}O is not compatible with either aluminum or stainless steel. (author)

  13. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethylmethacrylate and polyamide denture base resins.

    Science.gov (United States)

    Ayaz, Elif Aydoğan; Bağış, Bora; Turgut, Sedanur

    2015-10-16

    The purpose of this study was to evaluate the effects of thermal cycling on the surface roughness, hardness and flexural strength of denture resins. Polyamide (PA; Deflex and Valplast) and polymethylmethacrylate (PMMA; QC-20 and Acron MC) denture materials were selected. A total of 180 specimens were fabricated and then divided into 3 groups. The first group (group 1) acted as a control and was not thermocycled. The second group (group 2) was subjected to thermocycling for 10,000 cycles in artificial saliva and 5,000 cycles in distilled water. The last group (group 3) was thermocycled for 20,000 cycles in artificial saliva and 10,000 cycles in distilled water. The surface roughness were measured with a profilometer. The hardness of the resins were measured with a Vickers Hardness Tester using a 100-gf load. The flexural strength test was performed using the universal test machine with a crosshead speed of 5 mm/min. Data were analyzed using statistical software. The results of the measurements in the 3 different tests were analyzed by Kruskal-Wallis test with Bonferroni correction. Multiple comparisons were made by Conover and Wilcoxon tests. There was a significant difference between the PMMA and PA groups in terms of surface roughness, hardness and transverse strength before and after thermal cycling (p<0.001). Thermal cycling did not change the surface roughness, hardness and flexural strength values of either the PMMA or PA group (p>0.001).

  14. Stomatal control and leaf thermal and hydraulic capacitances under rapid environmental fluctuations.

    Directory of Open Access Journals (Sweden)

    Stanislaus J Schymanski

    Full Text Available Leaves within a canopy may experience rapid and extreme fluctuations in ambient conditions. A shaded leaf, for example, may become exposed to an order of magnitude increase in solar radiation within a few seconds, due to sunflecks or canopy motions. Considering typical time scales for stomatal adjustments, (2 to 60 minutes, the gap between these two time scales raised the question whether leaves rely on their hydraulic and thermal capacitances for passive protection from hydraulic failure or over-heating until stomata have adjusted. We employed a physically based model to systematically study effects of short-term fluctuations in irradiance on leaf temperatures and transpiration rates. Considering typical amplitudes and time scales of such fluctuations, the importance of leaf heat and water capacities for avoiding damaging leaf temperatures and hydraulic failure were investigated. The results suggest that common leaf heat capacities are not sufficient to protect a non-transpiring leaf from over-heating during sunflecks of several minutes duration whereas transpirative cooling provides effective protection. A comparison of the simulated time scales for heat damage in the absence of evaporative cooling with observed stomatal response times suggested that stomata must be already open before arrival of a sunfleck to avoid over-heating to critical leaf temperatures. This is consistent with measured stomatal conductances in shaded leaves and has implications for water use efficiency of deep canopy leaves and vulnerability to heat damage during drought. Our results also suggest that typical leaf water contents could sustain several minutes of evaporative cooling during a sunfleck without increasing the xylem water supply and thus risking embolism. We thus submit that shaded leaves rely on hydraulic capacitance and evaporative cooling to avoid over-heating and hydraulic failure during exposure to typical sunflecks, whereas thermal capacitance provides

  15. THERMAL CYCLING UNDER LOADING OF SINGLE CRYSTAL Cu-Al-Ni AFTER AGING

    Directory of Open Access Journals (Sweden)

    Ignacio Corro

    2016-06-01

    Full Text Available In this paper, a study of single crystal Cu-14.3Al-4.1Ni (%wt subjected to thermal cycling under loading is presented. Shape memory Cu-Al-Ni has low diffusion at temperatures above room temperature. Therefore, it is interesting to know your answer in working conditions and after being aged in this temperature range. Specimens were characterized before and after aging, using a device designed by the authors. Parameters such as critical temperatures and hysteresis width, the repeatability of the curves and the type of TM induced were analyzed. These parameters have changes then the aging or contribute to that may influence the design of applications.

  16. Numerical analysis of energy piles under different boundary conditions and thermal loading cycles

    Directory of Open Access Journals (Sweden)

    Khosravi Ali

    2016-01-01

    Full Text Available The thermo- mechanical behavior of energy piles has been studied extensively in recent years. In the present study, a numerical model was adapted to study the effect of various parameters (e.g. heating/cooling temperature, head loading condition and soil stiffness on the thermo-mechanical behavior of an energy pile installed in unsaturated sandstone. The results from the simulations were compared with measurements from a thermal response test on a prototype energy pile installed beneath a 1-story building at the US Air Force Academy (USAFA in Colorado Springs, CO. A good agreement was achieved between the results obtained from the prototype and the numerical models. A parametric evaluation were also carried out which indicated the significance of the stiffness of the unsaturated sandstone and pile’s head loading condition on stress-strain response of the energy pile during heating/cooling cycles.

  17. Modeling of Thermal Cycle CI Engine with Multi-Stage Fuel Injection

    Directory of Open Access Journals (Sweden)

    Arkadiusz Jamrozik

    2017-09-01

    Full Text Available This work presents a complete thermal cycle modeling of a four-stroke diesel engine with a three-dimensional simulation program CFD - AVL Fire. The object of the simulation was the S320 Andoria engine. The purpose of the study was to determine the effect of fuel dose distribution on selected parameters of the combustion process. As a result of the modeling, time spatial pressure distributions, rate of pressure increase, heat release rate and NO and soot emission were obtained for 3 injection strategies: no division, one pilot dose and one main dose and two pilot doses and one main dose. It has been found that the use of pilot doses on the one hand reduces engine hardness and lowers NO emissions and on the other hand, increases soot emissions.

  18. Personal, closed-cycle cooling and protective apparatus and thermal battery therefor

    Science.gov (United States)

    Klett, James W.; Klett, Lynn B.

    2004-07-20

    A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

  19. Life cycle assessment of thermal Waste-to-Energy technologies: Review and recommendations

    DEFF Research Database (Denmark)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto

    2015-01-01

    -studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste...... composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent......Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case...

  20. The Effect of Thermal Cycling on Crystal-Liquid Separation During Lunar Magma Ocean Differentiation

    Science.gov (United States)

    Mills, Ryan D.

    2013-01-01

    Differentiation of magma oceans likely involves a mixture of fractional and equilibrium crystallization [1]. The existence of: 1) large volumes of anorthosite in the lunar highlands and 2) the incompatible- rich (KREEP) reservoir suggests that fractional crystallization may have dominated during differentiation of the Moon. For this to have occurred, crystal fractionation must have been remarkably efficient. Several authors [e.g. 2, 3] have hypothesized that equilibrium crystallization would have dominated early in differentiation of magma oceans because of crystal entrainment during turbulent convection. However, recent numerical modeling [4] suggests that crystal settling could have occurred throughout the entire solidification history of the lunar magma ocean if crystals were large and crystal fraction was low. These results indicate that the crystal size distribution could have played an important role in differentiation of the lunar magma ocean. Here, I suggest that thermal cycling from tidal heating during lunar magma ocean crystallization caused crystals to coarsen, leading to efficient crystal-liquid separation.

  1. Effect of Microstructural Evolution on Sagging Behavior of Cold-Rolled Aluminum Foil During the Brazing Thermal Cycle

    Science.gov (United States)

    Liu, Canwei; Xue, Xili; Chen, Xin; Li, Long; Xia, Chengdong; Zhong, Zhaojun; Zhou, Dejing

    2017-11-01

    Effect of microstructural evolution on sagging behavior of aluminum foil was investigated during the brazing thermal cycle. During the brazing thermal cycle, the sagging behavior consists of three stages: slight sagging stage, accelerative sagging stage and slow sagging stage. The sagging of cold-rolled aluminum foil mainly occurs in the accelerative sagging stage, which is governed by recovery under external stress in the sagging test. The coarse recrystallized grain is responsible for the slow sagging stage by reducing grain boundary sliding. Increasing cold-rolled reduction and addition of final annealing heat treatment can improve sagging resistance by shortening recovery process during the brazing thermal cycle. Dissolution of dispersoids has few effects on sagging deformation.

  2. Fundamental-frequency and load-varying thermal cycles effects on lifetime estimation of DFIG power converter

    DEFF Research Database (Denmark)

    Zhang, G.; Zhou, D.; Yang, J.

    2017-01-01

    In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been ...... adopted to handle the fundamental-frequency thermal cycles and load-varying thermal cycles. Their effects on lifetime estimation of the power device in the Back-to-Back (BTB) power converter are evaluated.......In respect to a Doubly-Fed Induction Generator (DFIG) system, its corresponding time scale varies from microsecond level of power semiconductor switching to second level of the mechanical response. In order to map annual thermal profile of the power semiconductors, different approaches have been...

  3. Rapid and Adaptable Measurement of Protein Thermal Stability by Differential Scanning Fluorimetry: Updating a Common Biochemical Laboratory Experiment

    Science.gov (United States)

    Johnson, R. Jeremy; Savas, Christopher J.; Kartje, Zachary; Hoops, Geoffrey C.

    2014-01-01

    Measurement of protein denaturation and protein folding is a common laboratory technique used in undergraduate biochemistry laboratories. Differential scanning fluorimetry (DSF) provides a rapid, sensitive, and general method for measuring protein thermal stability in an undergraduate biochemistry laboratory. In this method, the thermal…

  4. Mechanical properties of amorphous alloys ribbons prepared by rapid quenching of the melt after different thermal treatments before quenching

    NARCIS (Netherlands)

    Tabachnikova, ED; Bengus, VZ; Egorov, D V; Tsepelev, VS; Ocelik, Vaclav

    1997-01-01

    The mechanical properties of amorphous alloy are greatly influenced by the thermal treatment of its melt before rapid quenching. The strength and the fracture toughness of some amorphous alloys obtained after melt beating above the melt critical temperature T-CR are essentially higher than those

  5. Effect of thermal cycle on the interfacial antiferromagnetic spin configuration and exchange bias in Ni-Mn-Sb alloy

    Directory of Open Access Journals (Sweden)

    R. L. Wang

    2012-09-01

    Full Text Available Effect of thermal cycle on the interfacial antiferromagnetic (AFM spin configuration and exchange bias in Ni50Mn36Sb14 alloy has been investigated. The results indicate thermal cycle can induce further martensitic transition from part of arrested FM phase to AFM phase, leading to the reconstruction of interfacial antiferromagnetic spin configuration. The shape of hysteresis loops at 5 K after cooling back can be tuned from a single-shifted loop to a nearly symmetric double-shifted loop gradually accompanied with exchange bias field increasing to peak value and then decreasing. The evolutions can be illustrated intuitively by a simple AFM bidomain model.

  6. Performance Evaluation of HP/ORC (Heat Pump/Organic Rankine Cycle) System with Optimal Control of Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Do Carmo, Carolina Madeira Ramos; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    energy in periods of no thermal energy demand and reverses the heat pump cycle to supply electrical power. A dynamic model based on empirical data of this system is used to determine the annual performance. Furthermore, this work assesses the benefits of different control strategies that address...... of the users. Results show that real load control logic can lessen the adverse effects of cycling in the compressor of the system as well as increase the thermal demand (up to 33%) and the electrical demand (max. 8.4%) covered by renewable energy (solar). However, the extension of these improvements is highly...

  7. Advanced Organic Vapor Cycles for Improving Thermal Conversion Efficiency in Renewable Energy Systems

    OpenAIRE

    Ho, Tony

    2012-01-01

    The Organic Flash Cycle (OFC) is proposed as a vapor power cycle that could potentially increase power generation and improve the utilization efficiency of renewable energy and waste heat recovery systems. A brief review of current advanced vapor power cycles including the Organic Rankine Cycle (ORC), the zeotropic Rankine cycle, the Kalina cycle, the transcritical cycle, and the trilateral flash cycle is presented. The premise and motivation for the OFC concept is that essentially by impro...

  8. The Effect of Thermal Cycling Treatments on the Thermal Stability and Mechanical Properties of a Ti-Based Bulk Metallic Glass Composite

    Directory of Open Access Journals (Sweden)

    Fan Bu

    2016-11-01

    Full Text Available The effect of thermal cycling treatments on the thermal stability and mechanical properties of a Ti48Zr20Nb12Cu5Be15 bulk metallic glass composite (BMGC has been investigated. Results show that moderate thermal cycles in a temperature range of −196 °C (cryogenic temperature, CT to 25 °C (room temperature, RT or annealing time at CT has not induced obvious changes of thermal stability and then it decreases slightly over critical thermal parameters. In addition, the dendritic second phases with a bcc structure are homogeneously embedded in the amorphous matrix; no visible changes are detected, which shows structural stability. Excellent mechanical properties as high as 1599 MPa yield strength and 34% plastic strain are obtained, and the yield strength and elastic modulus also increase gradually. The effect on the stability is analyzed quantitatively by crystallization kinetics and plastic-flow models, and indicates that the reduction of structural relaxation enthalpy, which is related to the degradation of spatial heterogeneity, reduces thermal stability but does not imperatively deteriorate the plasticity.

  9. Sex and estrous cycle-dependent rapid protein kinase signaling actions of estrogen in distal colonic cells.

    LENUS (Irish Health Repository)

    O'Mahony, Fiona

    2008-10-01

    Previous studies from our laboratory demonstrated that 17beta-estradiol (E2) rapidly inhibits Cl(-) secretion in rat and human distal colonic epithelium. The inhibition has been shown to occur via targeting of a basolateral K(+) channel identified as the KCNQ1 (KvLQT1) channel. E2 indirectly modulates the channel activity via a cascade of second messengers which are rapidly phosphorylated in response to E2. The anti-secretory mechanism may be the manner by which E2 induces fluid retention in the intestine during periods of high circulating plasma E2. Here we review the sex-dependent and estrous cycle regulation of this novel rapid response to E2. The inhibition of KCNQ1 channel activity and Cl(-) secretion will be of interest in the future in the investigation of the retentive effects of estrogen in female tissue and also in the study of secretory disorders and drugable targets of the intestine.

  10. Formation and Device Application of Ge Nanowire Heterostructures via Rapid Thermal Annealing

    Directory of Open Access Journals (Sweden)

    Jianshi Tang

    2011-01-01

    Full Text Available We reviewed the formation of Ge nanowire heterostructure and its field-effect characteristics by a controlled reaction between a single-crystalline Ge nanowire and Ni contact pads using a facile rapid thermal annealing process. Scanning electron microscopy and transmission electron microscopy demonstrated a wide temperature range of 400~500°C to convert the Ge nanowire to a single-crystalline Ni2Ge/Ge/Ni2Ge nanowire heterostructure with atomically sharp interfaces. More importantly, we studied the effect of oxide confinement during the formation of nickel germanides in a Ge nanowire. In contrast to the formation of Ni2Ge/Ge/Ni2Ge nanowire heterostructures, a segment of high-quality epitaxial NiGe was formed between Ni2Ge with the confinement of Al2O3 during annealing. A twisted epitaxial growth mode was observed in both two Ge nanowire heterostructures to accommodate the large lattice mismatch in the NixGe/Ge interface. Moreover, we have demonstrated field-effect transistors using the nickel germanide regions as source/drain contacts to the Ge nanowire channel. Our Ge nanowire transistors have shown a high-performance p-type behavior with a high on/off ratio of 105 and a field-effect hole mobility of 210 cm2/Vs, which showed a significant improvement compared with that from unreacted Ge nanowire transistors.

  11. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    Science.gov (United States)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  12. Rapid thermal chemical vapor deposition growth of nanometer-thin SiC on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steckl, A.J.; Li, J.P. (Univ. of Cincinnati, OH (United States))

    1992-08-28

    Rapid thermal chemical vapor deposition growth of [beta]-SiC ultrathin films on Si (100) was achieved using the carbonization reaction of the silicon substrate with C[sub 3]H[sub 8] gas. Growth rates of 0.5-2 nm s[sup -1] have been achieved at 1100-1300degC using C[sub 3]H[sub 8] flow rates of 7-9 standard cm[sup 3] min[sup -1]. X-ray and electron diffraction indicate single-crystal growth. Therefore nanometer-scale SiC films can be grown by controlling the reaction time to a few seconds. The activation energy at atmospheric pressure is 3.12 eV. The growth rate was found to decrease significantly at higher C[sub 3]H[sub 8] flow rates, leading to films of constant thickness beyond a certain critical reaction time. Using this regime of self-limiting growth, SiC films of 3-5 nm have been grown with relatively little sensitivity to the growth time. (orig.).

  13. Photocurrent Enhancement by a Rapid Thermal Treatment of Nanodisk-Shaped SnS Photocathodes.

    Science.gov (United States)

    Patel, Malkeshkumar; Kumar, Mohit; Kim, Joondong; Kim, Yu Kwon

    2017-12-21

    Photocathodes made from the earth-abundant, ecofriendly mineral tin monosulfide (SnS) can be promising candidates for p/n-type photoelectrochemical cells because they meet the strict requirements of energy band edges for each individual photoelectrode. Herein we fabricated SnS-based cell that exhibited a prolonged photocurrent for 3 h at -0.3 V vs the reversible hydrogen electrode (RHE) in a 0.1 M HCl electrolyte. An enhancement of the cathodic photocurrent from 2 to 6 mA cm-2 is observed through a rapid thermal treatment. Mott-Schottky analysis of SnS samples revealed an anodic shift of 0.7 V in the flat band potential under light illumination. Incident photon-to-current conversion efficiency (IPCE) analysis indicates that an efficient charge transfer appropriate for solar hydrogen generation occurs at the -0.3 V vs RHE potential. This work shows that SnS is a promising material for photocathode in PEC cells and its performance can be enhanced via simple postannealing.

  14. Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.

    Energy Technology Data Exchange (ETDEWEB)

    Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

    2011-09-01

    Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

  15. Lock-in thermography as a rapid and reproducible thermal characterization method for magnetic nanoparticles

    Science.gov (United States)

    Lemal, Philipp; Geers, Christoph; Monnier, Christophe A.; Crippa, Federica; Daum, Leopold; Urban, Dominic A.; Rothen-Rutishauser, Barbara; Bonmarin, Mathias; Petri-Fink, Alke; Moore, Thomas L.

    2017-04-01

    Lock-in thermography (LIT) is a sensitive imaging technique generally used in engineering and materials science (e.g. detecting defects in composite materials). However, it has recently been expanded for investigating the heating power of nanomaterials, such as superparamagnetic iron oxide nanoparticles (SPIONs). Here we implement LIT as a rapid and reproducible method that can evaluate the heating potential of various sizes of SPIONs under an alternating magnetic field (AMF), as well as the limits of detection for each particle size. SPIONs were synthesized via thermal decomposition and stabilized in water via a ligand transfer process. Thermographic measurements of SPIONs were made by stimulating particles of varying sizes and increasing concentrations under an AMF. Furthermore, a commercially available SPION sample was included as an external reference. While the size dependent heating efficiency of SPIONs has been previously described, our objective was to probe the sensitivity limits of LIT. For certain size regimes it was possible to detect signals at concentrations as low as 0.1 mg Fe/mL. Measuring at different concentrations enabled a linear regression analysis and extrapolation of the limit of detection for different size nanoparticles.

  16. ROBUST REGULATION FOR SYSTEMS WITH POLYNOMIAL NONLINEARITY APPLIED TO RAPID THERMAL PROCESSES

    Directory of Open Access Journals (Sweden)

    S. V. Aranovskiy

    2014-07-01

    Full Text Available Abstract. A problem of output robust control for a system with power nonlinearity is considered. The considered problem can be rewritten as a stabilization problem for a system with polynomial nonlinearity by introducing the error term. The problem of temperature regulation is considered as application; the rapid thermal processes in vapor deposition processing are studied. Modern industrial equipment uses complex sensors and control systems; these devices are not available for laboratory setups. The limited amount of available sensors and other technical restrictions for laboratory setups make it an actual problem to design simple low-order output control laws. The problem is solved by the consecutive compensator approach. The paper deals with a new type of restriction which is a combination of linear and power restrictions. It is shown that the polynomial nonlinearity satisfies this restriction. Asymptotical stability of the closed-loop system is proved by the Lyapunov functions approach for the considered nonlinear function; this contribution extends previously known results. Numerical simulation of the vapor deposition processing illustrates that the proposed approach results in zero-mean tracking error with standard deviation less than 1K.

  17. Microleakage of self-etching primers after thermal and flexural load cycling.

    Science.gov (United States)

    Kubo, S; Yokota, H; Sata, Y; Hayashi, Y

    2001-06-01

    To evaluate the adhesive properties of a one-bottle self-etching primer system. 150 wedge-shaped cervical cavities on bovine teeth were restored with Clearfil Liner Bond 2 (LB), Clearfil Liner Bond 2V (LV) or Clearfil SE Bond (SE), according to the manufacturer's instructions. Twenty specimens of each adhesive system were finished 15 mins after light curing and 30 specimens were finished after a 24-hr storage period in water. From each group, 10 restorations were immediately immersed in 0.5% basic fuchsin solution and kept there for 24 hrs to examine microleakage. The other 10 restorations were thermocycled (5-60 degrees C, 15 s dwell time, 5,000 cycles), and then immersed in the dye solution. The remaining 10 specimens of the 24-hr storage group were subjected to flexural load cycling (0.5 mm labio-lingual displacement at the incisal edge, 10,000 cycles, 1 cps) prior to immersion in the dye solution. The data was analyzed using the Mann-Whitney U-test and the Kruskal-Wallis test. The tensile bond strengths of the adhesive systems to bovine enamel and dentin were also determined. The data was analyzed using the Student's t-test and ANOVA. In addition, SEM examinations were made to evaluate the effects of self-etching primers on enamel and dentin surfaces. LV and SE showed significantly better marginal sealing than LB (Pintegrity of SE did not deteriorate even after immediate finishing, thermal stresses or flexural loads. There were no significant differences in bond strengths among the adhesive systems tested. All adhesive systems showed similar bond strengths to enamel and dentin. The enamel etching patterns using LV and SE systems were obscure and difficult to assess. Although the smear plugs were not fully removed, no smear layer was observed on the treated dentin surfaces, regardless of the self-etching primer system used. Clearfil SE bond could possibly improve the clinical performance of cervical cavities.

  18. Fatigue life of fibre reinforced plastics at 295 K after thermal cycling between 295 K and 77 K

    Science.gov (United States)

    Belisario, G.; Caproni, F.; Marchetti, E.

    Results of low cycle three-point end fatigue tests at 295 K are reported. These were obtained from fibre reinforced plastics (FRP) flat specimens made of epoxy matrix reinforced with glass rovings only or glass rovings and Kevlar cloth. It is shown that previous thermal cycles between 295 K and 77 K exert an influence on the fatigue life as well on the acoustic emission results.

  19. Continental growth and mantle hydration as intertwined feedback cycles in the thermal evolution of Earth

    Science.gov (United States)

    Höning, Dennis; Spohn, Tilman

    2016-06-01

    A model of Earth's continental coverage and mantle water budget is discussed along with its thermal evolution. The model links a thermal evolution model based on parameterized mantle convection with a model of a generic subduction zone that includes the oceanic crust and a sedimentary layer as carriers of water. Part of the subducted water is used to produce continental crust while the remainder is subducted into the mantle. The total length of the subduction zones is calculated from the total surface area of continental crust assuming randomly distributed continents. The mantle viscosity is dependent of temperature and the water concentration. Sediments are generated by continental crust erosion, and water outgassing at mid-oceanic ridges closes the water cycle. We discuss the strongly coupled, non-linear model using a phase plane defined by the continental coverage and mantle water concentration. Fixed points are found in the phase plane at which the rates of change of both variables are zero. These fixed points evolve with time, but in many cases, three fixed points emerge of which two are stable and an intermediate point is unstable with respect to continental coverage. With initial conditions from a Monte-Carlo scheme we calculate evolution paths in the phase plane and find a large spread of final states that all have a mostly balanced water budget. The present day observed 40% continental surface coverage is found near the unstable fixed point. Our evolution model suggests that Earth's continental coverage formed early and has been stable for at least 1.5 Gyr. The effect of mantle water regassing (and mantle viscosity depending on water concentration) is found to lower the present day mantle temperature by about 120 K, but the present day mantle viscosity is affected little. The water cycle thus complements the well-known thermostat effect of viscosity and mantle temperature. Our results further suggest that the biosphere could impact the feedback cycles by

  20. Fused deposition modeling (FDM) fabricated part behavior under tensile stress, thermal cycling, and fluid pressure

    Science.gov (United States)

    Hossain, Mohammad Shojib

    using visual feedback method led to an increase in UTS of 16% in XYZ, 7% in XZY, and 22% in ZXY. The FDM fabricated parts using PC were tested under thermal cycling of -30° C to 85° C. A series of experiments were performed (e.g., tensile test, deformation of fabricated part, glass transition measurement) to evaluate the possibility of FDM fabricated parts in the harsh environment (embedded electronics, wiring in automotive industry, etc.). The UTS results showed that the results were not significantly different using statistical analysis after 150 thermal cycles while average Young's modulus increased from 1389 MPa to 1469 MPa after 150 thermal cycles. The highest warping of the specimen was found to be 78 microm which was the result of continuous thermal expansion and contraction. A sealing algorithm was developed using LabVIEW and MATLAB programming. The LabVIEW program was developed to obtain the edge information of each layer of a 3D model part. The MATLAB programming was used to gather the output information from LabVIEW and calculate the suggested RW providing least amount of gap in between rasters and contours. As a result, each layer became sealed and was able to withstand air pressure within a pressure vessel. A test specimen was fabricated according to the developed sealing algorithm parameters and used to show entirely sealed walls capable of withstanding up to 138 kPa air pressure.

  1. Investigation of a putative nitrogen cycle in a subsurface radioactive thermal spring

    Science.gov (United States)

    Gerbl, Friedrich; Breitfuss, Angelika; Weidler, Gerhard; Stan-Lotter, Helga

    2010-05-01

    Background: Previous studies on the microbial diversity [1] of the slightly radioactive thermal springs near Bad Gastein, Salzburg, Austria, suggested the occurrence of a nitrogen cycle in this subterranean environment. Microcosm experiments were performed to prove if nitrogen compounds may be used as energy sources for certain members of the microbial community of this spring Methods: 2 x 25 l of thermal mineral water were sampled and filtered through a 0.22 µm Stericup (Millipore). Filters were excised and used as inocula for one microcosm. Stable isotope probing (SIP), was performed by using labeled nitrogen compounds to identify microorganisms, which were able to use nitrogen as the only energy source. 2 x 35 ml of natural grown biofilm were collected and used also as inocula for microcosms. Incubation was carried out as batch cultures in the dark at 30 °C or 40 °C, respectively. Two different types of media were used for incubation. Ammonium, nitrite and nitrate were measured 3-4 times a week. PH-value was also measured and adjusted to ca. 7.5 - 7.7 if necessary. DNA extraction was performed after 3 and 8 weeks of incubation, followed by an isopycnic centrifugation step. Clone libraries were performed only from microcosms incubated at 40 °C. To compare putative differences between the microbial communities at 30 °C with those at 40 °C, as well as the two different media, DGGE analyses were carried out. Results: A continuous decrease of the initial amount of ammonium was detected while the amounts of nitrite and nitrate increased simultaneously. No alterations of the initial amount of ammonium and nitrite or nitrate, could be detected with negative controls. Mass spectrometric measurements demonstrated that the extracted DNA was highly labeled. Phylogenetic analysis of DNA bands obtained from CsCl gradients led to differences in archaeal and bacterial communities of microcosms, which may reflect the different composition of media. Two of the archaeal

  2. Influence of Rapid Freeze-Thaw Cycling on the Mechanical Properties of Sustainable Strain-Hardening Cement Composite (2SHCC

    Directory of Open Access Journals (Sweden)

    Seok-Joon Jang

    2014-02-01

    Full Text Available This paper provides experimental results to investigate the mechanical properties of sustainable strain-hardening cement composite (2SHCC for infrastructures after freeze-thaw actions. To improve the sustainability of SHCC materials in this study, high energy-consumptive components—silica sand, cement, and polyvinyl alcohol (PVA fibers—in the conventional SHCC materials are partially replaced with recycled materials such as recycled sand, fly ash, and polyethylene terephthalate (PET fibers, respectively. To investigate the mechanical properties of green SHCC that contains recycled materials, the cement, PVA fiber and silica sand were replaced with 10% fly ash, 25% PET fiber, and 10% recycled aggregate based on preliminary experimental results for the development of 2SHCC material, respectively. The dynamic modulus of elasticity and weight for 2SHCC material were measured at every 30 cycles of freeze-thaw. The effects of freeze-thaw cycles on the mechanical properties of sustainable SHCC are evaluated by conducting compressive tests, four-point flexural tests, direct tensile tests and prism splitting tests after 90, 180, and 300 cycles of rapid freeze-thaw. Freeze-thaw testing was conducted according to ASTM C 666 Procedure A. Test results show that after 300 cycles of freezing and thawing actions, the dynamic modulus of elasticity and mass loss of damaged 2SHCC were similar to those of virgin 2SHCC, while the freeze-thaw cycles influence mechanical properties of the 2SHCC material except for compressive behavior.

  3. The effect of thermal cycling on the structure and properties of a Co, Cr, Ni-TaC directionally solidified eutectic composite

    Science.gov (United States)

    Dunlevey, F. M.; Wallace, J. F.

    1973-01-01

    The effect of thermal cycling on the structure and properties of a cobalt, chromium, nickel, tantalum carbide directionally solidified eutectic composite is reported. It was determined that the stress rupture properties of the alloy were decreased by the thermal cycling. The loss in stress rupture properties varied with the number of cycles with the loss in properties after about 200 cycles being relatively high. The formation of serrations and the resulting changes in the mechanical properties of the material are discussed.

  4. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012

    Energy Technology Data Exchange (ETDEWEB)

    Martel, Laura [Lockheed Martin, Manassas, VA (United States); Smith, Paul [John Halkyard and Associates: Glosten Associates, Houston, TX (United States); Rizea, Steven [Makai Ocean Engineering, Waimanalo, HI (United States); Van Ryzin, Joe [Makai Ocean Engineering, Waimanalo, HI (United States); Morgan, Charles [Planning Solutions, Inc., Vancouver, WA (United States); Noland, Gary [G. Noland and Associates, Inc., Pleasanton, CA (United States); Pavlosky, Rick [Lockheed Martin, Manassas, VA (United States); Thomas, Michael [Lockheed Martin, Manassas, VA (United States); Halkyard, John [John Halkyard and Associates: Glosten Associates, Houston, TX (United States)

    2012-05-30

    The Ocean Thermal Energy Conversion (OTEC) Life Cycle Cost Assessment (OLCCA) is a study performed by members of the Lockheed Martin (LM) OTEC Team under funding from the Department of Energy (DOE), Award No. DE-EE0002663, dated 01/01/2010. OLCCA objectives are to estimate procurement, operations and maintenance, and overhaul costs for two types of OTEC plants: -Plants moored to the sea floor where the electricity produced by the OTEC plant is directly connected to the grid ashore via a marine power cable (Grid Connected OTEC plants) -Open-ocean grazing OTEC plant-ships producing an energy carrier that is transported to designated ports (Energy Carrier OTEC plants) Costs are developed using the concept of levelized cost of energy established by DOE for use in comparing electricity costs from various generating systems. One area of system costs that had not been developed in detail prior to this analysis was the operations and sustainment (O&S) cost for both types of OTEC plants. Procurement costs, generally referred to as capital expense and O&S costs (operations and maintenance (O&M) costs plus overhaul and replacement costs), are assessed over the 30 year operational life of the plants and an annual annuity calculated to achieve a levelized cost (constant across entire plant life). Dividing this levelized cost by the average annual energy production results in a levelized cost of electricity, or LCOE, for the OTEC plants. Technical and production efficiency enhancements that could result in a lower value of the OTEC LCOE were also explored. The thermal OTEC resource for Oahu, Hawaii and projected build out plan were developed. The estimate of the OTEC resource and LCOE values for the planned OTEC systems enable this information to be displayed as energy supplied versus levelized cost of the supplied energy; this curve is referred to as an Energy Supply Curve. The Oahu Energy Supply Curve represents initial OTEC deployment starting in 2018 and demonstrates the

  5. Adaptive multiparameter control: application to a Rapid Thermal Processing process; Commande Adaptative Multivariable: Application a un Procede de Traitement Thermique Rapide

    Energy Technology Data Exchange (ETDEWEB)

    Morales Mago, S.J.

    1995-12-20

    In this work the problem of temperature uniformity control in rapid thermal processing is addressed by means of multivariable adaptive control. Rapid Thermal Processing (RTP) is a set of techniques proposed for semiconductor fabrication processes such as annealing, oxidation, chemical vapour deposition and others. The product quality depends on two mains issues: precise trajectory following and spatial temperature uniformity. RTP is a fabrication technique that requires a sophisticated real-time multivariable control system to achieve acceptable results. Modelling of the thermal behaviour of the process leads to very complex mathematical models. These are the reasons why adaptive control techniques are chosen. A multivariable linear discrete time model of the highly non-linear process is identified on-line, using an identification scheme which includes supervisory actions. This identified model, combined with a multivariable predictive control law allows to prevent the controller from systems variations. The control laws are obtained by minimization of a quadratic cost function or by pole placement. In some of these control laws, a partial state reference model was included. This reference model allows to incorporate an appropriate tracking capability into the control law. Experimental results of the application of the involved multivariable adaptive control laws on a RTP system are presented. (author) refs

  6. Evaluation of roughness and micromorphology of epoxy paint on cobalt-chromium alloy before and after thermal cycling

    Directory of Open Access Journals (Sweden)

    Alessandra Cardoso da Silva Nascimento

    2013-04-01

    Full Text Available It has been suggested that the epoxy paint used to coat metal substrates in industrial electrostatic painting applications could also be used to mask metal clasps in removable dental prostheses (RDP. The purpose of this study was to evaluate both the influence of thermal cycling and the in vitro roughness of a surface after application of epoxy paint, as well as to assess the micromorphology of a cobalt-chromium (CoCr based metal structure. Sixty test specimens were fabricated from a CoCr alloy. The specimens were separated into three groups (n = 20 according to surface treatment: Group 1 (Pol - polished with abrasive stone and rubbers; Group 2 (Pol+Epo - polished and coated with epoxy paint; Group 3 (Epo - air-abraded with aluminum oxide particles and coated with epoxy paint. The surface roughness was evaluated before and after 1000 thermal cycles (5°C and 50°C. The surface micromorphology was verified by scanning electron microscopy (SEM. The two-way repeated measures ANOVA showed significant differences among surface treatments (p < 0.0001, but no difference was found before and after thermal cycling (p = 0.6638. The CoCr-based metal alloy surfaces treated with epoxy paint (Groups 2 and 3 were rougher than the surfaces that were only polished (Group 1. Thermal cycling did not influence surface roughness, or lead to chipping or detachment of the epoxy paint.

  7. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks

    NARCIS (Netherlands)

    Oyafuso, Denise Kanashiro; Ozcan, Mutlu; Bottino, Marco Antonio; Itinoche, Marcos Koiti

    Objectives. The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Methods. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N = 96) cast in gold alloy or

  8. Measured thermal and fast neutron fluence rates for ATF-1 holders during ATR cycle 158B/159A

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Larry Don [Idaho National Lab. (INL), Idaho Falls, ID (United States); Miller, David Torbet [Idaho National Lab. (INL), Idaho Falls, ID (United States); Walker, Billy Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-11-01

    This report contains the thermal (2200 m/s) and fast (E>1MeV) neutron fluence rate data for the ATF-1 holders located in core for ATR Cycle 158B/159A which were measured by the Radiation Measurements Laboratory (RML).

  9. Effect of bonding and bakeout thermal cycles on the properties of copper alloys irradiated at 350 degrees C

    DEFF Research Database (Denmark)

    Singh, B.N.; Edwards, D.J.; Eldrup, Morten Mostgaard

    2001-01-01

    Screening experiments were carried out to determine the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties and electrical resistivity of the oxide dispersion strengthened (GlidCop, CuAl-25) and the precipitation hardened (CuCrZr, CuNiBe) copper alloys. Tensile...

  10. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    Science.gov (United States)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  11. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    OpenAIRE

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fuse...

  12. Nanodomain Engineered (K, Na)NbO3 Lead-Free Piezoceramics: Enhanced Thermal and Cycling Reliabilities

    DEFF Research Database (Denmark)

    Yao, Fang-Zhou; Wang, Ke; Cheng, Li-Qian

    2015-01-01

    temperature fluctuation and electrical fatigue cycling. It was found that the piezoelectric coefficient d33 is temperature independent under 4 kV/mm, which can be attributed to enhanced thermal stability of electric field engineered domain configuration; whereas the electric field induced strain exhibits......The growing environmental concerns have been pushing the development of viable green alternatives for lead-based piezoceramics to be one of the priorities in functional ceramic materials. A polymorphic phase transition has been utilized to enhance piezoelectric properties of lead-free (K, Na)NbO3...... excellent fatigue resistance up to 107 sesquipolar cycles. These findings render the current material an unprecedented opportunity for actuator applications demanding improved thermal and cycling reliabilities....

  13. Energy performance and economic evaluation of heat pump/organic rankine cycle system with sensible thermal storage

    DEFF Research Database (Denmark)

    Carmo, Carolina; Dumont, Olivier; Nielsen, Mads Pagh

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  14. Energy Performance and Economic Evaluation of Heat Pump/Organic Rankine Cycle System with Sensible Thermal Storage

    DEFF Research Database (Denmark)

    Carmo, C.; Dumont, O.; Nielsen, M. P.

    2016-01-01

    that consists of a ground-source heat pump with possibility of reversing operation as an ORC power cycle combined with solar heating in a single-family building is introduced. The ORC mode enables the use of solar energy in periods of no heat energy demand and reverses the heat pump cycle to supply electrical......-life conditions knowledge, the paper considers two different sensible energy storage (TES) configurations for the reversible heat pump/organic Rankine cycle (HP/ORC) system: a buffer tank for both space heating and domestic hot water and a hot water storage tank used exclusively for domestic hot water......The interaction between electrical and thermal energy demands represent a potential area for balancing supply and demand that could contribute to the integration of intermittent renewables in energy systems. To enable the interaction between thermal and electric energy, an innovative concept...

  15. Energetic and exergetic analysis of Rankine cycles for solar power plants with parabolic trough and thermal storage

    Directory of Open Access Journals (Sweden)

    Cenuşă Victor-Eduard

    2016-01-01

    Full Text Available The paper analyzes the “secondary” circuit (for thermodynamic conversion of a Concentrated Solar Power (CSP plant with thermodynamic cycle, whose mirrors field supplies a thermal power, averaged over a sunny day, of about 100 MW heat. We study the case of parabolic trough solar collector using silicone oil in the “primary” circuit, which limits the peak temperature below 400 °C. The “primary” circuit uses thermal storage, allowing a delay between the power generation in rapport with the solar energy capture. We choose a water-steam cycle, type Hirn. For increasing its efficiency, it has regenerative feed water preheating and steam reheating. We compared, energetic and exergetic, two types of cycles, using a numerical model with iterative structure, developed by the authors. The results showed that the simplified design achieves practically the same thermodynamic performances with the advanced one.

  16. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2009-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex (J-PARC was commissioned in October 2007, and successfully accomplished 3 GeV acceleration on October 31. Six run cycles through February 2008 were dedicated to commissioning the RCS, for which the initial machine parameter tuning and various underlying beam studies were completed. Then since May 2008 the RCS beam has been delivered to the downstream facilities for their beam commissioning. In this paper we describe beam tuning and study results following our beam commissioning scenario and a beam performance and operational experience obtained in the first commissioning phase through June 2008.

  17. Sex differences in the risk of rapid cycling and other indicators of adverse illness course in patients with bipolar I and II disorder.

    Science.gov (United States)

    Erol, Almila; Winham, Stacey J; McElroy, Susan L; Frye, Mark A; Prieto, Miguel L; Cuellar-Barboza, Alfredo B; Fuentes, Manuel; Geske, Jennifer; Mori, Nicole; Biernacka, Joanna M; Bobo, William V

    2015-09-01

    To examine the independent effects of sex on the risk of rapid cycling and other indicators of adverse illness course in patients with bipolar I disorder (BP-I) or bipolar II disorder (BP-II). We analyzed data from the first 1,225 patients enrolled in the Mayo Clinic Individualized Medicine Biobank for Bipolar Disorder. Demographic and clinical variables were ascertained using standardized questionnaires; height and weight were assessed to determine body mass index (BMI). Rates of rapid cycling, cycle acceleration, and increased severity of mood episodes over time were compared between women and men overall and within subgroups defined by bipolar disorder subtype (BP-I or BP-II). Multiple logistic regression analysis was used to assess the independent effect of sex on the risk of these indicators of adverse illness course. Women had significantly higher rates of rapid cycling than men. Overall rates of rapid cycling were higher in patients with BP-II than BP-I; and sex differences in the rate of rapid cycling were more pronounced in patients with BP-II than BP-I, although the power to detect statistically significant differences was reduced due to the lower sample size of subjects with BP-II. Female sex was a significant predictor of rapid cycling, cycle acceleration, and increased severity of mood episodes over time after adjusting for age, bipolar disorder subtype, BMI, having any comorbid psychiatric disorder, and current antidepressant use. Female sex was associated with significantly higher risk of rapid cycling, cycle acceleration, and increased severity of mood episodes over time in a sample of 1,225 patients with bipolar disorders. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Structure optimisation by thermal cycling for the hydrophobic-polar lattice model of protein folding

    Science.gov (United States)

    Günther, Florian; Möbius, Arnulf; Schreiber, Michael

    2017-03-01

    The function of a protein depends strongly on its spatial structure. Therefore the transition from an unfolded stage to the functional fold is one of the most important problems in computational molecular biology. Since the corresponding free energy landscapes exhibit huge numbers of local minima, the search for the lowest-energy configurations is very demanding. Because of that, efficient heuristic algorithms are of high value. In the present work, we investigate whether and how the thermal cycling (TC) approach can be applied to the hydrophobic-polar (HP) lattice model of protein folding. Evaluating the efficiency of TC for a set of two- and three-dimensional examples, we compare the performance of this strategy with that of multi-start local search (MSLS) procedures and that of simulated annealing (SA). For this aim, we incorporated several simple but rather efficient modifications into the standard procedures: in particular, a strong improvement was achieved by also allowing energy conserving state modifications. Furthermore, the consideration of ensembles instead of single samples was found to greatly improve the efficiency of TC. In the framework of different benchmarks, for all considered HP sequences, we found TC to be far superior to SA, and to be faster than Wang-Landau sampling.

  19. The Seasonal Cycle of Water Vapour on Mars from Assimilation of Thermal Emission Spectrometer Data

    Science.gov (United States)

    Steele, Liam J.; Lewis, Stephen R.; Patel, Manish R.; Montmessin, Franck; Forget, Francois; Smith, Michael D.

    2014-01-01

    We present for the first time an assimilation of Thermal Emission Spectrometer (TES) water vapour column data into a Mars global climate model (MGCM). We discuss the seasonal cycle of water vapour, the processes responsible for the observed water vapour distribution, and the cross-hemispheric water transport. The assimilation scheme is shown to be robust in producing consistent reanalyses, and the global water vapour column error is reduced to around 2-4 pr micron depending on season. Wave activity is shown to play an important role in the water vapour distribution, with topographically steered flows around the Hellas and Argyre basins acting to increase transport in these regions in all seasons. At high northern latitudes, zonal wavenumber 1 and 2 stationary waves during northern summer are responsible for spreading the sublimed water vapour away from the pole. Transport by the zonal wavenumber 2 waves occurs primarily to the west of Tharsis and Arabia Terra and, combined with the effects of western boundary currents, this leads to peak water vapour column abundances here as observed by numerous spacecraft. A net transport of water to the northern hemisphere over the course of one Mars year is calculated, primarily because of the large northwards flux of water vapour which occurs during the local dust storm around L(sub S) = 240-260deg. Finally, outlying frost deposits that surround the north polar cap are shown to be important in creating the peak water vapour column abundances observed during northern summer.

  20. Life cycle assessment of thermal waste-to-energy technologies: review and recommendations.

    Science.gov (United States)

    Astrup, Thomas Fruergaard; Tonini, Davide; Turconi, Roberto; Boldrin, Alessio

    2015-03-01

    Life cycle assessment (LCA) has been used extensively within the recent decade to evaluate the environmental performance of thermal Waste-to-Energy (WtE) technologies: incineration, co-combustion, pyrolysis and gasification. A critical review was carried out involving 250 individual case-studies published in 136 peer-reviewed journal articles within 1995 and 2013. The studies were evaluated with respect to critical aspects such as: (i) goal and scope definitions (e.g. functional units, system boundaries, temporal and geographic scopes), (ii) detailed technology parameters (e.g. related to waste composition, technology, gas cleaning, energy recovery, residue management, and inventory data), and (iii) modeling principles (e.g. energy/mass calculation principles, energy substitution, inclusion of capital goods and uncertainty evaluation). Very few of the published studies provided full and transparent descriptions of all these aspects, in many cases preventing an evaluation of the validity of results, and limiting applicability of data and results in other contexts. The review clearly suggests that the quality of LCA studies of WtE technologies and systems including energy recovery can be significantly improved. Based on the review, a detailed overview of assumptions and modeling choices in existing literature is provided in conjunction with practical recommendations for state-of-the-art LCA of Waste-to-Energy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Assessment of Accrued Damage and Remaining Useful Life in Leadfree Electronics Subjected to Multiple Thermal Environments of Thermal Aging and Thermal Cycling

    Data.gov (United States)

    National Aeronautics and Space Administration — A method has been developed for prognostication of accrued prior damage in electronics subjected to overlapping sequential environments of thermal aging and thermal...

  2. Interdiffusion and growth of chromium silicide at the interface of Cr/Si(As) system during rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Benkherbache, H. [Universite de M' Sila, (28000) M' Sila (Algeria); Merabet, A., E-mail: merabet_abdelali@yahoo.f [Laboratoire Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, (19000) Setif (Algeria)

    2010-02-26

    In this work, the solid-state reaction between a thin film of chromium and silicon has been studied using Rutherford backscattering spectroscopy, X-ray diffraction and the sheet resistance measurements. The thickness of 100 nm chromium layer has been deposited by electronic bombardment on Si (100) substrates, part of them had previously been implanted with arsenic ions of 10{sup 15} at/cm{sup 2} doses and an energy of 100 keV. The samples were heat treated under rapid thermal annealing at 500 {sup o}C for time intervals ranging from 15 to 60 s. The rapid thermal annealing leads to a reaction at the interface Cr/Si inducing the formation and the growth of the unique silicide CrSi{sub 2}, but no other phase can be detected. For samples implanted with arsenic, the saturation value of the sheet resistance is approximately 1.5 times higher than for the non-implanted case.

  3. Manipulating the adhesion of electroless nickel-phosphorus film on silicon wafers by silane compound modification and rapid thermal annealing

    OpenAIRE

    Hsu, Chin-Wei; Wang, Wei-Yen; Wang, Kuan-Ting; Chen, Hou-An; Wei, Tzu-Chien

    2017-01-01

    In this study, the effect of 3-2-(2-aminoethylamino) ethylamino propyl trimethoxysilane (ETAS) modification and post rapid thermal annealing (RTA) treatment on the adhesion of electroless plated nickel-phosphorus (ELP Ni-P) film on polyvinyl alcohol-capped palladium nanoclusters (PVA-Pd) catalyzed silicon wafers is systematically investigated. Characterized by pull-off adhesion, atomic force microscopy, X-ray spectroscopy and water contact angle, a time-dependent, three-staged ETAS grafting m...

  4. Rapid thermal annealing of YBaCuO films on Si and SiO/sub 2/ substrates

    Energy Technology Data Exchange (ETDEWEB)

    Aslam, M.; Soltis, R.E.; Logothetis, E.M.; Ager, R.; Mikkor, M.; Win, W.; Chen, J.T.; Wenger, L.E.

    1988-07-11

    A very rapid thermal annealing technique has been employed on sputter-deposited YBaCuO films. After an O/sub 2/ anneal (with or without a N/sub 2/ preanneal) at temperatures as high as 920 /sup 0/C for 8--12 s, films on (100)Si and on SiO/sub 2/ /Si substrates exhibited superconductivity onsets above 95 K and zero resistance in the range 40--66 K.

  5. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  6. Effect of Regenerative Organic Rankine Cycle (RORC on the Performance of Solar Thermal Power in Yogyakarta, Indonesia

    Directory of Open Access Journals (Sweden)

    Ghalya Pikra

    2013-07-01

    Full Text Available This paper presents effect of Regenerative Organic Rankine Cycle (RORC on the performance of solar thermal power in Yogyakarta, Indonesia. Solar thermal power is a plant that uses solar energy as heat source. Indonesia has high humidity level, so that parabolic trough is the most suitable type of solar thermal power technology to be developed, where the design is made with small focal distance. Organic Rankine Cycle (ORC is a Rankine cycle that use organic fluid as working fluid to utilize low temperature heat sources. RORC is used to increase ORC performance. The analysis was done by comparing ORC system with and without regenerator addition. Refrigerant that be used in the analysis is R123. Preliminary data was taken from the solar collector system that has been installed in Yogyakarta. The analysis shows that with 36 m total parabolic length, the resulting solar collector capacity is 63 kW, heat input/evaporator capacity is determined 26.78 kW and turbine power is 3.11 kW for ORC, and 3.38 kW for RORC. ORC thermal efficiency is 11.28% and RORC is 12.26%. Overall electricity efficiency is 4.93% for ORC, and 5.36% for RORC. With 40°C condensing temperature and evaporation at 10 bar saturated condition, efficiency of RORC is higher than ORC. Greater evaporation temperature at the same pressure (10 bar provide greater turbine power and efficiency.

  7. Effect of thermal cycling of SiC{sub f}/SiC composites on their mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Udayakumar, A., E-mail: audayk@yahoo.com [Materials Science Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, Bangalore-560 017 (India); Stalin, M.; Abhayalakshmi, M.B.; Hariharan, Ramya [Materials Science Division, Council of Scientific and Industrial Research – National Aerospace Laboratories, Bangalore-560 017 (India); Balasubramanian, M., E-mail: mbala@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600 036 (India)

    2013-11-15

    SiC{sub f}/SiC composites are class of high temperature structural materials being developed for use in nuclear fusion and fission reactor systems because of their superior high temperature mechanical properties, low radiation damage and low induced radioactivity. Two types of 2D SiC{sub f}/SiC composites were made through isothermal and isobaric chemical vapor infiltration process using eight harness satin-woven ceramic-grades Nicalon™ fibers with boron nitride (BN) interface, namely: one with lower interface thickness and a second type with higher interface thickness. The BN interface was applied to the fiber prior to SiC matrix addition to modify the interfacial bond strength leading to better toughness and improved oxidation resistance. The density achieved was around 2.6 g/cc. The composite specimens were subjected to thermal cycling treatment using an in-house furnace. The mechanical properties such as tensile strength, fracture toughness and interfacial bond strength were also studied for all the composites before and after thermal cycling. It is seen from the results that both composites withstood thermal shocks and thermal cycling treatment. It was also concluded from the present work that good balance between load transfer and crack arresting was established.

  8. Sedimentary evidence for enhanced hydrological cycling in response to rapid carbon release during the early Toarcian oceanic anoxic event

    Science.gov (United States)

    Izumi, Kentaro; Kemp, David B.; Itamiya, Shoma; Inui, Mutsuko

    2018-01-01

    A pronounced excursion in the carbon-isotope composition of biospheric carbon and coeval seawater warming during the early Toarcian (∼183 Ma) has been linked to the large-scale transfer of 12C-enriched carbon to the oceans and atmosphere. A European bias in the distribution of available data means that the precise pattern, tempo and global expression of this carbon cycle perturbation, and the associated environmental responses, remain uncertain. Here, we present a new cm-scale terrestrial-dominated carbon-isotope record through an expanded lower Toarcian section from Japan that displays a negative excursion pattern similar to marine and terrestrial carbon-isotope records documented from Europe. These new data suggest that 12C-enriched carbon was added to the biosphere in at least one rapid, millennial-scale pulse. Sedimentological analysis indicates a close association between the carbon-isotope excursion and high-energy sediment transport and enhanced fluvial discharge. Together, these data support the hypothesis that a sudden strengthening of the global hydrological cycle occurred in direct and immediate response to rapid carbon release and atmospheric warming.

  9. Mechanical and Failure Criteria of Air-Entrained Concrete under Triaxial Compression Load after Rapid Freeze-Thaw Cycles

    Directory of Open Access Journals (Sweden)

    Feng-kun Cui

    2017-01-01

    Full Text Available The experiment study on the air-entrained concrete of 100 mm cubes under triaxial compression with different intermediate stress ratio α2=σ2D : σ3D was carried out using a hydraulic-servo testing system. The influence of rapid freeze-thaw cycles and intermediate stress ratio on the triaxial compressive strength σ3D was analyzed according to the experimental results, respectively. The experimental results of air-entrained concrete obtained from the study in this paper and the triaxial compression experimental results of plain concrete got through the same triaxial-testing-system were compared and analyzed. The conclusion was that the triaxial compressive strength is greater than the biaxial and uniaxial compressive strength after the same rapid freeze-thaw cycles, and the increased percentage of triaxial compressive strength over biaxial compressive strength or uniaxial compressive strength is dependent on the middle stress. The experimental data is useful for precise analysis of concrete member or concrete structure under the action complex stress state.

  10. DT-Diaphorase as a Bifunctional Enzyme Label That Allows Rapid Enzymatic Amplification and Electrochemical Redox Cycling.

    Science.gov (United States)

    Kang, Cheolho; Kang, Juyeon; Lee, Nam-Sihk; Yoon, Young Ho; Yang, Haesik

    2017-08-01

    The most common enzyme labels in enzyme-linked immunosorbent assays are alkaline phosphatase and horseradish peroxidase, which, however, have some limitations for use in electrochemical immunosensors. This Article reports that the small and thermostable DT-diaphorase (DT-D) and electrochemically inactive 4-nitroso-1-naphthol (4-NO-1-N) can be used as a bifunctional enzyme label and a rapidly reacting substrate, respectively, for electrochemical immunosensors. This enzyme-substrate combination allows high signal amplification via rapid enzymatic amplification and electrochemical redox cycling. DT-D can convert an electrochemically inactive nitroso or nitro compound into an electrochemically active amine compound, which can then be involved in electrochemical-chemical (EC) and electrochemical-enzymatic (EN) redox cycling. Six nitroso and nitro compounds are tested in terms of signal-to-background ratio. Among them, 4-NO-1-N exhibits the highest signal-to-background ratio. The electrochemical immunosensor using DT-D and 4-NO-1-N detects parathyroid hormone (PTH) in phosphate-buffered saline containing bovine serum albumin over a wide range of concentrations with a low detection limit of 2 pg/mL. When the PTH concentration in clinical serum samples is measured using the developed immunosensor, the calculated concentrations are in good agreement with the concentrations obtained using a commercial instrument. Thus, the use of DT-D as an enzyme label is highly promising for sensitive electrochemical detection and point-of-care testing.

  11. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    Science.gov (United States)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  12. Silica cycling and isotopic composition in northern Marguerite Bay on the rapidly-warming western Antarctic Peninsula

    Science.gov (United States)

    Annett, Amber L.; Henley, Sian F.; Venables, Hugh J.; Meredith, Michael P.; Clarke, Andrew; Ganeshram, Raja S.

    2017-05-01

    The Southern Ocean is a key region for silica (Si) cycling, and the isotopic signatures established here influence the rest of the world's oceans. The climate and ecosystem of the Southern Ocean are changing rapidly, with the potential to impact Si cycling and isotope dynamics. This study examines high-resolution time-series dataset of dissolved Si concentrations and isotopic signatures, particulate Si concentrations and diatom speciation at a coastal site on the western Antarctic Peninsula (WAP), in order to characterise changes in Si cycling with respect to changes occurring in productivity and diatom assemblages. Dissolved and particulate Si phases reflect the dominant control of biological uptake, and combined with isotopic fractionation were consistent with a season of low/intermediate productivity. Biogenic Si is tightly coupled to both chlorophyll and particulate organic carbon at the sampling site, consistent with diatom-dominated phytoplankton assemblages along the WAP. Variability in diatom speciation has a negligible impact on the isotopic signature of dissolved Si in surface waters, although this is unlikely to hold for sediments due to differential dissolution of diatom species. A continued decline in diatom productivity along the WAP would likely result in an increasing unused Si inventory, which can potentially feed back into Si-limited areas, promoting diatom growth and carbon drawdown further afield.

  13. Rapid ammonia gas transport accounts for futile transmembrane cycling under NH3/NH4+ toxicity in plant roots.

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J

    2013-12-01

    Futile transmembrane NH3/NH4(+) cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4(+) toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4(+)) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope (13)N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4(+) ion. Influx of (13)NH3/(13)NH4(+), which exceeded 200 µmol g(-1) h(-1), was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4(+)), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g(-1) h(-1)). Efflux of (13)NH3/(13)NH4(+) responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions.

  14. Fast non-stationary thermal phenomena and associated metrology; Phenomenes thermiques instationnaires rapides et metrologie associee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop has been organized by the thermo-kinetics section of the French Society of Thermal Engineers. Most studies presented during this workshop deal with heat transfers in materials in various situations like: surface treatment processes (spay coating), solidification of metal drops on cold surfaces, laser photo-ablation of materials, thermoelastic microscopy of materials, non-destructive testing using thermally generated ultrasonic waves, during the determination of interface properties of thin films, etc. Only one paper dealing with thermal diffusivity measurements on materials has been selected for ETDE. (J.S.)

  15. Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds.

    Science.gov (United States)

    Lee, JiYong; Park, Seung Hyun; Seo, Il Ho; Lee, Kang Ju; Ryu, WonHyoung

    2015-08-01

    Thermal drawing is a versatile rapid prototyping method that can freely form microneedle (MN) structures with ultra-high aspect ratio without relying on any complex and expensive process. However, it is still challenging to repeatedly produce MNs with identical shapes using this thermal drawing due to small fluctuations in processing conditions such as temperatures, drawing speeds, drawing heights, or parallelism in the drawing setup. In addition, thermal drawing is only applicable to thermoplastic materials and most natural biomaterials are incompatible with this method. Thus, we propose use of thermal drawing to fabricate master molds with high aspect ratios and replicate the shape by micromolding. In this work, high A/R MNs with various body profiles were fabricated by thermal drawing and replicated to silk fibroin (SF) MNs multiple times using micromolding. The original MN shape was precisely copied to the SF MNs. Methanol treatment enhanced the mechanical strength of SF MNs up to about 113% more depending on the treatment duration. We also demonstrated that methanol exposure time could effectively control drug release rates from SF MNs. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Thermal performance of shallow solar pond under open cycle continuous flow heating mode for heat extraction

    Energy Technology Data Exchange (ETDEWEB)

    El-Sebaii, A.A. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt)]. E-mail: aasebaii@yahoo.com; Aboul-Enein, S. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt); Ramadan, M.R.I. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt); Khallaf, A.M. [Department of Physics, Faculty of Science, Tanta University, Tanta 31527 (Egypt)

    2006-05-15

    The thermal performance of a shallow solar pond (SSP) under an open cycle continuous flow heating mode for heat extraction has been investigated. A serpentine heat exchanger (HE), either welded to the absorber plate or immersed in the pond water, has been used for extracting the heat. Suitable computer programs have been developed based on analytical solutions of the energy balance equations for the various elements of the SSP in the presence of the HE. Numerical calculations have been performed to study the effect of different operational and configurational parameters on the pond performance. In order to improve the pond performance, optimization of the various dimensions of the pond with the HE has been performed. The effects of the design parameters of the HE's tube, i.e. length L{sub he}, diameter D and mass flow rate m-bar {sub f} of the fluid flowing through the HE, on the pond performance have been investigated. The outlet temperature of the HE's fluid T{sub fo} is found to increase with increase of the HE length L{sub he}, and it decreases with increase of the mass flow rate of the HE's fluid m-bar {sub f} up to typical values for these parameters. Typical values for L{sub he} and m-bar {sub f} are found to be 4m and 0.004kg/s beyond which the change in T{sub fo} becomes insignificant. Experiments have been performed for the pond under different operational conditions with a HE welded to the absorber plate. To validate the proposed mathematical models, comparisons between experimental and theoretical results have been performed. Good agreement has been achieved.

  17. Direct Chromatin PCR (DC-PCR): Hypotonic Conditions Allow Differentiation of Chromatin States during Thermal Cycling

    Science.gov (United States)

    Vatolin, Sergei; Khan, Shahper N.; Reu, Frederic J.

    2012-01-01

    Current methods to study chromatin configuration are not well suited for high throughput drug screening since they require large cell numbers and multiple experimental steps that include centrifugation for isolation of nuclei or DNA. Here we show that site specific chromatin analysis can be achieved in one step by simply performing direct chromatin PCR (DC-PCR) on cells. The basic underlying observation was that standard hypotonic PCR buffers prevent global cellular chromatin solubilization during thermal cycling while more loosely organized chromatin can be amplified. Despite repeated heating to >90°C, 41 of 61 tested 5′ sequences of silenced genes (CDKN2A, PU.1, IRF4, FOSB, CD34) were not amplifiable while 47 could be amplified from expressing cells. Two gene regions (IRF4, FOSB) even required pre-heating of cells in isotonic media to allow this differentiation; otherwise none of 19 assayed sequences yielded PCR products. Cells with baseline expression or epigenetic reactivation gave similar DC-PCR results. Silencing during differentiation of CD34 positive cord blood cells closed respective chromatin while treatment of myeloma cells with an IRF4 transcriptional inhibitor opened a site to DC-PCR that was occupied by RNA polymerase II and NFκB as determined by ChIP. Translation into real-time PCR can not be achieved with commercial real-time PCR buffers which potently open chromatin, but even with simple ethidium bromide addition to standard PCR mastermix we were able to identify hits in small molecules screens that suppressed IRF4 expression or reactivated CDKN2A in myeloma cells using densitometry or visual inspection of PCR plates under UV light. While need in drug development inspired this work, application to genome-wide analysis appears feasible using phi29 for selective amplification of open cellular chromatin followed by library construction from supernatants since such supernatants yielded similar results as gene specific DC-PCR. PMID:22984542

  18. The Influence of Thermal Cycles on the Microstructure of Grade 92 Steel

    Science.gov (United States)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2017-11-01

    The microstructure in the heat-affected zone (HAZ) of welds made from the 9 wt pct chromium martensitic Grade 92 steel is complex and has not yet been completely understood. There is a lack of systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds as a function of the welding process. In this study, the microstructure in the HAZ of an as-fabricated single-pass bead-on-plate weld on a parent metal of Grade 92 steel was systematically investigated by using an extensive range of electron and ion-microscopy-based techniques. A dilatometer was used to apply controlled thermal cycles to simulate the microstructures in the different regions of the HAZ. A wide range of microstructural properties in the simulated materials were then characterized and compared with the experimental observations from the weld HAZ. It was found that the microstructure in the HAZ of a single-pass Grade 92 steel weld can be categorized as a function of a decreasing peak temperature reached as (1) the completely transformed (CT) region, in which the original matrix is completely reaustenitized with complete dissolution of the pre-existing secondary precipitate particles; (2) the partially transformed (PT) region, where the original matrix is partially reaustenitized along with a partial dissolution of the secondary precipitate particles from the original matrix; and (3) the overtempered (OT) region, where the pre-existing precipitate particles coarsen. The PT region is considered to be the susceptible area for damage in the commonly reported HAZ failures in weldments constructed from these types of steels.

  19. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  20. Detailed analysis of the effect of the turbine and compressor isentropic efficiency on the thermal and exergy efficiency of a Brayton cycle

    Directory of Open Access Journals (Sweden)

    Živić Marija

    2014-01-01

    Full Text Available Energy and exergy analysis of a Brayton cycle with an ideal gas is given. The irreversibility of the adiabatic processes in turbine and compressor is taken into account through their isentropic efficiencies. The net work per cycle, the thermal efficiency and the two exergy efficiencies are expressed as functions of the four dimensionless variables: the isentropic efficiencies of turbine and compressor, the pressure ratio, and the temperature ratio. It is shown that the maximal values of the net work per cycle, the thermal and the exergy efficiency are achieved when the isentropic efficiencies and temperature ratio are as high as possible, while the different values of pressure ratio that maximize the net work per cycle, the thermal and the exergy efficiencies exist. These pressure ratios increase with the increase of the temperature ratio and the isentropic efficiency of compressor and turbine. The increase of the turbine isentropic efficiency has a greater impact on the increase of the net work per cycle and the thermal efficiency of a Brayton cycle than the same increase of compressor isentropic efficiency. Finally, two goal functions are proposed for thermodynamic optimization of a Brayton cycle for given values of the temperature ratio and the compressor and turbine isentropic efficiencies. The first maximizes the sum of the net work per cycle and thermal efficiency while the second the net work per cycle and exergy efficiency. In both cases the optimal pressure ratio is closer to the pressure ratio that maximizes the net work per cycle.

  1. Performance analysis of a Kalina cycle for a central receiver solar thermal power plant with direct steam generation

    DEFF Research Database (Denmark)

    Modi, Anish; Haglind, Fredrik

    2014-01-01

    without corroding the equipment by using suitable additives with the mixture. The purpose of the study reported here was to investigate if there is any benefit of using a Kalina cycle for a direct steam generation, central receiver solar thermal power plant with high live steam temperature (450 C...... direct steam generation with water/steam as both the heat transfer fluid in the solar receivers and the cycle working fluid. This enables operating the plant with higher turbine inlet temperatures. Available literature suggests that it is feasible to use ammonia-water mixtures at high temperatures......Solar thermal power plants have attracted increasing interest in the past few years - with respect to both the design of the various plant components, and extending the operation hours by employing different types of storage systems. One approach to improve the overall plant efficiency is to use...

  2. Recent developments in thermally-driven seawater desalination: Energy efficiency improvement by hybridization of the MED and AD cycles

    KAUST Repository

    Ng, Kim Choon

    2015-01-01

    The energy, water and environment nexus is a crucial factor when considering the future development of desalination plants or industry in the water-stressed economies. New generation of desalination processes or plants has to meet the stringent environment discharge requirements and yet the industry remains highly energy efficient and sustainable when producing good potable water. Water sources, either brackish or seawater, have become more contaminated as feed while the demand for desalination capacities increase around the world. One immediate solution for energy efficiency improvement comes from the hybridization of the proven desalination processes to the newer processes of desalination: For example, the integration of the available thermally-driven to adsorption desalination (AD) cycles where significant thermodynamic synergy can be attained when cycles are combined. For these hybrid cycles, a quantum improvement in energy efficiency as well as in increase in water production can be expected. The advent of MED with AD cycles, or simply called the MEDAD cycles, is one such example where seawater desalination can be pursued and operated in cogeneration with the electricity production plants: The hybrid desalination cycles utilize only the low exergy bled-steam at low temperatures, complemented with waste exhaust or renewable solar thermal heat at temperatures between 60 and 80. °C. In this paper, the authors have reported their pioneered research on aspects of AD and related hybrid MEDAD cycles, both at theoretical models and experimental pilots. Using the cogeneration of electricity and desalination concept, the authors examined the cost apportionment of fuel cost by the quality or exergy of working steam for such cogeneration configurations.

  3. Effect of weld thermal cycle on the electrochemical corrosion of Q315NS steel in acidic solution

    Science.gov (United States)

    Zhang, Suqiang; Shu, Fengyuan; Zhao, Hongyun; Wang, Guodong; Wang, Shuai; Wang, Wenjian

    2017-04-01

    The effect of welding thermal process on the electrochemical corrosion of Q315NS in H2SO4 and HCl solution were investigated. Different weld thermal cycles with different peak temperatures were used in a Gleeble thermal-force simulation testing machine to simulate weld HAZ, and electrochemical measurements were carried out. The results demonstrate that a microstructure of granular bainite was generated in CGHAZ while others consisted of ferrite and pearlite. The electrochemical corrosion of different HAZ was different in H2SO4 and HCl, due to different microstructure. The BM and HAZs in 50 wt. % H2SO4 solution has a certain passivation behavior, while there was no passivation behavior in 3.5 wt. % HCl solution. The corrosion resistances in HAZs are inferior to that in BM. In addition, the corrosion resistance in the CGHAZ is the weakest.

  4. Phase transformations in thermally cycled Cu/ZrW2O8 composites investigated by synchrotron x-ray diffraction

    Science.gov (United States)

    Yilmaz, S.

    2002-01-01

    A Cu/ZrW2O8 metal matrix composite was thermally cycled between 298 and 591 K while being subjected to x-ray diffraction in transmission using high-intensity synchrotron radiation. The reversible allotropic phase transformations of ZrW2O8 between its two low-pressure phases and its high-pressure phase were observed within the composite bulk as a function of temperature. This observation gives experimental proof of the existence of the reversible pressure-induced phase transformation, which had been inferred indirectly from dilatometry in a previous investigation and assigned to the large thermal mismatch stresses in the composite. The volume fraction of each ZrW2O8 compound was determined from the measured diffracted intensity, and the thermal expansion behaviour of the composite was then calculated. Good agreement was found with the experimental dilatometric curve reported in a recent investigation.

  5. Rapid shift in thermal resistance between generations through maternal heat exposure

    NARCIS (Netherlands)

    Zizzari, Z.V.; Ellers, J.

    2014-01-01

    Given the current rapid climate change, understanding the mechanisms underlying heat tolerance and its plasticity is an important goal of global change biology. Soil fauna communities are especially vulnerable because of their limited dispersal ability. It is generally recognized that

  6. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-12-01

    The technical feasibility of high-temperature (>100{degrees}C (>212{degrees}F)) aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  7. University of Minnesota aquifer thermal energy storage (ATES) project report on the second long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, M.C.; Hallgren, J.P.; Lauer, J.L.; Walton, M.; Eisenreich, S.J.; Howe, J.T.; Splettstoesser, J.F. [Minnesota Geological Survey, St. Paul, MN (United States)

    1991-12-01

    The technical feasibility of high-temperature [>100{degrees}C (>212{degrees}F)] aquifer thermal energy storage (ATES) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota`s St. Paul field test facility (FTF). This report describes the second long-term cycle (LT2), which was conducted from October 1986 through April 1987. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are reported. Approximately 61% of the 9.21 GWh of energy added to the 9.38 {times} 10{sup 4} m{sup 3} of ground water stored during LT2 was recovered. Temperatures of the water stored and recovered averaged 118{degrees}C (244{degrees}F) and 85{degrees}C (185{degrees}F), respectively. Results agreed with previous cycles conducted at the FTF. System operation during LT2 was nearly as planned. Operational experience from previous cycles at the FTF was extremely helpful. Ion-exchange softening of the heated and stored aquifer water prevented scaling in the system heat exchangers and the storage well, and changed the major-ion chemistry of the stored water. Sodium bicarbonate replaced magnesium and calcium bicarbonate as primary ions in the softened water. Water recovered form storage was approximately at equilibrium with respect to dissolved ions. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water. Sodium was significantly lower in water recovered than in water stored.

  8. Anti-AMPA-Receptor Encephalitis Presenting as a Rapid-Cycling Bipolar Disorder in a Young Woman with Turner Syndrome.

    Science.gov (United States)

    Quaranta, Giuseppe; Maremmani, Angelo Giovanni Icro; Perugi, Giulio

    2015-01-01

    Background. Autoimmune encephalitis is a disorder characterised by the subacute onset of seizures, short-term memory loss, and psychiatric and behavioural symptoms. Initially, it was recognised as a paraneoplastic disorder, but recently a subgroup of patients without systemic cancer was identified. Case Description. We describe a 20-year-old woman with Turner syndrome presenting with a treatment-resistant rapid cycling bipolar disorder with cognitive impairment. She was diagnosed with anti-AMPA-receptor encephalitis. She showed marked improvement after starting memantine and valproic acid. Conclusion. This case description emphasises the importance of timely recognition of autoimmune limbic encephalitis in patients with psychiatric manifestations and a possible predisposition to autoimmune conditions, in order to rule out malignancy and to quickly initiate treatment.

  9. Worker dose under high-power operation of the J-PARC 3 GeV Rapid Cycling Synchrotron

    Directory of Open Access Journals (Sweden)

    Yamamoto Kazami

    2017-01-01

    Full Text Available The J-PARC 3 GeV Rapid Cycling Synchrotron (RCS delivers a 1-MW, high-intensity beam to facilities downstream. In such high-intensity accelerators, the operational beam intensity is limited to keep worker exposure to the residual dose within acceptable tolerances. Therefore, we continue to pursue accelerator commissioning that reduces beam loss. In order to achieve further high-intensity operation, the J-PARC accelerator system has been drastically upgraded over the past two years. As a result, it was found that beam loss decreased, whereas output power increased; the residual doses were kept at the same level or decreased in RCS. A malfunction of a collimator occurred in April 2016, and we replaced it to a spare duct in a hurry. The broken collimator was higher activated, but exposure to workers was kept within the acceptable level.

  10. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  11. Plasmonic Thermal Decomposition/Digestion of Proteins: A Rapid On-Surface Protein Digestion Technique for Mass Spectrometry Imaging.

    Science.gov (United States)

    Zhou, Rong; Basile, Franco

    2017-09-05

    A method based on plasmon surface resonance absorption and heating was developed to perform a rapid on-surface protein thermal decomposition and digestion suitable for imaging mass spectrometry (MS) and/or profiling. This photothermal process or plasmonic thermal decomposition/digestion (plasmonic-TDD) method incorporates a continuous wave (CW) laser excitation and gold nanoparticles (Au-NPs) to induce known thermal decomposition reactions that cleave peptides and proteins specifically at the C-terminus of aspartic acid and at the N-terminus of cysteine. These thermal decomposition reactions are induced by heating a solid protein sample to temperatures between 200 and 270 °C for a short period of time (10-50 s per 200 μm segment) and are reagentless and solventless, and thus are devoid of sample product delocalization. In the plasmonic-TDD setup the sample is coated with Au-NPs and irradiated with 532 nm laser radiation to induce thermoplasmonic heating and bring about site-specific thermal decomposition on solid peptide/protein samples. In this manner the Au-NPs act as nanoheaters that result in a highly localized thermal decomposition and digestion of the protein sample that is independent of the absorption properties of the protein, making the method universally applicable to all types of proteinaceous samples (e.g., tissues or protein arrays). Several experimental variables were optimized to maximize product yield, and they include heating time, laser intensity, size of Au-NPs, and surface coverage of Au-NPs. Using optimized parameters, proof-of-principle experiments confirmed the ability of the plasmonic-TDD method to induce both C-cleavage and D-cleavage on several peptide standards and the protein lysozyme by detecting their thermal decomposition products with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The high spatial specificity of the plasmonic-TDD method was demonstrated by using a mask to digest designated sections of

  12. Breakage-fusion-bridge cycles and large insertions contribute to the rapid evolution of accessory chromosomes in a fungal pathogen.

    Science.gov (United States)

    Croll, Daniel; Zala, Marcello; McDonald, Bruce A

    2013-06-01

    Chromosomal rearrangements are a major driver of eukaryotic genome evolution, affecting speciation, pathogenicity and cancer progression. Changes in chromosome structure are often initiated by mis-repair of double-strand breaks in the DNA. Mis-repair is particularly likely when telomeres are lost or when dispersed repeats misalign during crossing-over. Fungi carry highly polymorphic chromosomal complements showing substantial variation in chromosome length and number. The mechanisms driving chromosome polymorphism in fungi are poorly understood. We aimed to identify mechanisms of chromosomal rearrangements in the fungal wheat pathogen Zymoseptoria tritici. We combined population genomic resequencing and chromosomal segment PCR assays with electrophoretic karyotyping and resequencing of parents and offspring from experimental crosses to show that this pathogen harbors a highly diverse complement of accessory chromosomes that exhibits strong global geographic differentiation in numbers and lengths of chromosomes. Homologous chromosomes carried highly differentiated gene contents due to numerous insertions and deletions. The largest accessory chromosome recently doubled in length through insertions totaling 380 kb. Based on comparative genomics, we identified the precise breakpoint locations of these insertions. Nondisjunction during meiosis led to chromosome losses in progeny of three different crosses. We showed that a new accessory chromosome emerged in two viable offspring through a fusion between sister chromatids. Such chromosome fusion is likely to initiate a breakage-fusion-bridge (BFB) cycle that can rapidly degenerate chromosomal structure. We suggest that the accessory chromosomes of Z. tritici originated mainly from ancient core chromosomes through a degeneration process that included BFB cycles, nondisjunction and mutational decay of duplicated sequences. The rapidly evolving accessory chromosome complement may serve as a cradle for adaptive evolution in

  13. Fundamental understanding and integration of rapid thermal processing, PECVD, and screen printing for cost-effective, high-efficiency silicon photovoltaic devices

    Science.gov (United States)

    Doshi, Parag Mahendra

    The final hurdle preventing widespread application of photovoltaics is cost-effectiveness. Solar cell efficiencies in the laboratory have reached 24%, but industrial cells, constrained by low-cost, high-throughput processes, are limited to 10-15%. This thesis focuses on industrially relevant technologies such as rapid thermal processing (RTP), PECVD, and screen-printing to simplify and speed up cell processing yet maintain the key features that give high efficiencies in the laboratory. RTP utilizes tungsten-halogen and UV lamps as a source of high energy photons that induce thermal and photophysical effects which can significantly increase the kinetics of semiconductor processes such as diffusion, oxidation, and annealing. PECVD also serves as a promising low-cost candidate for SiN/SiOsb2 antireflection coatings and passivation. Finally, screen printing serves as a very high-throughput technology for contact formation as a low-cost alternative to photolithography. Integration of these technologies into a single cell fabrication sequence, however, revealed the susceptibility to low internal quantum efficiencies in the long and short wavelengths. For example, the inherent rapid cooling during RTP can degrade minority-carrier lifetime and long wavelength response. Lack of knowledge in tailoring RTP emitter diffusion profiles coupled with less than perfect PECVD surface passivation and parasitic SiN absorption was found to limit short wavelength response. Problems like these limited RTP cell efficiencies to only 15.4% prior to this thesis. Through a combination of fundamental understanding of device physics, materials and device characterization, modeling, and cell fabrication these losses were quantified and overcome in this thesis. An in-situ annealing cycle during RTP was optimized to prevent quenching-induced lifetime degradation and to preserve high long wavelength response. Measurement of SiN extinction coefficients to compute parasitic absorption, optimization

  14. Rapid estimation of glucosinolate thermal degradation rate constants in leaves of Chinese kale and broccoli (Brassica oleracea) in two seasons.

    Science.gov (United States)

    Hennig, Kristin; Verkerk, Ruud; Bonnema, Guusje; Dekker, Matthijs

    2012-08-15

    Kinetic modeling was used as a tool to quantitatively estimate glucosinolate thermal degradation rate constants. Literature shows that thermal degradation rates differ in different vegetables. Well-characterized plant material, leaves of broccoli and Chinese kale plants grown in two seasons, was used in the study. It was shown that a first-order reaction is appropriate to model glucosinolate degradation independent from the season. No difference in degradation rate constants of structurally identical glucosinolates was found between broccoli and Chinese kale leaves when grown in the same season. However, glucosinolate degradation rate constants were highly affected by the season (20-80% increase in spring compared to autumn). These results suggest that differences in glucosinolate degradation rate constants can be due to variation in environmental as well as genetic factors. Furthermore, a methodology to estimate rate constants rapidly is provided to enable the analysis of high sample numbers for future studies.

  15. Novel Design Integrating a Microwave Applicator into a Crystallizer for Rapid Temperature Cycling. A Direct Nucleation Control Study

    Science.gov (United States)

    2017-01-01

    The control of nucleation in crystallization processes is a challenging task due to the often lacking knowledge on the process kinetics. Inflexible (predetermined) control strategies fail to grow the nucleated crystals to the desired quality because of the variability in the process conditions, disturbances, and the stochastic nature of crystal nucleation. Previously, the concept of microwave assisted direct nucleation control (DNC) was demonstrated in a laboratory setup to control the crystal size distribution in a batch crystallization process by manipulating the number of particles in the system. Rapid temperature cycling was used to manipulate the super(under)saturation and hence the number of crystals. The rapid heating response achieved with the microwave heating improved the DNC control efficiency, resulting in halving of the batch time. As an extension, this work presents a novel design in which the microwave applicator is integrated in the crystallizer, hence avoiding the external loop though the microwaves oven. DNC implemented in the 4 L unseeded crystallizer, at various count set points, resulted in strong efficiency enhancement of DNC, when compared to the performance with a slow responding system. The demonstrated crystallizer design is a basis for extending the enhanced process control opportunity to other applications. PMID:28729813

  16. Human power output during repeated sprint cycle exercise: the influence of thermal stress

    NARCIS (Netherlands)

    Ball, D.; Burrows, C.; Sargeant, A.J.

    1999-01-01

    Thermal stress is known to impair endurance capacity during moderate prolonged exercise. However, there is relatively little available information concerning the effects of thermal stress on the performance of high-intensity short-duration exercise. The present experiment examined human power output

  17. Smoother Turbine Blades Resist Thermal Shock Better

    Science.gov (United States)

    Czerniak, Paul; Longenecker, Kent; Paulus, Don; Ullman, Zane

    1991-01-01

    Surface treatment increases resistance of turbine blades to low-cycle fatigue. Smoothing removes small flaws where cracks start. Intended for blades in turbines subject to thermal shock of rapid starting. No recrystallization occurs at rocket-turbine operating temperatures.

  18. Development of a thermal scheme for a cogeneration combined-cycle unit with an SVBR-100 reactor

    Science.gov (United States)

    Kasilov, V. F.; Dudolin, A. A.; Krasheninnikov, S. M.

    2017-02-01

    At present, the prospects for development of district heating that can increase the effectiveness of nuclear power stations (NPS), cut down their payback period, and improve protection of the environment against harmful emissions are being examined in the nuclear power industry of Russia. It is noted that the efficiency of nuclear cogeneration power stations (NCPS) is drastically affected by the expenses for heat networks and heat losses during transportation of a heat carrier through them, since NPSs are usually located far away from urban area boundaries as required for radiation safety of the population. The prospects for using cogeneration power units with small or medium power reactors at NPSs, including combined-cycle units and their performance indices, are described. The developed thermal scheme of a cogeneration combined-cycle unit (CCU) with an SBVR-100 nuclear reactor (NCCU) is presented. This NCCU should use a GE 6FA gasturbine unit (GTU) and a steam-turbine unit (STU) with a two-stage district heating plant. Saturated steam from the nuclear reactor is superheated in a heat-recovery steam generator (HRSG) to 560-580°C so that a separator-superheater can be excluded from the thermal cycle of the turbine unit. In addition, supplemental fuel firing in HRSG is examined. NCCU effectiveness indices are given as a function of the ambient air temperature. Results of calculations of the thermal cycle performance under condensing operating conditions indicate that the gross electric efficiency η el NCCU gr of = 48% and N el NCCU gr = 345 MW can be achieved. This efficiency is at maximum for NCCU with an SVBR-100 reactor. The conclusion is made that the cost of NCCU installed kW should be estimated, and the issue associated with NCCUs siting with reference to urban area boundaries must be solved.

  19. Seasonal redistribution of immune function in migrant shorebird: annual cycle effects override adjustments to thermal regime

    NARCIS (Netherlands)

    Buehler, D.M.; Piersma, T.; Matson, K.D.; Tieleman, B.I.

    2008-01-01

    Throughout the annual cycle, demands on competing physiological systems change, and animals must allocate resources to maximize fitness. Immune function is one such system and is important for survival. Yet detailed empirical data tracking immune function over the entire annual cycle are lacking for

  20. Long-term calcination/carbonation cycling and thermal pretreatment for CO{sub 2} capture by limestone and dolomite

    Energy Technology Data Exchange (ETDEWEB)

    Zhongxiang Chen; Hoon Sub Song; Miguel Portillo; C. Jim Lim; John R. Grace; E.J. Anthony [University of British Columbia, Vancouver, BC (Canada). Department of Chemical and Biological Engineering

    2009-03-15

    Capturing carbon dioxide is vital for the future of climate-friendly combustion, gasification, and steam-re-forming processes. Dry processes utilizing simple sorbents have great potential in this regard. Long-term calcination/carbonation cycling was carried out in an atmospheric-pressure thermogravimetric reactor. Although dolomite gave better capture than limestone for a limited number of cycles, the advantage declined over many cycles. Under some circumstances, decreasing the carbonation temperature increased the rate of reaction because of the interaction between equilibrium and kinetic factors. Limestone and dolomite, after being pretreated thermally at high temperatures (1000 or 1100{sup o}C), showed a substantial increase in calcium utilization over many calcination/carbonation cycles. Lengthening the pretreatment interval resulted in greater improvement. However, attrition was significantly greater for the pretreated sorbents. Greatly extending the duration of carbonation during one cycle was found to be capable of restoring the CO{sub 2} capture ability of sorbents to their original behavior, offering a possible means of countering the long-term degradation of calcium sorbents for dry capture of carbon dioxide. 12 refs., 12 figs., 2 tabs.

  1. Effects of bonding bakeout thermal cycles on pre- and post irradiation microstructures, physical, and mechanical properties of copper alloys

    Energy Technology Data Exchange (ETDEWEB)

    Singh, B.N.; Eldrup, M.; Toft, P.; Edwards, D.J. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-10-01

    At present, dispersion strengthened (DS) copper is being considered as the primary candidate material for the ITER first wall and divertor components. Recently, it was agreed among the ITER parties that a backup alloy should be selected from the two well known precipitation hardened copper alloys, CuCrZr and CuNiBe. It was therefore decided to carry out screening experiments to simulate the effect of bonding and bakeout thermal cycles on microstructure, mechanical properties, and electrical resistivity of CuCrZr and CuNiBe alloys. On the basis of the results of these experiments, one of the two alloys will be selected as a backup material. Tensile specimens of CuCrZr and CuNiBe alloys were given various heat treatments corresponding to solution anneal, prime ageing, and bonding thermal cycle followed by reageing and the reactor bakeout treatment at 623K for 100 hours. Tensile specimens of the DS copper were also given the heat treatment corresponding to the bonding thermal cycle. A number of these heat treated specimens of CuCrZr, CuNiBe, and DS copper were neutron irradiated at 523K to a dose level of {approx}0.3 dpa (NRT) in the DR-3 reactor at Riso. Both unirradiated and irradiated specimens with the various heat treatments were tensile tested at 532K. The dislocation, precipitate and void microstructures and electrical resistivity of these specimens were also determined. Results of these investigations will be reported and discussed in terms of thermal and irradiation stability of precipitates and irradiation-induced precipitation and recovery of dislocation microstructure. Results show that the bonding and bakeout thermal cycles are not likely to have any serious deleterious effects on the performance of these alloys. The CuNiBe alloys were found to be susceptible to radiation-induced embrittlement, however, the exact mechanism is not yet known. It is thought that radiation-induced precipitation and segregation of the beryllium may be responsible.

  2. The rapid cold hardening response of Collembola is influenced by thermal variability of the habitat

    DEFF Research Database (Denmark)

    Bahrndorff, Simon; Loeschcke, Volker; Pertoldi, Cino

    2009-01-01

    exposure to a range of temperatures from 1 ° C to –12 ° C. Rapid cold-hardening (RCH) was induced by cooling individuals from 20 ° C to a temperature 7 ° C above the LT 50 during 80 min, followed by 1 h at the specific cold shock temperature, which was close to the LT 50 of the particular species. 5...

  3. Heat recovery from a thermal energy storage based on the Ca(OH){sub 2}/CaO cycle

    Energy Technology Data Exchange (ETDEWEB)

    Azpiazu, M.N. [E.T.S. Ingenieros, Bilbao (Spain). Dpto. de Ingenieria Quimica y del Medio Ambiente; Morquillas, J.M. [E.T.S. Ingenieros, Bilbao (Spain). Dpto. de Maquinas y Motores Termicos; Vazquez, A. [E.S. da Marina Civil, La Coruna (Spain). Dpto. de Energia y Propulsion Maritima

    2003-04-01

    Thermal energy storage is very important in many applications related to the use of waste heat from industrial processes, renewable energies or from other sources. Thermochemical storage is very interesting for long-term storage as it can be carried out at room temperature with no energy losses. Dehydration/hydration cycle of Ca(OH){sub 2}/CaO has been applied for thermal energy storage in two types of reactors. One of them was a prototype designed by the authors, and in the other type conventional laboratory glassware was used. Parameters such as specific heats, reaction rate and enthalpy, mass losses and heat release were monitored during cycles. Although in the hydration step water is normally added in vapour phase, liquid water, at 0{sup o}C has been used in these experiences. Results indicated that the energy storage system performance showed no significant differences, when we compared several hydration/dehydration cycles. The selected chemical reaction did not exhibit a complete reversibility because complete Ca(OH){sub 2} dehydration, was not achieved. However the system could be used satisfactorily along 20 cycles at least. Heat recovery experiments showed general system behaviour during the hydration step in both types of reactors. The designed prototype was more efficient in this step. Main conclusions suggested carrying out one complete cycle at a higher dehydration temperature to recover total system reversibility. A modification of the prototype design trying to enhance heat transfer from the Ca(OH){sub 2} bed could also be proposed. (author)

  4. Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence

    Science.gov (United States)

    Flynn, Padrig B.; Busetti, Alessandro; Wielogorska, Ewa; Chevallier, Olivier P.; Elliott, Christopher T.; Laverty, Garry; Gorman, Sean P.; Graham, William G.; Gilmore, Brendan F.

    2016-01-01

    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa. PMID:27242335

  5. Influence of thermal and mechanical cycling on the flexural strength of ceramics with titanium or gold alloy frameworks.

    Science.gov (United States)

    Oyafuso, Denise Kanashiro; Ozcan, Mutlu; Bottino, Marco Antonio; Itinoche, Marcos Koiti

    2008-03-01

    The aim of this study was to evaluate the effect of thermal and mechanical cycling alone or in combination, on the flexural strength of ceramic and metallic frameworks cast in gold alloy or titanium. Metallic frameworks (25 mm x 3 mm x 0.5 mm) (N=96) cast in gold alloy or commercial pure titanium (Ti cp) were obtained using acrylic templates. They were airborne particle-abraded with 150 microm aluminum oxide at the central area of the frameworks (8 mm x 3 mm). Bonding agent and opaque were applied on the particle-abraded surfaces and the corresponding ceramic for each metal was fired onto them. The thickness of the ceramic layer was standardized by positioning the frameworks in a metallic template (height: 1 mm). The specimens from each ceramic-metal combination (N=96, n=12 per group) were randomly assigned into four experimental fatigue conditions, namely water storage at 37 degrees C for 24h (control group), thermal cycling (3000 cycles, between 4 and 55 degrees C, dwell time: 10s), mechanical cycling (20,000 cycles under 10 N load, immersion in distilled water at 37 degrees C) and, thermal and mechanical cycling. A flexural strength test was performed in a universal testing machine (crosshead speed: 1.5 mm/min). Data were statistically analyzed using two-way ANOVA and Tukey's test (alpha=0.05). The mean flexural strength values for the ceramic-gold alloy combination (55+/-7.2MPa) were significantly higher than those of the ceramic-Ti cp combination (32+/-6.7 MPa) regardless of the fatigue conditions performed (pgold alloy (52+/-6.6 and 53+/-5.6 MPa, respectively) and ceramic-Ti cp combinations (29+/-6.8 and 29+/-6.8 MPa, respectively) compared to the control group (58+/-7.8 and 39+/-5.1 MPa, for gold and Ti cp, respectively) (pgold alloy frameworks exhibited a residue of ceramic material on the surface in all experimental groups. Mechanical and thermo-mechanical fatigue conditions decreased the flexural strength values for both ceramic-gold alloy and ceramic

  6. Rapid characterization of chemical compounds in liquid and solid states using thermal desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Huang, Min-Zong; Zhou, Chi-Chang; Liu, De-Lin; Jhang, Siou-Sian; Cheng, Sy-Chyi; Shiea, Jentaie

    2013-10-01

    Rapid characterization of thermally stable chemical compounds in solid or liquid states is achieved through thermal desorption electrospray ionization mass spectrometry (TD-ESI/MS). A feature of this technique is that sampling, desorption, ionization, and mass spectrometric detection are four separate events with respect to time and location. A metal probe was used to sample analytes in their solid or liquid states. The probe was then inserted in a preheated oven to thermally desorb the analytes on the probe. The desorbed analytes were carried by a nitrogen gas stream into an ESI plume, where analyte ions were formed via interactions with charged solvent species generated in the ESI plume. The analyte ions were subsequently detected by a mass analyzer attached to the TD-ESI source. Quantification of acetaminophen in aqueous solutions using TD-ESI/MS was also performed in which a linear response for acetaminophen was obtained between 25 and 500 ppb (R(2) = 0.9978). The standard deviation for a reproducibility test for ten liquid samples was 9.6%. Since sample preparation for TD-ESI/MS is unnecessary, a typical analysis can be completed in less than 10 s. Analytes such as the active ingredients in over-the-counter drugs were rapidly characterized regardless of the different physical properties of said drugs, which included liquid eye drops, viscous cold syrup solution, ointment cream, and a drug tablet. This approach was also used to detect trace chemical compounds in illicit drugs and explosives, in which samples were obtained from the surfaces of a cell phone, piece of luggage made from hard plastic, business card, and wooden desk.

  7. Underwater Cycle Ergometry: Power Requirements With and Without Diver Thermal Dress

    National Research Council Canada - National Science Library

    Shykoff, B

    2009-01-01

    .... An ongoing problem has been that, although the power requirement of cycling in the water is known to be greater than that in air for the same ergometer setting, the magnitude of the difference...

  8. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    Science.gov (United States)

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  9. Limits and Optimization of Power Input or Output of Actual Thermal Cycles

    OpenAIRE

    Emin Açıkkalp; Hasan Yamık

    2013-01-01

    In classical thermodynamic, maximum power obtained from system (or minimum power supplied to system) defined as availability (exergy), but availability term is only used for reversible systems. In reality, there is no reversible system, all systems are irreversible, because reversible cycles doesn’t include constrains like time or size and they operates in quasi-equilibrium state. Purpose of this study is to define limits of the all basic thermodynamic cycles and to provide finite-time exergy...

  10. Thermal and chemical diffusion in the rapid solidification of binary alloys

    Science.gov (United States)

    Conti

    2000-01-01

    Solidification of binary alloys is characterized by the necessity to reject away from the advancing front two conserved quantities: the latent heat released at the solid-liquid interface and the solute atoms that cannot be accommodated in the solid phase. As thermal diffusion is much faster than chemical diffusion, the latter is generally assumed to be the rate limiting mechanism for the process, and the problem is addressed through the isothermal approximation. In the present paper we use the phase-field model to study the planar growth of a solid germ, nucleated in its undercooled melt. We focus on the effects of a noninstantaneous thermal relaxation. The steady growth predicted at large supersaturation in the isothermal limit is prevented. Depending on the value of the Lewis number the growth rate is limited by either mass or heat diffusion; in the latter case we observe a sharp transition between two different regimes, in which originates a nonmonotonic time dependence of the interface temperature. The effects of this transition reflect in the composition of the solidified alloy.

  11. An integrated photo-thermal sensing system for rapid and direct diagnosis of anemia.

    Science.gov (United States)

    Kwak, Bong Seop; Kim, Hyung Joon; Kim, Hyun Ok; Jung, Hyo-Il

    2010-12-15

    This article presents a thermal biosensor to diagnose the anemia without chemical treatments using temperature increase of red blood cells (RBC) when hemoglobin molecules absorb specific wavelength of photons and convert them to thermal energy. For measuring temperature change of red blood cell, the micro-scaled platinum resistance temperature detector (Pt RTD) was developed. For maintenance of constant ambient temperature, we designed and fabricated a thermostat system. The thermostat system consists of a K-type thermocouple and two electric heaters that serve to increase the system temperature, which is monitored by the thermocouple. Both heaters and the thermocouple were connected to a proportional-integral-derivative (PID) controller and enabled to maintain the temperature constant (temperature variations (from 66.33±2.72°C to 74.16±2.06°C) of whole blood samples from 10 anemic patients and subsequently determined the concentration of hemoglobin (from 7.2 g/dL to 9.8 g/dL). The method proposed in this paper requires significantly less amount of whole blood sample (6 μl) compared with the conventional methods (175 μl) and allows instantaneous diagnosis (3 s) of anemia. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Irreversibility analysis of hydrogen separation schemes in thermochemical cycles. [Condensation, physical absorption, diffusion, physical adsorption, thermal adsorption, and electrochemical separation

    Energy Technology Data Exchange (ETDEWEB)

    Cox, K.E.

    1978-01-01

    Six processes have been evaluated as regards irreversibility generation for hydrogen separation from binary gas mixtures. The results are presented as a series of plots of separation efficiency against the mol fraction hydrogen in the feed gas. Three processes, condensation, physical absorption and electrochemical separation indicate increasing efficiency with hydrogen content. The other processes, physical and thermal adsorption, and diffusion show maxima in efficiency at a hydrogen content of 50 mol percent. Choice of separation process will also depend on such parameters as condition of feed, impurity content and capital investment. For thermochemical cycles, schemes based on low temperature heat availability are preferable to those requiring a work input.

  13. A review of test results on solar thermal power modules with dish-mounted Stirling and Brayton cycle engines

    Science.gov (United States)

    Jaffe, Leonard D.

    1988-01-01

    This paper presents results of development tests of various solar thermal parabolic dish modules and assemblies that used dish-mounted Brayton or Stirling cycle engines for production of electric power. These tests indicate that early modules achieve net efficiencies up to 29 percent in converting sunlight to electricity, as delivered to the grid. Various equipment deficiencies were observed and a number of malfunctions occurred. The performance measurements, as well as the malfunctions and other test experience, provided information that should be of value in developing systems with improved performance and reduced maintenance.

  14. Thermal ecology on an exposed algal reef: infrared imagery a rapid tool to survey temperature at local spatial scales

    Science.gov (United States)

    Cox, T. E.; Smith, C. M.

    2011-12-01

    We tested the feasibility of infra-red (IR) thermography as a tool to survey in situ temperatures in intertidal habitats. We employed this method to describe aspects of thermal ecology for an exposed algal reef in the tropics (O`ahu, Hawai`i). In addition, we compared temperatures of the surrounding habitat as determined by IR thermography and traditional waterproof loggers. Images of reef organisms (6 macroalgae, 9 molluscs, 1 anthozoan, and 2 echinoderms), loggers, and landscapes were taken during two diurnal low tides. Analysis of IR thermographs revealed remarkable thermal complexity on a narrow tropical shore, as habitats ranged from 18.1 to 38.3°C and surfaces of organisms that ranged from 21.1 to 33.2°C. The near 20°C difference between abiotic habitats and the mosaic of temperatures experienced by reef organisms across the shore are similar to findings from temperate studies using specialized longterm loggers. Further, IR thermography captured rapid temperature fluctuations that were related to tidal height and cross-correlated to wave action. Finally, we gathered evidence that tidal species were associated with particular temperature ranges and that two species possess morphological characteristics that limit thermal stress. Loggers provided similar results as thermography but lack the ability to resolve variation in fine-scale spatial and temporal patterns. Our results support the utility of IR thermography in exploring thermal ecology, and demonstrate the steps needed to calibrate data leading to establishment of baseline conditions in a changing and heterogeneous environment.

  15. Integration of photovoltaic and concentrated solar thermal technologies for H2 production by the hybrid sulfur cycle

    Science.gov (United States)

    Liberatore, Raffaele; Ferrara, Mariarosaria; Lanchi, Michela; Turchetti, Luca

    2017-06-01

    It is widely agreed that hydrogen used as energy carrier and/or storage media may significantly contribute in the reduction of emissions, especially if produced by renewable energy sources. The Hybrid Sulfur (HyS) cycle is considered as one of the most promising processes to produce hydrogen through the water-splitting process. The FP7 project SOL2HY2 (Solar to Hydrogen Hybrid Cycles) investigates innovative material and process solutions for the use of solar heat and power in the HyS process. A significant part of the SOL2HY2 project is devoted to the analysis and optimization of the integration of the solar and chemical (hydrogen production) plants. In this context, this work investigates the possibility to integrate different solar technologies, namely photovoltaic, solar central receiver and solar troughs, to optimize their use in the HyS cycle for a green hydrogen production, both in the open and closed process configurations. The analysis carried out accounts for different combinations of geographical location and plant sizing criteria. The use of a sulfur burner, which can serve both as thermal backup and SO2 source for the open cycle, is also considered.

  16. Nanocomposite containing CaF2 nanoparticles: Thermal cycling, wear and long-term water-aging

    Science.gov (United States)

    Weir, Michael D.; Moreau, Jennifer L.; Levine, Eric D.; Strassler, Howard D.; Chow, Laurence C.; Xu, Hockin H. K.

    2012-01-01

    Objectives Fluoride (F) releasing dental restoratives are promising to promote remineralization and combat caries. The objectives of this study were to develop nanocomposite containing calcium fluoride nanoparticles (nCaF2), and to investigate the long-term mechanical durability including wear, thermal-cycling and long-term water-aging behavior. Methods Two types of fillers were used: nCaF2 with a diameter of 53 nm, and glass particles of 1.4 μm. Four composites were fabricated with fillers of: (1) 0% nCaF2 + 65% glass; (2) 10% nCaF2 + 55% glass; (3) 20% nCaF2 + 45% glass; (4) 30% nCaF2 + 35% glass. Three commercial materials were also tested. Specimens were subjected to thermal-cycling between 5 °C and 60 °C for 105 cycles, three-body wear for 4×105 cycles, and water-aging for 2 years. Results After thermal-cycling, the nCaF2 nanocomposites had flexural strengths in the range of 100-150 MPa, five times higher than the 20-30 MPa for resin-modified glass ionomer (RMGI). The wear scar depth showed an increasing trend with increasing nCaF2 filler level. Wear of nCaF2 nanocomposites was within the range of wear for commercial controls. Water-aging decreased the strength of all materials. At 2 years, flexural strength was 94 MPa for nanocomposite with 10% nCaF2, 60 MPa with 20% nCaF2, and 48 MPa with 30% nCaF2. They are 3-6 fold higher than the 15 MPa for RMGI (p nanocomposites appeared dense and solid. Significance Combining nCaF2 with glass particles yielded nanocomposites with long-term mechanical properties that were comparable to those of a commercial composite with little F release, and much better than those of RMGI controls. These strong long-term properties, together with their F release being comparable to RMGI as previously reported, indicate that the nCaF2 nanocomposites are promising for load-bearing and caries-inhibiting restorations. PMID:22429937

  17. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  18. Multiple regression models for the prediction of the maximum obtainable thermal efficiency of organic Rankine cycles

    DEFF Research Database (Denmark)

    Larsen, Ulrik; Pierobon, Leonardo; Wronski, Jorrit

    2014-01-01

    to power. In this study we propose four linear regression models to predict the maximum obtainable thermal efficiency for simple and recuperated ORCs. A previously derived methodology is able to determine the maximum thermal efficiency among many combinations of fluids and processes, given the boundary...... conditions of the process. Hundreds of optimised cases with varied design parameters are used as observations in four multiple regression analyses. We analyse the model assumptions, prediction abilities and extrapolations, and compare the results with recent studies in the literature. The models...

  19. DNA-based genetic markers for Rapid Cycling Brassica rapa (Fast Plants type designed for the teaching laboratory.

    Directory of Open Access Journals (Sweden)

    Eryn E. Slankster

    2012-06-01

    Full Text Available We have developed DNA-based genetic markers for rapid-cycling Brassica rapa (RCBr, also known as Fast Plants. Although markers for Brassica rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP based markers and 14 variable number tandem repeat (VNTR-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a nongenic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology.

  20. Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population

    Science.gov (United States)

    Bagheri, Hedayat; El-Soda, Mohamed; van Oorschot, Inge; Hanhart, Corrie; Bonnema, Guusje; Jansen-van den Bosch, Tanja; Mank, Rolf; Keurentjes, Joost J. B.; Meng, Lin; Wu, Jian; Koornneef, Maarten; Aarts, Mark G. M.

    2012-01-01

    A recombinant inbred line (RIL) population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 Single nucleotide polymorphisms (SNPs), 130 AFLP®, 27 InDel, and 13 publicly available SSR markers. The map covers a total length of 1150 centiMorgan (cM) with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to quantitative trait loci (QTL) analysis. A total of 47 QTLs were detected, each explaining between 6 and 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis. PMID:22912644

  1. Genetic analysis of morphological traits in a new, versatile, rapid-cycling Brassica rapa recombinant inbred line population

    Directory of Open Access Journals (Sweden)

    Hedayat eBagheri

    2012-08-01

    Full Text Available A recombinant inbred line (RIL population was produced based on a wide cross between the rapid-cycling and self-compatible genotypes L58, a Caixin vegetable type, and R-o-18, a yellow sarson oil type. A linkage map based on 160 F7 lines was constructed using 100 SNP, 130 AFLP®, 27 InDel and 13 publicly available SSR markers. The map covers a total length of 1150 cM with an average resolution of 4.3 cM/marker. To demonstrate the versatility of this new population, 17 traits, related to plant architecture and seed characteristics, were subjected to QTL analysis. A total of 47 QTLs were detected, each explaining between 6 to 54% of the total phenotypic variance for the concerned trait. The genetic analysis shows that this population is a useful new tool for analyzing genetic variation for interesting traits in B. rapa, and for further exploitation of the recent availability of the B. rapa whole genome sequence for gene cloning and gene function analysis.

  2. DNA-Based Genetic Markers for Rapid Cycling Brassica Rapa (Fast Plants Type) Designed for the Teaching Laboratory

    Science.gov (United States)

    Slankster, Eryn E.; Chase, Jillian M.; Jones, Lauren A.; Wendell, Douglas L.

    2012-01-01

    We have developed DNA-based genetic markers for rapid cycling Brassica rapa (RCBr), also known as Fast Plants. Although markers for B. rapa already exist, ours were intentionally designed for use in a teaching laboratory environment. The qualities we selected for were robust amplification in PCR, polymorphism in RCBr strains, and alleles that can be easily resolved in simple agarose slab gels. We have developed two single nucleotide polymorphism (SNP) based markers and 14 variable number tandem repeat (VNTR)-type markers spread over four chromosomes. The DNA sequences of these markers represent variation in a wide range of genomic features. Among the VNTR-type markers, there are examples of variation in a non-genic region, variation within an intron, and variation in the coding sequence of a gene. Among the SNP-based markers there are examples of polymorphism in intronic DNA and synonymous substitution in a coding sequence. Thus these markers can serve laboratory exercises in both transmission genetics and molecular biology. PMID:22675329

  3. Thick soi films by rapid thermal processing for high voltage integrated circuits

    Energy Technology Data Exchange (ETDEWEB)

    Dilhac, J.M.; Cornibert, L.; Charitat, G.; Nolhier, N.; Zerrouk, D.; Ganibal, C.

    1997-05-01

    A structure for electrical insulation of control devices used in high voltage integrated circuits, is presented, combining junction and dielectric insulation for vertical and lateral insulation respectively. The insulation performances are first theoretically assessed to estimate the required oxide thickness; then, a method for creating the buried oxide layer is presented and experimentally verified; the method consists in re-crystallizing thick polysilicon films by Lateral Epitaxial Growth over Oxide (LEGO) in order to fabricate substrates with localized SOI (silicon on insulator) layers, and avoids any horizontal thermal gradient in the solid phase and therefore produces less defects, while allowing the formation of much thicker films than in any other melt-based technique

  4. Effect of Gaseous Impurities on Long-Term Thermal Cycling and Aging Properties of Complex Hydrides for Hydrogen Storage

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Dhanesh [Primary Contact; Lamb, Joshua; Chien, Wen-Ming; Talekar, Anjali; and Pal, Narendra

    2011-03-28

    This program was dedicated to understanding the effect of impurities on Long-Term Thermal Cycling and aging properties of Complex Hydrides for Hydrogen Storage. At the start of the program we found reversibility between Li2NH+LiH LiH+LiNH2 (yielding ~5.8 wt.%H capacity). Then we tested the effect of impurity in H2 gas by pressure cycling at 255°C; first with industrial gas containing ppm levels of O2 and H2O as major impurities. Both these impurities had a significant impact on the reversibility and decreased the capacity by 2.65 wt.%H. Further increase in number of cycles from 500 to 1100 showed only a 0.2 wt%H more weight loss, showing some capacity is still maintained after a significant number of cycles. The loss of capacity is attributed to the formation of ~55 wt% LiH and ~30% Li2O, as major contaminant phases, along with the hydride Li2NH phase; suggesting loss of nitrogen during cycling. The effect of 100 ppm H2O in H2 also showed a decrease of ~2.5 wt.%H (after 560 cycles), and 100ppm O2 in H2; a loss of ~4.1 wt.%. Methane impurity (100 ppm, 100cycles), showed a very small capacity loss of 0.9 wt.%H under similar conditions. However, when Li3N was pressure cycled with 100ppmN2-H2 there were beneficial effects were observed (255oC); the reversible capacity increased to 8.4wt.%H after 853 cycles. Furthermore, with 20 mol.%N2-H2 capacity increased to ~10 wt.%H after 516 cycles. We attribute this enhancement to the reaction of nitrogen with liquid lithium during cycling as the Gibbs free energy of formation of Li3N (Go = -98.7 kJ/mol) is more negative than that of LiH (Go = -50.3 kJ/mol). We propose that the mitigation of hydrogen capacity losses is due to the destabilization of the LiH phase that tends to accumulate during cycling. Also more Li2NH phase was found in the cycled product. Mixed Alanates (3LiNH2:Li3AlH6) showed that 7 wt% hydrogen desorbed under dynamic vacuum. Equilibrium experiments (maximum 12 bar H2) showed up to 4wt% hydrogen reversibly

  5. Microstructural observations and thermal stability of a rapidly solidified aluminum-gadolinium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Savage, S.J.; Eliezer, D.; Froes, F.H. (Rapid Solidification Group, Swedish Institute for Metals Research, Drottning Kristinas vag 48, S-114 28 Stockholm (SE))

    1987-08-01

    Rapid solidification processing has significant potential to extend the use of aluminum alloys to higher temperatures (200/sup 0/C to 350/sup 0/C). In particular, alloys based on Al-Fe-X compositions, where X = Ce or Mo, have been studied in detail. Cerium is representative of the family of rare earth, or lanthanide elements, and forms a number of intermetallic compounds with aluminum. Alloys containing rare earths other than cerium have received little attention, although for several reasons they are considered worthy of study. Rapidly solidified ribbons were prepared from this alloy by the chill block melt spinning technique at a peripheral wheel velocity of 20.4 m/s. A melt temperature of --1300/sup 0/C was used to ensure complete dissolution of all intermetallic particles. The ribbons produced were typically about 100 ..mu..m thick and 2 to 3 mm wide. Standard polishing techniques were used to prepare sections for optical microscopy and microhardness measurements. Room temperature Keller's reagent (diluted to 50 vol pct, in water) was used to etch the samples. Thin foils were prepared for TEM by electropolishing from both sides of the ribbon using the window technique.

  6. Life cycle cost optimization of buildings with regard to energy use, thermal indoor environment and daylight

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Svend

    2002-01-01

    Buildings represent a large economical investment and have long service lives through which expenses for heating, cooling, maintenance and replacement depends on the chosen building design. Therefore, the building cost should not only be evaluated by the initial investment cost but rather...... by the life cycle cost taking all expenses in the buildings service life into consideration. Also the performance of buildings is important as the performance influences the comfort of the occupants, heating demand etc. Different performance requirements are stated in building codes, standards...... and by the customer. The influence of different design variables on life cycle cost and building performance is very complicated and the design variables can be combined in an almost unlimited number of ways. Optimization can be applied to achieve a building design with low life cycle cost and good performance...

  7. Amplitude of the diurnal temperature cycle as observed by thermal infrared and microwave radiometers

    Science.gov (United States)

    Land surface temperature (LST) is a key input to physically-based retrieval algorithms of hydrological states and fluxes, and global measurements of LST are provided by many satellite platforms. Passive microwave (MW) observations offer an alternative to conventional thermal infrared (TIR) LST retri...

  8. Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite

    NARCIS (Netherlands)

    Barreneche, C.; Fernández, A.I.; Cabeza, L.F.; Cuypers, R.

    2015-01-01

    At this moment, the global energy consumption in buildings is around 40% of the total energy consumption in developed countries. Thermal energy storage (TES) is presented as one way to address this energy-related problem proposing an alternative to reduce the gap between energy supply and energy

  9. Study on performances of colorless and transparent shape memory polyimide film in space thermal cycling, atomic oxygen and ultraviolet irradiation environments

    Science.gov (United States)

    Gao, Hui; Lan, Xin; Liu, Liwu; Xiao, Xinli; Liu, Yanju; Leng, Jinsong

    2017-09-01

    Shape memory polymers with high glass transition temperature (HSMPs) and HSMP-based deployable structures and devices, which can bear harsh operation conditions for durable applications, have attracted more and more interest in recent years. In this article, colorless and transparent shape memory polyimide (SMCTPI) films were subjected to simulated vacuum thermal cycling, atomic oxygen (AO) and ultraviolet (UV) irradiation environments up to 600 h, 556 h and 600 h for accelerated irradiation. The glass transition temperature (T g) determined by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) had no obvious changes after being irradiated by varying amounts of thermal cycling, AO and UV irradiation dose. After being irradiated by 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, shape recovery behaviors of SMCTPI films also had no obvious damage even if they experienced 30 shape memory cycles, while the surface morphologies and optical properties were seriously destroyed by AO irradiation, as compared with thermal cycling and UV irradiation. The tensile strength could separately maintain 122 MPa, 120 MPa and 70 MPa after 50 thermal cycles, 10 × 1021 atoms cm-2 AO irradiation and 3000 ESH UV irradiation, which shows great potential for use in aerospace structures and devices.

  10. Teaching Human Genetics with Mustard: Rapid Cycling "Brassica rapa" (Fast Plants Type) as a Model for Human Genetics in the Classroom Laboratory

    Science.gov (United States)

    Wendell, Douglas L.; Pickard, Dawn

    2007-01-01

    We have developed experiments and materials to model human genetics using rapid cycling "Brassica rapa", also known as Fast Plants. Because of their self-incompatibility for pollination and the genetic diversity within strains, "B. rapa" can serve as a relevant model for human genetics in teaching laboratory experiments. The experiment presented…

  11. COMBINED CYCLE GAS TURBINE FOR THERMAL POWER STATIONS: EXPERIENCE IN DESIGNING AND OPERATION, PROSPECTS IN APPLICATION

    Directory of Open Access Journals (Sweden)

    N. V. Karnitsky

    2014-01-01

    Full Text Available The paper has reviewed main world tendencies in power consumption and power system structure. Main schemes of combined cycle gas turbines have been considered in the paper. The paper contains an operational analysis of CCGT blocks that are operating within the Belarusian energy system. The analysis results have been given in tables showing main operational indices of power blocks

  12. The Rapidity Distributions and the Thermalization Induced Transverse Momentum Distributions in Au-Au Collisions at RHIC Energies

    Directory of Open Access Journals (Sweden)

    Zhi-Jin Jiang

    2017-01-01

    Full Text Available It is widely believed that the quark-gluon plasma (QGP might be formed in the current heavy ion collisions. It is also widely recognized that the relativistic hydrodynamics is one of the best tools for describing the process of expansion and hadronization of QGP. In this paper, by taking into account the effects of thermalization, a hydrodynamic model including phase transition from QGP state to hadronic state is used to analyze the rapidity and transverse momentum distributions of identified charged particles produced in heavy ion collisions. A comparison is made between the theoretical results and experimental data. The theoretical model gives a good description of the corresponding measurements made in Au-Au collisions at RHIC energies.

  13. Investigation of Near-Surface Defects Induced by Spike Rapid Thermal Annealing in c-SILICON Solar Cells

    Science.gov (United States)

    Liu, Guodong; Ren, Pan; Zhang, Dayong; Wang, Weiping; Li, Jianfeng

    2016-01-01

    The defects induced by a spike rapid thermal annealing (RTA) process in crystalline silicon (c-Si) solar cells were investigated by the photoluminescence (PL) technique and the transmission electron microscopy (TEM), respectively. Dislocation defects were found to form in the near-surface junction region of the monocrystalline Si solar cell after a spike RTA process was performed at 1100∘C. Photo J-V characteristics were measured on the Si solar cell before and after the spike RTA treatments to reveal the effects of defects on the Si cell performances. In addition, the Silvaco device simulation program was used to study the effects of defects density on the cell performances by fitting the experimental data of RTA-treated cells. The results demonstrate that there was an obvious degradation in the Si solar cell performances when the defect density after the spike RTA treatment was above 1×1013cm-3.

  14. Fluorine implantation effects on Ta2O5 dielectrics on polysilicon treated with post rapid thermal annealing

    Science.gov (United States)

    Chen, Hsiang; Kao, Chyuan Haur; Huang, Bo Yun; Lo, Wen Shih

    2013-10-01

    This paper investigates effects of fluorine implantation with post rapid thermal annealing on electrical characteristics and material properties of tantalum pentoxide (Ta2O5) dielectrics. The electrical behaviors of the dielectrics under various implantation doses were measured. To investigate annealing effects, secondary ion mass spectrometry (SIMS) was used to measure depth profiles of various atoms inside the dielectrics with and without annealing. In addition, atomic force microscopy measurements visualize the surface roughness and material properties of the dielectrics with different implantation doses. The dielectric performance can be significantly improved by an appropriate fluorine implantation dose of 1 × 1015 ions/cm2 with post annealing at 800 °C. The improvements in electrical characteristics were caused by the appropriate incorporation of the fluorine atoms presented in SIMS profiles and the removal of the dangling bonds and traps. The Ta2O5 dielectric incorporated with appropriate fluorine implantation and annealing treatments shows great promise for future generation of memory applications.

  15. Rapid determination of the chemical oxygen demand of water using a thermal biosensor.

    Science.gov (United States)

    Yao, Na; Wang, Jinqi; Zhou, Yikai

    2014-06-06

    In this paper we describe a thermal biosensor with a flow injection analysis system for the determination of the chemical oxygen demand (COD) of water samples. Glucose solutions of different concentrations and actual water samples were tested, and their COD values were determined by measuring the heat generated when the samples passed through a column containing periodic acid. The biosensor exhibited a large linear range (5 to 3000 mg/L) and a low detection limit (1.84 mg/L). It could tolerate the presence of chloride ions in concentrations of 0.015 M without requiring a masking agent. The sensor was successfully used for detecting the COD values of actual samples. The COD values of water samples from various sources were correlated with those obtained by the standard dichromate method; the linear regression coefficient was found to be 0.996. The sensor is environmentally friendly, economical, and highly stable, and exhibits good reproducibility and accuracy. In addition, its response time is short, and there is no danger of hazardous emissions or external contamination. Finally, the samples to be tested do not have to be pretreated. These results suggest that the biosensor is suitable for the continuous monitoring of the COD values of actual wastewater samples.

  16. The Impacts of Rapid Urbanization on the Thermal Environment: A Remote Sensing Study of Guangzhou, South China

    Directory of Open Access Journals (Sweden)

    Cuiping Wang

    2012-07-01

    Full Text Available The effect of urbanization on the urban thermal environment (UTE has attracted increasing research attention for its significant relationship to local climatic change and habitat comfort. Using quantitative thermal remote sensing and spatial statistics methods, here we analyze four Landsat TM/ETM+ images of Guangzhou in South China acquired respectively on 13 October 1990, 2 January 2000, 23 November 2005, and 2 January 2009, to investigate the spatiotemporal variations in the land surface temperature (LST over five land use/land cover (LULC types and over different urban/rural zones. The emphases of this study are placed on the urban heat island (UHI intensity and the relationships among LST, the normalized difference built-up index (NDBI, and the normalized difference vegetation index (NDVI. Results show that: (1 the UHI effect existed obviously over the period from 1990 to 2009 and high temperature anomalies were closely associated with built-up land and densely populated and heavily industrialized districts; (2 the UHI intensities represented by the mean LST difference between the urban downtown area and the suburban area were on average 0.88, 0.49, 0.90 and 1.16 K on the four dates, at the 99.99% confidence level; and (3 LST is related positively with NDBI and negatively with NDVI. The spatiotemporal variation of UTE of Guangzhou could be attributed to rapid urbanization, especially to the expanding built-up and developing land, declining vegetation coverage, and strengthening of anthropogenic and industrial activities which generate increasing amounts of waste heat. This study provides useful information for understanding the local climatic and environment changes that occur during rapid urbanization.

  17. Rapid thermal annealing of sputter-deposited ZnO:Al films for microcrystalline Si thin-film solar cells

    Directory of Open Access Journals (Sweden)

    Hanajiri T.

    2012-06-01

    Full Text Available Rapid thermal annealing of sputter-deposited ZnO and Al-doped ZnO (AZO films with and without an amorphous silicon (a-Si capping layer was investigated using a radio-frequency (rf argon thermal plasma jet of argon at atmospheric pressure. The resistivity of bare ZnO films on glass decreased from 108 to 104–105 Ω cm at maximum surface temperatures Tmaxs above 650 °C, whereas the resistivity increased from 10-4 to 10-3–10-2Ω cm for bare AZO films. On the other hand, the resistivity of AZO films with a 30-nm-thick a-Si capping layer remained below 10-4Ω cm, even after TPJ annealing at a Tmax of 825 °C. The film crystallization of both AZO and a-Si layers was promoted without the formation of an intermixing layer. Additionally, the crystallization of phosphorous- and boron-doped a-Si layers at the sample surface was promoted, compared to that of intrinsic a-Si under the identical plasma annealing conditions. The TPJ annealing of n+-a-Si/textured AZO was applied for single junction n-i-p microcrystalline Si thin-film solar cells.

  18. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  19. The Effect of Thermal Cycling on the Surface Roughness of Dental Casting Investments.

    Science.gov (United States)

    1991-05-01

    refractory materials, usually silica as either quartz or cristobalite , and a binder that was a gypsum product in the form of plaster or stone. The...refractory materials <pand upon heating because of the thermal expansion of the material and the change in the crystalline state (alpha to beta ). Of the four...common stable forms of silica (quartz, tridymite, cristobalite , and fused or vitreous silica), cristobalite has the greatest expansion and lowest

  20. Technical Feasibility Study of Thermal Energy Storage Integration into the Conventional Power Plant Cycle

    OpenAIRE

    Wojcik, Jacek D.; Wang, Jihong

    2017-01-01

    The current load balance in the grid is managed mainly through peaking fossil-fuelled power plants that respond passively to the load changes. Intermittency, which comes from renewable energy sources, imposes additional requirements for even more flexible and faster responses from conventional power plants. A major challenge is to keep conventional generation running closest to the design condition with higher load factors and to avoid switching off periods if possible. Thermal energy storage...

  1. Thermophysical characterization and thermal cycling stability of two TCM: CaCl2 and zeolite

    OpenAIRE

    Barreneche Güerisoli, Camila; Fernández Renna, Ana Inés; Cabeza, Luisa F.; Cuypers, Ruud

    2015-01-01

    At this moment, the global energy consumption in buildings is around 40% of the total energy consumption in developed countries. Thermal energy storage (TES) is presented as one way to address this energyrelated problem proposing an alternative to reduce the gap between energy supply and energy demand. One way to store energy is using thermochemical materials (TCM). These types of materials allow accumulating energy through a chemical process at low temperature, almost without hea...

  2. Sensitivity analysis of a community solar system using annual cycle thermal energy storage

    Science.gov (United States)

    Baylin, F.; Monte, R.; Sillman, S.

    The objective of this research is to assess the sensitivity of design parameters for a community solar heating system having annual thermal energy storage to factors including climate, building type, community size and collector type and inclination. The system under consideration uses a large, water-filled, concrete-constructed tank for providing space heating and domestic hot water (DHW). This presentation outlines results and conclusions about system sizing; a system design study and economic analysis are underway.

  3. Power plant design with a combined cycle and double concentrated solar thermal power sources

    OpenAIRE

    Vidal i Parreu, Arnau

    2010-01-01

    The electricity has become an indispensable element of today’s society. Demand is growing continuously and the production is still based on limited sources of energy such as coal and petroleum derivate products. Environmental issues, such as global warming, and the uncertainty about the quantity of the conventional fossil fuels are forcing suppliers to find new solutions for the near future. In this assignment, concentrated solar thermal technologies for electricity generation could pla...

  4. A double-blind, placebo-controlled, prophylaxis study of lamotrigine in rapid-cycling bipolar disorder. Lamictal 614 Study Group.

    Science.gov (United States)

    Calabrese, J R; Suppes, T; Bowden, C L; Sachs, G S; Swann, A C; McElroy, S L; Kusumakar, V; Ascher, J A; Earl, N L; Greene, P L; Monaghan, E T

    2000-11-01

    Patients with rapid-cycling bipolar disorder are often treatment refractory. This study examined lamotrigine as maintenance monotherapy for rapid-cycling bipolar disorder. Lamotrigine was added to patients' current psychotropic regimens and titrated to clinical effect during an open-label treatment phase. Stabilized patients were tapered off other psychotropics and randomly assigned to lamotrigine or placebo monotherapy for 6 months. Time to additional pharmacotherapy for emerging symptoms was the primary outcome measure. Secondary efficacy measures included survival in study (time to any premature discontinuation), percentage of patients stable without relapse for 6 months, and changes in the Global Assessment Scale and Clinical Global Impressions-Severity scale. Safety was assessed from adverse event, physical examination, and laboratory data. 324 patients with rapid-cycling bipolar disorder (DSM-IV criteria) received open-label lamotrigine, and 182 patients were randomly assigned to the double-blind maintenance phase. The difference between the treatment groups in time to additional pharmacotherapy did not achieve statistical significance in the overall efficacy population. However, survival in study was statistically different between the treatment groups (p = .036). Analyses also indicated a 6-week difference in median survival time favoring lamotrigine. Forty-one percent of lamotrigine patients versus 26% of placebo patients (p = .03) were stable without relapse for 6 months of monotherapy. Lamotrigine was well tolerated; there were no treatment-related changes in laboratory parameters, vital signs, or body weight. No serious rashes occurred. This was the largest and only prospective placebo-controlled study of rapid-cycling bipolar disorder patients to date; results indicate lamotrigine monotherapy is a useful treatment for some patients with rapid-cycling bipolar disorder.

  5. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    Science.gov (United States)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  6. Analyze and Improve Lifetime in 3L-NPC Inverter from Power Cycle and Thermal Balance

    DEFF Research Database (Denmark)

    Chen, Quan; Chen, Zhe; Wang, Qunjing

    2014-01-01

    Three-level Neutral-point-clamped (3L-NPC) topology is becoming a realistic alternative to the conventional one in high-voltage and high-power application. Studies show that the power cycling mean time to failure (MTTF) of the semiconductor bond wire in 3L-NPC inverter system may be very short...... and load voltage is applied to reduce power cycle and switching losses. And then, three-level active neutral point-clamped topology is taken into account to wake the most thermo stressed device. In order to validate the improve lifetime method in this paper, a 2MW 3L-NPC converter used in wind energy has...... under some common conditions. Firstly, this paper shows the impact of some key parameters on power electronic system lifetime according the analysis of semiconductor failure mechanism. Secondly, a switching frequency reduction method based on the position relationship between the flowing current...

  7. Independent Predictors for Lifetime and Recent Substance Use Disorders in Patients with Rapid Cycling Bipolar Disorder: Focus on Anxiety Disorders

    Science.gov (United States)

    Gao, Keming; Chan, Philip K.; Verduin, Marcia L.; Kemp, David E.; Tolliver, Bryan K.; Ganocy, Stephen J.; Bilali, Sarah; Brady, Kathleen T.; Findling, Robert L.; Calabrese, Joseph R.

    2010-01-01

    We set out to study independent predictor(s) for lifetime and recent substance use disorder (SUDs) in patients with rapid cycling bipolar disorder (RCBD). Extensive Clinical Interview and Mini International Neuropsychiatric Interview were used to ascertain DSM-IV Axis I diagnoses of RCBD, anxiety disorders, and SUDs. Data from patients enrolling into four similar clinical trials were used. Where appropriate, univariate analyses with t-test or Chi-Square were applied. Stepwise logistic regression was used to examine the relationship among predictor variables and lifetime and recent SUDs. Univariate analysis showed that patients with co-occurring anxiety disorders (n=261) had significantly increased rates of lifetime (OR=2.1) and recent (OR=1.9) alcohol dependence as well as lifetime (OR=3.4) and recent (OR=2.5) marijuana dependence compared to those without co-occurring anxiety disorder (n=303). In logistic regression analyses, generalized anxiety disorder (GAD) was associated with increased risk for lifetime SUDs (OR=2.34), alcohol dependence (OR=1.73), and marijuana dependence (OR=3.36), and recent marijuana dependence (OR=3.28). A history of physical abuse was associated with increased risk for lifetime SUDs (OR=1.71) and recent marijuana dependence (OR=3.47). Earlier onset of first mania/hypomania was associated with increased risk for lifetime SUDs (5% per year) and recent marijuana dependence (12% per year) and later treatment with a mood stabilizer were also associated with increased risk for recent SUDs (8% per year). Positive associations between generalized anxiety disorder, later treatment with a mood stabilizer, and early childhood trauma and history of SUDs suggests that adequate treatment of comorbid anxiety, early treatment with a mood stabilizer, and prevention of childhood trauma may reduce the risk for the development of SUDs in patients with bipolar disorder. PMID:20716307

  8. Thermal and Cycle-Life Behavior of Commercial Li-ion and Li-Polymer Cells

    Science.gov (United States)

    Zimmerman, Albert H.; Quinzio, M. V.

    2001-01-01

    Accelerated and real-time LEO cycle-life test data will be presented for a range of commercial Li-ion and Li-polymer (gel type) cells indicating the ranges of performance that can be obtained, and the performance screening tests that must be done to assure long life. The data show large performance variability between cells, as well as a highly variable degradation signature during non-cycling periods within the life tests. High-resolution Dynamic Calorimetry data will be presented showing the complex series of reactions occurring within these Li cells as they are cycled. Data will also be presented for cells being tested using an Adaptive Charge Control Algorithm (ACCA) that continuously adapts itself to changes in cell performance, operation, or environment to both find and maintain the optimum recharge over life. The ACCA has been used to prevent all unneeded overcharge for Li cells, NiCd cells and NiH2 cells. While this is important for all these cell types, it is most critical for Li-ion cells, which are not designed with electrochemical tolerance for overcharge.

  9. Relieving thermal discomfort: Effects of sprayed L-menthol on perception, performance, and time trial cycling in the heat.

    Science.gov (United States)

    Barwood, M J; Corbett, J; Thomas, K; Twentyman, P

    2015-06-01

    L-menthol stimulates cutaneous thermoreceptors and induces cool sensations improving thermal comfort, but has been linked to heat storage responses; this could increase risk of heat illness during self-paced exercise in the heat. Therefore, L-menthol application could lead to a discrepancy between behavioral and autonomic thermoregulatory drivers. Eight male participants volunteered. They were familiarized and then completed two trials in hot conditions (33.5 °C, 33% relative humidity) where their t-shirt was sprayed with CONTROL-SPRAY or MENTHOL-SPRAY after 10 km (i.e., when they were hot and uncomfortable) of a 16.1-km cycling time trial (TT). Thermal perception [thermal sensation (TS) and comfort (TC)], thermal responses [rectal temperature (Trec ), skin temperature (Tskin )], perceived exertion (RPE), heart rate, pacing (power output), and TT completion time were measured. MENTHOL-SPRAY made participants feel cooler and more comfortable and resulted in lower RPE (i.e., less exertion) yet performance was unchanged [TT completion: CONTROL-SPRAY 32.4 (2.9) and MENTHOL-SPRAY 32.7 (3.0) min]. Trec rate of increase was 1.40 (0.60) and 1.45 (0.40) °C/h after CONTROL-SPRAY and MENTHOL-SPRAY application, which were not different. Spraying L-menthol toward the end of self-paced exercise in the heat improved perception, but did not alter performance and did not increase heat illness risk. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Influence of Thermal Cycling on Flexural Properties and Simulated Wear of Computer-aided Design/Computer-aided Manufacturing Resin Composites.

    Science.gov (United States)

    Tsujimoto, A; Barkmeier, W W; Takamizawa, T; Latta, M A; Miyazaki, M

    The purpose of this study was to evaluate the influence of thermal cycling on the flexural properties and simulated wear of computer-aided design/computer-aided manufacturing (CAD/CAM) resin composites. The six CAD/CAM resin composites used in this study were 1) Lava Ultimate CAD/CAM Restorative (LU); 2) Paradigm MZ100 (PM); 3) CERASMART (CS); 4) Shofu Block HC (SB); 5) KATANA AVENCIA Block (KA); and 6) VITA ENAMIC (VE). Specimens were divided randomly into two groups, one of which was stored in distilled water for 24 hours, and the other of which was subjected to 10,000 thermal cycles. For each material, 15 specimens from each group were used to determine the flexural strength and modulus according to ISO 6872, and 20 specimens from each group were used to examine wear using a localized wear simulation model. The test materials were subjected to a wear challenge of 400,000 cycles in a Leinfelder-Suzuki device (Alabama machine). The materials were placed in custom-cylinder stainless steel fixtures, and simulated localized wear was generated using a stainless steel ball bearing (r=2.387 mm) antagonist in a water slurry of polymethyl methacrylate beads. Simulated wear was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The two-way analysis of variance of flexural properties and simulated wear of CAD/CAM resin composites revealed that material type and thermal cycling had a significant influence (p0.05) between the two factors. The flexural properties and maximum depth of wear facets of CAD/CAM resin composite were different (pinfluenced (p>0.05) by thermal cycling, except in the case of VE. The volume losses in wear facets on LU, PM, and SB after 10,000 thermal cycles were significantly higher (pinfluenced by thermal cycling.

  11. Effect of weld thermal cycle on helium bubble formation in stainless steel

    Science.gov (United States)

    Kano, F.; Nakahigashi, S.; Nakamura, H.; Uesugi, N.; Mitamura, T.; Terasawa, M.; Irie, H.; Fukuya, K.

    1998-10-01

    Helium bubble structure was examined on a helium-implanted stainless steel after applying two kinds of heat input. Helium ions were implanted on Type 304 stainless steel at 573 K from 2 to 200 appm to a peak depth of 0.5 μm from the surface. After that, weld thermal history was applied by an electron beam. The cooling rates were selected to be 370 and 680 K/s from 1023 to 773 K. TEM observation revealed that nucleation and growth of helium bubbles were strongly dependent on the cooling rate after welding and the helium concentration.

  12. Evaluation of the of thermal shock resistance of a castable containing andalusite aggregates by thermal shock cycles; Avaliacao da resistencia ao dano por choque termico por ciclagem de um concreto refratario contendo agregados de andaluzita

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, G.C.R.; Santos, E.M.B.; Ribeiro, S., E-mail: girribeiro@yahoo.com.br [Universidade de Sao Paulo (DEMAR/EEL/USP), Lorena, SP (Brazil). Escola de Engenharia de. Departamento de Engenharia de Materiais; Resende, W.S. [Industrias Brasileiras de Artigos Refratarios (IBAR), Lorena, SP (Brazil); Rodrigues, J.A. [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil)

    2011-07-01

    The thermal shock resistance of refractory materials is one of the most important characteristics that determine their performance in many applications, since abrupt and drastic differences in temperature can damage them. Resistance to thermal shock damage can be evaluated based on thermal cycles, i.e., successive heating and cooling cycles followed by an analysis of the drop in Young's modulus occurring in each cycle. The aim of this study was to evaluate the resistance to thermal shock damage in a commercial refractory concrete with andalusite aggregate. Concrete samples that were sintered at 1000 deg C and 1450 deg C for 5 hours to predict and were subjected to 30 thermal shock cycles, soaking in the furnace for 20 minutes at a temperature of 1000 deg C, and subsequent cooling in circulating water at 25 deg C. The results showed a decrease in Young's modulus and rupture around 72% for samples sintered at 1000 ° C, and 82% in sintered at 1450 ° C. The refractory sintered at 1450 deg C would show lower thermal shock resistance than the refractory sintered at 1000 deg C. (author)

  13. The Annual Cycle of Water Vapor on Mars as Observed by the Thermal Emission Spectrometer

    Science.gov (United States)

    Smith, Michael D.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Spectra taken by the Mars Global Surveyor Thermal Emission Spectrometer (TES) have been used to monitor the latitude, longitude, and seasonal dependence of water vapor for over one full Martian year (March 1999-March 2001). A maximum in water vapor abundance is observed at high latitudes during mid-summer in both hemispheres, reaching a maximum value of approximately 100 pr-micrometer in the north and approximately 50 pr-micrometer in the south. Low water vapor abundance (water vapor. The latitudinal and seasonal dependence of the decay of the northern summer water vapor maximum implies cross-equatorial transport of water to the southern hemisphere, while there is little or no corresponding transport during the decay of the southern hemisphere summer maximum. The latitude-longitude dependence of annually-averaged water vapor (corrected for topography) has a significant positive correlation with albedo and significant negative correlations with thermal inertia and surface pressure. Comparison of TES results with those retrieved from the Viking Orbiter Mars Atmospheric Water Detectors (MAWD) experiments shows some similar features, but also many significant differences. The southern hemisphere maximum observed by TES was not observed by MAWD and the large latitudinal gradient in annually-averaged water vapor observed by MAWD does not appear in the TES results.

  14. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    Science.gov (United States)

    Gijsbertsen, A.; Bicanic, D.; Gielen, J. L. W.; Chirtoc, M.

    2004-03-01

    CO 2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the non-destructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fresh vegetables, fruits) and confectionery products (candy). Proper interpretation of PTR signals enable one to calculate two parameters, i.e. the well known thermal effusivity e ( e= λρc p, where λ and ρcp are the thermal conductivity and the volume specific heat, respectively) and a newly introduced physical quantity termed 'initial heating coefficient' chi ( χ= β/( ρcp), β is the absorption coefficient). Obtained values for e are in a good agreement with data reported in the literature. PTR enables one to rapidly determine e via a single measurement. As opposed to this, the knowledge of two out of three thermophysical parameters (thermal diffusivity, thermal conductivity and volume specific heat) is a condition sine qua non for determining effusivity in the conventional manner.

  15. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  16. Thermally activated delayed fluorescence as a cycling process between excited singlet and triplet states: application to the fullerenes.

    Science.gov (United States)

    Baleizão, Carlos; Berberan-Santos, Mário N

    2007-05-28

    In efficient thermally activated delayed fluorescence (TADF) the excited chromophore alternates randomly between the singlet and triplet manifolds a large number of times before emission occurs. In this work, the average number of cycles n is obtained and is shown to have a simple experimental meaning: n+1 is the intensification factor of the prompt fluorescence intensity, owing to the occurrence of TADF. A new method of data analysis for the determination of the quantum yield of triplet formation, combining steady-state and time-resolved data in a single plot, is also presented. Application of the theoretical results to the TADF of [70]fullerenes shows a general good agreement between different methods of fluorescence analysis and allows the determination of several photophysical parameters.

  17. Deposition Time and Thermal Cycles of Fabricating Thin-wall Steel Parts by Double Electrode GMAW Based Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Yang Dongqing

    2017-01-01

    Full Text Available The deposition time for fabricating the thin-wall part as well as the peak temperature of the substrate during the process was analyzed in the double electrode gas metal arc welding (DE-GMAW based additive manufacturing (AM. The total deposition time and the interlayer idle time of the manufacturing process decreased with the increasing of the bypass current under the same interlayer temperature and the same deposition rate. The thermal cycling curves illustrated that the peak temperature of the substrate was lower in the DE-GMAW base AM under the same conditions. When depositing the thin-wall parts, the DE-GMAW based AM can reduce the heat input to the substrate and improve the fabrication efficiency, compared with the GMAW based AM.

  18. Monitoring the Degradation Process of Inconel 600 and its Aluminide Coatings under Molten Sulfate Film with Thermal Cycles by Electrochemical Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Take, S.; Yoshinaga, S.; Yanagita, M.; Itoi, Y. [Oyama College, Tochigi (Japan)

    2016-12-15

    With a specially designed electrochemical cell, the changes in impedance behavior for Inconel 600 and aluminide diffusion coatings under molten sulfate film with thermal cycles (from 800 ℃ to 350 ℃) were monitored with electrochemical impedance measurements. It was found that corrosion resistance for both materials increased with lower temperatures. At the same time, the state of molten salt was also monitored successfully by measuring the changes in impedance at high frequency, which generally represents the resistance of molten salt itself. After two thermal cycles, both Inconel 600 and aluminide diffusion coatings showed excellent corrosion resistance. The results from SEM observation and EDS analysis correlated well with the results obtained by electrochemical impedance measurements. It is concluded that electrochemical impedance is very useful for monitoring the corrosion resistance of materials under molten salt film conditions even with thermal cycles.

  19. Energy losses in thermally cycled optical fibers constrained in small bend radii

    Energy Technology Data Exchange (ETDEWEB)

    Guild, Eric; Morelli, Gregg

    2012-09-23

    High energy laser pulses were fired into a 365μm diameter fiber optic cable constrained in small radii of curvature bends, resulting in a catastrophic failure. Q-switched laser pulses from a flashlamp pumped, Nd:YAG laser were injected into the cables, and the spatial intensity profile at the exit face of the fiber was observed using an infrared camera. The transmission of the radiation through the tight radii resulted in an asymmetric intensity profile with one half of the fiber core having a higher peak-to-average energy distribution. Prior to testing, the cables were thermally conditioned while constrained in the small radii of curvature bends. Single-bend, double-bend, and U-shaped eometries were tested to characterize various cable routing scenarios.

  20. Impacts of weld residual stresses and fatigue crack growth threshold on crack arrest under high-cycle thermal fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Taheri, Said, E-mail: Said.taheri@edf.fr [EDF-LAB, IMSIA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Julan, Emricka [EDF-LAB, AMA, 7 Boulevard Gaspard Monge, 91120 Palaiseau Cedex (France); Tran, Xuan-Van [EDF Energy R& D UK Centre/School of Mechanical, Aerospace and Civil Engineering, The University of Manchester, Manchester M13 9PL (United Kingdom); Robert, Nicolas [EDF-DPN, UNIE, Strategic Center, Saint Denis (France)

    2017-01-15

    Highlights: • For crack growth analysis, weld residual stress field must be considered through its SIF in presence of a crack. • Presence of cracks of same depth proves their arrest, where equal depth is because mean stress acts only on crack opening. • Not considering amplitudes under a fatigue crack growth threshold (FCGT) does not compensate the lack of FGCT in Paris law. • Propagation rates are close for axisymmetric and circumferential semi-elliptical cracks. - Abstract: High cycle thermal crazing has been observed in some residual heat removal (RHR) systems made of 304 stainless steel in PWR nuclear plants. This paper deals with two types of analyses including logical argumentation and simulation. Crack arrest in networks is demonstrated due to the presence of two cracks of the same depth in the network. This identical depth may be proved assuming that mean stress acts only on crack opening and that cracks are fully open during the load cycle before arrest. Weld residual stresses (WRS) are obtained by an axisymmetric simulation of welding on a tube with a chamfer. Axisymmetric and 3D parametric studies of crack growth on: representative sequences for variable amplitude thermal loading, fatigue crack growth threshold (FCGT), permanent mean stress, cyclic counting methods and WRS, are performed with Code-Aster software using XFEM methodology. The following results are obtained on crack depth versus time: the effect of WRS on crack growth cannot be determined by the initial WRS field in absence of crack, but by the associated stress intensity factor. Moreover the relation between crack arrest depth and WRS is analyzed. In the absence of FCGT Paris’s law may give a significant over-estimation of crack depth even if amplitudes of loading smaller than FCGT have not been considered. Appropriate depth versus time may be obtained using different values of FCGT, but axisymmetric simulations do not really show a possibility of arrest for shallow cracks in

  1. University of Minnesota aquifer thermal energy storage (ATES) project report on the third long-term cycle

    Energy Technology Data Exchange (ETDEWEB)

    Hoyer, M.C.; Hallgren, J.P.; Uebel, M.H.; Delin, G.N.; Eisenreich, S.J.; Sterling, R.L.

    1994-12-01

    The University of Minnesota aquifer thermal energy storage (ATES) system has been operated as a field test facility (FTF) since 1982. The objectives were to design, construct, and operate the facility to study the feasibility of high-temperature ATES in a confined aquifer. Four short-term and two long-term cycles were previously conducted, which provided a greatly increased understanding of the efficiency and geochemical effects of high-temperature aquifer thermal energy storage. The third long-term cycle (LT3) was conducted to operate the ATES system in conjunction with a real heating load and to further study the geochemical impact that heated water storage had on the aquifer. For LT3, the source and storage wells were modified so that only the most permeable portion, the Ironton-Galesville part, of the Franconia-Ironton-Galesville aquifer was used for storage. This was expected to improve storage efficiency by reducing the surface area of the heated volume and simplify analysis of water chemistry results by reducing the number of aquifer-related variables which need to be considered. During LT3, a total volume of 63.2 {times} 10{sup 3} m {sup 3} of water was injected at a rate of 54.95 m{sup 3}/hr into the storage well at a mean temperature of 104.7{degrees}C. Tie-in to the reheat system of the nearby Animal Sciences Veterinary Medicine (ASVM) building was completed after injection was completed. Approximately 66 percent (4.13 GWh) of the energy added to the aquifer was recovered. Approximately 15 percent (0.64 GWh) of the usable (10 building. Operations during heat recovery with the ASVM building`s reheat system were trouble-free. Integration into more of the ASVM (or other) building`s mechanical systems would have resulted in significantly increasing the proportion of energy used during heat recovery.

  2. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  3. Computer code system for the R and D of nuclear fuel cycle with fast reactor. 2. Development and application of analytical evaluation system for thermal striping phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Muramatsu, Toshiharu [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2001-09-01

    Fluid-structure thermal interaction phenomena characterized by stationary random temperature fluctuations, namely thermal striping are observed in the downstream region such as a T-junction piping system of liquid metal fast reactors (LMFRs). Therefore, the piping wall located in the downstream region must be protected against the stationary random thermal process, which might induce high-cycle fatigue. This paper describes the evaluation system based on numerical simulation methods consisting of three thermohydraulics computer programs AQUA, DINUS-3 and THEMIS and of three thermomechanical computer programs BEMSET, FINAS and CANIS, for the thermal striping developed at Japan Nuclear Cycle Development Institute (JNC). Verification results for each computer code and the system are also introduced based on out-of-pile experimental data using water and sodium as working fluids. (author)

  4. Design and Development Comparison of Rapid Cycle Amine 1.0, 2.0, and 3.0

    Science.gov (United States)

    Chullen, Cinda; Campbell, Colin; Papale, William; Murray, Sean; Wichowski, Robert; Conger, Bruce; McMillin, Summer

    2016-01-01

    The development of the Rapid Cycle Amine (RCA) swing-bed technology for carbon dioxide (CO2) removal has been in progress since favorable results were published in 1996. Shortly thereafter, a prototype was designed, developed, and tested successfully and delivered to Johnson Space Center in 1999. An improved prototype (RCA 1.0) was delivered to NASA in 2006 and sized for the extravehicular activity (EVA). The RCA swing-bed technology is a regenerative system which employs two alternating solid-amine sorbent beds to remove CO2 and water. The two-bed design employs a chemisorption process whereby the beds alternate between adsorption and desorption. This process provides for an efficient RCA operation that enables one bed to be in adsorb (uptake) mode, while the other is in the desorb (regeneration) mode. The RCA has progressed through several iterations of technology readiness levels. Test articles have now been designed, developed, and tested for the advanced space suit portable life support system (PLSS) including RCA 1.0, RCA 2.0, and RCA 3.0. The RCA 3.0 was the most recent RCA fabrication and was delivered to NASA-JSC in June 2015. The RCA 1.0 test article was designed with a pneumatically actuated linear motion spool valve. The RCA 2.0 and 3.0 test articles were designed with a valve assembly which allows for switching between uptake and regeneration modes while minimizing gas volume losses to the vacuum source. RCA 2.0 and 3.0 also include an embedded controller design to control RCA operation and provide the capability of interfacing with various sensors and other ventilation loop components. The RCA technology is low power, small, and has fulfilled all test requirements levied upon the technology during development testing thus far. This paper will provide an overview of the design and development of RCA 1.0, 2.0 and 3.0 including detail differences between the design specifications of each. Nomenclature.

  5. Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil

    Energy Technology Data Exchange (ETDEWEB)

    Arandes, Jose M.; Erena, Javier; Olazar, Martin; Bilbao, Javier [Departamento de Ingenieria Quimica, Universidad del Pais Vasco, Apartado 644, 48080 Bilbao (Spain); Azkoiti, Miren J. [Departamento de Ingenieria Quimica y del Medio Ambiente, Universidad del Pais Vasco, Plaza de la Casilla 3, 48012 Bilbao (Spain)

    2003-12-01

    A study has been made of the cracking on a mesoporous silica of polystyrene (PS) and polystyrene-butadiene (PS-BD) dissolved in a light cycle oil (LCO) from a product stream of a commercial fluid catalytic cracking (FCC) unit. This study has been carried out in a reactor of short contact time (3 s) in the 723-823 K range. This strategy for simultaneous valorization of plastics and solvent avoids the technological problems inherent to the treatment of solid postconsumer-plastics and the limitation to heat transfer in the process of pyrolysis. The cracking of plastics has a synergistic effect on the conversion of LCO, as it contributes to increasing the yield of gasoline (C{sub 5}-C{sub 12}). The cracking of the PS/LCO blend produces high yields of styrene, whereas the cracking of the PS-BD/LCO blend produces a stream of products with petrochemical interest.

  6. Effects of Hygrothermal Cycling on the Chemical, Thermal, and Mechanical Properties of 862/W Epoxy Resin

    Science.gov (United States)

    Miller, Sandi G.; Roberts, Gary D.; Copa, Christine C.; Bail, Justin L.; Kohlman, Lee W.; Binienda, Wieslaw K.

    2011-01-01

    The hygrothermal aging characteristics of an epoxy resin were characterized over 1 year, which included 908 temperature and humidity cycles. The epoxy resin quickly showed evidence of aging through color change and increased brittleness. The influence of aging on the material s glass transition temperature (Tg) was evaluated by Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA). The Tg remained relatively constant throughout the year long cyclic aging profile. The chemical composition was monitored by Fourier Transform Infrared Spectroscopy (FTIR) where evidence of chemical aging and advancement of cure was noted. The tensile strength of the resin was tested as it aged. This property was severely affected by the aging process in the form of reduced ductility and embrittlement. Detailed chemical evaluation suggests many aging mechanisms are taking place during exposure to hygrothermal conditions. This paper details the influence of processes such as: advancement of cure, chemical degradation, and physical aging on the chemical and physical properties of the epoxy resin.

  7. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In2Se3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In2Se3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In2Se3 vapor and produce the high uniformity In2Se3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle

  8. Life cycle assessment of hemp cultivation and use of hemp-based thermal insulator materials in buildings.

    Science.gov (United States)

    Zampori, Luca; Dotelli, Giovanni; Vernelli, Valeria

    2013-07-02

    The aim of this research is to assess the sustainability of a natural fiber, such as hemp (Cannabis sativa), and its use as thermal insulator for building applications. The sustainability of hemp was quantified by life cycle assessment (LCA) and particular attention was given to the amount of CO2eq of the whole process, and the indicator greenhouse gas protocol (GGP) was selected to quantify CO2eq emissions. In this study also CO2 uptake of hemp was considered. Two different allocation procedures (i.e., mass and economic) were adopted. Other indicators, such as Cumulative Energy Demand (CED) and EcoIndicator99 H were calculated. The production of 1 ha yielded 15 ton of hemp, whose global warming potential (GWP100) was equal to about -26.01 ton CO2eq: the amount allocated to the technical fiber (20% of the total amount of hemp biomass) was -5.52 ton CO2eq when mass allocation was used, and -5.54 ton CO2eq when economic allocation was applied. The sustainability for building applications was quantified by considering an insulation panel made by hemp fiber (85%) and polyester fiber (15%) in 1 m(2) of wall having a thermal transmittance (U) equal to 0.2 W/m(2)_K. The environmental performances of the hemp-based panel were compared to those of a rockwool-based one.

  9. Coupling Computer-Aided Process Simulation and Estimations of Emissions and Land Use for Rapid Life Cycle Inventory Modeling

    Science.gov (United States)

    A methodology is described for developing a gate-to-gate life cycle inventory (LCI) of a chemical manufacturing process to support the application of life cycle assessment in the design and regulation of sustainable chemicals. The inventories were derived by first applying proces...

  10. The effect of thermal cycling to 1100 degree C on the alpha (Mo) phase in directionally solidified gamma/gamma prime-alpha alloys

    Science.gov (United States)

    Harf, F. H.

    1981-01-01

    In gamma/gamma prime - alpha eutectic alloys (Ni-Mo-Al), the resistance of the alpha phase to morphological changes during thermal cycling was found to be dependent on the structure formed during directional solidification. Fine, smooth alpha fibers survived up to 1000 five minute cycles to 1100 C with minor microstructural contour changes, while coarser and irregularly shaped alpha fibers tended to spheroidize. A mechanism to explain this phenomenon is proposed. It is suggested that on heating to 1100 C, the alpha phase is likely to undergo morphological changes, until differential thermal expansion creates a stress free interface between the alpha phase and the gamma/gamma prime matrix.

  11. Impact of Total Ionizing Dose Radiation Testing and Long-Term Thermal Cycling on the Operation of CMF20120D Silicon Carbide Power MOSFET

    Science.gov (United States)

    Patterson, Richard L.; Scheidegger, Robert J.; Lauenstein, Jean-Marie; Casey, Megan; Scheick, Leif; Hammoud, Ahmad

    2013-01-01

    Power systems designed for use in NASA space missions are required to work reliably under harsh conditions including radiation, thermal cycling, and extreme temperature exposures. Silicon carbide devices show great promise for use in future power electronics systems, but information pertaining to performance of the devices in the space environment is very scarce. A silicon carbide N-channel enhancement-mode power MOSFET called the CMF20120 is of interest for use in space environments. Samples of the device were exposed to radiation followed by long-term thermal cycling to address their reliability for use in space applications. The results of the experimental work are presentd and discussed.

  12. Does thermal variability experienced at the egg stage influence life history traits across life cycle stages in a small invertebrate?

    Directory of Open Access Journals (Sweden)

    Kun Xing

    Full Text Available Although effects of thermal stability on eggs have often been considered in vertebrates, there is little data thermal stability in insect eggs even though these eggs are often exposed in nature to widely fluctuating ambient conditions. The modularity of development in invertebrates might lead to compensation across life cycle stages but this remains to be tested particularly within the context of realistic temperature fluctuations encountered in nature. We simulated natural temperate fluctuations on eggs of the worldwide cruciferous insect pest, the diamondback moth (DBM, Plutella xylostella (L., while maintaining the same mean temperature (25°C±0°C, 25±4°C, 25±6°C, 25±8°C, 25±10°C, 25±12°C and assessed egg development, survival and life history traits across developmental stages. Moderate fluctuations (25±4°C, 25±6°C did not influence performance compared to the constant temperature treatment, and none of the treatments influenced egg survival. However the wide fluctuating temperatures (25±10°C, 25±12°C slowed development time and led to an increase in pre-pupal mass, although these changes did not translate into any effects on longevity or fecundity at the adult stage. These findings indicate that environmental effects can extend across developmental stages despite the modularity of moth development but also highlight that there are few fitness consequences of the most variable thermal conditions likely to be experienced by Plutella xylostella.

  13. Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen

    Directory of Open Access Journals (Sweden)

    Volkov Aleksandr E.

    2015-01-01

    Full Text Available This microstructural model deals with simulation both of the reversible and irreversible deformation of a shape memory alloy (SMA. The martensitic transformation and the irreversible deformation due to the plastic accommodation of martensite are considered on the microscopic level. The irreversible deformation is described from the standpoint of the plastic flow theory. Isotropic hardening and kinematic hardening are taken into account and are related to the densities of scattered and oriented deformation defects. It is supposed that the phase transformation and the micro plastic deformation are caused by the generalized thermodynamic forces, which are the derivatives of the Gibbs’ potential of the two-phase body. In terms of these forces conditions for the phase transformation and for the micro plastic deformation on the micro level are formulated. The macro deformation of the representative volume of the polycrystal is calculated by averaging of the micro strains related to the evolution of the martensite Bain’s variants in each grain comprising this volume. The proposed model allowed simulating the evolution of the reversible and of the irreversible strains of a stressed SMA specimen under thermal cycles. The results show a good qualitative agreement with available experimental data. Specifically, it is shown that the model can describe a rather big irreversible strain in the first thermocycle and its fast decrease with the number of cycles.

  14. Thermal tests of a multi-tubular reactor for hydrogen production by using mixed ferrites thermochemical cycle

    Science.gov (United States)

    Gonzalez-Pardo, Aurelio; Denk, Thorsten; Vidal, Alfonso

    2017-06-01

    The SolH2 project is an INNPACTO initiative of the Spanish Ministry of Economy and Competitiveness, with the main goal to demonstrate the technological feasibility of solar thermochemical water splitting cycles as one of the most promising options to produce H2 from renewable sources in an emission-free way. A multi-tubular solar reactor was designed and build to evaluate a ferrite thermochemical cycle. At the end of this project, the ownership of this plant was transferred to CIEMAT. This paper reviews some additional tests with this pilot plant performed in the Plataforma Solar de Almería with the main goal to assess the thermal behavior of the reactor, evaluating the evolution of the temperatures inside the cavity and the relation between supplied power and reached temperatures. Previous experience with alumina tubes showed that they are very sensitive to temperature and flux gradients, what leads to elaborate an aiming strategy for the heliostat field to achieve a uniform distribution of the radiation inside the cavity. Additionally, the passing of clouds is a phenomenon that importantly affects all the CSP facilities by reducing their efficiency. The behavior of the reactor under these conditions has been studied.

  15. Thermal Capacitive Electrochemical Cycle on Carbon-Based Supercapacitor for Converting Low-grade Heat to Electricity

    Directory of Open Access Journals (Sweden)

    Xun Wang

    2017-11-01

    Full Text Available It is a great challenge to efficiently convert low-grade heat (<100°C to electricity. Currently available heat-to-current converters, such as thermoelectric generators, operating in a low-grade heat regime reach efficiencies no higher than a few percent (<3%. Herein, we illustrated a thermal capacitive electrochemical cycle (TCEC using electrochemical cell, where the connection to the hot or cold reservoirs alternates in a cyclic charging–heating–discharging–cooling mode to convert heat into electricity, which performs as an electrochemical heat engine. TCEC technology is a cost-effective method for exploiting the temperature-dependent electrostatic potential in an electric double layer (EDL at carbon electrode/electrolyte interfaces; it produces net electricity by altering the EDL thickness via heating and cooling. In this paper, TCEC on supercapacitor was confirmed on commercial supercapacitor, which showed a poor conversion efficiency. To improve the performance, we redesigned the cell by employing the pouch cell setup with activated carbon as electrode materials and homemade temperature controlling system, which boosted the efficiency from 0.5% of commercial supercapacitor to 3.05% when cycling between 10 and 65°C. A higher efficiency of 3.95% could be reached by using microwaved exfoliated graphene nanosheets (MEG and nitric acid-treated MEG, which could help in decreasing the energy loss caused by charge leakage.

  16. Effect of tooth brushing and thermal cycling on a surface change of ceromers finished with different methods.

    Science.gov (United States)

    Cho, L-R; Yi, Y-J; Heo, S-J

    2002-09-01

    This in vitro study evaluated the effect of tooth brushing and thermal cycling on the surface lustre and surface roughness of three ceromer systems treated with different surface finishing methods. The ceromers studied were: (1). Artglass, (2). Targis, (3). Sculpture and (4). the control group, Z 100. Half of the Targis and Sculpture groups were polished and the rest were coated with staining and glazing solution, respectively. All specimens were subjected to thermocycling 10000 times. Tooth brushing abrasion tests were performed in a customized tooth-brushing machine with 500 g weight applied on a back-and-forth cycle for 20000 repetitions. The lustre determined by measuring the light reflection area and the average roughness was compared between groups and between pre- and post-test values. All materials showed a lower lustre and rougher surface after thermocycling and tooth brushing (P ceromer specimens, except glazed Sculpture, showed a higher lustre and similar roughness to the control group. The post-brushing results revealed that glazed Sculpture presented discretely fallen out glaze coatings and had maximum change. However, stained Targis showed minimum change (P < 0.05) and polished Targis presented more changes than that of the staining treatment. It is therefore concluded that the glaze coatings for Sculpture don't exhibit long-term durability, while stain coatings for Targis acted like a protective layer.

  17. Life cycle monitoring of lithium-ion polymer batteries using cost-effective thermal infrared sensors with applications for lifetime prediction

    Science.gov (United States)

    Zhou, Xunfei; Malik, Anav; Hsieh, Sheng-Jen

    2017-05-01

    Lithium-ion batteries have become indispensable parts of our lives for their high-energy density and long lifespan. However, failure due to from abusive usage conditions, flawed manufacturing processes, and aging and adversely affect battery performance and even endanger people and property. Therefore, battery cells that are failing or reaching their end-of-life need to be replaced. Traditionally, battery lifetime prediction is achieved by analyzing data from current, voltage and impedance sensors. However, such a prognostic system is expensive to implement and requires direct contact. In this study, low-cost thermal infrared sensors were used to acquire thermographic images throughout the entire lifetime of small scale lithium-ion polymer batteries (410 cycles). The infrared system (non-destructive) took temperature readings from multiple batteries during charging and discharging cycles of 1C. Thermal characteristics of the batteries were derived from the thermographic images. A time-dependent and spatially resolved temperature mapping was obtained and quantitatively analyzed. The developed model can predict cycle number using the first 10 minutes of surface temperature data acquired through infrared imaging at the beginning of the cycle, with an average error rate of less than 10%. This approach can be used to correlate thermal characteristics of the batteries with life cycles, and to propose cost-effective thermal infrared imaging applications in battery prognostic systems.

  18. Reduced mRNA expression of PTGDS in peripheral blood mononuclear cells of rapid-cycling bipolar disorder patients compared with healthy control subjects

    DEFF Research Database (Denmark)

    Munkholm, Klaus; Peijs, Lone; Kessing, Lars Vedel

    2015-01-01

    that mRNA expression of PTGDS and AKR1C3 is deregulated in rapid-cycling disorder patients in a euthymic or current affective state compared with healthy control subjects, and that expression alters with affective states. METHODS: PTGDS and AKR1C3 mRNA expression in peripheral blood mononuclear cells......BACKGROUND: Disturbances related to the arachidonic acid cascade and prostaglandin metabolism may be involved in the pathophysiology of bipolar disorder, as supported by a recent genome-wide association study meta-analysis; however, evidence from clinical studies on a transcriptional level...... was measured in 37 rapid-cycling bipolar disorder patients and 40 age- and gender-matched healthy control subjects using reverse transcription quantitative real-time polymerase chain reaction. Repeated measurements of PTGDS and AKR1C3 mRNA expression were obtained in various affective states during 6-12 months...

  19. Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue

    Science.gov (United States)

    Cambell, Christian X

    2013-09-17

    A turbine airfoil (20B) with a thermal expansion control mechanism that increases the airfoil camber (60, 61) under operational heating. The airfoil has four-wall geometry, including pressure side outer and inner walls (26, 28B), and suction side outer and inner walls (32, 34B). It has near-wall cooling channels (31F, 31A, 33F, 33A) between the outer and inner walls. A cooling fluid flow pattern (50C, 50W, 50H) in the airfoil causes the pressure side inner wall (28B) to increase in curvature under operational heating. The pressure side inner wall (28B) is thicker than walls (26, 34B) that oppose it in camber deformation, so it dominates them in collaboration with the suction side outer wall (32), and the airfoil camber increases. This reduces and relocates a maximum stress area (47) from the suction side outer wall (32) to the suction side inner wall (34B, 72) and the pressure side outer wall (26).

  20. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  1. Dependence of N incorporation into (Ga)InAsN QDs on Ga content probed by rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Gargallo-Caballero, R.; Guzman, A.; Ulloa, J.M.; Hierro, A.; Calleja, E. [Instituto de Sistemas Optoelectronicos y Microtecnologia (ISOM) - Departamento de Ingenieria Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid (Spain); Hopkinson, M. [Department of Electronic and Electrical Engineering, EPSRC National Centre for III-V Technologies, University of Sheffield (United Kingdom)

    2009-06-15

    In this letter we demonstrate that the N incorporation into (Ga)InAsN quantum dots (QDs), grown on GaAs (100) by radio-frequency (RF) plasma assisted molecular beam epitaxy (MBE), is enhanced as the Ga content increases up to 30% and decreases for Ga contents higher than 30%. Thus, this effect exhibits a maximum N incorporation with a Ga content of 30%. Two sets of (Ga)InAsN QDs samples have been grown under the same growth conditions but with different N contents in one of them and with different Ga concentration in the other set. Optical analysis using Photoluminescence (PL) measurements of the as-grown and post growth rapid thermal annealed samples have been performed. The experimental results show a clear increase of the blueshift with the N concentration as occurred in dilute nitride quantum well (QW) structures. PL peak emission wavelength as high as 1.55{mu}m has been obtained from QDs capped with GaAs. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Rapid thermal annealing of InAs/GaAs quantum dots under a GaAs proximity cap

    Energy Technology Data Exchange (ETDEWEB)

    Babinski, Adam; Jasinski, J.; Boz(overdot)ek, R.; Szepielow, A.; Baranowski, J. M.

    2001-10-15

    The effect of postgrowth rapid thermal annealing (RTA) on GaAs proximity-capped structures with self-assembled InAs/GaAs quantum dots (QDs) is investigated using transmission electron microscopy (TEM) and photoluminescence (PL). As can be seen from the TEM images, QDs increase their lateral sizes with increasing annealing temperature (up to 700 C). QDs cannot be distinguished after RTA at temperature 800 C or higher, and substantial thickening of the wetting layer can be seen instead. The main PL peak blueshifts as a result of RTA. We propose that in the as-grown sample as well, as in samples annealed at temperatures up to 700 C, the peak is due to the QDs. After RTA at 800 C and higher the PL peak is due to a modified wetting layer. Relatively fast dissolution of QDs is explained in terms of strain-induced lateral Ga/In interdiffusion. It is proposed that such a process may be of importance in proximity-capped RTA, when no group-III vacancy formation takes place at the sample/capping interface.

  3. SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yih, P.H.; Li, J.P.; Steckl, A.J. (Univ. of Cincinnati, OH (United States). Dept. of Electrical and Computer Engineering)

    1994-03-01

    SiC/Si heterojunction diodes have been fabricated by two different rapid thermal chemical vapor deposition (RTCVD) processes: a localized self-selective growth and blanket growth. The self-selective growth of crystalline cubic ([beta]) SiC was obtained by propane carbonization of the Si substrate in regions unprotected by an SiO[sub 2] layer, producing planar diodes. Mesa diodes were fabricated using the blanket growth of polycrystalline [beta]-SiC produced by the decomposition of methylsilane (CH[sub 3]SiH[sub 3]). The SiC/Si heterojunction diodes show good rectifying properties for both device structures. Reverse breakdown voltage of 50 V was obtained with the self-selective SiC/Si diode. The mesa diodes exhibited even higher breakdown voltages (V[sub br]) of 150 V and excellent ideality factors of 1.06 at 25 C. The high V[sub br] and good forward rectifying characteristics indicate that the SiC/Si heterojunction diode represents a promising approach for the fabrication of wide-gap emitter SiC/Si heterojunction bipolar transistors.

  4. Contacts realization by rapid thermal annealing in multicrystalline silicon solar cells with special emphasis on metal influence

    Energy Technology Data Exchange (ETDEWEB)

    El Omari, H.; Boyeaux, J.P.; Laugier, A. [Institut National des Sciences Appliquees de Lyon, Villeurbanne (France). Lab. de Physique de la Matiere

    1994-12-31

    To improve the quality of the screen printing contacts, the authors have previously shown the capability to sinter the screen printed contacts by Rapid Thermal Annealing (RTA) instead of commercial sintering; they have also noticed that the commonly used TiO{sub 2} coating deposited by spray enhances the quality of the contact either with classical annealing or RTA. The aim of the present work is to analyze the metal influence on either front or back contacts realization by RTA on Polix p type multicrystalline silicon subsequently phosphorus diffused. The screen printed contact was replaced by the chosen metal dot obtained by evaporation. The authors have studied: Al/TiO{sub 2}; Ag/Al/TiO{sub 2}; Cu/Al/TiO{sub 2}; Pt/Al/TiO{sub 2} and Cu/Cr/TiO{sub 2}. The RTA treatments were carried out at various temperatures and annealing time in an Ar ambience. The quality of the contacts are analyzed from I(V) characteristics, and possible diffusions of metallic species are characterized by SIMS experiments.

  5. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    Science.gov (United States)

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  6. The striking influence of rapid thermal annealing on InGaAsP grown by MBE: material and photovoltaic device

    Science.gov (United States)

    Ji, Lian; Tan, Ming; Ding, Chao; Honda, Kazuki; Harasawa, Ryo; Yasue, Yuya; Wu, Yuanyuan; Dai, Pan; Tackeuchi, Atsushi; Bian, Lifeng; Lu, Shulong; Yang, Hui

    2017-01-01

    Rapid thermal annealing (RTA) has been performed on InGaAsP solar cells with the bandgap energy of 1 eV grown by molecular beam epitaxy. With the employment of RTA under an optimized condition, the open voltage was increased from 0.45 to 0.5 V and the photoelectric conversion efficiency was increased from 11.87-13.2%, respectively, which was attributed to the crystal quality improvement of p-type InGaAsP and therefore a reduced recombination current inside depletion region. The integral photoluminescence (PL) intensity of p-type InGaAsP increased to 166 times after annealing at 800 °C and its PL decay time increased by one order of magnitude. While the changes of nominally undoped and n-doped InGaAsP were negligible. The different behaviors of the effect of RTA on InGaAsP of different doping types were attributed to the highly mobile "activator" - beryllium (Be) atom in p-type InGaAsP.

  7. Rapid synthesis of core/shell ZnS:Mn/Si nanotetrapods by a catalyst-free thermal evaporation route.

    Science.gov (United States)

    Kar, Soumitra; Biswas, Subhajit

    2009-07-01

    We report the fabrication of a hybrid all semiconductor core/shell nanotetrapod structure consisting of crystalline ZnS:Mn core and amorphous Si shell for the first time. The nanostructures were produced via a catalyst-free rapid thermal evaporation technique. Core/shell nanotetrapods were formed in two steps: (i) formation of the crystalline ZnS:Mn tetrapods and (ii) simultaneous surface adsorption of the in situ formed Si vapor species providing the amorphous shell. Crystalline tetrapod formation was guided by the formation of cubic structured ZnS octahedrons with four active (111) polar growth planes, which served as the favored growth site for the four wurtzite structured legs of the tetrapods. Choice of chloride salt as the source of dopant ion was crucial for the in situ generation of Si vapor. At elevated temperature, chloride salt reacted with the sulfur vapor to produce S2Cl2 gas that etched the Si wafers, generating Si vapor. Suppression of the surface-state-related blue emission was observed in the core/shell structures that clearly supported the formation of a shell layer. Elimination of the surface states ensured efficient energy transfer to the dopant Mn ionic state, resulting in the strong orange emission via (4)T(1)-(6)A(1) electronic transition.

  8. Loss Prediction and Thermal Analysis of Surface-Mounted Brushless AC PM Machines for Electric Vehicle Application Considering Driving Duty Cycle

    Directory of Open Access Journals (Sweden)

    Tianxun Chen

    2016-01-01

    Full Text Available This paper presents a computationally efficient loss prediction procedure and thermal analysis of surface-mounted brushless AC permanent magnet (PM machine considering the UDDS driving duty cycle by using a lumped parameters’ thermal model. The accurate prediction of loss and its variation with load are essential for thermal analysis. Employing finite element analysis (FEA to determine loss at every load point would be computationally intensive. Here, the finite element analysis and/or experiment based computationally efficient winding copper and iron loss and permanent magnet (PM power loss models are employed to calculate the electromagnetic loss at every operation point, respectively. Then, the lumped parameter thermal method is used to analyse the thermal behaviour of the driving PM machine. Experiments have been carried out to measure the temperature distribution in a motor prototype. The calculation and experiment results are compared and discussed.

  9. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    Science.gov (United States)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  10. A Laboratory to Demonstrate the Effect of Thermal History on Semicrystalline Polymers Using Rapid Scanning Rate Differential Scanning Calorimetry

    Science.gov (United States)

    Badrinarayanan, Prashanth; Kessler, Michael R.

    2010-01-01

    A detailed understanding of the effect of thermal history on the thermal properties of semicrystalline polymers is essential for materials scientists and engineers. In this article, we describe a materials science laboratory to demonstrate the effect of parameters such as heating rate and isothermal annealing conditions on the thermal behavior of…

  11. The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints

    Science.gov (United States)

    Bieler, Thomas R.; Zhou, Bite; Blair, Lauren; Zamiri, Amir; Darbandi, Payam; Pourboghrat, Farhang; Lee, Tae-Kyu; Liu, Kuo-Chuan

    2012-02-01

    Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.

  12. The Role of Elastic and Plastic Anisotropy of Sn in Recrystallization and Damage Evolution During Thermal Cycling in SAC305 Solder Joints

    Energy Technology Data Exchange (ETDEWEB)

    Bieler, Thomas R.; Zhou, Bite; Blair, Lauren; Zamiri, Amir; Darbandi, Payam; Pourboghrat, Farhang; Lee, Tae-Kyu; Liu, Kuo-Chuan (Michigan); (Cisco)

    2013-04-08

    Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.

  13. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    Science.gov (United States)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  14. Clinical correlates of patients with rapid-cycling bipolar disorder and a recent history of substance use disorder: a subtype comparison from baseline data of 2 randomized, placebo-controlled trials.

    Science.gov (United States)

    Gao, Keming; Verduin, Marcia L; Kemp, David E; Tolliver, Bryan K; Ganocy, Stephen J; Elhaj, Omar; Bilali, Sarah; Brady, Kathleen T; Findling, Robert L; Calabrese, Joseph R

    2008-07-01

    To compare clinical variables in patients with rapid-cycling bipolar I or II disorder and a recent history of substance use disorder (SUD). Cross-sectional data from 2 studies of patients with rapid-cycling bipolar I disorder or rapid-cycling bipolar II disorder and a recent history of SUD were used to retrospectively assess the differences in clinical variables between the subtypes. The studies were conducted from November 1997 to February 2007 at University Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio. Extensive clinical interview and the Mini-International Neuropsychiatric Interview were used to ascertain DSM-IV diagnoses of rapid-cycling bipolar disorder, SUDs, and other Axis I disorders and to collect clinical variables. The Addiction Severity Index (ASI), Global Assessment Scale (GAS), and the Medical Outcomes Study 36-Item Short-Form Health Survey were used to measure the severity of impairment at the initial assessment. One-way analysis of variance or chi(2) was used for significance tests. A Bonferroni adjustment was applied for multiple comparisons. Of 245 patients with rapid-cycling bipolar disorder (rapid-cycling bipolar I disorder, N = 191; rapid-cycling bipolar II disorder, N = 54) and a recent history of SUD, the demographics were similar. A significantly higher rate of panic disorder was observed in patients with rapid-cycling bipolar I disorder than in those with rapid-cycling bipolar II disorder (odds ratio = 3.72, 95% CI = 1.66 to 8.32, p = .008). A significantly higher psychiatric composite score on the ASI was also found in patients with rapid-cycling bipolar I disorder than in those with rapid-cycling bipolar II disorder even after Bonferroni adjustment (p = .0007). There were no significant differences between the subtypes in the rates of previous hospitalization or suicide attempt, early childhood verbal, physical, or sexual abuse, lifetime substance abuse or dependence, the number of

  15. Evaluation of a new rapid readout biological indicator for use in 132°C and 135°C vacuum-assisted steam sterilization cycles.

    Science.gov (United States)

    Schneider, Philip M

    2014-02-01

    Sterilization is a process that cannot be inspected or tested in a practical manner to assure that all microorganisms have been inactivated. The process must therefore be validated for all of the specific items processed or monitored on a per cycle basis. A new, faster rapid readout biological indicator (RRBI) has been developed for use in 132°C and 135°C vacuum-assisted steam sterilization cycles. The aim of this study was to evaluate the performance of this new 1-hour readout RRBI at 132°C in side-by-side testing with an existing 3-hour readout RRBI and also evaluate the performance of the new RRBI in 135°C cycles. Readout responses of 1 hour (fluorescent) and 48 hours and 7 days (growth) of the new RRBI were compared with 3-hour, 48-hour, and 7-day readouts of the 3-hour RRBI following exposures in 132°C cycles using a highly controlled test vessel, ie, a steam resistometer. Additional testing of the 1-hour RRBIs was also performed in 135°C cycles. The number and percentage of fluorescent-positive 1-hour RRBIs were virtually identical to those of the 3-hour RRBIs after 1 and 3 hours of incubation, respectively. Testing of the 1-hour RRBI in 135°C cycles paralleled the results of the testing at 132°C but with the expected shorter exposure times. The results of this study suggest that the 1-hour RRBI is equivalent to the 3-hour RRBI and would be suitable for use in monitoring dynamic air removal steam sterilization cycles at both 132°C and 135°C per recommended practice guidelines. Copyright © 2014 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Mosby, Inc. All rights reserved.

  16. Rapid changes in the seasonal sea level cycle along the US Gulf coast from the late 20th century

    Science.gov (United States)

    Wahl, Thomas; Calafat, Francisco M.; Luther, Mark E.

    2014-01-01

    Temporal variations of the seasonal sea level harmonics throughout the 20th and early 21st century along the United States Gulf coast are investigated. A significant amplification of the annual sea level cycle from the 1990s onward is found, with both lower winter and higher summer sea levels in the eastern Gulf. Ancillary data are used to build a set of multiple regression models to explore the mechanisms driving the decadal variability and recent increase in the annual cycle. The results suggest that changes in the air surface temperature toward warmer summers and colder winters and changes in mean sea level pressure explain most of the amplitude increase. The changes in the seasonal sea level cycle are shown to have almost doubled the risk of hurricane induced flooding associated with sea level rise since the 1990s for the eastern and north-eastern Gulf of Mexico coastlines.

  17. An ab initio study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing

    Science.gov (United States)

    Chen, Shuang; Xiong, Wei; Zhou, Yun Shen; Lu, Yong Feng; Zeng, Xiao Cheng

    2016-05-01

    Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk Ni). It is found that the a-C-to-graphene transformation entails the metal-induced crystallization and layer exchange mechanism, rather than the conventional dissolution/precipitation mechanism typically involved in Ni-catalyzed chemical vapor deposition (CVD) growth of graphene. The multi-layer graphene can be tuned by changing the relative thicknesses of deposited a-C and Ni thin films. Our AIMD simulations suggest that the easy evaporation of surplus Ni with excess C is likely attributed to the formation of a viscous-liquid-like Ni-C solution within the temperature range of 900-1800 K and to the faster diffusion of C atoms than that of Ni atoms above 600 K. Even at room temperature, sp3-C atoms in a-C are quickly converted to sp2-C atoms in the course of the simulation, and the graphitic C formation can occur at low temperature. When the temperature is as high as 1200 K, the grown graphitic structures reversely dissolve into Ni. Because the rate of temperature increase is considerably faster in the AIMD simulations than in realistic experiments, defects in the grown graphitic structures are kinetically trapped. In this kinetic growth stage, the carbon structures grown from sp3-carbon or from sp2-carbon exhibit marked differences.Ab initio molecular dynamics (AIMD) simulations are employed to investigate the chemical mechanism underlying the Ni-catalyzed transformation of amorphous carbon (a-C) into graphene in the rapid thermal processing (RTP) experiment to directly grow graphene on various dielectric surfaces via the evaporation of surplus Ni and C at 1100 °C (below the melting point of bulk

  18. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-11-01

    Full Text Available We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes (Zhang et al., 2014. Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF, where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS, TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  19. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction.

    Science.gov (United States)

    Sheikh, Arif D; Munir, Rahim; Haque, Md Azimul; Bera, Ashok; Hu, Weijin; Shaikh, Parvez; Amassian, Aram; Wu, Tom

    2017-10-11

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic (PV) performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After temperature-dependent grazing-incidence wide-angle X-ray scattering, in situ X-ray diffraction, and optical absorption experiments were carried out, the thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10% in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of the crystallinity and p doping in the hole transporter, spiro-OMeTAD, which promotes the efficient extraction of photogenerated carriers. However, further thermal cycles produced a detrimental effect on the PV performance of PSCs, with the short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the PV performance of PSCs degraded at high operation temperatures; both the short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of the fill factor was the opposite. Our impedance spectroscopy analysis revealed a monotonous increase of the charge-transfer resistance and a concurrent decrease of the charge-recombination resistance with increasing temperature, indicating a high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance because of the deteriorated interfacial photocarrier extraction. The present findings suggest that the development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite PVs in harsh

  20. Effects of High Temperature and Thermal Cycling on the Performance of Perovskite Solar Cells: Acceleration of Charge Recombination and Deterioration of Charge Extraction

    KAUST Repository

    Sheikh, Arif D.

    2017-09-18

    In this work, we investigated the effects of high operating temperature and thermal cycling on the photovoltaic performance of perovskite solar cells (PSCs) with a typical mesostructured (m)-TiO2-CH3NH3PbI3-xClx-spiro-OMeTAD architecture. After carrying out temperature-dependent grazing incidence wide-angle X-ray scattering (GIWAXS), in-situ X-ray diffraction (XRD) and optical absorption experiments, thermal durability of PSCs was tested by subjecting the devices to repetitive heating to 70 °C and cooling to room temperature (20 °C). An unexpected regenerative effect was observed after the first thermal cycle; the average power conversion efficiency (PCE) increased by approximately 10 % in reference to the as-prepared device. This increase of PCE was attributed to the heating-induced improvement of crystallinity and p-doping in the hole-transporter, Spiro-OMeTAD, which promotes the efficient extraction of photo-generated carriers. However, further thermal cycles produced a detrimental effect on the photovoltaic performance of PSCs with short-circuit current and fill factor degrading faster than the open-circuit voltage. Similarly, the photovoltaic performance of PSCs degraded at high operation temperatures; both short-circuit current and open-circuit voltage decreased with increasing temperature, but the temperature-dependent trend of fill factor was opposite. Our impedance spectroscopy analysis revealed a monotonous increase of charge transfer resistance and a concurrent decrease of charge recombination resistance with increasing temperature, indicating high recombination of charge carriers. Our results revealed that both thermal cycling and high temperatures produce irreversible detrimental effects on the PSC performance due to the deteriorated interfacial photo-carrier extraction. The present findings suggest that development of robust charge transporters and proper interface engineering are critical for the deployment of perovskite photovoltaics in harsh

  1. Hemlock declines rapidly with hemlock woolly adelgid infestation: impacts on the carbon cycle of the Southern Appalachian forests

    Science.gov (United States)

    April E. Nuckolls; Nina Wurzburger; Chelcy R. Ford; Ronald L. Hendrick; James M. Vose; Brian D. Kloeppel

    2008-01-01

    The recent infestation of southern Appalachian eastern hemlock stands by hemlock woolly adelgid (HWA) is expected to have dramatic and lasting effects on forest structure and function. We studied the short-term changes to the carbon cycle in a mixed stand of hemlock and hardwoods, where hemlock was declining due to either girdling or HWA infestation. We expected that...

  2. Conceptual Design Study of a Closed Brayton Cycle Turbogenerator for Space Power Thermal-To-Electric Conversion System

    Science.gov (United States)

    Hansen, Jeff L.

    2000-01-01

    A conceptual design study was completed for a 360 kW Helium-Xenon closed Brayton cycle turbogenerator. The selected configuration is comprised of a single-shaft gas turbine engine coupled directly to a high-speed generator. The engine turbomachinery includes a 2.5:1 pressure ratio compression system with an inlet corrected flow of 0.44 kg/sec. The single centrifugal stage impeller discharges into a scroll via a vaned diffuser. The scroll routes the air into the cold side sector of the recuperator. The hot gas exits a nuclear reactor radiator at 1300 K and enters the turbine via a single-vaned scroll. The hot gases are expanded through the turbine and then diffused before entering the hot side sector of the recuperator. The single shaft design is supported by air bearings. The high efficiency shaft mounted permanent magnet generator produces an output of 370 kW at a speed of 60,000 rpm. The total weight of the turbogenerator is estimated to be only 123 kg (less than 5% of the total power plant) and has a volume of approximately 0.11 cubic meters. This turbogenerator is a key element in achieving the 40 to 45% overall power plant thermal efficiency.

  3. Surface phenomena associated with thermal cycling of copper and their impact on the service life of particle accelerator structures

    CERN Document Server

    Aicheler, Markus; Theisen, Werner; Sgobba, Stefano

    2010-01-01

    The performance of accelerating structures (AS) in the Compact LInear Collider (CLIC) is sensitive to a variety of parameters, including the surface quality of key elements of the AS. Processes which affect the surface quality are therefore of particular concern. The present work addresses surface modifications associated with thermal cycling during operation. This type of operating condition represents a specific type of fatigue loading. Four fatigue test procedures were used in the present study in order to investigate the fatigue behaviour of oxygen{free{electronic (OFE) copper, the candidate material of the CLIC-AS: conventional fatigue (CVF), ultrasonic swinger (USS), laser fatigue (LAF) and radio{frequency fatigue (RFF). During operation of the accelerator the material of the AS will be subjected to cyclic temperature changes of approx. Delta T = 56 K, from about 40° C to about 100° C. These temperature changes will result in cyclic biaxial strains in the surface of the order of epsilon(biax) = 9.2 x ...

  4. Environmental Life-Cycle Analysis of Hybrid Solar Photovoltaic/Thermal Systems for Use in Hong Kong

    Directory of Open Access Journals (Sweden)

    Tin-Tai Chow

    2012-01-01

    Full Text Available While sheet-and-tube absorber is generally recommended for flat-plate photovoltaic/thermal (PV/T collector design because of the simplicity and promising performance, the use of rectangular-channel absorber is also tested to be a good alternative. Before a new energy technology, like PV/T, is fully implemented, its environmental superiority over the competing options should be assessed, for instance, by evaluating its consumption levels throughout its production and service life. Although there have been a plenty of environmental life-cycle assessments on the domestic solar hot water systems and PV systems, the related works on hybrid solar PV/T systems have been very few. So far there is no reported work on the assessment of PV/T collector with channel-type absorber design. This paper reports an evaluation of the energy payback time and the greenhouse gas payback time of free-standing and building-integrated PV/T systems in Hong Kong. This is based on two case studies of PV/T collectors with modular channel-type aluminium absorbers. The results confirm the long-term environmental benefits of PV/T applications.

  5. The Philosophy which underlies the structural tests of a supersonic transport aircraft with particular attention to the thermal cycle

    Science.gov (United States)

    Ripley, E. L.

    1972-01-01

    The information presented is based on data obtained from the Concorde. Much of this data also applies to other supersonic transport aircraft. The design and development of the Concorde is a joint effort of the British and French, and the structural test program is shared, as are all the other activities. Vast numbers of small specimens have been tested to determine the behavior of the materials used in the aircraft. Major components of the aircraft structure, totalling almost a complete aircraft, have been made and are being tested to help the constructors in each country in the design and development of the structure. Tests on two complete airframes will give information for the certification of the aircraft. A static test was conducted in France and a fatigue test in the United Kingdom. Fail-safe tests are being made to demonstrate the crack-propagation characteristics of the structure and its residual strength. Aspects of the structural test program are described in some detail, dealing particularly with the problems associated with the thermal cycle. The biggest of these problems is the setting up of the fatigue test on the complete airframe; therefore, this is covered more extensively with a discussion about how the test time can be shortened and with a description of the practical aspects of the test.

  6. Results of scoping tests for open-cycle OTEC (ocean thermal energy conversion) components operating with seawater

    Energy Technology Data Exchange (ETDEWEB)

    Zangrando, F; Bharathan, D; Green, H J; Link, H F; Parsons, B K; Parsons, J M; Pesaran, A A [Solar Energy Research Inst., Golden, CO (USA); Panchal, C B [Argonne National Lab., IL (USA)

    1990-09-01

    This report presents comprehensive documentation of the experimental research conducted on open-cycle ocean thermal energy conversion (OC-OTEC) components operating with seawater as a working fluid. The results of this research are presented in the context of previous analysis and fresh-water testing; they provide a basis for understanding and predicting with confidence the performance of all components of an OC-OTEC system except the turbine. Seawater tests have confirmed the results that were obtained in fresh-water tests and predicted by the analytical models of the components. A sound technical basis has been established for the design of larger systems in which net power will be produced for the first time from OC-OTEC technology. Design and operation of a complete OC-OTEC system that produces power will provide sufficient confidence to warrant complete transfer of OC-OTEC technology to the private sector. Each components performance is described in a separate chapter written by the principal investigator responsible for technical aspects of the specific tests. Chapters have been indexed separately for inclusion on the data base.

  7. A Technique for Mitigating Thermal Stress and Extending Life Cycle of Power Electronic Converters Used for Wind Turbines

    Directory of Open Access Journals (Sweden)

    Canras Batunlu

    2015-11-01

    Full Text Available Over the last two decades, various models have been developed to assess and improve the reliability of power electronic conversion systems (PECs with a focus on those used for wind turbines. However, only few studies have dealt with mitigating the PECs thermo-mechanical effects on their reliability taking into account variations in wind characteristics. This work critically investigates this issue and attempts to offer a mitigating technique by, first, developing realistic full scale (FS and partial scale (PS induction generator models combined with two level back-to-back PECs. Subsequently, deriving a driving algorithm, which reduces PEC’s operating temperature by controlling its switching patterns. The developed switching procedure ensures minimum temperature fluctuations by adapting the variable DC link and system’s frequency of operation. It was found for both FS and PS topologies, that the generator side converters have higher mean junction temperatures where the grid side ones have more fluctuations on their thermal profile. The FS and PS cycling temperatures were reduced by 12 °C and 5 °C, respectively. Moreover, this led to a significant improvement in stress; approximately 27 MPa stress reduction for the FS induction generator PEC.

  8. Effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of glass ceramic fused to gold or cobalt-chromium alloy.

    Science.gov (United States)

    Oliveira de Vasconcellos, Luis Gustavo; Silva, Lucas H; Reis de Vasconcellos, Luana Marotta; Balducci, Ivan; Takahashi, Fernando E; Bottino, Marco Antonio

    2011-10-01

    To evaluate the effect of airborne-particle abrasion and mechanico-thermal cycling on the flexural strength of a ceramic fused to cobalt-chromium alloy or gold alloy. Metallic bars (n = 120) were made (25 mm × 3 mm × 0.5 mm): 60 with gold alloy and 60 with Co-Cr. At the central area of the bars (8 mm × 3 mm), a layer of opaque ceramic and then two layers of glass ceramic (Vita VM13, Vita Zahnfabrick) were fired onto it (thickness: 1 mm). Ten specimens from each alloy group were randomly allocated to a surface treatment [(tungsten bur or air-particle abrasion (APA) with Al(2) O(3) at 10 mm or 20 mm away)] and mechanico-thermal cycling (no cycling or mechanically loaded 20,000 cycles; 10 N distilled water at 37°C and then thermocycled 3000 cycles; 5°C to 55°C, dwell time 30 seconds) combination. Those specimens that did not undergo mechanico-thermal cycling were stored in water (37°C) for 24 hours. Bond strength was measured using a three-point bend test, according to ISO 9693. After the flexural strength test, failure types were noted. The data were analyzed using three factor-ANOVA and Tukey's test (α= 0.05). There were no significant differences between the flexural bond strength of gold and Co-Cr groups (42.64 ± 8.25 and 43.39 ± 10.89 MPa, respectively). APA 10 and 20 mm away surface treatment (45.86 ± 9.31 and 46.38 ± 8.89 MPa, respectively) had similar mean flexural strength values, and both had significantly higher bond strength than tungsten bur treatment (36.81 ± 7.60 MPa). Mechanico-thermal cycling decreased the mean flexural strength values significantly for all six alloy-surface treatment combinations tested when compared to the control groups. The failure type was adhesive in the metal/ceramic interface for specimens surface treated only with the tungsten bur, and mixed for specimens surface treated with APA 10 and 20 mm. Considering the levels adopted in this study, the alloy did not affect the bond strength; APA with Al(2) O(3) at 10 and

  9. The Role of the Silicon Cycle in the Eocene-Oligocene Transition: Rapid Rise in Diatom-δ30Si

    Science.gov (United States)

    Egan, K. E.; Rickaby, R. E.; Leng, M. J.; Halliday, A. N.

    2011-12-01

    The Eocene-Oligocene (E-O) boundary represents a time of major climatic change which heralded the descent of Earth's climate from earlier greenhouse conditions into today's icehouse world. Decline of atmospheric CO2 levels, development of major ice sheets on Antarctica and initiation of the Antarctic Circumpolar Current around 34Ma ago dramatically changed the state of the atmosphere, cryosphere and hydrosphere: Major isotopic excursions are seen in both marine oxygen and carbon cycles, and yet the mechanisms behind this transition are still not fully understood. Unravelling the causes of such a significant climatic shift is essential to furthering our grasp on the mechanisms that control climate. The silicon isotope composition (δ30Si) preserved in diatom opal provides a window to the E-O Silicon cycle. The Silicon cycle is a key player in controlling atmospheric CO2 levels for two reasons. Firstly, weathering of silicate minerals acts to draw down CO2 into the ocean and ultimately sediments. Secondly, carbon export from the surface ocean by diatoms, siliceous walled phytoplankton, facilitates carbon transport to a deep ocean sink. We present a long term record of diatom-δ30Si record covering 37Ma to 25Ma, with E-O boundary targeted higher resolution (sponge spicule-δ30Si of ~2% seen by De La Rocha (2003) in sediments from the Maud Rise (ODP site 689). Taken together, these records demonstrate that changes are occurring in both the surface and deep waters of the Southern Ocean across this boundary. We will discuss the implications this has for silicon cycling across the E-O transition, in terms of variation in both weathering and diatom productivity, and the impact that this may have had on global climate.

  10. Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N δ-doped layer in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yasuhiro; Harada, Yukihiro; Baba, Takeshi; Kaizu, Toshiyuki; Kita, Takashi [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan)

    2016-03-14

    We have conducted rapid thermal annealing (RTA) for improving the two-dimensional (2D) arrangement of electronic states in the epitaxial nitrogen (N) δ-doped layer in GaAs. RTA rearranged the N-pair configurations in the GaAs (001) plane and reduced the number of non-radiative recombination centers. Furthermore, a Landau shift, representing the 2D delocalized electronic states in the (001) plane, was observed at around zero magnetic field intensity in the Faraday configuration.

  11. Rapid thermal processing for production of chalcopyrite thin films for solar cells: Design, analysis, and experimental implementation

    Science.gov (United States)

    Lovelett, Robert J.

    The direct conversion of solar energy to electricity, or photovoltaic energy conversion, has a number of environmental, social, and economic advantages over conventional electricity generation from fossil fuels. Currently, the most commonly-used material for photovoltaics is crystalline silicon, which is now produced at large scale and silicon-based devices have achieved power conversion efficiencies over 25% However, alternative materials, such as inorganic thin films, offer a number of advantages including the potential for lower manufacturing costs, higher theoretical efficiencies, and better performance in the field. One of these materials is the chalcopyrite Cu(InGa)(SeS) 2, which has demonstrated module efficiencies over 17% and cell efficiencies over 22%. Cu(InGa)(SeS)2 is now in the early stages of commercialization using a precursor reaction process referred to as a "selenization/sulfization" reaction. The precursor reaction process is promising because it has demonstrated high efficiency along with the large area (approximately 1 m2) uniformity that is required for modules. However, some challenges remain that limit the growth of the chalcopyrite solar cell industry including: slow reactions that limit process throughput, a limited understanding of complex reaction kinetics and transport phenomena that affect the through-film composition, and the use of highly toxic H2Se in the reaction process. In this work, I approach each of these challenges. First, to improve process throughput, I designed and implemented a rapid thermal processing (RTP) reactor, whereby the samples are heated by a 1000 W quartz-halogen lamp that is capable of fast temperature ramps and high temperature dwells. With the reactor in place, however, achieving effective temperature control in the thin film material system is complicated by two intrinsic process characteristics: (i) the temperature of the Cu(InGa)(SeS)2 film cannot be measured directly, which leaves the system without

  12. Enhanced Photoelectrochemical Behavior of H-TiO2 Nanorods Hydrogenated by Controlled and Local Rapid Thermal Annealing.

    Science.gov (United States)

    Wang, Xiaodan; Estradé, Sonia; Lin, Yuanjing; Yu, Feng; Lopez-Conesa, Lluis; Zhou, Hao; Gurram, Sanjeev Kumar; Peiró, Francesca; Fan, Zhiyong; Shen, Hao; Schaefer, Lothar; Braeuer, Guenter; Waag, Andreas

    2017-12-01

    Recently, colored H-doped TiO2 (H-TiO2) has demonstrated enhanced photoelectrochemical (PEC) performance due to its unique crystalline core-disordered shell nanostructures and consequent enhanced conduction behaviors between the core-shell homo-interfaces. Although various hydrogenation approaches to obtain H-TiO2 have been developed, such as high temperature hydrogen furnace tube annealing, high pressure hydrogen annealing, hydrogen-plasma assisted reaction, aluminum reduction and electrochemical reduction etc., there is still a lack of a hydrogenation approach in a controlled manner where all processing parameters (temperature, time and hydrogen flux) were precisely controlled in order to improve the PEC performance of H-TiO2 and understand the physical insight of enhanced PEC performance. Here, we report for the first time a controlled and local rapid thermal annealing (RTA) approach to prepare hydrogenated core-shell H-TiO2 nanorods grown on F:SnO2 (FTO) substrate in order to address the degradation issue of FTO in the typical TiO2 nanorods/FTO system observed in the conventional non-RTA treated approaches. Without the FTO degradation in the RTA approach, we systematically studied the intrinsic relationship between the annealing temperature, structural, optical, and photoelectrochemical properties in order to understand the role of the disordered shell on the improved photoelectrochemical behavior of H-TiO2 nanorods. Our investigation shows that the improvement of PEC performance could be attributed to (i) band gap narrowing from 3.0 to 2.9 eV; (ii) improved optical absorption in the visible range induced by the three-dimensional (3D) morphology and rough surface of the disordered shell; (iii) increased proper donor density; (iv) enhanced electron-hole separation and injection efficiency due to the formation of disordered shell after hydrogenation. The RTA approach developed here can be used as a suitable hydrogenation process for TiO2 nanorods/FTO system for

  13. Rapid Solid-Phase Immunoassay for Detection of Methicillin-Resistant Staphylococcus aureus Using Cycling Probe Technology

    OpenAIRE

    Fong, Whalley K.; Modrusan, Zora; McNevin, John P.; Marostenmaki, Johanna; Zin, Ben; Bekkaoui, Faouzi

    2000-01-01

    A Cycling Probe Technology (CPT) assay with a lateral-flow device (strip) was developed for the detection of the mecA gene from methicillin-resistant Staphylococcus aureus (MRSA) cultures. The assay uses a mecA probe (DNA-RNA-DNA) labeled with fluorescein at the 5′ terminus and biotin at the 3′ terminus. The CPT reaction occurs at a constant temperature, which allows the probe to anneal to the target DNA. RNase H cuts the RNA portion of the probe, allowing the cleaved fragments to dissociate ...

  14. Rapid flash annealing of thermally reactive copolymers in a roll-to-roll process for polymer solar cells

    DEFF Research Database (Denmark)

    Helgesen, Martin; Carlé, Jon Eggert; Andreasen, Birgitta

    2012-01-01

    intensity pulsed light, delivered by a commercial photonic sintering system. Thermally labile ester groups are positioned on the DTZ unit of the copolymer that can be eliminated thermally for enhanced photochemical stability and advantages in terms of processing (solubility/insolubility switching......Light induced thermocleaving of a thermally reactive copolymer based on dithienylthiazolo[5,4-d]thiazole (DTZ) and silolodithiophene (SDT) in contact with the heat sensitive substrate the heat sensitive substrate polyethyleneterphthalate (PET) was effectively demonstrated with the use of high...

  15. Life Cycle Assessment of Thermal Treatment Technologies. An environmental and financial systems analysis of gasification, incineration and landfilling of waste

    Energy Technology Data Exchange (ETDEWEB)

    Assefa, Getachew; Eriksson, Ola [Royal Inst. of Tech., Stockholm (Sweden). Industrial Ecology; Jaeraas, Sven; Kusar, Henrik [Royal Inst. of Tech., Stockholm (Sweden). Chemical Technology

    2003-05-01

    A technology which is currently developed by researchers at KTH is catalytic combustion. which is one component of a gasification system. Instead of performing the combustion in the gas turbine by a flame, a catalyst is used. When the development of a new technology (as catalytic combustion) reaches a certain step where it is possible to quantify material-, energy- and capital flows, the prerequisites for performing a systems analysis is at hand. The systems analysis can be used to expand the know-how about the potential advantages of the catalytic combustion technology by highlighting its function as a component of a larger system. In this way it may be possible to point out weak points which have to be investigated more, but also strong points to emphasise the importance of further development. The aim of this project was to assess the energy turnover as well as the potential environmental impacts and economic costs of thermal treatment technologies in general and catalytic combustion in particular. By using a holistic assessment of the advantages and disadvantages of catalytic combustion of waste it was possible to identify the strengths and weaknesses of the technology under different conditions. Following different treatment scenarios have been studied: (1) Gasification with catalytic combustion, (2) Gasification with flame combustion, (3) Incineration with energy recovery and (4) Landfilling with gas collection. In the study compensatory district heating is produced by combustion. of biofuel. The power used for running the processes in the scenarios is supplied by the waste-to-energy technologies themselves while compensatory power is assumed to be produced. from natural gas. The emissions from the system studied were classified and characterised using methodology from Life Cycle Assessment into the following environmental impact categories: Global Warming Potential, Acidification Potential, Eutrophication Potential and finally Formation of Photochemical

  16. Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse

    Directory of Open Access Journals (Sweden)

    Kennedy Erin L

    2007-08-01

    Full Text Available Abstract Background Rapid displacement across multiple time zones results in a conflict between the new cycle of light and dark and the previously entrained program of the internal circadian clock, a phenomenon known as jet lag. In humans, jet lag is often characterized by malaise, appetite loss, fatigue, disturbed sleep and performance deficit, the consequences of which are of particular concern to athletes hoping to perform optimally at an international destination. As a species renowned for its capacity for athletic performance, the consequences of jet lag are also relevant for the horse. However, the duration and severity of jet lag related circadian disruption is presently unknown in this species. We investigated the rates of re-entrainment of serum melatonin and core body temperature (BT rhythms following an abrupt 6-h phase advance of the LD cycle in the horse. Methods Six healthy, 2 yr old mares entrained to a 12 h light/12 h dark (LD 12:12 natural photoperiod were housed in a light-proofed barn under a lighting schedule that mimicked the external LD cycle. Following baseline sampling on Day 0, an advance shift of the LD cycle was accomplished by ending the subsequent dark period 6 h early. Blood sampling for serum melatonin analysis and BT readings were taken at 3-h intervals for 24 h on alternate days for 11 days. Disturbances to the subsequent melatonin and BT 24-h rhythms were assessed using repeated measures ANOVA and analysis of Cosine curve fitting parameters. Results We demonstrate that the equine melatonin rhythm re-entrains rapidly to a 6-h phase advance of an LD12:12 photocycle. The phase shift in melatonin was fully complete on the first day of the new schedule and rhythm phase and waveform were stable thereafter. In comparison, the advance in the BT rhythm was achieved by the third day, however BT rhythm waveform, especially its mesor, was altered for many days following the LD shift. Conclusion Aside from the temperature

  17. Closed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Part Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  18. Colosed-Loop Control of the Thermal Stir Welding Process to Enable Rapid Process/Ppart Qualification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Thermal Stir Welding (TSW) provides advancement over the more conventional Friction Stir Welding (C-FSW) process because it separates the primary processes variables...

  19. A study about the contribution of the α-β phase transition of quartz to thermal cycle damage of a refractory used in fluidized catalytic cracking units

    Directory of Open Access Journals (Sweden)

    A. H. A. Pereira

    2014-09-01

    Full Text Available The deterioration of refractories used in fluidized catalytic cracking units (FCC-units is responsible for high costs of maintenance for the petrochemical industry. This is commonly associated with coke deposition during the production of light hydrocarbons. However, other mechanisms responsible for causing damage may also occur, such as the generation of cracks by expansive phase transition. The aim of the work herein was to study the contribution of the a-b phase transition of quartz particles to the deterioration of a commercial aluminosilicate refractory used in a riser by the means of slow thermal cycles. Such damage may occur if the working temperature of the equipment fluctuates around the a-b transition temperature (573 °C. The current study considered the material with and without coke impregnation to evaluate the combined effect of coke presence and phase transition. To evaluate the damage, it was used the Young's modulus as a function of temperature by applying the Impulse Excitation Technique under controlled atmosphere. An equipment recently developed by the authors research group was applied. Specimens were prepared and submitted to slow thermal cycles of temperatures up to 500 °C and up to 700 °C, with a heating rate of 2 °C/min. Part of the specimens was previously impregnated with coke by a reactor using propen. To complete the evaluation, characterization by X-ray diffraction, as well as by dilatometry and scanning electron microscopy were performed. The findings of this study showed that the presence of quartz particles determine the thermo-mechanical behaviour of the material, as well as the thermocycling damage resistance. In spite of the fact that the a-b phase transition stiffens the material during the heating stage, it increases the damage by slow thermal cycling. The coke impregnation increases the resistance to slow thermal cycles, however it decreases the resistance to the damage evolution.

  20. Rapid Ammonia Gas Transport Accounts for Futile Transmembrane Cycling under NH3/NH4+ Toxicity in Plant Roots1[C][W

    Science.gov (United States)

    Coskun, Devrim; Britto, Dev T.; Li, Mingyuan; Becker, Alexander; Kronzucker, Herbert J.

    2013-01-01

    Futile transmembrane NH3/NH4+ cycling in plant root cells, characterized by extremely rapid fluxes and high efflux to influx ratios, has been successfully linked to NH3/NH4+ toxicity. Surprisingly, the fundamental question of which species of the conjugate pair (NH3 or NH4+) participates in such fluxes is unresolved. Using flux analyses with the short-lived radioisotope 13N and electrophysiological, respiratory, and histochemical measurements, we show that futile cycling in roots of barley (Hordeum vulgare) seedlings is predominately of the gaseous NH3 species, rather than the NH4+ ion. Influx of 13NH3/13NH4+, which exceeded 200 µmol g–1 h–1, was not commensurate with membrane depolarization or increases in root respiration, suggesting electroneutral NH3 transport. Influx followed Michaelis-Menten kinetics for NH3 (but not NH4+), as a function of external concentration (Km = 152 µm, Vmax = 205 µmol g–1 h–1). Efflux of 13NH3/13NH4+ responded with a nearly identical Km. Pharmacological characterization of influx and efflux suggests mediation by aquaporins. Our study fundamentally revises the futile-cycling model by demonstrating that NH3 is the major permeating species across both plasmalemma and tonoplast of root cells under toxicity conditions. PMID:24134887

  1. FLOWERING LOCUS C EXPRESSOR family proteins regulate FLOWERING LOCUS C expression in both winter-annual and rapid-cycling Arabidopsis.

    Science.gov (United States)

    Ding, Lei; Kim, Sang Yeol; Michaels, Scott D

    2013-09-01

    Many naturally occurring Arabidopsis (Arabidopsis thaliana) are very late flowering, unless flowering is promoted by a prolonged period of cold (e.g. winter) known as vernalization. In these winter-annual strains, flowering prior to winter is blocked by the synergistic interaction of FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). FLC acts as a strong floral inhibitor, and FRI is required for high levels of FLC expression. Vernalization, in turn, leads to an epigenetic down-regulation of FLC expression. Most rapid-cycling Arabidopsis carry loss-of-function mutations in FRI, leading to low levels of FLC and rapid flowering in the absence of vernalization. Recent work has shown that FRI acts as a scaffolding protein for the assembly of a FRI complex (FRI-C) that includes both general transcription and chromatin-modifying factors, as well as FRI-specific components such as FRI-LIKE1, FRI ESSENTIAL1 (FES1), SUPPRESSOR OF FRI4 (SUF4), and FLC EXPRESSOR (FLX). Here, we show that FLX-LIKE4 (FLX4) is a novel component of the FRI-C and is essential for the activation of FLC by FRI. Both FLX and FLX4 contain leucine zipper domains that facilitate interaction with FRI. In addition, FLX and FLX4 interact with each other and show synergistic transcription activation activity. Interestingly, we show that FLX, FLX4, FES1, and SUF4 are required for basal levels of FLC expression in the absence of FRI. Thus, components of the FRI-C play a role in the regulation of FLC expression in both FRI-containing winter annuals, as well as fri-null rapid-cycling strains.

  2. Advanced power cycles for concentrated solar power

    OpenAIRE

    Stein, W. H.; Buck, Reiner

    2017-01-01

    This paper provides a review of advanced power cycles under consideration for CSP. As variable renewables make rapid commercial progress, CSP with thermal energy storage is in an excellent position to provide low cost stability and reliability to the grid, however higher efficiency and lower costs are critical. Steam turbines provide a robust commercial option for today but more advanced power cycles offering greater agility and flexibility are needed. Supercritical steam turbines are attract...

  3. UV Sensing Properties of ZnO Nanowires Grown on Glass by Rapid Thermal Oxidation of Zinc Films

    Science.gov (United States)

    Mihailova, I.; Gerbreders, V.; Sļedevskis, Ē.; Bulanovs, A.; Paškevičs, V.

    2014-08-01

    The nanostructured ZnO thin films were successfully synthesized by rapid thermal oxidation of metallic zinc films without catalysts or additives. On the surface of thin films the formation of ZnO nanowires was observed. In the work, the optical and electrical parameters and photoresponses of the obtained ZnO thin films were investigated. Nanostructured thin films of the type have a promising potential for the use in optoelectronics, sensor technique and biomedical sciences Šī darba galvenais mērķis bija izpētīt UV fotodetektora izgatavošanas iespējamību uz nanostrukturētu ZnO plāno kārtiņu bāzes, kas sintezētas termiski oksidējot Zn plānās kārtiņas. Termiskās oksidēšanas rezultātā tika novērota adatveidīgu ZnO nanostruktūru formēšanās uz kārtiņu virsmas. Izpētītas iegūto paraugu optiskās un elektriskās īpašības, kā arī fotoreakcija. Tika konstatēts, ka iegūto nanostrukturēto ZnO kārtiņu elektriskā vadītspēja ir ārkārtīgi jutīga pret UV starojumu, taču, apstarojot ar redzamo gaismu, strāva paliek gandrīz nemainīga. Kārtiņu elektriskās vadītspējas fotoreakcija ir atkarīga arī no nanostruktūru daudzuma uz virsmas. Visaugstākā UV fotovadītspēja tika novērota paraugam ar vislielāko ZnO nanoadatu koncentrāciju. UV gaismas inducētais vadītspējas pieaugums ļauj ZnO nanoadatas reversīvi pārslēgt starp stāvokļiem "ieslēgts" un "izslēgts". Līdz ar to, šīs fotojutīgās nanoadatas var tikt izmantotas UV gaismas detektoros un optiskajos slēdžos. Šādas nanostrukturētas plānās kārtiņas var tikt pielietotas arī ķīmiskajos un bioloģiskajos sensoros, pjezoelektriskajās ierīcēs, saules elementos utt. Turklāt, šādu nanostrukturēto ZnO plāno kārtiņu sintēzes process ir salīdzinoši lēts un vienkāršs, dodot iespēju liela mēroga produkcijas ražošanai

  4. Energy-Saving Melting and Revert Reduction Technology (E-SMARRT): Use of Laser Engineered Net Shaping for Rapid Manufacturing of Dies with Protective Coatings and Improved Thermal Management

    Energy Technology Data Exchange (ETDEWEB)

    Brevick, Jerald R. [Ohio State University

    2014-06-13

    In the high pressure die casting process, molten metal is introduced into a die cavity at high pressure and velocity, enabling castings of thin wall section and complex geometry to be obtained. Traditional die materials have been hot work die steels, commonly H13. Manufacture of the dies involves machining the desired geometry from monolithic blocks of annealed tool steel, heat treating to desired hardness and toughness, and final machining, grinding and polishing. The die is fabricated with internal water cooling passages created by drilling. These materials and fabrication methods have been used for many years, however, there are limitations. Tool steels have relatively low thermal conductivity, and as a result, it takes time to remove the heat from the tool steel via the drilled internal water cooling passages. Furthermore, the low thermal conductivity generates large thermal gradients at the die cavity surfaces, which ultimately leads to thermal fatigue cracking on the surfaces of the die steel. The high die surface temperatures also promote the metallurgical bonding of the aluminum casting alloy to the surface of the die steel (soldering). In terms of process efficiency, these tooling limitations reduce the number of die castings that can be made per unit time by increasing cycle time required for cooling, and increasing downtime and cost to replace tooling which has failed either by soldering or by thermal fatigue cracking (heat checking). The objective of this research was to evaluate the feasibility of designing, fabricating, and testing high pressure die casting tooling having properties equivalent to H13 on the surface in contact with molten casting alloy - for high temperature and high velocity molten metal erosion resistance – but with the ability to conduct heat rapidly to interior water cooling passages. A layered bimetallic tool design was selected, and the design evaluated for thermal and mechanical performance via finite element analysis. H13 was

  5. High temperature, low cycle fatigue of copper-base alloys in argon. Part 3: Zirconium-copper; thermal-mechanical strain cycling, hold-time and notch fatigue results

    Science.gov (United States)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1973-01-01

    The low-cycle fatigue characteristics of smooth bar and notched bar specimens (hourglass shape) of zirconium-copper, 1/2 Hard, material (R-2 Series) were evaluated at room temperature in axial strain control. Over the fatigue life range from about 300 to 3000 cycles the ratio of fatigue life for smooth bar to fatigue life for notched bar remained constant at a value of about 6.0. Some additional hold-time data for the R-2 alloy tested in argon at 538 C are reported. An analysis of the relaxation data obtained in these hold-time tests is also reported and it is shown that these data yield a fairly consistent correlation in terms of instantaneous stress rate divided by instantaneous stress. Two thermal-mechanical strain cycling tests were also performed using a cyclic frequency of 4.5 cycles per hour and a temperature cycling interval from 260 to 538 C. The fatigue life values in these tests were noticeably lower than that observed in isothermal tests at 538 C.

  6. Emissions from cycling of thermal power plants in electricity systems with high penetration of wind power: Life cycle assessment for Ireland

    DEFF Research Database (Denmark)

    Turconi, Roberto; O'Dwyer, C.; Flynn, D.

    2014-01-01

    demand. The environmental impacts related to potential future energy systems in Ireland for 2025 with high shares of wind power were evaluated using life cycle assessment (LCA), focusing on cycling emissions (due to part-load operation and start-ups) from dispatchable generators. Part-load operations......-load electricity production shifts to a cleaner source than coal. Finally, the present study indicates that, in terms of emission reductions, the priority for Ireland is to phase out coal-based power plants. While investing in new storage capacity reduces system operating costs at high wind penetrations and limits...... significantly affect the average power plant efficiency, with all units seeing an average yearly efficiency noticeably less than optimal. In particular, load following units, on average, saw an 11% reduction. Given that production technologies are typically modeled assuming steady-state operation at full load...

  7. Rapid bonding and easy debonding of orthodontic appliances with 4-META/MMA-TBB resin using thermal heating.

    Science.gov (United States)

    Kameda, Takashi; Ohkuma, Kazuo; Terada, Kazuto

    2014-01-01

    4-Methacryloyloxyethyl trimellitate anhydride/methyl methacrylate-tri-n-butylborane (4-META/MMA-TBB) resin is widely used as a direct bonding adhesive for orthodontic appliances because of its strong bonding ability. However, its clinical disadvantages include long setting times and difficult debonding with subsequent residual adhesive left on the enamel surface. To resolve these problems, thermal heating was applied to orthodontic appliances. The setting time was dramatically reduced by thermal heating (160°C for 5 s), with the shear bond strength remaining the same as that stated in the manufacturer's instructions. Debonding of appliances following thermal heating (160°C for 20 s) could be easily performed, decreasing the amount of adhesive left on enamel. These conditions were not accompanied by an increase in the heat pain threshold of pulpal dentin. These results suggest that the use of thermal heating in the bonding/debonding of 4-META/MMA-TBB resin may resolve its clinical weaknesses, making its ease of use similar to light-cured resin.

  8. Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene.

    Science.gov (United States)

    Zhao, Weifeng; Kong, Jie; Liu, Hu; Zhuang, Qiang; Gu, Junwei; Guo, Zhanhu

    2016-12-28

    Self-alignment of thermally reduced graphene sheets (TRG) that enable highly efficient heat transfer paths in their poly(p-phenylene benzobisoxazole) (PBO)-based nanocomposite films along the in-plane direction was achieved for the first time without any assistance of an external magnetic or an electric field. In the in-plane direction, the nanocomposite films possess an ultra-high thermal diffusivity (900-1000 mm(2) s(-1)) and a thermal conductivity (50 W m(-1) K(-1)) with a TRG concentration graphene filler loading. The arranged TRG was also found to display a high efficiency for PBO reinforcement. A 64% increase in the Young's modulus was achieved by the addition of only 0.35 vol% of TRG, corresponding to a reinforcement value as high as 747 ± 38 GPa, due to effective load transfer between the PBO matrix and TRG sheets via strong interfacial interactions. Moreover, the highly ordered graphene in PBO could provide good candidates for effective heat shielding barriers, and thus the prepared PBO composites exhibit a thermal stability remarkably higher than that of neat PBO resin.

  9. Using rapid-cycle quality improvement methodology to reduce feeding tubes in patients with advanced dementia: before and after study.

    Science.gov (United States)

    Monteleoni, Carol; Clark, Elizabeth

    2004-08-28

    Despite lack of evidence that enteral feeding tubes benefit patients with dementia, and often contrary to the wishes of patient and family, patients with dementia who have difficulty swallowing or reduced food intake often receive feeding tubes when hospitalised for an acute illness. We conducted a retrospective chart review of all patients receiving percutaneous endoscopic gastrostomy or jejunostomy tubes between March and September 2002. QI interventions including a palliative care consulting service and educational programmes were instituted. We conducted a second chart review for all patients receiving feeding tubes between March and September 2003. 652 bed urban acute care hospital. We measured the number of feeding tubes placed in patients with dementia, the number of feeding tubes placed in patients with dementia capable of taking food by mouth, and the number of feeding tubes placed in patients with dementia with an advance directive stating the wish to forgo artificial nutrition and hydration. Medical and allied health staff received educational programmes on end of life care and on feeding management of patients with dementia. A palliative care consulting team was established. After the interventions, the number of feeding tubes placed in all patients and in patients with dementia was greatly reduced. Multidisciplinary involvement, including participation by the administration, was essential to effect change in practice. The intensive focus on a particular issue and rapid change led to "culture shift" within the hospital community. The need to establish unified goals of care for each patient was highlighted. A growing body of research over the past decade has questioned the utility of placing feeding tubes (percutaneous endoscopic gastrostomy (PEG) or jejunostomy) in patients with advanced dementia. Studies have found no evidence that feeding tubes in this population prevent aspiration, prolong life, improve overall function, or reduce pressure sores

  10. Integration of BpMADS4 on various linkage groups improves the utilization of the rapid cycle breeding system in apple.

    Science.gov (United States)

    Weigl, Kathleen; Wenzel, Stephanie; Flachowsky, Henryk; Peil, Andreas; Hanke, Magda-Viola

    2015-02-01

    Rapid cycle breeding in apple is a new approach for the rapid introgression of agronomically relevant traits (e.g. disease resistances) from wild apple species into domestic apple cultivars (Malus × domestica Borkh.). This technique drastically shortens the long-lasting juvenile phase of apple. The utilization of early-flowering apple lines overexpressing the BpMADS4 gene of the European silver birch (Betula pendula Roth.) in hybridization resulted in one breeding cycle per year. Aiming for the selection of non-transgenic null segregants at the end of the breeding process, the flower-inducing transgene and the gene of interest (e.g. resistance gene) that will be introgressed by hybridization need to be located on different chromosomes. To improve the flexibility of the existing approach in apple, this study was focused on the development and characterization of eleven additional BpMADS4 overexpressing lines of four different apple cultivars. In nine lines, the flowering gene was mapped to different linkage groups. The differences in introgressed T-DNA sequences and plant genome deletions post-transformation highlighted the unique molecular character of each line. However, transgenic lines demonstrated no significant differences in flower organ development and pollen functionality compared with non-transgenic plants. Hybridization studies using pollen from the fire blight-resistant wild species accession Malus fusca MAL0045 and the apple scab-resistant cultivar 'Regia' indicated that BpMADS4 introgression had no significant effect on the breeding value of each transgenic line. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  11. Using the Consolidated Framework for Implementation Research (CFIR) to produce actionable findings: a rapid-cycle evaluation approach to improving implementation.

    Science.gov (United States)

    Keith, Rosalind E; Crosson, Jesse C; O'Malley, Ann S; Cromp, DeAnn; Taylor, Erin Fries

    2017-02-10

    Much research does not address the practical needs of stakeholders responsible for introducing health care delivery interventions into organizations working to achieve better outcomes. In this article, we present an approach to using the Consolidated Framework for Implementation Research (CFIR) to guide systematic research that supports rapid-cycle evaluation of the implementation of health care delivery interventions and produces actionable evaluation findings intended to improve implementation in a timely manner. To present our approach, we describe a formative cross-case qualitative investigation of 21 primary care practices participating in the Comprehensive Primary Care (CPC) initiative, a multi-payer supported primary care practice transformation intervention led by the Centers for Medicare and Medicaid Services. Qualitative data include observational field notes and semi-structured interviews with primary care practice leadership, clinicians, and administrative and medical support staff. We use intervention-specific codes, and CFIR constructs to reduce and organize the data to support cross-case analysis of patterns of barriers and facilitators relating to different CPC components. Using the CFIR to guide data collection, coding, analysis, and reporting of findings supported a systematic, comprehensive, and timely understanding of barriers and facilitators to practice transformation. Our approach to using the CFIR produced actionable findings for improving implementation effectiveness during this initiative and for identifying improvements to implementation strategies for future practice transformation efforts. The CFIR is a useful tool for guiding rapid-cycle evaluation of the implementation of practice transformation initiatives. Using the approach described here, we systematically identified where adjustments and refinements to the intervention could be made in the second year of the 4-year intervention. We think the approach we describe has broad

  12. Thermal cycling of directly buried district heating networks - application of cumulative damage theory to some field cases

    Energy Technology Data Exchange (ETDEWEB)

    Penderos, M.

    1996-11-01

    The expected life of directly buried DH pipes is significantly influenced by temperature variations in the transported hot water. The temperature variations can lead to low cycle fatigue in the media pipe or in other parts of the pipe structure. This thesis deals with methods to study and quantify temperature variations, and with implications for the medium pipe due to temperature variations. Temperature and temperature variations are of great importance for accumulated damage. If a material is subjected to temperature variations this could lead to low cycle fatigue in the material. The rainflow method is used to calculate the equivalent number of cycles. The results from the rainflow cycle count show that at the consumer installations the largest number of equivalent cycles is on the return pipe while at the production plant the largest number of equivalent cycles is on the supply side. The conclusion of this thesis is that if there is 100 cycles, or more, there is no risk of low cycle fatigue, due to temperature variations, at the measuring points. Temperature variations that are extended in time are the ones that causes stresses to build up in the pipe. Four important factors affect the expected life of the pipes: temperature variations, extension in time of the temperature variations, the length of the pipe, and the water velocity. 25 refs, 27 figs, 2 tabs

  13. Organic Contaminants and Treatment Chemicals in Steam-Water Cycles : Thermal stability, decomposition products and flow-accelerated corrosion

    NARCIS (Netherlands)

    Moed, D.H.

    2015-01-01

    Boiler feedwater and steam have to be of high purity, because of the susceptibility of the steam-water cycle to corrosion. Organic contaminants break down in boilers by hydrothermolysis, leading to the formation of organic acid anions, which are suspected to cause corrosion of steam-water cycle

  14. Seasonal Redistribution of Immune Function in a Migrant Shorebird : Annual-Cycle Effects Override Adjustments to Thermal Regime

    NARCIS (Netherlands)

    Buehler, Deborah M.; Piersma, Theunis; Matson, Kevin D.; Tieleman, B. Irene; Demas, Greg (associate); Geber, Monica A.

    2008-01-01

    Throughout the annual cycle, demands on competing physiological systems change, and animals must allocate resources to maximize fitness. Immune function is one such system and is important for survival. Yet detailed empirical data tracking immune function over the entire annual cycle are lacking for

  15. Saccadic performance and cortical excitability as trait-markers and state-markers in rapid-cycling bipolar disorder: a 2-case follow-up study.

    Directory of Open Access Journals (Sweden)

    Jennifer eMalsert

    2013-01-01

    Full Text Available Background: The understanding of physiopathology and cognitive impairments in mood disorders requires finding objective markers. Mood disorders have often been linked to hypometabolism in the prefrontal dorsolateral cortex, and to GABAergic and glutamatergic neurotransmission dysfunction. The present study aimed to discover whether saccadic tasks (involving DPLFC activity, and cortical excitability (involving GABA/Glutamate neurotransmission could provide neuropsychophysical markers for mood disorders, and/or of its phases, in patients with rapid-cycling bipolar disorders (rcBD. Methods: Two rcBD patients were followed for a cycle, and were compared to 9 healthy controls. A saccade task, mixing prosaccades, antisaccades and nosaccades, and an evaluation of cortical excitability using transcranial magnetic stimulation were performed. Results: We observed a deficit in antisaccade in patients independently of thymic phase, and in nosaccade in the manic phase only. Cortical excitability data revealed global intracortical deficits in all phases, switching according to cerebral hemisphere and thymic phase. Conclusion: Specific patterns of performance in saccade tasks and cortical excitability could characterize mood disorders (trait-markers and its phases (state-markers. Moreover, a functional relationship between oculometric performance and cortical excitability is discussed.

  16. Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor

    Science.gov (United States)

    Wu, Jinbo; Cao, Wenbin; Wen, Weijia; Chang, Donald Choy; Sheng, Ping

    2009-01-01

    A microheater and a thermal sensor were fabricated inside elastomeric polydimethylsiloxane microchannels by injecting silver paint (or other conductive materials) into the channels. With a high-precision control scheme, microheaters can be used for rapid heating, with precise temperature control and uniform thermal distribution. Using such a microheater and feedback system, a polymerase chain reaction experiment was carried out whereas the DNA was successfully amplified in 25 cycles, with 1 min per cycle. PMID:19693386

  17. Polydimethylsiloxane microfluidic chip with integrated microheater and thermal sensor.

    Science.gov (United States)

    Wu, Jinbo; Cao, Wenbin; Wen, Weijia; Chang, Donald Choy; Sheng, Ping

    2009-01-02

    A microheater and a thermal sensor were fabricated inside elastomeric polydimethylsiloxane microchannels by injecting silver paint (or other conductive materials) into the channels. With a high-precision control scheme, microheaters can be used for rapid heating, with precise temperature control and uniform thermal distribution. Using such a microheater and feedback system, a polymerase chain reaction experiment was carried out whereas the DNA was successfully amplified in 25 cycles, with 1 min per cycle.

  18. The High Performance Shape Memory Effect (HP-SME in Ni Rich NiTi Wires: In Situ X-Ray Diffraction on Thermal Cycling

    Directory of Open Access Journals (Sweden)

    Coduri Mauro

    2015-01-01

    Full Text Available A novel approach for using Shape Memory Alloys (SMA was recently proposed and named highperformance shape memory effect (HP-SME. The HP-SME exploits the thermal cycling of stress-induced martensite for producing extremely high mechanical work with a very stable functional fatigue behaviour in Ni rich NiTi alloy. The latter was found to differ significantly from the functional fatigue behaviour observed for conventional SMA. This study was undertaken in order to elucidate the microstructural modifications at the basis of this particular feature. To this purpose, the functional fatigue was coupled to in situ Synchrotron Radiation X-Ray Diffraction, by recording patterns on wires thermally cycled by Joule effect under a constant applied stress (800 MPa. The accurate analysis the line profile XRD data suggests the accumulation of defects upon functional cycling, while the fibre texture was not observed to change. The functional fatigue exhibits a very similar behaviour as the line broadening of XRD peaks, thus suggesting the accumulation of dislocations as the origin of the mechanism of the permanent deformation.

  19. A Finite-Time Thermal Cycle Variational Optimization with a Stefan–Boltzmann Law for Three Different Criteria

    Directory of Open Access Journals (Sweden)

    Juan C. Chimal-Eguía

    2012-12-01

    Full Text Available This work shows the power of the variational approach for studying the efficiency of thermal engines in the context of the Finite Time Thermodynamics (FTT. Using an endoreversible Curzon–Ahlborn (CA heat engine as a model for actual thermal engines, three different criteria for thermal efficiency were analyzed: maximum power output, ecological function, and maximum power density. By means of this procedure, the performance of the CA heat engine with a nonlinear heat transfer law (the Stefan–Boltzmann law was studied to describe the heat exchanges between the working substance and its thermal reservoirs. The specific case of the Müser engine for all the criteria was analyzed. The results confirmed some previous findings using other procedures and additionally new results for the Müser engine performance were obtained.

  20. Application of fast thermal annealing to ferrites treatment; Application du recuit thermique rapide au traitement des ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Legros, R.

    1995-12-31

    Annealing of magneto-optic memory disks require very fast treatment not to damage glass substrate. This article relates the optimisation of process and the choice of the most suitable alloy. Thermal rise time is linear for 15 s, then a 5 s constant 1273 degree Kelvin step is applied, and then a cooling phase starting at switching off the twelve 1 kw lamps. The most suitable alloy is the one containing manganese additions. (D.L.) 18 refs.

  1. The effect of the rapid thermal annealing on the interdiffusion and the reaction at the interface of the binary system Cr/Si

    Energy Technology Data Exchange (ETDEWEB)

    Merabet, A. [Laboratoire Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, Setif 19000 (Algeria)]. E-mail: merabet_abdelali@yahoo.fr

    2004-12-15

    In order to understand the growth mechanism of the silicides and the effect of the dopant on the electrical activity, a thin layer of chromium (100 nm) is deposited on the single crystal silicon (1 0 0) substrate implanted (10{sup 15} As{sup +} atoms/cm{sup 2}, 100 keV) and non implanted. Afterwards, we performed a rapid thermal annealing in the interval of temperature (450-600 deg. C) for a fixed duration of 45 s. The samples are analyzed by X ray-diffraction (XRD) and Rutherford backscattering spectrometry (RBS). The electrical activity has been investigated by the method of the four-point probes. The analysis of the samples by XRD and RBS showed that the rapid thermal annealing (RTA) leads to a reaction at the interface Cr/Si inducing the formation and the growth of the unique silicide CrSi{sub 2}. It is also established that the kinetics growth of CrSi{sub 2} presents a linear evolution with temperature. This fact shows that the growth is governed by a chemical reaction of the interface. Sheet resistance measurements have been performed to study the electrical behavior for these structures. It is worth to point out that the presence of the implanted arsenic in the single crystal silicon increased the resistance in a significant manner.

  2. Ion-beam mixed ultra-thin cobalt suicide (CoSi2) films by cobalt sputtering and rapid thermal annealing

    Science.gov (United States)

    Kal, S.; Kasko, I.; Ryssel, H.

    1995-10-01

    The influence of ion-beam mixing on ultra-thin cobalt silicide (CoSi2) formation was investigated by characterizing the ion-beam mixed and unmixed CoSi2 films. A Ge+ ion-implantation through the Co film prior to silicidation causes an interface mixing of the cobalt film with the silicon substrate and results in improved silicide-to-silicon interface roughness. Rapid thermal annealing was used to form Ge+ ion mixed and unmixed thin CoSi2 layer from 10 nm sputter deposited Co film. The silicide films were characterized by secondary neutral mass spectroscopy, x-ray diffraction, tunneling electron microscopy (TEM), Rutherford backscattering, and sheet resistance measurements. The experi-mental results indicate that the final rapid thermal annealing temperature should not exceed 800°C for thin (films reveals that Ge+ ion mixing (45 keV, 1 × 1015 cm-2) produces homogeneous silicide with smooth silicide-to-silicon interface.

  3. A rapid fabrication of C/C composites by a thermal gradient chemical vapor infiltration method with vaporized kerosene as a precursor

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jiping [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)]. E-mail: buickwang@hotmail.com; Qian Junmin [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Qiao Guanjun [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China); Jin Zhihao [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2007-01-15

    A thermal gradient, atmospheric pressure chemical vapor infiltration method with simultaneous vaporized kerosene as a precursor for rapid fabrication of C/C composites was studied. By this method, carbon felts (bulk density {approx}0.2 g cm{sup -3}) were densified to C/C composites with density of 1.67 and 1.71 g cm{sup -3} when prepared at 1050 and 1150 deg. C for 6 h, respectively. X-ray diffraction result indicates that the composites have a strong ability to graphitize and the higher deposition temperature leads to the increased graphitization degree. Polarized light microscope and scanning electron microscope images reveal that fibers of the composites prepared for 6 h are surrounded by ring-shaped pyrocarbon matrix with a thickness of {approx}20 {mu}m, and that the matrix is delaminated to 4-6 layer-like regions. The deposition process is analyzed by dividing the reactor into four regions associated with specific functions and the reasons for the rapid fabrication are proposed as the short convection and diffusion path for the precursor and the existing of thermal gradient across the preform.

  4. Conversion of coal-fired power plants to cogeneration and combined-cycle thermal and economic effectiveness

    CERN Document Server

    Bartnik, Ryszard

    2014-01-01

    This book covers methodology, calculation procedures and tools to support enterprise planning for adapting power stations to cogeneration and combined-cycle forms. It examines the optimum selection of the structure of heat exchangers in a 370 MW power block.

  5. Re-examination of the cause of the Paleocene-Eocene thermal maximum, based on global carbon-cycle modeling

    National Research Council Canada - National Science Library

    Yasukawa, Kazutaka; Nakamura, Kentaro; Kato, Yasuhiro

    2010-01-01

    .... To provide some constraints on the cause of the PETM, we re-examined the observed magnitude of the CIE, and then reconstructed the perturbation of the global carbon cycle during the PETM, using...

  6. The Effect of a Non-Gaussian Random Loading on High-Cycle Fatigue of a Thermally Post-Buckled Structure

    Science.gov (United States)

    Rizzi, Stephen A.; Behnke, marlana N.; Przekop, Adam

    2010-01-01

    High-cycle fatigue of an elastic-plastic beam structure under the combined action of thermal and high-intensity non-Gaussian acoustic loadings is considered. Such loadings can be highly damaging when snap-through motion occurs between thermally post-buckled equilibria. The simulated non-Gaussian loadings investigated have a range of skewness and kurtosis typical of turbulent boundary layer pressure fluctuations in the vicinity of forward facing steps. Further, the duration and steadiness of high excursion peaks is comparable to that found in such turbulent boundary layer data. Response and fatigue life estimates are found to be insensitive to the loading distribution, with the minor exception of cases involving plastic deformation. In contrast, the fatigue life estimate was found to be highly affected by a different type of non-Gaussian loading having bursts of high excursion peaks.

  7. The University of Minnesota aquifer thermal energy storage (ATES) field test facility -- system description, aquifer characterization, and results of short-term test cycles

    Energy Technology Data Exchange (ETDEWEB)

    Walton, M.; Hoyer, M.C.; Eisenreich, S.J.; Holm, N.L.; Holm, T.R.; Kanivetsky, R.; Jirsa, M.A.; Lee, H.C.; Lauer, J.L.; Miller, R.T.; Norton, J.L.; Runke, H. (Minnesota Geological Survey, St. Paul, MN (United States))

    1991-06-01

    Phase 1 of the Aquifer Thermal Energy Storage (ATES) Project at the University of Minnesota was to test the feasibility, and model, the ATES concept at temperatures above 100{degrees}C using a confined aquifer for the storage and recovery of hot water. Phase 1 included design, construction, and operation of a 5-MW thermal input/output field test facility (FTF) for four short-term ATES cycles (8 days each of heat injection, storage, and heat recover). Phase 1 was conducted from May 1980 to December 1983. This report describes the FTF, the Franconia-Ironton-Galesville (FIG) aquifer used for the test, and the four short-term ATES cycles. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic effects are all included. The FTF consists of monitoring wells and the source and storage well doublet completed in the FIG aquifer with heat exchangers and a fixed-bed precipitator between the wells of the doublet. The FIG aquifer is highly layered and a really anisotropic. The upper Franconia and Ironton-Galesville parts of the aquifer, those parts screened, have hydraulic conductivities of {approximately}0.6 and {approximately}1.0 m/d, respectively. Primary ions in the ambient ground water are calcium and magnesium bicarbonate. Ambient temperature FIG ground water is saturated with respect to calcium/magnesium bicarbonate. Heating the ground water caused most of the dissolved calcium to precipitate out as calcium carbonate in the heat exchanger and precipitator. Silica, calcium, and magnesium were significantly higher in recovered water than in injected water, suggesting dissolution of some constituents of the aquifer during the cycles. Further work on the ground water chemistry is required to understand water-rock interactions.

  8. Verification of Rapid Focused-Recharge in Depressions of Kuwait and the Arabian Peninsula Using Thermal and VNIR Remote Sensing

    Science.gov (United States)

    Rotz, R. R.; Milewski, A.

    2013-12-01

    In the Arabian Peninsula, freshwater recharge from rainfall is infrequent. Recharge is typically focused in small depressions that fill with seasonal runoff and potentially form freshwater lenses. This phenomenon has been verified in the Raudhatain watershed in Kuwait. This study aims to substantiate previously hypothesized lens locations and detect water in the subsurface by using thermal remote sensing and rainfall data. Potential freshwater lenses (~142) have been previously postulated throughout Kuwait and Saudi Arabia, but lack verification due to inadequate monitoring networks. We hypothesize that due to water's unique heat capacity, recharge zones can be detected by identifying areas with lower changes in surface radiance values than neighboring dry areas between day and night after peak or sustained rainfall. If successful, recharge zones and freshwater lenses can be identified and verified in remote hyper-arid regions. We collected 320 high-resolution (15m - 90m), low cloud cover (images in the visible near-infrared (VNIR) and thermal infrared (TIR) wavelengths obtained from the Advanced Spaceborne Thermal Emission and Reflection Radiometer sensor (ASTER) between 2004 and 2012. Overlapping day and night images were subtracted from each other to show surface radiance fluctuations and difference images were compared with rainfall data from Daily TRMM_3B42v7a between 2004 and 2012. Several lens locations, runoff channels, agricultural regions, and wetlands were detected in areas where radiance values change between 0.067 - 2.25 Wsr-1m-2 from day to night scenes and verified by Google Earth (15m), Landsat (30m), and ASTER VNIR (15m) images. Additionally, two seasonal peak rainfall (~35mm/day) events positively correlate with the surface radiance difference values. Surface radiance values for dry areas adjacent to the postulated lens locations range between 2.25 - 12.2 Wsr-1m-2. Results demonstrate the potential for shallow groundwater detection through the

  9. An alternative method for thermal cycling test: effect on the marginal microleakage and bond strength of dental polymer bonded to dentin

    Directory of Open Access Journals (Sweden)

    Simonides Consani

    2012-12-01

    Full Text Available This study evaluated an alternative method for thermal cycling test on the microleakage and bond strength of the polymer-dentin bond. For the microleakage test the cavities were restored with a TEGDMA+UDMA+bis-EMA composite polymer light cured for 20 s. Samples were immersed in 2% methylene blue solution for 2 h and sectioned. Microleakage scores were submitted to Kruskal-Wallis test. For the shear bond strength test the adhesive was applied to dentin, photoactivated for 10 s and the composite polymer incrementally photoactivated. Samples were submitted to shear bond strength test in a machine with a cross-head speed of 0.5 mm/min and data were submitted to ANOVA and Tukey's test. Studied groups were: 1 - without thermocycling; 2 - thermocycled at 5 ºC and 55 ºC with intermediate bath at 37 ºC; 3 - thermocycled at 5 ºC and 37 ºC; 4 - thermocycled at 37 ºC and 55 ºC; 5 - thermocycled at 5 ºC and 55 ºC (traditional test. Cold baths promoted greater microleakage when compared to control and hot bath, whereas control and hot bath were similar. Cold baths presented significant lower shear bond strength than those submitted to hot bath and control. It was concluded that the alternative method for thermal cycling test showed that cold temperatures increased the microleakage and decreased the bond strength of the polymeric adhesive.

  10. Measurement of the Residual Stresses and Investigation of Their Effects on a Hardfaced Grid Plate due to Thermal Cycling in a Pool Type Sodium-Cooled Fast Reactor

    Directory of Open Access Journals (Sweden)

    S. Balaguru

    2016-01-01

    Full Text Available In sodium-cooled fast reactors (SFR, grid plate is a critical component which is made of 316 L(N SS. It is supported on core support structure. The grid plate supports the core subassemblies and maintains their verticality. Most of the components of SFR are made of 316 L(N/304 L(N SS and they are in contact with the liquid-metal sodium which acts as a coolant. The peak operating temperature in SFR is 550°C. However, the self-welding starts at 500°C. To avoid self-welding and galling, hardfacing of the grid plate has become necessary. Nickel based cobalt-free colmonoy 5 has been identified as the hardfacing material due to its lower dose rate by Plasma Transferred Arc Welding (PTAW. This paper is concerned with the measurement and investigations of the effects of the residual stress generated due to thermal cycling on a scale-down physical model of the grid plate. Finite element analysis of the hardfaced grid plate model is performed for obtaining residual stresses using elastoplastic analysis and hence the results are validated. The effects of the residual stresses due to thermal cycling on the hardfaced grid plate model are studied.

  11. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  12. Smart Operation of Gas Turbine Combined Cycle Plants : Prediction and Improvement of Thermal Efficiency at Part Load

    NARCIS (Netherlands)

    Boksteen, S.Z.

    2014-01-01

    This thesis investigates various operational aspects of Gas Turbine Combined Cycle Power Plants (GTCC). GTCC power plants are expected to play an increasingly important role in the balancing of supply and demand in the electricity grid. Although originally meant for predominantly base load operation

  13. A life cycle cost analysis of large-scale thermal energy storage technologies for buildings using combined heat and power

    Energy Technology Data Exchange (ETDEWEB)

    Gaine, K.; Duffy, A.

    2010-07-01

    Full text: Buildings account for approximately 40% of energy consumption and greenhouse gas (GHG) emissions in developed economies, of which approximately 55% of building energy is used for heating and cooling. The reduction of building-related GHG emissions is a high international policy priority. For this reason and because there are many technical solutions for this, these polices should involve significant improvements in the uptake of small-scale energy efficient (EE) systems. However the widespread deployment of many technologies, must overcome a number of barriers, one of which is a temporal (diurnal or seasonal) mismatch between supply and demand. For example, in office applications, peak combined heat and power (CHP) thermal output may coincide with peak electrical demand in the late morning or afternoon, whereas heating may be required early in the morning. For this reason, cost-effective thermal storage solutions have the potential to improve financial performance, while simultaneously reducing associated GHG emissions. The aim of this paper is to identify existing thermal energy storage (TES) technologies and to present and asses the economic and technical performance of each for a typical large scale mixed development. Technologies identified include: Borehole Thermal Energy Storage (BTES); Aquifer Thermal Energy Storage (ATES); Pitt Thermal Energy Storage (PTES) and Energy Piles. Of these the most appropriate for large scale storage in buildings were BTES and ATES because of they are relatively cheap and are installed under a building and do not use valuable floor area A Heat transfer analyses and system simulations of a variety of BTES systems are carried out using a Finite Element Analysis package (ANSYS) and energy balance simulation software (TRNSYS) is to determine the optimal system design. Financial models for each system are developed, including capital, installation, running and maintenance costs. Using this information the unit costs of

  14. Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2012-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.

  15. Thermal Modeling and Simulation of Electron Beam Melting for Rapid Prototyping on Ti6Al4V Alloys

    Science.gov (United States)

    Neira Arce, Alderson

    To be a viable solution for contemporary engineering challenges, the use of titanium alloys in a wider range of applications requires the development of new techniques and processes that are able to decrease production cost and delivery times. As a result, the use of material consolidation in a near-net-shape fashion, using dynamic techniques like additive manufacturing by electron beam selective melting EBSM represents a promising method for part manufacturing. However, a new product material development can be cost prohibitive, requiring the use of computer modeling and simulation as a way to decrease turnaround time. To ensure a proper representation of the EBSM process, a thermophysical material characterization and comparison was first performed on two Ti6Al4V powder feedstock materials prepared by plasma (PREP) and gas atomized (GA) processes. This evaluation comprises an evaluation on particle size distribution, density and powder surface area, collectively with the temperature dependence on properties such as heat capacity, thermal diffusivity, thermal conductivity and surface emissivity. Multiple techniques were employed in this evaluation, including high temperature differential scanning calorimetry (HT-DSC), laser flash analysis (LFA), infrared remote temperature analysis (IR-Thermography), laser diffraction, liquid and gas pycnometry using mercury and krypton adsorption respectively. This study was followed by the review of complementary strategies to simulate the temperature evolution during the EBSM process, using a finite element analysis package called COMSOL Multiphysics. Two alternatives dedicated to representing a moving heat source (electron beam) and the powder bed were developed using a step-by-step approximation initiative. The first method consisted of the depiction of a powder bed discretized on an array of domains, each one representing a static melt pool, where the moving heat source was illustrated by a series of time dependant selective

  16. Effect of Welding Thermal Cycles on Microstructure and Mechanical Properties of Simulated Heat Affected Zone for a Weldox 1300 Ultra-High Strength Alloy Steel

    Directory of Open Access Journals (Sweden)

    Węglowski M. St.

    2016-03-01

    Full Text Available In the present study, the investigation of weldability of ultra-high strength steel has been presented. The thermal simulated samples were used to investigate the effect of welding cooling time t8/5 on microstructure and mechanical properties of heat affected zone (HAZ for a Weldox 1300 ultra-high strength steel. In the frame of these investigation the microstructure was studied by light and transmission electron microscopies. Mechanical properties of parent material were analysed by tensile, impact and hardness tests. In details the influence of cooling time in the range of 2,5 ÷ 300 sec. on hardness, impact toughness and microstructure of simulated HAZ was studied by using welding thermal simulation test. The microstructure of ultra-high strength steel is mainly composed of tempered martensite. The results show that the impact toughness and hardness decrease with increase of t8/5 under condition of a single thermal cycle in simulated HAZ. The increase of cooling time to 300 s causes that the microstructure consists of ferrite and bainite mixture. Lower hardness, for t8/5 ≥ 60 s indicated that low risk of cold cracking in HAZ for longer cooling time, exists.

  17. Numerical and experimental investigation into the subsequent thermal cycling during selective laser melting of multi-layer 316L stainless steel

    Science.gov (United States)

    Liu, Yang; Zhang, Jian; Pang, Zhicong

    2018-01-01

    Subsequent thermal cycling (STC), as the unique thermal behavior during the multi-layer manufacturing process of selective laser melting (SLM), brings about unique microstructure of the as-produced parts. A multi-layer finite element (FE) model was proposed to study the STC along with a contrast experiment. The FE simulational results show that as layer increases, the maximum temperature, dimensions and liquid lifetime of the molten pool increase, while the heating and cooling rates decrease. The maximum temperature point shifts into the molten pool, and central of molten pool shifts backward. The neighborly underlying layer can be remelted thoroughly when laser irradiates a powder layer, thus forming an excellent bonding between neighbor layers. The contrast experimental results between the single-layer and triple-layer samples show that grains in of latter become coarsen and tabular along the height direction compared with those of the former. Moreover, this effect become more serious in 2nd and 1st layers in the triple-layer sample. All the above illustrate that the STC has an significant influence on the thermal behavior during SLM process, and thus affects the microstructure of SLMed parts.

  18. The effect of rapid thermal annealing on the photoluminescence of InAsN/InGaAs dot-in-a-well structures

    Energy Technology Data Exchange (ETDEWEB)

    Gargallo-Caballero, R; Miguel-Sanchez, J; Guzman, A; Hierro, A; Munoz, E [Instituto de Sistemas Optoelectronicos y MicrotecnologIa (ISOM)-Departamento de IngenierIa Electronica, ETSI Telecomunicacion, Universidad Politecnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain)], E-mail: rgargallo@die.upm.es

    2008-03-21

    The effect of post-growth rapid thermal annealing on the optical characteristics of InAsN/InGaAs dot-in-a-well DWELL structures grown by molecular beam epitaxy on GaAs(1 0 0) has been studied. InAs/InGaAs DWELL structures have been used as a reference. Photoluminescence measurements of these samples show similar optical effects, such as a blueshift of the peak wavelength and a reduction of the full width of at half maximum PL emission, in both types of structures up to an annealing temperature of 750 deg. C. Nevertheless, at 850 deg. C, these effects are much more pronounced in the structures with N. These results suggest that an additional As-N interdiffusion process inside the InAsN quantum dots plays a dominant role in these effects at high annealing temperatures (850 deg. C) on InAsN/InGaAs structures.

  19. Rapid thermal annealing and modulation-doping effects on InAs/GaAs quantum dots photoluminescence dependence on excitation power

    Energy Technology Data Exchange (ETDEWEB)

    Chaâbani, W. [Laboratoire Matériaux-Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, Université de Carthage, La Marsa 2070 (Tunisia); Melliti, A., E-mail: adnenmelliti@yahoo.fr [Laboratoire Matériaux-Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, Université de Carthage, La Marsa 2070 (Tunisia); Maaref, M.A. [Laboratoire Matériaux-Molécules et Applications, Institut Préparatoire aux Etudes Scientifiques et Techniques, Université de Carthage, La Marsa 2070 (Tunisia); Testelin, C. [Institut des NanoSciences de Paris, UPMC Univ., Paris 06, UMR 7588, F-75005 Paris (France); CNRS, UMR 7588, INSP, F-75005 Paris (France); Lemaître, A. [Laboratoire de Photonique et Nanostructures (LPN), CNRS, Route de Nozay, F-91460 Marcoussis (France)

    2016-07-15

    The optical properties of p-doped and annealed InAs/GaAs quantum dots (QDs) was investigated by photoluminescence (PL) as a function of temperature and excitation power density (P{sub exc}). At low-T, PL spectra of rapid thermal annealing (RTA) and p-modulation doped QDs show an energy blueshift and redshift, respectively. A superlinear dependence of integrated PL intensity on P{sub exc} at high-T was found only for undoped QD. The superlinearity was suppressed by modulation-doping and RTA effects. A linear dependence of I{sub PL} at all temperatures and a decrease of the carrier-carrier Coulomb interaction at high-T was found after RTA.

  20. Rapid Quantification of N-Methyl-2-pyrrolidone in Polymer Matrices by Thermal Desorption-GC/MS.

    Science.gov (United States)

    Kim, Young-Min; Kim, Jae Woo; Moon, Hye Mi; Lee, Min-Jin; Hosaka, Akihiko; Watanabe, Atsushi; Teramae, Norio; Park, Young-Kwon; Myung, Seung-Woon

    2017-01-01

    Analysis of a residual solvent in polymeric materials has become an important issue due to the increased regulations and standards for its use. N-Methyl-2-pyrrolidone (NMP) is a solvent widely used in many industries and restricted as one of the chemicals under EU REACH regulations due to its potential harmful effects. In this study, thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) is applied for the quantitative analysis of NMP with the use of a polymer-coated sample cup. By using the polymer-coated sample cup, the vaporization of NMP was prevented during waiting time before TD-GC/MS analysis. The calibration curve for the TD method showed good linearity (correlation coefficient, r2 = 0.9998) and precision values (below 5.3% RSD). NMP recovery rates in different polymer matrices (PS, PMMA and PVC) were in the range of 98.8 to 106.6% with RSD values below 5.0%. The quantification result (600 mg NMP/kg PVC) for the blind NMP carrying sample in a PVC matrix by TD-GC/MS was higher than that (532 mg NMP/kg PVC) by solvent extraction-GC/MS method.