WorldWideScience

Sample records for rapidly accelerating heat

  1. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A [Dassault Aviation, 92 - Saint Cloud (France)

    1997-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  2. Experiments on heat pipes submitted to strong accelerations; Experimentation de caloducs soumis a de fortes accelerations

    Energy Technology Data Exchange (ETDEWEB)

    Labuthe, A. [Dassault Aviation, 92 - Saint Cloud (France)

    1996-12-31

    In order to evaluate the possibility to use heat pipes as efficient heat transfer devices in aircrafts, a study of their behaviour during strong accelerations is necessary. This study has been jointly carried out by the Laboratory of Thermal Studies of Poitiers (France) and Dassault Aviation company. It is based on a series of tests performed with an experimental apparatus that uses the centrifugal effect to simulate the acceleration fields submitted to the heat pipe. Un-priming - priming cycles have been performed under different power and acceleration levels and at various functioning temperatures in order to explore the behaviour of heat pipes: rate of un-priming and re-priming, functioning in blocked mode etc.. This preliminary study demonstrates the rapid re-priming of the tested heat pipes when submitted to favourable acceleration situations and the possibility to use them under thermosyphon conditions despite the brief unfavourable acceleration periods encountered. (J.S.)

  3. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Science.gov (United States)

    Yoshimura, Takeo; Suzuki, Takamasa; Mineki, Shigeru; Ohuchi, Shokichi

    2015-01-01

    Rolling circle amplification (RCA) generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  4. High heat flux cooling for accelerator targets

    International Nuclear Information System (INIS)

    Silverman, I.; Nagler, A.

    2002-01-01

    Accelerator targets, both for radioisotope production and for high neutron flux sources generate very high thermal power in the target material which absorbs the particles beam. Generally, the geometric size of the targets is very small and the power density is high. The design of these targets requires dealing with very high heat fluxes and very efficient heat removal techniques in order to preserve the integrity of the target. Normal heat fluxes from these targets are in the order of 1 kw/cm 2 and may reach levels of an order of magnitude higher

  5. Controlled Microwave Heating Accelerates Rolling Circle Amplification.

    Directory of Open Access Journals (Sweden)

    Takeo Yoshimura

    Full Text Available Rolling circle amplification (RCA generates single-stranded DNAs or RNA, and the diverse applications of this isothermal technique range from the sensitive detection of nucleic acids to analysis of single nucleotide polymorphisms. Microwave chemistry is widely applied to increase reaction rate as well as product yield and purity. The objectives of the present research were to apply microwave heating to RCA and indicate factors that contribute to the microwave selective heating effect. The microwave reaction temperature was strictly controlled using a microwave applicator optimized for enzymatic-scale reactions. Here, we showed that microwave-assisted RCA reactions catalyzed by either of the four thermostable DNA polymerases were accelerated over 4-folds compared with conventional RCA. Furthermore, the temperatures of the individual buffer components were specifically influenced by microwave heating. We concluded that microwave heating accelerated isothermal RCA of DNA because of the differential heating mechanisms of microwaves on the temperatures of reaction components, although the overall reaction temperatures were the same.

  6. Diagnosis of Acceleration, Reconnection, Turbulence, and Heating

    Science.gov (United States)

    Dufor, Mikal T.; Jemiolo, Andrew J.; Keesee, Amy; Cassak, Paul; Tu, Weichao; Scime, Earl E.

    2017-10-01

    The DARTH (Diagnosis of Acceleration, Reconnection, Turbulence, and Heating) experiment is an intermediate-scale, experimental facility designed to study magnetic reconnection at and below the kinetic scale of ions and electrons. The experiment will have non-perturbative diagnostics with high temporal and three-dimensional spatial resolution, giving it the capability to investigate kinetic-scale physics. Of specific scientific interest are particle acceleration, plasma heating, turbulence and energy dissipation during reconnection. Here we will describe the magnetic field system and the two plasma guns used to create flux ropes that then merge through magnetic reconnection. We will also describe the key diagnostic systems: laser induced fluorescence (LIF) for ion vdf measurements, a 300 GHz microwave scattering system for sub-mm wavelength fluctuation measurements and a Thomson scattering laser for electron vdf measurements. The vacuum chamber is designed to provide unparalleled access for these particle diagnostics. The scientific goals of DARTH are to examine particle acceleration and heating during, the role of three-dimensional instabilities during reconnection, how reconnection ceases, and the role of impurities and asymmetries in reconnection. This work was supported by the by the O'Brien Energy Research Fund.

  7. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  8. Neuromuscular Control of Rapid Linear Accelerations in Fish

    Science.gov (United States)

    2016-06-22

    sunfish, Lepomis macrochirus. Animals with flexible bodies, like fishes , face a tradeoff for rapid movements. To produce high forces, they must...2014 30-Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: Neuromuscular Control of Rapid Linear Accelerations in Fish The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 swimming, acceleration, fish , muscle, stiffness REPORT DOCUMENTATION PAGE 11. SPONSOR

  9. Heating of microprotrusions in accelerating structures

    Directory of Open Access Journals (Sweden)

    A. C. Keser

    2013-09-01

    Full Text Available The thermal and field emission of electrons from protrusions on metal surfaces is a possible limiting factor on the performance and operation of high-gradient room temperature accelerator structures. We present here the results of extensive numerical simulations of electrical and thermal behavior of protrusions. We unify the thermal and field emission in the same numerical framework, describe bounds for the emission current and geometric enhancement, then we calculate the Nottingham and Joule heating terms and solve the heat equation to characterize the thermal evolution of emitters under rf electric field. Our findings suggest that heating is entirely due to the Nottingham effect. The time dependence of the rf field leads to a time dependent tip temperature with excursion that depends weakly on rf frequency. We build a phenomenological model to account for the effect of space charge and show that space charge eliminates the possibility of copper tip melting for tips with radii less than 10  μm with vacuum fields on their surface less than 12  GV/m, and for rf frequencies above 1 GHz.

  10. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  11. Heat-accelerated radioinactivation of attenuated poliovirus

    International Nuclear Information System (INIS)

    Dugan, V.L.; Trujillo, R.

    1975-01-01

    Attenuated poliovirus is inactivated in a synergistic manner when exposed simultaneously to heat and ionizing radiation. The synergistic response is observed in both the thermally labile and stable forms of the virus. A three-term kinetic model may be used to describe the inactivation response of the virus in a thermal and/or ionizing radiation environment. (orig.) [de

  12. Particle Acceleration and Heating Processes at the Dayside Magnetopause

    Science.gov (United States)

    Berchem, J.; Lapenta, G.; Richard, R. L.; El-Alaoui, M.; Walker, R. J.; Schriver, D.

    2017-12-01

    It is well established that electrons and ions are accelerated and heated during magnetic reconnection at the dayside magnetopause. However, a detailed description of the actual physical mechanisms driving these processes and where they are operating is still incomplete. Many basic mechanisms are known to accelerate particles, including resonant wave-particle interactions as well as stochastic, Fermi, and betatron acceleration. In addition, acceleration and heating processes can occur over different scales. We have carried out kinetic simulations to investigate the mechanisms by which electrons and ions are accelerated and heated at the dayside magnetopause. The simulation model uses the results of global magnetohydrodynamic (MHD) simulations to set the initial state and the evolving boundary conditions of fully kinetic implicit particle-in-cell (iPic3D) simulations for different solar wind and interplanetary magnetic field conditions. This approach allows us to include large domains both in space and energy. In particular, some of these regional simulations include both the magnetopause and bow shock in the kinetic domain, encompassing range of particle energies from a few eV in the solar wind to keV in the magnetospheric boundary layer. We analyze the results of the iPic3D simulations by discussing wave spectra and particle velocity distribution functions observed in the different regions of the simulation domain, as well as using large-scale kinetic (LSK) computations to follow particles' time histories. We discuss the relevance of our results by comparing them with local observations by the MMS spacecraft.

  13. RAPIDE 0.0 RHIC Accelerator Physics Intrepid Development Environment

    Energy Technology Data Exchange (ETDEWEB)

    Satogata, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Saltmarsh, C. [Brookhaven National Lab. (BNL), Upton, NY (United States); Peggs, S. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    1993-08-01

    This document is a guide to the common environmental features of computing in (and around) the RHIC Accelerator Physics.sectio on the 'zoo' cluster of UNJX workstations, in RAPIDE, the RHIC Accelerator Physics Intrepid Development Environment It is hoped tliat later revisions of this document will approach a more professional 'style guide', beyond the convenient collection of pointers and hints presented here. RAP does two kinds of computing, "controls" and "general", addressed in sections 2 and 3 of this document For general computing, efficient system administration requires cooperation in using a common environment There is a much stronger need to define - and adhere to - a commonly agreed set of styles (or rules) in developing controls software. Right now, these rules have been set "de facto". Future improvements to the controls environment, particularly in response to the opinions of users, depends on broad knowledge of what the rules are. There are environmental issues that are basic to both controls and general computing, and that are so fundamental that they are (almost) unarguable. They are described immediately below, in the next section.

  14. Investigation of pellet acceleration by an arc heated gas gun

    International Nuclear Information System (INIS)

    Andersen, S.A.; Baekmark, L.; Jensen, V.O.; Michelsen, P.; Weisberg, K.V.

    1988-10-01

    This report describes work on pellet acceleration by means of an arc heated gas gun. Preliminary results were described in Riso-M-2536 and in Riso-M-2650. This final report describes the work carried out from 1987.03.31 to 1988.09.30. An arc heated hydrogen gas source, for pneumatic acceleration of deuterium pellets to velocities above 2 km/s, was developed. Experiments were performed with an arc chamber to which different methods of hydrogen supply were possible, and to which the input of electrical power could be programmed. Results in terms of pressure transients and acceleration curves are presented. Maximum pellet velocities approaching 2 km/s were obtained. This limit is discussed in relation to the presented data. Finally this report contains a summary and a conclusion for the entire project. (author) 34 ills., 3 refs

  15. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Science.gov (United States)

    Chang, Jefferson C.; Lockner, David A.; Reches, Z.

    2012-01-01

    After nucleation, a large earthquake propagates as an expanding rupture front along a fault. This front activates countless fault patches that slip by consuming energy stored in Earth’s crust. We simulated the slip of a fault patch by rapidly loading an experimental fault with energy stored in a spinning flywheel. The spontaneous evolution of strength, acceleration, and velocity indicates that our experiments are proxies of fault-patch behavior during earthquakes of moment magnitude (Mw) = 4 to 8. We show that seismically determined earthquake parameters (e.g., displacement, velocity, magnitude, or fracture energy) can be used to estimate the intensity of the energy release during an earthquake. Our experiments further indicate that high acceleration imposed by the earthquake’s rupture front quickens dynamic weakening by intense wear of the fault zone.

  16. Experimental study of ion heating and acceleration during magnetic reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S.C.

    2000-01-28

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  17. Experimental study of ion heating and acceleration during magnetic reconnection

    International Nuclear Information System (INIS)

    Hsu, S.C.

    2000-01-01

    This dissertation reports an experimental study of ion heating and acceleration during magnetic reconnection, which is the annihilation and topological rearrangement of magnetic flux in a conductive plasma. Reconnection is invoked often to explain particle heating and acceleration in both laboratory and naturally occurring plasmas. However, a simultaneous account of reconnection and its associated energy conversion has been elusive due to the extreme inaccessibility of reconnection events, e.g. in the solar corona, the Earth's magnetosphere, or in fusion research plasmas. Experiments for this work were conducted on MRX (Magnetic Reconnection Experiment), which creates a plasma environment allowing the reconnection process to be isolated, reproduced, and diagnosed in detail. Key findings of this work are the identification of local ion heating during magnetic reconnection and the determination that non-classical effects must provide the heating mechanism. Measured ion flows are sub-Alfvenic and can provide only slight viscous heating, and classical ion-electron interactions can be neglected due to the very long energy equipartition time. The plasma resistivity in the reconnection layer is seen to be enhanced over the classical value, and the ion heating is observed to scale with the enhancement factor, suggesting a relationship between the magnetic energy dissipation mechanism and the ion heating mechanism. The observation of non-classical ion heating during reconnection has significant implications for understanding the role played by non-classical dissipation mechanisms in generating fast reconnection. The findings are relevant for many areas of space and laboratory plasma research, a prime example being the currently unsolved problem of solar coronal heating. In the process of performing this work, local measurements of ion temperature and flows in a well-characterized reconnection layer were obtained for the first time in either laboratory or observational

  18. Particle Acceleration and Plasma Heating in the Chromosphere

    Science.gov (United States)

    Zaitsev, V. V.; Stepanov, A. V.

    2015-12-01

    We propose a new mechanism of electron acceleration and plasma heating in the solar chromosphere, based on the magnetic Rayleigh-Taylor instability. The instability develops at the chromospheric footpoints of a flare loop and deforms the local magnetic field. As a result, the electric current in the loop varies, and a resulting inductive electric field appears. A pulse of the induced electric field, together with the pulse of the electric current, propagates along the loop with the Alfvén velocity and begins to accelerate electrons up to an energy of about 1 MeV. Accelerated particles are thermalized in the dense layers of the chromosphere with the plasma density n ≈10^{14} - 10^{15} cm^{-3}, heating them to a temperature of about several million degrees. Joule dissipation of the electric current pulse heats the chromosphere at heights that correspond to densities n ≤10^{11} - 10^{13} cm^{-3}. Observations with the New Solar Telescope at Big Bear Solar Observatory indicate that chromospheric footpoints of coronal loops might be heated to coronal temperatures and that hot plasma might be injected upwards, which brightens ultra-fine loops from the photosphere to the base of the corona. Thereby, recent observations of the Sun and the model we propose stimulate a déjà vu - they are reminiscent of the concept of the chromospheric flare.

  19. Rapid acceleration leads to rapid weakening in earthquake-like laboratory experiments

    Science.gov (United States)

    Chang, J. C.; Lockner, D. A.; Reches, Z.

    2012-12-01

    We simulated the slip of a fault-patch during a large earthquake by rapidly loading an experimental, ring-shaped fault with energy stored in a spinning flywheel. The flywheel abruptly delivers a finite amount of energy by spinning the fault-patch that spontaneously dissipates the energy without operator intervention. We conducted 42 experiments on Sierra White granite (SWG) samples, and 24 experiments on Kasota dolomite (KD) samples. Each experiment starts by spinning a 225 kg disk-shaped flywheel to a prescribed angular velocity. We refer to this experiment as an "earthquake-like slip-event" (ELSE). The strength-evolution in ELSE experiments is similar to the strength-evolution proposed for earthquake models and observed in stick-slip experiments. Further, we found that ELSE experiments are similar to earthquakes in at least three ways: (1) slip driven by the release of a finite amount of stored energy; (2) pattern of fault strength evolution; and (3) seismically observed values, such as average slip, peak-velocity and rise-time. By assuming that the measured slip, D, in ELSE experiments is equivalent to the average slip during an earthquake, we found that ELSE experiments (D = 0.003-4.6 m) correspond to earthquakes in moment-magnitude range of Mw = 4-8. In ELSE experiments, the critical-slip-distance, dc, has mean values of 2.7 cm and 1.2 cm for SWG and KD, that are much shorter than the 1-10 m in steady-state classical experiments in rotary shear systems. We attribute these dc values, to ELSE loading in which the fault-patch is abruptly loaded by impact with a spinning flywheel. Under this loading, the friction-velocity relations are strikingly different from those under steady-state loading on the same rock samples with the same shear system (Reches and Lockner, Nature, 2010). We further note that the slip acceleration in ELSE evolves systematically with fault strength and wear-rate, and that the dynamic weakening is restricted to the period of intense

  20. Thermal performance of a flat polymer heat pipe heat spreader under high acceleration

    International Nuclear Information System (INIS)

    Oshman, Christopher; Li, Qian; Liew, Li-Anne; Yang, Ronggui; Lee, Y C; Bright, Victor M; Sharar, Darin J; Jankowski, Nicholas R; Morgan, Brian C

    2012-01-01

    This paper presents the fabrication and application of a micro-scale hybrid wicking structure in a flat polymer-based heat pipe heat spreader, which improves the heat transfer performance under high adverse acceleration. The hybrid wicking structure which enhances evaporation and condensation heat transfer under adverse acceleration consists of 100 µm high, 200 µm wide square electroplated copper micro-pillars with 31 µm wide grooves for liquid flow and a woven copper mesh with 51 µm diameter wires and 76 µm spacing. The interior vapor chamber of the heat pipe heat spreader was 30×30×1.0 mm 3 . The casing of the heat spreader is a 100 µm thick liquid crystal polymer which contains a two-dimensional array of copper-filled vias to reduce the overall thermal resistance. The device performance was assessed under 0–10 g acceleration with 20, 30 and 40 W power input on an evaporator area of 8×8 mm 2 . The effective thermal conductivity of the device was determined to range from 1653 W (m K) −1 at 0 g to 541 W (m K) −1 at 10 g using finite element analysis in conjunction with a copper reference sample. In all cases, the effective thermal conductivity remained higher than that of the copper reference sample. This work illustrates the possibility of fabricating flexible, polymer-based heat pipe heat spreaders compatible with standardized printed circuit board technologies that are capable of efficiently extracting heat at relatively high dynamic acceleration levels. (paper)

  1. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures

    International Nuclear Information System (INIS)

    Zhang, Guangsheng; Ge, Shanhai; Xu, Terrence; Yang, Xiao-Guang; Tian, Hua; Wang, Chao-Yang

    2016-01-01

    Highlights: • Self-heating lithium-ion battery (SHLB) structure provided a practical solution to the poor performance at subzero temperatures. • We report an improved SHLB that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than previously reported. • The nickel foil heating element embedded inside a SHLB cell plays a dominant role in rapid self-heating. • The embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS). • 2-sheet design self-heats faster than 1-sheet design due to more uniform internal temperature distribution. - Abstract: The recently discovered self-heating lithium-ion battery structure provided a practical solution to the poor performance at subzero temperatures that has hampered battery technology for decades. Here we report an improved self-heating lithium-ion battery (SHLB) that heats from −20 °C to 0 °C in 12.5 seconds, or 56% more rapidly, while consuming 24% less energy than that reported previously. We reveal that a nickel foil heating element embedded inside a SHLB cell plays a dominant role in self-heating and we experimentally demonstrate that a 2-sheet design can achieve dramatically accelerated self-heating due to more uniform internal temperature distribution. We also report, for the first time, that this embedded nickel foil can simultaneously perform as an internal temperature sensor (ITS) due to the perfectly linear relationship between the foil’s electrical resistance and temperature.

  2. Joule heating and runaway electron acceleration in a solar flare

    Science.gov (United States)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  3. Investigation of pellet acceleration by an arc heated gas gun

    International Nuclear Information System (INIS)

    Andersen, P.; Andersen, S.A.; Bundgaard, J.; Baekmark, L.; Hansen, B.H.; Jensen, V.O.; Kossek, H.; Michelsen, P.K.; Nordskov, A.; Sass, B.; Soerensen, H.; Weisberg, K.V.

    1987-06-01

    This report describes work on pellet acceleration by means of an arc heated gas gun. The work is a continuation of the work described in RISO-M-2536. The aim of the work is to obtain velocities well above 2 km/s for 3.2 mm diameter deuterium pellets. By means of a cryogenic arc chamber in which the hydrogen propellant is pre-condensed, extruded deutetrium pellets are accelerated up to a maximum velocity of 1.93 km/s. When increasing the energy input to the arc in order to increase the pellet velocity further the heat input to the extrusion/punching pellet loading mechanism was found to be critical: preparation of pellets became difficult and cooling times between shots became inconveniently long. In order to circumvent this problems the concept of a room temperature hydrogen propellant pellet fed arc chamber was proposed. Preliminary results from acceleration of polyurethane pellets with this arc chamber are described as well as the work of developing of feed pellet guns for this chamber. Finally the report describes design consideration for a high pressure propellant pellet fed arc chamber together with preliminary results obtained with a proto-type arc chamber. (author)

  4. Electron Heating and Acceleration in a Reconnecting Magnetotail

    Science.gov (United States)

    El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.

    2017-12-01

    Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.

  5. Rapid charging of thermal energy storage materials through plasmonic heating.

    Science.gov (United States)

    Wang, Zhongyong; Tao, Peng; Liu, Yang; Xu, Hao; Ye, Qinxian; Hu, Hang; Song, Chengyi; Chen, Zhaoping; Shang, Wen; Deng, Tao

    2014-09-01

    Direct collection, conversion and storage of solar radiation as thermal energy are crucial to the efficient utilization of renewable solar energy and the reduction of global carbon footprint. This work reports a facile approach for rapid and efficient charging of thermal energy storage materials by the instant and intense photothermal effect of uniformly distributed plasmonic nanoparticles. Upon illumination with both green laser light and sunlight, the prepared plasmonic nanocomposites with volumetric ppm level of filler concentration demonstrated a faster heating rate, a higher heating temperature and a larger heating area than the conventional thermal diffusion based approach. With controlled dispersion, we further demonstrated that the light-to-heat conversion and thermal storage properties of the plasmonic nanocomposites can be fine-tuned by engineering the composition of the nanocomposites.

  6. Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves

    Directory of Open Access Journals (Sweden)

    Cheng Jian-Shan

    2010-02-01

    Full Text Available Abstract Background Although the effect of salicylic acid (SA on photosynthesis of plants including grapevines has been investigated, very little is yet known about the effects of SA on carbon assimilation and several components of PSII electron transport (donor side, reaction center and acceptor side. In this study, the impact of SA pretreatment on photosynthesis was evaluated in the leaves of young grapevines before heat stress (25°C, during heat stress (43°C for 5 h, and through the following recovery period (25°C. Photosynthetic measures included gas exchange parameters, PSII electron transport, energy dissipation, and Rubisco activation state. The levels of heat shock proteins (HSPs in the chloroplast were also investigated. Results SA did not significantly (P Pn of leaves before heat stress. But, SA did alleviate declines in Pn and Rubisco activition state, and did not alter negative changes in PSII parameters (donor side, acceptor side and reaction center QA under heat stress. Following heat treatment, the recovery of Pn in SA-treated leaves was accelerated compared with the control (H2O-treated leaves, and, donor and acceptor parameters of PSII in SA-treated leaves recovered to normal levels more rapidly than in the controls. Rubisco, however, was not significantly (P Conclusion SA pretreatment alleviated the heat stress induced decrease in Pn mainly through maintaining higher Rubisco activition state, and it accelerated the recovery of Pn mainly through effects on PSII function. These effects of SA may be related in part to enhanced levels of HSP21.

  7. Characterizing a Model of Coronal Heating and Solar Wind Acceleration Based on Wave Turbulence.

    Science.gov (United States)

    Downs, C.; Lionello, R.; Mikic, Z.; Linker, J.; Velli, M.

    2014-12-01

    Understanding the nature of coronal heating and solar wind acceleration is a key goal in solar and heliospheric research. While there have been many theoretical advances in both topics, including suggestions that they may be intimately related, the inherent scale coupling and complexity of these phenomena limits our ability to construct models that test them on a fundamental level for realistic solar conditions. At the same time, there is an ever increasing impetus to improve our spaceweather models, and incorporating treatments for these processes that capture their basic features while remaining tractable is an important goal. With this in mind, I will give an overview of our exploration of a wave-turbulence driven (WTD) model for coronal heating and solar wind acceleration based on low-frequency Alfvénic turbulence. Here we attempt to bridge the gap between theory and practical modeling by exploring this model in 1D HD and multi-dimensional MHD contexts. The key questions that we explore are: What properties must the model possess to be a viable model for coronal heating? What is the influence of the magnetic field topology (open, closed, rapidly expanding)? And can we simultaneously capture coronal heating and solar wind acceleration with such a quasi-steady formulation? Our initial results suggest that a WTD based formulation performs adequately for a variety of solar and heliospheric conditions, while significantly reducing the number of free parameters when compared to empirical heating and solar wind models. The challenges, applications, and future prospects of this type of approach will also be discussed.

  8. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    Science.gov (United States)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  9. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, Junichi, E-mail: hiratsuka.junichi@jaea.go.jp; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka 311-0193 (Japan); Miyamoto, Kenji [Naruto University of Education, 748 Nakashima, Takashima, Naruto-cho, Naruto-shi, Tokushima 772-8502 (Japan)

    2016-02-15

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  10. Preparation of silicon carbide nanowires via a rapid heating process

    International Nuclear Information System (INIS)

    Li Xintong; Chen Xiaohong; Song Huaihe

    2011-01-01

    Silicon carbide (SiC) nanowires were fabricated in a large quantity by a rapid heating carbothermal reduction of a novel resorcinol-formaldehyde (RF)/SiO 2 hybrid aerogel in this study. SiC nanowires were grown at 1500 deg. C for 2 h in an argon atmosphere without any catalyst via vapor-solid (V-S) process. The β-SiC nanowires were characterized by field-emission scanning electron microscope (FE-SEM), X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) facility, Fourier transformed infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The analysis results show that the aspect ratio of the SiC nanowires via the rapid heating process is much larger than that of the sample produced via gradual heating process. The SiC nanowires are single crystalline β-SiC phase with diameters of about 20-80 nm and lengths of about several tens of micrometers, growing along the [1 1 1] direction with a fringe spacing of 0.25 nm. The role of the interpenetrating network of RF/SiO 2 hybrid aerogel in the carbothermal reduction was discussed and the possible growth mechanism of the nanowires is analyzed.

  11. Education in a rapidly advancing technology: Accelerators and beams

    International Nuclear Information System (INIS)

    Month, Mel

    2000-01-01

    The field of accelerators and beams (A and B) is one of today's fast changing technologies. Because university faculties have not been able to keep pace with the associated advancing knowledge, universities have not been able to play their traditional role of educating the scientists and engineers needed to sustain this technology for use in science, industry, commerce, and defense. This problem for A and B is described and addressed. The solution proposed, a type of ''distance'' education, is the U.S. Particle Accelerator School (USPAS) created in the early 1980s. USPAS provides the universities with a means of serving the education needs of the institutions using A and B, primarily but not exclusively the national laboratories. The field of A and B is briefly summarized. The need for education outside the university framework, the raison d'etre for USPAS, the USPAS method, program structure, and curriculum, and particular USPAS-university connections are explained. The management of USPAS is analyzed, including its unique administrative structure, its institutional ties, and its operations, finance, marketing, and governmental relations. USPAS performance over the years is documented and a business assessment is made. Finally, there is a brief discussion of the future potential for this type of educational program, including possible extrapolation to new areas and/or different environments, in particular, its extra-government potential and its international possibilities. (c) 2000 American Association of Physics Teachers

  12. Transport of laser accelerated proton beams and isochoric heating of matter

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C; Gregori, G; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Makita, M

    2010-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  13. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  14. Local thermodynamic equilibrium in rapidly heated high energy density plasmas

    International Nuclear Information System (INIS)

    Aslanyan, V.; Tallents, G. J.

    2014-01-01

    Emission spectra and the dynamics of high energy density plasmas created by optical and Free Electron Lasers (FELs) depend on the populations of atomic levels. Calculations of plasma emission and ionization may be simplified by assuming Local Thermodynamic Equilibrium (LTE), where populations are given by the Saha-Boltzmann equation. LTE can be achieved at high densities when collisional processes are much more significant than radiative processes, but may not be valid if plasma conditions change rapidly. A collisional-radiative model has been used to calculate the times taken by carbon and iron plasmas to reach LTE at varying densities and heating rates. The effect of different energy deposition methods, as well as Ionization Potential Depression are explored. This work shows regimes in rapidly changing plasmas, such as those created by optical lasers and FELs, where the use of LTE is justified, because timescales for plasma changes are significantly longer than the times needed to achieve an LTE ionization balance

  15. Studies of pellet acceleration with arc discharge heated propellants

    International Nuclear Information System (INIS)

    Schuresko, D.D.

    1986-01-01

    An arc discharge has been utilized to heat gaseous propellants in a pneumatic pellet gun. A cylindrical arc chamber is interposed between the propellant inlet valve and the gun breech and fitted with a ceramic insert for generating swirl in the incoming gas stream. The arc is initiated after the propellant valve opens and the breech pressure starts to rise; a typical discharge lasts 300 microseconds with peak currents up to 2 kA at arc voltages ranging from 100-400 V. The system is instrumented with piezoelectric pressure transducers at the propellant valve outlet, gun breech, and gun muzzle. The gun has been operated with 4 mm diameter polyurethane foam pellets (density = 0.14 g/cm 3 ), a 40 cm-long barrel, and various gas propellants at pressures exceeding 70 bar. At I/sub arc/ = 1 kA, V/sub arc/ = 200 V, with helium propellant, the arc produces a 2-3 fold prompt increase in P/sub breech/ and a delayed increase in P/sub muzzle/; the pellets exit the gun from 0.5-1.0 ms earlier than with the gas alone at 40% higher speeds. Comparisons with the so-called ideal gun theory and with full one-dimensional hydrodynamic calculations of the pellet acceleration will be presented

  16. Studies of pellet acceleration with arc discharge heated propellants

    International Nuclear Information System (INIS)

    Schuresko, D.D.

    1985-01-01

    An arc discharge has been utilized to heat gaseous propellants in a pneumatic pellet gun. A cylindrical arc chamber is interposed between the propellant inlet valve and the gun breech and fitted with a ceramic insert for generating swirl in the incoming gas stream. The arc is initiated after the propellant valve opens and the breech pressure starts to rise; a typical discharge lasts 300 microseconds with peak currents u to 2 kA at arc voltages ranging from 100 to 400 V. The system is instrumented with piezoelectric pressure transducers at the propellant valve outlet, gun breech, and gun muzzle. The gun has been operated with 4 mm diameter polyurethane foam pellets (density = 0.14 g/cm 3 ), a 40 cm-long barrel, and various gas propellants at pressures exceeding 70 bar. At I/sub arc/ = 1 kA, V/sub arc/ = 200 V, with helium propellant, the arc produces a 2 to 3 fold prompt increase in P/sub breech/ and a delayed increase in P/sub muzzle/; the pellets exit the gun from 0.5 to 1.0 ms earlier than with the gas alone at 40% higher speeds. Comparisons with the so-called ideal gun theory and with full one-dimensional hydrodynamic calculations of the pellet acceleration will be presented

  17. Safety of a rapid diagnostic protocol with accelerated stress testing.

    Science.gov (United States)

    Soremekun, Olan A; Hamedani, Azita; Shofer, Frances S; O'Conor, Katie J; Svenson, James; Hollander, Judd E

    2014-02-01

    Most patients at low to intermediate risk for an acute coronary syndrome (ACS) receive a 12- to 24-hour "rule out." Recently, trials have found that a coronary computed tomographic angiography-based strategy is more efficient. If stress testing were performed within the same time frame as coronary computed tomographic angiography, the 2 strategies would be more similar. We tested the hypothesis that stress testing can safely be performed within several hours of presentation. We performed a retrospective cohort study of patients presenting to a university hospital from January 1, 2009, to December 31, 2011, with potential ACS. Patients placed in a clinical pathway that performed stress testing after 2 negative troponin values 2 hours apart were included. We excluded patients with ST-elevation myocardial infarction or with an elevated initial troponin. The main outcome was safety of immediate stress testing defined as the absence of death or acute myocardial infarction (defined as elevated troponin within 24 hours after the test). A total of 856 patients who presented with potential ACS were enrolled in the clinical pathway and included in this study. Patients had a median age of 55.0 (interquartile range, 48-62) years. Chest pain was the chief concern in 86%, and pain was present on arrival in 73% of the patients. There were no complications observed during the stress test. There were 0 deaths (95% confidence interval, 0%-0.46%) and 4 acute myocardial infarctions within 24 hours (0.5%; 95% confidence interval, 0.14%-1.27%). The peak troponins were small (0.06, 0.07, 0.07, and 0.19 ng/mL). Patients who present to the ED with potential ACS can safely undergo a rapid diagnostic protocol with stress testing. © 2013.

  18. RAPID COSMIC-RAY ACCELERATION AT PERPENDICULAR SHOCKS IN SUPERNOVA REMNANTS

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto; Kirk, John G., E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: john.kirk@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2015-08-10

    Perpendicular shocks are shown to be rapid particle accelerators that perform optimally when the ratio u{sub s} of the shock speed to the particle speed roughly equals the ratio 1/η of the scattering rate to the gyro frequency. We use analytical methods and Monte-Carlo simulations to solve the kinetic equation that governs the anisotropy generated at these shocks, and find, for ηu{sub s} ≈ 1, that the spectral index softens by unity and the acceleration time increases by a factor of two compared to the standard result of the diffusive shock acceleration theory. These results provide a theoretical basis for the 30 year old conjecture that a supernova exploding into the wind of a Wolf–Rayet star may accelerate protons to an energy exceeding 10{sup 15} eV.

  19. Residual stresses estimation in tubes after rapid heating of surface

    International Nuclear Information System (INIS)

    Serikov, S.V.

    1992-01-01

    Results are presented on estimation of residual stresses in tubes of steel types ShKh15, EhP836 and 12KIMF after heating by burning pyrotechnic substance inside tubes. External tube surface was heated up to 400-450 deg C under such treatment. Axial stresses distribution over tube wall thickness was determined for initial state, after routine heat treatment and after heating with the use of fireworks. Inner surface heating was shown to essentially decrease axial stresses in tubes

  20. Acceleration of electrons and supplementary ionization during parametrical plasma heating

    International Nuclear Information System (INIS)

    Grach, S.M.; Mityakov, N.A.; Trakhtengerts, V.Yu.; AN SSSR, Gor'kij. Inst. Prikladnoj Fiziki)

    1986-01-01

    Acceleration of electrons by plasma waves in partially ionized plasma is considered with provision for the effects of turbulent scattering and formation of secondary electrons, which are produced in the process of electron shock ionization. It is shown that the avalanche density growth of electrons accelerated up to 1-2 ionization potential (instability) takes place beginning from some critical density of plasma waves. Density of fast electrons is found out along with plasma wave energy density at the stage of instability saturation. Additional concentration of a background plasma, which manifests itself due to ionization, is evaluated

  1. Critical heat flux of forced convection boiling in an oscilating acceleration field. Pt. 1

    International Nuclear Information System (INIS)

    Otsuji, T.; Kurosawa, A.

    1982-01-01

    The influence of periodically varying acceleration on critical heat flux (CHF) of Freon-113 flowing upward in a uniformly heated vertical annular channel has been studied experimentally. The freon loop was oscillated vertically to determine the ratio of CHF in the oscillating acceleration field to the corresponding stationary value. The amplitude of inlet flow oscillation induced by variation of acceleration, which causes early CHF, is proportional to the acceleration amplitude. The dependence of inlet flow rate on the oscillating acceleration decreases with increasing inlet subcooling, and no oscillation of inlet flow is observed in the case of negative exit quality (subcooled boiling). Nevertheless the degradation of CHF is more remarkable in the low quality region. This result suggests the necessity to introduce an other mechanism of early CHF than flow oscillation. (orig.)

  2. Experimental study on the critical heat flux in a varying acceleration field, (1)

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Yokomura, Takeyoshi; Otsuji, Tomoo; Ikawa, Masahiro; Kurosawa, Akira.

    1988-12-01

    It is very important for the thermohydraulic design and for the safety assesement of marine reactors, to understand the effect of varying acceleration induced by ship motion on critical heart flux. The purpose of this joint study is to examine quantitatively the influence of varying acceleration on the behavior of bubbles. In the experiment, FREON-113 was used as working fluid. This report describes some experimental results; measurements of void fraction and bubble velocity near the heat transfer surface, measurement of bubble size under stationary acceleration field and observation of bubble behavior under varying acceleration field. (author)

  3. Rapid fabrication of detachable three-dimensional tissues by layering of cell sheets with heating centrifuge.

    Science.gov (United States)

    Haraguchi, Yuji; Kagawa, Yuki; Hasegawa, Akiyuki; Kubo, Hirotsugu; Shimizu, Tatsuya

    2018-01-18

    Confluent cultured cells on a temperature-responsive culture dish can be harvested as an intact cell sheet by decreasing temperature below 32°C. A three-dimensional (3-D) tissue can be fabricated by the layering of cell sheets. A resulting 3-D multilayered cell sheet-tissue on a temperature-responsive culture dish can be also harvested without any damage by only temperature decreasing. For shortening the fabrication time of the 3-D multilayered constructs, we attempted to layer cell sheets on a temperature-responsive culture dish with centrifugation. However, when a cell sheet was attached to the culture surface with a conventional centrifuge at 22-23°C, the cell sheet hardly adhere to the surface due to its noncell adhesiveness. Therefore, in this study, we have developed a heating centrifuge. In centrifugation (55g) at 36-37°C, the cell sheet adhered tightly within 5 min to the dish without significant cell damage. Additionally, centrifugation accelerated the cell sheet-layering process. The heating centrifugation shortened the fabrication time by one-fifth compared to a multilayer tissue fabrication without centrifugation. Furthermore, the multilayered constructs were finally detached from the dishes by decreasing temperature. This rapid tissue-fabrication method will be used as a valuable tool in the field of tissue engineering and regenerative therapy. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  4. Electromagnetic induction heating for single crystal graphene growth: morphology control by rapid heating and quenching

    Science.gov (United States)

    Wu, Chaoxing; Li, Fushan; Chen, Wei; Veeramalai, Chandrasekar Perumal; Ooi, Poh Choon; Guo, Tailiang

    2015-03-01

    The direct observation of single crystal graphene growth and its shape evolution is of fundamental importance to the understanding of graphene growth physicochemical mechanisms and the achievement of wafer-scale single crystalline graphene. Here we demonstrate the controlled formation of single crystal graphene with varying shapes, and directly observe the shape evolution of single crystal graphene by developing a localized-heating and rapid-quenching chemical vapor deposition (CVD) system based on electromagnetic induction heating. Importantly, rational control of circular, hexagonal, and dendritic single crystalline graphene domains can be readily obtained for the first time by changing the growth condition. Systematic studies suggest that the graphene nucleation only occurs during the initial stage, while the domain density is independent of the growth temperatures due to the surface-limiting effect. In addition, the direct observation of graphene domain shape evolution is employed for the identification of competing growth mechanisms including diffusion-limited, attachment-limited, and detachment-limited processes. Our study not only provides a novel method for morphology-controlled graphene synthesis, but also offers fundamental insights into the kinetics of single crystal graphene growth.

  5. Permafrost thawing in organic Arctic soils accelerated by ground heat production

    DEFF Research Database (Denmark)

    Hollesen, Jørgen; Matthiesen, Henning; Møller, Anders Bjørn

    2015-01-01

    Decomposition of organic carbon from thawing permafrost soils and the resulting release of carbon to the atmosphere are considered to represent a potentially critical global-scale feedback on climate change1, 2. The accompanying heat production from microbial metabolism of organic material has been...... recognized as a potential positive-feedback mechanism that would enhance permafrost thawing and the release of carbon3, 4. This internal heat production is poorly understood, however, and the strength of this effect remains unclear3. Here, we have quantified the variability of heat production in contrasting...... organic permafrost soils across Greenland and tested the hypothesis that these soils produce enough heat to reach a tipping point after which internal heat production can accelerate the decomposition processes. Results show that the impact of climate changes on natural organic soils can be accelerated...

  6. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    Science.gov (United States)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  7. COSY Control Status. First results with rapid prototyped man-machine interface for accelerator control

    Energy Technology Data Exchange (ETDEWEB)

    Hacker, U [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Haberbosch, C [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Henn, K [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany); Weinert, A [Forschungszentrum Juelich, Postfach 1913, 52425 Juelich (Germany)

    1994-12-15

    The experience gained with the COSY Control System after a six month commissioning period followed by a six month production period will be presented. The COSY Control System runs approximately 300 VME and VXI target systems using a total of about 1000 CPUs, the systems are driven by the diskless operating environment RT/OS, hosted by eight workcells. Application software is implemented using Object-Orientated programming paradigms. All accelerator components become interface functions as instances of an abstract device model class. Methods defined here present an abstract picture of the accelerator giving immediate access to device states and parameters. Operator interaction is defined by building views and controllers for the model. Higher level functions, such as defining an acceleration cycle, are easily developed and modified with the accelerator connected on-line to the model. In the first year of COSY operation the object based approach for a control system, together with a rapid prototyped man-machine interface has brought to light the potential of new functions such as on-line, real time programming on a running system yielding high programming performance. The advantages of this approach have not been, until now, fully appreciated. ((orig.))

  8. Development of the heat sink structure of a beam dump for the proton accelerator

    International Nuclear Information System (INIS)

    Maeng, W. Y.; Gil, C. S.; Kim, J. H.; Kim, D. H.

    2007-01-01

    The beam dump is the essential component for the good beam quality and the reliable performance of the proton accelerator. The beam dump for a 20 MeV and 20 mA proton accelerator was designed and manufactured in this study. The high heats deposited, and the large amount of radioactivity produced in beam dump should be reduced by the proper heat sink structure. The heat source by the proton beam of 20 MeV and 20 mA was calculated. The radioactivity assessments of the beam dump were carried out for the economic shielding design with safety. The radioactivity by the protons and secondary neutrons in designed beam dump were calculated in this sturdy. The effective engineering design for the beam dump cooling was performed, considering the mitigation methods of the deposited heats with small angle, the power densities with the stopping ranges in the materials and the heat distributions in the beam dump. The heat sink structure of the beam dump was designed to meet the accelerator characteristics by placing two plates of 30 cm by 60 cm at an angle of 12 degree. The highest temperatures of the graphite, copper, and copper faced by cooling water were designed to be 223 degree, 146 degree, and 85 degree, respectively when the velocity of cooling water was 3 m/s. The heat sink structure was manufactured by the brazing graphite tiles to a copper plate with the filler alloy of Ti-Cu-Ag. The brazing procedure was developed. The tensile stress of the graphite was less than 75% of a maximum tensile stress during the accelerator operation based on the analysis. The safety analyses for the commissioning of the accelerator operation were also performed. The specimens from the brazed parts of beam dump structure were made to identify manufacturing problems. The soundness of the heat sink structure of the beam dump was confirmed by the fatigue tests of the brazed specimens of the graphite-copper tile components with the repetitive heating and cooling. The heat sink structure developed

  9. Heating and acceleration of solar wind ions by turbulent wave spectrum in inhomogeneous expanding plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ofman, Leon, E-mail: Leon.Ofman@nasa.gov [Department of Physics, The Catholic University of America, Washington, DC (United States); NASA Goddard Space Flight Center, Greenbelt, MD (United States); Visiting, Department of Geosciences, Tel Aviv University, Tel Aviv (Israel); Ozak, Nataly [Centre for mathematical Plasma Astrophysics, KU Leuven, Celestijnenlaan 200B, 3001 Leuven (Belgium); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Greenbelt, MD (United States)

    2016-03-25

    Near the Sun (< 10R{sub s}) the acceleration, heating, and propagation of the solar wind are likely affected by the background inhomogeneities of the magnetized plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super-Alfvénic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  10. Six-phase soil heating accelerates VOC extraction from clay soil

    International Nuclear Information System (INIS)

    Gauglitz, P.A.; Roberts, J.S.; Bergsman, T.M.; Caley, S.M.; Heath, W.O.; Miller, M.C.; Moss, R.W.; Schalla, R.; Jarosch, T.R.; Eddy-Dilek, C.A.

    1994-08-01

    Six-Phase Soil Heating (SPSH) was demonstrated as a viable technology for heating low permeability soils containing volatile organic contaminants. Testing was performed as part of the Volatile Organic Compounds in Non-Arid Soils Integrated Demonstration (VOC Non-Arid ID) at the Savannah River Site. The soil at the integrated demonstration site is contaminated with perchloroethylene (PCE) and trichloroethylene (TCE); the highest soil contamination occurs in clay-rich zones that are ineffectively treated by conventional soil vapor extraction due to the very low permeability of the clay. The SPSH demonstration sought to heat the clay zone and enhance the performance of conventional soil vapor extraction. Thermocouples at thirty locations quantified the areal and vertical heating within the treated zone. Soil samples were collected before and after heating to quantify the efficacy of heat-enhanced vapor extraction of PCE and TCE from the clay soil. Samples were taken (essentially every foot) from six wells prior to heating and adjacent to these wells after heating. Results show that contaminant removal from the clay zone was 99.7% (median) within the electrode array. Outside the array where the soil was heated, but to only 50 degrees C, the removal efficiency was 93%, showing that heating accelerated the removal of VOCs from the clay soil. The accelerated remediation resulted from effective heating of the contaminated clay zone by SPSH. The temperature of the clay zone increased to 100 degrees C after 8 days of heating and was maintained near 100 degrees C for 17 days. Electrical heating removed 19,000 gal of water from the soil as steam, with peak removal rate of 1,500 gpd of condensed steam

  11. Rapid application development by KEKB accelerator operators using EPICS/Python

    International Nuclear Information System (INIS)

    Tanaka, M.; Satoh, Y.; Kitabayashi, T.

    2004-01-01

    In the KEKB accelerator facility, the control system is constructed based on the framework of EPICS. By using EPICS/Python API, which is originated from KEK, we can develop an EPICS channel access application based on simple Python technology with only a few knowledge of EPICS channel access protocols. The operator's new tuning ideas are quickly implemented to the control system. In this paper, we introduce the EPICS/Python API and report the effectiveness of rapid application development by the KEKB operators using the API. (author)

  12. Bulk ion acceleration and particle heating during magnetic reconnection in a laboratory plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Jara-Almonte, Jonathan; Myers, Clayton E. [Center for Magnetic Self-Organization, Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-05-15

    Bulk ion acceleration and particle heating during magnetic reconnection are studied in the collisionless plasma of the Magnetic Reconnection Experiment (MRX). The plasma is in the two-fluid regime, where the motion of the ions is decoupled from that of the electrons within the ion diffusion region. The reconnection process studied here is quasi-symmetric since plasma parameters such as the magnitude of the reconnecting magnetic field, the plasma density, and temperature are compatible on each side of the current sheet. Our experimental data show that the in-plane (Hall) electric field plays a key role in ion heating and acceleration. The electrostatic potential that produces the in-plane electric field is established by electrons that are accelerated near the electron diffusion region. The in-plane profile of this electrostatic potential shows a “well” structure along the direction normal to the reconnection current sheet. This well becomes deeper and wider downstream as its boundary expands along the separatrices where the in-plane electric field is strongest. Since the in-plane electric field is 3–4 times larger than the out-of-plane reconnection electric field, it is the primary source of energy for the unmagnetized ions. With regard to ion acceleration, the Hall electric field causes ions near separatrices to be ballistically accelerated toward the outflow direction. Ion heating occurs as the accelerated ions travel into the high pressure downstream region. This downstream ion heating cannot be explained by classical, unmagnetized transport theory; instead, we conclude that ions are heated by re-magnetization of ions in the reconnection exhaust and collisions. Two-dimensional (2-D) simulations with the global geometry similar to MRX demonstrate downstream ion thermalization by the above mechanisms. Electrons are also significantly heated during reconnection. The electron temperature sharply increases across the separatrices and peaks just outside of the

  13. Selenide isotope generator for the Galileo Mission. Axially-grooved heat pipe: accelerated life test results

    International Nuclear Information System (INIS)

    1979-08-01

    The results through SIG/Galileo contract close-out of accelerated life testing performed from June 1978 to June 1979 on axially-grooved, copper/water heat pipes are presented. The primary objective of the test was to determine the expected lifetime of axially-grooved copper/water heat pipes. The heat pipe failure rate, due to either a leak or a build-up of non-condensible gas, was determined. The secondary objective of the test was to determine the effects of time and temperature on the thermal performance parameters relevant to long-term (> 50,000 h) operation on a space power generator. The results showed that the gas generation rate appears to be constant with time after an initial sharp rise although there are indications that it drops to approximately zero beyond approx. 2000 h. During the life test, the following pipe-hours were accumulated: 159,000 at 125 0 C, 54,000 at 165 0 C, 48,000 at 185 0 C, and 8500 at 225 0 C. Heated hours per pipe ranged from 1000 to 7500 with an average of 4720. Applying calculated acceleration factors yields the equivalent of 930,000 pipe-h at 125 0 C. Including the accelerated hours on vendor tested pipes raises this number to 1,430,000 pipe-hours at 125 0 C. It was concluded that, for a heat pipe temperature of 125 0 C and a mission time of 50,000 h, the demonstrated heat pipe reliability is between 80% (based on 159,000 actual pipe-h at 125 0 C) and 98% (based on 1,430,000 accelerated pipe-h at 125 0 C). Measurements indicate some degradation of heat transfer with time, but no detectable degradation of heat transport

  14. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    International Nuclear Information System (INIS)

    Heidbrink, W W; Ruskov, E; Fredrickson, E D; Gorelenkov, N; Medley, S S; Berk, H L; Harvey, R W

    2006-01-01

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ∼2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (∼<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed

  15. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Heidbrink, W W [University of California, Irvine, California (United States); Ruskov, E [University of California, Irvine, California (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Gorelenkov, N [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Medley, S S [Princeton Plasma Physics Laboratory, Princeton, New Jersey (United States); Berk, H L [University of Texas, Austin, Texas (United States); Harvey, R W [CompX, Del Mar, California (United States)

    2006-09-15

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at {approx}2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50-100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10-20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power ({approx}<3 MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.

  16. Weak effect of ion cyclotron acceleration on rapidly chirping beam-driven instabilities in the National Spherical Torus Experiment

    Energy Technology Data Exchange (ETDEWEB)

    W W,Heidbrink; E,Ruskov; E D,Fredrickson; N,Gorelenkov; S S,Medley; H L,Berk; R W,Harvey

    2006-09-01

    The fast-ion distribution function in the National Spherical Torus Experiment is modified from shot to shot while keeping the total injected power at ~2 MW. Deuterium beams of different energy and tangency radius are injected into helium L-mode plasmas, producing a rich set of instabilities, including compressional Alfven eigenmodes, toroidicity-induced Alfven eigenmodes (TAE), 50–100 kHz instabilities with rapid frequency sweeps or chirps, and strong, low frequency (10–20 kHz) fishbones. The experiment was motivated by a theory that attributes frequency chirping to the formation of holes and clumps in phase-space. In the theory, increasing the effective collision frequency of the fast ions that drive the instability can suppress frequency chirping. In the experiment, high-power (≤3MW) high harmonic fast wave (HHFW) heating accelerates the fast ions in an attempt to alter the nonlinear dynamics. Steady-frequency TAE modes diminish during the HHFW heating but there is little evidence that frequency chirping is suppressed.

  17. Rapid IV Versus Oral Rehydration: Responses to Subsequent Exercise Heat Stress

    National Research Council Canada - National Science Library

    Kenefick, Robert W; O'Moore, Kathleen M; Mahood, Nicholas V; Castellani, John W

    2006-01-01

    This study sought to determine the effect of rapid intravenous (IV) versus oral (ORAL) rehydration immediately after dehydration, on cardiovascular, thermoregulatory, and perceptual responses during subsequent exercise in the heat.

  18. Rapid shift in thermal resistance between generations through maternal heat exposure

    NARCIS (Netherlands)

    Zizzari, Z.V.; Ellers, J.

    2014-01-01

    Given the current rapid climate change, understanding the mechanisms underlying heat tolerance and its plasticity is an important goal of global change biology. Soil fauna communities are especially vulnerable because of their limited dispersal ability. It is generally recognized that

  19. Proposed second harmonic acceleration system for the intense pulsed neutron source rapid cycling synchrotron

    International Nuclear Information System (INIS)

    Norem, J.; Brandeberry, F.; Rauchas, A.

    1983-01-01

    The Rapid Cycling Synchrotron (RCS) of the Intense Pulsed Neutron Source (IPNS) operating at Argonne National Laboratory is presently producing intensities of 2 to 2.5 x 10 12 protons per pulse (ppp) with the addition of a new ion source. This intensity is close to the space charge limit of the machine, estimated at approx.3 x 10 12 ppp, depending somewhat on the available aperture. With the present good performance in mind, accelerator improvements are being directed at: (1) increasing beam intensities for neutron science; (2) lowering acceleration losses to minimize activation; and (3) gaining better control of the beam so that losses can be made to occur when and where they can be most easily controlled. On the basis of preliminary measurements, we are now proposing a third cavity for the RF systems which would provide control of the longitudinal bunch shape during the cycle which would permit raising the effective space charge limit of the accelerator and reducing losses

  20. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    Science.gov (United States)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  1. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    International Nuclear Information System (INIS)

    Srivastava, Vishnu

    2012-01-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  2. Accelerated life tests of specimen heat pipe from Communication Technology Satellite (CTS) project

    Science.gov (United States)

    Tower, L. K.; Kaufman, W. B.

    1977-01-01

    A gas-loaded variable conductance heat pipe of stainless steel with methanol working fluid identical to one now on the CTS satellite was life tested in the laboratory at accelerated conditions for 14 200 hours, equivalent to about 70 000 hours at flight conditions. The noncondensible gas inventory increased about 20 percent over the original charge. The observed gas increase is estimated to increase operating temperature by about 2.2 C, insufficient to harm the electronic gear cooled by the heat pipes in the satellite. Tests of maximum heat input against evaporator elevation agree well with the manufacturer's predictions.

  3. Self-consistent viscous heating of rapidly compressed turbulence

    Science.gov (United States)

    Campos, Alejandro; Morgan, Brandon

    2017-11-01

    Given turbulence subjected to infinitely rapid deformations, linear terms representing interactions between the mean flow and the turbulence dictate the evolution of the flow, whereas non-linear terms corresponding to turbulence-turbulence interactions are safely ignored. For rapidly deformed flows where the turbulence Reynolds number is not sufficiently large, viscous effects can't be neglected and tend to play a prominent role, as shown in the study of Davidovits & Fisch (2016). For such a case, the rapid increase of viscosity in a plasma-as compared to the weaker scaling of viscosity in a fluid-leads to the sudden viscous dissipation of turbulent kinetic energy. As shown in Davidovits & Fisch, increases in temperature caused by the direct compression of the plasma drive sufficiently large values of viscosity. We report on numerical simulations of turbulence where the increase in temperature is the result of both the direct compression (an inviscid mechanism) and the self-consistent viscous transfer of energy from the turbulent scales towards the thermal energy. A comparison between implicit large-eddy simulations against well-resolved direct numerical simulations is included to asses the effect of the numerical and subgrid-scale dissipation on the self-consistent viscous This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Rapid heating of the atmosphere of an extrasolar planet.

    Science.gov (United States)

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  5. Heating and Acceleration of Solar Wind Ions by Turbulent Wave Spectrum in Inhomogeneous Expanding Plasma

    Science.gov (United States)

    Ofman, Leon; Ozak, Nataly; Vinas, Adolfo F.

    2016-01-01

    Near the Sun (plasma. The heating and the acceleration of the solar wind ions by turbulent wave spectrum in inhomogeneous plasma is studied using a 2.5D hybrid model. The hybrid model describes the kinetics of the ions, while the electrons are modeled as massless neutralizing fluid in an expanding box approach. Turbulent magnetic fluctuations dominated by power-law frequency spectra, which are evident from in-situ as well as remote sensing measurements, are used in our models. The effects of background density inhomogeneity across the magnetic field on the resonant ion heating are studied. The effect of super- Alfvenic ion drift on the ion heating is investigated. It is found that the turbulent wave spectrum of initially parallel propagating waves cascades to oblique modes, and leads to enhanced resonant ion heating due to the inhomogeneity. The acceleration of the solar wind ions is achieved by the parametric instability of large amplitude waves in the spectrum, and is also affected by the inhomogeneity. The results of the study provide the ion temperature anisotropy and drift velocity temporal evolution due to relaxation of the instability. The non-Maxwellian velocity distribution functions (VDFs) of the ions are modeled in the inhomogeneous solar wind plasma in the acceleration region close to the Sun.

  6. OpenFOAM Modeling of Particle Heating and Acceleration in Cold Spraying

    Science.gov (United States)

    Leitz, K.-H.; O'Sullivan, M.; Plankensteiner, A.; Kestler, H.; Sigl, L. S.

    2018-01-01

    In cold spraying, a powder material is accelerated and heated in the gas flow of a supersonic nozzle to velocities and temperatures that are sufficient to obtain cohesion of the particles to a substrate. The deposition efficiency of the particles is significantly determined by their velocity and temperature. Particle velocity correlates with the amount of kinetic energy that is converted to plastic deformation and thermal heating. The initial particle temperature significantly influences the mechanical properties of the particle. Velocity and temperature of the particles have nonlinear dependence on the pressure and temperature of the gas at the nozzle entrance. In this contribution, a simulation model based on the reactingParcelFoam solver of OpenFOAM is presented and applied for an analysis of particle velocity and temperature in the cold spray nozzle. The model combines a compressible description of the gas flow in the nozzle with a Lagrangian particle tracking. The predictions of the simulation model are verified based on an analytical description of the gas flow, the particle acceleration and heating in the nozzle. Based on experimental data, the drag model according to Plessis and Masliyah is identified to be best suited for OpenFOAM modeling particle heating and acceleration in cold spraying.

  7. Acceleration to high velocities and heating by impact using Nike KrF laser

    International Nuclear Information System (INIS)

    Karasik, Max; Weaver, J. L.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Murakami, M.; Azechi, H.; Oh, J.

    2010-01-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ∼Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ∼10 6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  8. Acceleration to high velocities and heating by impact using Nike KrF lasera)

    Science.gov (United States)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Watari, T.; Arikawa, Y.; Sakaiya, T.; Oh, J.; Velikovich, A. L.; Zalesak, S. T.; Bates, J. W.; Obenschain, S. P.; Schmitt, A. J.; Murakami, M.; Azechi, H.

    2010-05-01

    The Nike krypton fluoride laser [S. P. Obenschain, S. E. Bodner, D. Colombant, et al., Phys. Plasmas 3, 2098 (1996)] is used to accelerate planar plastic foils to velocities that for the first time reach 1000 km/s. Collision of the highly accelerated deuterated polystyrene foil with a stationary target produces ˜Gbar shock pressures and results in heating of the foil to thermonuclear temperatures. The impact conditions are diagnosed using DD fusion neutron yield, with ˜106 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2-3 keV.

  9. Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling.

    Science.gov (United States)

    Shaw, Kirsty J; Docker, Peter T; Yelland, John V; Dyer, Charlotte E; Greenman, John; Greenway, Gillian M; Haswell, Stephen J

    2010-07-07

    A microwave heating system is described for performing polymerase chain reaction (PCR) in a microfluidic device. The heating system, in combination with air impingement cooling, provided rapid thermal cycling with heating and cooling rates of up to 65 degrees C s(-1) and minimal over- or under-shoot (+/-0.1 degrees C) when reaching target temperatures. In addition, once the required temperature was reached it could be maintained with an accuracy of +/-0.1 degrees C. To demonstrate the functionality of the system, PCR was successfully performed for the amplification of the Amelogenin locus using heating rates and quantities an order of magnitude faster and smaller than current commercial instruments.

  10. Nanoscale Structural and Mechanical Analysis of Bacillus anthracis Spores Inactivated with Rapid Dry Heating

    Science.gov (United States)

    Felker, Daniel L.; Burggraf, Larry W.

    2014-01-01

    Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating. PMID:24375142

  11. Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China

    Science.gov (United States)

    Miao, Yunfa; Jin, Heling; Cui, Jianxin

    2016-01-01

    Over the past several thousand years, arid and semiarid China has experienced a series of asynchronous desertification events in its semiarid sandy and desert regions, but the precise identification of the driving forces of such events has remained elusive. In this paper we identify two rapid desertification events (RDEs) at ~4.6 ± 0.2 ka BP and ~3.3 ± 0.2 ka BP from the JJ Profile, located in the eastern Mu Us Sandy Lands. These RDEs appear to have occurred immediately following periods marked by persistently frequent and intense fires. We argue that such fire patterns, directly linked to an uncontrolled human use of vegetation as fuel, played a key role in accelerating RDEs by ensuring that the land surface was degraded beyond the threshold required for rapid desertification. This would suggest that the future use of a massive and sustained ecological program of vegetation rehabilitation should reduce the risk of destructive fire. PMID:26961705

  12. Human activity accelerating the rapid desertification of the Mu Us Sandy Lands, North China.

    Science.gov (United States)

    Miao, Yunfa; Jin, Heling; Cui, Jianxin

    2016-03-10

    Over the past several thousand years, arid and semiarid China has experienced a series of asynchronous desertification events in its semiarid sandy and desert regions, but the precise identification of the driving forces of such events has remained elusive. In this paper we identify two rapid desertification events (RDEs) at ~4.6 ± 0.2 ka BP and ~3.3 ± 0.2 ka BP from the JJ Profile, located in the eastern Mu Us Sandy Lands. These RDEs appear to have occurred immediately following periods marked by persistently frequent and intense fires. We argue that such fire patterns, directly linked to an uncontrolled human use of vegetation as fuel, played a key role in accelerating RDEs by ensuring that the land surface was degraded beyond the threshold required for rapid desertification. This would suggest that the future use of a massive and sustained ecological program of vegetation rehabilitation should reduce the risk of destructive fire.

  13. The effects of linear accelerations on the maximum heat transfer capacity of micro pipes with triangular grooves

    International Nuclear Information System (INIS)

    Shokouhmand, H.; Kahrobaian, A.; Tabandeh, N.; Jalilvand, A.

    2002-01-01

    Micro heat pipes are widely used for the thermal control of spacecraft and their electronic components. In this paper the influence of linear accelerations in micro grooves has been studied. A mathematical model for predicating the minimum meniscus radius and the maximum heat transport in triangular groove under the influence of linear acceleration is presented and method for determining the theoretical minimum meniscus radius is developed. It is shown that both, the direction and the magnitude of the acceleration have a great effect upon heat transfer capability of micro heat pipes. The analysis presented here provides a mechanism where by the groove geometry can be optimized with respect to the length of the heat pipe and direction and magnitude of linear acceleration

  14. Aircraft Thermal Management Using Loop Heat Pipes: Experimental Simulation of High Acceleration Environments Using the Centrifuge Table Test Bed (Postprint)

    National Research Council Canada - National Science Library

    Fleming, Andrew J; Leland, Quinn H; Yerkes, Kirk L; Elston, Levi J; Thomas, Scott K

    2006-01-01

    The objective of this paper is to describe the design of an experiment that will examine the effects of elevated acceleration environments on a high-temperature, titanium-water loop heat pipe for actuator cooling...

  15. Dual-harmonic auto voltage control for the rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    Fumihiko Tamura

    2008-07-01

    Full Text Available The dual-harmonic operation, in which the accelerating cavities are driven by the superposition of the fundamental and the second harmonic rf voltage, is useful for acceleration of the ultrahigh intensity proton beam in the rapid cycling synchrotron (RCS of Japan Proton Accelerator Research Complex (J-PARC. However, the precise and fast voltage control of the harmonics is necessary to realize the dual-harmonic acceleration. We developed the dual-harmonic auto voltage control system for the J-PARC RCS. We describe details of the design and the implementation. Various tests of the system are performed with the RCS rf system. Also, a preliminary beam test has been done. We report the test results.

  16. Accelerated testing of solid oxide fuel cell stacks for micro combined heat and power application

    DEFF Research Database (Denmark)

    Hagen, Anke; Høgh, Jens Valdemar Thorvald; Barfod, Rasmus

    2015-01-01

    State-of-the-art (SoA) solid oxide fuel cell (SOFC) stacks are tested using profiles relevant for use in micro combined heat and power (CHP) units. Such applications are characterised by dynamic load profiles. In order to shorten the needed testing time and to investigate potential acceleration...... of degradation, the profiles are executed faster than required for real applications. Operation with fast load cycling, both using hydrogen and methane/steam as fuels, does not accelerate degradation compared to constant operation, which demonstrates the maturity of SoA stacks and enables transferring knowledge...... effect for long life-times than regular short time changes of operation. In order to address lifetime testing it is suggested to build a testing program consisting of defined modules that represent different application profiles, such as one module at constant conditions, followed by modules at one set...

  17. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies

    DEFF Research Database (Denmark)

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus

    2015-01-01

    , if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. The accelerated stability studies performed in the microwave oven using...... a design of experiments (DoE) approach in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric......, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating...

  18. Silicon Carbide (SiC) Device and Module Reliability, Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field

    Science.gov (United States)

    2016-05-01

    AFRL-RQ-WP-TR-2016-0108 SILICON CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled...CARBIDE (SiC) DEVICE AND MODULE RELIABILITY Performance of a Loop Heat Pipe Subjected to a Phase-Coupled Heat Input to an Acceleration Field 5a...Shukla, K., “Thermo-fluid dynamics of Loop Heat Pipe Operation,” International Communications in Heat and Mass Transfer , Vol. 35, No. 8, 2008, pp

  19. Evaluation of microwave oven heating for prediction of drug-excipient compatibilities and accelerated stability studies.

    Science.gov (United States)

    Schou-Pedersen, Anne Marie V; Østergaard, Jesper; Cornett, Claus; Hansen, Steen Honoré

    2015-05-15

    Microwave ovens have been used extensively in organic synthesis in order to accelerate reaction rates. Here, a set up comprising a microwave oven combined with silicon carbide (SiC) plates for the controlled microwave heating of model formulations has been applied in order to investigate, if a microwave oven is applicable for accelerated drug stability testing. Chemical interactions were investigated in three selected model formulations of drug and excipients regarding the formation of ester and amide reaction products. In the accelerated stability studies, a design of experiments (DoE) approach was applied in order to be able to rank excipients regarding reactivity: Study A: cetirizine with PEG 400, sorbitol, glycerol and propylene glycol. Study B: 6-aminocaproic acid with citrate, acetate, tartrate and gluconate. Study C: atenolol with citric, tartaric, malic, glutaric, and sorbic acid. The model formulations were representative for oral solutions (co-solvents), parenteral solutions (buffer species) and solid dosage forms (organic acids applicable for solubility enhancement). The DoE studies showed overall that the same impurities were generated by microwave oven heating leading to temperatures between 150°C and 180°C as compared to accelerated stability studies performed at 40°C and 80°C using a conventional oven. Ranking of the reactivity of the excipients could be made in the DoE studies performed at 150-180°C, which was representative for the ranking obtained after storage at 40°C and 80°C. It was possible to reduce the time needed for drug-excipient compatibility testing of the three model formulations from weeks to less than an hour in the three case studies. The microwave oven is therefore considered to be an interesting alternative to conventional thermal techniques for the investigation of drug-excipient interactions during preformulation. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Application of powerful quasi-steady-state plasma accelerators for simulation of ITER transient heat loads on divertor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Tereshin, V I [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Bandura, A N [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Byrka, O V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Chebotarev, V V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Garkusha, I E [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Landman, I [Forschungszentrum Karlsruhe, IHM, Karlsruhe 76021 (Germany); Makhlaj, V A [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Neklyudov, I M [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Solyakov, D G [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine); Tsarenko, A V [Institute of Plasma Physics of the NSC KIPT, Kharkov 61108 (Ukraine)

    2007-05-15

    The paper presents the investigations of high power plasma interaction with material surfaces under conditions simulating the ITER disruptions and type I ELMs. Different materials were exposed to plasma with repetitive pulses of 250 {mu}s duration, the ion energy of up to 0.6 keV, and the heat loads varying in the 0.5-25 MJ m{sup -2} range. The plasma energy transfer to the material surface versus impact load has been analysed. The fraction of plasma energy that is absorbed by the target surface is rapidly decreased with the achievement of the evaporation onset for exposed targets. The distributions of evaporated material in front of the target surface and the thickness of the shielding layer are found to be strongly dependent on the target atomic mass. The surface analysis of tungsten targets exposed to quasi-steady-state plasma accelerators plasma streams is presented together with measurements of the melting onset load and evaporation threshold, and also of erosion patterns with increasing heat load and the number of plasma pulses.

  1. Characterization studies of lithium vapour generated in heat pipe oven for the Plasma Wakefield Accelerator Experiment

    International Nuclear Information System (INIS)

    Mohandas, K.K.; Mahavar, Kanchan; Ajai Kumar; Kumar, Ravi A.V.

    2013-01-01

    Characterization and optimization studies of lithium vapor by white light as well as UV laser absorption were carried out as part of generation of photo ionized Li plasma for the Plasma Wake Field Acceleration Experiment. Temperature and buffer gas pressure dependency of the neutral density of lithium vapor was studied in detail. The line integrated neutral density of Li(n o L) was found to be of the order of 10 17 -10 18 cm -2 at heat pipe oven temperatures in the range from 600-800℃ which is sufficient to obtain the required 1013-1014 cm -3 plasma densities by photo ionization. (author)

  2. Grids heat loading of an ion source in two-stage acceleration system

    International Nuclear Information System (INIS)

    Okumura, Yoshikazu; Ohara, Yoshihiro; Ohga, Tokumichi

    1978-05-01

    Heat loading of the extraction grids, which is one of the critical problems limiting the beam pulse duration at high power level, has been investigated experimentally, with an ion source in a two-stage acceleration system of four multi-aperture grids. The loading of each grid depends largely on extraction current and grid gap pressures; it decreases with improvement of the beam optics and with decrease of the pressures. In optimum operating modes, its level is typically less than -- 2% of the total beam power or -- 200 W/cm 2 at beam energies of 50 - 70 kV. (auth.)

  3. Accelerating action of stresses on crystallization kinetics in silicon ion-implanted layers during pulsed heating

    International Nuclear Information System (INIS)

    Aleksandrov, L.N.

    1985-01-01

    Numerical simulation of the effect of stressed in ion-implanted layers on kinetics of amorphous phase transformations is performed. The suggested model of accounting stresses including concentration ones is based on the locality of action of interstitial addition atoms and on general structural inhomogeneity of amorphous semiconductor leading to the formation of areas of the facilitated phase transition. Accounting of effect of energy variation of silicon atoms interaction on probability of displacement events and atoms building in lattice points or atomic bonds disintegration allows one to trace the accelerating action of introduced by ion implantation stresses on the kinetics of layer crystallization during pulsed heating

  4. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    International Nuclear Information System (INIS)

    Popoolaa, A.P.I.; Oluwasegun, K.M.; Olorunniwo, O.E.; Atanda, P.O.; Aigbodion, V.S.

    2016-01-01

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  5. Thermal and mechanical effect during rapid heating of astroloy for improving structural integrity

    Energy Technology Data Exchange (ETDEWEB)

    Popoolaa, A.P.I., E-mail: popoolaapi@tut.ac.za [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Oluwasegun, K.M. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Olorunniwo, O.E., E-mail: segun_nniwo@yahoo.com [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Atanda, P.O. [Department of Materials Science and Engineering, Obafemi Awolowo University (Nigeria); Aigbodion, V.S. [Department of Chemical, Metallurgical and Materials Engineering, Tshwane University of Technology, Pretoria (South Africa); Department of Metallurgical and Materials Engineering, University of Nigeria, Nsukka (Nigeria)

    2016-05-05

    The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astroloy(Turbine Disc alloy) a Powder metallurgy (PM) nickel base superalloy has been investigated. The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ) microstructure of an inertia friction welded Astroloy were simulated using a Gleeble thermo-mechanical simulation system. Detailed microstructural examination of the simulated TMAZ and HAZ and those present in actual inertial friction welded specimens showed that γ′ particles persisted during rapid heating up to a temperature where the formation of liquid is thermodynamically favoured, and subsequently re-solidified eutectically. The result obtained showed that forging during the thermo-mechanical simulation significantly enhanced resistance to weld liquation cracking of the alloy. This is attributable to strain-induced rapid isothermal dissolution of the constitutional liquation products within 150 μm from the centre of the forged sample. This was not observed in purely thermally simulated samples. The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens. - Highlights: • The behaviour of γ′ phase to thermal and mechanical effects during rapid heating of Astrology • The thermo-mechanical affected zone (TMAZ) and heat affected zone (HAZ). • significantly enhanced resistance to weld liquation cracking of the alloy. • This was not observed in purely thermally simulated samples. • The microstructure within the TMAZ of the as-welded alloy is similar to the microstructure in the forged Gleeble specimens.

  6. Accelerators

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    The talk summarizes the principles of particle acceleration and addresses problems related to storage rings like LEP and LHC. Special emphasis will be given to orbit stability, long term stability of the particle motion, collective effects and synchrotron radiation.

  7. Study of the heat flux generated by accelerated electrons on the components near the plasma

    International Nuclear Information System (INIS)

    Laugier, J.

    2003-01-01

    Experimental data have shown that a heat flux appears on components situated near the wave guide of the lower hybrid antenna of Tore-Supra. This heat flux is due to the energy release during collisions that occur between the component surface and the electrons accelerated by the high frequency field generated by the antenna. Simulations show that the electrons may reach an energy of 2-3 keV and that the heat flux generated in the shield may reach 10 MW/m 2 . In this work a correlation has been established between the local heat flux due to electron impact and the mean electrical field near the antenna: Φ (W/m 2 ) = 4.10 -4 x E -6 (10 5 V/m). It is also shown that the ratio of electrons that reach the shield is roughly not dependent on the value of the mean electrical field. In the hypothesis of a Gaussian distribution of electron initial velocities this ratio is 10%. (A.C.)

  8. Periodic heat shock accelerated the chondrogenic differentiation of human mesenchymal stem cells in pellet culture.

    Directory of Open Access Journals (Sweden)

    Jing Chen

    Full Text Available Osteoarthritis (OA is one of diseases that seriously affect elderly people's quality of life. Human mesenchymal stem cells (hMSCs offer a potential promise for the joint repair in OA patients. However, chondrogenic differentiation from hMSCs in vitro takes a long time (∼ 6 weeks and differentiated cells are still not as functionally mature as primary isolated chondrocytes, though chemical stimulations and mechanical loading have been intensively studied to enhance the hMSC differentiation. On the other hand, thermal stimulations of hMSC chondrogenesis have not been well explored. In this study, the direct effects of mild heat shock (HS on the differentiation of hMSCs into chondrocytes in 3D pellet culture were investigated. Periodic HS at 41 °C for 1 hr significantly increased sulfated glycosaminoglycan in 3D pellet culture at Day 10 of chondrogenesis. Immunohistochemical and Western Blot analyses revealed an increased expression of collagen type II and aggrecan in heat-shocked pellets than non heat-shocked pellets on Day 17 of chondrogenesis. In addition, HS also upregulated the expression of collagen type I and X as well as heat shock protein 70 on Day 17 and 24 of differentiation. These results demonstrate that HS accelerated the chondrogenic differentiation of hMSCs and induced an early maturation of chondrocytes differentiated from hMSCs. The results of this study will guide the design of future protocols using thermal treatments to facilitate cartilage regeneration with human mesenchymal stem cells.

  9. Energy deposition, heat flow, and rapid solidification during laser and electron beam irradiation of materials

    Energy Technology Data Exchange (ETDEWEB)

    White, C.W.; Aziz, M.J.

    1985-10-01

    The fundamentals of energy deposition, heat flow, and rapid solidification during energy deposition from lasers and electron beams is reviewed. Emphasis is placed on the deposition of energy from pulsed sources (10 to 100 ns pulse duration time) in order to achieve high heating and cooling rates (10/sup 8/ to 10/sup 10/ /sup 0/C/s) in the near surface region. The response of both metals and semiconductors to pulsed energy deposition is considered. Guidelines are presented for the choice of energy source, wavelength, and pulse duration time.

  10. An accelerating reference frame for electromagnetic waves in a rapidly growing plasma

    International Nuclear Information System (INIS)

    Yablonovitch, E.

    1989-01-01

    In 1974, Hawking showed that black holes can evaporate by the emission of low temperature thermal radiation, now named Hawking radiation. Shortly thereafter, a closely related effect called Unruh radiation became apparent. The author discusses how, according to Unruh and Davies, observers of the electromagnetic field in an accelerating reference frame should see thermal radiation at a temperature T: KT = h/2π a/c where a is the acceleration relative to an inertial frame, c is the speed of light and h and K are Planck's and Boltzmann's constant respectively. In a frame accelerating at g = 980 cm/sec 2 , equivalent to the acceleration experienced at the earth's surface, this thermal radiation is at a temperature of only 4 x 10 -20 degrees K. Therefore, physicists hoping to observe this radiation, have sought out systems being subjected to extreme acceleration

  11. Acceleration/heating of plasma on auroral field lines: preliminary results from the Viking satellite

    International Nuclear Information System (INIS)

    Lundin, R.

    1988-01-01

    In this report, a review of the first results obtained from the particle experiment on board the Viking spacecraft will be given. During the first part of the Viking mission, the orbit was suitable for high-altitude measurements (up to ∼ 13500 km) in the dayside oval and the cusp/cleft region. Thus, some emphasis will be put on processes occurring in the dayside auroral region. On the basis of more than 100 Viking traversals of the cusp and cleft it is suggested that these regions can be identified by some regular characteristics in the particle data. The cusp has a continuous presence of solar wind plasma, affected mainly by convection and containing modest plasma energization. Conversely, the cleft is characterized by extensive plasma energization, and strong field aligned current sheets. Temporal injections of solar wind plasma are frequently observed in the cleft. A distinguishing characteristic of the Viking charged particle experiment is the energy and angular resolution. Thus, the fine-structure of narrow particle beams and conical distributions of both electrons and ions can be determined. This enables very detailed studies of the plasma acceleration processes along auroral field lines. Some examples of accelerated plasma populations and their related energy and angular distribution will be presented. The observations are compared with existing theories of auroral plasma heating and acceleration processes

  12. Acceleration to High Velocities and Heating by Impact Using Nike KrF laser

    Science.gov (United States)

    Karasik, Max

    2009-11-01

    Shock ignition, impact ignition, as well as higher intensity conventional hot spot ignition designs reduce driver energy requirement by pushing the envelope in laser intensity and target implosion velocities. This talk will describe experiments that for the first time reach target velocities in the range of 700 -- 1000 km/s. The highly accelerated planar foils of deuterated polystyrene, some with bromine doping, are made to collide with a witness foil to produce extreme shock pressures and result in heating of matter to thermonuclear temperatures. Target acceleration and collision are diagnosed using large field of view monochromatic x-ray imaging with backlighting as well as bremsstrahlung self-emission. The impact conditions are diagnosed using DD fusion neutron yield, with over 10^6 neutrons produced during the collision. Time-of-flight neutron detectors are used to measure the ion temperature upon impact, which reaches 2 -- 3 keV. The experiments are performed on the Nike facility, reconfigured specifically for high intensity operation. The short wavelength and high illumination uniformity of Nike KrF laser uniquely enable access to this new parameter regime. Intensities of (0.4 -- 1.2) x 10^15 W/cm^2 and pulse durations of 0.4 -- 2 ns were utilized. Modeling of the target acceleration, collision, and neutron production is performed using the FAST3D radiation hydrodynamics code with a non-LTE radiation model. Work is supported by US Department of Energy.

  13. Electrowetting-based microfluidic operations on rapid-manufactured devices for heat pipe applications

    Science.gov (United States)

    Hale, Renee S.; Bahadur, Vaibhav

    2017-07-01

    The heat transport capacity of traditional heat pipes is limited by the capillary pressure generated in the internal wick that pumps condensate to the evaporator. Recently, the authors conceptualized a novel heat pipe architecture, wherein wick-based pumping is replaced by electrowetting (EW)-based pumping of microliter droplets in the adiabatic section. An electrowetting heat pipe (EHP) can overcome the capillary limit to heat transport capacity and enable compact, planar, gravity-insensitive, and ultralow power consumption heat pipes that transport kiloWatt heat loads over extended distances. This work develops a novel technique for rapid, scalable fabrication of EW-based devices and studies critical microfluidic operations underlying the EHP, with the objective of predicting the key performance parameters of the EHP. Devices are fabricated on a printed circuit board (PCB) substrate with mechanically-milled electrodes, and a removable polyimide dielectric film. The first set of experiments uncovers the maximum channel gap (1 mm) for reliable EW-based pumping; this parameter determines the heat transport capacity of the EHP, which scales linearly with the channel gap. The second set of experiments uncovers the maximum channel gap (375 microns) at which EW voltages can successfully split droplets. This is an important consideration which ensures EHP operability in the event of unintentional droplet merging. The third set of experiments demonstrate and study EW-induced droplet generation from an open-to-air reservoir, which mimics the interface between the condenser and adiabatic sections of the EHP. The experimental findings predict that planar, water-based EHPs with a (10 cm by 4 mm) cross section can transport 1.6 kW over extended distances (>1 m), with a thermal resistance of 0.01 K W-1.

  14. INJECTION TO RAPID DIFFUSIVE SHOCK ACCELERATION AT PERPENDICULAR SHOCKS IN PARTIALLY IONIZED PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Ohira, Yutaka, E-mail: ohira@phys.aoyama.ac.jp [Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara 252-5258 (Japan)

    2016-08-10

    We present a three-dimensional hybrid simulation of a collisionless perpendicular shock in a partially ionized plasma for the first time. In this simulation, the shock velocity and upstream ionization fraction are v {sub sh} ≈ 1333 km s{sup −1} and f {sub i} ∼ 0.5, which are typical values for isolated young supernova remnants (SNRs) in the interstellar medium. We confirm previous two-dimensional simulation results showing that downstream hydrogen atoms leak into the upstream region and are accelerated by the pickup process in the upstream region, and large magnetic field fluctuations are generated both in the upstream and downstream regions. In addition, we find that the magnetic field fluctuations have three-dimensional structures and the leaking hydrogen atoms are injected into the diffusive shock acceleration (DSA) at the perpendicular shock after the pickup process. The observed DSA can be interpreted as shock drift acceleration with scattering. In this simulation, particles are accelerated to v ∼ 100 v {sub sh} ∼ 0.3 c within ∼100 gyroperiods. The acceleration timescale is faster than that of DSA in parallel shocks. Our simulation results suggest that SNRs can accelerate cosmic rays to 10{sup 15.5} eV (the knee) during the Sedov phase.

  15. Heat and fluid flow during rapid solidification of non-equilibrium materials

    International Nuclear Information System (INIS)

    Negli, S.C.; Eddingfield, D.L.; Brower, W.E. Jr.

    1990-01-01

    Rapid solidification technology (RST) is an advanced solidification process which is being utilized to produce non-equilibrium structures with properties not previously available with conventionally cast materials. An iron based alloy rapidly quenched to form a metallic glass is being installed on a large scale in electric power transformers where it cuts heat losses dramatically. The formation of a non-equilibrium structure usually requires a cooling rate of at least a million degrees per second. Achieving this high a cooling rate depends not only on the heat transfer conditions during the quenching process, but also on the fluid flow conditions in the molten metal before and during solidification. This paper presents a model of both heat and fluid flow during RST by the hammer and anvil method. The symmetry of two sided cooling permits analysis which is still applicable to the one sided cooling that occurs during melt spinning, the prevalent method of RST. The heat flow is modeled as one dimensional, normal to the quench surface. Previous models have shown the heat flow in the plane of the quench surface not to be significant. The fluid flow portion of the model utilizes the squeeze film solution for flow between two parallel flat plates. The model predicts the effects of superheat of the melt and of the quench hammer speed upon cooling rate during the formation of nonequilibrium phases. An unexpected result is that increased superheat results in much higher cooling rates, due to fluid flow before a potential transformation would take place; this enhanced liquid metal flow results in a thinner section casting which in turn has a dominant effect on the cooling rate. The model also predicts an expanded regime of Newtonian (interface controlled) cooling by about a factor of ten as compared to previous model of RST

  16. Investigation of Three-Dimensional Axisymmetric Unsteady Stagnation-Point Flow and Heat Transfer Impinging on an Accelerated Flat Plate

    OpenAIRE

    ali shokrgozar abbasi; Asghar Baradaran Rahimi; Hamidreza Mozayeni

    2016-01-01

    General formulation and solution of Navier-Stokes and energy equations are sought in the study of threedimensional axisymmetric unsteady stagnation-point flow and heat transfer impinging on a flat plate when the plate is moving with variable velocity and acceleration towards the main stream or away from it. As an application, among others, this accelerated plate can be assumed as a solidification front which is being formed with variable velocity. An external fluid, along z - directi...

  17. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    Science.gov (United States)

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  18. Strain-tempering of low carbon martensite steel wire by rapid heating

    International Nuclear Information System (INIS)

    Torisaka, Yasunori; Kihara, Junji

    1978-01-01

    In the production of prestressed concrete steel wires, a series of the cold drawing-patenting process are performed to improve the strength. In order to reduce cyclic process, the low carbon martensite steel wire which can be produced only by the process of hot rolling and direct quench has been investigated as strain-tempering material. When strain-tempering is performed on the low carbon martensite steel wire, stress relaxation (Re%) increases and mechanical properties such as total elongation, reduction of area, ultimate tensile strength and proof stress decrease remarkably by annealing. In order to shorten the heating time, the authors performed on the steel wire the strain-tempering with a heating time of 1.0 s using direct electrical resistance heating and examined the effects of rapid heating on the stress relaxation and the mechanical properties. Stress relaxation decreases without impairment of the mechanical properties up to a strain-tempering temperature of 573 K. Re(%) after 10.8 ks is 0% at the testing temperature 301 K, 0.49% at 363 K and 1.39% at 433 K. (auth.)

  19. Comparison of Electromagnetic and Marangoni Forces on Thin Coatings during Rapid Heating Process

    Science.gov (United States)

    Steinberg, T.; Opitz, T.; Rybakov, A.; Baake, E.

    2018-05-01

    The present paper is dedicated to the investigation of Marangoni and Lorentz forces in a rapid heating process. During the melting of aluminum-silicon (AlSi) layer on the bor-manganese steel 22MnB5, the liquid AlSi is shifting from the middle to the side and leaves dry spots on the steel due to a combination of both forces. In order to solve this process design issue, the impact of each force in the process will be evaluated. Evaluation is carried out using experimental data and numerical simulation.

  20. Beam commissioning of the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2009-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex (J-PARC was commissioned in October 2007, and successfully accomplished 3 GeV acceleration on October 31. Six run cycles through February 2008 were dedicated to commissioning the RCS, for which the initial machine parameter tuning and various underlying beam studies were completed. Then since May 2008 the RCS beam has been delivered to the downstream facilities for their beam commissioning. In this paper we describe beam tuning and study results following our beam commissioning scenario and a beam performance and operational experience obtained in the first commissioning phase through June 2008.

  1. GPU accelerated study of heat transfer and fluid flow by lattice Boltzmann method on CUDA

    Science.gov (United States)

    Ren, Qinlong

    Lattice Boltzmann method (LBM) has been developed as a powerful numerical approach to simulate the complex fluid flow and heat transfer phenomena during the past two decades. As a mesoscale method based on the kinetic theory, LBM has several advantages compared with traditional numerical methods such as physical representation of microscopic interactions, dealing with complex geometries and highly parallel nature. Lattice Boltzmann method has been applied to solve various fluid behaviors and heat transfer process like conjugate heat transfer, magnetic and electric field, diffusion and mixing process, chemical reactions, multiphase flow, phase change process, non-isothermal flow in porous medium, microfluidics, fluid-structure interactions in biological system and so on. In addition, as a non-body-conformal grid method, the immersed boundary method (IBM) could be applied to handle the complex or moving geometries in the domain. The immersed boundary method could be coupled with lattice Boltzmann method to study the heat transfer and fluid flow problems. Heat transfer and fluid flow are solved on Euler nodes by LBM while the complex solid geometries are captured by Lagrangian nodes using immersed boundary method. Parallel computing has been a popular topic for many decades to accelerate the computational speed in engineering and scientific fields. Today, almost all the laptop and desktop have central processing units (CPUs) with multiple cores which could be used for parallel computing. However, the cost of CPUs with hundreds of cores is still high which limits its capability of high performance computing on personal computer. Graphic processing units (GPU) is originally used for the computer video cards have been emerged as the most powerful high-performance workstation in recent years. Unlike the CPUs, the cost of GPU with thousands of cores is cheap. For example, the GPU (GeForce GTX TITAN) which is used in the current work has 2688 cores and the price is only 1

  2. Rapid ascent: Rocky Mountain National Park in the Great Acceleration, 1945-present

    Science.gov (United States)

    Boxell, Mark

    After the Second World War's conclusion, Rocky Mountain National Park (RMNP) experienced a massive rise in visitation. Mobilized by an affluent economy and a growing, auto-centric infrastructure, Americans rushed to RMNP in droves, setting off new concerns over the need for infrastructure improvements in the park. National parks across the country experienced similar explosions in visitation, inspiring utilities- and road-building campaigns throughout the park units administered by the National Park Service. The quasi-urbanization of parks like RMNP implicated the United States' public lands in a process of global change, whereby wartime technologies, cheap fossil fuels, and a culture of techno-optimism--epitomized by the Mission 66 development program--helped foster a "Great Acceleration" of human alterations of Earth's natural systems. This transformation culminated in worldwide turns toward mass-urbanization, industrial agriculture, and globalized markets. The Great Acceleration, part of the Anthropocene--a new geologic epoch we have likely entered, which proposes that humans have become a force of geologic change--is used as a conceptual tool for understanding the connections between local and global changes which shaped the park after World War II. The Great Acceleration and its array of novel technologies and hydrocarbon-powered infrastructures produced specific cultures of tourism and management techniques within RMNP. After World War II, the park increasingly became the product and distillation of a fossil fuel-dependent society.

  3. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz

    2018-01-30

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  4. Impact of thermodynamic properties and heat loss on ignition of transportation fuels in rapid compression machines

    KAUST Repository

    Ahmed, Ahfaz; Hantouche, Mireille; Khurshid, Muneeb; Mohamed, Samah; Nasir, Ehson Fawad; Farooq, Aamir; Roberts, William L.; Knio, Omar; Sarathy, Mani

    2018-01-01

    Rapid compression machines (RCM) are extensively used to study autoignition of a wide variety of fuels at engine relevant conditions. Fuels ranging from pure species to full boiling range gasoline and diesel can be studied in an RCM to develop a better understanding of autoignition kinetics in low to intermediate temperature ranges. In an RCM, autoignition is achieved by compressing a fuel/oxidizer mixture to higher pressure and temperature, thereby initiating chemical reactions promoting ignition. During these experiments, the pressure is continuously monitored and is used to deduce significant events such as the end of compression and the onset of ignition. The pressure profile is also used to assess the temperature evolution of the gas mixture with time using the adiabatic core hypothesis and the heat capacity ratio of the gas mixture. In such RCM studies, real transportation fuels containing many components are often represented by simpler surrogate fuels. While simpler surrogates such as primary reference fuels (PRFs) and ternary primary reference fuel (TPRFs) can match research and motor octane number of transportation fuels, they may not accurately replicate thermodynamic properties (including heat capacity ratio). This non-conformity could exhibit significant discrepancies in the end of compression temperature, thereby affecting ignition delay (τign) measurements. Another aspect of RCMs that can affect τign measurement is post compression heat loss, which depends on various RCM parameters including geometry, extent of insulation, pre-heating temperature etc. To, better understand the effects of these non-chemical kinetic parameters on τign, thermodynamic properties of a number of FACE G gasoline surrogates were calculated and simulated in a multi-zone RCM model. The problem was further investigated using a variance based analysis and individual sensitivities were calculated. This study highlights the effects on τign due to thermodynamic properties of

  5. ISOTROPIC HEATING OF GALAXY CLUSTER CORES VIA RAPIDLY REORIENTING ACTIVE GALACTIC NUCLEUS JETS

    International Nuclear Information System (INIS)

    Babul, Arif; Sharma, Prateek; Reynolds, Christopher S.

    2013-01-01

    Active galactic nucleus (AGN) jets carry more than sufficient energy to stave off catastrophic cooling of the intracluster medium (ICM) in the cores of cool-core clusters. However, in order to prevent catastrophic cooling, the ICM must be heated in a near-isotropic fashion and narrow bipolar jets with P jet = 10 44–45 erg s –1 , typical of radio AGNs at cluster centers, are inefficient in heating the gas in the transverse direction to the jets. We argue that due to existent conditions in cluster cores, the supermassive black holes (SMBHs) will, in addition to accreting gas via radiatively inefficient flows, experience short stochastic episodes of enhanced accretion via thin disks. In general, the orientation of these accretion disks will be misaligned with the spin axis of the black holes (BHs) and the ensuing torques will cause the BH's spin axis (and therefore the jet axis) to slew and rapidly change direction. This model not only explains recent observations showing successive generations of jet-lobes-bubbles in individual cool-core clusters that are offset from each other in the angular direction with respect to the cluster center, but also shows that AGN jets can heat the cluster core nearly isotropically on the gas cooling timescale. Our model does require that the SMBHs at the centers of cool-core clusters be spinning relatively slowly. Torques from individual misaligned disks are ineffective at tilting rapidly spinning BHs by more than a few degrees. Additionally, since SMBHs that host thin accretion disks will manifest as quasars, we predict that roughly 1-2 rich clusters within z < 0.5 should have quasars at their centers.

  6. Accelerated SDS depletion from proteins by transmembrane electrophoresis: Impacts of Joule heating.

    Science.gov (United States)

    Unterlander, Nicole; Doucette, Alan Austin

    2018-02-08

    SDS plays a key role in proteomics workflows, including protein extraction, solubilization and mass-based separations (e.g. SDS-PAGE, GELFrEE). However, SDS interferes with mass spectrometry and so it must be removed prior to analysis. We recently introduced an electrophoretic platform, termed transmembrane electrophoresis (TME), enabling extensive depletion of SDS from proteins in solution with exceptional protein yields. However, our prior TME runs required 1 h to complete, being limited by Joule heating which causes protein aggregation at higher operating currents. Here, we demonstrate effective strategies to maintain lower TME sample temperatures, permitting accelerated SDS depletion. Among these strategies, the use of a magnetic stir bar to continuously agitate a model protein system (BSA) allows SDS to be depleted below 100 ppm (>98% removal) within 10 min of TME operations, while maintaining exceptional protein recovery (>95%). Moreover, these modifications allow TME to operate without any user intervention, improving throughput and robustness of the approach. Through fits of our time-course SDS depletion curves to an exponential model, we calculate SDS depletion half-lives as low as 1.2 min. This promising electrophoretic platform should provide proteomics researchers with an effective purification strategy to enable MS characterization of SDS-containing proteins. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Use of accelerators in the national economy

    International Nuclear Information System (INIS)

    Skrinskij, A.

    1984-01-01

    Accelerators generating beams of accelerated particles are the basic component of apparatus used in irradiation technologies. One of the basic trends in irradiation is the improvement of materials, mainly polyethylene and other plastics. Irradiation with accelerated electrons improves their mechanical properties and chemical and heat resistance. Accelerated beams are also used in cement production and in grain disinfestation. The use is being developed of synchrotron radiation for rapid analysis of mineral samples, the manufacture of integrated circuits and for other applications. (Ha)

  8. In situ transmission electron microscopy investigation of the interfacial reaction between Ni and Al during rapid heating in a nanocalorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Lawrence Livermore National Laboratory, Materials Science and Technology Division, Livermore, California 94550 (United States); Woll, Karsten [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Institute of Applied Materials, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen (Germany); LaVan, David A., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Material Measurement Laboratory, Materials Measurement Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: mgrapes1@jhu.edu, E-mail: david.lavan@nist.gov, E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-11-01

    The Al/Ni formation reaction is highly exothermic and of both scientific and technological significance. In this report, we study the evolution of intermetallic phases in this reaction at a heating rate of 830 K/s. 100-nm-thick Al/Ni bilayers were deposited onto nanocalorimeter sensors that enable the measurement of temperature and heat flow during rapid heating. Time-resolved transmission electron diffraction patterns captured simultaneously with thermal measurements allow us to identify the intermetallic phases present and reconstruct the phase transformation sequence as a function of time and temperature. The results show a mostly unaltered phase transformation sequence compared to lower heating rates.

  9. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Liu Wei [Lockheed Martin Solar and Astrophysics Laboratory, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Chen Qingrong; Petrosian, Vahe [Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2013-04-20

    Where particle acceleration and plasma heating take place in relation to magnetic reconnection is a fundamental question for solar flares. We report analysis of an M7.7 flare on 2012 July 19 observed by SDO/AIA and RHESSI. Bi-directional outflows in forms of plasmoid ejections and contracting cusp-shaped loops originate between an erupting flux rope and underlying flare loops at speeds of typically 200-300 km s{sup -1} up to 1050 km s{sup -1}. These outflows are associated with spatially separated double coronal X-ray sources with centroid separation decreasing with energy. The highest temperature is located near the nonthermal X-ray loop-top source well below the original heights of contracting cusps near the inferred reconnection site. These observations suggest that the primary loci of particle acceleration and plasma heating are in the reconnection outflow regions, rather than the reconnection site itself. In addition, there is an initial ascent of the X-ray and EUV loop-top source prior to its recently recognized descent, which we ascribe to the interplay among multiple processes including the upward development of reconnection and the downward contractions of reconnected loops. The impulsive phase onset is delayed by 10 minutes from the start of the descent, but coincides with the rapid speed increases of the upward plasmoids, the individual loop shrinkages, and the overall loop-top descent, suggestive of an intimate relation of the energy release rate and reconnection outflow speed.

  10. Heat generation by eddy currents in a shell of superconducting bus-bars for SIS100 particle accelerator at FAIR

    Directory of Open Access Journals (Sweden)

    Tomków Łukasz

    2017-12-01

    Full Text Available Superconducting magnets in the SIS100 particle accelerator require the supply of liquid helium and electric current. Both are transported with by-pass lines designed at Wrocław University of Technology. Bus-bars used to transfer an electric current between the sections of the accelerator will be encased in a steel shell. Eddy currents are expected to appear in the shell during fast-ramp operation of magnets. Heat generation, which should be limited in any cryogenic system, will appear in the shell. In this work the amount of heat generated is assessed depending on the geometry of an assembly of the bus-bars and the shell. Numerical and analytical calculations are described. It was found that heat generation in the shell is relatively small when compared to other sources present in the accelerator and its value strongly depends on the geometry of the shell. The distribution of eddy currents and generated heat for different geometrical options are presented. Based on the results of the calculations the optimal design is proposed.

  11. Rapid further heating of tokamak plasma by fast-rising magnetic pulse

    International Nuclear Information System (INIS)

    Inoue, N.; Nihei, H.; Yamazaki, K.; Ichimura, M.; Morikawa, J.; Hoshino, K.; Uchida, T.

    1977-01-01

    The object of the experiment was to study the rapid further heating of a tokamak plasma and its influence on confinement. For this purpose, a high-voltage theta-pinch pulse was applied to a tokamak plasma and production of a high-temperature (keV) plasma was ensured within a microsecond. The magnetic pulse is applied at the plasma current maximum parallel or antiparallel to the study toroidal field. In either case, the pulsed field quickly penetrates the plasma and the plasma resistivity estimated from the penetration time is about 100 times larger than the classical. A burst of energetic neutrals of approximately 1 μs duration was observed and the energy distribution had two components of the order of 1 keV and 0.1 keV in the antiparallel case. Doppler broadening measurement shows heating of ions to a temperature higher than 200 eV; however, the line profile is not always Maxwellian distribution. The X-rays disappear at the moment of applying the magnetic pulse and reappear about 100 μs later with an intensive burst, while both energy levels are the same (approximately 100 keV). (author)

  12. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage

    Science.gov (United States)

    Andersen, Nathan L.; Jicha, Brian R.; Singer, Brad S.; Hildreth, Wes

    2017-11-01

    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40Ar/39Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40Ar/39Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ˜475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40Ar/39Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ˜7 ky following the Matuyama‑Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40Ar/39Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  13. Simulation of heat pipe rapid transient performance using a multi-nodal implicit finite difference scheme

    International Nuclear Information System (INIS)

    Peery, J.S.; Best, F.R.

    1987-01-01

    A model to simulate heat pipe rapid transients has been developed. This model uses a one-dimensional development of the continuity and momentum equations to solve for the velocity and pressure distributions in both the liquid and vapor regions. A two-dimensional development of the energy equation is used to determine the temperature distributions in the liquid and vapor regions, as well as in the walls of the heat pipe. The vapor and liquid regions are coupled through mass and energy transfer due to evaporation and condensation. The model used for this phenomenon is based on the physical conditions of the vapor and liquid for a given node. However, this model for evaporation and condensation not only causes the energy equation to be nonlinear but also constrains the time step to 10 -4 seconds for convergence to be reached. The model has been run for small transients up to 2 seconds to produce temperature distributions and demonstrate the convergence difficulties associated with the evaporation/condensation model used

  14. Blast-Wave Generation and Propagation in Rapidly Heated Laser-Irradiated Targets

    Science.gov (United States)

    Ivancic, S. T.; Stillman, C. R.; Nilson, P. M.; Solodov, A. A.; Froula, D. H.

    2017-10-01

    Time-resolved extreme ultraviolet (XUV) spectroscopy was used to study the creation and propagation of a >100-Mbar blast wave in a target irradiated by an intense (>1018WWcm2 cm2) laser pulse. Blast waves provide a platform to generate immense pressures in the laboratory. A temporal double flash of XUV radiation was observed when viewing the rear side of the target, which is attributed to the emergence of a blast wave following rapid heating by a fast-electron beam generated from the laser pulse. The time-history of XUV emission in the photon energy range of 50 to 200 eV was recorded with an x-ray streak camera with 7-ps temporal resolution. The heating and expansion of the target was simulated with an electron transport code coupled to 1-D radiation-hydrodynamics simulations. The temporal delay between the two flashes measured in a systematic study of target thickness and composition was found to evolve in good agreement with a Sedov-Taylor blast-wave solution. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944 and Department of Energy Office of Science Award Number DE-SC-0012317.

  15. Bounds on heat transport in rapidly rotating Rayleigh–Bénard convection

    International Nuclear Information System (INIS)

    Grooms, Ian; Whitehead, Jared P

    2015-01-01

    The heat transport in rotating Rayleigh–Bénard convection is considered in the limit of rapid rotation (small Ekman number E) and strong thermal forcing (large Rayleigh number Ra). The analysis proceeds from a set of asymptotically reduced equations appropriate for rotationally constrained dynamics; the conjectured range of validity for these equations is Ra ≲ E −8/5 . A rigorous bound on heat transport of Nu ⩽ 20.56Ra 3 E 4 is derived in the limit of infinite Prandtl number using the background method. We demonstrate that the exponent in this bound cannot be improved on using a piece-wise monotonic background temperature profile like the one used here. This is true for finite Prandtl numbers as well, i.e. Nu ≲ Ra 3 is the best upper bound for this particular setup of the background method. The feature that obstructs the availability of a better bound in this case is the appearance of small-scale thermal plumes emanating from (or entering) the thermal boundary layer. The derived upper bound is consistent with, although significantly higher than the observed behaviour in simulations of the reduced equations, which find at most Nu ∼ Ra 2 E 8/3 . (paper)

  16. Rapid thermal process by RF heating of nano-graphene layer/silicon substrate structure: Heat explosion theory approach

    Science.gov (United States)

    Sinder, M.; Pelleg, J.; Meerovich, V.; Sokolovsky, V.

    2018-03-01

    RF heating kinetics of a nano-graphene layer/silicon substrate structure is analyzed theoretically as a function of the thickness and sheet resistance of the graphene layer, the dimensions and thermal parameters of the structure, as well as of cooling conditions and of the amplitude and frequency of the applied RF magnetic field. It is shown that two regimes of the heating can be realized. The first one is characterized by heating of the structure up to a finite temperature determined by equilibrium between the dissipated loss power caused by induced eddy-currents and the heat transfer to environment. The second regime corresponds to a fast unlimited temperature increase (heat explosion). The criterions of realization of these regimes are presented in the analytical form. Using the criterions and literature data, it is shown the possibility of the heat explosion regime for a graphene layer/silicon substrate structure at RF heating.

  17. Sauna exposure immediately prior to short-term heat acclimation accelerates phenotypic adaptation in females.

    Science.gov (United States)

    Mee, Jessica A; Peters, Sophie; Doust, Jonathan H; Maxwell, Neil S

    2018-02-01

    Investigate whether a sauna exposure prior to short-term heat acclimation (HA) accelerates phenotypic adaptation in females. Randomised, repeated measures, cross-over trial. Nine females performed two 5-d HA interventions (controlled hyperthermia T re ≥38.5°C), separated by 7-wk, during the follicular phase of the menstrual cycle confirmed by plasma concentrations of 17-β estradiol and progesterone. Prior to each 90-min HA session participants sat for 20-min in either a temperate environment (20°C, 40% RH; HA temp ) wearing shorts and sports bra or a hot environment (50°C, 30% RH) wearing a sauna suit to replicate sauna conditions (HA sauna ). Participants performed a running heat tolerance test (RHTT) 24-h pre and 24-h post HA. Mean heart rate (HR) (85±4 vs. 68±5 bpm, p≤0.001), sweat rate (0.4±0.2 vs. 0.0±0.0Lh -1 , p≤0.001), and thermal sensation (6±0 vs. 5±1, p=0.050) were higher during the sauna compared to temperate exposure. Resting rectal temperature (T re ) (-0.28±0.16°C), peak T re (-0.42±0.22°C), resting HR (-10±4 bpm), peak HR (-12±7 bpm), T re at sweating onset (-0.29±0.17°C) (p≤0.001), thermal sensation (-0.5±0.5; p=0.002), and perceived exertion (-3±2; p≤0.001) reduced during the RHTT, following HA sauna ; but not HA temp . Plasma volume expansion was greater following HA sauna (HA sauna , 9±7%; HA temp , 1±5%; p=0.013). Sweat rate (p≤0.001) increased and sweat NaCl (p=0.006) reduced during the RHTT following HA sauna and HA temp . This novel strategy initiated HA with an attenuation of thermoregulatory, cardiovascular, and perceptual strain in females due to a measurably greater strain in the sauna compared to temperate exposure when adopted prior to STHA. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  18. Development and Demonstration of a High Efficiency, Rapid Heating, Low NOx Alternative to Conventional Heating of Round Steel Shapes, Steel Substrate (Strip) and Coil Box Transfer Bars

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Harry; Wagner, John

    2010-01-25

    Direct Flame Impingement involves the use of an array of very high-velocity flame jets impinging on a work piece to rapidly heat the work piece. The predominant mode of heat transfer is convection. Because of the locally high rate of heat transfer at the surface of the work piece, the refractory walls and exhaust gases of a DFI furnace are significantly cooler than in conventional radiant heating furnaces, resulting in high thermal efficiency and low NOx emissions. A DFI furnace is composed of a successive arrangement of heating modules through or by which the work piece is conveyed, and can be configured for square, round, flat, and curved metal shapes (e.g., billets, tubes, flat bars, and coiled bars) in single- or multi-stranded applications.

  19. The financial impact of the incorporation of IMRT and RapidArc™ techniques on shielding calculation of a linear accelerator

    International Nuclear Information System (INIS)

    Santos, Maira R.; Silveira, Thiago B.; Garcia, Paulo L.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S.

    2013-01-01

    Given the new methodology introduced in the shielding calculation due to recent modulated techniques in radiotherapy treatment, it became necessary to evaluate the impact of changes in the accelerator routine using such techniques. Based on a group of 30 patients from the National Cancer Institute (INCA) the workload multiplier factors for intensity modulated radiotherapy (IMRT factor) and for RapidArc™ (RA factor) were established. Four different routines in a 6 MV generic accelerator were proposed to estimate the impact of these modified workloads in the building cost of the secondary barriers. The results indicate that if 50% of patients are treating with IMRT, the secondary barrier becomes 14,1% more expensive than the barrier calculated for conformal treatments exclusive. While RA, in the same proportion, leads to a barrier only 3,7% more expensive. Showing that RA can, while reducing treatment time, increase the proportion of patients treated with modulation technique, without increasing the cost of the barrier, when compared with IMRT. (author)

  20. Rapid Analyses of Polyetheretherketone Wear Characteristics by Accelerated Wear Testing with Microfabricated Surfaces for Artificial Joint Systems.

    Science.gov (United States)

    Su, Chen-Ying; Kuo, Chien-Wei; Fang, Hsu-Wei

    2017-01-01

    Wear particle-induced biological responses are the major factors resulting in the loosening and then failure of total joint arthroplasties. It is feasible to improve the lubrication and reduce the wear of artificial joint system. Polyetheretherketone (PEEK) is considered as a potential bearing material due to its mechanical characteristics of resistance to fatigue strain. The PEEK wear particles have been indicated to be involved in biological responses in vitro, and further studies regarding the wear phenomena and wear particle generation are needed. In this study, we have established an accelerated wear testing system with microfabricated surfaces. Various contact pressures and lubricants have been utilized in the accelerated wear tests. Our results showed that increasing contact pressure resulted in an increase of wear particle sizes and wear rate, and the size of PEEK wear particles can be controlled by the feature size of microfabricated surfaces. These results provided the information rapidly about factors that affect the morphology and amount of PEEK wear particles and can be applied in the future for application of PEEK on the biological articulation system.

  1. Rapid preparation of α-FeOOH and α-Fe2O3 nanostructures by microwave heating and their application in electrochemical sensors

    International Nuclear Information System (INIS)

    Marinho, J.Z.; Montes, R.H.O.; Moura, A.P. de; Longo, E.; Varela, J.A.; Munoz, R.A.A.; Lima, R.C.

    2014-01-01

    Graphical abstract: - Highlights: • Simple microwave method leads to the rapid formation of the goethite and hematite. • Homogenous nucleation and growth of particles are controlled by synthesis time. • Modified electrode with α-FeOOH nanoplates improved the electrochemical response. • The sample is directly heated by microwaves and its crystallization is accelerated. • Fe 3+ nanostructures are promising for development of electrochemical sensors. - Abstract: α-FeOOH (goethite) and α-Fe 2 O 3 (hematite) nanostructures have been successfully synthesized using the microwave-assisted hydrothermal (MAH) method and by the rapid burning in a microwave oven of the as-prepared goethite, respectively. The orthorhombic α-FeOOH to rhombohedralα-Fe 2 O 3 structural transformation was observed by X-ray diffraction (XRD) and Raman spectroscopy results. Plates-like α-FeOOH prepared in 2 min and rounded and quasi-octahedral shaped α-Fe 2 O 3 particles obtained in 10 min were observed using field emission gun scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The use of microwave heating allowed iron oxides to be prepared with shorter reaction times when compared to other synthesis methods. α-FeOOH nanoplates were incorporated into graphite-composite electrodes, which presented electrocatalytic properties towards the electrochemical oxidation of ascorbic acid in comparison with unmodified electrodes. This result demonstrates that such α-FeOOH nanostructures are very promising chemical modifiers for the development of improved electrochemical sensors

  2. Heat transfer effects on flow past an exponentially accelerated vertical plate with variable temperature

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2008-01-01

    Full Text Available An exact solution to the problem of flow past an exponentially accelerated infinite vertical plate with variable temperature is analyzed. The temperature of the plate is raised linearly with time t. The dimensionless governing equations are solved using Laplace-transform technique. The velocity and temperature profiles are studied for different physical parameters like thermal Grashof number Gr, time and an accelerating parameter a. It is observed that the velocity increases with increasing values of a or Gr.

  3. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  4. CELLS OVEREXPRESSING HSP27 SHOW ACCELERATED RECOVERY FROM HEAT-INDUCED NUCLEAR-PROTEIN AGGREGATION

    NARCIS (Netherlands)

    KAMPINGA, HH; BRUNSTING, JF; STEGE, GJJ; KONINGS, AWT; LANDRY, J

    1994-01-01

    Protein denaturation/aggregation upon cell exposure to heat shock is a likely cause of cell death. in the nucleus, protein aggregation has often been correlated to inhibition of nuclear located processes and heat-induced cell killing. in Chinese hamster 023 cells made thermotolerant by a prior

  5. Influence of time presetting procedure for rapid local heat;.ng on brazing temperature conditions

    International Nuclear Information System (INIS)

    Lezhnin, G.P.; Tul'skikh, V.E.

    1985-01-01

    Correlation of known and suggested presetting procedures for heating period during induction brazing was conducted. It is shown that brazing time must be established considering heat propagation during heating in order to obtain the assigned joint temperature regardless of heating rate change. Methods for temperature calculation in assigned zones of the joint are suggested. The suggested presetting procedure for heating time was applied for induction vacuum brazing of a tube of 12Kh18N10T steel to a pipe connection of VT20 alloy

  6. Free convective heat transfer with hall effects, heat absorption and chemical reaction over an accelerated moving plate in a rotating system

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.M., E-mail: hussain.modassir@yahoo.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Jain, J., E-mail: jj.28481@gmail.com [Department of Mathematics, OP Jindal University, Raigarh 496109 (India); Seth, G.S., E-mail: gsseth_ism@yahoo.com [Department of Applied Mathematics, Indian School of Mines, Dhanbad 826004 (India); Rashidi, M.M., E-mail: mm_rashidi@yahoo.com [Shanghai Key Lab of Vehicle Aerodynamics and Vehicle Thermal Management System, Tongji University, Shanghai 201804 (China)

    2017-01-15

    The unsteady MHD free convective heat and mass transfer flow of an electrically conducting, viscous and incompressible fluid over an accelerated moving vertical plate in the presence of heat absorption and chemical reaction with ramped temperature and ramped surface concentration through a porous medium in a rotating system is studied, taking Hall effects into account. The governing equations are solved analytically with the help of Laplace transform technique. The unified closed-form expressions are obtained for fluid velocity, fluid temperature, species concentration, skin friction, Nusselt number and Sherwood numbers. The effects of various parameters on fluid velocity, fluid temperature and species concentration are discussed by graphs whereas numerical values of skin friction, Nusselt and Sherwood numbers are presented in tabular form for different values of pertinent flow parameters. The numerical results are also compared with free convective flow near ramped temperature plate with ramped surface concentration with the corresponding flow near isothermal plate with uniform surface concentration. - Highlights: • Magnetic field, Hall current, rotation and chemical reaction play vital role on flow field. • Hall current tends to accelerate secondary fluid velocity in the boundary layer region. • Rotation tends to retard primary fluid velocity throughout the boundary layer region. • Rotation and chemical reaction tend to enhance primary skin friction. • Solutal buoyancy force and permeability of medium reduce primary skin friction.

  7. Chronic escitalopram treatment attenuated the accelerated rapid eye movement sleep transitions after selective rapid eye movement sleep deprivation: a model-based analysis using Markov chains.

    Science.gov (United States)

    Kostyalik, Diána; Vas, Szilvia; Kátai, Zita; Kitka, Tamás; Gyertyán, István; Bagdy, Gyorgy; Tóthfalusi, László

    2014-11-19

    Shortened rapid eye movement (REM) sleep latency and increased REM sleep amount are presumed biological markers of depression. These sleep alterations are also observable in several animal models of depression as well as during the rebound sleep after selective REM sleep deprivation (RD). Furthermore, REM sleep fragmentation is typically associated with stress procedures and anxiety. The selective serotonin reuptake inhibitor (SSRI) antidepressants reduce REM sleep time and increase REM latency after acute dosing in normal condition and even during REM rebound following RD. However, their therapeutic outcome evolves only after weeks of treatment, and the effects of chronic treatment in REM-deprived animals have not been studied yet. Chronic escitalopram- (10 mg/kg/day, osmotic minipump for 24 days) or vehicle-treated rats were subjected to a 3-day-long RD on day 21 using the flower pot procedure or kept in home cage. On day 24, fronto-parietal electroencephalogram, electromyogram and motility were recorded in the first 2 h of the passive phase. The observed sleep patterns were characterized applying standard sleep metrics, by modelling the transitions between sleep phases using Markov chains and by spectral analysis. Based on Markov chain analysis, chronic escitalopram treatment attenuated the REM sleep fragmentation [accelerated transition rates between REM and non-REM (NREM) stages, decreased REM sleep residence time between two transitions] during the rebound sleep. Additionally, the antidepressant avoided the frequent awakenings during the first 30 min of recovery period. The spectral analysis showed that the SSRI prevented the RD-caused elevation in theta (5-9 Hz) power during slow-wave sleep. Conversely, based on the aggregate sleep metrics, escitalopram had only moderate effects and it did not significantly attenuate the REM rebound after RD. In conclusion, chronic SSRI treatment is capable of reducing several effects on sleep which might be the consequence

  8. DNS of heat transfer in transitional, accelerated boundary layer flow over a flat plate affected by free-stream fluctuations

    International Nuclear Information System (INIS)

    Wissink, Jan G.; Rodi, Wolfgang

    2009-01-01

    Direct numerical simulations (DNS) of flow over and heat transfer from a flat plate affected by free-stream fluctuations were performed. A contoured upper wall was employed to generate a favourable streamwise pressure gradient along a large portion of the flat plate. The free-stream fluctuations originated from a separate LES of isotropic turbulence in a box. In the laminar portions of the accelerating boundary layer flow the formation of streaks was observed to induce an increase in heat transfer by the exchange of hot fluid near the surface of the plate and cold fluid from the free-stream. In the regions where the streamwise pressure gradient was only mildly favourable, intermittent turbulent spots were detected which relaminarised downstream as the streamwise pressure gradient became stronger. The relaminarisation of the turbulent spots was reflected by a slight decrease in the friction coefficient, which converged to its laminar value in the region where the streamwise pressure gradient was strongest.

  9. Fast-acting calorimeter measures heat output of plasma gun accelerator

    Science.gov (United States)

    Dethlefson, R.; Larson, A. V.; Liebing, L.

    1967-01-01

    Calorimeter measures the exhaust energy from a shot of a pulsed plasma gun accelerator. It has a fast response time and requires only one measurement to determine the total energy. It uses a long ribbon of copper foil wound around a glass frame to form a reentrant cavity.

  10. The heating and acceleration actions of the solar plasma wave by QFT

    Science.gov (United States)

    Chen, Shao-Guang

    solar plasma will left-right separate by Lorentz force and by the feedback mechanism of Lorentz force the positive - negative charge will left-right vibrate. The plasma on the move will accompany with up-down and left-right vibrating and become the wave. Though the frequent of the plasma wave is not high, but its heating and acceleration actions will be not less then that of the microwave and laser because of its mass and energy far large then that of the microwave and laser.

  11. Rapid heating of Alaska pollock and chicken breast myofibrillar protein gels as affecting water-holding properties.

    Science.gov (United States)

    Stevenson, Clinton D; Liu, Wenjie; Lanier, Tyre C

    2012-10-10

    The gelation response of salted muscle minces to rapid versus slow heating rates is thought to differ between homeotherm and poikilotherm species. This study investigated water-holding (WH) properties of pastes prepared from refined myofibrils, at equal pH, of chicken breast versus Alaska pollock both during [cook loss (CL)] and following [expressible water (EW)] their cooking by rapid [microwave (MW)] versus slow [water bath (WB)] heating and whether such properties were related to gel matrix structure parameters and water mobility. Results did not confirm the industrial experience that pastes of meat from homeotherms benefit from slower cooking. Gels of equally high WH ability (low CL or EW) were made by rapid heating when the holding time did not exceed 5 min prior to cooling, which was sufficient for completion of gelation. Reduced CL and EW correlated with larger and smaller amplitudes of T21 and T22 water pools, respectively, measured by time-domain nuclear magnetic resonance (TD-NMR).

  12. Study of instantaneous unsteady heat transfer in a rapid compression-expansion machine using zero dimensional k- ε turbulence model

    International Nuclear Information System (INIS)

    Bakhshan, Y.; Karim, G. A.; Mansouri, S. H.

    2003-01-01

    In this investigation, the instantaneous unsteady heat transfer within a pneumatically driven rapid compression-expansion machine that offers simple, well-controlled and known boundary conditions was studied. Values of the instantaneous apparent overall heat flux from the cylinder gas to the wall surfaces were calculated using a thermodynamics analysis of the experimentally measured pressure and volume temporal development. Corresponding heat flux values were also calculated through the application of a zero-dimensional k- ε turbulence model the characteristic velocity is a contribution of turbulence kinetic energy, mean kinetic energy of charged air into cylinder and piston motion for the calculation of Reynolds, Nusselt and Prandtl numbers. Comparison of the zero-dimensional k- ε turbulence model prediction with experimental data shows good agreement for all compression ratios

  13. Rapid preparation of α-FeOOH and α-Fe{sub 2}O{sub 3} nanostructures by microwave heating and their application in electrochemical sensors

    Energy Technology Data Exchange (ETDEWEB)

    Marinho, J.Z.; Montes, R.H.O. [Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG (Brazil); Moura, A.P. de; Longo, E.; Varela, J.A. [Universidade Estadual Paulista, Instituto de Química, 14800-900 Araraquara, SP (Brazil); Munoz, R.A.A. [Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG (Brazil); Lima, R.C., E-mail: rclima@iqufu.ufu.br [Universidade Federal de Uberlândia, Instituto de Química, 38400-902 Uberlândia, MG (Brazil)

    2014-01-01

    Graphical abstract: - Highlights: • Simple microwave method leads to the rapid formation of the goethite and hematite. • Homogenous nucleation and growth of particles are controlled by synthesis time. • Modified electrode with α-FeOOH nanoplates improved the electrochemical response. • The sample is directly heated by microwaves and its crystallization is accelerated. • Fe{sup 3+} nanostructures are promising for development of electrochemical sensors. - Abstract: α-FeOOH (goethite) and α-Fe{sub 2}O{sub 3} (hematite) nanostructures have been successfully synthesized using the microwave-assisted hydrothermal (MAH) method and by the rapid burning in a microwave oven of the as-prepared goethite, respectively. The orthorhombic α-FeOOH to rhombohedralα-Fe{sub 2}O{sub 3} structural transformation was observed by X-ray diffraction (XRD) and Raman spectroscopy results. Plates-like α-FeOOH prepared in 2 min and rounded and quasi-octahedral shaped α-Fe{sub 2}O{sub 3} particles obtained in 10 min were observed using field emission gun scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The use of microwave heating allowed iron oxides to be prepared with shorter reaction times when compared to other synthesis methods. α-FeOOH nanoplates were incorporated into graphite-composite electrodes, which presented electrocatalytic properties towards the electrochemical oxidation of ascorbic acid in comparison with unmodified electrodes. This result demonstrates that such α-FeOOH nanostructures are very promising chemical modifiers for the development of improved electrochemical sensors.

  14. Parametric investigation on transient boiling heat transfer of metal rod cooled rapidly in water pool

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Chi Young [Department of Fire Protection Engineering, Pukyong National University, 45, Yongso-ro, Nam-gu, Busan 48513 (Korea, Republic of); Kim, Sunwoo, E-mail: swkim@alaska.edu [Mechanical Engineering Department, University of Alaska Fairbanks, P. O. Box 755905, Fairbanks, AK 99775-5905 (United States)

    2017-03-15

    Highlights: • Effects of liquid subcooling, surface coating, material property, and surface oxidation are examined. • Liquid subcooling affects remarkably the quenching phenomena. • Cr-coated surfaces for ATF might extend the quenching duration. • Solids with low heat capacity shorten the quenching duration. • Surface oxidation can affect strongly the film boiling heat transfer and MFB point. - Abstract: In this work, the effects of liquid subcooling, surface coating, material property, and surface oxidation on transient pool boiling heat transfer were investigated experimentally using the vertical metal rod and quenching method. The change in rod temperature was measured with time during quenching, and the visualization of boiling around the test specimen was performed using the high-speed video camera. As the test materials, the zircaloy (Zry), stainless steel (SS), niobium (Nb), and copper (Cu) were tested. In addition, the chromium-coated niobium (Cr-Nb) and chromium-coated stainless steel (Cr-SS) were prepared for accident tolerant fuel (ATF) application. Low liquid subcooling and Cr-coating shifted the quenching curve to the right, which indicates a prolongation of quenching duration. On the other hand, the material with small heat capacity and surface oxidation caused the quenching curve to move to the left. To examine the influence of the material property and surface oxidation on the film boiling heat transfer performance and minimum film boiling (MFB) point in more detail, the wall temperature and heat flux were calculated from the present transient temperature profile using the inverse heat transfer analysis, and then the curves of wall temperature and heat flux in the film boiling regime were obtained. In the present experimental conditions, the effect of material property on the film boiling heat transfer performance and MFB point seemed to be minor. On the other hand, based on the experimental results of the Cu test specimen, the surface

  15. On radiation heating of superconducting magnets of the accelerating-storage complex

    International Nuclear Information System (INIS)

    Maslov, M.A.; Mokhov, N.V.

    1981-01-01

    To analyze regularities of energy release formation in a superconducting winding (SCW) of superconducting magnets (SCM) of the IHEP accelerating-storage facility the energy release values in the SCM when 400-3000 GeV proton beam incidence onto the SCM vacuum chamber are calculated. Two SCM modifications (a dipole one and a quadrupole one) and two modes of irradiation (uniform irradiation along the SCM azimuth and length and a thin beam incidence uniform along the SCM length) are considered. It is shown that for the SCM with the 26 cm aperture at the 1 mrad angle of incidence 25% of the initial proton energy is released [ru

  16. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Gh; Marcuta, M [SC ICPE Electrostatica SA, Bucharest (Romania); Jipa, S [' Valahia' University, Targoviste (Romania)

    2001-07-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process.

  17. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    International Nuclear Information System (INIS)

    Marin, Gh.; Marcuta, M.; Jipa, S.

    2001-01-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process

  18. Acceleration of calculation of nuclear heating distributions in ITER toroidal field coils using hybrid Monte Carlo/deterministic techniques

    International Nuclear Information System (INIS)

    Ibrahim, Ahmad M.; Polunovskiy, Eduard; Loughlin, Michael J.; Grove, Robert E.; Sawan, Mohamed E.

    2016-01-01

    Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the

  19. Acceleration of calculation of nuclear heating distributions in ITER toroidal field coils using hybrid Monte Carlo/deterministic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, Ahmad M., E-mail: ibrahimam@ornl.gov [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Polunovskiy, Eduard; Loughlin, Michael J. [ITER Organization, Route de Vinon Sur Verdon, 13067 St. Paul Lez Durance (France); Grove, Robert E. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States); Sawan, Mohamed E. [University of Wisconsin-Madison, 1500 Engineering Dr., Madison, WI 53706 (United States)

    2016-11-01

    Highlights: • Assess the detailed distribution of the nuclear heating among the components of the ITER toroidal field coils. • Utilize the FW-CADIS method to dramatically accelerate the calculation of detailed nuclear analysis. • Compare the efficiency and reliability of the FW-CADIS method and the MCNP weight window generator. - Abstract: Because the superconductivity of the ITER toroidal field coils (TFC) must be protected against local overheating, detailed spatial distribution of the TFC nuclear heating is needed to assess the acceptability of the designs of the blanket, vacuum vessel (VV), and VV thermal shield. Accurate Monte Carlo calculations of the distributions of the TFC nuclear heating are challenged by the small volumes of the tally segmentations and by the thick layers of shielding provided by the blanket and VV. To speed up the MCNP calculation of the nuclear heating distribution in different segments of the coil casing, ground insulation, and winding packs of the ITER TFC, the ITER Organization (IO) used the MCNP weight window generator (WWG). The maximum relative uncertainty of the tallies in this calculation was 82.7%. In this work, this MCNP calculation was repeated using variance reduction parameters generated by the Oak Ridge National Laboratory AutomateD VAriaNce reducTion Generator (ADVANTG) code and both MCNP calculations were compared in terms of computational efficiency and reliability. Even though the ADVANTG MCNP calculation used less than one-sixth of the computational resources of the IO calculation, the relative uncertainties of all the tallies in the ADVANTG MCNP calculation were less than 6.1%. The nuclear heating results of the two calculations were significantly different by factors between 1.5 and 2.3 in some of the segments of the furthest winding pack turn from the plasma neutron source. Even though the nuclear heating in this turn may not affect the ITER design because it is much smaller than the nuclear heating in the

  20. Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel

    International Nuclear Information System (INIS)

    Parker, Leonard; Vanzella, Daniel A.T.

    2004-01-01

    We investigate the possibility that the late acceleration observed in the rate of expansion of the Universe is due to vacuum quantum effects arising in curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM), or vacuum metamorphosis, cosmological model of Parker and Raval is reexamined and improved. We show, by means of a manifestly nonperturbative approach, how the infrared behavior of the propagator (related to the large-time asymptotic form of the heat kernel) of a free scalar field in curved spacetime leads to nonperturbative terms in the effective action similar to those appearing in the earlier version of the VCDM model. The asymptotic form that we adopt for the propagator or heat kernel at large proper time s is motivated by, and consistent with, particular cases where the heat kernel has been calculated exactly, namely in de Sitter spacetime, in the Einstein static universe, and in the linearly expanding spatially flat Friedmann-Robertson-Walker (FRW) universe. This large-s asymptotic form generalizes somewhat the one suggested by the Gaussian approximation and the R-summed form of the propagator that earlier served as a theoretical basis for the VCDM model. The vacuum expectation value for the energy-momentum tensor of the free scalar field, obtained through variation of the effective action, exhibits a resonance effect when the scalar curvature R of the spacetime reaches a particular value related to the mass of the field. Modeling our Universe by an FRW spacetime filled with classical matter and radiation, we show that the back reaction caused by this resonance drives the Universe through a transition to an accelerating expansion phase, very much in the same way as originally proposed by Parker and Raval. Our analysis includes higher derivatives that were neglected in the earlier analysis, and takes into account the possible runaway solutions that can follow from these higher-derivative terms. We find that the runaway solutions do

  1. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Murphy, Richard W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Linkous, Randall Lee [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  2. The generation of intense heat fluxes by electron bombardment to evaluate the use of swirl flow in the cooling of accelerator targets

    International Nuclear Information System (INIS)

    Genis, G.J.

    1985-11-01

    The thermal performance of isotope production targets for accelerators has been shown to be the limiting factor with regard to the cost of isotopes and the specific activity achievable. To allow the investigation of basic aspects of target cooling and the evaluation of certain target concepts off-line from accelerators, an electron bombardment system, including a radial electron accelerator (REA) in a diode configuration, was developed as heat source. Methods were developed to characterise the performance of the REA to supply a homogeneous heat flux to an axial target by which a technique for the construction of thermocouple placement holes in the body of the target can be evaluated from the measured temperatures. Having identified high velocity swirl flow as the most suitable technique to enhance the convective heat transfer in targets, experiments were conducted to determine the heat-transfer coefficient at high heat fluxes to high velocity swirl flow. The heat-transfer results substantiate the advantages of swirl flow for target cooling. Different correlations obtained indicate the importance of using the film properties instead of the bulk coolant properties in correlations and identify centrifugal convection as one of the most important heat transfer mechanisms in swirl flow

  3. Investigation of char strength and expansion properties of an intumescent coating exposed to rapid heating rates

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2013-01-01

    , char properties, measured at room temperature, were dependent on the preceding storage conditions (in air or in a desiccator). The char was found to have the highest mechanical strength against compression in the outer crust facing the heat source. For thin (147μm) free coating films, a tendency...... with respect to the mechanical resistance against compression, degree of expansion, and residual mass fraction. Experimental results show that when using this type of shock heating, the mechanical resistance of the char against compression cannot meaningfully be correlated to the expansion factor. In addition...

  4. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    International Nuclear Information System (INIS)

    Elzhov, A.V.; Ginzburg, N.S.; Kaminsky, A.K.; Kuzikov, S.V.; Perelstein, E.A.; Peskov, N.Yu.; Petelin, M.I.; Sedykh, S.N.; Sergeev, A.P.; Sergeev, A.S.; Syratchev, I.; Zaitsev, N.I.

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30 GHz, is used in the investigation. The experimental setup consists of a wavebeam injector--FEM oscillator (power of ∼25 MW, pulse duration up to 200 ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed

  5. Test facility for investigation of heating of 30 GHz accelerating structure imitator for the CLIC project

    CERN Document Server

    Elzhov, A V; Kaminsky, A K; Kuzikov, S V; Perelshtejn, E A; Peskov, N Yu; Petelin, M I; Sedykh, S N; Sergeev, A P; Sergeev, A S; Syratchev, I V; Zaitsev, N I

    2004-01-01

    Since 2001 an experimental test facility for investigation of lifetime of a copper material, with respect to multiple RF pulse actions, was set up on the basis of the JINR (Dubna) FEM oscillator, in collaboration with IAP RAS (Nizhny Novgorod). A high-Q copper cavity, which simulates the parameters of the accelerating structure of the collider CLIC at an operating frequency of 30GHz, is used in the investigation. The experimental setup consists of a wavebeam injector - FEM oscillator (power of similar to 25MW, pulse duration up to 200ns, spectral bandwidth not higher than 0.1%), a quasi-optic two-mirror transmission line, a wave-type converter, and a testing cavity. The frequency and transmission features of the components of the quasi-optic line were analyzed.

  6. Rapid heating evaporation of Pb(NO3)2. Evidence for heterogeneous ion-molecule reactions

    International Nuclear Information System (INIS)

    Radus, T.P.; Udseth, H.R.; Friedman, L.

    1979-01-01

    A mass spectrometric investigation of the lead nitrate system is reported in which the lead nitrate was evaporated from a probe filament that was heated as rapidly as 5000 0 C/s. Both electron impact (EI) and chemical ionization (CI) source techniques were used in this study. Fragment ions and decomposition products were observed under EI conditions. Under CI conditions solvated fragment ions and protonated solvated molecular ions were detected. Temperature measurements of rates of evaporation were made by monitoring the resistance of the probe filament as it was heated. Activation energies calculated by using these temperature coefficients of evaporation rates indicate that evaporations under CI conditions are assisted by heterogeneous ion-molecule reactions

  7. Transformation Heat Treatment of Rapidly Quenched Nb3A1 Precursor Monitored in situ by High Energy Synchrotron Diffraction

    CERN Document Server

    Scheuerlein, C; Di Michiel, M; Jin, X; Takeuchi, T; Kikuchi, A; Tsuchiya, K; Nakagawa, K; Nakamoto, T

    2013-01-01

    Nb3Al superconductors are studied for use in high field magnets. Fine grained Nb3Al with nearly stoichiometric Al content is obtained by a Rapid Heating Quenching and Transformation (RHQT) process. We describe a non destructive in situ study of the transformation process step of a RHQ Nb3Al precursor wire with ramp rates of either 120 °C/h or 800 °C/h. High energy synchrotron x-ray diffraction measurements show the transformation from a Nb(Al)SS supersaturated solid solution into Nb3Al. When heating with a ramp rate of 120 °C/h a strong reduction of the Nb(Al)SS (110) diffraction peak component is observed when the temperature exceeds 660 °C. Additional diffraction peaks are detectable in the approximate temperature interval 610 °C - 750 °C and significant Nb3Al growth is observed above 730 °C.

  8. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.

    Science.gov (United States)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José

    2015-11-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . Copyright © 2015 the American Physiological Society.

  9. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture

    Directory of Open Access Journals (Sweden)

    Masao Kunioka

    2016-06-01

    Full Text Available A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.2 MPa water vapor in 72 h by this method using a sterilizer (autoclave. The bending strength and viscoelastic properties measured by a dynamic mechanical analysis (DMA remained unchanged during repetitive saturation and drying steps. No degradation and molecular structural change occurred. Furthermore an accelerated ageing test with two ageing factors, i.e., heat and moisture was developed and performed at 140–160 °C and 0.36–0.62 MPa water vapor pressure by using a sealed pressure-proof stainless steel vessel (autoclave. The bending strength of the sample decreased from 1107 to 319 MPa at 160 °C and 0.63 MPa water vapor pressure in 9 days. Degraded samples were analyzed by DMA. The degree of degradation for samples was analyzed by DMA. CFRP and degraded CFRP samples were analyzed by using a surface and interfacial cutting analysis system (SAICAS and an electron probe micro-analyzer (EPMA equipped in a scanning electron microscope.

  10. The influence of wavelength-dependent radiation in simulation of lamp-heated rapid thermal processing systems

    Energy Technology Data Exchange (ETDEWEB)

    Ting, A. [Sandia National Labs., Livermore, CA (United States). Computational Mechanics Dept.

    1994-08-01

    Understanding the thermal response of lamp-heated rapid thermal processing (RTP) systems requires understanding relatively complex radiation exchange among opaque and partially transmitting surfaces and materials. The objective of this paper is to investigate the influence of wavelength-dependent radiative properties. The examples used for the analysis consider axisymmetric systems of the kind that were developed by Texas Instruments (TI) for the Microelectronics Manufacturing Science and Technology (MMST) Program and illustrate a number of wavelength-dependent (spectral) effects. The models execute quickly on workstation class computing flatforms, and thus permit rapid comparison of alternative reactor designs and physical models. The fast execution may also permit the incorporation of these models into real-time model-based process control algorithms.

  11. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    OpenAIRE

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 G...

  12. HEATING AND ACCELERATION OF THE FAST SOLAR WIND BY ALFVÉN WAVE TURBULENCE

    Energy Technology Data Exchange (ETDEWEB)

    Van Ballegooijen, A. A.; Asgari-Targhi, M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2016-04-20

    We present numerical simulations of reduced magnetohydrodynamic (RMHD) turbulence in a magnetic flux tube at the center of a polar coronal hole. The model for the background atmosphere is a solution of the momentum equation and includes the effects of wave pressure on the solar wind outflow. Alfvén waves are launched at the coronal base and reflect at various heights owing to variations in Alfvén speed and outflow velocity. The turbulence is driven by nonlinear interactions between the counterpropagating Alfvén waves. Results are presented for two models of the background atmosphere. In the first model the plasma density and Alfvén speed vary smoothly with height, resulting in minimal wave reflections and low-energy dissipation rates. We find that the dissipation rate is insufficient to maintain the temperature of the background atmosphere. The standard phenomenological formula for the dissipation rate significantly overestimates the rate derived from our RMHD simulations, and a revised formula is proposed. In the second model we introduce additional density variations along the flux tube with a correlation length of 0.04 R {sub ⊙} and with relative amplitude of 10%. These density variations simulate the effects of compressive MHD waves on the Alfvén waves. We find that such variations significantly enhance the wave reflection and thereby the turbulent dissipation rates, producing enough heat to maintain the background atmosphere. We conclude that interactions between Alfvén and compressive waves may play an important role in the turbulent heating of the fast solar wind.

  13. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII

    KAUST Repository

    Cenker, Emre

    2017-02-27

    During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature

  14. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century

    Science.gov (United States)

    Coffel, Ethan D.; Horton, Radley M.; de Sherbinin, Alex

    2018-01-01

    As a result of global increases in both temperature and specific humidity, heat stress is projected to intensify throughout the 21st century. Some of the regions most susceptible to dangerous heat and humidity combinations are also among the most densely populated. Consequently, there is the potential for widespread exposure to wet bulb temperatures that approach and in some cases exceed postulated theoretical limits of human tolerance by mid- to late-century. We project that by 2080 the relative frequency of present-day extreme wet bulb temperature events could rise by a factor of 100-250 (approximately double the frequency change projected for temperature alone) in the tropics and parts of the mid-latitudes, areas which are projected to contain approximately half the world’s population. In addition, population exposure to wet bulb temperatures that exceed recent deadly heat waves may increase by a factor of five to ten, with 150-750 million person-days of exposure to wet bulb temperatures above those seen in today’s most severe heat waves by 2070-2080. Under RCP 8.5, exposure to wet bulb temperatures above 35 °C—the theoretical limit for human tolerance—could exceed a million person-days per year by 2080. Limiting emissions to follow RCP 4.5 entirely eliminates exposure to that extreme threshold. Some of the most affected regions, especially Northeast India and coastal West Africa, currently have scarce cooling infrastructure, relatively low adaptive capacity, and rapidly growing populations. In the coming decades heat stress may prove to be one of the most widely experienced and directly dangerous aspects of climate change, posing a severe threat to human health, energy infrastructure, and outdoor activities ranging from agricultural production to military training.

  15. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    International Nuclear Information System (INIS)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua; Zhang, Lei

    2017-01-01

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  16. Numerical Study of Erosion, Heating, and Acceleration of the Magnetic Cloud as Impacted by Fast Shock

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Shoudi; He, Jiansen; Yang, Liping; Wang, Linghua [School of Earth and Space Sciences, Peking University No. 5 Yiheyuan Road, Haidian District Beijing, 100871 (China); Zhang, Lei, E-mail: jshept@gmail.com [SIGMA Weather Group, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences No.1 Nanertiao, Zhongguancun, Haidian district Beijing, 100190 (China)

    2017-06-20

    The impact of an overtaking fast shock on a magnetic cloud (MC) is a pivotal process in CME–CME (CME: coronal mass ejection) interactions and CME–SIR (SIR: stream interaction region) interactions. MC with a strong and rotating magnetic field is usually deemed a crucial part of CMEs. To study the impact of a fast shock on an MC, we perform a 2.5 dimensional numerical magnetohydrodynamic simulation. Two cases are run in this study: without and with impact by fast shock. In the former case, the MC expands gradually from its initial state and drives a relatively slow magnetic reconnection with the ambient magnetic field. Analyses of forces near the core of the MC as a whole body indicates that the solar gravity is quite small compared to the Lorentz force and the pressure gradient force. In the second run, a fast shock propagates, relative to the background plasma, at a speed twice that of the perpendicular fast magnetosonic speed, catches up with and takes over the MC. Due to the penetration of the fast shock, the MC is highly compressed and heated, with the temperature growth rate enhanced by a factor of about 10 and the velocity increased to about half of the shock speed. The magnetic reconnection with ambient magnetic field is also sped up by a factor of two to four in reconnection rate as a result of the enhanced density of the current sheet, which is squeezed by the forward motion of the shocked MC.

  17. Combining nanocalorimetry and dynamic transmission electron microscopy for in situ characterization of materials processes under rapid heating and cooling

    Energy Technology Data Exchange (ETDEWEB)

    Grapes, Michael D., E-mail: mgrapes1@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); LaGrange, Thomas; Reed, Bryan W.; Campbell, Geoffrey H. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Friedman, Lawrence H.; LaVan, David A., E-mail: david.lavan@nist.gov [Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Weihs, Timothy P., E-mail: weihs@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2014-08-15

    Nanocalorimetry is a chip-based thermal analysis technique capable of analyzing endothermic and exothermic reactions at very high heating and cooling rates. Here, we couple a nanocalorimeter with an extremely fast in situ microstructural characterization tool to identify the physical origin of rapid enthalpic signals. More specifically, we describe the development of a system to enable in situ nanocalorimetry experiments in the dynamic transmission electron microscope (DTEM), a time-resolved TEM capable of generating images and electron diffraction patterns with exposure times of 30 ns–500 ns. The full experimental system consists of a modified nanocalorimeter sensor, a custom-built in situ nanocalorimetry holder, a data acquisition system, and the DTEM itself, and is capable of thermodynamic and microstructural characterization of reactions over a range of heating rates (10{sup 2} K/s–10{sup 5} K/s) accessible by conventional (DC) nanocalorimetry. To establish its ability to capture synchronized calorimetric and microstructural data during rapid transformations, this work describes measurements on the melting of an aluminum thin film. We were able to identify the phase transformation in both the nanocalorimetry traces and in electron diffraction patterns taken by the DTEM. Potential applications for the newly developed system are described and future system improvements are discussed.

  18. Chronic Subdural Hematoma development in Accelerated phase of Chronic Myeloid Leukaemia presenting with seizure and rapid progression course with fatal outcome

    Directory of Open Access Journals (Sweden)

    Raheja Amol

    2015-06-01

    Full Text Available Occurrence of chronic subdural hematoma (CSDH in leukemia is rare, and most reported cases occurred in relation with acute myeloid leukaemia; however, occurrence is extremely rare in accelerated phase of chronic myelogenous leukaemia (CML. Seizure as presentation of SDH development in CML cases is not reported in literature. Authors report an elderly male, who was diagnosed as CML, accelerated phase of developing SDH. Initially presented to local physician with seizure; urgent CT scan head was advised, but ignored and sensorium rapidly worsened over next day and reported to our emergency department in deeply comatose state, where imaging revealed chronic subdural hematoma with hypoxic brain injury with fatal outcome. Seizure, progressive worsening of headache, vomiting and papilloedema are harbinger of intracranial space occupying lesion and requires CT head in emergency medical department for exclusion, who are receiving treatment of haematological malignancy

  19. Rapid growth of ZnO hexagonal prism crystals by direct microwave heating

    Institute of Scientific and Technical Information of China (English)

    ZHU Zhenqi; ZHOU Jian; LIU Guizhen; REN Zhiguo

    2008-01-01

    ZnO hexagonal prism crystals were synthesized from ZnO powders by microwave heating in a short time (within 20 min) without any metal catalyst or transport agent.Zinc oxide raw materials were made by evaporating from the high-temperature zone in an enclosure atmosphere and crystals were grown on the self-source substrate.The inherent asymmetry in microwave heating provides the temperature gradient for crystal growth.Substrate and temperature distribution in the oven show significant effects on the growth of the ZnO crystal.The morphologies demonstrate that these samples are pure hexagonal prism crystals with maximum 80 μm in diameter and 600 μm in length,which possess a well faceted end and side surface.X-ray diffraction (XRD) reveals that these samples are pure crystals.The photoluminescence (PL) exhibits strong ultraviolet emission at room temperature,indicating potential applications for short-wave light-emitting photonic devices.

  20. Rapid presumptive identification of the Mycobacterium tuberculosis-bovis complex by radiometric determination of heat stable urease

    International Nuclear Information System (INIS)

    Gandy, J.H.; Pruden, E.L.; Cox, F.R.

    1983-01-01

    Simple and rapid Bactec methodologies for the determination of neat (unaltered) and heat stable urease activity of mycobacteria are presented. Clinical isolates (63) and stock cultures (32)--consisting of: M. tuberculosis (19), M. bovis (5), M. kansasii (15), M. marinum (4), M. simiae (3), M. scrofulaceum (16), M. gordonae (6), M. szulgai (6), M. flavescens (1), M. gastri (1), M. intracellulare (6), M. fortuitum-chelonei complex (12), and M. smegmatis (1)--were tested for neat urease activity by Bactec radiometry. Mycobacterial isolates (50-100 mg wet weight) were incubated at 35 degrees C for 30 minutes with microCi14C-urea. Urease-positive mycobacteria gave Bactec growth index (GI) values greater than 100 units, whereas urease-negative species gave values less than 10 GI units. Eighty-three isolates possessing neat urease activity were heated at 80 degrees C for 30 minutes followed by incubation at 35 degrees C for 30 minutes with 1 microCi14C-urea. Mycobacterium tuberculosis-bovis complex demonstrated heat-stable urease activity (GI more than 130 units) and could be distinguished from mycobacteria other than tuberculosis (MOTT), which gave GI values equal to or less than 40 units

  1. Discovery of Rapid and Reversible Water Insertion in Rare Earth Sulfates: A New Process for Thermochemical Heat Storage.

    Science.gov (United States)

    Hatada, Naoyuki; Shizume, Kunihiko; Uda, Tetsuya

    2017-07-01

    Thermal energy storage based on chemical reactions is a prospective technology for the reduction of fossil-fuel consumption by storing and using waste heat. For widespread application, a critical challenge is to identify appropriate reversible reactions that occur below 250 °C, where abundant low-grade waste heat and solar energy might be available. Here, it is shown that lanthanum sulfate monohydrate La 2 (SO 4 ) 3 ⋅H 2 O undergoes rapid and reversible dehydration/hydration reactions in the temperature range from 50 to 250 °C upon heating/cooling with remarkably small thermal hysteresis (water is removed from, or inserted in La 2 (SO 4 ) 3 ⋅H 2 O with progressive change in hydration number x without phase change. It is also revealed that only a specific structural modification of La 2 (SO 4 ) 3 exhibits this reversible dehydration/hydration behavior. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The rapid growth of vertically aligned carbon nanotubes using laser heating.

    Science.gov (United States)

    Park, J B; Jeong, S H; Jeong, M S; Lim, S C; Lee, I H; Lee, Y H

    2009-05-06

    Growth of densely packed vertically aligned carbon nanotubes (VA-CNTs) using laser-induced chemical vapor deposition with visible laser (lambda = 532 nm) irradiation at room temperature is reported. Using a multiple-catalyst layer (Fe/Al/Cr) on quartz as the substrate and an acetylene-hydrogen mixture as the precursor gas, VA-CNT pillars with 60 microm height and 4 microm diameter were grown at a high rate of around 1 microm s(-1) with good reproducibility. It is demonstrated that the fabrication of uniform pillar arrays of VA-CNTs can be achieved with a single irradiation for each pillar using LCVD with no annealing or preprocessing of the substrate. Here, laser fast heating is considered the primary mechanism facilitating the growth of VA-CNT pillars. Field emission characteristics of an array of VA-CNT pillars were then examined to investigate their potential application in vacuum electronic devices.

  3. Real-time control of focused ultrasound heating based on rapid MR thermometry.

    Science.gov (United States)

    Vimeux, F C; De Zwart, J A; Palussiére, J; Fawaz, R; Delalande, C; Canioni, P; Grenier, N; Moonen, C T

    1999-03-01

    Real-time control of the heating procedure is essential for hyperthermia applications of focused ultrasound (FUS). The objective of this study is to demonstrate the feasibility of MRI-controlled FUS. An automatic control system was developed using a dedicated interface between the MR system control computer and the FUS wave generator. Two algorithms were used to regulate FUS power to maintain the focal point temperature at a desired level. Automatic control of FUS power level was demonstrated ex vivo at three target temperature levels (increase of 5 degrees C, 10 degrees C, and 30 degrees C above room temperature) during 30-minute hyperthermic periods. Preliminary in vivo results on rat leg muscle confirm that necrosis estimate, calculated on-line during FUS sonication, allows prediction of tissue damage. CONCLUSIONS. The feasibility of fully automatic FUS control based on MRI thermometry has been demonstrated.

  4. Structural stability of hydrogenated amorphous carbon overcoats used in heat-assisted magnetic recording investigated by rapid thermal annealing

    KAUST Repository

    Wang, N.; Komvopoulos, K.; Rose, F.; Marchon, B.

    2013-01-01

    Ultrathin amorphous carbon (a-C) films are extensively used as protective overcoats of magnetic recording media. Increasing demands for even higher storage densities have necessitated the development of new storage technologies, such as heat-assisted magnetic recording (HAMR), which uses laser-assisted heating to record data on high-stability media that can store single bits in extremely small areas (∼1 Tbit/in.2). Because HAMR relies on locally changing the coercivity of the magnetic medium by raising the temperature above the Curie temperature for data to be stored by the magnetic write field, it raises a concern about the structural stability of the ultrathin a-C film. In this study, rapid thermal annealing (RTA) experiments were performed to examine the thermal stability of ultrathin hydrogenated amorphous carbon (a-C:H) films deposited by plasma-enhanced chemical vapor deposition. Structural changes in the a-C:H films caused by RTA were investigated by x-ray photoelectron spectroscopy, Raman spectroscopy, x-ray reflectivity, and conductive atomic force microscopy. The results show that the films exhibit thermal stability up to a maximum temperature in the range of 400-450 °C. Heating above this critical temperature leads to hydrogen depletion and sp 2 clustering. The critical temperature determined by the results of this study represents an upper bound of the temperature rise due to laser heating in HAMR hard-disk drives and the Curie temperature of magnetic materials used in HAMR hard disks. © 2013 American Institute of Physics.

  5. Mechanical Testing of PMCs under Simulated Rapid Heat-Up Propulsion Environments. II; In-Plane Compressive Behavior

    Science.gov (United States)

    Stokes, Eric H.; Shin, E. Eugene; Sutter, James K.

    2003-01-01

    Carbon fiber thermoset polymer matrix composites (PMC) with high temperature polyimide based in-situ polymerized monomer reactant (PMR) resin has been used for some time in applications which can see temperatures up to 550 F. Currently, graphite fiber PMR based composites are used in several aircraft engine components including the outer bypass duct for the GE F-404, exit flaps for the P&W F-100-229, and the core cowl for the GE/Snecma CF6-80A3. Newer formulations, including PMR-II-50 are being investigated as potential weight reduction replacements of various metallic components in next generation high performance propulsion rocket engines that can see temperatures which exceed 550 F. Extensive FEM thermal modeling indicates that these components are exposed to rapid heat-up rates (up to -200 F/sec) and to a maximum temperature of around 600 F. Even though the predicted maximum part temperatures were within the capability of PW-II-50, the rapid heat-up causes significant through-thickness thermal gradients in the composite part and even more unstable states when combined with moisture. Designing composite parts for such extreme service environments will require accurate measurement of intrinsic and transient mechanical properties and the hygrothermal performance of these materials under more realistic use conditions. The mechanical properties of polymers degrade when exposed to elevated temperatures even in the absence of gaseous oxygen. Accurate mechanical characterization of the material is necessary in order to reduce system weight while providing sufficient factors of safety. Historically, the testing of PMCs at elevated temperatures has been plagued by the antagonism between two factors. First, moisture has been shown to profoundly affect the mechanical response of these materials at temperatures above their glass transition temperature while concurrently lowering the material's Tg. Moisture phenomena is due to one or a combination of three effects, i

  6. Bubble development and fission gas release during rapid heating of 18 GWd/TeU UO2

    International Nuclear Information System (INIS)

    Small, G.J.

    1985-01-01

    Small samples (approximately 50 mg) of UO 2 irradiated to 18 GWd/TeU have been heated rapidly in an out-of-pile furnace. Ramp rates were in the range 10-80 deg. C.s -1 , peak temperatures varied from 1400 deg. C to 2500 deg. C and dwell times from one to fifteen min. The specimens were sealed in small capsules which were subsequently pierced to determine the total amount of fission gas ( 85 Kr) released during each test. Changes in the size and number of gas bubbles on grain boundaries were examined using SEM, TEM, replication and fractography techniques will be employed later. In this paper are reported the first series of gas release results and some metallography. The results are compared with related experiments and some qualitative conclusions are drawn regarding the mechanisms and kinetics of transient fission gas behaviour. (author)

  7. Simulation, measurement, and mitigation of beam instability caused by the kicker impedance in the 3-GeV rapid cycling synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Harada, H.; Hayashi, N.; Kinsho, M.; Tamura, F.; Tani, N.; Yamamoto, M.; Watanabe, Y.; Chin, Yong Ho; Holmes, J. A.

    2018-02-01

    The transverse impedance of eight extraction pulsed kicker magnets is a strong beam instability source in the 3-GeV rapid cycling synchrotron (RCS) at the Japan Proton Accelerator Research Complex. Significant beam instability occurs even at half of the designed 1 MW beam power when the chromaticity (ξ ) is fully corrected for the entire acceleration cycle by using ac sextupole (SX) fields. However, if ξ is fully corrected only at the injection energy by using dc SX fields, the beam is stable. In order to study realistic beam instability scenarios, including the effect of space charge and to determine practical measures to accomplish 1 MW beam power, we enhance the orbit particle tracking code to incorporate all realistic time-dependent machine parameters, including the time dependence of the impedance itself. The beam stability properties beyond 0.5 MW beam power are found to be very sensitive to a number of parameters in both simulations and measurements. In order to stabilize a beam at 1 MW beam power, two practical measures based on detailed and systematic simulation studies are determined, namely, (i) proper manipulation of the betatron tunes during acceleration and (ii) reduction of the dc SX field to reduce the ξ correction even at injection. The simulation results are well reproduced by measurements, and, as a consequence, an acceleration to 1 MW beam power is successfully demonstrated. In this paper, details of the orbit simulation and the corresponding experimental results up to 1 MW of beam power are presented. To further increase the RCS beam power, beam stability issues and possible measures beyond 1 MW beam power are also considered.

  8. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    Ahn, Young Chull; Cho, Jae Min; Lee, Jae Keun; Lee, Hyun Uk; Ahn, Seung Phyo; Youn, Deok Hyun; Kang, Tae Wook; Ock, Ju Jo

    2003-01-01

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m 3 ), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  9. Performance test of a vertically-directed electric-field cavity resonator made for the rapid gelation apparatus with microwave heating

    International Nuclear Information System (INIS)

    Yamagishi, Shigeru; Ogawa, Toru; Hasegawa, Atsushi.

    1996-06-01

    A cavity resonator with vertically-directed electric field was produced and attached to 'the rapid gelation apparatus with microwave heating' previously reported. Using the rapid gelation apparatus, drops of a simulated solution and of U-containing solutions for internal gelation were heated. The results indicated that the heating required for gelation of the U-containing solutions was possible. However, the electric field strength in the cavity resonator at that time was comparable to that causing the discharge due to the gaseous ammonia released from the heated drops. As a result, gel microspheres were not obtained in a stable state. The discussion suggests that the stable gelation would be realized by improving the cavity resonator shape and/or by modifying the power supply accompanied with using a power stabilizer. (author)

  10. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  11. Accelerated relative sea-level rise and rapid coastal erosion: Testing a causal relationship for the Louisiana barrier islands

    Science.gov (United States)

    List, J.H.; Sallenger, A.H.; Hansen, M.E.; Jaffe, B.E.

    1997-01-01

    The role of relative sea-level rise as a cause for the rapid erosion of Louisiana's barrier island coast is investigated through a numerical implementation of a modified Bruun rule that accounts for the low percentage of sand-sized sediment in the eroding Louisiana shoreface. Shore-normal profiles from 150 km of coastline west of the Mississippi delta are derived from bathymetric surveys conducted during the 1880s. 1930s and 1980s. An RMS difference criterion is employed to test whether an equilibrium profile form is maintained between survey years. Only about half the studied profiles meet the equilibrium Criterion this represents a significant limitation on the potential applicability of the Bruun rule. The profiles meeting the equilibrium criterion, along with measured rates of relative sea-level rise, are used to hindcast shoreline retreat rates at 37 locations within the study area. Modeled and observed shoreline retreat rates show no significant correlation. Thus in terms of the Bruun approach relative sea-level rise has no power for hindcasting (and presumably forecasting) rates of coastal erosion for the Louisiana barrier islands.

  12. WE-DE-BRA-08: A Linear Accelerator Target Allowing Rapid Switching Between Treatment and High-Contrast Imaging Modes

    Energy Technology Data Exchange (ETDEWEB)

    Yewondwossen, M; Robar, J; Parsons, D [Dalhousie University, Halifax, NS (Canada)

    2016-06-15

    Purpose: During radiotherapy treatment, lung tumors can display substantial respiratory motion. This motion usually necessitates enlarged treatment margins to provide full tumour coverage. Unfortunately, these margins limit the dose that can be prescribed for tumour control and cause complications to normal tissue. Options for real-time methods of direct detection of tumour position, and particularly those that obviate the need for inserted fiducial markers, are limited. We propose a method of tumor tracking without implanted fiducial markers using a novel fast switching-target that toggles between a FFF copper/tungsten therapy mode and a FFF low-Z target mode for imaging. In this work we demonstrate proof-of-concept of this new technology. Methods: The prototype includes two targets: i) a FFF copper/tungsten target equivalent to that in the Varian 2100 EX 6 MV, and ii) a low-Z (carbon) target with a thickness of 110% of continuous slowing down approximation range (CSDA) at 7 MeV. The two targets can be exchanged with a custom made linear slide and motor-driven actuator. The usefulness of the switching-target concept is demonstrated through experimental BEV Planar images acquired with continual treatment and imaging at a user-defined period. Results: The prototype switching-target demonstrates that two recent advances in linac technology (FFF target for therapy and low-Z target) can be combined with synergy. The switching-target approach offers the capacity for rapid switching between treatment and high-contrast imaging modes, allowing intrafractional tracking, as demonstrated in this work with dynamic breathing phantom. By using a single beam-line, the design is streamlined and may obviate the need for an auxiliary imaging system (e.g., kV OBI.) Conclusion: This switching-target approach is a feasible combination of two current advances in linac technology (FFF target for therapy and a FFF low-Z target) allowing new options in on-line IGRT.

  13. Accelerated Combinatorial High Throughput Star Polymer Synthesis via a Rapid One-Pot Sequential Aqueous RAFT (rosa-RAFT) Polymerization Scheme.

    Science.gov (United States)

    Cosson, Steffen; Danial, Maarten; Saint-Amans, Julien Rosselgong; Cooper-White, Justin J

    2017-04-01

    Advanced polymerization methodologies, such as reversible addition-fragmentation transfer (RAFT), allow unprecedented control over star polymer composition, topology, and functionality. However, using RAFT to produce high throughput (HTP) combinatorial star polymer libraries remains, to date, impracticable due to several technical limitations. Herein, the methodology "rapid one-pot sequential aqueous RAFT" or "rosa-RAFT," in which well-defined homo-, copolymer, and mikto-arm star polymers can be prepared in very low to medium reaction volumes (50 µL to 2 mL) via an "arm-first" approach in air within minutes, is reported. Due to the high conversion of a variety of acrylamide/acrylate monomers achieved during each successive short reaction step (each taking 3 min), the requirement for intermediary purification is avoided, drastically facilitating and accelerating the star synthesis process. The presented methodology enables RAFT to be applied to HTP polymeric bio/nanomaterials discovery pipelines, in which hundreds of complex polymeric formulations can be rapidly produced, screened, and scaled up for assessment in a wide range of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy

    Science.gov (United States)

    Schiavi, A.; Senzacqua, M.; Pioli, S.; Mairani, A.; Magro, G.; Molinelli, S.; Ciocca, M.; Battistoni, G.; Patera, V.

    2017-09-01

    Ion beam therapy is a rapidly growing technique for tumor radiation therapy. Ions allow for a high dose deposition in the tumor region, while sparing the surrounding healthy tissue. For this reason, the highest possible accuracy in the calculation of dose and its spatial distribution is required in treatment planning. On one hand, commonly used treatment planning software solutions adopt a simplified beam-body interaction model by remapping pre-calculated dose distributions into a 3D water-equivalent representation of the patient morphology. On the other hand, Monte Carlo (MC) simulations, which explicitly take into account all the details in the interaction of particles with human tissues, are considered to be the most reliable tool to address the complexity of mixed field irradiation in a heterogeneous environment. However, full MC calculations are not routinely used in clinical practice because they typically demand substantial computational resources. Therefore MC simulations are usually only used to check treatment plans for a restricted number of difficult cases. The advent of general-purpose programming GPU cards prompted the development of trimmed-down MC-based dose engines which can significantly reduce the time needed to recalculate a treatment plan with respect to standard MC codes in CPU hardware. In this work, we report on the development of fred, a new MC simulation platform for treatment planning in ion beam therapy. The code can transport particles through a 3D voxel grid using a class II MC algorithm. Both primary and secondary particles are tracked and their energy deposition is scored along the trajectory. Effective models for particle-medium interaction have been implemented, balancing accuracy in dose deposition with computational cost. Currently, the most refined module is the transport of proton beams in water: single pencil beam dose-depth distributions obtained with fred agree with those produced by standard MC codes within 1-2% of the

  15. Comparative study of ageing, heat treatment and accelerated carbonation for stabilization of municipal solid waste incineration bottom ash in view of reducing regulated heavy metal/metalloid leaching.

    Science.gov (United States)

    Santos, Rafael M; Mertens, Gilles; Salman, Muhammad; Cizer, Özlem; Van Gerven, Tom

    2013-10-15

    This study compared the performance of four different approaches for stabilization of regulated heavy metal and metalloid leaching from municipal solid waste incineration bottom ash (MSWI-BA): (i) short term (three months) heap ageing, (ii) heat treatment, (iii) accelerated moist carbonation, and (iv) accelerated pressurized slurry carbonation. Two distinct types of MSWI-BA were tested in this study: one originating from a moving-grate furnace incineration operation treating exclusively household refuse (sample B), and another originating from a fluid-bed furnace incineration operation that treats a mixture of household and light industrial wastes (sample F). The most abundant elements in the ashes were Si (20-27 wt.%) and Ca (16-19 wt.%), followed by significant quantities of Fe, Al, Na, S, K, Mg, Ti, and Cl. The main crystalline substances present in the fresh ashes were Quartz, Calcite, Apatite, Anhydrite and Gehlenite, while the amorphous fraction ranged from 56 to 73 wt.%. The leaching values of all samples were compared to the Flemish (NEN 7343) and the Walloon (DIN 38414) regulations from Belgium. Batch leaching of the fresh ashes at natural pH showed that seven elements exceeded at least one regulatory limit (Ba, Cr, Cu, Mo, Pb, Se and Zn), and that both ashes had excess basicity (pH > 12). Accelerated carbonation achieved significant reduction in ash basicity (9.3-9.9); lower than ageing (10.5-12.2) and heat treatment (11.1-12.1). For sample B, there was little distinction between the leaching results of ageing and accelerated carbonation with respect to regulatory limits; however carbonation achieved comparatively lower leaching levels. Heat treatment was especially detrimental to the leaching of Cr. For sample F, ageing was ineffective and heat treatment had marginally better results, while accelerated carbonation delivered the most effective performance, with slurry carbonation meeting all DIN limits. Slurry carbonation was deemed the most

  16. Accelerating the energy policy turnaround with combined heat and power units; Mit Blockheizkraftwerken die Energiewende rund machen

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Joerg; Geiler, Nikolaus [Klimabuendnis Freiburg, Freiburg im Breisgau (Germany)

    2013-03-15

    No other type of decentralized power plants transforms natural gas to electric power so efficiently as a combined heat and power unit. In the long term, the climate-friendly effect using renewable hydrogen or renewably generated 'natural gas' even could be increased. Thus, combined heat and power units are ideal to achieve the national climate change objectives. Despite their advantages, the implementation of combined heat and power units advances only sluggishly.

  17. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Directory of Open Access Journals (Sweden)

    M.A. Imran

    2018-03-01

    Full Text Available The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest’s and Tzou’s algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary we found that viscous (fractional and ordinary fluids are swiftest than Maxwell (fractional and ordinary fluids. Keywords: Free convection, Slip, Maxwell fluid, Newtonian heating, Exponentially accelerated plate, Caputo-Fabrizio fractional derivatives, Stehfest’s and Tzou’s algorithms

  18. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  19. The transgenerational effects of heat stress in the nematode Caenorhabditis remanei are negative and rapidly eliminated under direct selection for increased stress resistance in larvae.

    Science.gov (United States)

    Sikkink, Kristin L; Ituarte, Catherine M; Reynolds, Rose M; Cresko, William A; Phillips, Patrick C

    2014-12-01

    Parents encountering stress environments can influence the phenotype of their offspring in a form of transgenerational phenotypic plasticity that has the potential to be adaptive if offspring are thereby better able to deal with future stressors. Here, we test for the existence of anticipatory parental effects in the heat stress response in the highly polymorphic nematode Caenorhabditis remanei. Rather providing an anticipatory response, parents subject to a prior heat stress actually produce offspring that are less able to survive a severe heat shock. Selection on heat shock resistance within the larvae via experimental evolution leads to a loss of sensitivity (robustness) to environmental variation during both the parental and larval periods. Whole genome transcriptional analysis of both ancestor and selected lines shows that there is weak correspondence between genetic pathways induced via temperature shifts during parental and larval periods. Parental effects can evolve very rapidly via selection acting directly on offspring. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Low-Cost and Rapid Fabrication of Metallic Nanostructures for Sensitive Biosensors Using Hot-Embossing and Dielectric-Heating Nanoimprint Methods

    Directory of Open Access Journals (Sweden)

    Kuang-Li Lee

    2017-07-01

    Full Text Available We propose two approaches—hot-embossing and dielectric-heating nanoimprinting methods—for low-cost and rapid fabrication of periodic nanostructures. Each nanofabrication process for the imprinted plastic nanostructures is completed within several seconds without the use of release agents and epoxy. Low-cost, large-area, and highly sensitive aluminum nanostructures on A4 size plastic films are fabricated by evaporating aluminum film on hot-embossing nanostructures. The narrowest bandwidth of the Fano resonance is only 2.7 nm in the visible light region. The periodic aluminum nanostructure achieves a figure of merit of 150, and an intensity sensitivity of 29,345%/RIU (refractive index unit. The rapid fabrication is also achieved by using radio-frequency (RF sensitive plastic films and a commercial RF welding machine. The dielectric-heating, using RF power, takes advantage of the rapid heating/cooling process and lower electric power consumption. The fabricated capped aluminum nanoslit array has a 5 nm Fano linewidth and 490.46 nm/RIU wavelength sensitivity. The biosensing capabilities of the metallic nanostructures are further verified by measuring antigen–antibody interactions using bovine serum albumin (BSA and anti-BSA. These rapid and high-throughput fabrication methods can benefit low-cost, highly sensitive biosensors and other sensing applications.

  1. Acceleration theorems

    International Nuclear Information System (INIS)

    Palmer, R.

    1994-06-01

    Electromagnetic fields can be separated into near and far components. Near fields are extensions of static fields. They do not radiate, and they fall off more rapidly from a source than far fields. Near fields can accelerate particles, but the ratio of acceleration to source fields at a distance R, is always less than R/λ or 1, whichever is smaller. Far fields can be represented as sums of plane parallel, transversely polarized waves that travel at the velocity of light. A single such wave in a vacuum cannot give continuous acceleration, and it is shown that no sums of such waves can give net first order acceleration. This theorem is proven in three different ways; each method showing a different aspect of the situation

  2. Thermo-structural analysis of the rf-induced pulsed surface heating of the CLIC accelerating structures

    CERN Document Server

    Huopana, Jouni Juhani

    2006-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider. The acceleration of the particles is done by RF (Radio Frequency). The surfaces of the RF (radio frequency) accelerating cavities are exposed to high pulsed RF currents which induce cyclic thermal stresses. These cyclic stresses are crucial for the fatigue lifetime of the cavities. To study the fatigue phenomenon properly the induced stresses must be well known. ANSYS FEM simulations were made to study the thermo-structural behaviour of the CLIC accelerating structure in copper zirconium, bimetallic and diamond coated constructions. The simulations showed the existence of high thermal stresses and low stress level shockwaves. It was also shown that the bimetallic structure increases stress values due to the differences in material properties. Diamond coating was found to reduce the thermal stresses.

  3. Effect of Hall current and chemical reaction on MHD flow along an exponentially accelerated porous flat plate with internal heat absorption/generation

    International Nuclear Information System (INIS)

    Rath, Pravat Kumar; Dash, G.C.; Patra, Ajit Kumar

    2010-01-01

    Effect of Hall current on the unsteady free convection flow of an electrically conducting incompressible viscous fluid past an exponentially accelerated vertical porous flat plate with internal heat absorption/generation in the presence of foreign gases (such as H 2 , CO 2 , H 2 O, NH 3 ) and chemical reaction has been investigated. An uniform magnetic field transverse to the plate has been applied. The effects of the Hall current m, the hydromagnetic parameter Mt, the chemical reaction parameter K c the Grashof number for heat transfer G r , the Grashof number for mass transfer G c , the Schmidt number S c , the Prandtl number P r and the transpiration parameter α are discussed in detail. (author)

  4. Beam loss reduction by injection painting in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2012-04-01

    Full Text Available The 3-GeV rapid cycling synchrotron (RCS of the Japan Proton Accelerator Research Complex was commissioned in October 2007. Via the initial beam tuning and a series of underlying beam studies with low-intensity beams, since December 2009, we have intermittently been performing beam tuning experiments with higher-intensity beams including the injection painting technique. By optimizing the injection painting parameters, we have successfully achieved a 420 kW-equivalent output intensity at a low-level intensity loss of less than 1%. Also the corresponding numerical simulation well reproduced the observed painting parameter dependence on the beam loss, and captured a characteristic behavior of the high-intensity beam in the injection painting process. In this paper, we present the experimental results obtained in the course of the RCS beam power ramp-up, especially on the beam loss reduction achieved by employing the injection painting, together with the numerical simulation results.

  5. Direct observation of the phase space footprint of a painting injection in the Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    P. K. Saha

    2009-04-01

    Full Text Available The 3 GeV Rapid Cycling Synchrotron (RCS at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.

  6. Direct observation of the phase space footprint of a painting injection in the Rapid Cycling Synchrotron at the Japan Proton Accelerator Research Complex

    Science.gov (United States)

    Saha, P. K.; Shobuda, Y.; Hotchi, H.; Hayashi, N.; Takayanagi, T.; Harada, H.; Irie, Y.

    2009-04-01

    The 3 GeV Rapid Cycling Synchrotron (RCS) at Japan Proton Accelerator Research Complex is nearly at the operational stage with regard to the beam commissioning aspects. Recently, the design painting injection study has been commenced with the aim of high output beam power at the extraction. In order to observe the phase space footprint of the painting injection, a method was developed utilizing a beam position monitor (BPM) in the so-called single pass mode. The turn-by-turn phase space coordinates of the circulating beam directly measured using a pair of BPMs entirely positioned in drift space, and the calculated transfer matrices from the injection point to the pair of BPMs with several successive turns were used together in order to obtain the phase space footprint of the painting injection. There are two such pairs of BPMs placed in two different locations in the RCS, the results from which both agreed and were quite consistent with what was expected.

  7. Feasibility of a Miniature Esophageal Heat Exchange Device for Rapid Therapeutic Cooling in Newborns: Preliminary Investigations in a Piglet Model.

    Science.gov (United States)

    Dingley, John; Okano, Satomi; Planas, Silvia; Chakkarapani, Elavazhagan

    2018-03-01

    Therapeutic hypothermia (TH) after neonatal encephalopathy, commonly provided by 72 hours of whole-body cooling using a wrap, limits parents' physical contact with their infants affecting bonding and may not be suitable for encephalopathic preterm infants with fragile skin. Alternative cooling methods are unavailable for this population. We investigated in a neonatal pig model the feasibility of achieving a 3.5°C reduction in rectal temperature (T rectal ) similar to clinical TH protocols from 38.5°C (normothermia for pigs) to a target of 35°C ± 0.2°C, using a novel neonatal esophageal heat exchanger (NEHE), compared its efficacy to passive cooling, and investigated its ability to maintain target T rectal . Ventilated and anesthetized Landrace/Large white newborn pigs had the NEHE inserted. Water at adjustable temperatures and rates flowed down a central tube, returning up a surrounding distensible blind ending latex tube in a continuous loop. An initial experiment guided four subsequent cycles of passive cooling (30 minutes), rewarming to 38.5°C, active esophageal cooling to 35°C ± 0.2°C, active maintenance of target T rectal (30 minutes), and rewarming. We compared surface, rectal temperature, and hemodynamic changes among passive, active, and maintenance phases, and esophageal histopathology against control. Compared with passive cooling, esophageal cooling achieved target T rectal significantly earlier (71.3 minutes vs. 17.25 minutes, p = 0.003) with significantly greater rates of reduction in rectal (p = 0.0002) and surface (p = 0.005) temperatures and heart rate (p = 0.04). A water temperature of 39.1°C-40.2°C at a flow of 108-120 mL/min maintained T rectal around 35°C ± 0.2°C. The higher peak heart rate and blood pressure within 8 minutes of the maintenance phase (p = 0.04) subsequently stabilized. Histopathology showed congestion, edema, and neutrophil infiltration with increasing cycles. Esophageal cooling is

  8. Investigation of pellet acceleration by an arc heated gas gun. An interim report of the investigations carried out to 31 August 1985

    International Nuclear Information System (INIS)

    Andersen, S.A.; Bundgaard, J.; Jensen, V.O.; Nordskov, A.; Sass, B.; Soerensen, H.; Weisberg, K.V.

    1985-12-01

    Deep penetration of pellets into the JET plasma may prove to be a useful tool for density and profile control. In JET deep penetration will require pellet velocities and sizes above those obtained so far. An experimental setup designed for a study of acceleration of 3 mm diameter pellets by an arc heated gas gun is described. The aim of the work is to obtain pellet velocities well above 2 km/s. To obtain this aim will require a much more powerful power unit than the one that was available for the present work. Only a few results, obtained mostly during testing of the various parts of the setup, are presented. Although the obtained velocities are low (∝1500 m/s) the results are encouraging because they demonstrate that pellets can stand a high acceleration pressure without disintegrating. With a suitable power supply which can maintain this high acceleration pressure as the pellet moves all the way through the barrel, velocities above 2 km/s would certainly be expected. (orig.)

  9. Rapid, non-destructive and non-contact inspection of solid foods by means of photothermal radiometry; thermal effusivity and initial heating coefficient

    Science.gov (United States)

    Gijsbertsen, A.; Bicanic, D.; Gielen, J. L. W.; Chirtoc, M.

    2004-03-01

    CO 2-laser photothermal radiometry (PTR) was demonstrated to be suitable for the non-destructive and non-contact characterization (both optical and thermal) of solid phase agricultural commodities (fresh vegetables, fruits) and confectionery products (candy). Proper interpretation of PTR signals enable one to calculate two parameters, i.e. the well known thermal effusivity e ( e= λρc p, where λ and ρcp are the thermal conductivity and the volume specific heat, respectively) and a newly introduced physical quantity termed 'initial heating coefficient' chi ( χ= β/( ρcp), β is the absorption coefficient). Obtained values for e are in a good agreement with data reported in the literature. PTR enables one to rapidly determine e via a single measurement. As opposed to this, the knowledge of two out of three thermophysical parameters (thermal diffusivity, thermal conductivity and volume specific heat) is a condition sine qua non for determining effusivity in the conventional manner.

  10. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1993-01-01

    The authors have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (Intense Microwave, Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT), and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA, 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. The authors summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  11. The ETA-II linear induction accelerator and IMP wiggler: A high-average-power millimeter-wave free-electron-laser for plasma heating

    International Nuclear Information System (INIS)

    Allen, S.L.; Scharlemann, E.T.

    1992-05-01

    We have constructed a 140-GHz free-electron laser to generate high-average-power microwaves for heating the MTX tokamak plasma. A 5.5-m steady-state wiggler (intense Microwave Prototype-IMP) has been installed at the end of the upgraded 60-cell ETA-II accelerator, and is configured as an FEL amplifier for the output of a 140-GHz long-pulse gyrotron. Improvements in the ETA-II accelerator include a multicable-feed power distribution network, better magnetic alignment using a stretched-wire alignment technique (SWAT). and a computerized tuning algorithm that directly minimizes the transverse sweep (corkscrew motion) of the electron beam. The upgrades were first tested on the 20-cell, 3-MeV front end of ETA-II and resulted in greatly improved energy flatness and reduced corkscrew motion. The upgrades were then incorporated into the full 60-cell configuration of ETA-II, along with modifications to allow operation in 50-pulse bursts at pulse repetition frequencies up to 5 kHz. The pulse power modifications were developed and tested on the High Average Power Test Stand (HAPTS), and have significantly reduced the voltage and timing jitter of the MAG 1D magnetic pulse compressors. The 2-3 kA. 6-7 MeV beam from ETA-II is transported to the IMP wiggler, which has been reconfigured as a laced wiggler, with both permanent magnets and electromagnets, for high magnetic field operation. Tapering of the wiggler magnetic field is completely computer controlled and can be optimized based on the output power. The microwaves from the FEL are transmitted to the MTX tokamak by a windowless quasi-optical microwave transmission system. Experiments at MTX are focused on studies of electron-cyclotron-resonance heating (ECRH) of the plasma. We summarize here the accelerator and pulse power modifications, and describe the status of ETA-II, IMP, and MTX operations

  12. SU-F-T-284: The Effect of Linear Accelerator Output Variation On the Quality of Patient Specific Rapid Arc Verification Plans

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, G; Cao, F; Szpala, S; Kohli, K [Fraser Valley Cancer Centre, BC Cancer Agency, Surrey, British Columbia (Canada)

    2016-06-15

    Purpose: The aim of the current study is to investigate the effect of machine output variation on the delivery of the RapidArc verification plans. Methods: Three verification plans were generated using Eclipse™ treatment planning system (V11.031) with plan normalization value 100.0%. These plans were delivered on the linear accelerators using ArcCHECK− device, with machine output 1.000 cGy/MU at calibration point. These planned and delivered dose distributions were used as reference plans. Additional plans were created in Eclipse− with normalization values ranging 92.80%–102% to mimic the machine output ranging 1.072cGy/MU-0.980cGy/MU, at the calibration point. These plans were compared against the reference plans using gamma indices (3%, 3mm) and (2%, 2mm). Calculated gammas were studied for its dependence on machine output. Plans were considered passed if 90% of the points satisfy the defined gamma criteria. Results: The gamma index (3%, 3mm) was insensitive to output fluctuation within the output tolerance level (2% of calibration), and showed failures, when the machine output exceeds ≥3%. Gamma (2%, 2mm) was found to be more sensitive to the output variation compared to the gamma (3%, 3mm), and showed failures, when output exceeds ≥1.7%. The variation of the gamma indices with output variability also showed dependence upon the plan parameters (e.g. MLC movement and gantry rotation). The variation of the percentage points passing gamma criteria with output variation followed a non-linear decrease beyond the output tolerance level. Conclusion: Data from the limited plans and output conditions showed that gamma (2%, 2mm) is more sensitive to the output fluctuations compared to Gamma (3%,3mm). Work under progress, including detail data from a large number of plans and a wide range of output conditions, may be able to conclude the quantitative dependence of gammas on machine output, and hence the effect on the quality of delivered rapid arc plans.

  13. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    Science.gov (United States)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  14. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism

    DEFF Research Database (Denmark)

    Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki

    2015-01-01

    Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled...... to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples...... were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined...

  15. Effects of rotation on MHD flow past an accelerated isothermal vertical plate with heat and mass diffusion

    Directory of Open Access Journals (Sweden)

    Muthucumaraswamy R.

    2010-01-01

    Full Text Available An exact analysis of rotation effects on unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of transversely applied magnetic field has been presented. The plate temperature is raised to Tw and the concentration level near the plate is also raised to C′w . The dimensionless governing equations are solved using Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters like thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing magnetic field parameter.

  16. Phonons spreading from laser-heated gold nanoparticle array accelerate diffusion of excitons in an underlying polythiophene thin film

    Czech Academy of Sciences Publication Activity Database

    Rais, David; Menšík, Miroslav; Paruzel, Bartosz; Kurunthu, Dharmalingam; Pfleger, Jiří

    2017-01-01

    Roč. 19, č. 16 (2017), s. 10562-10570 ISSN 1463-9076 R&D Projects: GA MŠk(CZ) LO1507; GA MŠk(CZ) LD14011; GA ČR(CZ) GA15-05095S Grant - others:European Commission(XE) COST Action MP1202 HINT Institutional support: RVO:61389013 Keywords : P3HT * plasmon * laser-induced heating Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 4.123, year: 2016

  17. TEM Characterization and Properties of Cu-1 wt.% TiB2 Nanocomposite Prepared by Rapid Solidification and Subsequent Heat Treatment

    Directory of Open Access Journals (Sweden)

    M. Sobhani

    2012-12-01

    Full Text Available Copper matrix composite reinforced by 1wt.% TiB2 particles was prepared using in situ reaction of Cu-1.4wt.% Ti and Cu-0.7wt.% B by rapid solidification and subsequent heat treatment for 1-20 hrs at 900ºC. High-resolution transmission electron microscopy (HRTEM characterization showed that primary TiB2 particles were formed in liquid copper. Heat treatment of as-solidified samples led to the formation of secondary TiB2 particles via spinodal decomposition of titanium-rich zone inside the grains. Mechanical properties (after 50% reduction in area as well as electrical conductivity of composite were evaluated after heat treatment and were compared with those of pure copper. The results indicated that, due to the formation of secondary TiB2 particles in the matrix, electrical conductivity increased along with hardness up to 10 hrs of heat treatment and reached 65% IACS and 155 HV, respectively. Moreover, the maximum ultimate (i.e. 580 MPa and yield (i.e. 555 MPa strengths of composite were achieved at this time.

  18. Rapid differentiation of Listeria monocytogenes epidemic clones III and IV and their intact compared with heat-killed populations using Fourier transform infrared spectroscopy and chemometrics.

    Science.gov (United States)

    Nyarko, Esmond B; Puzey, Kenneth A; Donnelly, Catherine W

    2014-06-01

    The objectives of this study were to determine if Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis (chemometrics) could be used to rapidly differentiate epidemic clones (ECs) of Listeria monocytogenes, as well as their intact compared with heat-killed populations. FT-IR spectra were collected from dried thin smears on infrared slides prepared from aliquots of 10 μL of each L. monocytogenes ECs (ECIII: J1-101 and R2-499; ECIV: J1-129 and J1-220), and also from intact and heat-killed cell populations of each EC strain using 250 scans at a resolution of 4 cm(-1) in the mid-infrared region in a reflectance mode. Chemometric analysis of spectra involved the application of the multivariate discriminant method for canonical variate analysis (CVA) and linear discriminant analysis (LDA). CVA of the spectra in the wavelength region 4000 to 600 cm(-1) separated the EC strains while LDA resulted in a 100% accurate classification of all spectra in the data set. Further, CVA separated intact and heat-killed cells of each EC strain and there was 100% accuracy in the classification of all spectra when LDA was applied. FT-IR spectral wavenumbers 1650 to 1390 cm(-1) were used to separate heat-killed and intact populations of L. monocytogenes. The FT-IR spectroscopy method allowed discrimination between strains that belong to the same EC. FT-IR is a highly discriminatory and reproducible method that can be used for the rapid subtyping of L. monocytogenes, as well as for the detection of live compared with dead populations of the organism. Fourier transform infrared (FT-IR) spectroscopy and multivariate statistical analysis can be used for L. monocytogenes source tracking and for clinical case isolate comparison during epidemiological investigations since the method is capable of differentiating epidemic clones and it uses a library of well-characterized strains. The FT-IR method is potentially less expensive and more rapid compared to genetic

  19. Boundary layer flow of MHD generalized Maxwell fluid over an exponentially accelerated infinite vertical surface with slip and Newtonian heating at the boundary

    Science.gov (United States)

    Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.

    2018-03-01

    The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.

  20. Acceleration of peat drying by intensifying the heat and mass transfer; Turpeen kuivumisen nopeuttaminen laemmoen- ja aineensiirtoa tehostamalla

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrand, K.

    1996-12-31

    The efficiency of peat production can be increased by intensifying peat drying. To intensify drying one has to know the effects of the different factors affecting the heat and mass transfer in the drying layer and in the soil. The objective of the study is to increase the degree of utilization of solar energy in drying of peat from the present level of 30% to 40% of the total incoming solar energy. In this way it is possible to reduce the peat production costs about 10%. A numerical drying model has been developed which describes the transfer of liquid water, water vapor and heat in the drying layer and in the soil. In addition, the interaction between the atmosphere and the drying layer, as well as the rainfall interception by the layer, infiltration, evaporation, and drainage have been taking into account. Daily input requirements include global solar radiation, air temperature and relative humidity, wind speed and precipitation. In addition to the weather data one has to know the characteristics of the drying layer and the soil. The numerical drying model was also used to study the effect of soil frost on peat drying and the possibilities to hinder the frost formation. Producing peat on the field which is still partly frozen, the drying of peat takes 10 - 25% longer time than under normal conditions, which means 5 - 25 hours longer drying period. By forming a porous, insulating layer on the top of the soil surface, one can hinder the frost formation significantly. Raising the groundwater level prevents, however, only a little the frost formation in peat soil

  1. Rapid alkali catalyzed transesterification of microalgae lipids to biodiesel using simultaneous cooling and microwave heating and its optimization.

    Science.gov (United States)

    Chee Loong, Teo; Idris, Ani

    2014-12-01

    Biodiesel with improved yield was produced from microalgae biomass under simultaneous cooling and microwave heating (SCMH). Nannochloropsis sp. and Tetraselmis sp. which were known to contain higher lipid species were used. The yield obtained using this novel technique was compared with the conventional heating (CH) and microwave heating (MWH) as the control method. The results revealed that the yields obtained using the novel SCMH were higher; Nannochloropsis sp. (83.33%) and Tetraselmis sp. (77.14%) than the control methods. Maximum yields were obtained using SCMH when the microwave was set at 50°C, 800W, 16h of reaction with simultaneous cooling at 15°C; and water content and lipid to methanol ratio in reaction mixture was kept to 0 and 1:12 respectively. GC analysis depicted that the biodiesel produced from this technique has lower carbon components (<19 C) and has both reasonable CN and IV reflecting good ignition and lubricating properties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique.

    Science.gov (United States)

    Toker, Salih; Boone-Kukoyi, Zainab; Thompson, Nishone; Ajifa, Hillary; Clement, Travis; Ozturk, Birol; Aslan, Kadir

    2016-11-30

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2-20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20-39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation.

  3. Microwave Heating of Synthetic Skin Samples for Potential Treatment of Gout Using the Metal-Assisted and Microwave-Accelerated Decrystallization Technique

    Science.gov (United States)

    2016-01-01

    Physical stability of synthetic skin samples during their exposure to microwave heating was investigated to demonstrate the use of the metal-assisted and microwave-accelerated decrystallization (MAMAD) technique for potential biomedical applications. In this regard, optical microscopy and temperature measurements were employed for the qualitative and quantitative assessment of damage to synthetic skin samples during 20 s intermittent microwave heating using a monomode microwave source (at 8 GHz, 2–20 W) up to 120 s. The extent of damage to synthetic skin samples, assessed by the change in the surface area of skin samples, was negligible for microwave power of ≤7 W and more extensive damage (>50%) to skin samples occurred when exposed to >7 W at initial temperature range of 20–39 °C. The initial temperature of synthetic skin samples significantly affected the extent of change in temperature of synthetic skin samples during their exposure to microwave heating. The proof of principle use of the MAMAD technique was demonstrated for the decrystallization of a model biological crystal (l-alanine) placed under synthetic skin samples in the presence of gold nanoparticles. Our results showed that the size (initial size ∼850 μm) of l-alanine crystals can be reduced up to 60% in 120 s without damage to synthetic skin samples using the MAMAD technique. Finite-difference time-domain-based simulations of the electric field distribution of an 8 GHz monomode microwave radiation showed that synthetic skin samples are predicted to absorb ∼92.2% of the microwave radiation. PMID:27917407

  4. Study on residual stress across the pipes' thickness using outer surface rapid heating. Development of pipe outer surface irradiated laser stress improvement process (L-SIP)

    International Nuclear Information System (INIS)

    Ohta, Takahiro; Terasaki, Toshio

    2009-01-01

    The new process called L-SIP (outer surface irradiated Laser Stress Improvement Process) is developed to improve the tensile residual stress of the inner surface near the butt welded joints of pipes in the compression stress. The temperature gradient occurs in the thickness of pipes in heating the outer surface rapidly by laser beam. By the thermal expansion difference between the inner surface and the outer surface, the compression plastic strain generates near the outer surface and the tensile plastic strain generates near the inner surface of pipes. The compression stress occurs near the inner surface of pipes by the plastic deformation. In this paper, the theoretical equation which calculates residual stress distribution from the inherent strain distribution in the thickness of pipes is derived. And, the relation between the distribution of temperature and the residual stress in the thickness is examined for various pipes size. (1) By rapidly heating from the outer surface, the residual stress near the inner surface of the pipe is improved to the compression stress. (2) Pipes size hardly affects the distribution of the residual stress in the stainless steel pipes for piping (JISG3459). (3) The temperature rising area from the outside is smaller, the area of the compression residual stress near the inner surface becomes wider. (author)

  5. Effects of cavity surface temperature on mechanical properties of specimens with and without a weld line in rapid heat cycle molding

    International Nuclear Information System (INIS)

    Wang, Guilong; Zhao, Guoqun; Wang, Xiaoxin

    2013-01-01

    Highlights: ► Higher cavity surface temperature reduces tensile strength of non-weldline part. ► Higher cavity surface temperature increases weldline tensile strength for PS and PP. ► Higher cavity surface temperature reduces weldline tensile strength for ABS, ABS/PMMA, ABS/PMMA/nano-C a CO 3 and FRPP. ► Tensile strength is reduced more by the weldline than impact strength. ► FRPP has the lowest weld line factor than other plastics without reinforced fibers. - Abstract: Rapid heat cycle molding (RHCM) is a recently developed injection molding technology to enhance surface esthetic of the parts. By rapid heating and cooling of mold cavity surfaces in molding process, it can greatly alleviate or even eliminate the surface defects such as flow mark, weld line, glass fiber rich surface, silver mark, jetting mark, and swirl mark, and also improve gloss finish and dimensional accuracy without prolonging the molding cycle. Besides surface esthetic, mechanical property is also a very import issue for the molded plastic part. The aim of this study is focusing on the effects of the cavity surface temperature just before filling, T cs , in RHCM on the mechanical strength of the specimen with and without weld line. Six kinds of typical plastics including polystyrene (PS), polypropylene (PP), acrylonitrile butadiene styrene (ABS), acrylonitrile butadiene styrene/polymethylmethacrylate (ABS/PMMA), ABS/PMMA/nano-C a CO 3 and glass fiber reinforced polypropylene (FRPP) are used in experiments. The specimens with and without a weld line are produced with the different T cs on the developed electric-heating RHCM system. Tensile tests and notched Izod impact tests are conducted to characterize the mechanical strength of the specimens molded with different cavity surface temperatures. Simulations, differential scanning calorimetry (DSC), scanning electron microscope (SEM) and optical microscope are implemented to explain the impact mechanism of T cs on mechanical properties

  6. Properties and Developments of Combustion and Gasification of Coal and Char in a CO2-Rich and Recycled Flue Gases Atmosphere by Rapid Heating

    Directory of Open Access Journals (Sweden)

    Zhigang Li

    2012-01-01

    Full Text Available Combustion and gasification properties of pulverized coal and char have been investigated experimentally under the conditions of high temperature gradient of order 200°C·s−1 by a CO2 gas laser beam and CO2-rich atmospheres with 5% and 10% O2. The laser heating makes a more ideal experimental condition compared with previous studies with a TG-DTA, because it is able to minimize effects of coal oxidation and combustion by rapid heating process like radiative heat transfer condition. The experimental results indicated that coal weight reduction ratio to gases followed the Arrhenius equation with increasing coal temperature; further which were increased around 5% with adding H2O in CO2-rich atmosphere. In addition, coal-water mixtures with different water/coal mass ratio were used in order to investigate roles of water vapor in the process of coal gasification and combustion. Furthermore, char-water mixtures with different water/char mass ratio were also measured in order to discuss the generation ratio of CO/CO2, and specified that the source of Hydrocarbons is volatile matter from coal. Moreover, it was confirmed that generations of CO and Hydrocarbons gases are mainly dependent on coal temperature and O2 concentration, and they are stimulated at temperature over 1000°C in the CO2-rich atmosphere.

  7. Heat transfer analytical models for the rapid determination of cooling time in crystalline thermoplastic injection molding and experimental validation

    Science.gov (United States)

    Didier, Delaunay; Baptiste, Pignon; Nicolas, Boyard; Vincent, Sobotka

    2018-05-01

    Heat transfer during the cooling of a thermoplastic injected part directly affects the solidification of the polymer and consequently the quality of the part in term of mechanical properties, geometric tolerance and surface aspect. This paper proposes to mold designers a methodology based on analytical models to provide quickly the time to reach the ejection temperature depending of the temperature and the position of cooling channels. The obtained cooling time is the first step of the thermal conception of the mold. The presented methodology is dedicated to the determination of solidification time of a semi-crystalline polymer slab. It allows the calculation of the crystallization time of the part and is based on the analytical solution of the Stefan problem in a semi-infinite medium. The crystallization is then considered as a phase change with an effective crystallization temperature, which is obtained from Fast Scanning Calorimetry (FSC) results. The crystallization time is then corrected to take the finite thickness of the part into account. To check the accuracy of such approach, the solidification time is calculated by solving the heat conduction equation coupled to the crystallization kinetics of the polymer. The impact of the nature of the contact between the polymer and the mold is evaluated. The thermal contact resistance (TCR) appears as significant parameter that needs to be taken into account in the cooling time calculation. The results of the simplified model including or not TCR are compared in the case of a polypropylene (PP) with experiments carried out with an instrumented mold. Then, the methodology is applied for a part made with PolyEtherEtherKetone (PEEK).

  8. Japan Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation

  9. Japan Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1989-11-15

    At the international level, the high energy accelerator scene evolves rapidly and the International Conference on High Energy Accelerators is where its strong pulse can best be felt. This year, the Conference was held for the first time in Japan, with the 14th meeting in the series having been hosted in August by the Japanese KEK National Laboratory for High Energy Physics, Tsukuba. The venue was a recognition of the premier accelerator physics and technology status achieved by this diligent nation.

  10. Microstructure of rapidly solidified materials

    Science.gov (United States)

    Jones, H.

    1984-07-01

    The basic features of rapidly solidified microstructures are described and differences arising from alternative processing strategies are discussed. The possibility of achieving substantial undercooling prior to solidification in processes such as quench atomization and chill block melt spinning can give rise to striking microstructural transitions even when external heat extraction is nominally Newtonian. The increased opportunity in laser and electron beam surface melting for epitaxial growth on the parent solid at an accelerating rate, however, does not exclude the formation of nonequilibrium phases since the required undercooling can be locally attained at the solidification front which is itself advancing at a sufficiently high velocity. The effects of fluid flow indicated particularly in melt spinning and surface melting are additional to the transformational and heat flow considerations that form the present basis for interpretation of such microstructural effects.

  11. Towards the geophysical regime in numerical dynamo models: studies of rapidly-rotating convection driven dynamos with low Pm and constant heat flux boundary conditions

    DEFF Research Database (Denmark)

    Sheyko, A.A.; Finlay, Chris; Marti, P.

    We present a set of numerical dynamo models with the convection strength varied by a factor of 30 and the ratio of magnetic to viscous diffusivities by a factor of 20 at rapid rotation rates (E =nu/(2 Omega d^2 ) = 10-6 and 10-7 ) using a heat flux outer BC. This regime has been little explored...... on the structure of the dynamos and how this changes in relation to the selection of control parameters, a comparison with the proposed rotating convection and dynamo scaling laws, energy spectra of steady solutions and inner core rotation rates. Magnetic field on the CMB. E=2.959*10-7, Ra=6591.0, Pm=0.05, Pr=1....

  12. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Directory of Open Access Journals (Sweden)

    Kevin Magniez

    2013-08-01

    Full Text Available The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%.

  13. The Effect of a Rapid Heating Rate, Mechanical Vibration and Surfactant Chemistry on the Structure–Property Relationships of Epoxy/Clay Nanocomposites

    Science.gov (United States)

    Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn

    2013-01-01

    The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457

  14. Dike intrusions into bituminous coal, Illinois Basin: H, C, N, O isotopic responses to rapid and brief heating

    Science.gov (United States)

    Schimmelmann, A.; Mastalerz, Maria; Gao, L.; Sauer, P.E.; Topalov, K.

    2009-01-01

    Unlike long-term heating in subsiding sedimentary basins, the near-instantaneous thermal maturation of sedimentary organic matter near magmatic intrusions is comparable to artificial thermal maturation in the laboratory in terms of short duration and limited extent. This study investigates chemical and H, C, N, O isotopic changes in high volatile bituminous coal near two Illinois dike contacts and compares observed patterns and trends with data from other published studies and from artificial maturation experiments. Our study pioneers in quantifying isotopically exchangeable hydrogen and measuring the D/H (i.e., 2H/1H) ratio of isotopically non-exchangeable organic hydrogen in kerogen near magmatic contacts. Thermal stress in coal caused a reduction of isotopically exchangeable hydrogen in kerogen from 5% to 6% in unaltered coal to 2-3% at contacts, mostly due to elimination of functional groups (e.g., {single bond}OH, {single bond}COOH, {single bond}NH2). In contrast to all previously published data on D/H in thermally matured organic matter, the more mature kerogen near the two dike contacts is D-depleted, which is attributed to (i) thermal elimination of D-enriched functional groups, and (ii) thermal drying of hydrologically isolated coal prior to the onset of cracking reactions, thereby precluding D-transfer from relatively D-enriched water into kerogen. Maxima in organic nitrogen concentration and in the atomic N/C ratio of kerogen at a distance of ???2.5 to ???3.5 m from the thicker dike indicate that reactive N-compounds had been pyrolytically liberated at high temperature closer to the contact, migrated through the coal seam, and recombined with coal kerogen in a zone of lower temperature. The same principle extends to organic carbon, because a strong ??13Ckerogen vs. ??15Nkerogen correlation across 5.5 m of coal adjacent to the thicker dike indicates that coal was functioning as a flow-through reactor along a dynamic thermal gradient facilitating back

  15. Laser acceleration

    Science.gov (United States)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-02-01

    The fundamental idea of Laser Wakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wakefields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ˜ c and ultrafastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nanomaterials is also emerging.

  16. Laser acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Nakajima, K.; Mourou, G.

    2017-01-01

    The fundamental idea of LaserWakefield Acceleration (LWFA) is reviewed. An ultrafast intense laser pulse drives coherent wakefield with a relativistic amplitude robustly supported by the plasma. While the large amplitude of wake fields involves collective resonant oscillations of the eigenmode of the entire plasma electrons, the wake phase velocity ∼ c and ultra fastness of the laser pulse introduce the wake stability and rigidity. A large number of worldwide experiments show a rapid progress of this concept realization toward both the high-energy accelerator prospect and broad applications. The strong interest in this has been spurring and stimulating novel laser technologies, including the Chirped Pulse Amplification, the Thin Film Compression, the Coherent Amplification Network, and the Relativistic Mirror Compression. These in turn have created a conglomerate of novel science and technology with LWFA to form a new genre of high field science with many parameters of merit in this field increasing exponentially lately. This science has triggered a number of worldwide research centers and initiatives. Associated physics of ion acceleration, X-ray generation, and astrophysical processes of ultrahigh energy cosmic rays are reviewed. Applications such as X-ray free electron laser, cancer therapy, and radioisotope production etc. are considered. A new avenue of LWFA using nano materials is also emerging.

  17. Accelerating dynamic genetic conservation efforts: Use of FT-IR spectroscopy for the rapid identification of trees resistant to destructive pathogens

    Science.gov (United States)

    C. Villari; R.A. Sniezko; L.E. Rodriguez-Saona; P. Bonello

    2017-01-01

    A strong focus on tree germplasm that can resist threats such as non-native insects and pathogens, or a changing climate, is fundamental for successful genetic conservation efforts. However, the unavailability of tools for rapid screening of tree germplasm for resistance to critical pathogens and insect pests is becoming an increasingly serious bottleneck. Here we...

  18. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol) for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Wang, Shea-Jue; Hsia, Mao-Yuan; Lee, Win-Der; Huang, Bohr-Ran

    2017-01-01

    In this study, a proposed Microwave-Induction Heating (MIH) scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO) metal below the Poly(4-vinylphenol) (PVP) film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit) was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min) and low-power microwave-irradiation (50 W). PMID:28773101

  19. Investigation of Rapid Low-Power Microwave-Induction Heating Scheme on the Cross-Linking Process of the Poly(4-vinylphenol for the Gate Insulator of Pentacene-Based Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2017-07-01

    Full Text Available In this study, a proposed Microwave-Induction Heating (MIH scheme has been systematically studied to acquire suitable MIH parameters including chamber pressure, microwave power and heating time. The proposed MIH means that the thin indium tin oxide (ITO metal below the Poly(4-vinylphenol (PVP film is heated rapidly by microwave irradiation and the heated ITO metal gate can heat the PVP gate insulator, resulting in PVP cross-linking. It is found that the attenuation of the microwave energy decreases with the decreasing chamber pressure. The optimal conditions are a power of 50 W, a heating time of 5 min, and a chamber pressure of 20 mTorr. When suitable MIH parameters were used, the effect of PVP cross-linking and the device performance were similar to those obtained using traditional oven heating, even though the cross-linking time was significantly decreased from 1 h to 5 min. Besides the gate leakage current, the interface trap state density (Nit was also calculated to describe the interface status between the gate insulator and the active layer. The lowest interface trap state density can be found in the device with the PVP gate insulator cross-linked by using the optimal MIH condition. Therefore, it is believed that the MIH scheme is a good candidate to cross-link the PVP gate insulator for organic thin-film transistor applications as a result of its features of rapid heating (5 min and low-power microwave-irradiation (50 W.

  20. Can Accelerators Accelerate Learning?

    International Nuclear Information System (INIS)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-01-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ)[1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  1. Can Accelerators Accelerate Learning?

    Science.gov (United States)

    Santos, A. C. F.; Fonseca, P.; Coelho, L. F. S.

    2009-03-01

    The 'Young Talented' education program developed by the Brazilian State Funding Agency (FAPERJ) [1] makes it possible for high-schools students from public high schools to perform activities in scientific laboratories. In the Atomic and Molecular Physics Laboratory at Federal University of Rio de Janeiro (UFRJ), the students are confronted with modern research tools like the 1.7 MV ion accelerator. Being a user-friendly machine, the accelerator is easily manageable by the students, who can perform simple hands-on activities, stimulating interest in physics, and getting the students close to modern laboratory techniques.

  2. Plasma accelerators

    International Nuclear Information System (INIS)

    Bingham, R.; Angelis, U. de; Johnston, T.W.

    1991-01-01

    Recently attention has focused on charged particle acceleration in a plasma by a fast, large amplitude, longitudinal electron plasma wave. The plasma beat wave and plasma wakefield accelerators are two efficient ways of producing ultra-high accelerating gradients. Starting with the plasma beat wave accelerator (PBWA) and laser wakefield accelerator (LWFA) schemes and the plasma wakefield accelerator (PWFA) steady progress has been made in theory, simulations and experiments. Computations are presented for the study of LWFA. (author)

  3. Linear Accelerators

    International Nuclear Information System (INIS)

    Vretenar, M

    2014-01-01

    The main features of radio-frequency linear accelerators are introduced, reviewing the different types of accelerating structures and presenting the main characteristics aspects of linac beam dynamics

  4. Ultra-high vacuum photoelectron linear accelerator

    Science.gov (United States)

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  5. Accelerator Service

    International Nuclear Information System (INIS)

    Champelovier, Y.; Ferrari, M.; Gardon, A.; Hadinger, G.; Martin, J.; Plantier, A.

    1998-01-01

    Since the cessation of the operation of hydrogen cluster accelerator in July 1996, four electrostatic accelerators were in operation and used by the peri-nuclear teams working in multidisciplinary collaborations. These are the 4 MV Van de Graaff accelerator, 2,5 MV Van de Graaff accelerator, 400 kV ion implanter as well as the 120 kV isotope separator

  6. Comparative evaluation of bivalent malaria rapid diagnostic tests versus traditional methods in field with special reference to heat stability testing in Central India.

    Directory of Open Access Journals (Sweden)

    Neeru Singh

    Full Text Available Malaria presents a diagnostic challenge in areas where both Plasmodium falciparum and P.vivax are co-endemic. Bivalent Rapid Diagnostic tests (RDTs showed promise as diagnostic tools for P.falciparum and P.vivax. To assist national malaria control programme in the selection of RDTs, commercially available seven malaria RDTs were evaluated in terms of their performance with special reference to heat stability.This study was undertaken in four forested districts of central India (July, 2011- March, 2012. All RDTs were tested simultaneously in field along with microscopy as gold standard. These RDTs were stored in their original packing at 25°C before transport to the field or they were stored at 35°C and 45°C upto 100 days for testing the performance of RDTs at high temperature. In all 2841 patients with fever were screened for malaria of which 26% were positive for P.falciparum, and 17% for P.vivax. The highest sensitivity of any RDT for P.falciparum was 98% (95% CI; 95.9-98.8 and lowest sensitivity was 76% (95% CI; 71.7-79.6. For P.vivax highest and lowest sensitivity for any RDT was 80% (95% CI; 94.9 - 83.9 and 20% (95% CI; 15.6-24.5 respectively. Heat stability experiments showed that most RDTs for P.falciparum showed high sensitivity at 45°C upto 90 days. While for P.vivax only two RDTs maintained good sensitivity upto day 90 when compared with RDTs kept at room temperature. Agreement between observers was excellent for positive and negative readings for both P.falciparum and P.vivax (Kappa >0.6-0.9.This is first field evaluation of RDTs regarding their temperature stability. Although RDTs are useful as diagnostic tool for P.falciparum and P.vivax even at high temperature, the quality of RDTs should be regulated and monitored more closely.

  7. FFAGS for muon acceleration

    International Nuclear Information System (INIS)

    Berg, J. Scott; Kahn, Stephen; Palmer, Robert; Trbojevic, Dejan; Johnstone, Carol; Keil, Eberhard; Aiba, Masamitsu; Machida, Shinji; Mori, Yoshiharu; Ogitsu, Toru; Ohmori, Chihiro; Sessler, Andrew; Koscielniak, Shane

    2003-01-01

    Due to their finite lifetime, muons must be accelerated very rapidly. It is challenging to make the magnets ramp fast enough to accelerate in a synchrotron, and accelerating in a linac is very expensive. One can use a recirculating accelerator (like CEBAF), but one needs a different arc for each turn, and this limits the number of turns one can use to accelerate, and therefore requires significant amounts of RF to achieve the desired energy gain. An alternative method for muon acceleration is using a fixed field alternating gradient (FFAG) accelerator. Such an accelerator has a very large energy acceptance (a factor of two or three), allowing one to use the same arc with a magnetic field that is constant over time. Thus, one can in principle make as many turns as one can tolerate due to muon decay, therefore reducing the RF cost without increasing the arc cost. This paper reviews the current status of research into the design of FFAGs for muon acceleration. Several current designs are described and compared. General design considerations are also discussed

  8. Plasma based accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Caldwell, Allen [Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2015-05-01

    The concept of laser-induced plasma wakefields as a technique to accelerate charged particles was introduced 35 years ago as a means to go beyond the accelerating gradients possible with metallic cavities supporting radio frequency electromagnetic fields. Significant developments in laser technology have made possible the pulse intensity needed to realize this concept, and rapid progress is now underway in the realization of laser-driven plasma wakefield acceleration. It has also been realized that similar accelerating gradients can be produced by particle beams propagating in plasmas, and experimental programs have also been undertaken to study this possibility. Positive results have been achieved with electron-driven plasma wakefields, and a demonstration experiment with proton-driven wakefields is under construction at CERN. The concepts behind these different schemes and their pros and cons are described, as well as the experimental results achieved. An outlook for future practical uses of plasma based accelerators will also be given.

  9. Rapid Identification and Quantification of Natural Antioxidants in the Seeds of Rhubarb from Different Habitats in China Using Accelerated Solvent Extraction and HPLC-DAD-ESI-MSn-DPPH Assay.

    Science.gov (United States)

    Tan, Liang; Geng, Dan-dan; Hu, Feng-zu; Dong, Qi

    2016-01-01

    In this study, the 10 accessions of rhubarb seeds from different habitats in China were investigated. Lipids were removed using petroleum ether, and the effective components were then separated using accelerated solvent extraction with 80% aqueous methanol. An off-line 2,2-diphenyl-1-picrylhydrazyl (DPPH) free-radical scavenging method was used as the marker to evaluate the total antioxidant capability of extracts. On-line high-performance liquid chromatography-diode-array detectors-electrospray ionization-tandem mass spectrometry (HPLC-DAD-ESI-MS(n)) and HPLC-DAD-DPPH assays were developed for rapid identification and quantification of individual free-radical scavengers in extracts of rhubarb seeds. Ten free-radical scavengers from methanolic extracts of the rhubarb seeds were screened, five of which were identified and quantitatively analyzed: epicatechin, myricetin, hyperoside, quercitrin and quercetin. All were identified in rhubarb seeds for the first time and can be regarded as the major potent antioxidants in rhubarb seeds due to representing most of the total free-radical scavenging activity. Preliminary analysis of structures was performed for another five antioxidants. Based on our validation results, the developed method can be used for rapid separation, convenient identification and quantification of the multiple antioxidative constituents in rhubarb seeds, featuring good quantification parameters, accuracy and precision. The results are important to clarify the material basis and therapeutic mechanism of rhubarb seeds. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. Electromagnetic compression gun for hypervelocity projectile acceleration

    International Nuclear Information System (INIS)

    Woo, J.T.

    1987-01-01

    The rapid acceleration of projectiles to very high velocities has applications in many areas. The general requirements for an effective system is simplicity, reliability, compactness and good efficiency. The authors developed a concept by using electromagnetic forces to compressionally heat a plasma to high temperature and pressure to serve as the propellant for the acceleration of projectiles. The concept shares the simplicity of the light gas gun, but because of the high temperature of the propellant, is capable of significantly higher performance. Unlike the electrothermal gun approach to raise the propellant temperature by resistive heating, the electromagnetic concept is more efficient at higher temperatures. Operationally, the concept resembles a railgun in requiring a large pulsed current to drive the system. However, the current flow in this case is entirely external to the gun barrel and is axisymmetric. Therefore, many of the problems associated with railgun operations are avoided. Furthermore, because the current channel is external, there is also greater flexibility in the choice of load impedance to match to the power supply. The concept can also be generalized to a multi-stage regenerative system driven by a pulse forming network to resemble a coaxial accelerator

  11. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  12. Radiation effects on heat transfer in heat exchangers, (2)

    International Nuclear Information System (INIS)

    Mori, Yasuo; Watanabe, Kenji; Taira, Tatsuji.

    1980-01-01

    In a high temperature gas-cooled reactor system, in which the working fluid exchanges heat at high temperature near 1000 deg C, the heat transfer acceleration by positively utilizing the radiation heat transfer between solid surfaces should be considered. This paper reports on the results of experiment and analysis for the effects of radiant heat on the heat transfer performance at elevated temperature by applying the heat transfer-accelerating method using radiators to the heat exchanger with tube bundle composed of two channels of heating and heated sides. As the test heat exchangers, a parallel counter flow exchanger and the cross flow exchanger simulating helical tubes were employed, and the results studied on the characteristics of each heat exchanger are described. The plates placed in parallel to flow in every space of the tube bundle arranged in a matrix were used as the heat transfer accelerator. The effects of acceleration with the plates were the increase of heat transmission from 12 to 24% and 12 to 38% in the parallel flow and cross flow heat exchangers, respectively. Also, it was clarified that the theoretical analysis, in which it was assumed that the region within pitch S and two radiator plates, with a heat-transferring tube placed at the center, is the minimum domain for calculation, and that the heat exchange by radiation occurs only between the domain and the adjacent domains, can estimate the heat transfer-accelerating effect and the temperature distribution in a heat exchanger with sufficient accuracy. (Wakatsuki, Y.)

  13. BC SEA Solar Hot Water Acceleration project

    Energy Technology Data Exchange (ETDEWEB)

    Harris, N.C. [BC Sustainable Energy Association, Victoria, BC (Canada)

    2005-07-01

    Although solar hot water heating is an environmentally responsible technology that reduces fossil fuel consumption and helps mitigate global climate change, there are many barriers to its widespread use. Each year, domestic water heating contributes nearly 6 million tonnes of carbon dioxide towards Canada's greenhouse gas emissions. The installation of solar water heaters can eliminate up to 2 tonnes of carbon dioxide emissions per household. The BC SEA Solar Hot Water Acceleration project was launched in an effort to demonstrate that the technology has the potential to be widely used in homes and businesses across British Columbia. One of the main barriers to the widespread use of solar hot water heating is the initial cost of the system. Lack of public awareness and understanding of the technology are other barriers. However, other jurisdictions around the world have demonstrated that the use of renewables are the product of conscious policy decisions, including low-cost financing and other subsidies that have created demand for these technologies. To this end, the BC SEA Solar Hot Water Acceleration project will test the potential for the rapid acceleration of solar water heating in pilot communities where barriers are removed. The objective of the project is to install 100 solar water systems in homes and 25 in businesses and institutions in communities in British Columbia by July 2007. The project will explore the financial barriers to the installation of solar hot water systems and produce an action plan to reduce these barriers. In addition to leading by example, the project will help the solar energy marketplace, mitigate climate change and improve energy efficiency.

  14. KEK digital accelerator

    Directory of Open Access Journals (Sweden)

    T. Iwashita

    2011-07-01

    Full Text Available The High Energy Accelerator Research Organization KEK digital accelerator (KEK-DA is a renovation of the KEK 500 MeV booster proton synchrotron, which was shut down in 2006. The existing 40 MeV drift tube linac and rf cavities have been replaced by an electron cyclotron resonance (ECR ion source embedded in a 200 kV high-voltage terminal and induction acceleration cells, respectively. A DA is, in principle, capable of accelerating any species of ion in all possible charge states. The KEK-DA is characterized by specific accelerator components such as a permanent magnet X-band ECR ion source, a low-energy transport line, an electrostatic injection kicker, an extraction septum magnet operated in air, combined-function main magnets, and an induction acceleration system. The induction acceleration method, integrating modern pulse power technology and state-of-art digital control, is crucial for the rapid-cycle KEK-DA. The key issues of beam dynamics associated with low-energy injection of heavy ions are beam loss caused by electron capture and stripping as results of the interaction with residual gas molecules and the closed orbit distortion resulting from relatively high remanent fields in the bending magnets. Attractive applications of this accelerator in materials and biological sciences are discussed.

  15. Poly(4-vinylphenol gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Directory of Open Access Journals (Sweden)

    Ching-Lin Fan

    2016-03-01

    Full Text Available A Microwave-Induction Heating (MIH scheme is proposed for the poly(4-vinylphenol (PVP gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  16. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    Science.gov (United States)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  17. Future accelerators (?)

    Energy Technology Data Exchange (ETDEWEB)

    John Womersley

    2003-08-21

    I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

  18. Rapid Tooling via Stereolithography

    OpenAIRE

    Montgomery, Eva

    2006-01-01

    Approximately three years ago, composite stereolithography (SL) resins were introduced to the marketplace, offering performance features beyond what traditional SL resins could offer. In particular, the high heat deflection temperatures and high stiffness of these highly filled resins have opened the door to several new rapid prototyping (RP) applications, including wind tunnel test modelling and, more recently, rapid tooling.

  19. Vasculature of the hive: heat dissipation in the honey bee ( Apis mellifera) hive

    Science.gov (United States)

    Bonoan, Rachael E.; Goldman, Rhyan R.; Wong, Peter Y.; Starks, Philip T.

    2014-06-01

    Eusocial insects are distinguished by their elaborate cooperative behavior and are sometimes defined as superorganisms. As a nest-bound superorganism, individuals work together to maintain favorable nest conditions. Residing in temperate environments, honey bees ( Apis mellifera) work especially hard to maintain brood comb temperature between 32 and 36 °C. Heat shielding is a social homeostatic mechanism employed to combat local heat stress. Workers press the ventral side of their bodies against heated surfaces, absorb heat, and thus protect developing brood. While the absorption of heat has been characterized, the dissipation of absorbed heat has not. Our study characterized both how effectively worker bees absorb heat during heat shielding, and where worker bees dissipate absorbed heat. Hives were experimentally heated for 15 min during which internal temperatures and heat shielder counts were taken. Once the heat source was removed, hives were photographed with a thermal imaging camera for 15 min. Thermal images allowed for spatial tracking of heat flow as cooling occurred. Data indicate that honey bee workers collectively minimize heat gain during heating and accelerate heat loss during cooling. Thermal images show that heated areas temporarily increase in size in all directions and then rapidly decrease to safe levels (<37 °C). As such, heat shielding is reminiscent of bioheat removal via the cardiovascular system of mammals.

  20. Rapid insight into heating-induced phase transformations in the solid state of the calcium salt of atorvastatin using multivariate data analysis

    DEFF Research Database (Denmark)

    Christensen, Niels Peter Aae; Van Eerdenbrugh, Bernard; Kwok, Kaho

    2013-01-01

    To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin.......To investigate the heating-induced dehydration and melting behavior of the trihydrate phase of the calcium salt of atorvastatin....

  1. The financial impact of the incorporation of IMRT and RapidArc™ techniques on shielding calculation of a linear accelerator; O impacto financeiro da incorporacao das tecnicas de IMRT e RapidArc™ no calculo de blindagem de um acelerador linear

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Maira R.; Silveira, Thiago B.; Garcia, Paulo L.; Trindade, Cassia; Martins, Lais P.; Batista, Delano V.S., E-mail: mairafisica@gmail.com [Instituto Nacional do Cancer (INCA), Rio de Janeiro, RJ (Brazil)

    2013-08-15

    Given the new methodology introduced in the shielding calculation due to recent modulated techniques in radiotherapy treatment, it became necessary to evaluate the impact of changes in the accelerator routine using such techniques. Based on a group of 30 patients from the National Cancer Institute (INCA) the workload multiplier factors for intensity modulated radiotherapy (IMRT factor) and for RapidArc™ (RA factor) were established. Four different routines in a 6 MV generic accelerator were proposed to estimate the impact of these modified workloads in the building cost of the secondary barriers. The results indicate that if 50% of patients are treating with IMRT, the secondary barrier becomes 14,1% more expensive than the barrier calculated for conformal treatments exclusive. While RA, in the same proportion, leads to a barrier only 3,7% more expensive. Showing that RA can, while reducing treatment time, increase the proportion of patients treated with modulation technique, without increasing the cost of the barrier, when compared with IMRT. (author)

  2. SSC accelerator availability allocation

    International Nuclear Information System (INIS)

    Dixon, K.T.; Franciscovich, J.

    1991-03-01

    Superconducting Super Collider (SSC) operational availability is an area of major concern, judged by the Central Design Group to present such risk that use of modern engineering tools would be essential to program success. Experience has shown that as accelerator beam availability falls below about 80%, efficiency of physics experiments degrades rapidly due to inability to maintain adequate coincident accelerator and detector operation. For this reason, the SSC availability goal has been set at 80%, even though the Fermi National Accelerator Laboratory accelerator, with a fraction of the SSC's complexity, has only recently approached that level. This paper describes the allocation of the top-level goal to part-level reliability and maintainability requirements, and it gives the results of parameter sensitivity studies designed to help identify the best approach to achieve the needed system availability within funding and schedule constraints. 1 ref., 12 figs., 4 tabs

  3. Beam loss caused by edge focusing of injection bump magnets and its mitigation in the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex

    Directory of Open Access Journals (Sweden)

    H. Hotchi

    2016-01-01

    Full Text Available In the 3-GeV rapid cycling synchrotron of the Japan Proton Accelerator Research Complex, transverse injection painting is utilized not only to suppress space-charge induced beam loss in the low energy region but also to mitigate foil scattering beam loss during charge-exchange injection. The space-charge induced beam loss is well minimized by the combination of modest transverse painting and full longitudinal painting. But, for sufficiently mitigating the foil scattering part of beam loss, the transverse painting area has to be further expanded. However, such a wide-ranging transverse painting had not been realized until recently due to beta function beating caused by edge focusing of pulsed injection bump magnets during injection. This beta function beating additionally excites random betatron resonances through a distortion of the lattice superperiodicity, and its resultant deterioration of the betatron motion stability causes significant extra beam loss when expanding the transverse painting area. To solve this issue, we newly installed pulse-type quadrupole correctors to compensate the beta function beating. This paper presents recent experimental results on this correction scheme for suppressing the extra beam loss, while discussing the beam loss and its mitigation mechanisms with the corresponding numerical simulations.

  4. Electrostatic accelerators

    OpenAIRE

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We ...

  5. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... exhaustion symptoms include cool, moist, pale or flushed skin; headache; dizziness; weakness; feeling exhausted; heavy sweating; nausea; ... stage of heat illness) include flushed, hot, dry skin; fainting; a rapid, weak pulse; rapid, shallow breathing; ...

  6. Electrostatic accelerators

    CERN Document Server

    Hinterberger, F

    2006-01-01

    The principle of electrostatic accelerators is presented. We consider Cockcroft– Walton, Van de Graaff and Tandem Van de Graaff accelerators. We resume high voltage generators such as cascade generators, Van de Graaff band generators, Pelletron generators, Laddertron generators and Dynamitron generators. The speci c features of accelerating tubes, ion optics and methods of voltage stabilization are described. We discuss the characteristic beam properties and the variety of possible beams. We sketch possible applications and the progress in the development of electrostatic accelerators.

  7. Accelerator development

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Because the use of accelerated heavy ions would provide many opportunities for new and important studies in nuclear physics and nuclear chemistry, as well as other disciplines, both the Chemistry and Physics Divisions are supporting the development of a heavy-ion accelerator. The design of greatest current interest includes a tandem accelerator with a terminal voltage of approximately 25 MV injecting into a linear accelerator with rf superconducting resonators. This combined accelerator facility would be capable of accelerating ions of masses ranging over the entire periodic table to an energy corresponding to approximately 10 MeV/nucleon. This approach, as compared to other concepts, has the advantages of lower construction costs, lower operating power, 100 percent duty factor, and high beam quality (good energy resolution, good timing resolution, small beam size, and small beam divergence). The included sections describe the concept of the proposed heavy-ion accelerator, and the development program aiming at: (1) investigation of the individual questions concerning the superconducting accelerating resonators; (2) construction and testing of prototype accelerator systems; and (3) search for economical solutions to engineering problems. (U.S.)

  8. RECIRCULATING ACCELERATION

    International Nuclear Information System (INIS)

    BERG, J.S.; GARREN, A.A.; JOHNSTONE, C.

    2000-01-01

    This paper compares various types of recirculating accelerators, outlining the advantages and disadvantages of various approaches. The accelerators are characterized according to the types of arcs they use: whether there is a single arc for the entire recirculator or there are multiple arcs, and whether the arc(s) are isochronous or non-isochronous

  9. LIBO accelerates

    CERN Multimedia

    2002-01-01

    The prototype module of LIBO, a linear accelerator project designed for cancer therapy, has passed its first proton-beam acceleration test. In parallel a new version - LIBO-30 - is being developed, which promises to open up even more interesting avenues.

  10. Accelerating Inspire

    CERN Document Server

    AUTHOR|(CDS)2266999

    2017-01-01

    CERN has been involved in the dissemination of scientific results since its early days and has continuously updated the distribution channels. Currently, Inspire hosts catalogues of articles, authors, institutions, conferences, jobs, experiments, journals and more. Successful orientation among this amount of data requires comprehensive linking between the content. Inspire has lacked a system for linking experiments and articles together based on which accelerator they were conducted at. The purpose of this project has been to create such a system. Records for 156 accelerators were created and all 2913 experiments on Inspire were given corresponding MARC tags. Records of 18404 accelerator physics related bibliographic entries were also tagged with corresponding accelerator tags. Finally, as a part of the endeavour to broaden CERN's presence on Wikipedia, existing Wikipedia articles of accelerators were updated with short descriptions and links to Inspire. In total, 86 Wikipedia articles were updated. This repo...

  11. Carbothermic Reduction Kinetics of Phosphorous Vaporization from Tri-calcium Phosphate (TCP) Under Microwave Rapid Heating With/Without the Presence of Fe3O4

    Science.gov (United States)

    Yoshikawa, Noboru; Sunako, Manami; Kawahira, Keita; Suzuki, Koki; Miyamoto, Kazunori; Taniguchi, Shoji

    2018-03-01

    The kinetics of vapor phase dephosphorization from tri-calcium phosphate (TCP) by carbothermic reduction was studied with and without the presence of Fe3O4. Microwave heating was utilized to obtain large variations in the heating rate (HR). In the reduction of TCP alone, the phosphorous removal fraction (RF; equal to ΔP2O5/P2O5 0 , where ΔP2O5 is the weight change and P2O5 0is the P2O5 weight before heating) decreased as the HR increased. In other words, a shorter residence time at a high temperature resulted in a smaller reduction fraction of TCP. An apparently third-order reaction was postulated to account for the kinetics using a fitting simulation based on the additive law of the reaction progress. On the other hand, the phosphorous removal (dephosphorization) rate (RR; equal to ΔP2O3/t MW, where tMW is the microwave heating time period) increased as the HR increased above 1200 °C. The reduction ratio of Fe3O4 above 1100 °C is higher than 97 pct regardless of the heating rate. The reduction of TCP in the presence of Fe3O4 showed that RF increased slightly with increasing HR despite a shorter residence time at a high temperature. The RR also increased with the HR even though RF decreased to half of the values observed in the cases without Fe3O4 for temperatures above 1200 °C. The practicality and optimal operation conditions of phosphorus vapor removal were discussed.

  12. Carbothermic Reduction Kinetics of Phosphorous Vaporization from Tri-calcium Phosphate (TCP) Under Microwave Rapid Heating With/Without the Presence of Fe3O4

    Science.gov (United States)

    Yoshikawa, Noboru; Sunako, Manami; Kawahira, Keita; Suzuki, Koki; Miyamoto, Kazunori; Taniguchi, Shoji

    2018-06-01

    The kinetics of vapor phase dephosphorization from tri-calcium phosphate (TCP) by carbothermic reduction was studied with and without the presence of Fe3O4. Microwave heating was utilized to obtain large variations in the heating rate (HR). In the reduction of TCP alone, the phosphorous removal fraction (RF; equal to ΔP2O5/P2O 5 0 , where ΔP2O5 is the weight change and P2O 5 0 is the P2O5 weight before heating) decreased as the HR increased. In other words, a shorter residence time at a high temperature resulted in a smaller reduction fraction of TCP. An apparently third-order reaction was postulated to account for the kinetics using a fitting simulation based on the additive law of the reaction progress. On the other hand, the phosphorous removal (dephosphorization) rate (RR; equal to ΔP2O3/ t MW, where tMW is the microwave heating time period) increased as the HR increased above 1200 °C. The reduction ratio of Fe3O4 above 1100 °C is higher than 97 pct regardless of the heating rate. The reduction of TCP in the presence of Fe3O4 showed that RF increased slightly with increasing HR despite a shorter residence time at a high temperature. The RR also increased with the HR even though RF decreased to half of the values observed in the cases without Fe3O4 for temperatures above 1200 °C. The practicality and optimal operation conditions of phosphorus vapor removal were discussed.

  13. Synthesis of renewable diesel through hydrodeoxygenation reaction from nyamplung oil (Calophyllum Inophyllum oil) using NiMo/Z and NiMo/C catalysts with rapid heating and cooling method

    Science.gov (United States)

    Susanto, B. H.; Prakasa, M. B.; Shahab, M. H.

    2016-11-01

    The synthesis of metal nanocrystal was conducted by modification preparation from simple heating method which heating and cooling process run rapidly. The result of NiMo/Z 575 °C characterizations are 33.73 m2/gram surface area and 31.80 nm crystal size. By used NiMo/C 700 °C catalyst for 30 minutes which had surface area of 263.21 m2/gram, had 31.77 nm crystal size, and good morphology, obtained catalyst with high activity, selectivity, and stability. After catalyst activated, synthesis of renewable diesel performed in hydrogenation reactor at 375 °C, 12 bar, and 800 rpm. The result of conversion was 81.99%, yield was 68.08%, and selectivity was 84.54%.

  14. FMIT accelerator

    International Nuclear Information System (INIS)

    Armstrong, D.D.

    1983-01-01

    A 35-MeV 100-mA cw linear accelerator is being designed by Los Alamos for use in the Fusion Materials Irradiation Test (FMIT) Facility. Essential to this program is the design, construction, and evaluation of performance of the accelerator's injector, low-energy beam transport, and radio-frequency quadrupole sections before they are shipped to the facility site. The installation and testing of some of these sections have begun as well as the testing of the rf, noninterceptive beam diagnostics, computer control, dc power, and vacuum systems. An overview of the accelerator systems and the performance to date is given

  15. Electron accelerator

    International Nuclear Information System (INIS)

    Abramyan.

    1981-01-01

    The USSR produces an electron accelerator family of a simple design powered straight from the mains. The specifications are given of accelerators ELITA-400, ELITA-3, ELT-2, TEUS-3 and RIUS-5 with maximum electron energies of 0.3 to 5 MeV, a mean power of 10 to 70 kW operating in both the pulsed and the continuous (TEUS-3) modes. Pulsed accelerators ELITA-400 and ELITA-3 and RIUS-5 in which TESLA resonance transformers are used are characterized by their compact size. (Ha)

  16. Future Accelerator Magnet Needs

    International Nuclear Information System (INIS)

    Devred, Arnaud; Gourlay, Stephen A.; Yamamoto, Akira

    2005-01-01

    Superconducting magnet technology is continually evolving in order to meet the demanding needs of new accelerators and to provide necessary upgrades for existing machines. A variety of designs are now under development, including high fields and gradients, rapid cycling and novel coil configurations. This paper presents a summary of R and D programs in the EU, Japan and the USA. A performance comparison between NbTi and Nb 3 Sn along with fabrication and cost issues are also discussed

  17. Horizontal Accelerator

    Data.gov (United States)

    Federal Laboratory Consortium — The Horizontal Accelerator (HA) Facility is a versatile research tool available for use on projects requiring simulation of the crash environment. The HA Facility is...

  18. LINEAR ACCELERATOR

    Science.gov (United States)

    Christofilos, N.C.; Polk, I.J.

    1959-02-17

    Improvements in linear particle accelerators are described. A drift tube system for a linear ion accelerator reduces gap capacity between adjacent drift tube ends. This is accomplished by reducing the ratio of the diameter of the drift tube to the diameter of the resonant cavity. Concentration of magnetic field intensity at the longitudinal midpoint of the external sunface of each drift tube is reduced by increasing the external drift tube diameter at the longitudinal center region.

  19. Materials considerations in accelerator targets

    International Nuclear Information System (INIS)

    Peacock, H. B. Jr.; Iyer, N. C.; Louthan, M. R. Jr.

    1995-01-01

    Future nuclear materials production and/or the burn-up of long lived radioisotopes may be accomplished through the capture of spallation produced neutrons in accelerators. Aluminum clad-lead and/or lead alloys has been proposed as a spallation target. Aluminum was the cladding choice because of the low neutron absorption cross section, fast radioactivity decay, high thermal conductivity, and excellent fabricability. Metallic lead and lead oxide powders were considered for the target core with the fabrication options being casting or powder metallurgy (PM). Scoping tests to evaluate gravity casting, squeeze casting, and casting and swaging processes showed that, based on fabricability and heat transfer considerations, squeeze casting was the preferred option for manufacture of targets with initial core cladding contact. Thousands of aluminum clad aluminum-lithium alloy core targets and control rods for tritium production have been fabricated by coextrusion processes and successfully irradiated in the SRS reactors. Tritium retention in, and release from, the coextruded product was modeled from experimental and operational data. The model assumed that tritium atoms, formed by the 6Li(n,a)3He reaction, were produced in solid solution in the Al-Li alloy. Because of the low solubility of hydrogen isotopes in aluminum alloys, the irradiated Al-Li rapidly became supersaturated in tritium. Newly produced tritium atoms were trapped by lithium atoms to form a lithium tritide. The effective tritium pressure required for trap or tritide stability was the equilibrium decomposition pressure of tritium over a lithium tritide-aluminum mixture. The temperature dependence of tritium release was determined by the permeability of the cladding to tritium and the local equilibrium at the trap sites. The model can be used to calculate tritium release from aluminum clad, aluminum-lithium alloy targets during postulated accelerator operational and accident conditions. This paper describes

  20. Acceleration of plasma into vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, John [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    The first part of this paper is a discussion of the magnetic acceleration of plasma. The second part contains a description of some experiments which have been performed. In the work reported the intention is: 1. To produce a burst of gas in vacuo; 2. To ionize the gas and heat it to such an extent that it becomes a good electrical conductor. 3. To accelerate the plasma thus produced into vacuum by the use of external time-varying magnetic fields.

  1. Upright heat exchanger

    International Nuclear Information System (INIS)

    Martoch, J.; Kugler, V.; Krizek, V.; Strmiska, F.

    1988-01-01

    The claimed heat exchanger is characteristic by the condensate level being maintained directly in the exchanger while preserving the so-called ''dry'' tube plate. This makes it unnecessary to build another pressure vessel into the circuit. The design of the heat exchanger allows access to both tube plates, which facilitates any repair. Another advantage is the possibility of accelerating the indication of leakage from the space of the second operating medium which is given by opening the drainage pipes of the lower bundle into the collar space and from there through to the indication pipe. The exchanger is especially suitable for deployment in the circuits of nuclear power plants where the second operating medium will be hot water of considerably lower purity than is that of the condensate. A rapid display of leakage can prevent any long-term penetration of this water into the condensate, which would result in worsening water quality in the entire secondary circuit of the nuclear power plant. (J.B.). 1 fig

  2. Estimation of energetic efficiency of heat supply in front of the aircraft at supersonic accelerated flight. Part II. Mathematical model of the trajectory boost part and computational results

    Science.gov (United States)

    Latypov, A. F.

    2009-03-01

    The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.

  3. Accelerator microanalysis

    International Nuclear Information System (INIS)

    Tuniz, C.

    1997-01-01

    Particle accelerators have been developed more than sixty years ago to investigate nuclear and atomic phenomena. A major shift toward applications of accelerators in the study of materials structure and composition in inter-disciplinary projects has been witnessed in the last two decades. The Australian Nuclear Science and Technology Organisation (ANSTO) has developed advanced research programs based on the use of particle and photon beams. Atmospheric pollution problems are investigated at the 3 MV Van de Graff accelerator using ion beam analysis techniques to detect toxic elements in aerosol particles. High temperature superconductor and semiconductor materials are characterised using the recoil of iodine and other heavy ions produced at ANTARES, the 10-MV Tandem accelerator. A heavy-ion microprobe is presently being developed at ANTARES to map elemental concentrations of specific elements with micro-size resolution. An Accelerator mass Spectrometry (AMS) system has been developed at ANSTO for the ultra-sensitive detection of Carbon-14, Iodine-129 and other long-lived radioisotopes. This AMS spectrometer is a key instrument for climate change studies and international safeguards. ANSTO is also managing the Australian Synchrotron Research program based on facilities developed at the Photon Factory (Japan) and at the Advanced Photon Source (USA). Advanced projects in biology, materials chemistry, structural condensed matter and other disciplines are being promoted by a consortium involving Australian universities and research institutions. This paper will review recent advances in the use of particle accelerators, with a particular emphasis on applications developed at ANSTO and related to problems of international concern, such as global environmental change, public health and nuclear proliferation

  4. Ion sources for electrostatic accelerators

    International Nuclear Information System (INIS)

    Hellborg, R.

    1998-01-01

    Maybe the most important part of an electrostatic accelerator system, and also often the most tricky part is the ion source. There has been a rapid growth in activity in ion-source research and development during the last two to three decades. Some of these developments have also been of benefit to electrostatic accelerator users. In this report some of the different types of ion sources used in electrostatic accelerators are described. The list is not complete but more an overview of some of the more commonly used sources. The description is divided into two groups; positive ion sources for single stage electrostatic accelerators and negative ion sources for two stages (i.e. tandem) accelerators

  5. HEAT TRANSFER METHOD

    Science.gov (United States)

    Gambill, W.R.; Greene, N.D.

    1960-08-30

    A method is given for increasing burn-out heat fluxes under nucleate boiling conditions in heat exchanger tubes without incurring an increase in pumping power requirements. This increase is achieved by utilizing a spinning flow having a rotational velocity sufficient to produce a centrifugal acceleration of at least 10,000 g at the tube wall. At this acceleration the heat-transfer rate at burn out is nearly twice the rate which can be achieved in a similar tube utilizing axial flow at the same pumping power. At higher accelerations the improvement over axial flow is greater, and heat fluxes in excess of 50 x 10/sup 6/ Btu/hr/sq ft can be achieved.

  6. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    This section is concerned with the operation of both the tandem-linac system and the Dynamitron, two accelerators that are used for entirely different research. Developmental activities associated with the tandem and the Dynamitron are also treated here, but developmental activities associated with the superconducting linac are covered separately because this work is a program of technology development in its own right

  7. CNSTN Accelerator

    International Nuclear Information System (INIS)

    Habbassi, Afifa; Trabelsi, Adel

    2010-01-01

    This project give a big idea about the measurement of the linear accelerator in the CNSTN. During this work we control dose distribution for different product. For this characterisation we have to make an installation qualification ,operational qualification,performance qualification and of course for every step we have to control temperature and the dose ,even the distribution of the last one.

  8. Accelerators course

    CERN Multimedia

    CERN. Geneva HR-RFA; Métral, E

    2006-01-01

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges

  9. Accelerator operations

    International Nuclear Information System (INIS)

    Anon.

    1979-01-01

    Operations of the SuperHILAC, the Bevatron/Bevalac, and the 184-inch Synchrocyclotron during the period from October 1977 to September 1978 are discussed. These include ion source development, accelerator facilities, the Heavy Ion Spectrometer System, and Bevelac biomedical operations

  10. Accelerator update

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS

  11. Accelerator update

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-09-15

    When the Accelerator Conference, combined International High Energy and US Particle versions, held in Dallas in May, was initially scheduled, progress nearby for the US Superconducting Supercollider was high on the preliminary agenda. With the SSC voted down by Congress in October 1993, this was no longer the case. However the content of the meeting, in terms of both its deep implications for ambitious new projects and the breadth of its scope, showed that the worldwide particle accelerator field is far from being moribund. A traditional feature of such accelerator conferences is the multiplicity of parallel sessions. No one person can attend all sessions, so that delegates can follow completely different paths and emerge with totally different impressions. Despite this overload, and despite the SSC cancellation, the general picture is one of encouraging progress over a wide range of major new projects throughout the world. At the same time, spinoff from, and applications of, accelerators and accelerator technology are becoming increasingly important. Centrestage is now CERN's LHC proton-proton collider, where a test string of superconducting magnets is operating over long periods at the nominal LHC field of 8.36 tesla or more. The assignment of the underground areas in the existing 27- kilometre LEP tunnel is now quasidefinitive (see page 3). For CERN's existing big machine, the LEP electron-positron collider, ongoing work concentrates on boosting performance using improved optics and bunch trains. But the main objective is the LEP2 scheme using superconducting accelerating cavities to boost the beam energy (see page 6). After some initial teething problems, production and operation of these cavities appears to have been mastered, at least under test conditions. A highlight at CERN last year was the first run with lead ions (December 1994, page 15). Handling these heavy particles with systems originally designed for protons calls for ingenuity. The SPS has managed

  12. Ion accelerators for space

    International Nuclear Information System (INIS)

    Slobodrian, R.J.; Potvin, L.

    1991-01-01

    The main purpose of the accelerators is to allow ion implantation in space stations and their neighborhoods. There are several applications of interest immediately useful in such environment: as ion engines and thrusters, as implanters for material science and for hardening of surfaces (relevant to improve resistance to micrometeorite bombardment of exposed external components), production of man made alloys, etc. The microgravity environment of space stations allows the production of substances (crystalline and amorphous) under conditions unknown on earth, leading to special materials. Ion implantation in situ of those materials would thus lead uninterruptedly to new substances. Accelerators for space require special design. On the one hand it is possible to forego vacuum systems simplifying the design and operation but, on the other hand, it is necessary to pay special attention to heat dissipation. Hence it is necessary to construct a simulator in vacuum to properly test prototypes under conditions prevailing in space

  13. Rapid deposition process for zinc oxide film applications in pyroelectric devices

    International Nuclear Information System (INIS)

    Hsiao, Chun-Ching; Yu, Shih-Yuan

    2012-01-01

    Aerosol deposition (AD) is a rapid process for the deposition of films. Zinc oxide is a low toxicity and environmentally friendly material, and it possesses properties such as semiconductivity, pyroelectricity and piezoelectricity without the poling process. Therefore, AD is used to accelerate the manufacturing process for applications of ZnO films in pyroelectric devices. Increasing the temperature variation rate in pyroelectric films is a useful method for enhancing the responsivity of pyroelectric devices. In the present study, a porous ZnO film possessing the properties of large heat absorption and high temperature variation rate is successfully produced by the AD rapid process and laser annealing for application in pyroelectric devices. (paper)

  14. Economics and the question of low-grade heat

    International Nuclear Information System (INIS)

    Gorbet, F.W.

    1976-01-01

    This paper examines, from the viewpoint of an economist, the issues involved in the increased waste heat production generated by the rapid acceleration of electrical production and nuclear generation. It reviews some of the literature on low-grade heat - its economic considerations and ecological impact - and examines the applicability of the traditional type of analytical decision tool (cost/benefit analysis) to the efficient design of heat rejection systems. It is recognized that decisions should be made on the basis of social costs and benefits as well as purely monetary considerations. The validity and shortcomings of cost/benefit analysis are presented. It is concluded that, for energy policy planning and waste heat management, economic feasibility studies should lay out the options together with the costs and risks. (author)

  15. The rapid and direct determination of ATPase activity by ion exchange chromatography and the application to the activity of heat shock protein-90.

    Science.gov (United States)

    Bartolini, Manuela; Wainer, Irving W; Bertucci, Carlo; Andrisano, Vincenza

    2013-01-25

    Adenosine nucleotides are involved as substrates or co-factors in several biochemical reactions, catalyzed by enzymes, which modulate energy production, signal transduction and cell proliferation. We here report the development and optimization of an ion exchange liquid chromatography (LC) method for the determination of ATP, ADP and AMP. This method is specifically aimed at the determination of the ATP-ase activity of human heat shock protein 90 (Hsp90), a molecular chaperone that has emerged as target enzyme in cancer therapy. Separation of the three nucleotides was achieved in a 15-min run by using a disk shaped monolithic ethylene diamine stationary phase of small dimensions (2mm×6mm i.d.), under a three-solvent gradient elution mode and UV detection at 256nm. The described direct LC method resulted highly specific as a consequence of the baseline separation of the three adenosine nucleotides and could be applied to the determination of the enzymatic activity of ADP/ATP generating or consuming enzymes (such as kinases). Furthermore, comparison of the LOD and LOQ values of the LC method with those obtained with the malachite green assay, which is one of the most used indirect screening methodologies for ATP-ase activity, showed that the LC method has a similar range of application without presenting the drawbacks related to contamination by inorganic phosphate ions and glycerol, which are present in Hsp90 commercial samples. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Rapid freeze-drying cycle optimization using computer programs developed based on heat and mass transfer models and facilitated by tunable diode laser absorption spectroscopy (TDLAS).

    Science.gov (United States)

    Kuu, Wei Y; Nail, Steven L

    2009-09-01

    Computer programs in FORTRAN were developed to rapidly determine the optimal shelf temperature, T(f), and chamber pressure, P(c), to achieve the shortest primary drying time. The constraint for the optimization is to ensure that the product temperature profile, T(b), is below the target temperature, T(target). Five percent mannitol was chosen as the model formulation. After obtaining the optimal sets of T(f) and P(c), each cycle was assigned with a cycle rank number in terms of the length of drying time. Further optimization was achieved by dividing the drying time into a series of ramping steps for T(f), in a cascading manner (termed the cascading T(f) cycle), to further shorten the cycle time. For the purpose of demonstrating the validity of the optimized T(f) and P(c), four cycles with different predicted lengths of drying time, along with the cascading T(f) cycle, were chosen for experimental cycle runs. Tunable diode laser absorption spectroscopy (TDLAS) was used to continuously measure the sublimation rate. As predicted, maximum product temperatures were controlled slightly below the target temperature of -25 degrees C, and the cascading T(f)-ramping cycle is the most efficient cycle design. In addition, the experimental cycle rank order closely matches with that determined by modeling.

  17. RF accelerating unit installed in the PSB

    CERN Multimedia

    CERN PhotoLab

    1972-01-01

    RF accelerating unit installed in the PSB ring between two bending magnets. Cool air from a heat exchanger is injected into the four cavities from the central feeder and the hot air recirculated via the lateral ducts.

  18. Harmonic ratcheting for fast acceleration

    Science.gov (United States)

    Cook, N.; Brennan, J. M.; Peggs, S.

    2014-04-01

    A major challenge in the design of rf cavities for the acceleration of medium-energy charged ions is the need to rapidly sweep the radio frequency over a large range. From low-power medical synchrotrons to high-power accelerator driven subcritical reactor systems, and from fixed focus alternating gradient accelerators to rapid cycling synchrotrons, there is a strong need for more efficient, and faster, acceleration of protons and light ions in the semirelativistic range of hundreds of MeV/u. A conventional way to achieve a large, rapid frequency sweep (perhaps over a range of a factor of 6) is to use custom-designed ferrite-loaded cavities. Ferrite rings enable the precise tuning of the resonant frequency of a cavity, through the control of the incremental permeability that is possible by introducing a pseudoconstant azimuthal magnetic field. However, rapid changes over large permeability ranges incur anomalous behavior such as the "Q-loss" and "f-dot" loss phenomena that limit performance while requiring high bias currents. Notwithstanding the incomplete understanding of these phenomena, they can be ameliorated by introducing a "harmonic ratcheting" acceleration scheme in which two or more rf cavities take turns accelerating the beam—one turns on when the other turns off, at different harmonics—so that the radio frequency can be constrained to remain in a smaller range. Harmonic ratcheting also has straightforward performance advantages, depending on the particular parameter set at hand. In some typical cases it is possible to halve the length of the cavities, or to double the effective gap voltage, or to double the repetition rate. This paper discusses and quantifies the advantages of harmonic ratcheting in general. Simulation results for the particular case of a rapid cycling medical synchrotron ratcheting from harmonic number 9 to 2 show that stability and performance criteria are met even when realistic engineering details are taken into consideration.

  19. Review of ion accelerators

    International Nuclear Information System (INIS)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here

  20. Accelerators for cancer therapy

    International Nuclear Information System (INIS)

    Lennox, Arlene J.

    2000-01-01

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy

  1. Accelerating Value Creation with Accelerators

    DEFF Research Database (Denmark)

    Jonsson, Eythor Ivar

    2015-01-01

    and developing the best business ideas and support the due diligence process. Even universities are noticing that the learning experience of the action learning approach is an effective way to develop capabilities and change cultures. Accelerators related to what has historically been associated...

  2. Accelerated cleanup risk reduction

    International Nuclear Information System (INIS)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-01-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10 -1 to 10 -2 cm/s. Clay and silt units with a hydraulic conductivity of 10 -1 to 10 -6 cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the

  3. Accelerating networks

    International Nuclear Information System (INIS)

    Smith, David M D; Onnela, Jukka-Pekka; Johnson, Neil F

    2007-01-01

    Evolving out-of-equilibrium networks have been under intense scrutiny recently. In many real-world settings the number of links added per new node is not constant but depends on the time at which the node is introduced in the system. This simple idea gives rise to the concept of accelerating networks, for which we review an existing definition and-after finding it somewhat constrictive-offer a new definition. The new definition provided here views network acceleration as a time dependent property of a given system as opposed to being a property of the specific algorithm applied to grow the network. The definition also covers both unweighted and weighted networks. As time-stamped network data becomes increasingly available, the proposed measures may be easily applied to such empirical datasets. As a simple case study we apply the concepts to study the evolution of three different instances of Wikipedia, namely, those in English, German, and Japanese, and find that the networks undergo different acceleration regimes in their evolution

  4. Medical applications of accelerators

    CERN Document Server

    Rossi, Sandro

    1998-01-01

    At Present, about five thousands accelerators are devoted to biomedical applications. They are mainly used in radiotherapy, research and medical radioisotopes production. In this framework oncological hadron-therapy deserves particular attention since it represents a field in rapid evolution thanks to the joint efforts of laboratories with long experiences in particle physics. It is the case of CERN where the design of an optimised synchrotron for medical applications has been pursued. These lectures present these activities with particular attention to the new developments which are scientifically interesting and/or economically promising.

  5. Advanced concepts for acceleration

    International Nuclear Information System (INIS)

    Keefe, D.

    1986-07-01

    Selected examples of advanced accelerator concepts are reviewed. Such plasma accelerators as plasma beat wave accelerator, plasma wake field accelerator, and plasma grating accelerator are discussed particularly as examples of concepts for accelerating relativistic electrons or positrons. Also covered are the pulsed electron-beam, pulsed laser accelerator, inverse Cherenkov accelerator, inverse free-electron laser, switched radial-line accelerators, and two-beam accelerator. Advanced concepts for ion acceleration discussed include the electron ring accelerator, excitation of waves on intense electron beams, and two-wave combinations

  6. An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments - Topical Report Phase I 8/18/1999 - 8/31/2000

    International Nuclear Information System (INIS)

    Lumsden, Jesse

    2000-01-01

    The crevice formed by the tube/tube support plate (T/TSP) intersection in a pressurized water reactor (PWR) steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate by a thermal/hydraulic mechanism during the generation of steam, from quickly dispersing into the bulk water. The presence of a porous scale corrosion product on the surface of the tube and deposits of corrosion products in the crevice further restrict mass transport. The concentrated solutions and deposits in T/TSP crevices have been correlated with several forms of corrosion on the OD of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage. The rate and type of corrosion are dependent on pH, specific anions, and the electrochemical potential. Careful water chemistry control and other remedial measures have essentially stopped all forms of secondary side corrosion except IGA/SCC. Crevice chemistries in an operating steam generator cannot be measured directly because of their inaccessibility. In practice, computer codes (MULTEQ, Molar Ratio Index, etc.) based upon hypothesized chemical reactions and thermal hydraulic mechanisms are used to predict crevice chemistry. The Rockwell program provides an experimental base to benchmark crevice chemistry models and to benchmark crevice chemistry control measures designed to mitigate IGA/SCC. The objective of this program is to develop an understanding of the corrosion accelerating mechanisms, particularly IGA/SCC, in steam generator crevices. The important variables will be identified, including the relationship between bulk water chemistry and corrosion accelerating chemistries in a crevice. An important result will be the identification of water chemistry control measures needed to mitigate secondary side IGA/SCC in steam generator tubes. The

  7. An Investigation of the Mechanism of IGA/SCC of Alloy 600 in Corrosion Accelerating Heated Crevice Environments - Topical Report Phase I 8/18/1999 - 8/31/2000; TOPICAL

    International Nuclear Information System (INIS)

    Dr. Jesse Lumsden

    2000-01-01

    The crevice formed by the tube/tube support plate (T/TSP) intersection in a pressurized water reactor (PWR) steam generator is a concentration site for nonvolatile impurities (referred to as hideout) in the steam generator water. The restricted mass transport in the small crevice volume prevents the species, which concentrate by a thermal/hydraulic mechanism during the generation of steam, from quickly dispersing into the bulk water. The presence of a porous scale corrosion product on the surface of the tube and deposits of corrosion products in the crevice further restrict mass transport. The concentrated solutions and deposits in T/TSP crevices have been correlated with several forms of corrosion on the OD of steam generator tubes including intergranular attack/stress corrosion cracking (IGA/SCC), pitting, and wastage. The rate and type of corrosion are dependent on pH, specific anions, and the electrochemical potential. Careful water chemistry control and other remedial measures have essentially stopped all forms of secondary side corrosion except IGA/SCC. Crevice chemistries in an operating steam generator cannot be measured directly because of their inaccessibility. In practice, computer codes (MULTEQ, Molar Ratio Index, etc.) based upon hypothesized chemical reactions and thermal hydraulic mechanisms are used to predict crevice chemistry. The Rockwell program provides an experimental base to benchmark crevice chemistry models and to benchmark crevice chemistry control measures designed to mitigate IGA/SCC. The objective of this program is to develop an understanding of the corrosion accelerating mechanisms, particularly IGA/SCC, in steam generator crevices. The important variables will be identified, including the relationship between bulk water chemistry and corrosion accelerating chemistries in a crevice. An important result will be the identification of water chemistry control measures needed to mitigate secondary side IGA/SCC in steam generator tubes. The

  8. Accelerators and the Accelerator Community

    Energy Technology Data Exchange (ETDEWEB)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  9. Accelerators and the Accelerator Community

    International Nuclear Information System (INIS)

    Malamud, Ernest; Sessler, Andrew

    2008-01-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process

  10. Proton-driven Plasma Wakefield Acceleration

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The construction of ever larger and costlier accelerator facilities has a limited future, and new technologies will be needed to push the energy frontier. Plasma wakefield acceleration is a rapidly developing field and is a promising candidate technology for future high energy colliders. We focus on the recently proposed idea of proton-driven plasma wakefield acceleration and describe the current status and plans for this approach.

  11. Preferential acceleration in collisionless supernova shocks

    International Nuclear Information System (INIS)

    Hainebach, K.; Eichler, D.; Schramm, D.

    1979-01-01

    The preferential acceleration and resulting cosmic ray abundance enhancements of heavy elements (relative to protons) are calculated in the collisionless supernova shock acceleration model described by Eichler in earlier work. Rapidly increasing enhancements up to several tens times solar ratios are obtained as a function of atomic weight over charge at the time of acceleration. For material typical of hot phase interstellar medium, good agreement is obtained with the observed abundance enhancements

  12. Accelerated Cure Project for Multiple Sclerosis

    Science.gov (United States)

    ... questions and enable an era of optimized MS treatment. Read more... The Accelerated Cure Project for MS is a non-profit, 501(c)(3) tax-exempt organization whose mission is to accelerate efforts toward a cure for multiple sclerosis by rapidly advancing research that determines its causes ...

  13. Ring accelerators

    International Nuclear Information System (INIS)

    Gisler, G.; Faehl, R.

    1983-01-01

    We present two-dimensional simulations in (r-z) and r-theta) cylinderical geometries of imploding-liner-driven accelerators of rings of charged particles. We address issues of azimuthal and longitudinal stability of the rings. We discuss self-trapping designs in which beam injection and extraction is aided by means of external cusp fields. Our simulations are done with the 2-1/2-D particle-in-cell plasma simulation code CLINER, which combines collisionless, electromagnetic PIC capabilities with a quasi-MHD finite element package

  14. accelerating cavity

    CERN Multimedia

    On the inside of the cavity there is a layer of niobium. Operating at 4.2 degrees above absolute zero, the niobium is superconducting and carries an accelerating field of 6 million volts per metre with negligible losses. Each cavity has a surface of 6 m2. The niobium layer is only 1.2 microns thick, ten times thinner than a hair. Such a large area had never been coated to such a high accuracy. A speck of dust could ruin the performance of the whole cavity so the work had to be done in an extremely clean environment.

  15. Particle Acceleration and Heating by Turbulent Reconnection

    Science.gov (United States)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-08-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (I.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker-Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  16. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    International Nuclear Information System (INIS)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2016-01-01

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  17. PARTICLE ACCELERATION AND HEATING BY TURBULENT RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Vlahos, Loukas; Pisokas, Theophilos; Isliker, Heinz; Tsiolis, Vassilis [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2016-08-10

    Turbulent flows in the solar wind, large-scale current sheets, multiple current sheets, and shock waves lead to the formation of environments in which a dense network of current sheets is established and sustains “turbulent reconnection.” We constructed a 2D grid on which a number of randomly chosen grid points are acting as scatterers (i.e., magnetic clouds or current sheets). Our goal is to examine how test particles respond inside this large-scale collection of scatterers. We study the energy gain of individual particles, the evolution of their energy distribution, and their escape time distribution. We have developed a new method to estimate the transport coefficients from the dynamics of the interaction of the particles with the scatterers. Replacing the “magnetic clouds” with current sheets, we have proven that the energization processes can be more efficient depending on the strength of the effective electric fields inside the current sheets and their statistical properties. Using the estimated transport coefficients and solving the Fokker–Planck (FP) equation, we can recover the energy distribution of the particles only for the stochastic Fermi process. We have shown that the evolution of the particles inside a turbulent reconnecting volume is not a solution of the FP equation, since the interaction of the particles with the current sheets is “anomalous,” in contrast to the case of the second-order Fermi process.

  18. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    International Nuclear Information System (INIS)

    Claudio Filippone

    1999-01-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency

  19. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... moist, pale skin, rapid pulse, elevated or lowered blood pressure, nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the person further by positioning ...

  20. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool ...

  1. Heat-Related Illnesses

    Medline Plus

    Full Text Available ... weak pulse; rapid, shallow breathing; vomiting; and increased body temperature of more than 104 degrees. People with these ... nausea, loss of consciousness, vomiting or a high body temperature. For late stage heat stroke symptoms, cool the ...

  2. Cosmic ray acceleration mechanisms

    International Nuclear Information System (INIS)

    Cesarsky, C.J.

    1982-09-01

    We present a brief summary of some of the most popular theories of cosmic ray acceleration: Fermi acceleration, its application to acceleration by shocks in a scattering medium, and impulsive acceleration by relativistic shocks

  3. Accelerated Profile HMM Searches.

    Directory of Open Access Journals (Sweden)

    Sean R Eddy

    2011-10-01

    Full Text Available Profile hidden Markov models (profile HMMs and probabilistic inference methods have made important contributions to the theory of sequence database homology search. However, practical use of profile HMM methods has been hindered by the computational expense of existing software implementations. Here I describe an acceleration heuristic for profile HMMs, the "multiple segment Viterbi" (MSV algorithm. The MSV algorithm computes an optimal sum of multiple ungapped local alignment segments using a striped vector-parallel approach previously described for fast Smith/Waterman alignment. MSV scores follow the same statistical distribution as gapped optimal local alignment scores, allowing rapid evaluation of significance of an MSV score and thus facilitating its use as a heuristic filter. I also describe a 20-fold acceleration of the standard profile HMM Forward/Backward algorithms using a method I call "sparse rescaling". These methods are assembled in a pipeline in which high-scoring MSV hits are passed on for reanalysis with the full HMM Forward/Backward algorithm. This accelerated pipeline is implemented in the freely available HMMER3 software package. Performance benchmarks show that the use of the heuristic MSV filter sacrifices negligible sensitivity compared to unaccelerated profile HMM searches. HMMER3 is substantially more sensitive and 100- to 1000-fold faster than HMMER2. HMMER3 is now about as fast as BLAST for protein searches.

  4. Rippled plasma wall accelerating structures

    International Nuclear Information System (INIS)

    Cavenago, M.

    1992-01-01

    A concept to form a hot, pulsed, inhomogeneous plasma and to use it as a linac structure is presented. The plasma spatial distribution is controlled by an external magnetic field and by the location of thermionic emitters; microwave ECR heating at frequency ω 1 favours plasma build up and reduces plasma resistivity. A shorter microwave pulse with frequency ω 2 ≠ ω 1 excites a longitudinal mode. An expression for the maximum attainable accelerating field is found. A linearized theory of accelerating modes is given. (Author) 6 refs., 3 figs

  5. Utilization of low-energy electron accelerators in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2003-02-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  6. Utilization of low-energy electron accelerators in Korea

    International Nuclear Information System (INIS)

    Lee, Byung Cheol

    2003-01-01

    There are more than 20 electron accelerators in Korea. Most of those are installed in factories for heat-resistant cables, heat-shrinkable cables, radial tires, foams, tube/ films, curing, etc. Four low-energy electron accelerators are in operation for research purposes such as polymer modification, purification of flue gas, waste water treatment, modification of semiconductor characteristics, etc. (author)

  7. Heat-pipe Earth.

    Science.gov (United States)

    Moore, William B; Webb, A Alexander G

    2013-09-26

    The heat transport and lithospheric dynamics of early Earth are currently explained by plate tectonic and vertical tectonic models, but these do not offer a global synthesis consistent with the geologic record. Here we use numerical simulations and comparison with the geologic record to explore a heat-pipe model in which volcanism dominates surface heat transport. These simulations indicate that a cold and thick lithosphere developed as a result of frequent volcanic eruptions that advected surface materials downwards. Declining heat sources over time led to an abrupt transition to plate tectonics. Consistent with model predictions, the geologic record shows rapid volcanic resurfacing, contractional deformation, a low geothermal gradient across the bulk of the lithosphere and a rapid decrease in heat-pipe volcanism after initiation of plate tectonics. The heat-pipe Earth model therefore offers a coherent geodynamic framework in which to explore the evolution of our planet before the onset of plate tectonics.

  8. Local re-acceleration and a modified thick target model of solar flare electrons

    Science.gov (United States)

    Brown, J. C.; Turkmani, R.; Kontar, E. P.; MacKinnon, A. L.; Vlahos, L.

    2009-12-01

    Context: The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts has become an almost “standard model” of flare impulsive phase energy transport and radiation. However, it faces various problems in the light of recent data, particularly the high electron beam density and anisotropy it involves. Aims: We consider how photon yield per electron can be increased, and hence fast electron beam intensity requirements reduced, by local re-acceleration of fast electrons throughout the HXR source itself, after injection. Methods: We show parametrically that, if net re-acceleration rates due to e.g. waves or local current sheet electric (E) fields are a significant fraction of collisional loss rates, electron lifetimes, and hence the net radiative HXR output per electron can be substantially increased over the CTTM values. In this local re-acceleration thick target model (LRTTM) fast electron number requirements and anisotropy are thus reduced. One specific possible scenario involving such re-acceleration is discussed, viz, a current sheet cascade (CSC) in a randomly stressed magnetic loop. Results: Combined MHD and test particle simulations show that local E fields in CSCs can efficiently accelerate electrons in the corona and and re-accelerate them after injection into the chromosphere. In this HXR source scenario, rapid synchronisation and variability of impulsive footpoint emissions can still occur since primary electron acceleration is in the high Alfvén speed corona with fast re-acceleration in chromospheric CSCs. It is also consistent with the energy-dependent time-of-flight delays in HXR features. Conclusions: Including electron re-acceleration in the HXR source allows an LRTTM modification of the CTTM in which beam density and anisotropy are much reduced, and alleviates theoretical problems with the CTTM, while making it more compatible with radio and interplanetary electron numbers. The LRTTM is, however, different in some respects such as

  9. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  10. Ultrasensitive multi-analyte electrochemical immunoassay based on GNR-modified heated screen-printed carbon electrodes and PS@PDA-metal labels for rapid detection of MMP-9 and IL-6.

    Science.gov (United States)

    Shi, Jian-Jun; He, Ting-Ting; Jiang, Fang; Abdel-Halim, E S; Zhu, Jun-Jie

    2014-05-15

    An ultrasensitive electrochemical immunoassay was developed for rapid detection of interleukin-6 (IL-6) and matrix metallopeptidase-9 (MMP-9); the method utilized PS@PDA-metal nanocomposites based on graphene nanoribbon (GNR)-modified heated screen-printed carbon electrode (HSPCE). Because of the good hydrophilicity and low toxicity, GNRs were used to immobilize antibodies (Ab) and amplify the electrochemical signal. PS@PDA-metal was used to label antibodies and generate a strong electrochemical signal in acetic buffer. A sandwich strategy was adopted to achieve simultaneous detection of MMP-9 and IL-6 based on HSPCE without cross-talk between adjacent electrodes in the range of 10(-5) to 10(3) ng mL(-1) with detection limits of 5 fg mL(-1) and 0.1 pg mL(-1) (S/N=3), respectively. The proposed method showed wide detection range, low detection limit, acceptable stability and good reproducibility. Satisfactory results were also obtained in the practical samples, thus showing this is a promising technique for simultaneous clinical detection of biocomponent proteins. © 2013 Elsevier B.V. All rights reserved.

  11. Thermal efficiency and acceleration benefits of cross SAGD (XSAGD)

    Energy Technology Data Exchange (ETDEWEB)

    Stalder, J.L. [ConocoPhillips Canada Resources Corp., Calgary, AB (Canada)

    2008-10-15

    Steam assisted gravity drainage (SAGD) is suitable for the thermal recovery of bitumen from Alberta's Athabasca oil sands. The oil mobilization process occurs at the periphery of the steam chamber where heat is transferred to the reservoir rock and bitumen. However, in low pressure shallow depth situations, SAGD recovery of bitumen tends to slow significantly compared to higher pressure operation because the presence of dissolved gas can have a negative impact on steam chamber growth at lower pressure. Cross SAGD (XSAGD) is an alternative well arrangement similar to SAGD, but the wells are perpendicular to the producing wells with some type of restricted completion near the crossing points that limits short-circulating steam. This allows rapid communication between wells near the crossing points. This paper presented the results of a simulation study that was conducted to examine the impact of XSAGD performance of heat transfer between the liners in the horizontal wells and the surrounding reservoir. A pay thickness in the range of 10 to 40 m was considered as well as a constant injection pressure in the range of 1500 to 4500 kPa. The study showed that the lateral growth of the steam chamber and ultimate recovery is accelerated by the heat transfer between the perpendicular horizontal liners and the reservoir. The cumulative steam oil ratio for XSAGD is also reduced. However, heat transfer had little impact on the performance produced by the parallel arrangement of wells in classical SAGD. The ratio of surface area to volume of the steam chamber is typically greater for XSAGD than for SAGD after the steam chambers are well established. Although SAGD recovery is accelerated as pay thickness increases, XSAGD recovery time is not influenced by pay thickness. For pay thinner than 20 m, XSAGD recovery is much faster than SAGD recovery, but is approximately the same for pay 40 m or thicker. 6 refs., 1 tab., 12 figs.

  12. Rapidly alternating combination of cisplatin-based chemotherapy and hyperfractionated accelerated radiotherapy in split course for Stage IIIA and Stage IIIB non-small cell lung cancer: results of a Phase I-II study by the GOTHA group

    Energy Technology Data Exchange (ETDEWEB)

    Alberto, P.; Mermillod, B. [Hopital Cantonal Geneve, Geneva (Switzerland); Mirimanoff, R.O.; Leyvraz, S.; Nagy-Mignotte, H.; Bolla, M.; Wellmann, D.; Moro, D.; Brambilla, E. [Hopital Cantonal Universitaire, Lausanne (Switzerland)

    1995-08-01

    The prognosis of stage III non-small cell lung cancer (NSCLC) can be improved by a combination of radiotherapy (RT) and chemotherapy (CT). In this study, the GOTHA group evaluated the feasibility, tolerance, tumour response, pattern of failure and effect on survival of a combination alternating accelerated hyperfractionated (AH) RT and CT in patients with tumour stage III NSCLC. Toxic effects were leucopenia, nausea and vomiting, mucositis, diarrhoea, alopecia and peripheral neuropathy. Alternating CT and AHRT, as used in this study, were well tolerated and allowed full dose delivery within less than 12 weeks. Initial response was not predictive of survival. The survival curve is encouraging and the 5 year survival is superior to the 5% generally observed with conventionally fractionated radiotherapy. (author).

  13. ISOLDE - Accelerating Future

    CERN Multimedia

    CERN. Geneva

    2003-01-01

    Isotope Separation On-Line (ISOL) was first developed in Copenhagen in the late 50s. The technique was taken to CERN in the 60s and the CERN facility was given the name ISOLDE. The method is based on energetic protons hitting a solid target. The reaction products produced through spallation, fission and fragmentation are heated out in the form of an electrically neutral gas. In the subsequent steps the gas is ionized, accelerated and magnetically separated to produce isotopically pure beams for experiments in nuclear physics, atomic physics, astrophysics, solid state physics and for medical applications. An overview will be given of the physics at ISOLDE as well as over the techniques used to produce the necessary isotopes. Furthermore, a part of the talk will be dedicated to the future plans at ISOLDE including the proposal to build a next generation radioactive beam facility at CERN. The talk ends with a guided visit to the ISOLDE facility. Prerequisite knowledge: None.

  14. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    Energy Technology Data Exchange (ETDEWEB)

    Dahlburg, R. B.; Obenschain, K. [LCP and FD, Naval Research Laboratory, Washington, DC 20375 (United States); Laming, J. M. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Taylor, B. D. [AFRL Eglin AFB, Pensacola, FL 32542 (United States)

    2016-11-10

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  15. PONDEROMOTIVE ACCELERATION IN CORONAL LOOPS

    International Nuclear Information System (INIS)

    Dahlburg, R. B.; Obenschain, K.; Laming, J. M.; Taylor, B. D.

    2016-01-01

    Ponderomotive acceleration has been asserted to be a cause of the first ionization potential (FIP) effect, the well-known enhancement in abundance by a factor of 3–4 over photospheric values of elements in the solar corona with FIP less than about 10 eV. It is shown here by means of numerical simulations that ponderomotive acceleration occurs in solar coronal loops, with the appropriate magnitude and direction, as a “by-product” of coronal heating. The numerical simulations are performed with the HYPERION code, which solves the fully compressible three-dimensional magnetohydrodynamic equations including nonlinear thermal conduction and optically thin radiation. Numerical simulations of coronal loops with an axial magnetic field from 0.005 to 0.02 T and lengths from 25,000 to 75,000 km are presented. In the simulations the footpoints of the axial loop magnetic field are convected by random, large-scale motions. There is a continuous formation and dissipation of field-aligned current sheets, which act to heat the loop. As a consequence of coronal magnetic reconnection, small-scale, high-speed jets form. The familiar vortex quadrupoles form at reconnection sites. Between the magnetic footpoints and the corona the reconnection flow merges with the boundary flow. It is in this region that the ponderomotive acceleration occurs. Mirroring the character of the coronal reconnection, the ponderomotive acceleration is also found to be intermittent.

  16. Sector ring accelerator ''RESATRON''

    International Nuclear Information System (INIS)

    Schwabe, E.

    1980-01-01

    Project of sector ring accelerator RESATRON is described. The curiosity of this accelerator is the second cycle of acceleration of the beam after stripping it on the foil. In such an accelerator heavy ions with a different ratio Z to A can be accelerated. (S.B.)

  17. Heat pumps: heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Pielke, R

    1976-01-01

    The author firstly explains in a general manner the functioning of the heat pump. Following a brief look at the future heat demand and the possibilities of covering it, the various methods of obtaining energy (making use of solar energy, ground heat, and others) and the practical applications (office heating, swimming pool heating etc.) are explained. The author still sees considerable difficulties in using the heat pump at present on a large scale. Firstly there is not enough maintenance personnel available, secondly the electricity supply undertakings cannot provide the necessary electricity on a wide basis without considerable investments. Other possibilities to save energy or to use waste energy are at present easier and more economical to realize. Recuperative and regenerative systems are described.

  18. Multiperiodic accelerator structures for linear particle accelerators

    International Nuclear Information System (INIS)

    Tran, D.T.

    1975-01-01

    High efficiency linear accelerator structures, comprised of a succession of cylindrical resonant cavities for acceleration, are described. Coupling annular cavities are located at the periphery, each being coupled to two adjacent cylindrical cavities. (auth)

  19. Two Dimensional CFD Analyses on the Heat Transfer for a Supercritical Pressure CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Bong Hyun; Kim, Young In; Bae, Yoon Yeong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    The Supercritical Water Cooled Reactor(SCWR) operates in a pressure around 25MPa and temperature of 293{approx}510 .deg. C. In order to study the heat transfer behaviors and good comparisons between the various fluids, a heat transfer test loop(SPHINX) using CO{sub 2} has been constructed in KAERI as a part of international research program, I-NERI. At a supercritical pressure, the heat transfer coefficient is much larger than that estimated from the Dittus-Boelter correlation for a relatively large flow rate with moderate wall heat flux conditions. This phenomenon was explained by the rapid variations of the physical properties near the wall with the temperature. On the contrary, the heat transfer becomes worse when the bulk fluid enthalpy is below the pseudo-critical enthalpy under a low flow rate with large heat flux conditions. This phenomenon is called 'deteriorated heat transfer', and which is explained as the modification of the shear stress distribution across the tube to a buoyancy and/or acceleration in a low density layer near the wall, with the consequence of a turbulence. The upward vertical flow of CO{sub 2} through a uniformly heated tube of 4.4 mm in diameter and 3m long(heated length is 2.1m) was investigated numerically using the CFD code, FLUENT. Through the numerical simulations, we have attempted to obtain a physically meaningful insight into the heat transfer mechanisms at a supercritical pressure.

  20. Washington Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Highlights of the 1993 Particle Accelerator Conference, held in Washington in May, were picked out in the previous issue (page 18). Talks on the big hadron colliders reflected the sea-change in the accelerator world where the scale, complexity and cost of the front-line projects has slowed the pace of developments (not unlike the scene in particle physics itself). Speaking before the anti-SSC vote in the House of Representatives in June, Dick Briggs reviewed the situation at the SSC Superconducting Supercollider in Ellis County, Texas. The linac building is near completion and the Low Energy Booster will be ready to receive components early next year. Tunnelling for the Main Ring is advancing rapidly with four boring machines in action. Five miles of tunnel have been completed since January and the pace has now stepped up to nearly a mile each week. The superconducting magnet news is good. Following the successful initial string test of a half cell of the magnet lattice, a two-ring full cell with all associated services is being assembled. The mechanical robustness of the magnet design was confirmed when a dipole was taken to 9.7 T when cooled to 1.8 K. In the Magnet Test Lab itself, ten test stands are installed and equipped

  1. Washington Accelerator Conference

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1993-09-15

    Highlights of the 1993 Particle Accelerator Conference, held in Washington in May, were picked out in the previous issue (page 18). Talks on the big hadron colliders reflected the sea-change in the accelerator world where the scale, complexity and cost of the front-line projects has slowed the pace of developments (not unlike the scene in particle physics itself). Speaking before the anti-SSC vote in the House of Representatives in June, Dick Briggs reviewed the situation at the SSC Superconducting Supercollider in Ellis County, Texas. The linac building is near completion and the Low Energy Booster will be ready to receive components early next year. Tunnelling for the Main Ring is advancing rapidly with four boring machines in action. Five miles of tunnel have been completed since January and the pace has now stepped up to nearly a mile each week. The superconducting magnet news is good. Following the successful initial string test of a half cell of the magnet lattice, a two-ring full cell with all associated services is being assembled. The mechanical robustness of the magnet design was confirmed when a dipole was taken to 9.7 T when cooled to 1.8 K. In the Magnet Test Lab itself, ten test stands are installed and equipped.

  2. Accelerators of atomic particles

    International Nuclear Information System (INIS)

    Sarancev, V.

    1975-01-01

    A brief survey is presented of accelerators and methods of accelerating elementary particles. The principle of collective accelerating of elementary particles is clarified and the problems are discussed of its realization. (B.S.)

  3. Characterization of Single Phase and Two Phase Heat and Momentum Transport in a Spiraling Radial Inow Microchannel Heat Sink

    Science.gov (United States)

    Ruiz, Maritza

    as enhancements due to increased buoyant forces on vapor bubbles resulting from centripetal acceleration in the flow which will tend to draw the vapor towards the outlet. This can also aid in the reduction of vapor obstruction of the flow. The flow was identified as transitioning through three regimes as the heat rate was increased: partial subcooled flow boiling, oscillating boiling and fully developed flow boiling. During partial subcooled flow boiling, both forced convective and nucleate boiling effects are important. During oscillating boiling, the system fluctuated between partial subcooled flow boiling and fully developed nucleate boiling. Temperature and pressure oscillations were significant in this regime and are likely due to bubble constriction of flow in the microchannel. This regime of boiling is generally undesirable due to the large oscillations in temperatures and pressure and design constraints should be established to avoid large oscillations from occurring. During fully developed flow boiling, water vapor rapidly leaves the surface and the flow does not sustain large oscillations. Reducing inlet subcooling levels was found to reduce the magnitude of oscillations in the oscillating boiling regime. Additionally, reduced inlet subcooling levels reduced the average surface temperature at the highest heat flux levels tested when heat transfer was dominated by nucleate boiling, yet increased the average surface temperatures at low heat flux levels when heat transfer was dominated by forced convection. Experiments demonstrated heat fluxes up to 301 W/cm. 2at an average surface temperature of 134 deg C under partial subcooled flow boiling conditions. At this peak heat flux, the system required a pumping power to heat rate ratio of 0.01%. This heat flux is 2.4 times the typical values for critical heat flux in pool boiling under similar conditions.

  4. Analysis of FFAG accelerators and the evolution of circular accelerators

    International Nuclear Information System (INIS)

    Laslett, J.

    1961-01-01

    After rapidly comparing circular machines with the linear accelerator and the reasons for the choice of an annular high energy and very high intensity accelerator, recent problems concerning accelerator theory are discussed, with emphasis on their physical character. The FFAG principle. The limit of the energy of FFAG cyclotron. The setting-up and interpreting of mean energy of focusing terms for a spiral FFAG synchrotron. The limiting amplitude stable near the non-linear resonance 2Q z = Q r , as well as the linear coupling resonance of Walkinshaw 2Q z = Q r . The crossed-beam accelerator. The 40 MeV electron model of MURA. Two other parts deal with linear and non-linear methods of injection and extraction using a variable disturbance applied to the magnetic field, as well as to collective effects. The interaction of the beam with the accelerating cavities and the walls. The modification of the phase oscillation equation. The influence of the beams' high frequency fields on the Nielsen longitudinal instability. (author) [fr

  5. ETA-II accelerator upgrades

    International Nuclear Information System (INIS)

    Nilson, D.G.; Deadrick, F.J.; Hibbs, S.M.; Sampayan, S.E.; Petersen, D.E.

    1991-09-01

    We discuss recent improvements to the ETA-II linear induction electron accelerator. The accelerator's cells have been carefully reconditioned to raise the maximum accelerating gap voltage from approximately 100 kV to 125 kV. Insulators of Rexolite plastic in a new ''zero-gap'' arrangement replaced the alumina originals after several alternative materials were investigated. A new multi-cable current feed system will be used to eliminate pulse reflection interactions encountered in earlier experiments. Improved alignment fixtures have been installed to help minimize beam perturbation due to poorly aligned intercell magnets between 10-cell groups. A stretched wire alignment technique (SWAT) has been utilized to enhance overall magnetic alignment, and to characterize irreducible alignment errors. These changes are in conjunction with an expansion of the accelerator from a 20-cell to a 60-cell configuration. When completed, the upgraded accelerator is expected to deliver 2.5 kA of electron beam current at 7.5 MeV in bursts of up to fifty 70-ns pulses at a 5-kHz repetition rate. A 5.5-meter-long wiggler will convert the energy into 3-GW microwave pulses at 140 GHz for plasma heating experiments in the Microwave Tokamak Experiment (MTX)

  6. Rapid thermal pulse annealing

    International Nuclear Information System (INIS)

    Miller, M.G.; Koehn, B.W.; Chaplin, R.L.

    1976-01-01

    Characteristics of recovery processes have been investigated for cases of heating a sample to successively higher temperatures by means of isochronal annealing or by using a rapid pulse annealing. A recovery spectra shows the same features independent of which annealing procedure is used. In order to determine which technique provides the best resolution, a study was made of how two independent first-order processes are separated for different heating rates and time increments of the annealing pulses. It is shown that the pulse anneal method offers definite advantages over isochronal annealing when annealing for short time increments. Experimental data by means of the pulse anneal techniques are given for the various substages of stage I of aluminium. (author)

  7. Pitch then power: limitations to acceleration in quadrupeds

    OpenAIRE

    Williams, Sarah B.; Tan, Huiling; Usherwood, James R.; Wilson, Alan M.

    2009-01-01

    Rapid acceleration and deceleration are vital for survival in many predator and prey animals and are important attributes of animal and human athletes. Adaptations for acceleration and deceleration are therefore likely to experience strong selective pressures?both natural and artificial. Here, we explore the mechanical and physiological constraints to acceleration. We examined two elite athletes bred and trained for acceleration performance (polo ponies and racing greyhounds), when performing...

  8. Several problems in accelerator shielding study

    International Nuclear Information System (INIS)

    Nakamura, Takashi; Hirayama, Hideo; Ban, Shuichi.

    1980-01-01

    Recently, the utilization of accelerators has increased rapidly, and the increase of accelerating energy and beam intensity is also remarkable. The studies on accelerator shielding have become important, because the amount of radiation emitted from accelerators increased, the regulation of the dose of environmental radiation was tightened, and the cost of constructing shielding rose. As the plans of constructing large accelerators have been made successively, the survey on the present state and the problems of the studies on accelerator shielding was carried out. Accelerators are classified into electron accelerators and proton accelerators in view of the studies on shielding. In order to start the studies on accelerator shielding, first, the preparation of the cross section data is indispensable. The cross sections for generating Bremsstrahlung, photonuclear reactions generating neutrons, generation of neutrons by hadrons, nuclear reaction of neutrons and generation of gamma-ray by hadrons are described. The generation of neutrons and gamma-ray as the problems of thick targets is explained. The shielding problems are complex and diversified, but in this paper, the studies on the shielding, by which basic data are obtainable, are taken up, such as beam damping and side wall shielding. As for residual radioactivity, main nuclides and the difference of residual radioactivity according to substances have been studied. (J.P.N.)

  9. Accelerator beam application in science and industry

    International Nuclear Information System (INIS)

    Hagiwara, M.

    1996-01-01

    Various accelerator beams are being used widely in science and industry. The area of their applications is so wide and rapidly expanding. This paper focuses on recent efforts made in the field of radiation chemistry, especially in materials development using electron and ion beams. Concerning the applications of electron beams, synthesis of SiC fibers, improvement of radiation resistance of polytetrafluoroethylene (PTFE) and preparation of an adsorbent for uranium recovery from sea water were described. In the synthesis of SiC, the electron beams were used effectively to cross-link precursor fibers to prevent their deformation upon heating for their pyrolysis to SiC fibers. The improvement of radiation resistance of PTFE was resulted successfully by its crosslinking. As to the preparation of the adsorbent for uranium recovery, chelating resins containing amidoxime groups were shown to work as a good adsorbent of uranium from sea water. The Takasaki Radiation Chemistry Research Establishment of JAERI completed the accelerator facility named TIARA for R and D of ion beam applications three years ago. Some results were presented on the studies about radiation effects on solar cells and LSIs for space use and synthesis of functional materials. Radiation resistance of solar cells was tested with both electron and proton beams using a beam scanning technique for the irradiation to a wide area, and ultra-fast transient current induced by heavy ion microbeam was measured for studies on mechanisms of single event upset (SEU) in LSIs. In the synthesis of organic functional materials, a temperature responsive particle track membrane was developed. Techniques for RBS and NRA using heavy ion beams were established for analyzing structures of multi-layered materials. Single crystalline thin film of diamond was successfully formed on Si substrate under the deposition of mass separated C-12 ions of 100 eV. (author)

  10. Heat pipe heat storage performance

    Energy Technology Data Exchange (ETDEWEB)

    Caruso, A; Pasquetti, R [Univ. de Provence, Marseille (FR). Inst. Universitaire des Systemes; Grakovich, L P; Vasiliev, L L [A.V. Luikov Heat and Mass Transfer Inst. of the BSSR, Academy of Sciences, Minsk (BY)

    1989-01-01

    Heat storage offers essential thermal energy saving for heating. A ground heat store equipped with heat pipes connecting it with a heat source and to the user is considered in this paper. It has been shown that such a heat exchanging system along with a batch energy source meets, to a considerable extent, house heating requirements. (author).

  11. Speed, Acceleration, and Velocity: Level II, Unit 9, Lesson 1; Force, Mass, and Distance: Lesson 2; Types of Motion and Rest: Lesson 3; Electricity and Magnetism: Lesson 4; Electrical, Magnetic, and Gravitational Fields: Lesson 5; The Conservation and Conversion of Matter and Energy: Lesson 6; Simple Machines and Work: Lesson 7; Gas Laws: Lesson 8; Principles of Heat Engines: Lesson 9; Sound and Sound Waves: Lesson 10; Light Waves and Particles: Lesson 11; Program. A High.....

    Science.gov (United States)

    Manpower Administration (DOL), Washington, DC. Job Corps.

    This self-study program for high-school level contains lessons on: Speed, Acceleration, and Velocity; Force, Mass, and Distance; Types of Motion and Rest; Electricity and Magnetism; Electrical, Magnetic, and Gravitational Fields; The Conservation and Conversion of Matter and Energy; Simple Machines and Work; Gas Laws; Principles of Heat Engines;…

  12. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  13. Heat Waves

    Science.gov (United States)

    Heat Waves Dangers we face during periods of very high temperatures include: Heat cramps: These are muscular pains and spasms due ... that the body is having trouble with the heat. If a heat wave is predicted or happening… - ...

  14. Heat Islands

    Science.gov (United States)

    EPA's Heat Island Effect Site provides information on heat islands, their impacts, mitigation strategies, related research, a directory of heat island reduction initiatives in U.S. communities, and EPA's Heat Island Reduction Program.

  15. Rapid charging of nickel-cadmium accumulators

    Energy Technology Data Exchange (ETDEWEB)

    Bruck, F

    1972-01-01

    Four types of charging of gas-tight Ni-Cd accumulators (a) normal; (b) accelerated; (c) rapid; and (d) ultra-rapid are described. For rapid charging, a built-in temperature sensor cuts off charging current at a prescribed point. In ultra-rapid charging, 50% charge can be attained in 3.5 min. and 25% charge within 50 sec. In the second phase of ultra-rapid charging, a surplus of oxygen is released at the positive electrode and a safety valve is provided for pressure reduction. Characteristic curves are given for various rates of charging and some data on discharge rates is also given.

  16. Conduction cooling systems for linear accelerator cavities

    Science.gov (United States)

    Kephart, Robert

    2017-05-02

    A conduction cooling system for linear accelerator cavities. The system conducts heat from the cavities to a refrigeration unit using at least one cavity cooler interconnected with a cooling connector. The cavity cooler and cooling connector are both made from solid material having a very high thermal conductivity of approximately 1.times.10.sup.4 W m.sup.-1 K.sup.-1 at temperatures of approximately 4 degrees K. This allows for very simple and effective conduction of waste heat from the linear accelerator cavities to the cavity cooler, along the cooling connector, and thence to the refrigeration unit.

  17. Dusty-Plasma Particle Accelerator

    Science.gov (United States)

    Foster, John E.

    2005-01-01

    A dusty-plasma apparatus is being investigated as means of accelerating nanometer- and micrometer-sized particles. Applications for the dusty-plasma particle accelerators fall into two classes: Simulation of a variety of rapidly moving dust particles and micrometeoroids in outer-space environments that include micrometeoroid streams, comet tails, planetary rings, and nebulae and Deposition or implantation of nanoparticles on substrates for diverse industrial purposes that could include hardening, increasing thermal insulation, altering optical properties, and/or increasing permittivities of substrate materials. Relative to prior apparatuses used for similar applications, dusty-plasma particle accelerators offer such potential advantages as smaller size, lower cost, less complexity, and increased particle flux densities. A dusty-plasma particle accelerator exploits the fact that an isolated particle immersed in plasma acquires a net electric charge that depends on the relative mobilities of electrons and ions. Typically, a particle that is immersed in a low-temperature, partially ionized gas, wherein the average kinetic energy of electrons exceeds that of ions, causes the particle to become negatively charged. The particle can then be accelerated by applying an appropriate electric field. A dusty-plasma particle accelerator (see figure) includes a plasma source such as a radio-frequency induction discharge apparatus containing (1) a shallow cup with a biasable electrode to hold the particles to be accelerated and (2) a holder for the substrate on which the particles are to impinge. Depending on the specific design, a pair of electrostatic-acceleration grids between the substrate and discharge plasma can be used to both collimate and further accelerate particles exiting the particle holder. Once exposed to the discharge plasma, the particles in the cup quickly acquire a negative charge. Application of a negative voltage pulse to the biasable electrode results in the

  18. The effect of centrifugal buoyancy on the heat transport in rotating Rayleigh-Bénard convection

    Science.gov (United States)

    Horn, Susanne; Aurnou, Jonathan

    2017-11-01

    In a rapidly rotating and differentially heated fluid, the centrifugal acceleration can play a similar role to that of gravity in generating convective motion. However, in the paradigm system of rotating Rayleigh-Bénard convection, centrifugal buoyancy is typically not considered in theoretical studies and, thus, usually undesired in laboratory experiments, despite being unavoidable. How centrifugal buoyancy affects the turbulent flow, including the heat transport, is still largely unknown, in particular, when it can be considered negligible. We study this problem by means of direct numerical simulations. Unlike in experiments, we are able to systematically vary the Froude number Fr (ratio of centrifugal to gravitational acceleration) and the Rossby number Ro (dimensionless rotation rate) independently, and even set each to zero exactly. We show that the centrifugal acceleration simultaneously leads to contending phenomena, e.g. reflected by an increase and a decrease of the center temperature, or a suppression and an enhancement of the heat transfer efficiency. Which one prevails as net effect strongly depends on the combination of Fr and Ro. Furthermore, we discuss implications for experiments of rapidly rotating convection. SH acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG) under Grant HO 5890/1-1, JA by the NSF Geophysics Program.

  19. Enhanced Surface Warming and Accelerated Snow Melt in the Himalayas and Tibetan Plateau Induced by Absorbing Aerosols

    Science.gov (United States)

    Lau, William K.; Kim, Maeng-Ki; Kim, Kyu-Myong; Lee, Woo-Seop

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (approx.5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  20. Enhanced surface warming and accelerated snow melt in the Himalayas and Tibetan Plateau induced by absorbing aerosols

    International Nuclear Information System (INIS)

    Lau, William K M; Kim, Maeng-Ki; Lee, Woo-Seop; Kim, Kyu-Myong

    2010-01-01

    Numerical experiments with the NASA finite-volume general circulation model show that heating of the atmosphere by dust and black carbon can lead to widespread enhanced warming over the Tibetan Plateau (TP) and accelerated snow melt in the western TP and Himalayas. During the boreal spring, a thick aerosol layer, composed mainly of dust transported from adjacent deserts and black carbon from local emissions, builds up over the Indo-Gangetic Plain, against the foothills of the Himalaya and the TP. The aerosol layer, which extends from the surface to high elevation (∼5 km), heats the mid-troposphere by absorbing solar radiation. The heating produces an atmospheric dynamical feedback-the so-called elevated-heat-pump (EHP) effect, which increases moisture, cloudiness, and deep convection over northern India, as well as enhancing the rate of snow melt in the Himalayas and TP. The accelerated melting of snow is mostly confined to the western TP, first slowly in early April and then rapidly from early to mid-May. The snow cover remains reduced from mid-May through early June. The accelerated snow melt is accompanied by similar phases of enhanced warming of the atmosphere-land system of the TP, with the atmospheric warming leading the surface warming by several days. Surface energy balance analysis shows that the short-wave and long-wave surface radiative fluxes strongly offset each other, and are largely regulated by the changes in cloudiness and moisture over the TP. The slow melting phase in April is initiated by an effective transfer of sensible heat from a warmer atmosphere to land. The rapid melting phase in May is due to an evaporation-snow-land feedback coupled to an increase in atmospheric moisture over the TP induced by the EHP effect.

  1. Accelerating the Transformation of Economic Development Mode to Promote the Sable and Rapid Development of Industry%加快转变经济发展方式 推进行业平稳较快发展

    Institute of Scientific and Technical Information of China (English)

    张新民

    2012-01-01

    It is pointed out through the interpretation of the "Twelfth Five-Year Plan" of the woodworking machinery industry that the next five years is a very import period when the transformation development of woodworking machinery industry and the breakthrough development of industry transfer should be accelerated, structural adjustment and technical innovation should serve as important support for the development of woodworking machinery industry in the following five years , the change in the marked demand should be followed closely to realize the shift to new industries featuring structural optimization, advanced technology, cleanness and safety and high added value, enterprise famous brands should be expanded, strong alliance between enterprises should be promoted in order to be bigger and stronger and great importance should be attached to the soft strength construction of enterprises in terms of human resources, corporate culture and internal management to realize the long-term development of enterprises and enhance the intangible wealth for enterprise development.%对木工机械行业“十二五”规划进行解读,指出未来五年是加快木机行业转型发展、产业转移突破发展的关键五年,要坚持把结构调整和科技创新作为未来五年木机行业发展的重要支撑,要紧跟市场需求变化。向结构优化、技术先进、清洁安全、附加值高的新型产业转向,要扩大企业知名品牌,推进强强联合,做大做强,要重视企业的人力资源、企业文化、内部管理等软实力建设,增加企业发展的无形财富,实现企业长久发展。

  2. Accelerators of future generation

    International Nuclear Information System (INIS)

    Kolomenskij, A.A.

    1983-01-01

    A brief review of the prospects of development of various of types accelerator over next 10 to 15 years is given. The following directions are considered: superhign energy proton accelerators and storage rings, electron-positron colliding beams, heavy ion accelerators, medium energy, high-current proton accelerators superhigh power particle beams (electrons light- and heavy ions) for inertial fusion

  3. Future accelerator technology

    International Nuclear Information System (INIS)

    Sessler, A.M.

    1986-05-01

    A general discussion is presented of the acceleration of particles. Upon this foundation is built a categorization scheme into which all accelerators can be placed. Special attention is devoted to accelerators which employ a wake-field mechanism and a restricting theorem is examined. It is shown how the theorem may be circumvented. Comments are made on various acceleration schemes

  4. Heat pipe applications workshop report

    International Nuclear Information System (INIS)

    Ranken, W.A.

    1978-04-01

    The proceedings of the Heat Pipe Applications Workshop, held at the Los Alamos Scientific Laboratory October 20-21, 1977, are reported. This workshop, which brought together representatives of the Department of Energy and of a dozen industrial organizations actively engaged in the development and marketing of heat pipe equipment, was convened for the purpose of defining ways of accelerating the development and application of heat pipe technology. Recommendations from the three study groups formed by the participants are presented. These deal with such subjects as: (1) the problem encountered in obtaining support for the development of broadly applicable technologies, (2) the need for applications studies, (3) the establishment of a heat pipe technology center of excellence, (4) the role the Department of Energy might take with regard to heat pipe development and application, and (5) coordination of heat pipe industry efforts to raise the general level of understanding and acceptance of heat pipe solutions to heat control and transfer problems

  5. Accelerated Characterization of Polymer Properties

    Energy Technology Data Exchange (ETDEWEB)

    R. Wroczynski; l. Brewer; D. Buckley; M. Burrell; R. Potyrailo

    2003-07-30

    This report describes the efforts to develop a suite of microanalysis techniques that can rapidly measure a variety of polymer properties of industrial importance, including thermal, photo-oxidative, and color stability; as well as ductility, viscosity, and mechanical and antistatic properties. Additional goals of the project were to direct the development of these techniques toward simultaneous measurements of multiple polymer samples of small size in real time using non-destructive and/or parallel or rapid sequential measurements, to develop microcompounding techniques for preparing polymers with additives, and to demonstrate that samples prepared in the microcompounder could be analyzed directly or used in rapid off-line measurements. These enabling technologies are the crucial precursors to the development of high-throughput screening (HTS) methodologies for the polymer additives industry whereby the rate of development of new additives and polymer formulations can be greatly accelerated.

  6. Study of heat transfer in superconducting cable electrical insulation of accelerator magnet cooled by superfluid helium; Etude des transferts de chaleur dans les isolations electriques de cables supraconducteurs d'aimant d'accelerateur refroidi par helium superfluide

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    1996-10-04

    Heat transfer studies of electrical cable insulation in superconducting winding are of major importance for stability studies in superconducting magnets. This work presents an experimental heat transfer study in superconducting cables of Large Hadron Collider dipoles cooled by superfluid helium and submitted to volume heat dissipation due to beam losses. For NbTi magnets cooled by superfluid helium the most severe heat barrier comes from the electrical insulation of the cables. Heat behaviour of a winding is approached through an experimental model in which insulation characteristics can be modified. Different tests on insulation patterns show that heat transfer is influenced by superfluid helium contained in insulation even for small volume of helium (2 % of cable volume). Electrical insulation can be considered as a composite material made of a solid matrix with a helium channels network which cannot be modelled easily. This network is characterised by another experimental apparatus which allows to study transverse and steady-state heat transfer through an elementary insulation pattern. Measurements in Landau regime ({delta}T{approx}10{sup -5} to 10{sup -3} K) and in Gorter-Mellink regime ({delta}T>10{sup -3} K) and using assumptions that helium thermal paths and conduction in the insulation are decoupled allow to determine an equivalent channel area (10{sup -6} m{sup 2}) and an equivalent channel diameter (25 {mu}). (author)

  7. Study of heat transfer in superconducting cable electrical insulation of accelerator magnet cooled by superfluid helium; Etude des transferts de chaleur dans les isolations electriques de cables supraconducteurs d'aimant d'accelerateur refroidi par helium superfluide

    Energy Technology Data Exchange (ETDEWEB)

    Baudouy, B

    1996-10-04

    Heat transfer studies of electrical cable insulation in superconducting winding are of major importance for stability studies in superconducting magnets. This work presents an experimental heat transfer study in superconducting cables of Large Hadron Collider dipoles cooled by superfluid helium and submitted to volume heat dissipation due to beam losses. For NbTi magnets cooled by superfluid helium the most severe heat barrier comes from the electrical insulation of the cables. Heat behaviour of a winding is approached through an experimental model in which insulation characteristics can be modified. Different tests on insulation patterns show that heat transfer is influenced by superfluid helium contained in insulation even for small volume of helium (2 % of cable volume). Electrical insulation can be considered as a composite material made of a solid matrix with a helium channels network which cannot be modelled easily. This network is characterised by another experimental apparatus which allows to study transverse and steady-state heat transfer through an elementary insulation pattern. Measurements in Landau regime ({delta}T{approx}10{sup -5} to 10{sup -3} K) and in Gorter-Mellink regime ({delta}T>10{sup -3} K) and using assumptions that helium thermal paths and conduction in the insulation are decoupled allow to determine an equivalent channel area (10{sup -6} m{sup 2}) and an equivalent channel diameter (25 {mu}). (author)

  8. Analysis of secondary particle behavior in multiaperture, multigrid accelerator for the ITER neutral beam injector.

    Science.gov (United States)

    Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T

    2010-02-01

    Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.

  9. A theoretical investigation of the collective acceleration of cluster ions with accelerated potential waves

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Enjoji, Hiroshi; Kawaguchi, Motoichi; Noritake, Toshiya

    1984-01-01

    A theoretical treatment of the acceleration of cluster ions for additional heating of fusion plasma using the trapping effect in an accelerated potential wave is described. The conceptual design of the accelerator is the same as that by Enjoji, and the potential wave used is sinusoidal. For simplicity, collisions among cluster ions and the resulting breakups are neglected. The masses of the cluster ions are specified to range from 100 m sub(D) to 1000 m sub(D) (m sub(D): mass of a deuterium atom). Theoretical treatment is carried out only for the injection velocity which coincides with the phase velocity of the applied wave at the entrance of the accelerator. An equation describing the rate for successful acceleration of ions with a certain mass is deduced for the continuous injection of cluster ions. Computation for a typical mass distribution shows that more than 70% of the injected particles are effectively accelerated. (author)

  10. JINR rapid communications

    International Nuclear Information System (INIS)

    1999-01-01

    The present collection of rapid communications from JINR, DUBNA, contains eight separate records on symmetry in modern physics (dedicated to the 100th anniversary of the birth of academician V.A.Fock), the double φ-meson production investigation on the Serpukhov accelerator, two-leptonic η-meson decays and SUSY without R parity, charge form factors and alpha-cluster internal structure of 12 C, increasing of muon-track reconstruction efficiency in ME1/1 Dubna prototype for the CMS/LHC, study of photon-structure function F 2 γ in the reaction e + e - → e + e - + hadrons at LEP2, jets reconstruction possibility in pAu and AuAu interactions at STAR RHIC and high-vacuum nondispersable gas absorber

  11. JINR Rapid Communications. Collection

    International Nuclear Information System (INIS)

    1994-01-01

    The present collection of rapid communications from JINR, Dubna, contains eight separate reports on Lorentz transformations with superluminal velocities, photo chromic effect in HTSC films, the investigation of hypernuclei in the Nuclotron accelerator, a new hadron jets finding algorithm in the four-dimensional velocity space, investigations of neutral particle production by relativistic nuclei on the LHE 90-channel γ-spectrometer (results and perspectives), coherent meson production in the dp → 3 HeX reaction, the relativistic projectile nuclei fragmentation and A-dependence of nucleon Fermi-momenta, energy spectra of γ-quanta from d-propane interactions at momentum P d = 1.25 GeV/c per nucleon. 86 refs., 26 figs., 4 tabs

  12. JINR rapid communications

    International Nuclear Information System (INIS)

    1999-01-01

    The present collection of rapid communications from JINR, Dubna, contains seven separate records on measurements of the total cross section difference Δσ L (np) at 1.59, 1.79, and 2.20 GeV, to the estimation of angular distributions of double charged spectator fragments in nucleus-nucleus interactions at superhigh energies, simulation dE/dx analysis results for silicon inner tracking system of ALICE set-up at LHC accelerator, high-multiplicity processes, triggering of high-multiplicity events using calorimetry, ORBIT-3.0 - a computer code for simulation and correction of the closed orbit and first turn in synchrotrons and determination of memory performance

  13. Heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, E L; Eisenmann, G; Hahne, E [Stuttgart Univ. (TH) (F.R. Germany). Inst. fuer Thermodynamik und Waermetechnik

    1976-04-01

    A survey is presented on publications on design, heat transfer, form factors, free convection, evaporation processes, cooling towers, condensation, annular gap, cross-flowed cylinders, axial flow through a bundle of tubes, roughnesses, convective heat transfer, loss of pressure, radiative heat transfer, finned surfaces, spiral heat exchangers, curved pipes, regeneraters, heat pipes, heat carriers, scaling, heat recovery systems, materials selection, strength calculation, control, instabilities, automation of circuits, operational problems and optimization.

  14. Muon Collider Progress: Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 × 10{sup 34} cm{sup –2}s{sup –1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (“cooling”). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  15. Characteristics of an electron-beam rocket pellet accelerator

    International Nuclear Information System (INIS)

    Tsai, C.C.; Foster, C.A.; Schechter, D.E.

    1989-01-01

    An electron-beam rocket pellet accelerator has been designed, built, assembled, and tested as a proof-of-principle (POP) apparatus. The main goal of accelerators based on this concept is to use intense electron-beam heating and ablation of a hydrogen propellant stick to accelerate deuterium and/or tritium pellets to ultrahigh speeds (10 to 20 km/s) for plasma fueling of next-generation fusion devices such as the International Thermonuclear Engineering Reactor (ITER). The POP apparatus is described and initial results of pellet acceleration experiments are presented. Conceptual ultrahigh-speed pellet accelerators are discussed. 14 refs., 8 figs

  16. RF Pulsed Heating

    Energy Technology Data Exchange (ETDEWEB)

    Pritzkau, David P.

    2002-01-03

    RF pulsed heating is a process by which a metal is heated from magnetic fields on its surface due to high-power pulsed RF. When the thermal stresses induced are larger than the elastic limit, microcracks and surface roughening will occur due to cyclic fatigue. Pulsed heating limits the maximum magnetic field on the surface and through it the maximum achievable accelerating gradient in a normal conducting accelerator structure. An experiment using circularly cylindrical cavities operating in the TE{sub 011} mode at a resonant frequency of 11.424 GHz is designed to study pulsed heating on OFE copper, a material commonly used in normal conducting accelerator structures. The high-power pulsed RF is supplied by an X-band klystron capable of outputting 50 MW, 1.5 {micro}s pulses. The test pieces of the cavity are designed to be removable to allow testing of different materials with different surface preparations. A diagnostic tool is developed to measure the temperature rise in the cavity utilizing the dynamic Q change of the resonant mode due to heating. The diagnostic consists of simultaneously exciting a TE{sub 012} mode to steady-state in the cavity at 18 GHz and measuring the change in reflected power as the cavity is heated from high-power pulsed RF. Two experimental runs were completed. One run was executed at a calculated temperature rise of 120 K for 56 x 10{sup 6} pulses. The second run was executed at a calculated temperature rise of 82 K for 86 x 10{sup 6} pulses. Scanning electron microscope pictures show extensive damage occurring in the region of maximum temperature rise on the surface of the test pieces.

  17. Characteristics of diffusion flames with accelerated motion

    Directory of Open Access Journals (Sweden)

    Lou Bo

    2016-01-01

    Full Text Available The aim of this work is to present an experiment to study the characteristics of a laminar diffusion flame under acceleration. A Bunsen burner (nozzle diameter 8 mm, using liquefied petroleum gas as its fuel, was ignited under acceleration. The temperature field and the diffusion flame angle of inclination were visualised with the assistance of the visual display technology incorporated in MATLAB™. Results show that the 2-d temperature field under different accelerations matched the variation in average temperatures: they both experience three variations at different time and velocity stages. The greater acceleration has a faster change in average temperature with time, due to the accumulation of combustion heat: the smaller acceleration has a higher average temperature at the same speed. No matter what acceleration was used, in time, the flame angle of inclination increased, but the growth rate decreased until an angle of 90°: this could be explained by analysis of the force distribution within the flame. It is also found that, initially, the growth rate of angle with velocity under the greater acceleration was always smaller than that at lower accelerations; it was also different in flames with uniform velocity fire conditions.

  18. [Clothing and heat disorder].

    Science.gov (United States)

    Satsumoto, Yayoi

    2012-06-01

    The influence of the clothing material properties(like water absorbency and rapid dryness, water vapor absorption, water vapor permeability and air permeability) and the design factor of the clothing(like opening condition and fitting of clothing), which contributed to prevent heat disorder, was outlined. WBGT(wet-bulb globe temperature) is used to show a guideline for environmental limitation of activities to prevent heat disorder. As the safety function is more important than thermal comfort for some sportswear and protective clothing with high cover area, clothing itself increases the risk of heat disorder. WBGT is corrected by CAF (clothing adjustment factor) in wearing such kind of protective clothing.

  19. Diffusive Shock Acceleration and Turbulent Reconnection

    Science.gov (United States)

    Garrel, Christian; Vlahos, Loukas; Isliker, Heinz; Pisokas, Theophilos

    2018-05-01

    Diffusive Shock Acceleration (DSA) cannot efficiently accelerate particles without the presence of self-consistently generated or pre-existing strong turbulence (δB/B ˜ 1) in the vicinity of the shock. The problem we address in this article is: if large amplitude magnetic disturbances are present upstream and downstream of a shock then Turbulent Reconnection (TR) will set in and will participate not only in the elastic scattering of particles but also in their heating and acceleration. We demonstrate that large amplitude magnetic disturbances and Unstable Current Sheets (UCS), spontaneously formed in the strong turbulence in the vicinity of a shock, can accelerate particles as efficiently as DSA in large scale systems and on long time scales. We start our analysis with "elastic" scatterers upstream and downstream and estimate the energy distribution of particles escaping from the shock, recovering the well known results from the DSA theory. Next we analyze the additional interaction of the particles with active scatterers (magnetic disturbances and UCS) upstream and downstream of the shock. We show that the asymptotic energy distribution of the particles accelerated by DSA/TR has very similar characteristics with the one due to DSA alone, but the synergy of DSA with TR is much more efficient: The acceleration time is an order of magnitude shorter and the maximum energy reached two orders of magnitude higher. We claim that DSA is the dominant acceleration mechanism in a short period before TR is established, and then strong turbulence will dominate the heating and acceleration of the particles. In other words, the shock serves as the mechanism to set up a strongly turbulent environment, in which the acceleration mechanism will ultimately be the synergy of DSA and TR.

  20. 2014 CERN Accelerator Schools: Plasma Wake Acceleration

    CERN Multimedia

    2014-01-01

    A specialised school on Plasma Wake Acceleration will be held at CERN, Switzerland from 23-29 November, 2014.   This course will be of interest to staff and students in accelerator laboratories, university departments and companies working in or having an interest in the field of new acceleration techniques. Following introductory lectures on plasma and laser physics, the course will cover the different components of a plasma wake accelerator and plasma beam systems. An overview of the experimental studies, diagnostic tools and state of the art wake acceleration facilities, both present and planned, will complement the theoretical part. Topical seminars and a visit of CERN will complete the programme. Further information can be found at: http://cas.web.cern.ch/cas/PlasmaWake2014/CERN-advert.html http://indico.cern.ch/event/285444/

  1. Advanced Accelerator Applications University Participation Program

    Energy Technology Data Exchange (ETDEWEB)

    Y. Chen; A. Hechanova

    2007-07-25

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability.

  2. Linear accelerator accelerating module to suppress back-acceleration of field-emitted particles

    Science.gov (United States)

    Benson, Stephen V.; Marhauser, Frank; Douglas, David R.; Ament, Lucas J. P.

    2017-12-05

    A method for the suppression of upstream-directed field emission in RF accelerators. The method is not restricted to a certain number of cavity cells, but requires similar operating field levels in all cavities to efficiently annihilate the once accumulated energy. Such a field balance is desirable to minimize dynamic RF losses, but not necessarily achievable in reality depending on individual cavity performance, such as early Q.sub.0-drop or quench field. The method enables a significant energy reduction for upstream-directed electrons within a relatively short distance. As a result of the suppression of upstream-directed field emission, electrons will impact surfaces at rather low energies leading to reduction of dark current and less issues with heating and damage of accelerator components as well as radiation levels including neutron generation and thus radio-activation.

  3. Neutrons from medical electron accelerators

    International Nuclear Information System (INIS)

    Swanson, W.P.; McCall, R.C.

    1979-06-01

    The significant sources of photoneutrons within a linear-accelerator treatment head are identified and absolute estimates of neutron production per treatment dose are given for typical components. Measured data obtained at a variety of accelerator installations are presented and compared with these calculations. It is found that the high-Z materials within the treatment head do not significantly alter the neutron fluence, but do substantially reduce the average energy of the transmitted spectrum. Reflected neutrons from the concrete treatment room contribute to the neutron fluence, but not substantially to the patient integral dose, because of a further reduction in average energy. Absolute depth-dose distributions for realistic neutron spectra are calculated, and a rapid falloff with depth is found

  4. Acoustically enhanced heat transport

    Energy Technology Data Exchange (ETDEWEB)

    Ang, Kar M.; Hung, Yew Mun; Tan, Ming K., E-mail: tan.ming.kwang@monash.edu [School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Selangor (Malaysia); Yeo, Leslie Y. [Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3001 (Australia); Friend, James R. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, California 92093 (United States)

    2016-01-15

    We investigate the enhancement of heat transfer in the nucleate boiling regime by inducing high frequency acoustic waves (f ∼ 10{sup 6} Hz) on the heated surface. In the experiments, liquid droplets (deionized water) are dispensed directly onto a heated, vibrating substrate. At lower vibration amplitudes (ξ{sub s} ∼ 10{sup −9} m), the improved heat transfer is mainly due to the detachment of vapor bubbles from the heated surface and the induced thermal mixing. Upon increasing the vibration amplitude (ξ{sub s} ∼ 10{sup −8} m), the heat transfer becomes more substantial due to the rapid bursting of vapor bubbles happening at the liquid-air interface as a consequence of capillary waves travelling in the thin liquid film between the vapor bubble and the air. Further increases then lead to rapid atomization that continues to enhance the heat transfer. An acoustic wave displacement amplitude on the order of 10{sup −8} m with 10{sup 6} Hz order frequencies is observed to produce an improvement of up to 50% reduction in the surface temperature over the case without acoustic excitation.

  5. High Early-Age Strength Concrete for Rapid Repair

    Science.gov (United States)

    Maler, Matthew O.

    The aim of this research was to identify High Early-Age Strength (HES) concrete batch designs, and evaluate their suitability for use in the rapid repair of highways and bridge decks. To this end, two criteria needed to be met; a minimum compressive strength of 20.68 MPa (3000 psi) in no later than 12 hours, and a drying shrinkage of less than 0.06 % at 28 days after curing. The evaluations included both air-entrained, and non-air-entrained concretes. The cement types chosen for this study included Type III and Type V Portland cement and "Rapid Set"--a Calcium Sulfoaluminate (CSA) cement. In addition, two blended concretes containing different ratios of Type V Portland cement and CSA cement were investigated. The evaluation of the studied concretes included mechanical properties and transport properties. Additionally, dimensional stability and durability were investigated. Evaluations were conducted based on cement type and common cement factor. Fresh property tests showed that in order to provide a comparable workability, and still remain within manufactures guideline for plasticizer, the water-to-cement ratio was adjusted for each type of cement utilized. This resulted in the need to increase the water-to-cement ratio as the Blaine Fineness of the cement type increased (0.275 for Type V Portland cement, 0.35 for Type III Portland cement, and 0.4 for Rapid Set cement). It was also observed that negligible changes in setting time occurred with increasing cement content, whereas changes in cement type produced notable differences. The addition of air-entrainment had beneficial effect on workability for the lower cement factors. Increasing trends for peak hydration heat were seen with increases in cement factor, cement Blaine Fineness, and accelerator dosage. Evaluation of hardened properties revealed opening times as low as 5 hours for Type V Portland cement with 2.0 % accelerator per cement weight and further reduction in opening time by an hour when accelerator

  6. Heat Stress

    Science.gov (United States)

    ... Publications and Products Programs Contact NIOSH NIOSH HEAT STRESS Recommend on Facebook Tweet Share Compartir OSHA-NIOSH ... hot environments may be at risk of heat stress. Exposure to extreme heat can result in occupational ...

  7. Accelerator development programme in India - an outlook

    International Nuclear Information System (INIS)

    Bhandari, R.K.

    2011-01-01

    With the construction of the VEC, Indus-1, Indus-2, superconducting cyclotron, superconducting heavy ion linac boosters etc. and implementation of other accelerator R and D programmes, we are now 'equipped' to take a quantum jump in the accelerator field. We have highly trained and skilled manpower that can take up challenges in this rapidly growing field both for research as well as applications. Serious planning is going on in the country to construct accelerator facilities for versatile Rare Ion Beams (RIB), powerful spallation source, advanced synchrotron source, high power beam for ADS etc. There is strong demand by the medical community for a proton/heavy ion cancer therapy facility and for accelerator-produced radioisotopes for medical diagnostics. Proliferation of accelerators in the industry field is long overdue in our country and welcome realization is coming. In this presentation a glimpse of the intended growth of accelerator field in the country will be given. Interesting challenges are there not only for the accelerator community, which has to grow, but also for the industry. Since the general trend is now to construct high intensity and high beam power accelerators - both for research as well as applications - the associated problems of radiation safety will be highlighted. (author)

  8. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis.

    Science.gov (United States)

    Xu, Shu-Jun; Liu, Chun-Jiang; Jiang, Ping-An; Cai, Wei-Min; Wang, Yan

    2009-03-15

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 degrees C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 degrees C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs.

  9. The effects of drying following heat shock exposure of the desert moss Syntrichia caninervis

    International Nuclear Information System (INIS)

    Xu Shujun; Liu Chunjiang; Jiang Pingan; Cai Weimin; Wang Yan

    2009-01-01

    Desert mosses are components of biological soil crusts (BSCs) and their ecological functions make assessment and protection of these mosses a high-ranking management priority in desert regions. Drying is thought to be useful for desert mosses surviving heat shock. In this study, we investigated the role of drying by monitoring the responses of physiological characters and asexual reproduction in the typical desert moss Syntrichia caninervis. Heat significantly decreased chlorophyll content and weakened rapid recovery of photochemical activity, and increased carotenoid content and membrane permeability. Lethal temperatures significantly destroyed shoot regeneration potential. In comparison with heat alone, drying significantly increased protonema emergence time and depressed protonema emergence area. Drying combined with heat accelerated water loss, followed by a decrease of photosynthetic activity. Drying had different influences on membrane permeability at different temperatures. When moss leaves were subjected to a combined stress of drying and heat shock, photosynthesis was maintained mainly due to the effects of drying on physiological activity although the cellular morphological integrity was affected. Drying caused opposing effects on moss physiological and reproductive characteristics. On the one hand, drying caused a positive synergistic effect with heat shock when the temperature was below 40 deg. C. On the other hand, drying showed antagonism with heat shock when the moss was subjected to temperatures higher than 40 deg. C. These findings may help in understanding the survival mechanism of dessert mosses under heat shock stress which will be helpful for the artificial reconstruction of BSCs

  10. Proton acceleration experiments and warm dense matter research using high power lasers

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Institut fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C R D [Plasma Physics Group, Imperial College London, SW7 2BZ (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory (RAL), Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory (LANL), Los Alamos, NM 87545 (United States); Geissel, M [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gregori, G, E-mail: markus.roth@physik.tu-darmstadt.d [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom)

    2009-12-15

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  11. Proton acceleration experiments and warm dense matter research using high power lasers

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C R D; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Geissel, M; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Gregori, G

    2009-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. In this paper we report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore, we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by x-ray Thomson scattering to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  12. Industrial applications of electron accelerators

    International Nuclear Information System (INIS)

    Singh, A.

    1994-01-01

    The interaction of high-energy radiation with organic systems produces very reactive, short-lived, ionic and free-radical species. The chemical changes brought about by these species are very useful in several systems, and are the basis of the growth of the electron processing industry. Some typical areas of the industrial use of electron accelerators are crosslinking wire and cable insulation, manufacturing heat shrink plastic items, curing coatings, and partially curing rubber products. Electron accelerators are also being considered in other areas such as sewage treatment, sterilizing medical disposables, and food irradiation. An emerging application of industrial electron accelerators is the production of advanced composites for the aerospace and other industries. Traditionally, the carbon-, aramid- and glass-fibre-reinforced composites with epoxy matrices are produced by thermal curing. However, equivalent composites with acrylated-epoxy matrices can be made by electron curing. Cost estimates suggest that electron curing could be more economical than thermal curing. Food irradiation has traditionally been an application for 60 Co γ-radiation. With the increasing demand for food irradiation in various countries, it may become necessary to use electron accelerators for this purpose. Since the dose rate during gamma and electron irradiation are generally very different, a review of the relevant work on the effect of dose rates has been done. This paper presents an overview of the industrial applications of electron accelerator for radiation processing, emphasises the electron curing of advanced composites and, briefly reviews the dose-rate effects in radiation processing of advanced composites and food irradiation. (author). 84 refs., 8 tabs

  13. Other people's accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-06-15

    The first report from the Washington Accelerator Conference concentrated on news from the particle physics centres. But the bulk of the Conference covered the use of accelerators in other fields, underlining this valuable spinoff from particle physics.

  14. Improved plasma accelerator

    Science.gov (United States)

    Cheng, D. Y.

    1971-01-01

    Converging, coaxial accelerator electrode configuration operates in vacuum as plasma gun. Plasma forms by periodic injections of high pressure gas that is ionized by electrical discharges. Deflagration mode of discharge provides acceleration, and converging contours of plasma gun provide focusing.

  15. The electron accelerator Ridgetron

    International Nuclear Information System (INIS)

    Hayashizaki, N.; Hattori, T.; Odera, M.; Fujisawa, T.

    1999-01-01

    Many electron accelerators of DC or RF type have been widely used for electron beam irradiation (curing, crosslinking of polymers, sterilization of medical disposables, preservation of food, etc.). Regardless of the acceleration energy, the accelerators to be installed in industrial facilities, have to satisfy the requires of compact size, low power consumption and stable operation. The DC accelerator is realized very compact in the energy under 300 keV, however, it is large to prevent the discharge of an acceleration column in the energy over 300 keV. The RF electron accelerator Ridgetron has been developed to accelerate the continuous beam of the 0.5-10 MeV range in compact space. It is the first example as an electron accelerator incorporated a ridged RF cavity. A prototype system of final energy of 2.5 MeV has been studied to confirm the feasibility at present

  16. High brightness electron accelerator

    International Nuclear Information System (INIS)

    Sheffield, R.L.; Carlsten, B.E.; Young, L.M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of accelerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electrons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electrons as the electrons enter the first cavity. 5 figs

  17. Unified accelerator libraries

    International Nuclear Information System (INIS)

    Malitsky, Nikolay; Talman, Richard

    1997-01-01

    A 'Universal Accelerator Libraries' (UAL) environment is described. Its purpose is to facilitate program modularity and inter-program and inter-process communication among heterogeneous programs. The goal ultimately is to facilitate model-based control of accelerators

  18. YEREVAN: Acceleration workshop

    International Nuclear Information System (INIS)

    Anon.

    1989-01-01

    Sponsored by the Yerevan Physics Institute in Armenia, a Workshop on New Methods of Charged Particle Acceleration in October near the Nor Amberd Cosmic Ray Station attracted participants from most major accelerator centres in the USSR and further afield

  19. San Francisco Accelerator Conference

    International Nuclear Information System (INIS)

    Southworth, Brian

    1991-01-01

    'Where are today's challenges in accelerator physics?' was the theme of the open session at the San Francisco meeting, the largest ever gathering of accelerator physicists and engineers

  20. Large tandem accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1976-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of tandem accelerators designed to operate at maximum terminal potentials in the range 14 to 30 MV. In addition, a number of older tandem accelerators are now being significantly upgraded to improve their heavy ion performance. Both of these developments have reemphasized the importance of negative heavy ion sources. The new large tandem accelerators are described, and the requirements placed on negative heavy ion source technology by these and other tandem accelerators used for the acceleration of heavy ions are discussed. First, a brief description is given of the large tandem accelerators which have been completed recently, are under construction, or are funded for construction, second, the motivation for construction of these accelerators is discussed, and last, criteria for negative ion sources for use with these accelerators are presented

  1. Vp x B acceleration

    International Nuclear Information System (INIS)

    Sugihara, Ryo.

    1987-05-01

    A unique particle acceleration by an electrostatic (ES) wave, a magnetosonic shock wave as well as an electromagnetic (EM) wave is reviewed. The principle of the acceleration is that when a charged particle is carried across an external magnetic field the charge feels a DC field (the Lorentz force) and is accelerated. The theory for the ES wave acceleration is experimentally verified thought it is semi-quantitative. The shock acceleration is extensively studied theoretically and in a particle simulation method and the application is extended to phenomena in interplanetary space. The EM wave acceleration is based on a trapping in a moving neutral sheet created by the wave magnetic field and the external magnetic field, and the particle can be accelerated indefinitely. A brief sketch on a slow-wave-structure for this acceleration will be given. (author)

  2. Accelerator-timing system

    International Nuclear Information System (INIS)

    Timmer, E.; Heine, E.

    1985-01-01

    Along the NIKHEF accelerator in Amsterdam (Netherlands), at several places a signal is needed for the sychronisation of all devices with the acceleration process. In this report, basic principles and arrangements of this timing system are described

  3. Linear accelerator: A concept

    Science.gov (United States)

    Mutzberg, J.

    1972-01-01

    Design is proposed for inexpensive accelerometer which would work by applying pressure to fluid during acceleration. Pressure is used to move shuttle, and shuttle movement is sensed and calibrated to give acceleration readings.

  4. Heavy ion accelerators

    International Nuclear Information System (INIS)

    Schmelzer, C.

    1974-01-01

    This review of the present state of work on heavy-ion accelerators pays particular attention to the requirements for nuclear research. It is divided into the following sections: single-particle versus collective acceleration, heavy-ion accelerators, beam quality, and a status report on the UNILAC facility. Among the topics considered are the recycling cyclotron, linacs with superconducting resonators, and acceleration to the GeV/nucleon range. (8 figures, 2 tables) (U.S.)

  5. Accelerators at school

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required

  6. Accelerators at school

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-06-15

    Latest subject covered by the CERN Accelerator School was 'Applied Geodesy of Particle Accelerators', which attracted an impressive number of outside participants to CERN for a week in April. Since the forerunners of today's particle accelerators were demonstrated over 50 years ago, the positioning of accelerator components has progressed from the laboratory bench-top to tunnels tens of kilometres long. Despite this phenomenal growth in size, sub-millimetre accuracy is still required.

  7. Accelerators for Medicine

    CERN Multimedia

    CERN. Geneva

    2018-01-01

    This lecture will review the different applications of particle accelerators to the medical field, from cancer treatment with beams of accelerator-produced particles (photons, electrons, protons, ions and neutrons) to the generation of radioactive isotopes used in medical diagnostics, in cancer therapy and in the new domain of theragnostics. For each application will be outlined the state of the art, the potential, and the accelerator challenges to be faced to meet the increasing demand for therapeutic procedures based on accelerators.

  8. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The paper is divided into four parts: a discussion of the motivation for the construction of large electrostatic accelerators, a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year

  9. Particle beam accelerator

    International Nuclear Information System (INIS)

    Turner, N.L.

    1982-01-01

    A particle beam accelerator is described which has several electrodes that are selectively short circuited together synchronously with changes in the magnitude of a DC voltage applied to the accelerator. By this method a substantially constant voltage gradient is maintained along the length of the unshortened electrodes despite variations in the energy applied to the beam by the accelerator. The invention has particular application to accelerating ion beams that are implanted into semiconductor wafers. (U.K.)

  10. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  11. Applications of particle accelerators

    International Nuclear Information System (INIS)

    Barbalat, O.

    1994-01-01

    Particle accelerators are now widely used in a variety of applications for scientific research, applied physics, medicine, industrial processing, while possible utilisation in power engineering is envisaged. Earlier presentations of this subject, given at previous CERN Accelerator School sessions have been updated with papers contributed to the first European Conference on Accelerators in Applied Research and Technology (ECAART) held in September 1989 in Frankfurt and to the Second European Particle Accelerator Conference in Nice in June 1990. (orig.)

  12. Performance of the FELIX accelerator

    International Nuclear Information System (INIS)

    Geer, C.A.J. van der; Bakker, R.J.; Meer, A.F.G. van der; Amersfoort, P.W. van; Gillespie, W.A.; Martin, P.F.

    1992-01-01

    The FELIX project (Free Electron Laser for Infrared eXperiments) involves the construction and operation of a rapidly tunable FEL users facility for the infrared based on a rf linear accelerator. Lasing was obtained in the summer of 1991. The spectral region already covered is between 16 and 110 μm to be extended to below 8 μm with an additional linac section. Measurement of several electron beam parameters along the beam line are presented. (author) 6 refs.; 7 figs

  13. The CERN Accelerator School

    CERN Multimedia

    2016-01-01

    Introduction to accelerator physics The CERN Accelerator School: Introduction to Accelerator Physics, which should have taken place in Istanbul, Turkey, later this year has now been relocated to Budapest, Hungary.  Further details regarding the new hotel and dates will be made available as soon as possible on a new Indico site at the end of May.

  14. Angular Acceleration without Torque?

    Science.gov (United States)

    Kaufman, Richard D.

    2012-01-01

    Hardly. Just as Robert Johns qualitatively describes angular acceleration by an internal force in his article "Acceleration Without Force?" here we will extend the discussion to consider angular acceleration by an internal torque. As we will see, this internal torque is due to an internal force acting at a distance from an instantaneous center.

  15. Accelerators and Dinosaurs

    CERN Multimedia

    Turner, Michael Stanley

    2003-01-01

    Using naturally occuring particles on which to research might have made accelerators become extinct. But in fact, results from astrophysics have made accelerator physics even more important. Not only are accelerators used in hospitals but they are also being used to understand nature's inner workings by searching for Higgs bosons, CP violation, neutrino mass and dark matter (2 pages)

  16. Far field acceleration

    International Nuclear Information System (INIS)

    Fernow, R.C.

    1995-07-01

    Far fields are propagating electromagnetic waves far from their source, boundary surfaces, and free charges. The general principles governing the acceleration of charged particles by far fields are reviewed. A survey of proposed field configurations is given. The two most important schemes, Inverse Cerenkov acceleration and Inverse free electron laser acceleration, are discussed in detail

  17. Virtual Accelerator for Accelerator Optics Improvement

    CERN Document Server

    Yan Yi Ton; Decker, Franz Josef; Ecklund, Stanley; Irwin, John; Seeman, John; Sullivan, Michael K; Turner, J L; Wienands, Ulrich

    2005-01-01

    Through determination of all quadrupole strengths and sextupole feed-downs by fitting quantities derivable from precision orbit measurement, one can establish a virtual accelerator that matches the real accelerator optics. These quantities (the phase advances, the Green's functions, and the coupling eigen-plane ellipses tilt angles and axis ratios) are obtained by analyzing turn-by-turn Beam Position Monitor (BPM) data with a model-independent analysis (MIA). Instead of trying to identify magnet errors, a limited number of quadrupoles are chosen for optimized strength adjustment to improve the virtual accelerator optics and then applied to the real accelerator accordingly. These processes have been successfully applied to PEP-II rings for beta beating fixes, phase and working tune adjustments, and linear coupling reduction to improve PEP-II luminosity.

  18. The Accelerator Reliability Forum

    CERN Document Server

    Lüdeke, Andreas; Giachino, R

    2014-01-01

    A high reliability is a very important goal for most particle accelerators. The biennial Accelerator Reliability Workshop covers topics related to the design and operation of particle accelerators with a high reliability. In order to optimize the over-all reliability of an accelerator one needs to gather information on the reliability of many different subsystems. While a biennial workshop can serve as a platform for the exchange of such information, the authors aimed to provide a further channel to allow for a more timely communication: the Particle Accelerator Reliability Forum [1]. This contribution will describe the forum and advertise it’s usage in the community.

  19. Notes on Laser Acceleration

    International Nuclear Information System (INIS)

    Tajima, T.

    2008-01-01

    This note intends to motivate our effort toward the advent of new methods of particle acceleration, utilizing the fast rising laser technology. By illustrating the underlying principles in an intuitive manner and thus less jargon-clad fashion, we seek a direction in which we shall be able to properly control and harness the promise of laser acceleration. First we review the idea behind the laser wakefield. We then go on to examine ion acceleration by laser. We examine the sheath acceleration in particular and look for the future direction that allows orderly acceleration of ions in high energies

  20. Heat pumps

    CERN Document Server

    Macmichael, DBA

    1988-01-01

    A fully revised and extended account of the design, manufacture and use of heat pumps in both industrial and domestic applications. Topics covered include a detailed description of the various heat pump cycles, the components of a heat pump system - drive, compressor, heat exchangers etc., and the more practical considerations to be taken into account in their selection.

  1. Rapid Evaporation of microbubbles

    Science.gov (United States)

    Gautam, Jitendra; Esmaeeli, Asghar

    2008-11-01

    When a liquid is heated to a temperature far above its boiling point, it evaporates abruptly. Boiling of liquid at high temperatures can be explosive and destructive, and poses a potential hazard for a host of industrial processes. Explosive boiling may occur if a cold and volatile liquid is brought into contact with a hot and non-volatile liquid, or if a liquid is superheated or depressurized rapidly. Such possibilities are realized, for example, in the depressurization of low boiling point liquefied natural gas (LNG) in the pipelines or storage tanks as a result of a leak. While boiling of highly heated liquids can be destructive at macroscale, the (nearly) instantaneous pace of the process and the release of large amount of kinetic energy make the phenomena extremely attractive at microscale where it is possible to utilize the released energy to derive micromechanical systems. For instance, there is currently a growing interest in micro-explosion of liquid for generation of micro bubbles for actuation purposes. The aim of the current study is to gain a fundamental understanding of the subject using direct numerical simulations. In particular, we seek to investigate the boundary between stable and unstable nucleus growth in terms of the degree of liquid superheat and to compare the dynamics of unstable and stable growth.

  2. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Turner, S [ed.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ``Superconductivity in Particle Accelerators``. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.).

  3. CAS CERN Accelerator School: Superconductivity in particle accelerators. Proceedings

    International Nuclear Information System (INIS)

    Turner, S.

    1996-05-01

    These proceedings present the lectures given at the ninth specialized course organized by the CERN Accelerator School (CAS), the topic this time being ''Superconductivity in Particle Accelerators''. This course is basically a repeat of that given at the same location in 1988 whose proceedings were published as CERN 89-04. However, the opportunity was taken to improve the presentation of the various topics and to introduce the latest developments in this rapidly expanding field. First the basic theory of superconductivity is introduced. A review of the materials used for sc magnetics is followed by magnet design requirements, the influence of eddy and persistent currents, and the methods used to provide quench protection. Next follows the basic theory of sc cavities, their materials, high-gradient limitations, the problem of field emission and then their power couplers. After an introduction to cryogenics and cryoplants, the theory of superfluidity is presented followed by a review of the use of superfluid helium. Finally, two seminars detail the impact of superconductors in the design of the LHC and LEP2 accelerators. (orig.)

  4. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Univer...

  5. Industrial Application of Accelerators

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    At CERN, we are very familiar with large, high energy particle accelerators. However, in the world outside CERN, there are more than 35000 accelerators which are used for applications ranging from treating cancer, through making better electronics to removing harmful micro-organisms from food and water. These are responsible for around $0.5T of commerce each year. Almost all are less than 20 MeV and most use accelerator types that are somewhat different from what is at CERN. These lectures will describe some of the most common applications, some of the newer applications in development and the accelerator technology used for them. It will also show examples of where technology developed for particle physics is now being studied for these applications. Rob Edgecock is a Professor of Accelerator Science, with a particular interest in the medical applications of accelerators. He works jointly for the STFC Rutherford Appleton Laboratory and the International Institute for Accelerator Applications at the Uni...

  6. Accelerations in Flight

    Science.gov (United States)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  7. Accelerators for energy

    International Nuclear Information System (INIS)

    Inoue, Makoto

    2000-01-01

    A particle accelerator is a device to consume energy but not to produce it. Then, the titled accelerator seems to mean an accelerator for using devices related to nuclear energy. For an accelerator combined to nuclear fissionable fuel, neutron sources are D-T type, (gamma, n) reaction using electron beam type spallation type, and so forth. At viewpoints of powers of incident beam and formed neutron, a spallation type source using high energy proton is told to be effective but others have some advantages by investigation on easy operability, easy construction, combustion with target, energy and directivity of neutron, and so forth. Here were discussed on an accelerator for research on accelerator driven energy system by dividing its researching steps, and on kind, energy, beam intensity, and so forth of an accelerator suitable for it. And, space electric charge effect at beam propagation direction controlled by beam intensity of cyclotron was also commented. (G.K.)

  8. The United States Particle Accelerator School: Educating the Next Generation of Accelerator Scientists and Engineers

    International Nuclear Information System (INIS)

    Barletta, William A.

    2009-01-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator/beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, cross-disciplinary research areas such as high energy density physics.

  9. The United States Particle Accelerator School: Educating the next generation of accelerator scientists and engineers

    International Nuclear Information System (INIS)

    Barletta, William A.

    2008-01-01

    Only a handful of universities in the US offer any formal training in accelerator science. The United States Particle Accelerator School (USPAS) is National Graduate Educational Program that has developed a highly successful educational paradigm that, over the past twenty-years, has granted more university credit in accelerator / beam science and technology than any university in the world. Sessions are held twice annually, hosted by major US research universities that approve course credit, certify the USPAS faculty, and grant course credit. The USPAS paradigm is readily extensible to other rapidly developing, crossdisciplinary research areas such as high energy density physics

  10. Non-isochronous spiral orbit particle accelerator and fixed frequency closed orbit particle accelerator

    International Nuclear Information System (INIS)

    Fujisawa, Takashi; Hattori, Toshiyuki

    2006-01-01

    One of the present inventions provides a spiral orbit charged particle accelerator in which the magnetic field increases as the radius increases more rapidly than an isochronous magnetic field distribution, and the distribution of fixed-frequency accelerating RF voltage is formed so that a harmonic number changes in integer for every particle revolution. The other invention realizes to make the closed orbit charged particle accelerator having a fixed frequency amplitude modulator that is able to modulate amplitude of the RF voltage so that a harmonic number decreases in integer in an every particle revolution. (author)

  11. Micro thrust and heat generator

    Science.gov (United States)

    Garcia, E.J.

    1998-11-17

    A micro thrust and heat generator have a means for providing a combustion fuel source to an ignition chamber of the micro thrust and heat generator. The fuel is ignited by a ignition means within the micro thrust and heat generator`s ignition chamber where it burns and creates a pressure. A nozzle formed from the combustion chamber extends outward from the combustion chamber and tappers down to a narrow diameter and then opens into a wider diameter where the nozzle then terminates outside of said combustion chamber. The pressure created within the combustion chamber accelerates as it leaves the chamber through the nozzle resulting in pressure and heat escaping from the nozzle to the atmosphere outside the micro thrust and heat generator. The micro thrust and heat generator can be microfabricated from a variety of materials, e.g., of polysilicon, on one wafer using surface micromachining batch fabrication techniques or high aspect ratio micromachining techniques (LIGA). 30 figs.

  12. Free convection film flows and heat transfer

    CERN Document Server

    Shang, Deyi

    2010-01-01

    Presents development of systematic studies for hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, and accelerating film flow of non-Newtonian power-law fluids. This book provides a system of analysis models with a developed velocity component method.

  13. Particle-accelerator decommissioning

    International Nuclear Information System (INIS)

    Opelka, J.H.; Mundis, R.L.; Marmer, G.J.; Peterson, J.M.; Siskind, B.; Kikta, M.J.

    1979-12-01

    Generic considerations involved in decommissioning particle accelerators are examined. There are presently several hundred accelerators operating in the United States that can produce material containing nonnegligible residual radioactivity. Residual radioactivity after final shutdown is generally short-lived induced activity and is localized in hot spots around the beam line. The decommissioning options addressed are mothballing, entombment, dismantlement with interim storage, and dismantlement with disposal. The recycle of components or entire accelerators following dismantlement is a definite possibility and has occurred in the past. Accelerator components can be recycled either immediately at accelerator shutdown or following a period of storage, depending on the nature of induced activation. Considerations of cost, radioactive waste, and radiological health are presented for four prototypic accelerators. Prototypes considered range from small accelerators having minimal amounts of radioactive mmaterial to a very large accelerator having massive components containing nonnegligible amounts of induced activation. Archival information on past decommissionings is presented, and recommendations concerning regulations and accelerator design that will aid in the decommissioning of an accelerator are given

  14. An introduction to acceleration mechanisms

    International Nuclear Information System (INIS)

    Palmer, R.B.

    1987-05-01

    This paper discusses the acceleration of charged particles by electromagnetic fields, i.e., by fields that are produced by the motion of other charged particles driven by some power source. The mechanisms that are discussed include: Ponderamotive Forces, Acceleration, Plasma Beat Wave Acceleration, Inverse Free Electron Laser Acceleration, Inverse Cerenkov Acceleration, Gravity Acceleration, 2D Linac Acceleration and Conventional Iris Loaded Linac Structure Acceleration

  15. An analysis of heat effects in different subpopulations of Bangladesh

    Science.gov (United States)

    Burkart, Katrin; Breitner, Susanne; Schneider, Alexandra; Khan, Md. Mobarak Hossain; Krämer, Alexander; Endlicher, Wilfried

    2014-03-01

    A substantial number of epidemiological studies have demonstrated an association between atmospheric conditions and human all-cause as well as cause-specific mortality. However, most research has been performed in industrialised countries, whereas little is known about the atmosphere-mortality relationship in developing countries. Especially with regard to modifications from non-atmospheric conditions and intra-population differences, there is a substantial research deficit. Within the scope of this study, we aimed to investigate the effects of heat in a multi-stratified manner, distinguishing by the cause of death, age, gender, location and socio-economic status. We examined 22,840 death counts using semi-parametric Poisson regression models, adjusting for a multitude of potential confounders. Although Bangladesh is dominated by an increase of mortality with decreasing (equivalent) temperatures over a wide range of values, the findings demonstrated the existence of partly strong heat effects at the upper end of the temperature distribution. Moreover, the study demonstrated that the strength of these heat effects varied considerably over the investigated subgroups. The adverse effects of heat were particularly pronounced for males and the elderly above 65 years. Moreover, we found increased adverse effects of heat for urban areas and for areas with a high socio-economic status. The increase in, and acceleration of, urbanisation in Bangladesh, as well as the rapid aging of the population and the increase in non-communicable diseases, suggest that the relevance of heat-related mortality might increase further. Considering rising global temperatures, the adverse effects of heat might be further aggravated.

  16. Competitivity of biofuels in heating

    International Nuclear Information System (INIS)

    Flyktman, M.

    1996-01-01

    The competitivity of indigenous fuels in heating of residential houses in comparison with imported fuels, and both electricity and district heating, has been studied in this research, ordered by the Finnish Ministry of Trade and Industry. Heating plants of residential house scale (20-1000 kW) have been investigated in the research. Only the new heating plants are included in the investigation. The heat generation calculations concerning the residential heating plants have been made for following indigenous fuels: sod peat, fuel-chips, peat and wood pellets, firewood and straw. In addition to these, the calculations have been made for light fuel-oil, electric heating, district heating and natural gas. The local energy tariffs have to be taken into account in electric heating, district heating and natural gas heating. A calculation model, based on flowsheet calculation, forms the main result of the project. By using the model it is possible to update the competitivity data rapidly. Of all the indigenous fuels, sod peat and fuel-chips appeared to be competitive with electric and district heating costs in nearly all scales investigated. The construction of the heat generation costs of solid indigenous fuels differs remarkably from those of electric and district heating. The main part of the heating costs of wood chips and sod peat is formed of fixed costs; i.e. of investment costs and of the costs of heating and control work. The energy costs are the highest costs items in electric an district heating, as well as in the oil heating. It is possible to improve the competitivity of biofuels by developing cheaper boilers and fuel processing and storage devices

  17. A rapidly enlarging cutaneous hemangioma in pregnancy.

    LENUS (Irish Health Repository)

    Ma'ayeh, Marwan

    2014-06-18

    This is a case of a rapidly enlarging cutaneous pedunculated tumor on a patient\\'s thumb during her pregnancy. This was excised and identified as a hemangioma. A literature search identified a possible hormonal factor in causing an accelerated growth of this tumor.

  18. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-05-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  19. An experimental and analytical study of a buoyancy driven cooling system for a particle accelerator

    International Nuclear Information System (INIS)

    Campbell, B.; Ranganathan, R.

    1993-01-01

    A buoyancy driven closed-loop cooling system that transports the heat generated in a particle accelerator to the ambient has been evaluated both through experiments performed earlier and analysis techniques developed elsewhere. Excellent comparisons between measurements and calculations have been obtained. The model illustrates the feasibility (from a heat transfer viewpoint) of such a cooling system for a particle accelerator

  20. Heat pumps

    CERN Document Server

    Brodowicz, Kazimierz; Wyszynski, M L; Wyszynski

    2013-01-01

    Heat pumps and related technology are in widespread use in industrial processes and installations. This book presents a unified, comprehensive and systematic treatment of the design and operation of both compression and sorption heat pumps. Heat pump thermodynamics, the choice of working fluid and the characteristics of low temperature heat sources and their application to heat pumps are covered in detail.Economic aspects are discussed and the extensive use of the exergy concept in evaluating performance of heat pumps is a unique feature of the book. The thermodynamic and chemical properties o

  1. Accelerator and radiation physics

    CERN Document Server

    Basu, Samita; Nandy, Maitreyee

    2013-01-01

    "Accelerator and radiation physics" encompasses radiation shielding design and strategies for hadron therapy accelerators, neutron facilities and laser based accelerators. A fascinating article describes detailed transport theory and its application to radiation transport. Detailed information on planning and design of a very high energy proton accelerator can be obtained from the article on radiological safety of J-PARC. Besides safety for proton accelerators, the book provides information on radiological safety issues for electron synchrotron and prevention and preparedness for radiological emergencies. Different methods for neutron dosimetry including LET based monitoring, time of flight spectrometry, track detectors are documented alongwith newly measured experimental data on radiation interaction with dyes, polymers, bones and other materials. Design of deuteron accelerator, shielding in beam line hutches in synchrotron and 14 MeV neutron generator, various radiation detection methods, their characteriza...

  2. 2014 Accelerators meeting, Grenoble

    International Nuclear Information System (INIS)

    Lucotte, Arnaud; Lamy, Thierry; De Conto, Jean-Marie; Fontaine, Alain; Revol, Jean-Luc; Nadolski, Laurent S.; Kazamias, Sophie; Vretenar, Maurizio; Ferrando, Philippe; Laune, Bernard; Vedrine, Pierre

    2014-10-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Laboratory of subatomic physics and cosmology - LPSC-Grenoble (Lucotte, Arnaud; Lamy, Thierry); 2 - Presentation of the Accelerators division of the French Society of Physics (Fontaine, Alain; Revol, Jean-Luc); 3 - Presentation of Grenoble's master diplomas in Accelerator physics (Nadolski, Laurent S.); 4 - Presentation of Paris' master diplomas in big instruments (Kazamias, Sophie); 5 - Particle accelerators and European Union's projects (Vretenar, Maurizio); 6 - French research infrastructures (Ferrando, Philippe); 7 - Coordination of accelerators activity in France (Laune, Bernard; Vedrine, Pierre)

  3. Accelerator reliability workshop

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, L; Duru, Ph; Koch, J M; Revol, J L; Van Vaerenbergh, P; Volpe, A M; Clugnet, K; Dely, A; Goodhew, D

    2002-07-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop.

  4. Accelerator reliability workshop

    International Nuclear Information System (INIS)

    Hardy, L.; Duru, Ph.; Koch, J.M.; Revol, J.L.; Van Vaerenbergh, P.; Volpe, A.M.; Clugnet, K.; Dely, A.; Goodhew, D.

    2002-01-01

    About 80 experts attended this workshop, which brought together all accelerator communities: accelerator driven systems, X-ray sources, medical and industrial accelerators, spallation sources projects (American and European), nuclear physics, etc. With newly proposed accelerator applications such as nuclear waste transmutation, replacement of nuclear power plants and others. Reliability has now become a number one priority for accelerator designers. Every part of an accelerator facility from cryogenic systems to data storage via RF systems are concerned by reliability. This aspect is now taken into account in the design/budget phase, especially for projects whose goal is to reach no more than 10 interruptions per year. This document gathers the slides but not the proceedings of the workshop

  5. Acceleration of radioactive ions

    International Nuclear Information System (INIS)

    Laxdal, R.E.

    2003-01-01

    There is an intense interest world-wide in the use of radioactive ion beams (RIBs) for experiment. In many existing or proposed facilities ions are produced or collected at source potential, ionized and re-accelerated. Within the past year three new ISOL based facilities have added dedicated post-accelerators to deliver accelerated RIBs to experiment. The paper gives an overview of RIB accelerators present and future, and explores the inherent features in the various acceleration methods with an emphasis on heavy ion linacs. The ISAC-I and ISAC-II post-accelerators are discussed as examples. Commissioning results and initial operating experience with ISAC-I will be presented

  6. Nuclear physics accelerator facilities

    International Nuclear Information System (INIS)

    1988-12-01

    This paper describes many of the nuclear physics heavy-ion accelerator facilities in the US and the research programs being conducted. The accelerators described are: Argonne National Laboratory--ATLAS; Brookhaven National Laboratory--Tandem/AGS Heavy Ion Facility; Brookhaven National Laboratory--Relativistic Heavy Ion Collider (RHIC) (Proposed); Continuous Electron Beam Accelerator Facility; Lawrence Berkeley Laboratory--Bevalac; Lawrence Berkeley Laboratory--88-Inch Cyclotron; Los Alamos National Laboratory--Clinton P. Anderson Meson Physics Facility (LAMPF); Massachusetts Institute of Technology--Bates Linear Accelerator Center; Oak Ridge National Laboratory--Holifield Heavy Ion Research Facility; Oak Ridge National Laboratory--Oak Ridge Electron Linear Accelerator; Stanford Linear Accelerator Center--Nuclear Physics Injector; Texas AandM University--Texas AandM Cyclotron; Triangle Universities Nuclear Laboratory (TUNL); University of Washington--Tandem/Superconducting Booster; and Yale University--Tandem Van de Graaff

  7. Bio methane in the cogeneration market and heating market. Status quo, potentials and recommendations for an accelerated market penetration; Biomethan im KWK- und Waermemarkt. Status Quo, Potenziale und Handlungsempfehlungen fuer eine beschleunigte Marktdurchdringung

    Energy Technology Data Exchange (ETDEWEB)

    Herr, Michael; Rostek, Sandra [comps.

    2010-07-15

    The current contribution of the German Energy Agency (Berlin, Federal Republic of Germany) reports on the present sale situation of bio methane on the coupled and uncoupled heating market. The contribution clarifies, why the existing support measures do not stimulate the demand for bio methane in the necessary order of magnitude. Without adjustment of the legal framework neither the considerable sales potentials can be established, nor the targets for the development of the biogas feeding can be achieved approximately. The low demand on bio methane led to a planning stop on the producer side. Direct need for action is required.

  8. Accelerator shielding benchmark problems

    International Nuclear Information System (INIS)

    Hirayama, H.; Ban, S.; Nakamura, T.

    1993-01-01

    Accelerator shielding benchmark problems prepared by Working Group of Accelerator Shielding in the Research Committee on Radiation Behavior in the Atomic Energy Society of Japan were compiled by Radiation Safety Control Center of National Laboratory for High Energy Physics. Twenty-five accelerator shielding benchmark problems are presented for evaluating the calculational algorithm, the accuracy of computer codes and the nuclear data used in codes. (author)

  9. Plasma particle accelerators

    International Nuclear Information System (INIS)

    Dawson, J.M.

    1988-01-01

    The Superconducting Supercollider (SSC) will require an 87-kilometer accelerator ring to boost particles to 40 TeV. The SSC's size is due in part to the fact that its operating principle is the same one that has dominated accelerator design for 50 years: it guides particles by means of magnetic fields and propels them by strong electric fields. If one were to build an equally powerful but smaller accelerator, one would need to increase the strength of the guiding and propelling fields. Actually, however, conventional technology may not be able to provide significant increases in field strength. There are two reasons. First, the forces from magnetic fields are becoming greater than the structural forces that hold a magnetic material together; the magnets that produce these fields would themselves be torn apart. Second, the energy from electric fields is reaching the energies that bind electrons to atoms; it would tear electrons from nuclei in the accelerator's support structures. It is the electric field problem that plasma accelerators can overcome. Plasma particle accelerators are based on the principle that particles can be accelerated by the electric fields generated within a plasma. Because the plasma has already been ionized, plasma particle accelerators are not susceptible to electron dissociation. They can in theory sustain accelerating fields thousands of times stronger that conventional technologies. So far two methods for creating plasma waves for accelerators have been proposed and tested: the wakefield and the beat wave. Although promising electric fields have been produced, more research is necessary to determine whether plasma particle accelerators can compete with the existing accelerators. 7 figs

  10. Wake field accelerators

    International Nuclear Information System (INIS)

    Wilson, P.B.

    1986-02-01

    In a wake field accelerator a high current driving bunch injected into a structure or plasma produces intense induced fields, which are in turn used to accelerate a trailing charge or bunch. The basic concepts of wake field acceleration are described. Wake potentials for closed cavities and periodic structures are derived, as are wake potentials on a collinear path with a charge distribution. Cylindrically symmetric structures excited by a beam in the form of a ring are considered

  11. CONFERENCE: Computers and accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-01-15

    In September of last year a Conference on 'Computers in Accelerator Design and Operation' was held in West Berlin attracting some 160 specialists including many from outside Europe. It was a Europhysics Conference, organized by the Hahn-Meitner Institute with Roman Zelazny as Conference Chairman, postponed from an earlier intended venue in Warsaw. The aim was to bring together specialists in the fields of accelerator design, computer control and accelerator operation.

  12. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The CERN Accelerator School (CAS) recently held its Advanced Accelerator Physics course in Greece on the island of Rhodes. Complementing the general course in Finland last year, this course was organized together with the University of Athens and NCSR. Demokritos. Accelerator specialists from Europe, CIS, Japan and USA followed two weeks of ''state-of-theart'' lectures designed to complete their education in the field

  13. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  14. Applying the accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Barbalat, Oscar

    1989-12-15

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology.

  15. Laser-driven accelerators

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Several devices for using laser fields have been proposed and they can be classified in three broad categories - 'far-field' accelerators (such as the principle of inverse free electron lasers), 'media' accelerators (which, for example, use the inverse Cherenkov effect or laser-controlled plasma waves), and 'near-field' accelerators (using a loaded guiding structure such as cavities or gratings). These different approaches come from the fact that a particle cannot be accelerated by the absorption of single photons (because of momentum conservation) and thus some other element has to intervene. (orig./HSI).

  16. Illinois Accelerator Research Center

    Science.gov (United States)

    Kroc, Thomas K.; Cooper, Charlie A.

    The Illinois Accelerator Research Center (IARC) hosts a new accelerator development program at Fermi National Accelerator Laboratory. IARC provides access to Fermi's state-of-the-art facilities and technologies for research, development and industrialization of particle accelerator technology. In addition to facilitating access to available existing Fermi infrastructure, the IARC Campus has a dedicated 36,000 ft2 Heavy Assembly Building (HAB) with all the infrastructure needed to develop, commission and operate new accelerators. Connected to the HAB is a 47,000 ft2 Office, Technology and Engineering (OTE) building, paid for by the state, that has office, meeting, and light technical space. The OTE building, which contains the Accelerator Physics Center, and nearby Accelerator and Technical divisions provide IARC collaborators with unique access to world class expertise in a wide array of accelerator technologies. At IARC scientists and engineers from Fermilab and academia work side by side with industrial partners to develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security.

  17. High Gradient Accelerator Research

    International Nuclear Information System (INIS)

    Temkin, Richard

    2016-01-01

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave cold test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.

  18. Interacting with accelerators

    International Nuclear Information System (INIS)

    Dasgupta, S.

    1994-01-01

    Accelerators are research machines which produce energetic particle beam for use as projectiles to effect nuclear reactions. These machines along with their services and facilities may occupy very large areas. The man-machine interface of accelerators has evolved with technological changes in the computer industry and may be partitioned into three phases. The present paper traces the evolution of man-machine interface from the earliest accelerators to the present computerized systems incorporated in modern accelerators. It also discusses the advantages of incorporating expert system technology for assisting operators. (author). 8 ref

  19. Accelerator-based BNCT.

    Science.gov (United States)

    Kreiner, A J; Baldo, M; Bergueiro, J R; Cartelli, D; Castell, W; Thatar Vento, V; Gomez Asoia, J; Mercuri, D; Padulo, J; Suarez Sandin, J C; Erhardt, J; Kesque, J M; Valda, A A; Debray, M E; Somacal, H R; Igarzabal, M; Minsky, D M; Herrera, M S; Capoulat, M E; Gonzalez, S J; del Grosso, M F; Gagetti, L; Suarez Anzorena, M; Gun, M; Carranza, O

    2014-06-01

    The activity in accelerator development for accelerator-based BNCT (AB-BNCT) both worldwide and in Argentina is described. Projects in Russia, UK, Italy, Japan, Israel, and Argentina to develop AB-BNCT around different types of accelerators are briefly presented. In particular, the present status and recent progress of the Argentine project will be reviewed. The topics will cover: intense ion sources, accelerator tubes, transport of intense beams, beam diagnostics, the (9)Be(d,n) reaction as a possible neutron source, Beam Shaping Assemblies (BSA), a treatment room, and treatment planning in realistic cases. © 2013 Elsevier Ltd. All rights reserved.

  20. Applying the accelerator

    International Nuclear Information System (INIS)

    Barbalat, Oscar

    1989-01-01

    Originally developed as tools for frontier physics, particle accelerators provide valuable spinoff benefits in applied research and technology. These accelerator applications are the subject of a biennial meeting in Denton, Texas, but the increasing activity in this field resulted this year (5-9 September) in the first European Conference on Accelerators in Applied Research and Technology, organized by K. Bethge of Frankfurt's Goethe University. The meeting reflected a wide range of applications - ion beam analysis, exploitation of nuclear microbeams, accelerator mass spectrometry, applications of photonuclear reactions, ion beam processing, synchrotron radiation for semiconductor technology, specialized technology

  1. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  2. Design and Proof-of-Concept Use of a Circular PMMA Platform with 16-Well Sample Capacity for Microwave-Accelerated Bioassays.

    Science.gov (United States)

    Mohammed, Muzaffer; Aslan, Kadir

    2013-01-01

    We demonstrate the design and the proof-of-concept use of a new, circular poly(methyl methacrylate)-based bioassay platform (PMMA platform), which affords for the rapid processing of 16 samples at once. The circular PMMA platform (5 cm in diameter) was coated with a silver nanoparticle film to accelerate the bioassay steps by microwave heating. A model colorimetric bioassay for biotinylated albumin (using streptavidin-labeled horse radish peroxidase) was performed on the PMMA platform coated with and without silver nanoparticles (a control experiment), and at room temperature and using microwave heating. It was shown that the simulated temperature profile of the PMMA platform during microwave heating were comparable to the real-time temperature profile during actual microwave heating of the constructed PMMA platform in a commercial microwave oven. The model colorimetric bioassay for biotinylated albumin was successfully completed in ~2 min (total assay time) using microwave heating, as compared to 90 min at room temperature (total assay time), which indicates a ~45-fold decrease in assay time. Our PMMA platform design afforded for significant reduction in non-specific interactions and low background signal as compared to non-silvered PMMA surfaces when employed in a microwave-accelerated bioassay carried out in a conventional microwave cavity.

  3. Calculations in fundamental physics mechanics and heat

    CERN Document Server

    Heddle, T

    2013-01-01

    Calculations in Fundamental Physics, Volume I: Mechanics and Heat focuses on the mechanisms of heat. The manuscript first discusses motion, including parabolic, angular, and rectilinear motions, relative velocity, acceleration of gravity, and non-uniform acceleration. The book then discusses combinations of forces, such as polygons and resolution, friction, center of gravity, shearing force, and bending moment. The text looks at force and acceleration, energy and power, and machines. Considerations include momentum, horizontal or vertical motion, work and energy, pulley systems, gears and chai

  4. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  5. Cosmic Accelerators: Engines of the Extreme Universe

    Energy Technology Data Exchange (ETDEWEB)

    Funk, Stefan

    2009-06-23

    The universe is home to numerous exotic and beautiful phenomena, some of which can generate almost inconceivable amounts of energy. While the night sky appears calm, it is populated by colossal explosions, jets from supermassive black holes, rapidly rotating neutron stars, and shock waves of gas moving at supersonic speeds. These accelerators in the sky boost particles to energies far beyond those we can produce on earth. New types of telescopes, including the Fermi Gamma-ray Space Telescope orbiting in space, are now discovering a host of new and more powerful accelerators. Please come and see how these observations are revising our picture of the most energetic phenomena in the universe.

  6. Geothermal heat pump performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  7. Geothermal Heat Pump Performance

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Tonya L.; Lienau, Paul J.

    1995-01-01

    Geothermal heat pump systems are a promising new energy technology that has shown rapid increase in usage over the past ten years in the United States. These systems offer substantial benefits to customers and utilities in energy (kWh) and demand (kW) savings. The purpose of this study was to determine what existing monitored data was available mainly from electric utilities on heat pump performance, energy savings and demand reduction for residential, school, and commercial building applications. Information was developed on the status of electric utility marketing programs, barriers to market penetration, incentive programs, and benefits.

  8. Heat exchanger

    Science.gov (United States)

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  9. Accelerator Modeling with MATLAB Accelerator Toolbox

    International Nuclear Information System (INIS)

    2002-01-01

    This paper introduces Accelerator Toolbox (AT)--a collection of tools to model storage rings and beam transport lines in the MATLAB environment. The objective is to illustrate the flexibility and efficiency of the AT-MATLAB framework. The paper discusses three examples of problems that are analyzed frequently in connection with ring-based synchrotron light sources

  10. Nonlinear predictive control in the LHC accelerator

    CERN Document Server

    Blanco, E; Cristea, S; Casas, J

    2009-01-01

    This paper describes the application of a nonlinear model-based control strategy in a real challenging process. A predictive controller based on a nonlinear model derived from physical relationships, mainly heat and mass balances, has been developed and commissioned in the inner triplet heat exchanger unit (IT-HXTU) of the large hadron collider (LHC) particle accelerator at European Center for Nuclear Research (CERN). The advanced regulation\\ maintains the magnets temperature at about 1.9 K. The development includes a constrained nonlinear state estimator with a receding horizon estimation procedure to improve the regulator predictions.

  11. Santa Fe Accelerator Conference

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The 10th USA National Particle Accelerator Conference was hosted this year by the Los Alamos National Laboratory in Santa Fe from 21-23 March. It was a resounding success in emphasizing the ferment of activity in the accelerator field. About 900 people registered and about 500 papers were presented in invited and contributed talks and poster sessions

  12. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  13. CERN Accelerator School

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-01-15

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford.

  14. Accelerator for nuclear transmutation

    International Nuclear Information System (INIS)

    Schapira, J.P.

    1984-01-01

    A review on nuclear transmutation of radioactive wastes using particle accelerators is given. Technical feasibility, nuclear data, costs of various projects are discussed. It appears that one high energy accelerator (1500 MeV, 300 mA proton) could probably handle the amount of actinides generated by the actual French nuclear program [fr

  15. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1996-04-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at LLNL from the early 1960's to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400 ns pulses. The Advanced Test Accelerator (ATA) built at Livermore's Site 300 produced 10,000 Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and LBNL. This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high current, short pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail

  16. Diagnostics for induction accelerators

    International Nuclear Information System (INIS)

    Fessenden, T.J.

    1997-01-01

    The induction accelerator was conceived by N. C. Christofilos and first realized as the Astron accelerator that operated at Lawrence Livermore National Laboratory (LLNL) from the early 1960s to the end of 1975. This accelerator generated electron beams at energies near 6 MeV with typical currents of 600 Amperes in 400-ns pulses. The Advanced Test Accelerator (ATA) built at Livermore close-quote s Site 300 produced 10,000-Ampere beams with pulse widths of 70 ns at energies approaching 50 MeV. Several other electron and ion induction accelerators have been fabricated at LLNL and Lawrence Berkeley National Laboratory (LBNL). This paper reviews the principal diagnostics developed through efforts by scientists at both laboratories for measuring the current, position, energy, and emittance of beams generated by these high-current, short-pulse accelerators. Many of these diagnostics are closely related to those developed for other accelerators. However, the very fast and intense current pulses often require special diagnostic techniques and considerations. The physics and design of the more unique diagnostics developed for electron induction accelerators are presented and discussed in detail. copyright 1997 American Institute of Physics

  17. Hamburg Accelerator Conference (2)

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Edmund J.N. [CERN Accelerator School (Switzerland)

    1992-11-15

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval.

  18. Charged particle accelerator

    International Nuclear Information System (INIS)

    Arakawa, Kazuo.

    1969-01-01

    An accelerator is disclosed having a device which permits the electrodes of an accelerator tube to be readily conditioned in an uncomplicated manner before commencing operation. In particle accelerators, it is necessary to condition the accelerator electrodes before a stable high voltage can be applied. Large current accelerators of the cockcroft-walton type require a complicated manual operation which entails applying to the electrodes a low voltage which is gradually increased to induce a vacuum discharge and then terminated. When the discharge attains an extremely low level, the voltage is again impressed and again raised to a high value in low current type accelerators, a high voltage power supply charges the electrodes once to induce discharge followed by reapplying the voltage when the vacuum discharge reaches a low level, according to which high voltage is automatically applied. This procedure, however, requires that the high voltage power supply be provided with a large internal resistance to limit the current to within several milliamps. The present invention connects a high voltage power supply and an accelerator tube through a discharge current limiting resistor wired in parallel with a switch. Initially, the switch is opened enabling the power supply to impress a voltage limited to a prescribed value by a suitably chosen resistor. Conditioning is effected by allowing the voltage between electrodes to increase and is followed by closing the switch through which high voltage is applied directly to the accelerator for operation. (K.J. Owens)

  19. Asia honours accelerator physicists

    CERN Multimedia

    2010-01-01

    "Steve Meyers of Cern and Jie Wei of Beijing's Tsinghua University are the first recipients of a new prize for particle physics. The pair were honoured for their contributions to numerous particle-accelerator projects - including Cern's Large Hadron Collider - by the Asian Committee for Future Accelerators (ACFA)..." (1 paragraph)

  20. Accelerators Beyond The Tevatron?

    Energy Technology Data Exchange (ETDEWEB)

    Lach, Joseph; /Fermilab

    2010-07-01

    Following the successful operation of the Fermilab superconducting accelerator three new higher energy accelerators were planned. They were the UNK in the Soviet Union, the LHC in Europe, and the SSC in the United States. All were expected to start producing physics about 1995. They did not. Why?

  1. CERN Accelerator School

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The CERN Accelerator School (CAS) offers a regular course on general accelerator physics. The first basic course was given in September 1984 at Orsay, France, and last September the advanced course was jointly organized by CAS, Oxford's Nuclear Physics Laboratory and the Rutherford Appleton Laboratory, and held at The Queen's College, Oxford

  2. Thoughts on accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1978-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  3. Thoughts of accelerator tubes

    International Nuclear Information System (INIS)

    Larson, J.D.

    1977-01-01

    A brief, subjective review is given of mechanisms that may be limiting electrostatic accelerator tubes to present levels of performance. Suggestions are made for attacking these limitations with the purpose of stimulating the thinking of designers and users of electrostatic accelerators

  4. Racetrack linear accelerators

    International Nuclear Information System (INIS)

    Rowe, C.H.; Wilton, M.S. de.

    1979-01-01

    An improved recirculating electron beam linear accelerator of the racetrack type is described. The system comprises a beam path of four straight legs with four Pretzel bending magnets at the end of each leg to direct the beam into the next leg of the beam path. At least one of the beam path legs includes a linear accelerator. (UK)

  5. Linear Accelerator (LINAC)

    Science.gov (United States)

    ... uses microwave technology (similar to that used for radar) to accelerate electrons in a part of the accelerator called the "wave guide," then allows ... risk of accidental exposure is extremely low. top of page This page was ... No Please type your comment or suggestion into the following text ...

  6. Hamburg Accelerator Conference (2)

    International Nuclear Information System (INIS)

    Wilson, Edmund J.N.

    1992-01-01

    From 20-24 July, Hamburg welcomed the Fifteenth International Conference on High Energy Accelerators (HEACC). The HEACC Conference traditionally reviews the status of all major accelerator projects whether they are already running like clockwork, still in the construction phase, or waiting impatiently for financial approval

  7. Optimization of accelerator control

    International Nuclear Information System (INIS)

    Vasiljev, N.D.; Mozin, I.V.; Shelekhov, V.A.; Efremov, D.V.

    1992-01-01

    Expensive exploitation of charged particle accelerators is inevitably concerned with requirements of effectively obtaining of the best characteristics of accelerated beams for physical experiments. One of these characteristics is intensity. Increase of intensity is hindered by a number of effects, concerned with the influence of the volume charge field on a particle motion dynamics in accelerator's chamber. However, ultimate intensity, determined by a volume charge, is almost not achieved for the most of the operating accelerators. This fact is caused by losses of particles during injection, at the initial stage of acceleration and during extraction. These losses are caused by deviations the optimal from real characteristics of the accelerating and magnetic system. This is due to a number of circumstances, including technological tolerances on structural elements of systems, influence of measuring and auxiliary equipment and beam consumers' installations, placed in the closed proximity to magnets, and instability in operation of technological systems of accelerator. Control task consists in compensation of deviations of characteristics of magnetic and electric fields by optimal selection of control actions. As for technical means, automatization of modern accelerators allows to solve optimal control problems in real time. Therefore, the report is devoted to optimal control methods and experimental results. (J.P.N.)

  8. Accelerator breeder concept

    International Nuclear Information System (INIS)

    Bartholomew, G.A.; Fraser, J.S.; Garvey, P.M.

    1978-10-01

    The principal components and functions of an accelerator breeder are described. The role of the accelerator breeder as a possible long-term fissile production support facility for CANDU (Canada Deuterium Uranium) thorium advanced fuel cycles and the Canadian research and development program leading to such a facility are outlined. (author)

  9. Semiconductor acceleration sensor

    Science.gov (United States)

    Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki

    1996-09-01

    This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.

  10. Molecular ion acceleration using tandem accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Yuichi; Mizuhashi, Kiyoshi; Tajima, Satoshi [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1996-12-01

    In TIARA compound beam radiation system, cluster beams have been produced using 3 MV tandem accelerator (9SDH-2) to supply them to various radiation on injection experiments. Till now, productions of C{sub 2-8}, Si{sub 2-4} and O{sub 2} and their accelerations up to 6 MeV have been succeeded. This study aimed at production and acceleration of B{sub 2-4} and LiF. Anion clusters were produced using the conventional ion source of cesium sputter type. The proportions of atoms, molecules and clusters elicited from the ion source were varied depending on the material`s properties and the operating conditions of ion source such as sample temperature, sputter voltage and the shape of sample. The anion clusters were accelerated toward the high voltage terminal in the center of tandem accelerator, leading to cations through losing their electrons by the collision to N{sub 2} gas in a charge conversion cell at the terminal. Positively charged cluster ions could be obtained by modulating the pressure of N{sub 2} gas. Thus, B{sub 2} (64 nA), B{sub 3} (4.4 nA) and B{sub 4} (2.7 nA) have been produced and their maximum survival probabilities were higher than those of carbon or silicon clusters. In addition, the relationship between beam current and gas pressure was investigated for Bn (n = 2-4) and LiF. (M.N.)

  11. Study on Induction Heating Coil for Uniform Mold Cavity Surface Heating

    OpenAIRE

    Yu-Ting Sung; Sheng-Jye Hwang; Huei-Huang Lee; Durn-Yuan Huang

    2014-01-01

    Recently, energy saving is one of the important issues for polymer processing industry. Electromagnetic induction heating has many advantages such as fast heating and low energy consumption. Previous studies using electromagnetic induction heating for rapid tool heating have indicated that the temperature uniformity on a cavity surface is not easy to be achieved. In this paper, two different coils were used for heating uniform 7 mm thick hot work tool steel (JIS SKD61) surface. One is a four-...

  12. Heat pipe

    International Nuclear Information System (INIS)

    Triggs, G.W.; Lightowlers, R.J.; Robinson, D.; Rice, G.

    1986-01-01

    A heat pipe for use in stabilising a specimen container for irradiation of specimens at substantially constant temperature within a liquid metal cooled fast reactor, comprises an evaporator section, a condenser section, an adiabatic section therebetween, and a gas reservoir, and contains a vapourisable substance such as sodium. The heat pipe further includes a three layer wick structure comprising an outer relatively fine mesh layer, a coarse intermediate layer and a fine mesh inner layer for promoting unimpeded return of condensate to the evaporation section of the heat pipe while enhancing heat transfer with the heat pipe wall and reducing entrainment of the condensate by the upwardly rising vapour. (author)

  13. Rapid shallow breathing

    Science.gov (United States)

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the ...

  14. TIARA electrostatic accelerator facility

    International Nuclear Information System (INIS)

    Tajima, Satoshi; Takada, Isao; Mizuhashi, Kiyoshi; Uno, Sadanori; Ohkoshi, Kiyonori; Nakajima, Yoshinori; Saitoh, Yuichi; Ishii, Yasuyuki; Kamiya, Tomihiro

    1996-07-01

    In order to promote the Advanced Radiation Technology Project, Japan Atomic Energy Research Institute constructed TIARA facility composed of four ion accelerators at Takasaki Radiation Chemistry Research Establishment for the period from 1988 to 1993. A 3MV tandem accelerator and an AVF cycrotron were completed in 1991 as the first phase of the construction, and a 3MV single-ended accelerator and a 400kV ion implanter were completed in 1993 as the second phase. Three electrostatic accelerators, the tandem, the single-ended and the implanter, were installed in the Multiple-beam facility of TIARA and have been operated for various experiments with using single, dual and triple beams without any serious trouble. This report describes the constructive works, machine performances, control systems, safety systems and accessory equipments of the electrostatic accelerators. (author)

  15. 2016 Accelerators meeting

    International Nuclear Information System (INIS)

    Spiro, Michel; Revol, Jean-Luc; Biarrotte, Jean-Luc; Napoly, Olivier; Jardin, Pascal; Chautard, Frederic; Thomas, Jean Charles; Petit, Eric

    2016-09-01

    The Accelerators meeting is organised every two years by the Accelerators division of the French Society of Physics (SFP). It brings together about 50 participants during a one-day meeting. The morning sessions are devoted to scientific presentations while the afternoon is dedicated to technical visits of facilities. This document brings together the available presentations (slides): 1 - Presentation of the Ganil - Grand accelerateur national d'ions lourds/Big national heavy-ion accelerator, Caen (Jardin, Pascal); 2 - Presentation of the Accelerators division of the French Society of Physics (Revol, Jean-Luc); 3 - Forward-looking and Prospective view (Napoly, Olivier); 4 - Accelerators at the National Institute of Nuclear and particle physics, situation, Forward-looking and Prospective view (Biarrotte, Jean-Luc); 5 - GANIL-SPIRAL2, missions and goals (Thomas, Jean Charles); 6 - The SPIRAL2 project (Petit, Eric)

  16. Collinear wake field acceleration

    International Nuclear Information System (INIS)

    Bane, K.L.F.; Chen, P.; Wilson, P.B.

    1985-04-01

    In the Voss-Weiland scheme of wake field acceleration a high current, ring-shaped driving bunch is used to accelerate a low current beam following along on axis. In such a structure, the transformer ratio, i.e., the ratio of maximum voltage that can be gained by the on-axis beam and the voltage lost by the driving beam, can be large. In contrast, it has been observed that for an arrangement in which driving and driven bunches follow the same path, and where the current distribution of both bunches is gaussian, the transformer ratio is not normally greater than two. This paper explores some of the possibilities and limitations of a collinear acceleration scheme. In addition to its application to wake field acceleration in structures, this study is also of interest for the understanding of the plasma wake field accelerator. 11 refs., 4 figs

  17. Standing wave accelerating structures

    International Nuclear Information System (INIS)

    Zavadtsev, A.A.; Zverev, B.V.; Sobepin, N.P.

    1984-01-01

    Accelerating ELA structures are considered and chosen for applied purposes of special designation. Accelerating structures with the standing wave are considered most effective for small size ELA. Designs and results of experimental investigation of two new accelerating structures are described. These are structures of the ''ring'' type with a decreased number of excitinq oscillation types and strucuture with transverse rods with a twice smaller transverse size as compared with the biperiodical structure with internal connection resonators. The accelerating biperiodical structures of the conventional type by the fact that the whole structure is not a linear chain of connected resonators, but a ring one. Model tests have shown that the homogeneous structure with transverse rods (STR) at the frequency of 2.8 GHz in the regime of the standing wave has an effective shunt resistance equalling 23 MOhm/m. It is shown that the small transverse size of biperiodic STR makes its application in logging linear electron accelerators

  18. Particle Acceleration in Multiple Dissipation Regions

    OpenAIRE

    Arzner, Kaspar; Vlahos, Loukas

    2004-01-01

    The sharp magnetic discontinuities which naturally appear in solar magnetic flux tubes driven by turbulent photospheric motions are associated with intense currents. \\citet{Par83} proposed that these currents can become unstable to a variety of microscopic processes, with the net result of dramatically enhanced resistivity and heating (nanoflares). The electric fields associated with such ``hot spots'' are also expected to enhance particle acceleration. We test this hypothesis by exact relati...

  19. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  20. Multi-Mode Cavity Accelerator Structure

    International Nuclear Information System (INIS)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-01-01

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10"-"7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise Δ T. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E_s_u_r"m"a"x< 260 MV/m and pulsed surface heating Δ T"m"a"x< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power - as compared with operation at the same acceleration gradient using only the fundamental mode.

  1. Multi-Mode Cavity Accelerator Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yong [Yale Univ., New Haven, CT (United States); Hirshfield, Jay Leonard [Omega-P R& D, Inc., New Haven, CT (United States)

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10-7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2nd harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field Esurmax< 260 MV/m and pulsed surface heating ΔTmax< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.

  2. Advanced Accelerator Applications University Participation Program

    International Nuclear Information System (INIS)

    Chen, Y.; Hechanova, A.

    2007-01-01

    Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability. In the six years of this program, we saw the evolution of the national transmutation concepts go from the use of accelerators to fast reactors. We also saw an emphasis on gas-cooled reactors for both high temperature heat and deep burn of nuclear fuel. At the local level, we saw a great birth at UNLV of two new academic programs Fall term of 2004 and the addition of 10 academic and research faculty. The Ph.D. program in Radiochemistry has turned into one of the nation's most visible and successful programs; and, the M.S. program in Materials and Nuclear Engineering initiated Nuclear Engineering academic opportunities which took a long time to come. Our research tasks span the range of technology areas for transmutation, gas-cooled reactor technology, and high temperature heat exchangers, including separation of actinides from spent nuclear fuel, methods of fuel fabrication, reactor-accelerator coupled experiments, corrosion of materials exposed to lead-bismuth eutectic, and special nuclear materials protection and accountability

  3. Heat resistant wire and cable and heat shrinkable tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Keiji [Sumitomo Electric Industries Ltd. (Japan)

    1994-12-31

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR`s, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of E{beta} radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 {approx} 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented.

  4. Heat resistant wire and cable and heat shrinkable tubes

    International Nuclear Information System (INIS)

    Keiji Ueno

    1994-01-01

    Radiation processes have been used in industrial fields (e.g. wire and cable, heat shrinkable tubes) for about 30 years. In Japan, 60 electron beam accelerators were used in R and D, 54 in wire and cable, 24 in tire rubber, 16 in paint curing, 14 in PE foam and 9 accelerators were used in heat shrinkable tubes in 1993. Many properties (e.g. solder resistance, thermal deformation, and solven resistance) of wire and cable are improved by using radiation processes, and many kinds of radiation crosslinked wire and cable are used in the consumer market (TV sets, VTR's, audio disc players, etc.), automobiles (automobile wire harnesses, fusible link wires, sensor cables etc.), and the industrial market (computer cables, cables for keyboards, coaxial cables, etc.). Another important industrial application of Eβ radiation process is heat shrinkable tubes. Heat shinkable tubes, heated by a hot gun, shrink 1/2 ∼ 1/3 of their inner diameters. Heat shrinkable tubes are used for covers of distributing line terminals, joint covers of telecommunication lines, protection of fuel pipe lines and so on. In this seminar, actual applications and characteristic properties of radiation crosslinked materials are presented

  5. Analyzing radial acceleration with a smartphone acceleration sensor

    Science.gov (United States)

    Vogt, Patrik; Kuhn, Jochen

    2013-03-01

    This paper continues the sequence of experiments using the acceleration sensor of smartphones (for description of the function and the use of the acceleration sensor, see Ref. 1) within this column, in this case for analyzing the radial acceleration.

  6. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  7. Plasma acceleration, injection, and loss

    International Nuclear Information System (INIS)

    McIlwain, C.E.

    1988-01-01

    The sudden and dramatic acceleration of charged particles seems to be a universal phenomenon which occurs in plasmas occupying a wide range of spatial scales. These accelerations are typically accompanied by intrusions of the energized plasma into adjacent regions of space. A physical understanding of these processes can only be obtained by carefully coordinated experimental and theoretical studies which are designed to let nature display what is happening without imposing limitations associated with existing paradigms. Studies of the Earth's magnetosphere are hampered by the lack of adequate sampling in space and time. The feature matching technique of building magnetic and electric field models can help compensate for the extreme sparseness of experimental data but many future studies will still require large numbers of spacecraft placed in carefully coordinated orbits. History shows that magnetospheric research has sometimes faltered while various attractive conjectures were explored, but that direct observations play the role of a strict teacher who has little concern for the egos of scientists. Presumably this teacher will also discard the author's pet notion: that the ignition' of portions of the auroral shell in association with Earth flares results in the heating of ionospheric particles (and some particles of solar origin) that are then convected inward to form the ring current. The author, of course, hopes that at least some aspects of this notion will survive and will help lead the way to a better understanding of the Earth's neighborhood

  8. Collective ion acceleration

    International Nuclear Information System (INIS)

    Godfrey, B.B.; Faehl, R.J.; Newberger, B.S.; Shanahan, W.R.; Thode, L.E.

    1977-01-01

    Progress achieved in the understanding and development of collective ion acceleration is presented. Extensive analytic and computational studies of slow cyclotron wave growth on an electron beam in a helix amplifier were performed. Research included precise determination of linear coupling between beam and helix, suppression of undesired transients and end effects, and two-dimensional simulations of wave growth in physically realizable systems. Electrostatic well depths produced exceed requirements for the Autoresonant Ion Acceleration feasibility experiment. Acceleration of test ions to modest energies in the troughs of such waves was also demonstrated. Smaller efforts were devoted to alternative acceleration mechanisms. Langmuir wave phase velocity in Converging Guide Acceleration was calculated as a function of the ratio of electron beam current to space-charge limiting current. A new collective acceleration approach, in which cyclotron wave phase velocity is varied by modulation of electron beam voltage, is proposed. Acceleration by traveling Virtual Cathode or Localized Pinch was considered, but appears less promising. In support of this research, fundamental investigations of beam propagation in evacuated waveguides, of nonneutral beam linear eigenmodes, and of beam stability were carried out. Several computer programs were developed or enhanced. Plans for future work are discussed

  9. Multicavity proton cyclotron accelerator

    Directory of Open Access Journals (Sweden)

    J. L. Hirshfield

    2002-08-01

    Full Text Available A mechanism for acceleration of protons is described, in which energy gain occurs near cyclotron resonance as protons drift through a sequence of rotating-mode TE_{111} cylindrical cavities in a strong nearly uniform axial magnetic field. Cavity resonance frequencies decrease in sequence from one another with a fixed frequency interval Δf between cavities, so that synchronism can be maintained between the rf fields and proton bunches injected at intervals of 1/Δf. An example is presented in which a 122 mA, 1 MeV proton beam is accelerated to 961 MeV using a cascade of eight cavities in an 8.1 T magnetic field, with the first cavity resonant at 120 MHz and with Δf=8 MHz. Average acceleration gradient exceeds 40 MV/m, average effective shunt impedance is 223 MΩ/m, but maximum surface field in the cavities does not exceed 7.2 MV/m. These features occur because protons make many orbital turns in each cavity and thus experience acceleration from each cavity field many times. Longitudinal and transverse stability appear to be intrinsic properties of the acceleration mechanism, and an example to illustrate this is presented. This acceleration concept could be developed into a proton accelerator for a high-power neutron spallation source, such as that required for transmutation of nuclear waste or driving a subcritical fission burner, provided a number of significant practical issues can be addressed.

  10. The miniature accelerator

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The image that most people have of CERN is of its enormous accelerators and their capacity to accelerate particles to extremely high energies. But thanks to some cutting-edge studies on beam dynamics and radiofrequency technology, along with innovative construction techniques, teams at CERN have now created the first module of a brand-new accelerator, which will be just 2 metres long. The potential uses of this miniature accelerator will include deployment in hospitals for the production of medical isotopes and the treatment of cancer. It’s a real David-and-Goliath story.   Serge Mathot, in charge of the construction of the "mini-RFQ", pictured with the first of the four modules that will make up the miniature accelerator. The miniature accelerator consists of a radiofrequency quadrupole (RFQ), a component found at the start of all proton accelerator chains around the world, from the smallest to the largest. The LHC is designed to produce very high-intensity beams ...

  11. Large electrostatic accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators.

  12. Large electrostatic accelerators

    International Nuclear Information System (INIS)

    Jones, C.M.

    1984-01-01

    The increasing importance of energetic heavy ion beams in the study of atomic physics, nuclear physics, and materials science has partially or wholly motivated the construction of a new generation of large electrostatic accelerators designed to operate at terminal potentials of 20 MV or above. In this paper, the author briefly discusses the status of these new accelerators and also discusses several recent technological advances which may be expected to further improve their performance. The paper is divided into four parts: (1) a discussion of the motivation for the construction of large electrostatic accelerators, (2) a description and discussion of several large electrostatic accelerators which have been recently completed or are under construction, (3) a description of several recent innovations which may be expected to improve the performance of large electrostatic accelerators in the future, and (4) a description of an innovative new large electrostatic accelerator whose construction is scheduled to begin next year. Due to time and space constraints, discussion is restricted to consideration of only tandem accelerators

  13. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  14. Accelerator programme at CAT

    International Nuclear Information System (INIS)

    Ramamurthi, S.S.

    1991-01-01

    The Accelerator Programme at the Centre for Advanced Technology (CAT), Indore, has very broad based concept under which all types of accelerators are to be taken up for design and fabrication. This centre will be housing a wide variety of accelerators to serve as a common facility for the universities, national laboratories in addition to laboratories under the Department of Atomic Energy. In the first phase of the programme, a series of electron accelerators are designed and fabricated. They are synchrotron radiation sources of 450 MeV (INDUS-I) and of 2 GeV (INDUS-II), microtron upto energy of 20 MeV, linear accelerator upto 20 MeV, and DC Accelerator for industrial irradiation upto 750 KeV and 20 KW. A proton accelerator of 300 MeV with 20 MeV linac injector is also designed. CAT is also developing a strong base for support technologies like ultra high vacuum, radio frequency and microwaves, DC pulsed and superconducting magnets, power supplies and controls etc. These technologies are very useful for other industrial applications also. To develop user groups to utilise INDUS-II synchrotron radiation source, a batch production of rotating Anode X-ray generators with power supplies has been initiated. So also, the sputter ion pumps, electron guns, turbo molecular pumps are brought into batch production. (author)

  15. Accelerator technical design report for high-intensity proton accelerator facility project, J-PARC

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    This report presents the detail of the technical design of the accelerators for the High-Intensity Proton Accelerator Facility Project, J-PARC. The accelerator complex comprises a 400-MeV room-temperature linac (600-MeV superconducting linac), 3-GeV rapid-cycling synchrotron (RCS), and a 50-GeV synchrotron (MR). The 400-MeV beam is injected to the RCS, being accelerated to 3 GEV. The 1-MW beam thus produced is guided to the Materials Life Science Experimental Facility, with both the pulsed spallation neutron source and muon source. A part of the beam is transported to the MR, which provides the 0.75-MW beam to either the Nuclear and Fundamental Particle Experimental Facility or the Neutrino Production Target. On the other hand, the beam accelerated to 600 MeV by the superconducting linac is used for the Nuclear Waster Transmutation Experiment. In this way, this facility is unique, being multipurpose one, including many new inventions and Research and Development Results. This report is based upon the accomplishments made by the Accelerator Group and others of the Project Team, which is organized on the basis of the Agreement between JAERI and KEK on the Construction and Research and Development of the High-Intensity Proton Accelerator Facility. (author)

  16. New accelerator ideas

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    In the past, providing higher particle beam energies meant building bigger accelerators. It is now universally accepted that with the current generation of accelerator projects either under construction (such as LEP at CERN) or proposed (such as the Superconducting Super Collider in the US), conventional techniques are reaching their practical limit. With the growing awareness that progress in particle physics requires new methods to accelerate particles, workshops and study groups are being set up across the world to search for ideas for the machines of tomorrow

  17. The auroral electron accelerator

    International Nuclear Information System (INIS)

    Bryant, D.A.; Hall, D.S.

    1989-01-01

    A model of the auroral electron acceleration process is presented in which the electrons are accelerated resonantly by lower-hybrid waves. The essentially stochastic acceleration process is approximated for the purposes of computation by a deterministic model involving an empirically derived energy transfer function. The empirical function, which is consistent with all that is known of electron energization by lower-hybrid waves, allows many, possibly all, observed features of the electron distribution to be reproduced. It is suggested that the process occurs widely in both space and laboratory plasmas. (author)

  18. ACCELERATORS: School report

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1987-12-15

    The expanded 1987 US Particle Accelerator School, held at Fermilab from 20 July to 14 August, included two two-week sessions. In the first, 101 students covered three university-style courses, listed as upper-division University of Chicago physics, covering the fundamentals of particle beams, magnetic optics and acceleration; relativistic electronics; and high energy storage rings. The 180 participants in the second session profited from 24 short courses presented by experts and covering a wide variety of topics in the physics and technology of particle accelerators.

  19. Hadron accelerators in medicine

    International Nuclear Information System (INIS)

    Amaldi, U.

    1996-01-01

    The application of hadron accelerators (protons and light ions) in cancer therapy is discussed. After a brief introduction on the rationale for the use of heavy charged particles in radiation therapy, a discussion is given on accelerator technology and beam delivery systems. Next, existing and planned facilities are briefly reviewed. The Italian Hadron-therapy Project is then described in some detail, with reference ro both the National Centre for Oncological Hadron-therapy and the design of different types of compact proton accelerators aimed at introducing proton therapy in a large umber of hospitals. (author)

  20. Maximum Acceleration Recording Circuit

    Science.gov (United States)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.