WorldWideScience

Sample records for rapid prototype wind-tunnel

  1. Wind Tunnel Model Design and Test Using Rapid Prototype Materials and Processes

    Science.gov (United States)

    2001-07-23

    UNCLASSIFIED WIND TUNNEL MODEL DESIGN AND TEST USING RAPID PROTOTYPE MATERIALS AND PROCESSES Richard R. Heisler and Clifford L. Ratliff The Johns Hopkins...deflection, and attach directly to the strongback with screws. A and tolerance deviations when the material was grown. schematic diagram of the RPM...constructed around the clay to contain the I. R. R. Heisler , "Final Test Report for the Wind pouring of silicon resin. Tunnel Test of the JHU/APL WTM-01 at

  2. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  3. Microsystem Aeromechanics Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — The Microsystem Aeromechanics Wind Tunnel advances the study of fundamental flow physics relevant to micro air vehicle (MAV) flight and assesses vehicle performance...

  4. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  5. Rapid prototype and test

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  6. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  7. Wind Tunnel Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This ARDEC facility consists of subsonic, transonic, and supersonic wind tunnels to acquire aerodynamic data. Full-scale and sub-scale models of munitions are fitted...

  8. Rapid Prototyping in PVS

    Science.gov (United States)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  9. Rapid Prototyping Reconsidered

    Science.gov (United States)

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  10. INCAS TRISONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Florin MUNTEANU

    2009-09-01

    Full Text Available The 1.2 m x 1.2 m Trisonic Blowdown Wind Tunnel is the largest of the experimental facilities at the National Institute for Aerospace Research - I.N.C.A.S. "Elie Carafoli", Bucharest, Romania. The tunnel has been designed by the Canadian company DSMA (now AIOLOS and since its commissioning in 1978 has performed high speed aerodynamic tests for more than 120 projects of aircraft, missiles and other objects among which the twin jet fighter IAR-93, the jet trainer IAR-99, the MIG-21 Lancer, the Polish jet fighter YRYDA and others. In the last years the wind tunnel has been used mostly for experimental research in European projects such as UFAST. The high flow quality parameters and the wide range of testing capabilities ensure the competitivity of the tunnel at an international level.

  11. Educational Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Juozas Bielskus

    2012-12-01

    Full Text Available The paper analyzes an educational wind tunnel produced by the Department of Building Energetics (DBE of Vilnius Gediminas Technical University. The equipment could be used for performing laboratory works and simple research. The article presents the projection of inflow and outlet velocity in the working chamber of DBE wind tunnel and carries out actual noise level measurement. The received data are compared with information on the level of noise generated by the fan considering instructions provided by the manufacturer. In order to assess the reliability of the computer program, simulation applying PHOENICS software has been conducted. The aim of modeling is to simulate a pilot model and to compare the obtained results with those of an analogous test presented in scientific articles.Article in Lithuanian

  12. Wind tunnel AVERT model

    Directory of Open Access Journals (Sweden)

    Adrian DOBRE

    2009-09-01

    Full Text Available The AVERT project aims to asses the oscillatory blowing on the flap for a high-lift configuration (wing with flap, and involves both experimental (low speed wind tunnel INCAS and numerical activities.At low speed the active flow control may lead to a reduction or elimination of the flow separation on the high-lift devices, such as flaps, and involves the introduction or re distribution of momentum within the boundary layer.High-lift systems utilized as particular profiles at a certain offset of the main wing may solve the disagreement between the requirements of cruise flight and landing, especially for low velocity take-off.

  13. WIND TUNNEL RESEARCH ON THE INFLUENCE OF ACTIVE AIRFLOW ON THE LIFT FORCE GENERATED BY THE AIRFOIL

    Directory of Open Access Journals (Sweden)

    Paweł Magryta

    2013-09-01

    Full Text Available The paper discusses the results of wind tunnel tests of airfoils with additional active airflow applied to their upper surfaces. These studies were carried out for a range of velocities up to 28 m/s in an open wind tunnel. Several types of airfoils selected for the examination feature different geometries and are widely applied in today’s aviation industry. The changes in the lift and drag force generated by these airfoils were recorded during the study. The test bench for the tests was equipped with a compressor and a vacuum pump to enable airflow through some holes on the airfoil upper surface. A rapid prototyping method and a 3D printer based on a powder printing technique were applied to print the airfoils. All of their surfaces were subject to surface grinding to smooth their external surfaces. The wind tunnel tests with and without active airflow applied to airfoils are summarised in the paper.

  14. INCAS SUBSONIC WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Corneliu STOICA

    2009-09-01

    Full Text Available The INCAS Subsonic Wind Tunnel is a closed circuit, continuous, atmospheric pressure facility with a maximum speed of 110 m/s. The test section is octagonal ,of 2.5 m wide, 2.0 m high and 4 m long. The tunnel is powered by a 1200 kW, air cooled variable speed DC motor which drives a 12 blade, 3.5 m diameter fan and is equipped with a six component pyramidal type external mechanical balance with a 700 Kgf maximum lift capacity.The angle of attack range is between -45º and +45º while the yaw angle range is between -140º and +216º .The data acquisition system has been modified recently to allow the recording of all test data on a PC - type computer using LABVIEW and a PXI – type chassis containing specialized data acquisition modules.The tunnel is equipped with a variable frequency electrical supply system for powered models and a 10 bar compressed air supply for pneumatic flow control applications.In the recent years the subsonic wind tunnel has been intensively used for tests within several European projects (AVERT, CESAR and others.

  15. Rapid prototyping in medical sciences

    Directory of Open Access Journals (Sweden)

    Ákos Márk Horváth

    2015-09-01

    Full Text Available Even if it sound a bit incredible rapid prototyping (RPT as production method has been used for decades in other professions. Nevertheless medical science just started discover the possibilities of this technology and use the offered benefits of 3D printing. In this paper authors have investigated the pharmaceutical usage of rapid prototyping.

  16. Wind Tunnel Management and Resource Optimization: A Systems Modeling Approach

    Science.gov (United States)

    Jacobs, Derya, A.; Aasen, Curtis A.

    2000-01-01

    Time, money, and, personnel are becoming increasingly scarce resources within government agencies due to a reduction in funding and the desire to demonstrate responsible economic efficiency. The ability of an organization to plan and schedule resources effectively can provide the necessary leverage to improve productivity, provide continuous support to all projects, and insure flexibility in a rapidly changing environment. Without adequate internal controls the organization is forced to rely on external support, waste precious resources, and risk an inefficient response to change. Management systems must be developed and applied that strive to maximize the utility of existing resources in order to achieve the goal of "faster, cheaper, better". An area of concern within NASA Langley Research Center was the scheduling, planning, and resource management of the Wind Tunnel Enterprise operations. Nine wind tunnels make up the Enterprise. Prior to this research, these wind tunnel groups did not employ a rigorous or standardized management planning system. In addition, each wind tunnel unit operated from a position of autonomy, with little coordination of clients, resources, or project control. For operating and planning purposes, each wind tunnel operating unit must balance inputs from a variety of sources. Although each unit is managed by individual Facility Operations groups, other stakeholders influence wind tunnel operations. These groups include, for example, the various researchers and clients who use the facility, the Facility System Engineering Division (FSED) tasked with wind tunnel repair and upgrade, the Langley Research Center (LaRC) Fabrication (FAB) group which fabricates repair parts and provides test model upkeep, the NASA and LARC Strategic Plans, and unscheduled use of the facilities by important clients. Expanding these influences horizontally through nine wind tunnel operations and vertically along the NASA management structure greatly increases the

  17. Flatback airfoil wind tunnel experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

    2008-04-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  18. Active damper wind tunnel test

    Science.gov (United States)

    2008-01-01

    Active damper wind tunnel test in support of the development of Constellation/Ares. Testing of the 1% and .548% models for active damper and wall interference assessment in support of the Ares/CLV integrated vehicle. This test occurred at the 11 foot wind tunnel at the Ames Research Center, California. This image is extracted from high definition video file and is the highest resolution available.

  19. Photogrammetry Applied to Wind Tunnel Testing

    Science.gov (United States)

    Liu, Tian-Shu; Cattafesta, L. N., III; Radeztsky, R. H.; Burner, A. W.

    2000-01-01

    In image-based measurements, quantitative image data must be mapped to three-dimensional object space. Analytical photogrammetric methods, which may be used to accomplish this task, are discussed from the viewpoint of experimental fluid dynamicists. The Direct Linear Transformation (DLT) for camera calibration, used in pressure sensitive paint, is summarized. An optimization method for camera calibration is developed that can be used to determine the camera calibration parameters, including those describing lens distortion, from a single image. Combined with the DLT method, this method allows a rapid and comprehensive in-situ camera calibration and therefore is particularly useful for quantitative flow visualization and other measurements such as model attitude and deformation in production wind tunnels. The paper also includes a brief description of typical photogrammetric applications to temperature- and pressure-sensitive paint measurements and model deformation measurements in wind tunnels.

  20. Automation&Characterization of US Air Force Bench Top Wind Tunnels - Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hardy, J.E.

    2006-03-23

    The United States Air Force Precision Measurement Equipment Laboratories (PMEL) calibrate over 1,000 anemometer probes per year. To facilitate a more efficient calibration process for probe-style anemometers, the Air Force Metrology and Calibration Program underwent an effort to modernize the existing PMEL bench top wind tunnels. Through a joint effort with the Department of Energy's Oak Ridge National Laboratory, the performance of PMEL wind tunnels was improved. The improvement consisted of new high accuracy sensors, automatic data acquisition, and a software-driven calibration process. As part of the wind tunnel upgrades, an uncertainty analysis was completed, laser Doppler velocimeter profiling was conducted to characterize the velocities at probe locations in the wind tunnel, and pitot tube calibrations of the wind tunnel were verified. The bench top wind tunnel accuracy and repeatability has been measured for nine prototype wind tunnel systems and valuable field experience has been gained with these wind tunnels at the PMELs. This report describes the requirements for the wind tunnel improvements along with actual implementation strategies and details. Lessons-learned from the automation, the velocity profiling, and the software-driven calibration process will also be discussed.

  1. Composites by rapid prototyping technology

    CSIR Research Space (South Africa)

    Kumar, S

    2010-02-01

    Full Text Available powder is a fiber, problems of manufacturing occur. The method has also been used to make Metal Matrix Composite (MMC), e.g Fe and graphite [17], WC-Co [18,19], WC-Co and Cu [20,21], Fe, Ni and TiC [22] etc and Ceramic Matrix Composite (CMC) e.g. Si... of various materials used. Key words: : Rapid Prototyping (RP), Laser, Composites 1 Introduction Rapid Prototyping (RP) initially focussed on polymers. These were later re- placed/supplemented by ceramics, metals and composites. Composites are used in RP...

  2. Aeronautical Wind Tunnels, Europe and Asia

    Science.gov (United States)

    2006-02-01

    site: http://sop25.kaist.ac.kr/index.html. February 2006 Page 117 of 308 European and Asian Wind Tunnels KAIST Anechoic Wind Tunnel, Korea Advanced... KAIST Anechoic Wind Tunnel.” <http://acoustic.kaist.ac.kr/research/wind.php> Korea Advanced Institute of Science and Technology. “Low Turbulence Open

  3. Unitary Plan Wind Tunnel Test

    Science.gov (United States)

    2008-01-01

    Shown is a wind tunnel test of the Ares model for force/moment testing in support of the Ares/Clv integrated vehicle at Langley Research Center, Virginia. The image is extracted from a high definition video file and is the highest resolution available.

  4. Computational Wind Tunnel: A Design Tool for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Rotorcraft engineers traditionally use the wind tunnel to evaluate and finalize designs. Insufficient correlation between wind tunnel results and flight tests, have...

  5. Rapid Prototyping in Instructional Design: Creating Competencies

    Science.gov (United States)

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  6. The Application Trends of Rapid Prototyping Manufacturing

    Directory of Open Access Journals (Sweden)

    Qiu Xiao Lin

    2016-01-01

    characteristics of laser stero lithography (LSL selective laser sintering (SLS, three-dimensional printing (DP, fused deposition modeling (FDM, computer numerical control (CNC and other rapid prototyping technologies. After discussed these five rapid prototyping technology materials, we presented the hotspot and direction of rapid prototyping technology and look forward to the development of its technique, the expansion of its field and the progress of its academic ideology.

  7. Rudolf Hermann, wind tunnels and aerodynamics

    Science.gov (United States)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  8. Rapid Prototyping of Mobile Learning Games

    Science.gov (United States)

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  9. A century of wind tunnels since Eiffel

    Science.gov (United States)

    Chanetz, Bruno

    2017-08-01

    Fly higher, faster, preserve the life of test pilots and passengers, many challenges faced by man since the dawn of the twentieth century, with aviation pioneers. Contemporary of the first aerial exploits, wind tunnels, artificially recreating conditions encountered during the flight, have powerfully contributed to the progress of aeronautics. But the use of wind tunnels is not limited to aviation. The research for better performance, coupled with concern for energy saving, encourages manufacturers of ground vehicles to perform aerodynamic tests. Buildings and bridge structures are also concerned. This article deals principally with the wind tunnels built at ONERA during the last century. Somme wind tunnels outside ONERA, even outside France, are also evocated when their characteristics do not exist at ONERA.

  10. 7 x 10 Foot Wind Tunnel

    Data.gov (United States)

    Federal Laboratory Consortium — This wind tunnel is used for basic and applied research in aeromechanics on advanced and unique technology rotorcraft. It supports research on advanced concepts and...

  11. SOFIA: Aft cavities wind tunnel test

    Science.gov (United States)

    1994-01-01

    This appendix to the final report of SOFIA 2 is a collection of configuration photos of the wind tunnel test and a brief description of each for the Stratospheric Observatory for Infrared Astronomy (SOFIA).

  12. Low Speed Wind Tunnel Facility (LSWTF)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: This facility consists of a large-scale, low-speed open-loop induction wind tunnel which has been modified to house a linear turbine cascade. A 125-hp...

  13. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    To avoid high tooling costs in product development, a rapid prototyping process chain has been established that enables rapid manufacturing of ceramic microcomponents from functional models to small lot series within a short time. This process chain combines the fast and inexpensive supply of master models by rapid ...

  14. Rapid prototyping of robotic platforms

    CSIR Research Space (South Africa)

    De Ronde, Willis

    2016-11-01

    Full Text Available of thickness up to 200mm can be cut to create prototype chassis/ bodies or even the final product. One of the few limitations is the cutting of certain laminated materials, as this tends to produce delaminated cutting edges or even fractures in the case... mine inspection robot (Shongololo). Shongololo’s frame is made from engineering plastics while the chassis of Dassie was made from aluminium and cut using abrasive waterjet machining. The advantage of using abrasive waterjet machining is the speed...

  15. Wind Tunnel Measurements at LM Wind Power

    DEFF Research Database (Denmark)

    Bertagnolio, Franck

    2012-01-01

    This section presents the results obtained during the experimental campaign that was conducted in the wind tunnel at LM Wind Power in Lunderskov from August 16th to 26th, 2010. The goal of this study is to validate the so-called TNO trailing edge noise model through measurements of the boundary...... layer turbulence characteristics and the far-field noise generated by the acoustic scattering of the turbulent boundary layer vorticies as they convect past the trailing edge. This campaign was conducted with a NACA0015 airfoil section that was placed in the wind tunnel section. It is equipped with high...

  16. Automatic Attitude Setting of a Wind Tunnel Model in a Transonic Wind Tunnel

    OpenAIRE

    HAKII, Kiyoshi; KOIKE, Akira; 波木井, 潔; 小池, 陽

    1980-01-01

    A description of an improved automatic attitude setting system, of a wind tunnel model in a 2m×2m transonic wind tunnel is presented. The purpose of this improvement is to save on manpower, and shorten the access time for setting from one testing condition to another. An 8K words mini-computer is employed, to control the electirically powered mechanism of the model supporting system. The desired angle of attack and yaw of the wind tunnel model are obtained by the appropriate combination of th...

  17. Development and tendency of rapid prototyping technology

    Science.gov (United States)

    Yan, Yongnian; Hong, Guodong

    1998-08-01

    The definition of the rapid prototyping is given in this paper. Various RP processes, which build the prototypes with 2.5 or 3 dimensional layers, are introduced. The relative techniques of RP and the differences between RP technique and CNC manufacturing are analyzed. The paper discusses the RP's applied fields and methods and presents the RP development in the world. According to the idea that requirements determine the developing, the RP's tendency is discussed.

  18. Wind Tunnel Measurements at Virginia Tech

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck

    2012-01-01

    In this section, the wind tunnel configuration used for aerodynamic and aeroacoustic measurement is described. Then, the validation of the method for evaluating far-field noise from surface microphones as described in Section 5 is presented. Finally, the design concept proposed in Section 6...

  19. Analysis of Mexico wind tunnel measurements

    DEFF Research Database (Denmark)

    Schepers, J.G.; Boorsma, K.; Cho, T.

    institutes carried out a wind tunnel experiment in the Large Low Speed Facility (LLF) of the German DutchWind Facilities DNW on a rotor with a diameter of 4.5 m. Pressure distributions were measured at five location along the blade along with detailed flow field measurements around the rotor plane using...

  20. Role of Wind Tunnels in Aircraft Design

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 1. Role of Wind Tunnels in Aircraft Design. S P Govinda Raju. General Article Volume 8 Issue 1 January 2003 pp 72-76. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/01/0072-0076. Keywords.

  1. Advancing Test Capabilities at NASA Wind Tunnels

    Science.gov (United States)

    Bell, James

    2015-01-01

    NASA maintains twelve major wind tunnels at three field centers capable of providing flows at 0.1 M 10 and unit Reynolds numbers up to 45106m. The maintenance and enhancement of these facilities is handled through a unified management structure under NASAs Aeronautics and Evaluation and Test Capability (AETC) project. The AETC facilities are; the 11x11 transonic and 9x7 supersonic wind tunnels at NASA Ames; the 10x10 and 8x6 supersonic wind tunnels, 9x15 low speed tunnel, Icing Research Tunnel, and Propulsion Simulator Laboratory, all at NASA Glenn; and the National Transonic Facility, Transonic Dynamics Tunnel, LAL aerothermodynamics laboratory, 8 High Temperature Tunnel, and 14x22 low speed tunnel, all at NASA Langley. This presentation describes the primary AETC facilities and their current capabilities, as well as improvements which are planned over the next five years. These improvements fall into three categories. The first are operations and maintenance improvements designed to increase the efficiency and reliability of the wind tunnels. These include new (possibly composite) fan blades at several facilities, new temperature control systems, and new and much more capable facility data systems. The second category of improvements are facility capability advancements. These include significant improvements to optical access in wind tunnel test sections at Ames, improvements to test section acoustics at Glenn and Langley, the development of a Supercooled Large Droplet capability for icing research, and the development of an icing capability for large engine testing. The final category of improvements consists of test technology enhancements which provide value across multiple facilities. These include projects to increase balance accuracy, provide NIST-traceable calibration characterization for wind tunnels, and to advance optical instruments for Computational Fluid Dynamics (CFD) validation. Taken as a whole, these individual projects provide significant

  2. Rapid prototyping and stereolithography in dentistry.

    Science.gov (United States)

    Nayar, Sanjna; Bhuminathan, S; Bhat, Wasim Manzoor

    2015-04-01

    The word rapid prototyping (RP) was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD). To materialize virtual objects using CAD, a computer aided manufacture (CAM) process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  3. Rapid prototyping and stereolithography in dentistry

    Directory of Open Access Journals (Sweden)

    Sanjna Nayar

    2015-01-01

    Full Text Available The word rapid prototyping (RP was first used in mechanical engineering field in the early 1980s to describe the act of producing a prototype, a unique product, the first product, or a reference model. In the past, prototypes were handmade by sculpting or casting, and their fabrication demanded a long time. Any and every prototype should undergo evaluation, correction of defects, and approval before the beginning of its mass or large scale production. Prototypes may also be used for specific or restricted purposes, in which case they are usually called a preseries model. With the development of information technology, three-dimensional models can be devised and built based on virtual prototypes. Computers can now be used to create accurately detailed projects that can be assessed from different perspectives in a process known as computer aided design (CAD. To materialize virtual objects using CAD, a computer aided manufacture (CAM process has been developed. To transform a virtual file into a real object, CAM operates using a machine connected to a computer, similar to a printer or peripheral device. In 1987, Brix and Lambrecht used, for the first time, a prototype in health care. It was a three-dimensional model manufactured using a computer numerical control device, a type of machine that was the predecessor of RP. In 1991, human anatomy models produced with a technology called stereolithography were first used in a maxillofacial surgery clinic in Viena.

  4. 40 CFR Table F-2 to Subpart F of... - Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and...

    Science.gov (United States)

    2010-07-01

    ... Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test F Table F-2 to Subpart F... Part 53—Particle Sizes and Wind Speeds for Full Wind Tunnel Test, Wind Tunnel Inlet Aspiration Test, and Static Chamber Test Primary Partical Mean Size a (µm) Full Wind Tunnel Test 2 km/hr 24 km/hr Inlet...

  5. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    fast and inexpensive supply for polymer master models and a ceramic shaping method that enables the replication of the RP model into multiple ceramic materials within a short time. (Knitter et al 1999). 2. Rapid prototyping process chains. The manufacturing of ceramic microparts presented here set out with the 3D-CAD ...

  6. Integrating Rapid Prototyping into Graphic Communications

    Science.gov (United States)

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  7. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  8. Wind Tunnel and Hover Performance Test Results for Multicopter UAS Vehicles

    Science.gov (United States)

    Russell, Carl R.; Jung, Jaewoo; Willink, Gina; Glasner, Brett

    2016-01-01

    There is currently a lack of published data for the performance of multicopter unmanned aircraft system (UAS) vehicles, such as quadcopters and octocopters, often referred to collectively as drones. With the rapidly increasing popularity of multicopter UAS, there is interest in better characterizing the performance of this type of aircraft. By studying the performance of currently available vehicles, it will be possible to develop models for vehicles at this scale that can accurately predict performance and model trajectories. This paper describes a wind tunnel test that was recently performed in the U.S. Army's 7- by 10-ft Wind Tunnel at NASA Ames Research Center. During this wind tunnel entry, five multicopter UAS vehicles were tested to determine forces and moments as well as electrical power as a function of wind speed, rotor speed, and vehicle attitude. The test is described here in detail, and a selection of the key results from the test is presented.

  9. Review of Potential Wind Tunnel Balance Technologies

    Science.gov (United States)

    Burns, Devin E.; Williams, Quincy L.; Phillips, Ben D.; Commo, Sean A.; Ponder, Jonathon D.

    2016-01-01

    This manuscript reviews design, manufacture, materials, sensors, and data acquisition technologies that may benefit wind tunnel balances for the aerospace research community. Current state-of-the-art practices are used as the benchmark to consider advancements driven by researcher and facility needs. Additive manufacturing is highlighted as a promising alternative technology to conventional fabrication and has the potential to reduce both the cost and time required to manufacture force balances. Material alternatives to maraging steels are reviewed. Sensor technologies including piezoresistive, piezoelectric, surface acoustic wave, and fiber optic are compared to traditional foil based gages to highlight unique opportunities and shared challenges for implementation in wind tunnel environments. Finally, data acquisition systems that could be integrated into force balances are highlighted as a way to simplify the user experience and improve data quality. In summary, a rank ordering is provided to support strategic investment in exploring the technologies reviewed in this manuscript.

  10. Simultaneous Global Pressure and Temperature Measurement Technique for Hypersonic Wind Tunnels

    Science.gov (United States)

    Buck, Gregory M.

    2000-01-01

    High-temperature luminescent coatings are being developed and applied for simultaneous pressure and temperature mapping in conventional-type hypersonic wind tunnels, providing global pressure as well as Global aeroheating measurements. Together, with advanced model fabrication and analysis methods, these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles. The current status in development of simultaneous pressure- and temperature-sensitive coatings and measurement techniques for hypersonic wind tunnels at Langley Research Center is described. and initial results from a feasibility study in the Langley 31-Inch Mach 10 Tunnel are presented.

  11. Rapid prototyping: An innovative technique in dentistry

    Directory of Open Access Journals (Sweden)

    Shakeba Quadri

    2017-01-01

    Full Text Available Emergence of advanced digital technology has opened up new perspectives for design and production in the field of dentistry. Rapid prototyping (RP is a technique to quickly and automatically construct a three-dimensional (3D model of a part or product using 3D printers or stereolithography machines. RP has various dental applications, such as fabrication of implant surgical guides, zirconia prosthesis and molds for metal castings, maxillofacial prosthesis and frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis and complete denture. Rapid prototyping presents fascinating opportunities, but the process is difficult as it demands a high level of artistic skill, which means that the dental technicians should be able to work with the models obtained after impression to form a mirror image and achieve good esthetics. This review aims to focus on various RP methods and its application in dentistry.

  12. Wind tunnel test of musi VI bridge

    Science.gov (United States)

    Permata, Robby; Andika, Matza Gusto; Syariefatunnisa, Risdhiawan, Eri; Hermawan, Budi; Noordiana, Indra

    2017-11-01

    Musi VI Bridge is planned to cross the Musi River in Palembang City, South Sumatera Province, Indonesia. The main span is a steel arch type with 200 m length and side span length is 75 m. Finite element analysis results showed that the bridge has frequency ratio for torsional and heaving mode (torsional frequency/heaving frequency)=1.14. This close to unity value rises concern about aerodynamic behaviour and stability of the bridge deck under wind loading. Sectional static and free vibration wind tunnel test were performed to clarify this phenomena in B2TA3 facility in Serpong, Indonesia. The test followed the draft of Guide of Wind Tunnel Test for Bridges developed by Indonesian Ministry of Public Works. Results from wind tunnel testing show that the bridge is safe from flutter instability and no coupled motion vibration observed. Therefore, low value of frequency ratio has no effect to aerodynamic behaviour of the bridge deck. Vortex-induced vibration in heaving mode occurred in relatively low wind velocity with permissible maximum amplitude value.

  13. Removable partial dentures: use of rapid prototyping.

    Science.gov (United States)

    Lima, Julia Magalhaes Costa; Anami, Lilian Costa; Araujo, Rodrigo Maximo; Pavanelli, Carlos A

    2014-10-01

    The CAD/CAM technology associated with rapid prototyping (RP) is already widely used in the fabrication of all-ceramic fixed prostheses and in the biomedical area; however, the use of this technology for the manufacture of metal frames for removable dentures is new. This work reports the results of a literature review conducted on the use of CAD/CAM and RP in the manufacture of removable partial dentures. © 2014 by the American College of Prosthodontists.

  14. How Rapid is Rapid Prototyping? Analysis of ESPADON Programme Results

    Directory of Open Access Journals (Sweden)

    Ian D. Alston

    2003-05-01

    Full Text Available New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs, including retrofits and upgrades, based predominately on commercial off the shelf (COTS components and the model-year concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and seamlessly move from functional design to the architectural design to the implementation, through automatic code generation tools, onto real-time COTS test beds. In this paper, we try to quantify the term “rapid” and provide results, the metrics, from two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping process may be sixteen times faster than a conventional process.

  15. Flow visualization around a rotating body in a wind tunnel

    Science.gov (United States)

    Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.

    2017-02-01

    The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.

  16. SUBSONIC WIND TUNNEL PERFORMANCE ANALYSIS SOFTWARE

    Science.gov (United States)

    Eckert, W. T.

    1994-01-01

    This program was developed as an aid in the design and analysis of subsonic wind tunnels. It brings together and refines previously scattered and over-simplified techniques used for the design and loss prediction of the components of subsonic wind tunnels. It implements a system of equations for determining the total pressure losses and provides general guidelines for the design of diffusers, contractions, corners and the inlets and exits of non-return tunnels. The algorithms used in the program are applicable to compressible flow through most closed- or open-throated, single-, double- or non-return wind tunnels or ducts. A comparison between calculated performance and that actually achieved by several existing facilities produced generally good agreement. Any system through which air is flowing which involves turns, fans, contractions etc. (e.g., an HVAC system) may benefit from analysis using this software. This program is an update of ARC-11138 which includes PC compatibility and an improved user interface. The method of loss analysis used by the program is a synthesis of theoretical and empirical techniques. Generally, the algorithms used are those which have been substantiated by experimental test. The basic flow-state parameters used by the program are determined from input information about the reference control section and the test section. These parameters were derived from standard relationships for compressible flow. The local flow conditions, including Mach number, Reynolds number and friction coefficient are determined for each end of each component or section. The loss in total pressure caused by each section is calculated in a form non-dimensionalized by local dynamic pressure. The individual losses are based on the nature of the section, local flow conditions and input geometry and parameter information. The loss forms for typical wind tunnel sections considered by the program include: constant area ducts, open throat ducts, contractions, constant

  17. Web tools for rapid experimental visualization prototyping

    Science.gov (United States)

    Decker, Jonathan W.; Livingstion, Mark A.

    2013-01-01

    Quite often a researcher finds themselves looking at spreadsheets of high-dimensional data generated by experimental models and user studies. We can use analysis to challenge or confirm hypothesis, but unexpected results can easily be lost in the shuffle. For this reason, it would be useful to visualize the results so we can explore our data and make new discoveries. Web browsers have become increasingly capable for creating complex, multi-view applications. Javascript is quickly becoming a de facto standard for scripting, online and offline. This work demonstrates the use of web technologies as a powerful tool for rapid visualization prototyping. We have developed two prototypes: One for high-dimensional results of the abELICIT - multi-agent version of the ELICIT platform tasked with collaborating to identify the parameters of a pending attack. Another prototype displays responses to a user study on the effectiveness of multi-layer visualization techniques. We created coordinated multiple views prototypes in the Google Chrome web browser written in Javascript, CSS and HTML. We will discuss the benefits and shortcomings of this approach.

  18. Rapid prototyping with high power fiber lasers

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, R.M. [Faculty of Sciences and Technology, New University Lisbon (Portugal); IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Lopes, G. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom); Quintino, L. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal)], E-mail: lquintino@ist.utl.pt; Rodrigues, J.P. [IDMEC, Instituto Superior Tecnico, TULISBON, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Williams, S. [Welding Engineering Research Centre, Building 46, Cranfield University, Bedfordshire, MK43 0AL (United Kingdom)

    2008-12-15

    Laser rapid prototyping technologies comprise a set of technologies used in a wide range of materials to produce prototypes or small batches of complex shaped components. This paper presents a research work on rapid prototyping technology with laser additive manufacture of wire based alloy Ti-6Al-4V with an 8 kW fiber laser for the production of components with cylindrical geometry. For this, an engineering system was developed, a demonstration part produced and the deposition process was characterized. Two processing parameters were investigated: and these were the relative position between the wire feeding system and the substrate and the laser beam to wire width ratio. The former affects the molten metal transfer mode and the pressure exerted by the wire tip on the molten pool, while the laser beam to wire width ratio affects the process efficiency, since this is a compromise of process stability and process speed. Both parameters control surface finishing and the smoothness of the part. The melting efficiency of the process is low when compared to alternative processes involving powder pre deposition, but the density of the part is improved with homogeneous structural characteristics.

  19. Computational Wind Tunnel: A Design Tool for Rotorcraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — During initial design studies, parametric variation of vehicle geometry is routine. In addition, rotorcraft engineers traditionally use the wind tunnel to evaluate...

  20. Rapid Prototyping and its Application in Dentistry

    Directory of Open Access Journals (Sweden)

    V. N. V. Madhav

    2013-01-01

    Full Text Available Medical implants and biological models have three main characteristics: low volume, complex shape, and can be customized. These characteristics suit very well with Rapid Prototyping (RP and Rapid Manufacturing (RM processes. RP/RM processes are fabricated part layer- by-layer until complete shape finished from 3D model. Biocompatible materials, such as Titanium and Titanium alloy, Zirconium, Cobalt Chromium, PEEK, etc, are used for fabrication process. Reverse Engineering (RE technology greatly affects RP/RM processes. RE is used to capture or scan image of the limb, cranium, tooth, and other biological objects. Three common methods to get the image are 3D laser scanning, Computer Tomography (CT, and Magnetic Resonance Imaging (MRI. Main RP/RM techniques used in Dentistry are Stereotype Lithography Apparatus (SLA, Fused Deposition Modeling (FDM, Selective Laser Sintering (SLS, and ink jet printing. This article reviews the changing scenario of technology in dentistry with special emphasis on Rapid Prototyping and its various applications in Dentistry.

  1. Rapid prototyping of composite aircraft structures

    Science.gov (United States)

    Bennett, George; Rais-Rohani, Masoud; Hall, Kenneth; Holifield, Walt; Sullivan, Rani; Brown, Scott

    The faculty, staff and students of the Raspet Flight Research Laboratory (RFRL) have developed a rapid prototyping capability in a series of research aircraft and unmanned aircraft development projects. There has been a steady change in the technologies used to accomplish these tasks at the RFRL. The most recent development has been the utilization of computer graphics and a 5-axis gantry robot router to accelerate the design, moldmaking and parts trimming tasks. The composite structure fabrication processes at the RFRL have evolved from wet-lay-up to autoclave curve. Currently, the feasibility of the stitched composite material preform and resin transfer molding process is being explored.

  2. Nano-ADEPT Aeroloads Wind Tunnel Test

    Science.gov (United States)

    Smith, Brandon; Yount, Bryan; Kruger, Carl; Brivkalns, Chad; Makino, Alberto; Cassell, Alan; Zarchi, Kerry; McDaniel, Ryan; Ross, James; Wercinski, Paul; hide

    2016-01-01

    A wind tunnel test of the Adaptable Deployable Entry and Placement Technology (ADEPT) was conducted in April 2015 at the US Army's 7 by10 Foot Wind Tunnel located at NASA Ames Research Center. Key geometric features of the fabric test article were a 0.7 meter deployed base diameter, a 70 degree half-angle forebody cone angle, eight ribs, and a nose-to-base radius ratio of 0.7. The primary objective of this wind tunnel test was to obtain static deflected shape and pressure distributions while varying pretension at dynamic pressures and angles of attack relevant to entry conditions at Earth, Mars, and Venus. Other objectives included obtaining aerodynamic force and moment data and determining the presence and magnitude of any dynamic aeroelastic behavior (buzz/flutter) in the fabric trailing edge. All instrumentation systems worked as planned and a rich data set was obtained. This paper describes the test articles, instrumentation systems, data products, and test results. Four notable conclusions are drawn. First, test data support adopting a pre-tension lower bound of 10 foot pounds per inch for Nano-ADEPT mission applications in order to minimize the impact of static deflection. Second, test results indicate that the fabric conditioning process needs to be reevaluated. Third, no flutter/buzz of the fabric was observed for any test condition and should also not occur at hypersonic speeds. Fourth, translating one of the gores caused ADEPT to generate lift without the need for a center of gravity offset. At hypersonic speeds, the lift generated by actuating ADEPT gores could be used for vehicle control.

  3. Rapid Prototyping and the Human Factors Engineering Process

    Science.gov (United States)

    2016-08-29

    Rapid prototyping and the human factors • • engineering process David Beevis* and Gaetan St Denist *Senior Human Factors Engineer, Defence and...qr-..2. 9 Rapid prototyping or ’virtual prototyping ’ of human-machine interfaces offers the possibility of putting the human operator ’in the loop...8217 without the effort and cost associated with conventional man-in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with

  4. Sheet metal forming using rapid prototyped tooling

    Science.gov (United States)

    Park, Young-Bin

    The demand for rapid, low-cost die fabrication and modification technology is greater than ever in sheet metal forming industry. One category of rapid tooling technology involves the application of advanced polymers and composites to fabricate metal forming dies. Despite their advantages in lead time and cost reductions, polymer dies for sheet metal forming applications have several drawbacks. Due to their lack of strength as compared to conventional die materials, the use of polymer dies is often limited to prototype or short-run production. In addition, because the mechanisms by which they fail are not fully understood, the dies are designed on the basis of experience and intuition. The research (1) characterized the mechanical behavior of an advanced polymer composite tooling material, (2) developed a method to predict the failure mode and the life of a polymer die, and (3) established optimal die design guidelines. The focus was on rapid prototyped, aluminum trihydrate(ATH)-filled, polyurethane-based dies in sheet metal forming. The study involved the determination of dominant process parameters based on the finite element analyses of 90° V-die bending and cylindrical cup drawing processes. The effects of process parameters on stress distribution in the die provided guidelines to the modification of die design for achieving the desired die life. The presented parametric study lays the groundwork for providing reliable tool failure prediction and design optimization guidelines for advanced polymer tooling materials in metal forming. In addition, the failure mechanisms were investigated to predict the failure mode and the fatigue life of the die. To establish a fundamental understanding of the fatigue behavior of the polyurethane-based die material, extensive material tests were performed, the microstructure was studied, and the fatigue properties were identified experimentally. The test data were incorporated into the local stress-based fatigue analysis to

  5. Glide back booster wind tunnel model testing

    Science.gov (United States)

    Pricop, M. V.; Cojocaru, M. G.; Stoica, C. I.; Niculescu, M. L.; Neculaescu, A. M.; Persinaru, A. G.; Boscoianu, M.

    2017-07-01

    Affordable space access requires partial or ideally full launch vehicle reuse, which is in line with clean environment requirement. Although the idea is old, the practical use is difficult, requiring very large technology investment for qualification. Rocket gliders like Space Shuttle have been successfullyoperated but the price and correspondingly the energy footprint were found not sustainable. For medium launchers, finally there is a very promising platform as Falcon 9. For very small launchers the situation is more complex, because the performance index (payload to start mass) is already small, versus medium and heavy launchers. For partial reusable micro launchers this index is even smaller. However the challenge has to be taken because it is likely that in a multiyear effort, technology is going to enable the performance recovery to make such a system economically and environmentally feasible. The current paper is devoted to a small unitary glide back booster which is foreseen to be assembled in a number of possible configurations. Although the level of analysis is not deep, the solution is analyzed from the aerodynamic point of view. A wind tunnel model is designed, with an active canard, to enablea more efficient wind tunnel campaign, as a national level premiere.

  6. Build an Inexpensive Wind Tunnel to Test CO2 Cars

    Science.gov (United States)

    McCormick, Kevin

    2012-01-01

    As part of the technology education curriculum, the author's eighth-grade students design, build, test, and race CO2 vehicles. To help them in refining their designs, they use a wind tunnel to test for aerodynamic drag. In this article, the author describes how to build a wind tunnel using inexpensive, readily available materials. (Contains 1…

  7. Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles

    Science.gov (United States)

    2007-09-01

    CONTRACT NUMBER Evaluation of 5-cm Agent Fate Wind Tunnel Velocity Profiles DAAD 13-03-D-0017 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER SAIC Agreement...TERMS (Continued) Evaporation Agent fate Wind tunnel Velocity profile 2 PREFACE The work described in this report was authorized under Contract No. DAAD

  8. Rapid prototyping-assisted maxillofacial reconstruction.

    Science.gov (United States)

    Peng, Qian; Tang, Zhangui; Liu, Ousheng; Peng, Zhiwei

    2015-05-01

    Rapid prototyping (RP) technologies have found many uses in dentistry, and especially oral and maxillofacial surgery, due to its ability to promote product development while at the same time reducing cost and depositing a part of any degree of complexity theoretically. This paper provides an overview of RP technologies for maxillofacial reconstruction covering both fundamentals and applications of the technologies. Key fundamentals of RP technologies involving the history, characteristics, and principles are reviewed. A number of RP applications to the main fields of oral and maxillofacial surgery, including restoration of maxillofacial deformities and defects, reduction of functional bone tissues, correction of dento-maxillofacial deformities, and fabrication of maxillofacial prostheses, are discussed. The most remarkable challenges for development of RP-assisted maxillofacial surgery and promising solutions are also elaborated.

  9. Aeroservoelastic Wind-Tunnel Test of the SUGAR Truss Braced Wing Wind-Tunnel Model

    Science.gov (United States)

    Scott, Robert C.; Allen, Timothy J.; Funk, Christie J.; Castelluccio, Mark A.; Sexton, Bradley W.; Claggett, Scott; Dykman, John; Coulson, David A.; Bartels, Robert E.

    2015-01-01

    The Subsonic Ultra Green Aircraft Research (SUGAR) Truss-Braced Wing (TBW) aeroservoelastic (ASE) wind-tunnel test was conducted in the NASA Langley Transonic Dynamics Tunnel (TDT) and was completed in April, 2014. The primary goals of the test were to identify the open-loop flutter boundary and then demonstrate flutter suppression. A secondary goal was to demonstrate gust load alleviation (GLA). Open-loop flutter and limit cycle oscillation onset boundaries were identified for a range of Mach numbers and various angles of attack. Two sets of control laws were designed for the model and both sets of control laws were successful in suppressing flutter. Control laws optimized for GLA were not designed; however, the flutter suppression control laws were assessed using the TDT Airstream Oscillation System. This paper describes the experimental apparatus, procedures, and results of the TBW wind-tunnel test. Acquired system ID data used to generate ASE models is also discussed.2 study.

  10. Automatic control of cryogenic wind tunnels

    Science.gov (United States)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with

  11. 3D Printing for the Rapid Prototyping of Structural Electronics

    National Research Council Canada - National Science Library

    Macdonald, Eric; Salas, Rudy; Espalin, David; Perez, Mireya; Aguilera, Efrain; Muse, Dan; Wicker, Ryan B

    2014-01-01

    .... The use of advanced 3D printing technology enhanced with component placement and electrical interconnect deposition can provide electronic prototypes that now can be rapidly fabricated in comparable...

  12. Wall Correction Model for Wind Tunnels with Open Test Section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2004-01-01

    In th paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, that is based on a onedimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. Generally......, the corrections from the model are in very good agreement with the CFD computaions, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections. Keywords: Wind tunnel correction, momentum theory...

  13. Rapid prototyping--when virtual meets reality.

    Science.gov (United States)

    Beguma, Zubeda; Chhedat, Pratik

    2014-01-01

    Rapid prototyping (RP) describes the customized production of solid models using 3D computer data. Over the past decade, advances in RP have continued to evolve, resulting in the development of new techniques that have been applied to the fabrication of various prostheses. RP fabrication technologies include stereolithography (SLA), fused deposition modeling (FDM), computer numerical controlled (CNC) milling, and, more recently, selective laser sintering (SLS). The applications of RP techniques for dentistry include wax pattern fabrication for dental prostheses, dental (facial) prostheses mold (shell) fabrication, and removable dental prostheses framework fabrication. In the past, a physical plastic shape of the removable partial denture (RPD) framework was produced using an RP machine, and then used as a sacrificial pattern. Yet with the advent of the selective laser melting (SLM) technique, RPD metal frameworks can be directly fabricated, thereby omitting the casting stage. This new approach can also generate the wax pattern for facial prostheses directly, thereby reducing labor-intensive laboratory procedures. Many people stand to benefit from these new RP techniques for producing various forms of dental prostheses, which in the near future could transform traditional prosthodontic practices.

  14. Rapid prototype modeling in a multimodality world

    Science.gov (United States)

    Bidaut, Luc; Madewell, John; Yasko, Alan

    2006-03-01

    Introduction: Rapid prototype modeling (RPM) has been used in medicine principally for bones - that are easily extracted from CT data sets - for planning orthopaedic, plastic or maxillo-facial interventions, and/or for designing custom prostheses and implants. Based on newly available technology, highly valuable multimodality approaches can now be applied to RPM, particularly for complex musculo-skeletal (MSK) tumors where multimodality often transcends CT alone. Methods: CT data sets are acquired for primary evaluation of MSK tumors in parallel with other modalities (e.g., MR, PET, SPECT). In our approach, CT is first segmented to provide bony anatomy for RPM and all other data sets are then registered to the CT reference. Parametric information relevant to the tumor's characterization is then extracted from the multimodality space and merged with the CT anatomy to produce a hybrid RPM-ready model. This model - that also accommodates digital multimodality visualization - is then produced on the latest generation of 3D printers, which permits both shapes and colors. Results: Multimodality models of complex MSK tumors have been physically produced on modern RPM equipment. This new approach has been found to be a clear improvement over the previously disconnected physical RPM and digital multimodality visualization. Conclusions: New technical developments keep opening doors to sophisticated medical applications that can directly impact the quality of patient care. Although this early work still deals with bones as base models for RPM, its use to encompass soft tissues is already envisioned for future approaches.

  15. Implementation of Additive Rapid Prototyping on Retrofit CNC Mill

    Science.gov (United States)

    Freeform fabrication techniques are gaining popularity as a means of making parts. Layered additive methods are associated with rapid prototyping. Many rapid prototyping methods are commercially proprietary and may cost thousands of dollars. Using a retrofit CNC mill for layered fabrication and C...

  16. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  17. Computational design and analysis of flatback airfoil wind tunnel experiment.

    Energy Technology Data Exchange (ETDEWEB)

    Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

    2008-03-01

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  18. Measurement and Assessment of Flow Quality in Wind Tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — New wind tunnel flow quality test and analysis procedures have been developed and will be used to establish standardized turbulent flow quality measurement...

  19. GVT-Based Ground Flutter Test without Wind Tunnel Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc (ZONA) and Arizona State University (ASU) propose a R&D effort to develop a ground flutter testing system without wind tunnel, called the...

  20. Lidars for Wind Tunnels - an IRPWind Joint Experiment Project

    DEFF Research Database (Denmark)

    Sjöholm, Mikael; Vignaroli, Andrea; Angelou, Nikolas

    2017-01-01

    Measurement campaigns with continuous-wave Doppler Lidars (Light detection and ranging) developed at DTU Wind Energy in Denmark were performed in two very different wind tunnels. Firstly, a measurement campaign in a small icing wind tunnel chamber at VTT in Finland was performed with high frequency...... measurements for increasing the understanding of the effect of in-cloud icing conditions on Lidar signal dynamics. Secondly, a measurement campaign in the relatively large boundary-layer wind tunnel at NTNU in Norway was performed in the wake of a scaled test turbine in the same configuration as previously...... used in blind test comparisons for wind turbine wake modelers. These Lidar measurement activities constitute the Joint Experiment Project” L4WT - Lidars for Wind Tunnels, with applications to wakes and atmospheric icing in a prospective Nordic Network” with the aim of gaining and sharing knowledge...

  1. The future of wind tunnel technology in Germany

    Science.gov (United States)

    Ewald, B.

    1978-01-01

    The practical value of a wind tunnel which is not dependent solely on size or achievable Reynolds number was examined. Measurement, interpretative and evaluative procedures developed in small facilities were also studied.

  2. Wind tunnel evaluation of Hi-Vol TSP effectiveness data

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wind tunnel evaluation of EPA's Hi-Vol TSP sampler for sampling effectiveness with regards to aerodynamic particle diameter (5 to 35 microns), wind speed (2, 8, 24...

  3. Morphing wing system integration with wind tunnel testing =

    Science.gov (United States)

    Guezguez, Mohamed Sadok

    Preserving the environment is a major challenge for today's aviation industry. Within this context, the CRIAQ MDO 505 project started, where a multidisciplinary approach was used to improve aircraft fuel efficiency. This international project took place between several Canadian and Italian teams. Industrial teams are Bombardier Aerospace, Thales Canada and Alenia Aermacchi. The academic partners are from Ecole de Technologie Superieure, Ecole Polytechnique de Montreal and Naples University. Teams from 'CIRA' and IAR-NRC research institutes had, also, contributed on this project. The main objective of this project is to improve the aerodynamic performance of a morphing wing prototype by reducing the drag. This drag reduction is achieved by delaying the flow transition (from laminar to turbulent) by performing shape optimization of the flexible upper skin according to different flight conditions. Four linear axes, each one actuated by a 'BLDC' motor, are used to morph the skin. The skin displacements are calculated by 'CFD' numerical simulation based on flow parameters which are Mach number, the angle of attack and aileron's angle of deflection. The wing is also equipped with 32 pressure sensors to experimentally detect the transition during aerodynamic testing in the subsonic wind tunnel at the IAR-NRC in Ottawa. The first part of the work is dedicated to establishing the necessary fieldbus communications between the control system and the wing. The 'CANopen' protocol is implemented to ensure real time communication between the 'BLDC' drives and the real-time controller. The MODBUS TCP protocol is used to control the aileron drive. The second part consists of implementing the skin control position loop based on the LVDTs feedback, as well as developing an automated calibration procedure for skin displacement values. Two 'sets' of wind tunnel tests were carried out to, experimentally, investigate the morphing wing controller effect; these tests also offered the

  4. Conceptual design for an electron-beam heated hypersonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Lipinski, R.J.; Kensek, R.P.

    1997-07-01

    There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

  5. The Douglas Aerophysics Laboratory Four-Foot Trisonic Wind Tunnel,

    Science.gov (United States)

    This report describes the Four-Foot Trisonic Wind Tunnel and the Douglas Aerophysics Laboratory in which it is located. It also presents the performance and operating characteristics of the tunnel, model support and design considerations for a test, diverse test capabilities, instrumentation and data recording equipment, data processing and presentation, and the customer responsibilities for obtaining optimum planning and performance of wind tunnel tests.

  6. Free flight wind tunnel tests for parameter identification

    OpenAIRE

    Nowack, Jan; Alles, Wolfgang

    2009-01-01

    The Chair of Flight Dynamics at the RWTH Aachen University is conducting research on a method for identification of flight mechanical characteristics on free flying models in a wind tunnel. The main goal is to create a eproducible free flight environment for cost effective identification of important values even in an early design stage. The method will combine the advantages of free flight with wind tunnel techniques as it takes the free flight into a reproducible environment under laborator...

  7. Wind tunnel technology for the development of future commercial aircraft

    Science.gov (United States)

    Szodruch, J.

    1986-01-01

    Requirements for new technologies in the area of civil aircraft design are mainly related to the high cost involved in the purchase of modern, fuel saving aircraft. A second important factor is the long term rise in the price of fuel. The demonstration of the benefits of new technologies, as far as these are related to aerodynamics, will,for the foreseeable future, still be based on wind tunnel measurements. Theoretical computation methods are very successfully used in design work, wing optimization, and an estimation of the Reynolds number effect. However, wind tunnel tests are still needed to verify the feasibility of the considered concepts. Along with other costs, the cost for the wind tunnel tests needed for the development of an aircraft is steadily increasing. The present investigation is concerned with the effect of numerical aerodynamics and civil aircraft technology on the development of wind tunnels. Attention is given to the requirements for the wind tunnel, investigative methods, measurement technology, models, and the relation between wind tunnel experiments and theoretical methods.

  8. Prallethrin-Induced Excitation Increases Contact Between Sprayed Ultralow Volume Droplets and Flying Mosquitoes (Diptera: Culicidae) in a Wind Tunnel

    Science.gov (United States)

    2010-01-01

    the wind tunnel, and the mosquito was transferred by aspiration into a clean, screened paper carton with no food or water. The mosquito was observed...M. Casas-Martinez, J. M. Ramsey, J. Garcia-Rejon, et al. 2009. Recent rapid rise of a permethrin knock down resistance allele in Aedes aegypti in

  9. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael D.

    1999-06-01

    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  10. A Rapid Prototyping Environment for Wireless Communication Embedded Systems

    Directory of Open Access Journals (Sweden)

    Bryan A. Jones

    2003-05-01

    Full Text Available This paper introduces a rapid prototyping methodology which overcomes important barriers in the design and implementation of digital signal processing (DSP algorithms and systems on embedded hardware platforms, such as cellular phones. This paper describes rapid prototyping in terms of a simulation/prototype bridge and in terms of appropriate language design. The simulation/prototype bridge combines the strengths of simulation and of prototyping, allowing the designer to develop and evaluate next-generation communications systems, partly in simulation on a host computer and partly as a prototype on embedded hardware. Appropriate language design allows designers to express a communications system as a block diagram, in which each block represents an algorithm specified by a set of equations. Software tools developed for this paper implement both concepts, and have been successfully used in the development of a next-generation code division multiple access (CDMA cellular wireless communications system.

  11. SOT: A rapid prototype using TAE windows

    Science.gov (United States)

    Stephens, Mark; Eike, David; Harris, Elfrieda; Miller, Dana

    1986-01-01

    The development of the window interface extension feature of the Transportable Applications Executive (TAE) is discussed. This feature is being used to prototype a space station payload interface in order to demonstrate and assess the benefits of using windows on a bit mapped display and also to convey the concept of telescience, the control and operation of space station payloads from remote sites. The prototype version of the TAE with windows operates on a DEC VAXstation 100. This workstation has a high resolution 19 inch bit mapped display, a keyboard and a three-button mouse. The VAXstation 100 is not a stand-alone workstation, but is controlled by software executing on a VAX/8600. A short scenario was developed utilizing the Solar Optical Telescope (SOT) as an example payload. In the scenario the end-user station includes the VAXstation 100 plus an image analysis terminal used to display the CCD images. The layout and use of the prototype elements, i.e., the root menu, payload status window, and target acquisition menu is described.

  12. Solid modeling and applications rapid prototyping, CAD and CAE theory

    CERN Document Server

    Um, Dugan

    2016-01-01

    The lessons in this fundamental text equip students with the theory of Computer Assisted Design (CAD), Computer Assisted Engineering (CAE), the essentials of Rapid Prototyping, as well as practical skills needed to apply this understanding in real world design and manufacturing settings. The book includes three main areas: CAD, CAE, and Rapid Prototyping, each enriched with numerous examples and exercises. In the CAD section, Professor Um outlines the basic concept of geometric modeling, Hermite and Bezier Spline curves theory, and 3-dimensional surface theories as well as rendering theory. The CAE section explores mesh generation theory, matrix notion for FEM, the stiffness method, and truss Equations. And in Rapid Prototyping, the author illustrates stereo lithographic theory and introduces popular modern RP technologies. Solid Modeling and Applications: Rapid Prototyping, CAD and CAE Theory is ideal for university students in various engineering disciplines as well as design engineers involved in product...

  13. Numerical investigation of air flow in a supersonic wind tunnel

    Science.gov (United States)

    Drozdov, S. M.; Rtishcheva, A. S.

    2017-11-01

    In the framework of TsAGI’s supersonic wind tunnel modernization program aimed at improving flow quality and extending the range of test regimes it was required to design and numerically validate a new test section and a set of shaped nozzles: two flat nozzles with flow Mach number at nozzle exit M=4 and M=5 and two axisymmetric nozzles with M=5 and M=6. Geometric configuration of the nozzles, the test section (an Eiffel chamber) and the diffuser was chosen according to the results of preliminary calculations of two-dimensional air flow in the wind tunnel circuit. The most important part of the work are three-dimensional flow simulation results obtained using ANSYS Fluent software. The following flow properties were investigated: Mach number, total and static pressure, total and static temperature and turbulent viscosity ratio distribution, heat flux density at wind tunnel walls (for high-temperature flow regimes). It is demonstrated that flow perturbations emerging from the junction of the nozzle with the test section and spreading down the test section behind the boundaries of characteristic rhomb’s reverse wedge are nearly impossible to eliminate. Therefore, in order to perform tests under most uniform flow conditions, the model’s center of rotation and optical window axis should be placed as close to the center of the characteristic rhomb as possible. The obtained results became part of scientific and technical basis of supersonic wind tunnel design process and were applied to a generalized class of similar wind tunnels.

  14. Computational methods applied to wind tunnel optimization

    Science.gov (United States)

    Lindsay, David

    This report describes computational methods developed for optimizing the nozzle of a three-dimensional subsonic wind tunnel. This requires determination of a shape that delivers flow to the test section, typically with a speed increase of 7 or more and a velocity uniformity of .25% or better, in a compact length without introducing boundary layer separation. The need for high precision, smooth solutions, and three-dimensional modeling required the development of special computational techniques. These include: (1) alternative formulations to Neumann and Dirichlet boundary conditions, to deal with overspecified, ill-posed, or cyclic problems, and to reduce the discrepancy between numerical solutions and boundary conditions; (2) modification of the Finite Element Method to obtain solutions with numerically exact conservation properties; (3) a Matlab implementation of general degree Finite Element solvers for various element designs in two and three dimensions, exploiting vector indexing to obtain optimal efficiency; (4) derivation of optimal quadrature formulas for integration over simplexes in two and three dimensions, and development of a program for semi-automated generation of formulas for any degree and dimension; (5) a modification of a two-dimensional boundary layer formulation to provide accurate flow conservation in three dimensions, and modification of the algorithm to improve stability; (6) development of multi-dimensional spline functions to achieve smoother solutions in three dimensions by post-processing, new three-dimensional elements for C1 basis functions, and a program to assist in the design of elements with higher continuity; and (7) a development of ellipsoidal harmonics and Lame's equation, with generalization to any dimension and a demonstration that Cartesian, cylindrical, spherical, spheroidal, and sphero-conical harmonics are all limiting cases. The report includes a description of the Finite Difference, Finite Volume, and domain remapping

  15. Wind Tunnel Assessment of Ship Manoeuvrability using a PMM Technique

    DEFF Research Database (Denmark)

    Agdrup, Kristian; Jensen, Andreas G.; Aage, Christian

    1999-01-01

    Tests have been performed at the Danish Maritime Institute (DMI) to investigate the applicability of a new wind tunnel Planar Motion Mechanism (PMM) for the determination of hydrodynamic coefficients of ships. The method has been tested on a tanker with known towing tank data. The wind tunnel model...... data giving reasonable results. The dependency of amplitude and frequency is evaluated, and sources of inaccuracy are discussed. It is concluded that the wind tunnel method is a promising method to achieve a fast and cost-effective estimate of the hydrodynamic coefficients of a ship hull...... was a light foam hull equipped with fixed rudder but without propeller. Tests comprised the static drift, pure sway and pure yaw modes in the range corresponding to manoeuvring at forward speed. The resulting hydrodynamic coefficients and values of the stability criterion are compared with the towing tank...

  16. Aerofoil flutter: fluid-mechanical analysis and wind tunnel testing

    Science.gov (United States)

    Wensuslaus, A. L.; McMillan, A. J.

    2012-08-01

    This paper describes a three dimensional wing model, which has been developed for the purpose of studying flutter, both computationally and through wind tunnel testing. A three dimensional, laminar flow aerofoil wing, based on the NACA aerofoil has been designed. The natural frequencies for this aerofoil were obtained through modal analysis. A scale model wing, without taper was manufactured in the laboratory and tested in a wind tunnel. The pressure data was obtained from fluid flow analysis and the deformation results obtained through structural analysis. The analysis was performed in the ANSYS Workbench Environment, accessing FLUENT CFX for the computational fluid dynamics analysis and the ANSYS FEA package for the mechanical analysis. The computational results obtained are compared with the experimental data obtained in the wind tunnel. Comparison of the analysis and test results provides further understanding of the flutter characteristics.

  17. Review, Selection and Installation of a Rapid Prototype Machine

    Science.gov (United States)

    McEndree, Caryl

    2008-01-01

    The objective of this paper is to impress upon the reader the benefits and advantages of investing in rapid prototyping (additive manufacturing) technology thru the procurement of one or two new rapid prototyping machines and the creation of a new Prototype and Model Lab at the Kennedy Space Center (KSC). This new resource will be available to all of United Space Alliance, LLC (USA), enabling engineers from around the company to pursue a more effective means of communication and design with our co-workers, and our customer, the National Aeronautics and Space Administration (NASA). The Rapid Protoyping/3D printing industry mirrors the transition the CAD industry made several years ago, when companies were trying to justify the expenditure of converting to a 3D based system from a 2D based system. The advantages of using a 3D system seemed to be outweighed by the cost it would take to convert not only legacy 2D drawings into 3D models but the training of personnel to use the 3D CAD software. But the reality was that when a 3D CAD system is employed, it gives engineers a much greater ability to conceive new designs and the ability to engineer new tools and products much more effectively. Rapid Prototyping (RP) is the name given to a host of related technologies that are used to fabricate physical objects directly from Computer Aided Design (CAD) data sources. These methods are generally similar to each other in that they add and bond materials in a layer wise-fashion to form objects, instead of machining away material. The machines used in Rapid Prototyping are also sometimes referred to as Rapid Manufacturing machines due to the fact that some of the parts fabricated in a RP machine can be used as the finished product. The name "Rapid Prototyping" is really a misnomer. It is much more than prototypes and it is not always rapid.

  18. SMART Rotor Development and Wind-Tunnel Test

    Science.gov (United States)

    Lau, Benton H.; Straub, Friedrich; Anand, V. R.; Birchette, Terry

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, Massachusetts Institute of Technology, University of California at Los Angeles, and University of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center, figure 1. The SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing-edge flap on each blade. The development effort included design, fabrication, and component testing of the rotor blades, the trailing-edge flaps, the piezoelectric actuators, the switching power amplifiers, the actuator control system, and the data/power system. Development of the smart rotor culminated in a whirl-tower hover test which demonstrated the functionality, robustness, and required authority of the active flap system. The eleven-week wind tunnel test program evaluated the forward flight characteristics of the active-flap rotor, gathered data to validate state-of-the-art codes for rotor noise analysis, and quantified the effects of open- and closed-loop active-flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness and the reliability of the flap actuation system were successfully demonstrated in more than 60 hours of wind-tunnel testing. The data acquired and lessons learned will be instrumental in maturing this technology and transitioning it into production. The development effort, test hardware, wind-tunnel test program, and test results will be presented in the full paper.

  19. Wind Tunnel Experiments with Active Control of Bridge Section Model

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes results of wind tunnel experiments with a bridge section model where movable flaps are integrated in the bridge girder so each flap is the streamlined part of the edge of the girder. This active control flap system is patented by COWIconsult and may be used to increase...... the flutter wind velocity for future ultra-long span suspension bridges. The purpose of the wind tunnel experiments is to investigate the principle to use this active flap control system. The bridge section model used in the experiments is therefore not a model of a specific bridge but it is realistic...

  20. 9x15 Low Speed Wind Tunnel Improvements Update

    Science.gov (United States)

    Stephens, David

    2017-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2018.

  1. Development of air to air ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2014-03-01

    Full Text Available The contribution deals with the development of design of new conception of ejector with twelve primary annular nozzles arranged around the inlet part of the mixing chamber. The ejector is proposed to be used for propulsion of supersonic experimental wind tunnel with variable test section, which is now in development. The ejector is considered to be placed on outlet of this wind tunnel. The original design of the ejector has been modified to ensure its manufacturability. Software Ansys Fluent 14.0 was used for numerical verification of earlier work. The new design and dissimilarities of numerical results are presented in this work.

  2. 40 CFR 53.63 - Test procedure: Wind tunnel inlet aspiration test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test procedure: Wind tunnel inlet... extracts an ambient aerosol at elevated wind speeds. This wind tunnel test uses a single-sized, liquid... this subpart (under the heading of “wind tunnel inlet aspiration test”). The candidate sampler must...

  3. Aircraft wind tunnel characterisation using modern design of experiments

    CSIR Research Space (South Africa)

    Dias, JF

    2013-04-01

    Full Text Available 2013-1502, 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, Massachusetts, 8-11 April 2013 Aircraft wind tunnel characterisation using modern design of experiments J. F. Dias1 IDMEC - Instituto...

  4. Wind tunnel tests of a free yawing downwind wind turbine

    NARCIS (Netherlands)

    Verelst, D.R.S.; Larsen, T.J.; Van Wingerden, J.W.

    2014-01-01

    This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the

  5. Wind Tunnel Testing of Active Control System for Bridges

    DEFF Research Database (Denmark)

    Hansen, Henriette I.; Thoft-Christensen, Palle

    This paper describes preparation of wind tunnel testing of the principle of using flaps to control the motion of suspension bridges. The experiment will take place at the Instituto Superior Technico Lisbon, Portugal. The bridge section model is constructed of foam with an aluminium frame. The flaps...

  6. Transonic Wind-Tunnel Test Of An Oblique Wing

    Science.gov (United States)

    Kennelly, R. A.; Strong, J. M.; Carmichael, R. L.; Kroo, I. M.

    1992-01-01

    Report describes transonic wind-tunnel tests of oblique, pivotable wing fitted to 0.087-scale model of F-8 airplane. Purpose of tests to study performance and stability characteristics. Conducted to determine whether placement of pivot at higher position above fuselage than previously results in less side force and yawing moment than observed in previous tests at low speeds.

  7. Investigation of nozzle contours in the CSIR supersonic wind tunnel

    CSIR Research Space (South Africa)

    Vallabh, Bhavya

    2017-09-01

    Full Text Available The existing nozzle contour profiles of the CSIR’s supersonic or High Speed Wind Tunnel (HSWT) produce weak waves in the test section region, which effectively degrades the air flow quality in the test section. This paper describes a calculation...

  8. Methods and systems for rapid prototyping of high density circuits

    Science.gov (United States)

    Palmer, Jeremy A [Albuquerque, NM; Davis, Donald W [Albuquerque, NM; Chavez, Bart D [Albuquerque, NM; Gallegos, Phillip L [Albuquerque, NM; Wicker, Ryan B [El Paso, TX; Medina, Francisco R [El Paso, TX

    2008-09-02

    A preferred embodiment provides, for example, a system and method of integrating fluid media dispensing technology such as direct-write (DW) technologies with rapid prototyping (RP) technologies such as stereolithography (SL) to provide increased micro-fabrication and micro-stereolithography. A preferred embodiment of the present invention also provides, for example, a system and method for Rapid Prototyping High Density Circuit (RPHDC) manufacturing of solderless connectors and pilot devices with terminal geometries that are compatible with DW mechanisms and reduce contact resistance where the electrical system is encapsulated within structural members and manual electrical connections are eliminated in favor of automated DW traces. A preferred embodiment further provides, for example, a method of rapid prototyping comprising: fabricating a part layer using stereolithography and depositing thermally curable media onto the part layer using a fluid dispensing apparatus.

  9. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  10. SOFIA 2 model telescope wind tunnel test report

    Science.gov (United States)

    Keas, Paul

    1995-01-01

    This document outlines the tests performed to make aerodynamic force and torque measurements on the SOFIA wind tunnel model telescope. These tests were performed during the SOFIA 2 wind tunnel test in the 14 ft wind tunnel during the months of June through August 1994. The test was designed to measure the dynamic cross elevation moment acting on the SOFIA model telescope due to aerodynamic loading. The measurements were taken with the telescope mounted in an open cavity in the tail section of the SOFIA model 747. The purpose of the test was to obtain an estimate of the full scale aerodynamic disturbance spectrum, by scaling up the wind tunnel results (taking into account differences in sail area, air density, cavity dimension, etc.). An estimate of the full scale cross elevation moment spectrum was needed to help determine the impact this disturbance would have on the telescope positioning system requirements. A model of the telescope structure, made of a light weight composite material, was mounted in the open cavity of the SOFIA wind tunnel model. This model was mounted via a force balance to the cavity bulkhead. Despite efforts to use a 'stiff' balance, and a lightweight model, the balance/telescope system had a very low resonant frequency (37 Hz) compared to the desired measurement bandwidth (1000 Hz). Due to this mechanical resonance of the balance/telescope system, the balance alone could not provide an accurate measure of applied aerodynamic force at the high frequencies desired. A method of measurement was developed that incorporated accelerometers in addition to the balance signal, to calculate the aerodynamic force.

  11. Rapid Prototyping of wax foundry models in an incremental process

    Directory of Open Access Journals (Sweden)

    B. Kozik

    2011-04-01

    Full Text Available The paper presents an analysis incremental methods of creating wax founding models. There are two methods of Rapid Prototypingof wax models in an incremental process which are more and more often used in industrial practice and in scientific research.Applying Rapid Prototyping methods in the process of making casts allows for acceleration of work on preparing prototypes. It isespecially important in case of element having complicated shapes. The time of making a wax model depending on the size and the appliedRP method may vary from several to a few dozen hours.

  12. Supersonic wind tunnel nozzles: A selected, annotated bibliography to aid in the development of quiet wind tunnel technology

    Science.gov (United States)

    Wolf, Stephen W. D.

    1990-01-01

    This bibliography, with abstracts, consists of 298 citations arranged in chronological order. The citations were selected to be helpful to persons engaged in the design and development of quiet (low disturbance) nozzles for modern supersonic wind tunnels. Author, subject, and corporate source indexes are included to assist with the location of specific information.

  13. The Brothers Were Wright - An Abridged History of Wind Tunnel Testing at Ames Research Center

    Science.gov (United States)

    Buchholz, Steve

    2017-01-01

    The Wright Brothers used wind tunnel data to refine their design for the first successful airplane back in 1903. Today, wind tunnels are still in use all over the world gathering data to improve the design of cars, trucks, airplanes, missiles and spacecraft. Ames Research Center is home to many wind tunnels, including the Unitary Plan Wind Tunnel complex. Built in the early 1950s, it is one of the premiere transonic and supersonic testing facilities in the country. Every manned spacecraft has been tested in the wind tunnels at Ames. This is a testing history from past to present.

  14. Study of optical techniques for the Ames unitary wind tunnel, part 7

    Science.gov (United States)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  15. Patient specific ankle-foot orthoses using rapid prototyping

    Directory of Open Access Journals (Sweden)

    Sivak Seth

    2011-01-01

    Full Text Available Abstract Background Prefabricated orthotic devices are currently designed to fit a range of patients and therefore they do not provide individualized comfort and function. Custom-fit orthoses are superior to prefabricated orthotic devices from both of the above-mentioned standpoints. However, creating a custom-fit orthosis is a laborious and time-intensive manual process performed by skilled orthotists. Besides, adjustments made to both prefabricated and custom-fit orthoses are carried out in a qualitative manner. So both comfort and function can potentially suffer considerably. A computerized technique for fabricating patient-specific orthotic devices has the potential to provide excellent comfort and allow for changes in the standard design to meet the specific needs of each patient. Methods In this paper, 3D laser scanning is combined with rapid prototyping to create patient-specific orthoses. A novel process was engineered to utilize patient-specific surface data of the patient anatomy as a digital input, manipulate the surface data to an optimal form using Computer Aided Design (CAD software, and then download the digital output from the CAD software to a rapid prototyping machine for fabrication. Results Two AFOs were rapidly prototyped to demonstrate the proposed process. Gait analysis data of a subject wearing the AFOs indicated that the rapid prototyped AFOs performed comparably to the prefabricated polypropylene design. Conclusions The rapidly prototyped orthoses fabricated in this study provided good fit of the subject's anatomy compared to a prefabricated AFO while delivering comparable function (i.e. mechanical effect on the biomechanics of gait. The rapid fabrication capability is of interest because it has potential for decreasing fabrication time and cost especially when a replacement of the orthosis is required.

  16. A review of rapid prototyping techniques for tissue engineering purposes

    NARCIS (Netherlands)

    Peltola, Sanna M.; Melchels, Ferry P. W.; Grijpma, Dirk W.; Kellomaki, Minna

    2008-01-01

    Rapid prototyping (RP) is a common name for several techniques, which read in data from computer-aided design (CAD) drawings and manufacture automatically three-dimensional objects layer-by-layer according to the virtual design. The utilization of RP in tissue engineering enables the production of

  17. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting the imp...

  18. Rapid Prototyping of Tangibles with a Capacitive Mouse

    DEFF Research Database (Denmark)

    Ramos, Juan David Hincapie; Esbensen, Morten; Kogutowska, Magdalena

    2011-01-01

    lays the capacitive surface and communication capa- bilities of a Microsoft TouchMouse, both of which are ap- propriated to fulfill the mentined requirements. Unlike ex- isting approaches for rapid prototyping of tangibles like the Arduino boards, using the Toki toolkit does not require de- velopers...

  19. Comparison of orbital volume obtained by tomography and rapid prototyping.

    Science.gov (United States)

    Roça, Guilherme Berto; Foggiatto, José Aguiomar; Ono, Maria Cecilia Closs; Ono, Sergio Eiji; da Silva Freitas, Renato

    2013-11-01

    This study aims to compare orbital volume obtained by helical tomography and rapid prototyping. The study sample was composed of 6 helical tomography scans. Eleven healthy orbits were identified to have their volumes measured. The volumetric analysis with the helical tomography utilized the same protocol developed by the Plastic Surgery Unit of the Federal University of Paraná. From the CT images, 11 prototypes were created, and their respective volumes were analyzed in 2 ways: using software by SolidWorks and by direct analysis, when the prototype was filled with saline solution. For statistical analysis, the results of the volumes of the 11 orbits were considered independent. The average orbital volume measurements obtained by the method of Ono et al was 20.51 cm, the average obtained by the SolidWorks program was 20.64 cm, and the average measured using the prototype method was 21.81 cm. The 3 methods demonstrated a strong correlation between the measurements. The right and left orbits of each patient had similar volumes. The tomographic method for the analysis of orbital volume using the Ono protocol yielded consistent values, and by combining this method with rapid prototyping, both reliability validations of results were enhanced.

  20. Rapid Prototyping Integrated With Nondestructive Evaluation and Finite Element Analysis

    Science.gov (United States)

    Abdul-Aziz, Ali; Baaklini, George Y.

    2001-01-01

    Most reverse engineering approaches involve imaging or digitizing an object then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. Rapid prototyping (RP) refers to the practical ability to build high-quality physical prototypes directly from computer aided design (CAD) files. Using rapid prototyping, full-scale models or patterns can be built using a variety of materials in a fraction of the time required by more traditional prototyping techniques (refs. 1 and 2). Many software packages have been developed and are being designed to tackle the reverse engineering and rapid prototyping issues just mentioned. For example, image processing and three-dimensional reconstruction visualization software such as Velocity2 (ref. 3) are being used to carry out the construction process of three-dimensional volume models and the subsequent generation of a stereolithography file that is suitable for CAD applications. Producing three-dimensional models of objects from computed tomography (CT) scans is becoming a valuable nondestructive evaluation methodology (ref. 4). Real components can be rendered and subjected to temperature and stress tests using structural engineering software codes. For this to be achieved, accurate high-resolution images have to be obtained via CT scans and then processed, converted into a traditional file format, and translated into finite element models. Prototyping a three-dimensional volume of a composite structure by reading in a series of two-dimensional images generated via CT and by using and integrating commercial software (e.g. Velocity2, MSC/PATRAN (ref. 5), and Hypermesh (ref. 6)) is being applied successfully at the NASA Glenn Research Center. The building process from structural modeling to the analysis level is outlined in reference 7. Subsequently, a stress analysis of a composite cooling panel under combined thermomechanical loading conditions was performed to validate

  1. Aerodynamic Characteristics of Individual Ballast Particle by Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    G.Q. Jing

    2014-04-01

    Full Text Available Ballast flying has been considered as a problem in train aerodynamics with increasing the maximal speed. And this phenomenon seriously threats the safety of train operation. However, aerodynamic characteristics of individual ballast were less studied in the previous literature. This paper describes an investigation of the aerodynamic effect of ballast particles by wind tunnel tests. It considers the nature of the wind and ballast physical characteristics. A simple method for calculating the wind effects by CFD is set out, ballast particles were classified according to their shapes and mass in order to investigate the influence of the wind velocity, wind pressure and other parameters on displacement of ballast particles. Two sets of wind tunnel tests were performed under the conditions that ballast particles were movable and unmovable on the platform respectively. The tests data and reasonable explanations were given, as well as the CFD simulations of individual ballast particles.

  2. Use of 3D Printing for Custom Wind Tunnel Fabrication

    Science.gov (United States)

    Gagorik, Paul; Bates, Zachary; Issakhanian, Emin

    2016-11-01

    Small-scale wind tunnels for the most part are fairly simple to produce with standard building equipment. However, the intricate bell housing and inlet shape of an Eiffel type wind tunnel, as well as the transition from diffuser to fan in a rectangular tunnel can present design and construction obstacles. With the help of 3D printing, these shapes can be custom designed in CAD models and printed in the lab at very low cost. The undergraduate team at Loyola Marymount University has built a custom benchtop tunnel for gas turbine film cooling experiments. 3D printing is combined with conventional construction methods to build the tunnel. 3D printing is also used to build the custom tunnel floor and interchangeable experimental pieces for various experimental shapes. This simple and low-cost tunnel is a custom solution for specific engineering experiments for gas turbine technology research.

  3. Wall correction model for wind tunnels with open test section

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Shen, Wen Zhong; Mikkelsen, Robert Flemming

    2006-01-01

    In the paper we present a correction model for wall interference on rotors of wind turbines or propellers in wind tunnels. The model, which is based on a one-dimensional momentum approach, is validated against results from CFD computations using a generalized actuator disc principle. In the model...... the exchange of axial momentum between the tunnel and the ambient room is represented by a simple formula, derived from actuator disc computations. The correction model is validated against Navier-Stokes computations of the flow about a wind turbine rotor. Generally, the corrections from the model are in very...... good agreement with the CFD computations, demonstrating that one-dimensional momentum theory is a reliable way of predicting corrections for wall interference in wind tunnels with closed as well as open cross sections....

  4. An electronic scanner of pressure for wind tunnel models

    Science.gov (United States)

    Kauffman, Ronald C.; Coe, Charles F.

    1986-01-01

    An electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind tunnel models. An ESOP system consists of up to 20 pressure modules (PMs), each with 48 pressure transducers and a heater, an analog-to-digital (A/D) converter module, a microprocessor, a data controller, a monitor unit, a control and processing unit, and a heater controller. The PMs and the A/D converter module are sized to be installed in the models tested in the Ames Aerodynamics Division wind tunnels. A unique feature of the pressure module is the lack of moving parts such as a pneumatic switch used in other systems for in situ calibrations. This paper describes the ESOP system and the results of the initial testing of the system. The initial results indicate the system meets the original design goal of 0.15 percent accuracy.

  5. Calculations of air cooler for new subsonic wind tunnel

    Science.gov (United States)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  6. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    OpenAIRE

    Teleman, Elena-Carmen; Silion, Radu; Axinte, Elena; Pescaru, Radu

    2008-01-01

    The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence sca...

  7. Velocity Measurement Systems for a Low-speed Wind Tunnel

    Science.gov (United States)

    2015-04-29

    implemented. In the summer of 2011, the focus of the summer camp was on wind turbines , and for the last two summers, the STEM outreach camp has studied...velocimetry system, along with a small amount for facilities modification, for use in boundary-layer control studies and in fluid mechanics instruction. All...equipment for which funds were provided has been purchased. To use the PIV system, which requires the use of a seed generator, the wind tunnel at

  8. Wind Tunnel Test of the SMART Active Flap Rotor

    Science.gov (United States)

    Straub, Friedrich K.; Anand, Vaidyanthan R.; Birchette, Terrence S.; Lau, Benton H.

    2009-01-01

    Boeing and a team from Air Force, NASA, Army, DARPA, MIT, UCLA, and U. of Maryland have successfully completed a wind-tunnel test of the smart material actuated rotor technology (SMART) rotor in the 40- by 80-foot wind-tunnel of the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. The Boeing SMART rotor is a full-scale, five-bladed bearingless MD 900 helicopter rotor modified with a piezoelectric-actuated trailing edge flap on each blade. The eleven-week test program evaluated the forward flight characteristics of the active-flap rotor at speeds up to 155 knots, gathered data to validate state-of-the-art codes for rotor aero-acoustic analysis, and quantified the effects of open and closed loop active flap control on rotor loads, noise, and performance. The test demonstrated on-blade smart material control of flaps on a full-scale rotor for the first time in a wind tunnel. The effectiveness of the active flap control on noise and vibration was conclusively demonstrated. Results showed significant reductions up to 6dB in blade-vortex-interaction and in-plane noise, as well as reductions in vibratory hub loads up to 80%. Trailing-edge flap deflections were controlled within 0.1 degrees of the commanded value. The impact of the active flap on control power, rotor smoothing, and performance was also demonstrated. Finally, the reliability of the flap actuation system was successfully proven in more than 60 hours of wind-tunnel testing.

  9. Wind tunnel investigation of a 14 foot vertical axis windmill

    Science.gov (United States)

    Muraca, R. J.; Guillotte, R. J.

    1976-01-01

    A full scale wind tunnel investigation was made to determine the performance characteristics of a 14 ft diameter vertical axis windmill. The parameters measured were wind velocity, shaft torque, shaft rotation rate, along with the drag and yawing moment. A velocity survey of the flow field downstream of the windmill was also made. The results of these tests along with some analytically predicted data are presented in the form of generalized data as a function of tip speed ratio.

  10. Rapid control prototyping for cylinder pressure indication; Rapid Control Prototyping fuer Zylinderdruckindizierung

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, Jan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Andert, Jakob [FEV GmbH, Aachen (Germany). Fahrzeugelektronik/E-Mobilitaet; Ross, Holger; Mertens, Frank [dSpace GmbH, Paderborn (Germany). Rapid Control Prototyping Systems

    2012-11-15

    Cylinder-pressure-based controls that allow cycle-synchronous reactions to events in the combustion chamber are a particularly promising possibility further optimising engine combustion processes. However, the requirements of real-time cylinder indication are fast pushing today's systems up against their limits. The Institute for Combustion Engines at RWTH Aachen University and dSpace together developed a high performance prototype for online indication with cycle-synchronous combustion control. (orig.)

  11. Design and Characterization of the UTIAS Anechoic Wind Tunnel

    Science.gov (United States)

    Chow, Derrick H. F.

    The anechoic open-jet wind tunnel facility at the University of Toronto Institute for Aerospace Studies was updated and characterized to meet the needs of current and future aeroacoustic experiments. The wind tunnel inlet was resurfaced and flow-conditioning screens were redesigned to improve the freestream turbulence intensity to below 0.4% in the test section. The circular nozzle was replaced with a square secondary contraction that increased the maximum test section velocity to 75 m/s and improved flow uniformity to over 99% across a usable cross-sectional area of 500 mm x 500 mm. Acoustic baffles were installed in front of the wind tunnel inlet and foam wedges were installed in the anechoic chamber. The overall background sound pressure levels in the chamber were improved by 8-18 db over the range of operational freestream velocities. The anechoic chamber cut-off frequency is 170 Hz and the reverberation time for a 60 dB sound power decay is 0.032 s.

  12. Ventilation of idealised urban area, LES and wind tunnel experiment

    Directory of Open Access Journals (Sweden)

    Kukačka L.

    2014-03-01

    Full Text Available In order to estimate the ventilation of vehicle pollution within street canyons, a wind tunnel experiment and a large eddy simulation (LES was performed. A model of an idealised urban area with apartment houses arranged to courtyards was designed according to common Central European cities. In the wind tunnel, we assembled a set-up for simultaneous measurement of vertical velocity and tracer gas concentration. Due to the vehicle traffic emissions modelling, a new line source of tracer gas was designed and built into the model. As a computational model, the LES model solving the incompressible Navier-Stokes equations was used. In this paper, we focused on the street canyon with the line source situated perpendicular to an approach flow. Vertical and longitudinal velocity components of the flow with the pollutant concentration were obtained from two horizontal grids placed in different heights above the street canyon. Vertical advective and turbulent pollution fluxes were computed from the measured data as ventilation characteristics. Wind tunnel and LES data were qualitatively compared. A domination of advective pollution transport within the street canyon was determined. However, the turbulent transport with an opposite direction to the advective played a significant role within and above the street canyon.

  13. Tactical Defenses Against Systematic Variation in Wind Tunnel Testing

    Science.gov (United States)

    DeLoach, Richard

    2002-01-01

    This paper examines the role of unexplained systematic variation on the reproducibility of wind tunnel test results. Sample means and variances estimated in the presence of systematic variations are shown to be susceptible to bias errors that are generally non-reproducible functions of those variations. Unless certain precautions are taken to defend against the effects of systematic variation, it is shown that experimental results can be difficult to duplicate and of dubious value for predicting system response with the highest precision or accuracy that could otherwise be achieved. Results are reported from an experiment designed to estimate how frequently systematic variations are in play in a representative wind tunnel experiment. These results suggest that significant systematic variation occurs frequently enough to cast doubts on the common assumption that sample observations can be reliably assumed to be independent. The consequences of ignoring correlation among observations induced by systematic variation are considered in some detail. Experimental tactics are described that defend against systematic variation. The effectiveness of these tactics is illustrated through computational experiments and real wind tunnel experimental results. Some tutorial information describes how to analyze experimental results that have been obtained using such quality assurance tactics.

  14. Ultra-light duct for an anechoic wind tunnel

    Science.gov (United States)

    Lambourion, J.; Lewy, S.; Papirnyk, O.; Rahier, G.; Remandet, J.-N.

    1989-01-01

    A tunnel ultra-light (or TUL) is a duct composed of acoustically transparent cloth designed to transform an open-jet wind tunnel into a closed-jet wind tunnel. This concept is of interest (a priori) for anechoic wind tunnels because it improves the aerodynamic quality without hindering the measurement of sound in the far field. A full scale device designed for the 3 m diameter test section of CEPRA 19 was described. The apparatus installation did not develop any significant problems, and the mechanical support turned out to be excellent. Aerodynamic and acoustic tests are discussed. Certain imperfections in the installation as tested - instabilities above 25 m/s and acceptable cloth transmission up to 4kHz were revealed. The system as tested could eventually be used in certain applications, for example, in ground based transport. However, the concept of TUL must be developed further to arrive at a reliable mechanism for use in a large number of applications.

  15. Correlations of Platooning Track Test and Wind Tunnel Data

    Energy Technology Data Exchange (ETDEWEB)

    Lammert, Michael P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kelly, Kenneth J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Yanowitz, Janet [Ecoengineering

    2018-02-02

    In this report, the National Renewable Energy Laboratory analyzed results from multiple, independent truck platooning projects to compare and contrast track test results with wind tunnel test results conducted by Lawrence Livermore National Laboratory (LLNL). Some highlights from the report include compiled data, and results from four independent SAE J1321 full-size track test campaigns that were compared to LLNL wind tunnel testing results. All platooning scenarios tested demonstrated significant fuel savings with good correlation relative to following distances, but there are still unanswered questions and clear opportunities for system optimization. NOx emissions showed improvements from NREL tests in 2014 to Auburn tests in 2015 with respect to J1321 platooning track testing of Peloton system. NREL evaluated data from Volpe's Naturalistic Study of Truck Following Behavior, which showed minimal impact of naturalistic background platooning. We found significant correlation between multiple track studies, wind tunnel tests, and computational fluid dynamics, but also showed that there is more to learn regarding close formation and longer-distance effects. We also identified potential areas for further research and development, including development of advanced aerodynamic designs optimized for platooning, measurement of platoon system performance in traffic conditions, impact of vehicle lateral offsets on platooning performance, and characterization of the national potential for platooning based on fleet operational characteristics.

  16. Machine accuracy for rapid prototyping of quality components

    Science.gov (United States)

    Gu, Peihua; Yan, May; Huang, X.; Zhang, Xiaochen

    1998-10-01

    Ever-growing global competition forces manufacturers to deliver more competitive products with better quality, lower price and in short time. One of the most important and challenging tasks faced by value-added product manufacturing industry is substantial reduction of product development time. Rapid prototyping technologies have received significant interests from both research and industrial communities. Due to the model accuracy, integrity and strength problems, their applications are limited. The most common sources of errors in the rapid prototyping and manufacturing systems including Cubital machines can be categorized as mathematical, process-related or material- related errors. In this paper, we present an analysis of accuracy of a Cubital Solider 4600 machine and an application on pattern and mould design and manufacturing. The experimental study determines the relationships between the machine accuracy and dimensions and parameter setting, which can be used to control the accuracy of parts to be built.

  17. Rapid Prototyping as an Auxiliary in Mandibular Reconstructions.

    Science.gov (United States)

    Sales, Pedro Henrique da Hora; Cetira Filho, Edson Luiz; Oliveira Neto, Jair Queiroz de; Silva, Julianne Coelho da; Aguiar, Andrea Silvia Walter de; Mello, Manoel de Jesus Rodrigues

    2017-11-01

    The reconstruction of mandible is a challenge with regard to aesthetic and reconstructive demands. The etiology of mandibular fractures is variable, trauma, pathology, bone infections. There are many materials that provide an excellent form of rehabilitation for these defects, where the autogenous graft presents important characteristics that favor a greater success rate. Furthermore, the rapid prototyping method is quite interesting, because it brings a series of advantages to the surgeon, like reducing the operative time, among others. The purpose of the present article is to describe a clinical case of a patient with mandible bone defect caused by gunshot perforation, treated through iliac crest bone graft with planning through rapid prototyping. The mandibular reconstruction can present a real challenge for the surgeon. Biomodels should be required in complex cases because they help to decrease surgical time and to increase the predictability of the procedure.

  18. A new low-turbulence wind tunnel for animal and small vehicle flight experiments

    Science.gov (United States)

    Quinn, Daniel B.; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  19. A new low-turbulence wind tunnel for animal and small vehicle flight experiments.

    Science.gov (United States)

    Quinn, Daniel B; Watts, Anthony; Nagle, Tony; Lentink, David

    2017-03-01

    Our understanding of animal flight benefits greatly from specialized wind tunnels designed for flying animals. Existing facilities can simulate laminar flow during straight, ascending and descending flight, as well as at different altitudes. However, the atmosphere in which animals fly is even more complex. Flow can be laminar and quiet at high altitudes but highly turbulent near the ground, and gusts can rapidly change wind speed. To study flight in both laminar and turbulent environments, a multi-purpose wind tunnel for studying animal and small vehicle flight was built at Stanford University. The tunnel is closed-circuit and can produce airspeeds up to 50 m s-1 in a rectangular test section that is 1.0 m wide, 0.82 m tall and 1.73 m long. Seamless honeycomb and screens in the airline together with a carefully designed contraction reduce centreline turbulence intensities to less than or equal to 0.030% at all operating speeds. A large diameter fan and specialized acoustic treatment allow the tunnel to operate at low noise levels of 76.4 dB at 20 m s-1. To simulate high turbulence, an active turbulence grid can increase turbulence intensities up to 45%. Finally, an open jet configuration enables stereo high-speed fluoroscopy for studying musculoskeletal control in turbulent flow.

  20. Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    Science.gov (United States)

    Wolf, Stephen W. D.

    1988-01-01

    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.

  1. The 2009 ESA/Danish Mars Simulation Wind Tunnel Facility

    Science.gov (United States)

    Nornberg, P.; Merrison, J. P.; Gunnlaugsson, H. P.

    2009-04-01

    Simulation of the dynamic environment in immediate proximity to the surface of Mars requires access to simulation facilities which can reproduce the atmospheric properties (pressure, temperature, gas composition, UV-VIS light conditions, wind flow etc.). It also requires access to analogue Martian surface material (soil and dust). Simulations can be carried out in a wind tunnel placed in a tank which can be pumped out, like the 400 mm Ø, 1500 mm long wind tunnel that has operated in the Mars Simulation Laboratory at University of Aarhus, Denmark since 2000 (1). A wide range of applications have taken place, from development, test and calibration of instruments, over tests of solar panels, and aerodynamic studies of granular transport to studies of physical properties of dust materials such as grain electrification, aggregation and magnetic properties (2,3). The Salten Skov I analogue (4) and other Martian regolits and dust analogues have been used in the wind tunnel experiments. With the view to future instrument development, solar panel optimization and future research on Martian surface processes a new ESA supported wind tunnel has been constructed at University of Aarhus, Denmark and is now under building. This wind tunnel will have a cross section of close to 1 x 2 m and be able to reach a wind speed of close to 30 m/s under Martian pressure conditions and with samples cooled down to Martian temperatures. The facility is planned to be finally tested and ready for use in July 2009. ESA, ExoMars use of this facility will have priority. However, research projects in collaboration with external users will also be welcome in the future. Later this year information on access possibilities will be announced at the Mars Simulation Laboratory home page: www.marslab.dk. References: (1) Merrison, J., Bertelsen, P., Frandsen, C., Gunnlaugsson, H.P., Knudsen, J.M., Madsen, M.B., Mossin, L., Nielsen, J., Nørnberg, P., Rasmussen, K.R., Uggerhøj, E. and Weyer, G. 2002

  2. Rapid prototyping technology and its application in bone tissue engineering.

    Science.gov (United States)

    Yuan, Bo; Zhou, Sheng-Yuan; Chen, Xiong-Sheng

    Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.

  3. A method for data base management and analysis for wind tunnel data

    Science.gov (United States)

    Biser, Aileen O.

    1987-01-01

    To respond to the need for improved data base management and analysis capabilities for wind-tunnel data at the Langley 16-Foot Transonic Tunnel, research was conducted into current methods of managing wind-tunnel data and a method was developed as a solution to this need. This paper describes the development of the data base management and analysis method for wind-tunnel data. The design and implementation of the software system are discussed and examples of its use are shown.

  4. Friction Induced Wear of Rapid Prototyping Generated Materials: A Review

    Directory of Open Access Journals (Sweden)

    A. Tsouknidas

    2011-01-01

    Full Text Available Additive manufacturing has been introduced in the early 80s and has gained importance as a manufacturing process ever since. Even though the inception of the implicated processes predominantly focused on prototyping purposes, during the last years rapid prototyping (RP has emerged as a key enabling technology for the fabrication of highly customized, functionally gradient materials. This paper reviews friction-related wear phenomena and the corresponding deterioration mechanisms of RP-generated components as well as the potential of improving the implicated materials' wear resistance without significantly altering the process itself. The paper briefly introduces the concept of RP technologies and the implicated materials, as a premises to the process-dependent wear progression of the generated components for various degeneration scenarios (dry sliding, fretting, etc..

  5. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  6. Semi-span wind tunnel testing without conventional peniche

    Science.gov (United States)

    Skinner, S. N.; Zare-Behtash, H.

    2017-12-01

    Low-speed wind tunnel tests of a flexible wing semi-span model have been implemented in the 9× 7 ft de Havilland wind tunnel at the University of Glasgow. The main objective of this investigation is to quantify the effect of removing the traditional peniche boundary layer spacer utilised in this type of testing. Removal of the peniche results in a stand-off gap between the wind tunnel wall and the model's symmetry plane. This offers the advantage of preventing the development of a horseshoe vortex in front of the model, at the peniche/wall juncture. The formation of the horseshoe vortex is known to influence the flow structures around the entire model and thus alters the model's aerodynamic behaviours. To determine the influence of the stand-off gap, several gap heights have been tested for a range of angles of attack at Re=1.5× 10^6, based on the wing mean aerodynamic chord (MAC). Force platform data have been used to evaluate aerodynamic coefficients, and how they vary with stand-off heights. Stereoscopic Particle Imaging Velocimetry (sPIV) was used to examine the interaction between the tunnel boundary layer and model's respective stand-off gap. In addition, clay and tuft surface visualisation enhanced the understanding of how local flow structures over the length of the fuselage vary with stand-off height and angle of attack. The presented results show that a stand-off gap of four-to-five times the displacement thickness of the tunnel wall boundary layer is capable of achieving a flow field around the model fuselage that is representative of what would be expected for an equivalent full-span model in free-air—this cannot be achieved with the application of a peniche.

  7. Wind Tunnel Testing of Microtabs and Microjets for Active Load Control of Wind Turbine Blades

    Science.gov (United States)

    Cooperman, Aubryn Murray

    Increases in wind turbine size have made controlling loads on the blades an important consideration for future turbine designs. One approach that could reduce extreme loads and minimize load variation is to incorporate active control devices into the blades that are able to change the aerodynamic forces acting on the turbine. A wind tunnel model has been constructed to allow testing of different active aerodynamic load control devices. Two such devices have been tested in the UC Davis Aeronautical Wind Tunnel: microtabs and microjets. Microtabs are small surfaces oriented perpendicular to an airfoil surface that can be deployed and retracted to alter the lift coefficient of the airfoil. Microjets produce similar effects using air blown perpendicular to the airfoil surface. Results are presented here for both static and dynamic performance of the two devices. Microtabs, located at 95% chord on the lower surface and 90% chord on the upper surface, with a height of 1% chord, produce a change in the lift coefficient of 0.18, increasing lift when deployed on the lower surface and decreasing lift when deployed on the upper surface. Microjets with a momentum coefficient of 0.006 at the same locations produce a change in the lift coefficient of 0.19. The activation time for both devices is less than 0.3 s, which is rapid compared to typical gust rise times. The potential of active device to mitigate changes in loads was tested using simulated gusts. The gusts were produced in the wind tunnel by accelerating the test section air speed at rates of up to 7 ft/s 2. Open-loop control of microtabs was tested in two modes: simultaneous and sequential tab deployment. Activating all tabs along the model span simultaneously was found to produce a change in the loads that occurred more rapidly than a gust. Sequential tab deployment more closely matched the rates of change due to gusts and tab deployment. A closed-loop control system was developed for the microtabs using a simple

  8. Special Course on Cryogenic Technology for Wind Tunnel Testing,

    Science.gov (United States)

    1985-07-01

    attempt to detine precisely. le then ,-xamine th’ torr itittmp t tot I-tj -iots in d’ligt ng ,t , oge I- tinipd tsttei tr good producti’ity in opeattion...a025-m chordata Mach number of 1 0 Perform- lion d’une Rafale Cryogenique dens une Soufflerie de Type Eiffel ance of all systems was basically as...expected Setup for the detailed Atmospherique a Ralale Courte Producing a Cryogenic Gust In an K’ V.1 If Eiffel Type Atmospheric Wind Tunnel With Short

  9. Model Borne Data Management System for Wind Tunnel Testing

    Science.gov (United States)

    1993-11-01

    AD-A276 296 WL-TR-93-3 125 MODEL BORNE DATA MANAGEMENT SYSTEM FOR WIND TUNNEL TESTING PHASE II SBIR FINAL REPORT Lee F. Webster T.S. Paige TeSCO , Inc...DIRECTORATE AEROMECHANICS DIVISION, WL/FIMH TeSCO -TR-93-1 WRIGHT-PATTERSON AFB OH 45433-7936 9. SPONSOR-.NG/MOn!TOR!NG AGENCY NM.ME(S) AND ADDRESS(ES) 10...INTRODUCTION TeSCO , Inc., with support from Wright Patterson Air Force Base, has developed and demonstrated new techniques and data acquisition hardware

  10. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2014-01-01

    . The discussed test cases show that the turbine is stable while operating in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy......This research paper presents preliminary results on a behavioural study of a free yawing downwind wind turbine. A series of wind tunnel tests was performed at the TU Delft Open Jet Facility with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off...

  11. Digital Control System For Wind-Tunnel Model

    Science.gov (United States)

    Hoadley, Sherwood T.; Mcgraw, Sandra

    1995-01-01

    Multiple functions performed by multiple coordinated processors for real-time control. Multiple input, multiple-output, multiple-function digital control system developed for wind-tunnel model of advanced fighter airplane with actively controlled flexible wings. Digital control system provides flexibility in selection of control laws, sensors, and actuators, plus some redundancy to accommodate failures in some of its subsystems. Implements feedback control scheme providing simultaneously for suppression of flutter, control of roll angle, roll-rate tracking during maximized roll maneuvers, and alleviation of loads during roll maneuvers.

  12. Wind tunnel tests of tent halls of different shape

    Directory of Open Access Journals (Sweden)

    Porowska Agnieszka

    2017-01-01

    Full Text Available Aerodynamic investigations of wind pressure distribution on the surfaces of models of tent halls were carried out in the boundary layer wind tunnel at the Cracow University of Technology. Four types of objects of different shapes and construction were tested. Although tent halls are significantly vulnerable with respect to the wind action, there is no information about pressure distribution on objects of such type in standards, codes and normalization documents. Obtained results indicate that it is necessary to take into account different configurations of wind action while designing of the analysed structures.

  13. The use of wind tunnel facilities to estimate hydrodynamic data

    Directory of Open Access Journals (Sweden)

    Hoffmann Kristoffer

    2016-01-01

    In a series of measurements, wind tunnel testing has been used to investigate the static response characteristics of a circular and a rectangular section model. Motivated by the wish to estimate the vortex-induced in-line vibration characteristics of a neutrally buoyant submerged marine structure, additional measurements on extremely lightweight, helium-filled circular section models were conducted in a dynamic setup. During the experiment campaign, the mass of the model was varied in order to investigate how the mass ratio influences the vibration amplitude. The results show good agreement with both aerodynamic and hydrodynamic experimental results documented in the literature.

  14. Preliminary Design of a LSA Aircraft Using Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Norbert ANGI

    2015-12-01

    Full Text Available This paper presents preliminary results concerning the design and aerodynamic calculations of a light sport aircraft (LSA. These were performed for a new lightweight, low cost, low fuel consumption and long-range aircraft. The design process was based on specific software tools as Advanced Aircraft Analysis (AAA, XFlr 5 aerodynamic and dynamic stability analysis, and Catia design, according to CS-LSA requirements. The calculations were accomplished by a series of tests performed in the wind tunnel in order to assess experimentally the aerodynamic characteristics of the airplane.

  15. User Interface Technology Transfer to NASA's Virtual Wind Tunnel System

    Science.gov (United States)

    vanDam, Andries

    1998-01-01

    Funded by NASA grants for four years, the Brown Computer Graphics Group has developed novel 3D user interfaces for desktop and immersive scientific visualization applications. This past grant period supported the design and development of a software library, the 3D Widget Library, which supports the construction and run-time management of 3D widgets. The 3D Widget Library is a mechanism for transferring user interface technology from the Brown Graphics Group to the Virtual Wind Tunnel system at NASA Ames as well as the public domain.

  16. Focused ion beam lithography for rapid prototyping of metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Osswald, Patrick; Kiermaier, Josef; Becherer, Markus; Schmitt-Landsiedel, Doris [Lehrstuhl fuer Technische Elektronik, TU Muenchen, Munich (Germany)

    2010-07-01

    We present FIB-lithography methods for rapid and cost-effective prototyping of metal structures covering the deep-submicron- to the millimeter-range in a single lithography cycle. Focused ion beam (FIB) systems are widely used in semiconductor industry and research facilities for both analytical testing and prototyping. A typical application is to apply electrical contact to micron-sized sensors/particles by FIB induced metal deposition. However, as for E-beam lithography, patterning times for large area bonding pads are unacceptably long, resulting in cost-intensive prototyping. In this work, we optimized FIB lithography processing for negative and positive imaging mode to form metallic structures for large-areas down do the sub-100 nm range. For negative lithography features are defined by implanting Ga{sup +}-ions into a commercial photo resist, without affecting the underlying structures by impinging ions. The structures are highly suitable for following lift-off processing due to the undercut of the resist.Metallic feature size of down to 150 nm are achievable. For positive lithography a PMMA resist is exposed in FIB irradiation. Due to the very low dose (3.10{sup 12} ions/cm{sup 2}) the writing time for an e.g. 100 {mu}m x 100 {mu}m square is approx. 15 seconds. The developed resist is used for subsequent wet chemical etching, obtaining a 100 nm resolution in metal layers.

  17. Damping insert materials for settling chambers of supersonic wind tunnels

    Science.gov (United States)

    Wu, Jie; Radespiel, Rolf

    2017-03-01

    This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.

  18. A wind tunnel test of newly developed personal bioaerosol samplers.

    Science.gov (United States)

    Su, Wei-Chung; Tolchinsky, Alexander D; Sigaev, Vladimir I; Cheng, Yung Sung

    2012-07-01

    In this study the performance of two newly developed personal bioaerosol samplers was evaluated. The two test samplers are cyclone-based personal samplers that incorporate a recirculating liquid film. The performance evaluations focused on the physical efficiencies that a personal bioaerosol sampler could provide, including aspiration, collection, and capture efficiencies. The evaluation tests were carried out in a wind tunnel, and the test personal samplers were mounted on the chest of a full-size manikin placed in the test chamber of the wind tunnel. Monodisperse fluorescent aerosols ranging from 0.5 to 20 microm were used to challenge the samplers. Two wind speeds of 0.5 and 2.0 m/sec were employed as the test wind speeds in this study. The test results indicated that the aspiration efficiency of the two test samplers closely agreed with the ACGIH inhalable convention within the size range of the test aerosols. The aspiration efficiency was found to be independent of the sampling orientation. The collection efficiency acquired from these two samplers showed that the 50% cutoff diameters were both around 0.6 microm. However the wall loss of these two test samplers increased as the aerosol size increased, and the wall loss of PAS-4 was considerably higher than that of PAS-5, especially in the aerosol size larger than 5 microm, which resulted in PAS-4 having a relatively lower capture efficiency than PAS-5. Overall, the PAS-5 is considered a better personal bioaerosol sampler than the PAS-4.

  19. The Resistance of Spheres in Wind Tunnels and In Air

    Science.gov (United States)

    Bacon, D L; Reid, E G

    1924-01-01

    To supplement the standardization tests now in progress at several laboratories, a broad investigation of the resistance of spheres in wind tunnels and free air has been carried out by the National Advisory Committee for Aeronautics. The subject has been classed in aerodynamic research, and in consequence there is available a great mass of data from previous investigations. This material was given careful consideration in laying out the research, and explanation of practically all the disagreement between former experiments has resulted. A satisfactory confirmation of Reynolds law has been accomplished, the effect of means of support determined, the range of experiment greatly extended by work in the new variable density wind tunnel, and the effects of turbulence investigated by work in the tunnels and by towing and dropping tests in free air. It is concluded that the erratic nature of most of the previous work is due to support interference and differing turbulence conditions. While the question of support has been investigated thoroughly, a systematic and comprehensive study of the effects of scale and quality of turbulence will be necessary to complete the problem, as this phase was given only general treatment.

  20. Bio rapid prototyping by extruding/aspirating/refilling thermoreversible hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Iwami, K; Noda, T; Ishida, K; Umeda, N [Department of Mechanical Systems and Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Morishima, K [Department of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588 (Japan); Nakamura, M, E-mail: k_iwami@cc.tuat.ac.j [Department of Life Sciences and Bioengineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555 (Japan)

    2010-03-15

    This paper reports a method for rapid prototyping of cell tissues, which is based on a system that extrudes, aspirates and refills a mixture of cells and thermoreversible hydrogel as a scaffold. In the extruding mode, a cell-mixed scaffold solution in the sol state is extruded from a cooled micronozzle into a temperature-controlled substrate, which keeps the scaffold in the gel state. In the aspiration mode, the opposite process is performed by Bernoulli suction. In the refilling mode, the solution is extruded into a groove created in the aspiration mode. The minimum width of extruded hydrogel pattern is 114 +- 15 mum by employing a nozzle of diameter 100 mum, and that of aspirated groove was 355 +- 10 mum using a 500 mum-diameter nozzle. Gum arabic is mixed with the scaffold solution to avoid peeling-off of the gel pattern from the substrate. Patterning of Sf-9 cell tissue is demonstrated, and the stability of the patterned cell is investigated. This system offers a procedure for rapid prototyping and local modification of cell scaffolds for tissue engineering.

  1. TOPPE: A framework for rapid prototyping of MR pulse sequences.

    Science.gov (United States)

    Nielsen, Jon-Fredrik; Noll, Douglas C

    2017-11-02

    To introduce a framework for rapid prototyping of MR pulse sequences. We propose a simple file format, called "TOPPE", for specifying all details of an MR imaging experiment, such as gradient and radiofrequency waveforms and the complete scan loop. In addition, we provide a TOPPE file "interpreter" for GE scanners, which is a binary executable that loads TOPPE files and executes the sequence on the scanner. We also provide MATLAB scripts for reading and writing TOPPE files and previewing the sequence prior to hardware execution. With this setup, the task of the pulse sequence programmer is reduced to creating TOPPE files, eliminating the need for hardware-specific programming. No sequence-specific compilation is necessary; the interpreter only needs to be compiled once (for every scanner software upgrade). We demonstrate TOPPE in three different applications: k-space mapping, non-Cartesian PRESTO whole-brain dynamic imaging, and myelin mapping in the brain using inhomogeneous magnetization transfer. We successfully implemented and executed the three example sequences. By simply changing the various TOPPE sequence files, a single binary executable (interpreter) was used to execute several different sequences. The TOPPE file format is a complete specification of an MR imaging experiment, based on arbitrary sequences of a (typically small) number of unique modules. Along with the GE interpreter, TOPPE comprises a modular and flexible platform for rapid prototyping of new pulse sequences. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Design and development of an experimental six component wind tunnel block balance using optical fibre sensors.

    CSIR Research Space (South Africa)

    De Ponte, JD

    2014-05-01

    Full Text Available and development of an experimental six component wind tunnel block balance using optical fibre sensors J.D. de Pont, F.F. Pieterse, P.M. Bidgood Abstract: In order to meet the increasingly stringent requirements for wind tunnel balances, as expressed...

  3. Blade-Element/Momentum Technique for Rotors operating in Wind Tunnels

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Sørensen, Dan Nørtoft

    2003-01-01

    In the past 25 years various investigations of wind turbine aerodynamics have been performed in wind tunnels (see e.g. Ronsten et al. [1], Vermeer [2], Schreck et al. [al]). Compared to full-scale field measurements, experiments performed in wind tunnels take place under controlled operating cond...... tunnels with finite gap between the tip of the rotor and the tunnel walls....

  4. Design, construction and calibration of a portable boundary layer wind tunnel for field use

    Science.gov (United States)

    Wind tunnels have been used for several decades to study wind erosion processes. Portable wind tunnels offer the advantage of testing natural surfaces in the field, but they must be carefully designed to insure that a logarithmic boundary layer is formed and that wind erosion processes may develop ...

  5. Flow-Visualization Techniques Used at High Speed by Configuration Aerodynamics Wind-Tunnel-Test Team

    Science.gov (United States)

    Lamar, John E. (Editor)

    2001-01-01

    This paper summarizes a variety of optically based flow-visualization techniques used for high-speed research by the Configuration Aerodynamics Wind-Tunnel Test Team of the High-Speed Research Program during its tenure. The work of other national experts is included for completeness. Details of each technique with applications and status in various national wind tunnels are given.

  6. Design and Construction of an Open-circuit Wind Tunnel with Specific Measurement Equipment for Cycling

    NARCIS (Netherlands)

    Celis, Bert; Ubbens, H.H.

    2016-01-01

    In order to overcome resistance a cyclist has to deliver a total power output of which 90% is necessary to overcome the aerodynamic drag [1,2]. In order to perform research in this aerodynamic drag a wind tunnel has been built by the Belgium company Flanders' Bike Valley. This wind tunnel is

  7. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  8. Effect of turbulence intensity on PM emission of heavy duty diesel trucks - Wind tunnel studies

    Science.gov (United States)

    Littera, D.; Cozzolini, A.; Besch, M.; Carder, D.; Gautam, M.

    2017-08-01

    Stringent emission regulations have forced drastic technological improvements in diesel aftertreatment systems, particularly in reducing Particulate Matter (PM) emissions. The formation and evolution of PM from modern engines are more sensitive to overall changes in the dilution process, such as rapidity of mixing, background PM present in the air. These technological advancements were made in controlled laboratory environments compliant with measurement standards (i.e. Code of Federal Regulation CFR in the USA) and are not fully representative of real-world emissions from these engines or vehicles. In light of this, a specifically designed and built wind tunnel by West Virginia University (WVU) is used for the study of the exhaust plume of a heavy-duty diesel vehicle, providing a better insight in the dilution process and the representative nanoparticles emissions in a real-world scenario. The subsonic environmental wind tunnel is capable of accommodating a full-sized heavy-duty truck and generating wind speeds in excess of 50mph. A three-dimensional gantry system allows spanning the test section and sample regions in the plume with accuracy of less than 5 mm. The gantry system is equipped with engine exhaust gas analyzers and PM sizing instruments. The investigation involves three different heavy-duty Class-8 diesel vehicles representative of three emission regulation standards, namely a US-EPA 2007 compliant, a US-EPA 2010 compliant, and a baseline vehicle without any aftertreatment technologies as a pre US-EPA 2007, respectively. The testing procedure includes three different vehicle speeds: idling, 20mph, and 35mph. The vehicles were tested on WVU's medium-duty chassis dynamometer, with the load applied to the truck reflecting the road load equation at the corresponding vehicle test speeds. Wind tunnel wind speed and vehicle speed were maintained in close proximity to one another during the entire test. Results show that the cross-sectional plume area

  9. Wind tunnel-based assessment of wind field in complex topographic terrain

    Energy Technology Data Exchange (ETDEWEB)

    Hangan, Horia [WindEEE Research Institute (Canada)

    2011-07-01

    This paper gives an overview of the assessment of wind fields in complex topographic terrain based on wind tunnels. It comprises mesoscale modeling, wind tunnel simulation, benchmarking microscale simulations and the windEEE dome. The modeling is categorized into maps for complex terrain, linear models limited to generic topography, measurement techniques for wind tunnel testing and CFD simulations linked with wind tunnel test results required for benchmarking. The wind tunnel testing is discussed in detail using topographic features like valleys, hills and ridges. Instantaneous and mean velocity vectors are calculated for the ridge and mean velocity and turbulence intensity profiles are presented for a hill. Flow is measured over the whole domain using both qualitative and quantitative techniques. These techniques can also be used to simulate low-level nocturnal currents, downbursts and tornados in the actual physical environment. The impact on wind farms and turbines of these local storms can also be calculated.

  10. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    Energy Technology Data Exchange (ETDEWEB)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  11. The Beginner's Guide to Wind Tunnels with TunnelSim and TunnelSys

    Science.gov (United States)

    Benson, Thomas J.; Galica, Carol A.; Vila, Anthony J.

    2010-01-01

    The Beginner's Guide to Wind Tunnels is a Web-based, on-line textbook that explains and demonstrates the history, physics, and mathematics involved with wind tunnels and wind tunnel testing. The Web site contains several interactive computer programs to demonstrate scientific principles. TunnelSim is an interactive, educational computer program that demonstrates basic wind tunnel design and operation. TunnelSim is a Java (Sun Microsystems Inc.) applet that solves the continuity and Bernoulli equations to determine the velocity and pressure throughout a tunnel design. TunnelSys is a group of Java applications that mimic wind tunnel testing techniques. Using TunnelSys, a team of students designs, tests, and post-processes the data for a virtual, low speed, and aircraft wing.

  12. Rapid laser prototyping of valves for microfluidic autonomous systems

    Science.gov (United States)

    Mohammed, M. I.; Abraham, E.; Y Desmulliez, M. P.

    2013-03-01

    Capillary forces in microfluidics provide a simple yet elegant means to direct liquids through flow channel networks. The ability to manipulate the flow in a truly automated manner has proven more problematic. The majority of valves require some form of flow control devices, which are manually, mechanically or electrically driven. Most demonstrated capillary systems have been manufactured by photolithography, which, despite its high precision and repeatability, can be labour intensive, requires a clean room environment and the use of fixed photomasks, limiting thereby the agility of the manufacturing process to readily examine alternative designs. In this paper, we describe a robust and rapid CO2 laser manufacturing process and demonstrate a range of capillary-driven microfluidic valve structures embedded within a microfluidic network. The manufacturing process described allows for advanced control and manipulation of fluids such that flow can be halted, triggered and delayed based on simple geometrical alterations to a given microchannel. The rapid prototyping methodology has been employed with PMMA substrates and a complete device has been created, ready for use, within 2-3 h. We believe that this agile manufacturing process can be applied to produce a range of complex autonomous fluidic platforms and allows subsequent designs to be rapidly explored.

  13. Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test Project (Briefing Charts)

    Science.gov (United States)

    2015-02-01

    Power-Law Nozzle Rapid Prototype Build/Test Project Mr. Eric J. Paulson-Vehicle Analyst Rocket Propulsion Division Combustion devices Branch Systems...to build axisymmetric cold flow nozzle test articles using plastic-based inexpensive rapid additive manufacturing – Feasible to rapid prototype lobed...Briefing Charts 3. DATES COVERED (From - To) February 2015-March 2015 4. TITLE AND SUBTITLE Epitrochoid Power-Law Nozzle Rapid Prototype Build/Test

  14. Femur Model Reconstruction Based on Reverse Engineering and Rapid Prototyping

    Science.gov (United States)

    Tang, Tongming; Zhang, Zheng; Ni, Hongjun; Deng, Jiawen; Huang, Mingyu

    Precise reconstruction of 3D models is fundamental and crucial to the researches of human femur. In this paper we present our approach towards tackling this problem. The surface of a human femur was scanned using a hand-held 3D laser scanner. The data obtained, in the form of point cloud, was then processed using the reverse engineering software Geomagic and the CAD/CAM software CimatronE to reconstruct a digital 3D model. The digital model was then used by the rapid prototyping machine to build a physical model of human femur using 3D printing. The geometric characteristics of the obtained physical model matched that of the original femur. The process of "physical object - 3D data - digital 3D model - physical model" presented in this paper provides a foundation of precise modeling for the digital manufacturing, virtual assembly, stress analysis, and simulated surgery of artificial bionic femurs.

  15. TOPAZ II Anti-Criticality Device Rapid Prototype

    Science.gov (United States)

    Campbell, Donald R.; Otting, William D.

    1994-07-01

    The Ballistic Missile Defense Organization (BMDO) has been working on a Nuclear Electric Propulsion Space Test Project (NEPSTP) using an existing Russian Topaz II reactor system to power the NEPSTP satellite. Safety investigations have shown that it will be possible to safely launch the Topaz II system in the United States with some modification to preclude water flooded criticality. A ``fuel-out'' water subcriticality concept was selected by the Los Alamos National Laboratory (LANL) as the baseline concept. A fuel-out anti-criticality device (ACD) conceptual design was developed by Rockwell. The concept functions to hold the fuel from the four centermost thermionic fuel elements (TFEs) outside the reactor during launch and reliably inserts the fuel into the reactor once the operational orbit is achieved. A four-tenths scale ACD rapid prototype model, fabricated from the CATIA solids design model, clearly shows in three dimensions the relative size and spatial relationship of the ACD components.

  16. Rapid, Reliable Shape Setting of Superelastic Nitinol for Prototyping Robots.

    Science.gov (United States)

    Gilbert, Hunter B; Webster, Robert J

    Shape setting Nitinol tubes and wires in a typical laboratory setting for use in superelastic robots is challenging. Obtaining samples that remain superelastic and exhibit desired precurvatures currently requires many iterations, which is time consuming and consumes a substantial amount of Nitinol. To provide a more accurate and reliable method of shape setting, in this paper we propose an electrical technique that uses Joule heating to attain the necessary shape setting temperatures. The resulting high power heating prevents unintended aging of the material and yields consistent and accurate results for the rapid creation of prototypes. We present a complete algorithm and system together with an experimental analysis of temperature regulation. We experimentally validate the approach on Nitinol tubes that are shape set into planar curves. We also demonstrate the feasibility of creating general space curves by shape setting a helical tube. The system demonstrates a mean absolute temperature error of 10°C.

  17. Federated Database Services for Wind Tunnel Experiment Workflows

    Directory of Open Access Journals (Sweden)

    A. Paventhan

    2006-01-01

    Full Text Available Enabling the full life cycle of scientific and engineering workflows requires robust middleware and services that support effective data management, near-realtime data movement and custom data processing. Many existing solutions exploit the database as a passive metadata catalog. In this paper, we present an approach that makes use of federation of databases to host data-centric wind tunnel application workflows. The user is able to compose customized application workflows based on database services. We provide a reference implementation that leverages typical business tools and technologies: Microsoft SQL Server for database services and Windows Workflow Foundation for workflow services. The application data and user's code are both hosted in federated databases. With the growing interest in XML Web Services in scientific Grids, and with databases beginning to support native XML types and XML Web services, we can expect the role of databases in scientific computation to grow in importance.

  18. Spectral analysis of meteorites ablated in a wind tunnel

    Science.gov (United States)

    Drouard, A.; Vernazza, P.; Loehle, S.; Gattacceca, J.; Zander, T.; Eberhart, M.; Meindl, A.; Oefele, R.; Vaubaillon, J.; Colas, F.

    2017-09-01

    Recently and for the very first time, experiments simulating vaporization of a meteorite sample were performed in a wind tunnel near Stuttgart with the specific aim to record emission spectra of the vaporized material. Using a high enthalpy air plasma flow for modeling an equivalent air friction of an entry speed of about 10 km/s, three meteorite types (H, CM and HED) and two meteoritical analogues (basalt and argillite) were ablated and high resolution spectra were recorded simultaneously. After the identification of all atomic lines, we per- formed a detailed study of our spectra using two approaches: (i) by direct comparison of multiplet in- tensities between the samples and (ii) by computation of a synthetic spectrum to constrain some physical parameters (temperature, elemental abundance). Finally, we compared our results to the elemental composition of our samples and we determined how much compositional information can be retrieved for a given meteor using visible sectroscopy.

  19. Turbulence Scales Simulations in Atmospheric Boundary Layer Wind Tunnels

    Directory of Open Access Journals (Sweden)

    Elena-Carmen Teleman

    2008-01-01

    Full Text Available The simulation of the air flow over models in atmospheric boundary layer tunnels is a research domain based on advanced scientific technologies imposed by the necessity of studying the turbulent fluid movements in the proximity of the Earth’s surface. The experiment presented herein is developed in the wind tunnel from the Laboratory of Structural Aerodynamics of the Faculty of Civil Engineering and Building Services in Iassy. Measurements necessary for the determination of the turbulence scales of the wind action in urban environment were conducted. The data obtained were processed and analyzed and interpreted with specific software. The results are used for a synthesis regarding the scales of turbulence of the model of flow and the actual accuracy of measurements. The paper presents some of the important elements of this synthesis.

  20. Wind tunnel tests of a free yawing downwind wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, J.W.

    During February and April 2012 a series of wind tunnel tests were performed at the TU Delft Open Jet Facility (OJF) with a three bladed downwind wind turbine and a rotor radius of 0.8 meters. The setup includes an off the shelf three bladed hub, nacelle and generator on which relatively flexible...... in free yawing conditions. Further, the effect of the tower shadow passage on the blade flapwise strain measurement is evaluated. Finally, data from the experiment is compared with preliminary simulations using DTU Wind Energy's aeroelastic simulation program HAWC2....... blades are mounted. The tower support structure has free yawing capabilities provided at the tower base. A short overview on the technical details of the experiment is provided as well as a brief summary of the design process. The discussed test cases show that the turbine is stable while operating...

  1. Hyper-X Stage Separation Wind Tunnel Test Program

    Science.gov (United States)

    Woods, W. C.; Holland, S. D.; DiFulvio, M.

    2000-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.

  2. Hyper-X Storage Separation Wind Tunnel Test Program

    Science.gov (United States)

    Woods, William C.; Holland, Scott D.; Difulvio, Michael

    2000-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow, conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system, the vehicle must depend upon some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind tunnel tests to support multi degree of freedom simulation of the separation process. Representative results from each series of tests are presented and issues and concerns during the process and current status will be highlighted.

  3. Atmospheric Probe Model: Construction and Wind Tunnel Tests

    Science.gov (United States)

    Vogel, Jerald M.

    1998-01-01

    The material contained in this document represents a summary of the results of a low speed wind tunnel test program to determine the performance of an atmospheric probe at low speed. The probe configuration tested consists of a 2/3 scale model constructed from a combination of hard maple wood and aluminum stock. The model design includes approximately 130 surface static pressure taps. Additional hardware incorporated in the baseline model provides a mechanism for simulating external and internal trailing edge split flaps for probe flow control. Test matrix parameters include probe side slip angle, external/internal split flap deflection angle, and trip strip applications. Test output database includes surface pressure distributions on both inner and outer annular wings and probe center line velocity distributions from forward probe to aft probe locations.

  4. Blowdown wind tunnel control using an adaptive fuzzy PI controller

    Directory of Open Access Journals (Sweden)

    Corneliu Andrei NAE

    2013-09-01

    Full Text Available The paper presents an approach towards the control of a supersonic blowdown wind tunnel plant (as evidenced by experimental data collected from “INCAS Supersonic Blowdown Wind Tunnel” using a PI type controller. The key to maintain the imposed experimental conditions is the control of the air flow using the control valve of the plant. A proposed mathematical model based on the control valve will be analyzed using the PI controller. This control scheme will be validated using experimental data collected from real test cases. In order to improve the control performances an adaptive fuzzy PI controller will be implemented in SIMULINK in the present paper. The major objective is to reduce the transient regimes and the global reduction of the start-up loads on the models during this phase.

  5. Hyper-X Stage Separation Wind-Tunnel Test Program

    Science.gov (United States)

    Woods, William C.; Holland, Scott D.; DiFulvio, Michael

    2001-01-01

    NASA's Hyper-X research program was developed primarily to flight demonstrate a supersonic combustion ramjet engine, fully integrated with a forebody designed to tailor inlet flow conditions and a free expansion nozzle/afterbody to produce positive thrust at design flight conditions. With a point-designed propulsion system the vehicle must depend on some other means for boost to its design flight condition. Clean separation from this initial propulsion system stage within less than a second is critical to the success of the flight. This paper discusses the early planning activity, background, and chronology that developed the series of wind-tunnel tests to support multi-degree-of-freedom simulation of the separation process. Representative results from each series of tests are presented, and issues and concerns during the process and current status are highlighted.

  6. Shape optimization of supersonic ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Dvořák V.

    2010-07-01

    Full Text Available The article deals with the shape optimization of a supersonic ejector for propulsion of an experimental supersonic wind tunnel. This ejector contains several primary nozzles arranged around the mixing chamber wall. CFD software Fluent was used to compute the flow in the ejector. A dynamic mesh method was applied to find an optimal shape of the three-dimensional geometry. During the work it was found out that the previously developed optimization method for subsonic ejectors must be modified. The improved method is more stable and the solution requires fewer optimization steps. The shapes of the mixing chamber, the diffuser, inlet parts and the optimal declination of the primary nozzles are obtained as the optimization results.

  7. Aeolian transport of biota with dust: A wind tunnel experiment

    Science.gov (United States)

    Rivas, J. A., Jr.; Gill, T. E.; Van Pelt, R. S.; Walsh, E.

    2015-12-01

    Ephemeral wetlands are ideal sources for dust emission, as well as repositories for dormant stages of aquatic invertebrates. An important component of invertebrate dispersal and colonization to new areas is the ability to be entrained into the atmosphere. Aquatic invertebrate eggs fall within the size of dust and sand grains (30-600μm), are less dense and aerodynamically shaped. We have shown previously that aquatic invertebrates can be dispersed long distances in dust storms but the extent of transport of taxa based on diapausing egg size/morphology has not been investigated. Here, we control the wind erosion process in a wind tunnel to test entrainment of diapausing stages of brine shrimp, clam shrimp, tadpole shrimp, fairy shrimp, Daphnia, and the rotifers Brachionus plicatilis and B. calyciflorus into the air by saltation. Diapausing eggs were mixed with sterilized wind-erodible soil. The soil/egg mixture was moistened with distilled water and air dried to form a crust. Dust was generated in a wind tunnel by releasing sand grains that act as saltator material similar to wind-entrained natural sands. Maximum wind velocity was 10m/s and entrained particles were sampled through an isokinetic horizontal intake opening. Aeolian sediment was collected from three points in the system; transfer section for coarse sediment, the pan subtending a settling chamber for finer saltation-sized sediment, and two paper filters for suspension-sized sediment. Samples were then passed through 250 and 350 μm sieves to remove abrader sand and rehydrated with various sterile media depending on the type of organism. We retrieved viable brine, fairy, and tadpole shrimp, ostracods, Daphnia, and diapausing eggs of the rotifers after hydration. This experiment demonstrates that resting stages of many invertebrates can be wind-eroded due to size and egg morphology and remain viable under controlled conditions mimicking dust emission.

  8. Rapid Prototyping of Continuous Fiber Reinforced Ceramic Matrix Composites

    Science.gov (United States)

    Vaidyanathan, R.; Green, C.; Phillips, T.; Cipriani, R.; Yarlagadda, S.; Gillespie, J. W., Jr.; Effinger, M.; Cooper, K. C.

    2003-01-01

    For ceramics to be used as structural components in high temperature applications, their fracture toughness is improved by embedding continuous ceramic fibers. Ceramic matrix composite (CMC) materials allow increasing the overall operating temperature, raising the temperature safety margins, avoiding the need for cooling, and improving the damping capacity, while reducing the weight at the same time. They also need to be reliable and available in large quantities as well. In this paper, an innovative rapid prototyping technique to fabricate continuous fiber reinforced ceramic matrix composites is described. The process is simple, robust and will be widely applicable to a number of high temperature material systems. This technique was originally developed at the University of Delaware Center for Composite Materials (UD-CCM) for rapid fabrication of polymer matrix composites by a technique called automated tow placement or ATP. The results of mechanical properties and microstructural characterization are presented, together with examples of complex shapes and parts. It is believed that the process will be able to create complex shaped parts at an order of magnitude lower cost than current chemical vapor infiltration (CVI) and polymer impregnation and pyrolysis (PIP) processes.

  9. Print your own membrane: direct rapid prototyping of polydimethylsiloxane.

    Science.gov (United States)

    Femmer, Tim; Kuehne, Alexander J C; Wessling, Matthias

    2014-08-07

    Polydimethylsiloxane is a translucent and biologically inert silicone material used in sealants, biomedical implants and microscale lab-on-a-chip devices. Furthermore, in membrane technology, polydimethylsiloxane represents a material for separation barriers as it has high permeabilities for various gases. The facile handling of two component formulations with a silicone base material, a catalyst and a small molecular weight crosslinker makes it widely applicable for soft-lithographic replication of two-dimensional device geometries, such as microfluidic chips or micro-contact stamps. Here, we develop a new technique to directly print polydimethylsiloxane in a rapid prototyping device, circumventing the need for masks or sacrificial mold production. We create a three-dimensional polydimethylsiloxane membrane for gas-liquid-contacting based on a Schwarz-P triple-periodic minimal-surface, which is inaccessible with common machining techniques. Direct 3D-printing of polydimethylsiloxane enables rapid production of novel chip geometries for a manifold of lab-on-a-chip applications.

  10. Wind tunnel productivity status and improvement activities at NASA Langley Research Center

    Science.gov (United States)

    Putnam, Lawrence E.

    1996-01-01

    Over the last three years, a major effort has been underway to re-engineering the way wind tunnel testing is accomplished at the NASA Langley Research Center. This effort began with the reorganization of the LaRC and the consolidation of the management of the wind tunnels in the Aerodynamics Division under one operations branch. This paper provides an overview of the re-engineering activities and gives the status of the improvements in the wind tunnel productivity and customer satisfaction that have resulted from the new ways of working.

  11. Materials and construction techniques for cryogenic wind tunnel facilities for instruction/research use

    Science.gov (United States)

    Morse, S. F.; Roper, A. T.

    1975-01-01

    The results of the cryogenic wind tunnel program conducted at NASA Langley Research Center are presented to provide a starting point for the design of an instructional/research wind tunnel facility. The advantages of the cryogenic concept are discussed, and operating envelopes for a representative facility are presented to indicate the range and mode of operation. Special attention is given to the design, construction and materials problems peculiar to cryogenic wind tunnels. The control system for operation of a cryogenic tunnel is considered, and a portion of a linearized mathematical model is developed for determining the tunnel dynamic characteristics.

  12. CFD and experimental data of closed-loop wind tunnel flow

    Directory of Open Access Journals (Sweden)

    John Kaiser Calautit

    2016-06-01

    Full Text Available The data presented in this article were the basis for the study reported in the research articles entitled ‘A validated design methodology for a closed loop subsonic wind tunnel’ (Calautit et al., 2014 [1], which presented a systematic investigation into the design, simulation and analysis of flow parameters in a wind tunnel using Computational Fluid Dynamics (CFD. The authors evaluated the accuracy of replicating the flow characteristics for which the wind tunnel was designed using numerical simulation. Here, we detail the numerical and experimental set-up for the analysis of the closed-loop subsonic wind tunnel with an empty test section.

  13. Comparison of field and wind-tunnel Darrieus wind-turbine data

    Science.gov (United States)

    Sheldahl, R. E.

    1981-08-01

    A 2-m-diam Darrieus vertical axis wind turbine with NACA-0012 airfoil blades was tested in the field and in a 4.6 x 6.1-m low speed wind tunnel for a direct comparison. Comparisons were made with field data of equivalent chord Reynolds number, and at equivalent rotational field. Maximum values of the power coefficients compared favorably, and an examination of performance coefficients showed complete agreement between wind tunnel and field data. Due to excellent agreement in the first two comparisons, no further field testing was done, and the accuracy of the wind-tunnel test data was believed verified.

  14. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 1: Background and description

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the space shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of space shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the space shuttle wind tunnel program. The two-volume set covers evolution of space shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  15. Comparative fitness of irradiated light brown apple moths (Lepidoptera: Tortricidae) in a wind tunnel, hedgerow, and vineyard.

    Science.gov (United States)

    Suckling, David M; Stringer, Lloyd D; Mitchell, Vanessa J; Sullivan, Thomas E S; Sullivan, Nicola J; Simmons, Gregory S; Barrington, Anne M; El-Sayed, Ashraf M

    2011-08-01

    Light brown apple moth, Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), is the target of the sterile insect technique, but reduced moth fitness from irradiation lowers the effective overflooding ratio of sterile to wild moths. New measures of insect quality are being sought to improve field performance of irradiated insects, thus improving the cost effectiveness of this technique. Male pupae were irradiated at intervals between 0 and 300 Gy, and adult flight success was assessed in a wind tunnel equipped with flight track recording software. A dose response was evident with reduced successful search behaviors at higher irradiation doses. Irradiation at 250 Gy reduced arrival success to 49% of untreated controls, during 2-min assays. Mark-release-recapture of males irradiated at 250 Gy indicated reduced male moth recapture in hedgerows (75% of control values of 7.22% +/- 1.20 [SEM] males recaptured) and in vineyards (78% of control values 10.5% +/- 1.66% [SEM] recaptured). Males dispersed similar distances in both habitats, and overflooding ratios dropped off rapidly from the release point in both landscapes. Transects of traps with central releases proved to be an efficient method for measuring the quality of released males. Relative field performance of moths was greater than suggested by wind tunnel performance, which could be due to time differences between the two assays, two-minute wind tunnel tests compared with days in the field treatments. Release strategies involving ground releases should consider the effect of limited postrelease dispersal. Aerial release could solve this problem and warrants investigation.

  16. Digital image capture and rapid prototyping of the maxillofacial defect.

    Science.gov (United States)

    Sabol, Jennifer V; Grant, Gerald T; Liacouras, Peter; Rouse, Stephen

    2011-06-01

    In order to restore an extraoral maxillofacial defect, a moulage impression is commonly made with traditional impression materials. This technique has some disadvantages, including distortion of the site due to the weight of the impression material, changes in tissue location with modifications of the patient position, and the length of time and discomfort for the patient due to the impression procedure and materials used. The use of the commercially available 3dMDface™ System creates 3D images of soft tissues to form an anatomically accurate 3D surface image. Rapid prototyping converts the virtual designs from the 3dMDface™ System into a physical model by converting the data to a ZPrint (ZPR) CAD format file and a stereolithography (STL) file. The data, in conjunction with a Zprinter(®) 450 or a Stereolithography Apparatus (SLA), can be used to fabricate a model for prosthesis fabrication, without the disadvantages of the standard moulage technique. This article reviews this technique and how it can be applied to maxillofacial prosthetics. © 2011 by The American College of Prosthodontists.

  17. Improved rapid prototyping methodology for MPEG-4 IC development

    Science.gov (United States)

    Tang, Clive K. K.; Moseler, Kathy; Levi, Sami

    1998-12-01

    One important factor in deciding the success of a new consumer product or integrated circuit is minimized time-to- market. A rapid prototyping methodology that encompasses algorithm development in the hardware design phase will have great impact on reducing time-to-market. In this paper, a proven hardware design methodology and a novel top-down design methodology based on Frontier Design's DSP Station tool are described. The proven methodology was used during development of the MC149570 H.261/H.263 video codec manufactured by Motorola. This paper discusses an improvement to this method to create an integrated environment for both system and hardware development, thereby further reducing the time-to-market. The software tool chosen is DSP Station tool by Frontier Design. The rich features of DSP Station tool will be described and then it will be shown how these features may be useful in designing from algorithm to silicon. How this methodology may be used in the development of a new MPEG4 Video Communication ASIC will be outlined. A brief comparison with a popular tool, Signal Processing WorkSystem tool by Cadence, will also be given.

  18. Towards rapid prototyped convective microfluidic DNA amplification platform

    Science.gov (United States)

    Ajit, Smrithi; Praveen, Hemanth Mithun; Puneeth, S. B.; Dave, Abhishek; Sesham, Bharat; Mohan, K. N.; Goel, Sanket

    2017-02-01

    Today, Polymerase Chain Reaction (PCR) based DNA amplification plays an indispensable role in the field of biomedical research. Its inherent ability to exponentially amplify sample DNA has proven useful for the identification of virulent pathogens like those causing Multiple Drug-Resistant Tuberculosis (MDR-TB). The intervention of Microfluidics technology has revolutionized the concept of PCR from being a laborious and time consuming process into one that is faster, easily portable and capable of being multifunctional. The Microfluidics based PCR outweighs its traditional counterpart in terms of flexibility of varying reaction rate, operation simplicity, need of a fraction of volume and capability of being integrated with other functional elements. The scope of the present work involves the development of a real-time continuous flow microfluidic device, fabricated by 3D printing-governed rapid prototyping method, eventually leading to an automated and robust platform to process multiple DNA samples for detection of MDRTB-associated mutations. The thermal gradient characteristic to the PCR process is produced using peltier units appropriate to the microfluidic environment fully monitored and controlled by a low cost controller driven by a Data Acquisition System. The process efficiency achieved in the microfluidic environment in terms of output per cycle is expected to be on par with the traditional PCR and capable of earning the additional advantages of being faster and minimizing the handling.

  19. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging.

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J; Ramella-Roman, Jessica C; Mathews, Scott A; Coburn, James C; Sorg, Brian S; Chen, Yu; Pfefer, T Joshua

    2015-01-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance.

  20. Integrated flexible manufacturing program for manufacturing automation and rapid prototyping

    Science.gov (United States)

    Brooks, S. L.; Brown, C. W.; King, M. S.; Simons, W. R.; Zimmerman, J. J.

    1993-01-01

    The Kansas City Division of Allied Signal Inc., as part of the Integrated Flexible Manufacturing Program (IFMP), is developing an integrated manufacturing environment. Several systems are being developed to produce standards and automation tools for specific activities within the manufacturing environment. The Advanced Manufacturing Development System (AMDS) is concentrating on information standards (STEP) and product data transfer; the Expert Cut Planner system (XCUT) is concentrating on machining operation process planning standards and automation capabilities; the Advanced Numerical Control system (ANC) is concentrating on NC data preparation standards and NC data generation tools; the Inspection Planning and Programming Expert system (IPPEX) is concentrating on inspection process planning, coordinate measuring machine (CMM) inspection standards and CMM part program generation tools; and the Intelligent Scheduling and Planning System (ISAPS) is concentrating on planning and scheduling tools for a flexible manufacturing system environment. All of these projects are working together to address information exchange, standardization, and information sharing to support rapid prototyping in a Flexible Manufacturing System (FMS) environment.

  1. Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor

    Directory of Open Access Journals (Sweden)

    Tokiya Yamaji

    2017-01-01

    Full Text Available In the modern society with a variety of information electronic devices, human interfaces increase their importance in a boundary of a human and a device. In general, the human is required to get used to the device. Even if the device is designed as a universal device or a high-usability device, the device is not suitable for all users. The usability of the device depends on the individual user. Therefore, personalized and customized human interfaces are effective for the user. To create customized interfaces, we propose rapid prototyping human interfaces using stretchable strain sensors. The human interfaces comprise parts formed by a three-dimensional printer and the four strain sensors. The three-dimensional printer easily makes customized human interfaces. The outputs of the interface are calculated based on the sensor’s lengths. Experiments evaluate three human interfaces: a sheet-shaped interface, a sliding lever interface, and a tilting lever interface. We confirm that the three human interfaces obtain input operations with a high accuracy.

  2. Rapid prototyping of replica knee implants for in vitro testing

    Directory of Open Access Journals (Sweden)

    Verjans Mark

    2016-09-01

    Full Text Available The understanding of the complex biomechanics of the knee is a key for an optimal implant design. To easily investigate the influence of prosthetic designs on knee biomechanics a rapid prototyping workflow for knee implants has been developed and evaluated. Therefore, different manufacturing technologies and post-treatment methods have been examined and overall seven different replica knee implants were manufactured. For evaluation, the manufacturing properties such as surface accuracy and roughness were determined and kinematic behaviour was investigated in a novel knee testing rig. It was carried out that PolyJet-Modelling with a sanded surface resulted in changed kinematic patterns compared to a usual CoCr-UHMWPE implant. However, fused deposition modelling using ABS and subsequent surface smoothening with acetone vapor showed the lowest roughness of the manufactured implants and only minor kinematic differences. For this reason this method constitutes a promising approach towards an optimal implant design for improved patient-satisfaction and long lifetime of the implant. Finally the workflow is not only limited to the knee.

  3. Pediatric Dispersible Tablets: a Modular Approach for Rapid Prototyping.

    Science.gov (United States)

    Buck, Jonas; Huwyler, Jörg; Kühl, Peter; Dischinger, Angela

    2016-08-01

    The design of pediatric formulations is challenging. Solid dosage forms for children have to meet the needs of different ages, e.g. high number of dosing increments and strengths. A modular formulation strategy offering the possibility of rapid prototyping was applied. Different tablet compositions and the resulting tablet characteristics were investigated for dispersible tablets using customized analytical methods. Fluid bed granules were blended with extragranular components, and compressed to tablets. Disintegration behavior was studied with a Texture Analyzer and a Tensiometer. Methods for determination of disintegration time and water uptake of tablets were developed with a Texture Analyzer, and a Tensiometer, respectively. Twenty-two different tablet formulations were prepared and analyzed with respect to disintegration time, hardness, friability, and viscosity. Multivariate data analysis revealed a high impact of type and amount of viscosity enhancer on the disintegration behavior of tablets. An optimized formulation was selected with a disintegration time of 24 s. Methods providing additional information on the disintegration behavior of dispersible tablets compared to standard pharmacopoeia methods were established. Selecting the right type and level of viscosity enhancer and superdisintegrant was critical for developing pediatric tablets with a disintegration time of less than 30 s but still pleasant mouth feel.

  4. NGS++: a library for rapid prototyping of epigenomics software tools.

    Science.gov (United States)

    Nordell Markovits, Alexei; Joly Beauparlant, Charles; Toupin, Dominique; Wang, Shengrui; Droit, Arnaud; Gevry, Nicolas

    2013-08-01

    The development of computational tools to enable testing and analysis of high-throughput-sequencing data is essential to modern genomics research. However, although multiple frameworks have been developed to facilitate access to these tools, comparatively little effort has been made at implementing low-level programming libraries to increase the speed and ease of their development. We propose NGS++, a programming library in C++11 specialized in manipulating both next-generation sequencing (NGS) datasets and genomic information files. This library allows easy integration of new formats and rapid prototyping of new functionalities with a focus on the analysis of genomic regions and features. It offers a powerful, yet versatile and easily extensible interface to read, write and manipulate multiple genomic file formats. By standardizing the internal data structures and presenting a common interface to the data parser, NGS++ offers an effective framework for epigenomics tool development. NGS++ was written in C++ using the C++11 standard. It requires minimal efforts to build and is well-documented via a complete docXygen guide, online documentation and tutorials. Source code, tests, code examples and documentation are available via the website at http://www.ngsplusplus.ca and the github repository at https://github.com/NGS-lib/NGSplusplus. nicolas.gevry@usherbrooke.ca or arnaud.droit@crchuq.ulaval.ca.

  5. Procedural Modeling for Rapid-Prototyping of Multiple Building Phases

    Science.gov (United States)

    Saldana, M.; Johanson, C.

    2013-02-01

    RomeLab is a multidisciplinary working group at UCLA that uses the city of Rome as a laboratory for the exploration of research approaches and dissemination practices centered on the intersection of space and time in antiquity. In this paper we present a multiplatform workflow for the rapid-prototyping of historical cityscapes through the use of geographic information systems, procedural modeling, and interactive game development. Our workflow begins by aggregating archaeological data in a GIS database. Next, 3D building models are generated from the ArcMap shapefiles in Esri CityEngine using procedural modeling techniques. A GIS-based terrain model is also adjusted in CityEngine to fit the building elevations. Finally, the terrain and city models are combined in Unity, a game engine which we used to produce web-based interactive environments which are linked to the GIS data using keyhole markup language (KML). The goal of our workflow is to demonstrate that knowledge generated within a first-person virtual world experience can inform the evaluation of data derived from textual and archaeological sources, and vice versa.

  6. IIE`s wind tunnel calibration; Calibracion del tunel de viento del IIE

    Energy Technology Data Exchange (ETDEWEB)

    Pena Garcia, Raymundo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1985-12-31

    The calibration of a wind tunnel is performed in such a way as to warrant a very low turbulence grade. When there is recently built tunnel, as is the case of the IIE`s tunnel, the turbulence in its testing chambers is large; for this reason it is necessary to integrate in it aerodynamic devices and elements capable of reducing it. At the end of the calibration studies can be performed in models with controlled scale. From these and from the results obtained it will be decided if the designed prototypes are built or modified. [Espanol] La calibracion de un tunel de viento se realiza de tal forma que garantiza un grado de turbulencia muy bajo. Cuando se tiene un tunel recien construido, como es el caso del tunel de viento del IIE, la turbulencia en sus camaras de prueba es grande; por lo que es necesario integrarle dispositivos y elementos aerodinamicos que sean capaces de reducirla. Al terminar la calibracion pueden realizarse estudios en modelos con escala controlada. De estos y de los resultados que se obtengan se decidira si se construyen o se modifican los prototipos disenados.

  7. EFFECT OF THE FLOW FIELD DEFORMATION IN THE WIND TUNNEL ON THE AERODYNAMIC COEFFICIENTS

    Directory of Open Access Journals (Sweden)

    Dušan Maturkanič

    2015-06-01

    Full Text Available The flow field quality has a principal signification at wind tunnel measurement. The creation of the flow field of air by fan leads to the rotation of entire flow field which is, moreover, deformed at the bends of the wind tunnel with close circulation. Despite the wind tunnels are equipped with the devices which eliminate these non-uniformities, in the most of cases, the air flow field has not ideal parameters in the test section. For the evaluation of the measured results of the model in the wind tunnel, the character of flow field deformation is necessary. The following text describes the possible general forms of the flow field nonuniformity and their effect on the aerodynamic coefficients calculation.

  8. Phased array technique for low signal-to-noise ratio wind tunnels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Closed wind tunnel beamforming for aeroacoustics has become more and more prevalent in recent years. Still, there are major drawbacks as current microphone arrays...

  9. Role of Computational Fluid Dynamics and Wind Tunnels in Aeronautics R and D

    Science.gov (United States)

    Malik, Murjeeb R.; Bushnell, Dennis M.

    2012-01-01

    The purpose of this report is to investigate the status and future projections for the question of supplantation of wind tunnels by computation in design and to intuit the potential impact of computation approaches on wind-tunnel utilization all with an eye toward reducing the infrastructure cost at aeronautics R&D centers. Wind tunnels have been closing for myriad reasons, and such closings have reduced infrastructure costs. Further cost reductions are desired, and the work herein attempts to project which wind-tunnel capabilities can be replaced in the future and, if possible, the timing of such. If the possibility exists to project when a facility could be closed, then maintenance and other associated costs could be rescheduled accordingly (i.e., before the fact) to obtain an even greater infrastructure cost reduction.

  10. Wind Tunnel Tests of Parabolic Trough Solar Collectors: March 2001--August 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hosoya, N.; Peterka, J. A.; Gee, R. C.; Kearney, D.

    2008-05-01

    Conducted extensive wind-tunnel tests on parabolic trough solar collectors to determine practical wind loads applicable to structural design for stress and deformation, and local component design for concentrator reflectors.

  11. A Novel Surface Thermometry Approach for use in Aerothermodynamic Wind Tunnel Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project is aimed at developing a novel thermometry technology with upconverting phosphors for temperature measurement in NASA's high-enthalpy wind tunnels....

  12. The Requirements and Design of the Rapid Prototyping Capabilities System

    Science.gov (United States)

    Haupt, T. A.; Moorhead, R.; O'Hara, C.; Anantharaj, V.

    2006-12-01

    The Rapid Prototyping Capabilities (RPC) system will provide the capability to rapidly evaluate innovative methods of linking science observations. To this end, the RPC will provide the capability to integrate the software components and tools needed to evaluate the use of a wide variety of current and future NASA sensors, numerical models, and research results, model outputs, and knowledge, collectively referred to as "resources". It is assumed that the resources are geographically distributed, and thus RPC will provide the support for the location transparency of the resources. The RPC system requires providing support for: (1) discovery, semantic understanding, secure access and transport mechanisms for data products available from the known data provides; (2) data assimilation and geo- processing tools for all data transformations needed to match given data products to the model input requirements; (3) model management including catalogs of models and model metadata, and mechanisms for creation environments for model execution; and (4) tools for model output analysis and model benchmarking. The challenge involves developing a cyberinfrastructure for a coordinated aggregate of software, hardware and other technologies, necessary to facilitate RPC experiments, as well as human expertise to provide an integrated, "end-to-end" platform to support the RPC objectives. Such aggregation is to be achieved through a horizontal integration of loosely coupled services. The cyberinfrastructure comprises several software layers. At the bottom, the Grid fabric encompasses network protocols, optical networks, computational resources, storage devices, and sensors. At the top, applications use workload managers to coordinate their access to physical resources. Applications are not tightly bounded to a single physical resource. Instead, they bind dynamically to resources (i.e., they are provisioned) via a common grid infrastructure layer. For the RPC system, the

  13. NASA Applied Sciences Program Rapid Prototyping Results and Conclusions

    Science.gov (United States)

    Cox, E. L.

    2007-12-01

    NASA's Applied Sciences Program seeks to expand the use of Earth science research results to benefit current and future operational systems tasked with making policy and management decisions. The Earth Science Division within the Science Mission Directorate sponsors over 1000 research projects annually to answer the fundamental research question: How is the Earth changing and what are the consequences for life on Earth? As research results become available, largely from satellite observations and Earth system model outputs, the Applied Sciences Program works diligently with scientists and researchers (internal and external to NASA) , and other government agency officials (USDA, EPA, CDC, DOE, US Forest Service, US Fish and Wildlife Service, DHS, USAID) to determine useful applications for these results in decision-making, ultimately benefiting society. The complexity of Earth science research results and the breadth of the Applied Sciences Program national priority areas dictate a broad scope and multiple approaches available to implement their use in decision-making. Over the past five years, the Applied Sciences Program has examined scientific and engineering practices and solicited the community for methods and steps that can lead to the enhancement of operational systems (Decision Support Systems - DSS) required for decision-making. In November 2006, the Applied Sciences Program launched an initiative aimed at demonstrating the applicability of NASA data (satellite observations, models, geophysical parameters from data archive centers) being incorporated into decision support systems and their related environments at a low cost and quick turnaround of results., i.e. designed rapid prototyping. Conceptually, an understanding of Earth science research (and results) coupled with decision-making requirements and needs leads to a demonstration (experiment) depicting enhancements or improvements to an operational decisions process through the use of NASA data. Five

  14. Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel

    Science.gov (United States)

    Booth, Earl R., Jr.; Romberg, Gary; Hansen, Larry; Lutz, Ron

    1996-01-01

    An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility are included in the current report, along with data obtained in the test in the form of 1/3-octave-band insertion loss and narrowband flow noise spectral data.

  15. Characterization of a new open jet wind tunnel to optimize and test vertical axis wind turbines

    DEFF Research Database (Denmark)

    Tourn, Silvana; Pallarès, Jordi; Cuesta, Ildefonso

    2017-01-01

    Based on the increasing interest in urban environmental technologies, the study of small scale vertical axis wind turbines shows motivating challenges. In this paper, we present the characteristics and potentials of a new open jet wind tunnel. It has a nozzle exit area of 1.5 × 1.5 m2, and it can......%. The detailed characterization of the flow carried out indicates that the wind tunnel can be used to test small scale models of wind turbines....

  16. Calibration of the Total and Static Pressure Transducers in the DSTO Transonic Wind Tunnel

    Science.gov (United States)

    2010-08-01

    Division Defence Science and Technology Organisation DSTO-TN-0960 ABSTRACT The total and static pressure of the DSTO Transonic Wind Tunnel ( TWT ...system of the DSTO Transonic Wind Tunnel ( TWT ), the transducers used for measuring the total and static pressure in the tunnel test section have...of the TWT . Two adjustment parameters (for span and zero corrections) are estimated using a least squares regression algorithm, and then used to

  17. A Unique RCM Application at the NASA Ames Research Center (ARC) 12-Foot Pressure Wind Tunnel

    Science.gov (United States)

    Bonagofski, James M.; Machala, Anthony C.; Smith, Anthony M.; Presley, Leroy L. (Technical Monitor)

    1996-01-01

    NASA Ames Research Center is known internationally as a center of excellence for its capabilities and achievements in the field of developmental aerodynamics. The Center has a variety of aerodynamic test facilities including the largest wind tunnel in the world (with 40 x 80 deg and 80 x 120 deg atmospheric test sections) and the 12-Foot Pressure Wind Tunnel which is the subject of this paper. Additional information is contained in the original extended abstract.

  18. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet with Shock Interactions

    Science.gov (United States)

    Cliff, Susan E.; Denison, Marie; Sozer, Emre; Moini-Yekta, Shayan

    2016-01-01

    NASA and Industry are performing vehicle studies of configurations with low sonic boom pressure signatures. The computational analyses of modern configuration designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty in the aft signatures with often greater boundary layer effects and nozzle jet pressures. Wind tunnel testing at significantly lower Reynolds numbers than in flight and without inlet and nozzle jet pressures make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel from Mach 1.6 to 2.0 will be used to assess the effects of shocks from components passing through nozzle jet plumes on the sonic boom pressure signature and provide datasets for comparison with CFD codes. A large number of high-fidelity numerical simulations of wind tunnel test models with a variety of shock generators that simulate horizontal tails and aft decks have been studied to provide suitable models for sonic boom pressure measurements using a minimally intrusive pressure rail in the wind tunnel. The computational results are presented and the evolution of candidate wind tunnel models is summarized and discussed in this paper.

  19. Rapid Prototyping of High Performance Signal Processing Applications

    Science.gov (United States)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  20. Advanced Background Subtraction Applied to Aeroacoustic Wind Tunnel Testing

    Science.gov (United States)

    Bahr, Christopher J.; Horne, William C.

    2015-01-01

    An advanced form of background subtraction is presented and applied to aeroacoustic wind tunnel data. A variant of this method has seen use in other fields such as climatology and medical imaging. The technique, based on an eigenvalue decomposition of the background noise cross-spectral matrix, is robust against situations where isolated background auto-spectral levels are measured to be higher than levels of combined source and background signals. It also provides an alternate estimate of the cross-spectrum, which previously might have poor definition for low signal-to-noise ratio measurements. Simulated results indicate similar performance to conventional background subtraction when the subtracted spectra are weaker than the true contaminating background levels. Superior performance is observed when the subtracted spectra are stronger than the true contaminating background levels. Experimental results show limited success in recovering signal behavior for data where conventional background subtraction fails. They also demonstrate the new subtraction technique's ability to maintain a proper coherence relationship in the modified cross-spectral matrix. Beam-forming and de-convolution results indicate the method can successfully separate sources. Results also show a reduced need for the use of diagonal removal in phased array processing, at least for the limited data sets considered.

  1. Wind Tunnel Experiments to Study Chaparral Crown Fires.

    Science.gov (United States)

    Cobian-Iñiguez, Jeanette; Aminfar, AmirHessam; Chong, Joey; Burke, Gloria; Zuniga, Albertina; Weise, David R; Princevac, Marko

    2017-11-14

    The present protocol presents a laboratory technique designed to study chaparral crown fire ignition and spread. Experiments were conducted in a low velocity fire wind tunnel where two distinct layers of fuel were constructed to represent surface and crown fuels in chaparral. Chamise, a common chaparral shrub, comprised the live crown layer. The dead fuel surface layer was constructed with excelsior (shredded wood). We developed a methodology to measure mass loss, temperature, and flame height for both fuel layers. Thermocouples placed in each layer estimated temperature. A video camera captured the visible flame. Post-processing of digital imagery yielded flame characteristics including height and flame tilt. A custom crown mass loss instrument developed in-house measured the evolution of the mass of the crown layer during the burn. Mass loss and temperature trends obtained using the technique matched theory and other empirical studies. In this study, we present detailed experimental procedures and information about the instrumentation used. The representative results for the fuel mass loss rate and temperature filed within the fuel bed are also included and discussed.

  2. Overload prevention in model supports for wind tunnel model testing

    Directory of Open Access Journals (Sweden)

    Anton IVANOVICI

    2015-09-01

    Full Text Available Preventing overloads in wind tunnel model supports is crucial to the integrity of the tested system. Results can only be interpreted as valid if the model support, conventionally called a sting remains sufficiently rigid during testing. Modeling and preliminary calculation can only give an estimate of the sting’s behavior under known forces and moments but sometimes unpredictable, aerodynamically caused model behavior can cause large transient overloads that cannot be taken into account at the sting design phase. To ensure model integrity and data validity an analog fast protection circuit was designed and tested. A post-factum analysis was carried out to optimize the overload detection and a short discussion on aeroelastic phenomena is included to show why such a detector has to be very fast. The last refinement of the concept consists in a fast detector coupled with a slightly slower one to differentiate between transient overloads that decay in time and those that are the result of aeroelastic unwanted phenomena. The decision to stop or continue the test is therefore conservatively taken preserving data and model integrity while allowing normal startup loads and transients to manifest.

  3. Forced Oscillation Wind Tunnel Testing for FASER Flight Research Aircraft

    Science.gov (United States)

    Hoe, Garrison; Owens, Donald B.; Denham, Casey

    2012-01-01

    As unmanned air vehicles (UAVs) continue to expand their flight envelopes into areas of high angular rate and high angle of attack, modeling the complex unsteady aerodynamics for simulation in these regimes has become more difficult using traditional methods. The goal of this experiment was to improve the current six degree-of-freedom aerodynamic model of a small UAV by replacing the analytically derived damping derivatives with experimentally derived values. The UAV is named the Free-flying Aircraft for Sub-scale Experimental Research, FASER, and was tested in the NASA Langley Research Center 12- Foot Low-Speed Tunnel. The forced oscillation wind tunnel test technique was used to measure damping in the roll and yaw axes. By imparting a variety of sinusoidal motions, the effects of non-dimensional angular rate and reduced frequency were examined over a large range of angle of attack and side-slip combinations. Tests were performed at angles of attack from -5 to 40 degrees, sideslip angles of -30 to 30 degrees, oscillation amplitudes from 5 to 30 degrees, and reduced frequencies from 0.010 to 0.133. Additionally, the effect of aileron or elevator deflection on the damping coefficients was examined. Comparisons are made of two different data reduction methods used to obtain the damping derivatives. The results show that the damping derivatives are mainly a function of angle of attack and have dependence on the non-dimensional rate and reduced frequency only in the stall/post-stall regime

  4. Slow ions in plasma wind tunnels. [satellite-ionosphere interaction

    Science.gov (United States)

    Oran, W. A.; Stone, N. H.; Samir, U.

    1976-01-01

    One of the limitations of simulation experiments for the study of interaction between a satellite and its space environment is the background of slow ions in the plasma chamber. These ions appear to be created by charge exchange between the beam ions and residual neutral gas and may affect measurements of the current and potential in the wake. Results are presented for a plasma wind tunnel experiment to study the effect of slow ions on both the ion and electron current distribution and the electron temperature in the wake of a body in a streaming plasma. It is shown that the effect of slow ions for beam ion density not exceeding 3 is not significant for measurements of ion current variations in the wake zone. This is not the case when studies are aimed at the quantitative examination of electron current and temperature variations in the near wake zone. In these instances, the measurements of electron properties in the wake should be done at very low system pressures or over a range of system pressures in order to ascertain the influence of slow ions.

  5. Wind Tunnel to Flight: Numerical Simulations of Hypersonic Propulsion Systems

    Science.gov (United States)

    Iaccarino, Gianluca

    2009-11-01

    Uncertainties in the flight conditions and limitations of ground based facilities create inherent difficulties in assessing the performance of hypersonic propulsion systems. We use numerical simulations to investigate the correlation of wind-tunnel measurements (Steelant et al., 2006) and flight data (Hass et al., 2005) for the HyShot vehicle; the objective is to identify potential engine unstart events occurring under different combustion regimes. As a first step we perform simulations corresponding to both reacting and non-reacting conditions in the ground-based facility to validate the numerical tools. Next, we focus on reproducing the flight conditions; a fundamental difficulty is the lack of precise information about the vehicle trajectory. A Bayesian inversion strategy is used to infer the altitude, angle of attack and Mach number from the noisy pressure measurements collected during the flight. The estimated conditions, together with the scatter due to the measurement uncertainty, are then used to study the flow and thermal fields in the combustor. The details of the methods used to characterize the uncertainty in the flow simulations and to perform the Bayesian inversion will also be discussed.

  6. Turbulence, selective decay, and merging in the SSX plasma wind tunnel

    Science.gov (United States)

    Gray, Tim; Brown, Michael; Flanagan, Ken; Werth, Alexandra; Lukin, V.

    2012-10-01

    A helical, relaxed plasma state has been observed in a long cylindrical volume. The cylinder has dimensions L = 1 m and R = 0.08 m. The cylinder is long enough so that the predicted minimum energy state is a close approximation to the infinite cylinder solution. The plasma is injected at v >=50 km/s by a coaxial magnetized plasma gun located at one end of the cylindrical volume. Typical plasma parameters are Ti= 25 eV, ne>=10^15 cm-3, and B = 0.25 T. The relaxed state is rapidly attained in 1--2 axial Alfv'en times after initiation of the plasma. Magnetic data is favorably compared with an analytical model. Magnetic data exhibits broadband fluctuations of the measured axial modes during the formation period. The broadband activity rapidly decays as the energy condenses into the lowest energy mode, which is in agreement to the minimum energy eigenstate of ∇xB = λB. While the global structure roughly corresponds to the minimum energy eigenstate for the wind tunnel geometry, the plasma is high beta (β= 0.5) and does not have a flat λ profile. Merging of two plasmoids in this configuration results in noticeably more dynamic activity compared to a single plasmoid. These episodes of activity exhibit s

  7. Aeolian process of the dried-up riverbeds of the Hexi Corridor, China: a wind tunnel experiment.

    Science.gov (United States)

    Zhang, Caixia; Wang, Xunming; Dong, Zhibao; Hua, Ting

    2017-08-01

    Wind tunnel studies, which remain limited, are an important tool to understand the aeolian processes of dried-up riverbeds. The particle size, chemical composition, and the mineral contents of sediments arising from the dried river beds are poorly understood. Dried-up riverbeds cover a wide area in the Hexi Corridor, China, and comprise a complex synthesis of different land surfaces, including aeolian deposits, pavement surfaces, and Takyr crust. The results of the present wind tunnel experiment suggest that aeolian transport from the dried-up riverbeds of the Hexi Corridor ranges from 0 to 177.04 g/m(2)/min and that dry riverbeds could be one of the main sources of dust emissions in this region. As soon as the wind velocity reaches 16 m/s and assuming that there are abundant source materials available, aeolian transport intensity increases rapidly. The dried-up riverbed sediment and the associated aeolian transported material were composed mainly of fine and medium sands. However, the transported samples were coarser than the bed samples, because of the sorting effect of the aeolian processes on the sediment. The aeolian processes also led to regional elemental migration and mineral composition variations.

  8. A Language Translator for a Computer Aided Rapid Prototyping System.

    Science.gov (United States)

    1988-03-01

    53 Table 2. TYPICAL FUNCTIONS FOR NAVMACS AND PROPOSED NAVM ACSM ODEL II...development. Second, the use of prototyping in an automated en- vironment to provide guideline models for the entire life cycle. Use of automated tools. Al

  9. Investigation of transonic flow over segmented slotted wind tunnel wall with mass transfer

    Science.gov (United States)

    Bhat, M. K.; Vakili, A. D.; Wu, J. M.

    1990-01-01

    The flowfield on a segmented multi-slotted wind tunnel wall was studied at transonic speeds by measurements in and near the wall layer using five port cone probes. The slotted wall flowfield was observed to be three-dimensional in nature for a relatively significant distance above the slot. The boundary layer characteristics measured on the single slotted wall were found to be very sensitive to the applied suction through the slot. The perturbation in the velocity components generated due to the flow through the slot decay rapidly in the transverse direction. A vortex-like flow existed on the single slotted wall for natural ventilation but diminished with increased suction flow rate. For flow on a segmented multi-slotted wall, the normal velocity component changes were found to be maximum for measurement points located between the segmented slots atop the active chamber. The lateral influence due to applied suction and blowing, through a compartment, exceeded only slightly that in the downstream direction. Limited upstream influence was observed. Influence coefficients were determined from the data in the least-square sense for blowing and suction applied through one and two compartments. This was found to be an adequate determination of the influence coefficients for the range of mass flows considered.

  10. MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets

    Science.gov (United States)

    Schuh, Michael J.; Melton, John E.; Stremel, Paul M.

    2017-01-01

    It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the "MiniWall" to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP Server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.

  11. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel

    Science.gov (United States)

    Boyden, Richmond P.; Ferris, Alice T.; Johnson, William G., Jr.; Dress, David A.; Hill, Acquilla S.

    1987-04-01

    An internal strain-gage balance designed and constructed in Europe for use in cryogenic wind tunnels has been tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Part of the evaluation was made at equilibrium balance temperatures and it consisted of comparing the data taken at a tunnel stagnation temperature of 300 K with the data taken at 200 K and 110 K while maintaining either the Reynolds number or the stagnation pressure. A sharp-leading-edge delta-wing model was used to provide the aerodynamic loading for these tests. Results obtained with the balance during the force tests were found to be accurate and repeatable both with and without the use of a convection shield on the balance. An additional part of this investigation involved obtaining data on the transient temperature response of the balance during both normal and rapid changes in the tunnel stagnation temperature. The variation of the temperature with time was measured at three locations on the balance near the physical locations of the strain gages. The use of a convection shield significantly increased the time required for the balance to stabilize at a new temperature during the temperature response tests.

  12. MiniWall Tool for Analyzing CFD and Wind Tunnel Large Data Sets

    Science.gov (United States)

    Schuh, Michael J.; Melton, John E.; Stremel, Paul M.

    2017-01-01

    It is challenging to review and assimilate large data sets created by Computational Fluid Dynamics (CFD) simulations and wind tunnel tests. Over the past 10 years, NASA Ames Research Center has developed and refined a software tool dubbed the MiniWall to increase productivity in reviewing and understanding large CFD-generated data sets. Under the recent NASA ERA project, the application of the tool expanded to enable rapid comparison of experimental and computational data. The MiniWall software is browser based so that it runs on any computer or device that can display a web page. It can also be used remotely and securely by using web server software such as the Apache HTTP server. The MiniWall software has recently been rewritten and enhanced to make it even easier for analysts to review large data sets and extract knowledge and understanding from these data sets. This paper describes the MiniWall software and demonstrates how the different features are used to review and assimilate large data sets.

  13. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    Science.gov (United States)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  14. Aerodynamic measurements and thermal tests of a strain-gage balance in a cryogenic wind tunnel

    Science.gov (United States)

    Boyden, Richmond P.; Ferris, Alice T.; Johnson, William G., Jr.; Dress, David A.; Hill, Acquilla S.

    1987-01-01

    An internal strain-gage balance designed and constructed in Europe for use in cryogenic wind tunnels has been tested in the Langley 0.3-Meter Transonic Cryogenic Tunnel. Part of the evaluation was made at equilibrium balance temperatures and it consisted of comparing the data taken at a tunnel stagnation temperature of 300 K with the data taken at 200 K and 110 K while maintaining either the Reynolds number or the stagnation pressure. A sharp-leading-edge delta-wing model was used to provide the aerodynamic loading for these tests. Results obtained with the balance during the force tests were found to be accurate and repeatable both with and without the use of a convection shield on the balance. An additional part of this investigation involved obtaining data on the transient temperature response of the balance during both normal and rapid changes in the tunnel stagnation temperature. The variation of the temperature with time was measured at three locations on the balance near the physical locations of the strain gages. The use of a convection shield significantly increased the time required for the balance to stabilize at a new temperature during the temperature response tests.

  15. A low cost rapid prototype platform for a three phase PFC rectifier application

    DEFF Research Database (Denmark)

    Haase, Frerk; Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    In this paper the design and development of a low cost rapid prototype platform for a Three Phase PFC rectifier application is presented. The active rectifier consists of a SiC-MOSFET based PWM converter and a low cost rapid prototype platform for simulating and implementing the digital control...... is then performed using automatic code generation for embedded targets, which provided a close link between simulation and implementation of the PFC controller. The paper shows how this rapid prototype platform developed and how it was used for the design and implementation of the controller for a high efficient Si...

  16. Rapid Prototyping with Fourth Generation Systems - an Empirical Study

    DEFF Research Database (Denmark)

    Grønbæk, Kaj

    1989-01-01

    prototypes appear to stimulate constructive response. Reasons that developers should be aware of the tacit knowledge which plays an important part in users' work practices and should be involved early in the development process. Proposes three techniques to meet the requirements – participation, simulation...

  17. M2-F1 mounted in NASA Ames Research Center 40x80 foot wind tunnel

    Science.gov (United States)

    1962-01-01

    After the first attempted ground-tow tests of the M2-F1 in March 1963, the vehicle was taken to the Ames Research Center, Mountain View, CA, for wind-tunnel testing. During these tests, Milt Thompson and others were in the M2-F1 to position the control surfaces for each test. The wingless, lifting body aircraft design was initially conceived as a means of landing an aircraft horizontally after atmospheric reentry. The absence of wings would make the extreme heat of re-entry less damaging to the vehicle. In 1962, Dryden management approved a program to build a lightweight, unpowered lifting body as a prototype to flight test the wingless concept. It would look like a 'flying bathtub,' and was designated the M2-F1, the 'M' referring to 'manned' and 'F' referring to 'flight' version. It featured a plywood shell placed over a tubular steel frame crafted at Dryden. Construction was completed in 1963. The first flight tests of the M2-F1 were over Rogers Dry Lake at the end of a tow rope attached to a hopped-up Pontiac convertible driven at speeds up to about 120 mph. This vehicle needed to be able to tow the M2-F1 on the Rogers Dry Lakebed adjacent to NASA's Flight Research Center (FRC) at a minimum speed of 100 miles per hour. To do that, it had to handle the 400-pound pull of the M2-F1. Walter 'Whitey' Whiteside, who was a retired Air Force maintenance officer working in the FRC's Flight Operations Division, was a dirt-bike rider and hot-rodder. Together with Boyden 'Bud' Bearce in the Procurement and Supply Branch of the FRC, Whitey acquired a Pontiac Catalina convertible with the largest engine available. He took the car to Bill Straup's renowned hot-rod shop near Long Beach for modification. With a special gearbox and racing slicks, the Pontiac could tow the 1,000-pound M2-F1 110 miles per hour in 30 seconds. It proved adequate for the roughly 400 car tows that got the M2-F1 airborne to prove it could fly safely and to train pilots before they were towed behind a C

  18. Pioneering Russian wind tunnels and first experimental investigations, 1871-1915

    Science.gov (United States)

    Gorbushin, A. R.

    2017-11-01

    A review of foreign and Russian sources is given mentioning the pioneering wind tunnels built in Russia at the turn of 19th and 20th centuries. The first wind tunnel in Russia was constructed by V.A. Pashkevich at the Mikhailovsky Artillery Academy in St. Petersburg in 1871. In total from 1871 through 1915, 18 wind tunnels were constructed in Russia: 11 in Moscow, 5 in St. Petersburg and 2 in Kaluga. An overview of the pioneering Russian wind tunnels built by V.A. Pashkevich, K.E. Tsiolkovsky, prof. N.E. Zhukovsky, D.P. Ryabushinsky and prof. K.P. Boklevsky is given. Schemes, photographs, formulas, description of the research and test results taken from the original papers published by the wind tunnel designers are given. Photographs from the N.E. Zhukovsky Scientific and Memorial Museum and the Archive of the Russian Academy of Sciences are used in the article. Methods of flow visualization and results of their application are presented. The Russian scientists and researchers' contribution to the development of techniques and methods of aerodynamic experiment is shown, including one of the most important aspects - the wall interference problem.

  19. CFD investigation of effects of wind tunnel walls on flow properties over S809 airfoil

    Science.gov (United States)

    Moshfeghi, Mohammad; Xie, Yonghui

    2013-07-01

    This article researches CFD simulations of the subsonic wind tunnel at Xi'an Jiaotong University's Laboratory of Thermal Turbo-machines. The wind tunnel cross section measures 800×600 mm2, and the simulations are conducted on a wind tunnel with a 375 mm chord S809 airfoil at the Reynolds number of one million. The angles of attack for the 2D airfoil range from 0 to 22 degrees. In another set of 2D simulations, a 750 mm chord airfoil is calculated in open-air with no walls restricting airflow. The pressure fields, flow patterns and lift and drag coefficients are compared with each other to show the blockage effects in the wind tunnel. As the results show, the wind tunnel walls directly cause the flow to stream faster and increase the lift and drag values. Another consequence of this channeled flow is that the separated area expands. Moreover, the commencement of the separation also occurs at a smaller angle of attack.

  20. Airloads Correlation of the UH-60A Rotor inside the 40- by 80-Foot Wind Tunnel

    Directory of Open Access Journals (Sweden)

    I-Chung Chang

    2014-01-01

    Full Text Available The presented research validates the capability of a loosely coupled computational fluid dynamics (CFD and comprehensive rotorcraft analysis (CRA code to calculate the flowfield around a rotor and test stand mounted inside a wind tunnel. The CFD/CRA predictions for the Full-Scale UH-60A Airloads Rotor inside the National Full-Scale Aerodynamics Complex (NFAC 40- by 80-Foot Wind Tunnel at NASA Ames Research Center are compared with the latest measured airloads and performance data. The studied conditions include a speed sweep at constant lift up to an advance ratio of 0.4 and a thrust sweep at constant speed up to and including stall. For the speed sweep, wind tunnel modeling becomes important at advance ratios greater than 0.37 and test stand modeling becomes increasingly important as the advance ratio increases. For the thrust sweep, both the wind tunnel and test stand modeling become important as the rotor approaches stall. Despite the beneficial effects of modeling the wind tunnel and test stand, the new models do not completely resolve the current airload discrepancies between prediction and experiment.

  1. The development of cryogenic wind tunnels and their application to maneuvering aircraft technology

    Science.gov (United States)

    Polhamus, E. C.; Boyden, R. F.

    1981-01-01

    The cryogenic wind tunnel and its potential for advancing maneuvering aircraft technology is discussed. A brief overview of the cryogenic wind tunnel concept and the capabilities and status of the Langley cryogenic facilities is given, as is a review of the considerations leading to the selection of the cryogenic concept such as capital and operating costs of the tunnel, model and balance construction implications, and test condition. Typical viscous, compressibility and aeroelastic effects encountered by maneuvering aircraft are illustrated and the unique ability of the cryogenic wind tunnels to isolate and investigate these parameters while simulating full scale conditions is discussed. The status of the Langley cryogenic wind tunnel facilities is reviewed and their operating envelopes described in relation to maneuvering aircraft research and development requirements. The status of cryogenic testing technology specifically related to aircraft maneuverability studies including force balances and buffet measurement techniques is discussed. Included are examples of research carried out in the Langley 0.3 meter transonic cryogenic wind tunnel to verify the various techniques.

  2. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Application to Flutter Suppression

    Science.gov (United States)

    Waszak, Martin R.

    1996-01-01

    This paper describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind-tunnel model for application to design and analysis of flutter suppression controllers. The model is formed by combining the equations of motion for the BACT wind-tunnel model with actuator models and a model of wind-tunnel turbulence. The primary focus of this paper is the development of the equations of motion from first principles using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated using values for parameters obtained from both experiment and analysis. A unique aspect of the BACT wind-tunnel model is that it has upper- and lower-surface spoilers for active control. Comparisons with experimental frequency responses and other data show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind-tunnel model. The equations of motion developed herein have been used to assist the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  3. Evaluation of NACA0012 airfoil test results in the NAL two-dimensional transonic wind tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Sudani, N.; Kanda, H.; Sato, M.; Miwa, H.; Matsuno, K.; Takanashi, S. [National Aerospace Laboratory, Tokyo (Japan)

    1991-05-01

    This paper describes a method with correction for the sidewall effects and the evaluation of the air foil test in the two-dimensional transonic wind tunnel. Surface pressure and drag measurements on the NACA0012 airfoil were conducted in the two-dimensional wind tunnel of National Aerospace Laboratory (NAL,Japan). Using a comparison with other wind tunnel data, the wall interference effects are discussed, especially those from the sidewall. The results suggest that the Mach number of the actual flow around the airfoil is lower than the setting Mach number. The Mach number correction for the sidewall boundary-layer effects based on the similarity rule was applied to the present measurements, thereby showing that the shock positions the pressure distributions, and the minimum drag coefficients are in good agreement with both other wind tunnel results and the Navier-Stokes calculation. It is shown that this correction method and the evaluation indicates satisfactory transonic airfoil test results in the NAL two-dimensional transonic wind tunnel. 10 refs., 11 figs., 1 tab.

  4. Rapid-Prototyping of Application Specific Signal Processors (RASSP) Education and Facilitation

    National Research Council Canada - National Science Library

    Gadient, Anthony

    2000-01-01

    The Rapid-Prototyping of Application Specific Signal Processors (RASSP) program was a major DARPA/Tri-Service initiative to reinvent the process by which embedded digital signal processors were developed...

  5. Rapid Prototyping — A Tool for Presenting 3-Dimensional Digital Models Produced by Terrestrial Laser Scanning

    Directory of Open Access Journals (Sweden)

    Juho-Pekka Virtanen

    2014-07-01

    Full Text Available Rapid prototyping has received considerable interest with the introduction of affordable rapid prototyping machines. These machines can be used to manufacture physical models from three-dimensional digital mesh models. In this paper, we compare the results obtained with a new, affordable, rapid prototyping machine, and a traditional professional machine. Two separate data sets are used for this, both of which were acquired using terrestrial laser scanning. Both of the machines were able to produce complex and highly detailed geometries in plastic material from models based on terrestrial laser scanning. The dimensional accuracies and detail levels of the machines were comparable, and the physical artifacts caused by the fused deposition modeling (FDM technique used in the rapid prototyping machines could be found in both models. The accuracy of terrestrial laser scanning exceeded the requirements for manufacturing physical models of large statues and building segments at a 1:40 scale.

  6. Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing

    National Research Council Canada - National Science Library

    Gibson, Ian; Rosen, David; Stucker, B

    2015-01-01

    .... This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also...

  7. Effectiveness of a Wedge Probe to Measure Sonic Boom Signatures in a Supersonic Wind Tunnel

    Science.gov (United States)

    Wilcox, Floyd J., Jr.; Elmiligui, Alaa A.

    2013-01-01

    A wind tunnel investigation was conducted in the Langley Unitary Plan Wind Tunnel (UPWT) to determine the effectiveness of a wedge probe to measure sonic boom pressure signatures compared to a slender conical probe. A generic business jet model at a constant angle of attack and at a single model to probe separation distance was used to generate a sonic boom signature. Pressure signature data were acquired with both the wedge probe and a slender conical probe for comparison. The test was conducted at a Mach number of 2.0 and a free-stream unit Reynolds number of 2 million per foot. The results showed that the wedge probe was not effective in measuring the sonic boom pressure signature of the aircraft model in the supersonic wind tunnel. Data plots and a discussion of the results are presented. No tabulated data or flow visualization photographs are included.

  8. A wind-tunnel study of sea breeze effects. [diffusion pattern simulation

    Science.gov (United States)

    Ogawa, Y.; Griffiths, R.; Hoydysh, W. G.

    1975-01-01

    A wind-tunnel simulation of the diffusion patterns in a sea breeze has been attempted. No attempt was made to reproduce the recirculation that characterizes a sea breeze, but the results indicate that the low-level onshore flow was well simulated for neutral, stable, unstable, and elevated inversion conditions. Velocity, turbulence, shear stress, and temperature data were taken, and the spread of emissions from ground-level sources was investigated. Comparison is made with theoretical predictions by Inoue (1960) and with the open, countryside results of Pasquill. Agreement with the predictions by Inoue is good. The comparison with Pasquill's results shows that the wind-tunnel flows are shifted two categories towards more stable. The discrepancy may be explained as a lack of mesoscale turbulence in the wind tunnel.

  9. Static Aeroelastic Analysis of Transonic Wind Tunnel Models Using Finite Element Methods

    Science.gov (United States)

    Hooker, John R.; Burner, Alpheus W.; Valla, Robert

    1997-01-01

    A computational method for accurately predicting the static aeroelastic deformations of typical transonic transport wind tunnel models is described. The method utilizes a finite element method (FEM) for predicting the deformations. Extensive calibration/validation of this method was carried out using a novel wind-off wind tunnel model static loading experiment and wind-on optical wing twist measurements obtained during a recent wind tunnel test in the National Transonic Facility (NTF) at NASA LaRC. Further validations were carried out using a Navier-Stokes computational fluid dynamics (CFD) flow solver to calculate wing pressure distributions about several aeroelastically deformed wings and comparing these predictions with NTF experimental data. Results from this aeroelastic deformation method are in good overall agreement with experimentally measured values. Including the predicted deformations significantly improves the correlation between CFD predicted and experimentally measured wing & pressures.

  10. Validation of US3D for Capsule Aerodynamics using 05-CA Wind Tunnel Test Data

    Science.gov (United States)

    Schwing, Alan

    2012-01-01

    Several comparisons of computational fluid dynamics to wind tunnel test data are shown for the purpose of code validation. The wind tunnel test, 05-CA, uses a 7.66% model of NASA's Multi-Purpose Crew Vehicle in the 11-foot test section of the Ames Unitary Plan Wind tunnel. A variety of freestream conditions over four Mach numbers and three angles of attack are considered. Test data comparisons include time-averaged integrated forces and moments, time-averaged static pressure ports on the surface, and Strouhal Number. The applicability of the US3D code to subsonic and transonic flow over a bluff body is assessed on a comprehensive data set. With close comparison, this work validates US3D for highly separated flows similar to those examined here.

  11. A Review of Wind Tunnel Based Virtual Flight Testing Techniques for Evaluation of Flight Control Systems

    Directory of Open Access Journals (Sweden)

    Min Huang

    2015-01-01

    Full Text Available Wind tunnel based Virtual Flight Testing (VFT is a dynamic wind tunnel test for evaluating flight control systems (FCS proposed in recent decades. It integrates aerodynamics, flight dynamics, and FCS as a whole and is a more realistic and reliable method for FCS evaluation than traditional ground evaluation methods, such as Hardware-in-the-Loop Simulation (HILS. With FCS evaluated by VFT before flight test, the risk of flight test will be further reduced. In this paper, the background, progress, and prospects of VFT are systematically summarized. Specifically, the differences among VFT, traditional dynamic wind tunnel methods, and traditional FCS evaluation methods are introduced in order to address the advantages of evaluating FCS with VFT. Secondly, the progress of VFT is reviewed in detail. Then, the test system and key technologies of VFT for FCS evaluation are analyzed. Lastly, the prospects of VFT for evaluating FCS are described.

  12. The revolution in data gathering systems. [mini and microcomputers in NASA wind tunnels

    Science.gov (United States)

    Cambra, J. M.; Trover, W. F.

    1975-01-01

    This paper gives a review of the data-acquisition systems used in NASA's wind tunnels from the 1950's to the present as a basis for assessing the impact of minicomputers and microcomputers on data acquisition and processing. The operation and disadvantages of wind-tunnel data systems are summarized for the period before 1950, the early 1950's, the early and late 1960's, and the early 1970's. Some significant advances discussed include the use or development of solid-state components, minicomputer systems, large central computers, on-line data processing, autoranging DC amplifiers, MOS-FET multiplexers, MSI and LSI logic, computer-controlled programmable amplifiers, solid-state remote multiplexing, integrated circuits, and microprocessors. The distributed system currently in use with the 40-ft by 80-ft wind tunnel at Ames Research Center is described in detail. The expected employment of distributed systems and microprocessors in the next decade is noted.

  13. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....

  14. Demonstration of short-range wind lidar in a high-performance wind tunnel

    DEFF Research Database (Denmark)

    Pedersen, Anders Tegtmeier; Montes, Belen Fernández; Pedersen, Jens Engholm

    2012-01-01

    A short-range continuous-wave coherent laser radar (lidar) has been tested in a high-performance wind tunnel for possible use as a standard component in wind tunnels. The lidar was tested in a low as well as a high speed regime ranging from 5-35 m/s and 40-75 m/s, respectively. In both low and high......-speed regimes very good correlation with reference measurements was found. Furthermore different staring directions were tested and taking a simple geometrical correction into account very good correlation was again found. These measurements all demonstrate the high accuracy of the lidar and indicate a possible...... future for short range lidars as a complement to LDA and other standard equipment in wind tunnels....

  15. [Application status of rapid prototyping technology in artificial bone based on reverse engineering].

    Science.gov (United States)

    Fang, Ao; Zheng, Min; Fan, Ding

    2015-02-01

    Artificial bone replacement has made an important contribution to safeguard human health and improve the quality of life. The application requirements of rapid prototyping technology based on reverse engineering in individualized artificial bone with individual differences are particularly urgent. This paper reviewed the current research and applications of rapid prototyping and reverse engineering in artificial bone. The research developments and the outlook of bone kinematics and dynamics simulation are also introduced.

  16. Rapid Prototyping of Simulated VIIRS Data in the SERVIR Fire Rapid Response System

    Science.gov (United States)

    Easson, G.; Kuszmaul, J. S.; Yarbrough, L. D.; Irwin, D.; Cherrington, E.

    2006-12-01

    A rapid prototyping capability experiment has been established involving the application of the SERVIR (Sistema Regional de Visualización y Monitoreo) decision support tool, which is NASA's and its partner agencies' tool to monitor groundcover and climatic conditions in Mesoamerica. As an information system, the SERVIR tool processes data products from multiple sources and the outcome is visualized through interactive digital maps, standard view map outputs or 3D real-time visualization. The focus of this research is one of the SERVIR Fire Rapid Response products known as the MODIS SERVIR Fire Extent Product, which was developed to meet the requirements of the Guatemalan Park Service. The credibility of SERVIR's monitoring tools currently depends upon NASA's MODIS data, which is nearing the end of its availability. This will make it necessary to transition to the planned replacement sensor, VIIRS. The impact of this transition on the performance of SERVIR's fire detection tools is the current focus of our investigation. A quantitative assessment of fire conditions in Guatemala is made using MODIS data and is compared to the anticipated performance using simulated data that would have been produced by a VIIRS-like sensor. Using a low-density geospatial database, the comparison is made for a number of dates from the 2003 Guatemalan fire season, where ground validation data is available. A comparative assessment is also made using the kappa statistic applied to the land classifications resulting from both the MODIS- and VIIRS- based fire detection algorithms.

  17. Rotary Balance Wind Tunnel Testing for the FASER Flight Research Aircraft

    Science.gov (United States)

    Denham, Casey; Owens, D. Bruce

    2016-01-01

    Flight dynamics research was conducted to collect and analyze rotary balance wind tunnel test data in order to improve the aerodynamic simulation and modeling of a low-cost small unmanned aircraft called FASER (Free-flying Aircraft for Sub-scale Experimental Research). The impetus for using FASER was to provide risk and cost reduction for flight testing of more expensive aircraft and assist in the improvement of wind tunnel and flight test techniques, and control laws. The FASER research aircraft has the benefit of allowing wind tunnel and flight tests to be conducted on the same model, improving correlation between wind tunnel, flight, and simulation data. Prior wind tunnel tests include a static force and moment test, including power effects, and a roll and yaw damping forced oscillation test. Rotary balance testing allows for the calculation of aircraft rotary derivatives and the prediction of steady-state spins. The rotary balance wind tunnel test was conducted in the NASA Langley Research Center (LaRC) 20-Foot Vertical Spin Tunnel (VST). Rotary balance testing includes runs for a set of given angular rotation rates at a range of angles of attack and sideslip angles in order to fully characterize the aircraft rotary dynamics. Tests were performed at angles of attack from 0 to 50 degrees, sideslip angles of -5 to 10 degrees, and non-dimensional spin rates from -0.5 to 0.5. The effects of pro-spin elevator and rudder deflection and pro- and anti-spin elevator, rudder, and aileron deflection were examined. The data are presented to illustrate the functional dependence of the forces and moments on angle of attack, sideslip angle, and angular rate for the rotary contributions to the forces and moments. Further investigation is necessary to fully characterize the control effectors. The data were also used with a steady state spin prediction tool that did not predict an equilibrium spin mode.

  18. Rapid BeagleBoard prototyping with MATLAB and Simulink

    CERN Document Server

    Qin, Fei

    2013-01-01

    This book is a fast-paced guide with practical, hands-on recipes which will show you how to prototype Beagleboard-based audio/video applications using Matlab/Simlink and Sourcery Codebench on a Windows host.Beagleboard Embedded Projects is great for students and academic researchers who have practical ideas and who want to build a proof-of-concept system on an embedded hardware platform quickly and efficiently. It is also useful for product design engineers who want to ratify their applications and reduce the time-to-market. It is assumed that you are familiar with Matlab/Simulink and have som

  19. Experimental determination of pure rotary stability derivatives using curved and rolling flow wind tunnel

    Science.gov (United States)

    Lutze, F. H.

    1980-01-01

    The technique of using a curved and rolling flow wind tunnel to extract pure rotary stability derivatives is presented. Descriptions of the curved flow and the rolling flow test sections of the Virginia Tech Stability Wind Tunnel are given including methods for obtaining the proper velocity profiles and correcting the data acquired. Results of testing current fighter configurations in this facility are presented with particular attention given to comparing pure rotary derivatives with combined rotary and unsteady derivatives obtained by standard oscillation tests. Also the effect of curved and rolling flow on lateral static stability derivatives is examined.

  20. Design and Wind Tunnel Testing of a Thick, Multi-Element High-Lift Airfoil

    DEFF Research Database (Denmark)

    Zahle, Frederik; Gaunaa, Mac; Sørensen, Niels N.

    2012-01-01

    In this work a 2D CFD solver has been used to optimize the shape of a leading edge slat with a chord length of 30% of the main airfoil which was 40% thick. The airfoil configuration was subsequently tested in a wind tunnel and compared to numerical predictions. The multi-element airfoil...... was predicted to achieve a Cl−max of 3.1 based on the main airfoil chord length, which was confirmed in the wind tunnel campaign. Using wake rake traversal and wool tuft flow visualization wall interference effects were investigated, which were found to be a source of considerable uncertainty when measuring...

  1. A new electronic scanner of pressure designed for installation in wind-tunnel models

    Science.gov (United States)

    Coe, C. T.; Parra, G. T.; Kauffman, R. C.

    1981-01-01

    A new electronic scanner of pressure (ESOP) has been developed by NASA Ames Research Center for installation in wind-tunnel models. An ESOP system includes up to 20 pressure modules, each with 48 pressure transducers, an A/D converter, a microprocessor, a data controller, a monitor unit, and a heater controller. The system is sized so that the pressure modules and A/D converter module can be installed within an average-size model tested in the Ames Aerodynamics Division wind tunnels. This paper describes the ESOP system, emphasizing the main element of the system - the pressure module. The measured performance of the overall system is also presented.

  2. Design of Rail Instrumentation for Wind Tunnel Sonic Boom Measurements and Computational-Experimental Comparisons

    Science.gov (United States)

    Cliff, Susan E.; Elmiligui, A.; Aftosmis, M.; Morgenstern, J.; Durston, D.; Thomas, S.

    2012-01-01

    An innovative pressure rail concept for wind tunnel sonic boom testing of modern aircraft configurations with very low overpressures was designed with an adjoint-based solution-adapted Cartesian grid method. The computational method requires accurate free-air calculations of a test article as well as solutions modeling the influence of rail and tunnel walls. Specialized grids for accurate Euler and Navier-Stokes sonic boom computations were used on several test articles including complete aircraft models with flow-through nacelles. The computed pressure signatures are compared with recent results from the NASA 9- x 7-foot Supersonic Wind Tunnel using the advanced rail design.

  3. Analytical Models for Rotor Test Module, Strut, and Balance Frame Dynamics in the 40 by 80 Ft Wind Tunnel

    Science.gov (United States)

    Johnson, W.

    1976-01-01

    A mathematical model is developed for the dynamics of a wind tunnel support system consisting of a balance frame, struts, and an aircraft or test module. Data are given for several rotor test modules in the Ames 40 by 80 ft wind tunnel. A model for ground resonance calculations is also described.

  4. Background Pressure Profiles for Sonic Boom Vehicle Testing in the NASA Glenn 8- by 6-Foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Shaw, Stephen; Adamson, Eric; Simerly, Stephanie

    2013-01-01

    In an effort to identify test facilities that offer sonic boom measurement capabilities, an exploratory test program was initiated using wind tunnels at NASA research centers. The subject of this report is the sonic boom pressure rail data collected in the Glenn Research Center 8- by 6-Foot Supersonic Wind Tunnel. The purpose is to summarize the lessons learned based on the test activity, specifically relating to collecting sonic boom data which has a large amount of spatial pressure variation. The wind tunnel background pressure profiles are presented as well as data which demonstrated how both wind tunnel Mach number and model support-strut position affected the wind tunnel background pressure profile. Techniques were developed to mitigate these effects and are presented.

  5. An Assessment of Ares I-X Aeroacoustic Measurements with Comparisons to Pre-Flight Wind Tunnel Test Results

    Science.gov (United States)

    Nance, Donald K.; Reed, Darren K.

    2011-01-01

    During the recent successful launch of the Ares I-X Flight Test Vehicle, aeroacoustic data was gathered at fifty-seven locations along the vehicle as part of the Developmental Flight Instrumentation. Several of the Ares I-X aeroacoustic measurements were placed to duplicate measurement locations prescribed in pre-flight, sub-scale wind tunnel tests. For these duplicated measurement locations, comparisons have been made between aeroacoustic data gathered during the ascent phase of the Ares I-X flight test and wind tunnel test data. These comparisons have been made at closely matching flight conditions (Mach number and vehicle attitude) in order to preserve a one-to-one relationship between the flight and wind tunnel data. These comparisons and the current wind tunnel to flight scaling methodology are presented and discussed. The implications of using wind tunnel test data scaled under the current methodology to predict conceptual launch vehicle aeroacoustic environments are also discussed.

  6. Rapid prototyping for patient-specific surgical orthopaedics guides: A systematic literature review.

    Science.gov (United States)

    Popescu, Diana; Laptoiu, Dan

    2016-06-01

    There has been a lot of hype surrounding the advantages to be gained from rapid prototyping processes in a number of fields, including medicine. Our literature review aims objectively to assess how effective patient-specific surgical guides manufactured using rapid prototyping are in a number of orthopaedic surgical applications. To this end, we carried out a systematic review to identify and analyse clinical and experimental literature studies in which rapid prototyping patient-specific surgical guides are used, focusing especially on those that entail quantifiable outcomes and, at the same time, providing details on the guides' design and type of manufacturing process. Here, it should be mentioned that in this field there are not yet medium- or long-term data, and no information on revisions. In the reviewed studies, the reported positive opinions on the use of rapid prototyping patient-specific surgical guides relate to the following main advantages: reduction in operating times, low costs and improvements in the accuracy of surgical interventions thanks to guides' personalisation. However, disadvantages and sources of errors which can cause patient-specific surgical guide failures are as well discussed by authors. Stereolithography is the main rapid prototyping process employed in these applications although fused deposition modelling or selective laser sintering processes can also satisfy the requirements of these applications in terms of material properties, manufacturing accuracy and construction time. Another of our findings was that individualised drill guides for spinal surgery are currently the favourite candidates for manufacture using rapid prototyping. Other emerging applications relate to complex orthopaedic surgery of the extremities: the forearm and foot. Several procedures such as osteotomies for radius malunions or tarsal coalition could become standard, thanks to the significant assistance provided by rapid prototyping patient-specific surgical

  7. Accuracy and reproducibility of dental replica models reconstructed by different rapid prototyping techniques

    NARCIS (Netherlands)

    Hazeveld, Aletta; Huddleston Slater, James J. R.; Ren, Yijin

    INTRODUCTION: Rapid prototyping is a fast-developing technique that might play a significant role in the eventual replacement of plaster dental models. The aim of this study was to investigate the accuracy and reproducibility of physical dental models reconstructed from digital data by several rapid

  8. Teaching Tip: Using Rapid Game Prototyping for Exploring Requirements Discovery and Modeling

    Science.gov (United States)

    Dalal, Nikunj

    2012-01-01

    We describe the use of rapid game prototyping as a pedagogic technique to experientially explore and learn requirements discovery, modeling, and specification in systems analysis and design courses. Students have a natural interest in gaming that transcends age, gender, and background. Rapid digital game creation is used to build computer games…

  9. Rapid prototyping of multiphase microfluidics with robotic cutters

    Science.gov (United States)

    Li, Zidong; Zhao, Zhengtuo; Lo, Joe Fu-jiou

    2014-03-01

    Microfluidic devices offer novel techniques to address biological and biomedical issues. Standard microfluidic fabrication uses photolithography to pattern channels on silicon wafers with high resolution. Even the relatively straightforward SU8 and soft lithography in microfluidics require investing and training in photolithography, which is also time consuming due to complicated thick resist procedures, including sensitive substrate pretreatment, coating, soft bake, expose, post-exposure bake, and developing steps. However, for applications where low resolution (>200 μm) and high turn-around (> 4 designs/day) prototyping are met with little or no lithography infrastructure, robotic cutters [1] offer flexible options for making glass and PDMS microfluidics. We describe the use of robotics cutters for designing microfluidic geometries, and compliment it with safe glass etching, with depths down to 60 μm. Soft lithography patterning of 200 μm thick PDMS membrane was also explored. Without high equipment investment and lengthy student training, both glass and PDMS microfluidics can be achieved in small facilities using this technique.

  10. A digital strategy for manometer dynamic enhancement. [for wind tunnel monitoring

    Science.gov (United States)

    Stoughton, J. W.

    1978-01-01

    Application of digital signal processing techniques to improve the non-linear dynamic characteristics of a sonar-type mercury manometer is described. The dynamic enhancement strategy quasi-linearizes the manometer characteristics and improves the effective bandwidth in the context of a wind-tunnel pressure regulation system. Model identification data and real-time hybrid simulation data demonstrate feasibility of approach.

  11. Wind tunnel testing of a full scale helicopter blade section with an upstream active Gurney flap

    NARCIS (Netherlands)

    Loendersloot, Richard; Freire Gomez, J.; Booker, J.D.

    2014-01-01

    Wind tunnel tests were performed on an aerofoil section comparable to that of a full scale helicopter blade section with an upstream active Gurney flap in the framework of the European project CleanSky ITD Green RotorCraft. A modified NACA0012 profile was used, with 23 Kulite pressure transducers

  12. Noise model for serrated trailing edges compared to wind tunnel measurements

    DEFF Research Database (Denmark)

    Fischer, Andreas; Bertagnolio, Franck; Shen, Wen Zhong

    2016-01-01

    A new CFD RANS based method to predict the far field sound pressure emitted from an aerofoil with serrated trailing edge has been developed. The model was validated by comparison to measurements conducted in the Virginia Tech Stability Wind Tunnel. The model predicted 3 dB lower sound pressure...

  13. Wind Tunnel Database Development using Modern Experiment Design and Multivariate Orthogonal Functions

    Science.gov (United States)

    Morelli, Eugene A.; DeLoach, Richard

    2003-01-01

    A wind tunnel experiment for characterizing the aerodynamic and propulsion forces and moments acting on a research model airplane is described. The model airplane called the Free-flying Airplane for Sub-scale Experimental Research (FASER), is a modified off-the-shelf radio-controlled model airplane, with 7 ft wingspan, a tractor propeller driven by an electric motor, and aerobatic capability. FASER was tested in the NASA Langley 12-foot Low-Speed Wind Tunnel, using a combination of traditional sweeps and modern experiment design. Power level was included as an independent variable in the wind tunnel test, to allow characterization of power effects on aerodynamic forces and moments. A modeling technique that employs multivariate orthogonal functions was used to develop accurate analytic models for the aerodynamic and propulsion force and moment coefficient dependencies from the wind tunnel data. Efficient methods for generating orthogonal modeling functions, expanding the orthogonal modeling functions in terms of ordinary polynomial functions, and analytical orthogonal blocking were developed and discussed. The resulting models comprise a set of smooth, differentiable functions for the non-dimensional aerodynamic force and moment coefficients in terms of ordinary polynomials in the independent variables, suitable for nonlinear aircraft simulation.

  14. Wind-tunnel investigations of pressure distribution over high-rise buildings

    CSIR Research Space (South Africa)

    Cwik, M

    2013-09-01

    Full Text Available This paper deals with the wind-tunnel investigations of high-rise buildings. In the first part, an overview of the developments in model testing, as well as the future trends, have been discussed. Particular emphasis has been placed on methods...

  15. Method for determining air humidity in wind tunnels using a neutron emitter

    Science.gov (United States)

    Chegorian, M. A.; Moskalev, V. M.; Ignatov, Iu. A.; Zhuravlev, V. N.

    The paper presents a theoretical analysis of a neutron-hygrometer technique for determining the humidity of an air jet in a wind tunnel. Formulas are presented for calculating the activity of the neutron emitter. Results are presented for a Pu-239 neutron source.

  16. Wind Tunnel Model Design for Sonic Boom Studies of Nozzle Jet Flows with Shock Interactions

    Science.gov (United States)

    Cliff, Susan E.; Denison, Marie; Moini-Yekta, Shayan; Morr, Donald E.; Durston, Donald A.

    2016-01-01

    NASA and the U.S. aerospace industry are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The computational analyses of modern aircraft designs have matured to the point where there is confidence in the prediction of the pressure signature from the front of the vehicle, but uncertainty remains in the aft signatures due to boundary layer and nozzle exhaust jet effects. Wind tunnel testing without inlet and nozzle exhaust jet effects at lower Reynolds numbers than in-flight make it difficult to accurately assess the computational solutions of flight vehicles. A wind tunnel test in the NASA Ames 9- by 7-Foot Supersonic Wind Tunnel is planned for February 2016 to address the nozzle jet effects on sonic boom. The experiment will provide pressure signatures of test articles that replicate waveforms from aircraft wings, tails, and aft fuselage (deck) components after passing through cold nozzle jet plumes. The data will provide a variety of nozzle plume and shock interactions for comparison with computational results. A large number of high-fidelity numerical simulations of a variety of shock generators were evaluated to define a reduced collection of suitable test models. The computational results of the candidate wind tunnel test models as they evolved are summarized, and pre-test computations of the final designs are provided.

  17. Variation in energy intake and basal metabolic rate of a bird migrating in a wind tunnel

    NARCIS (Netherlands)

    Lindström, Å.; Klaassen, M.R.J.; Kvist, A.

    1999-01-01

    1. We studied the changes in body mass, metabolizable energy intake rate (ME) and basal metabolic rate (BMR) of a Thrush Nightingale, Luscinia luscinia, following repeated 12-h migratory flights in a wind tunnel. In total the bird flew for 176 h corresponding to 6300 km. This is the first study

  18. Wind-Tunnel Tests of a Bridge Model with Active Vibration Control

    DEFF Research Database (Denmark)

    Hansen, H. I.; Thoft-Christensen, Palle; Mendes, P. A.

    The application of active control systems to reduce wind vibrations in bridges is a new area of research. This paper presents the results that were obtained on a set of wind tunnel tests of a bridge model equipped with active movable flaps. Based on the monitored position and motion of the deck...

  19. Testing compost as an anti wind erosion agent in a wind tunnel

    NARCIS (Netherlands)

    Vos, de J.A.

    1996-01-01

    The potential of compost as an anti wind erosion agent was studied in a wind tunnel on a sandy soil susceptible to wind erosion. Soil treated with a compost-water mixture, which forms a crust on the soil surface after drying, was exposed to a series of increasing wind speeds. Two composts were

  20. Calibration of the Flow in the Test Section of the Research Wind Tunnel at DST Group

    Science.gov (United States)

    2015-10-01

    1073. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2003 Calibration of the flow in the extended test section...of the low-speed wind tunnel at DSTO. DSTO-TR-1384. Defence Science and Technology Organisation , Melbourne, Australia. Erm, L. P. 2015

  1. Unsteady Aerodynamics Experiment Phase VI: Wind Tunnel Test Configurations and Available Data Campaigns

    Energy Technology Data Exchange (ETDEWEB)

    Hand, M. M.; Simms, D. A.; Fingersh, L. J.; Jager, D. W.; Cotrell, J. R.; Schreck, S.; Larwood, S. M.

    2001-12-01

    The primary objective of the insteady aerodynamics experiment was to provide information needed to quantify the full-scale, three-dimensional aerodynamic behavior of horizontal-axis wind turbines. This report is intended to familiarize the user with the entire scope of the wind tunnel test and to support the use of the resulting data.

  2. Measuring fast-temporal sediment fluxes with an analogue acoustic sensor: a wind tunnel study

    NARCIS (Netherlands)

    Poortinga, A.; Minnen, van J.; Riksen, M.J.P.M.; Seeger, M.

    2013-01-01

    Research objective In this study, we test two passive traps (BEST sampler and MWAC sampler) and one acoustic device (saltiphone) in an aeolian sand wind tunnel to investigate how the experimental setup and the subsequent data processing affect the quantification of the aeolian sand flux. Type of

  3. Experimental Results from the Active Aeroelastic Wing Wind Tunnel Test Program

    Science.gov (United States)

    Heeg, Jennifer; Spain, Charles V.; Florance, James R.; Wieseman, Carol D.; Ivanco, Thomas G.; DeMoss, Joshua; Silva, Walter A.; Panetta, Andrew; Lively, Peter; Tumwa, Vic

    2005-01-01

    The Active Aeroelastic Wing (AAW) program is a cooperative effort among NASA, the Air Force Research Laboratory and the Boeing Company, encompassing flight testing, wind tunnel testing and analyses. The objective of the AAW program is to investigate the improvements that can be realized by exploiting aeroelastic characteristics, rather than viewing them as a detriment to vehicle performance and stability. To meet this objective, a wind tunnel model was crafted to duplicate the static aeroelastic behavior of the AAW flight vehicle. The model was tested in the NASA Langley Transonic Dynamics Tunnel in July and August 2004. The wind tunnel investigation served the program goal in three ways. First, the wind tunnel provided a benchmark for comparison with the flight vehicle and various levels of theoretical analyses. Second, it provided detailed insight highlighting the effects of individual parameters upon the aeroelastic response of the AAW vehicle. This parameter identification can then be used for future aeroelastic vehicle design guidance. Third, it provided data to validate scaling laws and their applicability with respect to statically scaled aeroelastic models.

  4. HFSB-seeding for large-scale tomographic PIV in wind tunnels

    NARCIS (Netherlands)

    Caridi, Giuseppe Carlo Alp; Ragni, D.; Sciacchitano, A.; Scarano, F.

    2016-01-01

    A new system for large-scale tomographic particle image velocimetry in low-speed wind tunnels is presented. The system relies upon the use of sub-millimetre helium-filled soap bubbles as flow tracers, which scatter light with intensity several orders of magnitude higher than micron-sized

  5. Standardization of flux chambers and wind tunnels for area source emission measurements at animal feeding operations

    Science.gov (United States)

    Researchers and practitioners have used many varied designs of wind tunnels and flux chambers to measure the flux of volatile organic compounds, odor, and ammonia from area sources at animal feeding operations. The measured fluxes are used to estimate emission factors or compare treatments. We sho...

  6. Portable wind tunnels for field testing of soils and natural surfaces

    Science.gov (United States)

    Large stationary wind tunnels have been used to test the erodibility of soils and to study in detail the processes controlling erosion rates. These tunnels require the use of disturbed soil samples which may result in parameter estimations that are not consistent with the natural surface. Several ...

  7. A numerical optimization of high altitude testing facility for wind tunnel experiments

    Directory of Open Access Journals (Sweden)

    Bruce Ralphin Rose J

    2015-06-01

    Full Text Available High altitude test facilities are required to test the high area ratio nozzles operating at the upper stages of rocket in the nozzle full flow conditions. It is typically achieved by creating the ambient pressure equal or less than the nozzle exit pressure. On average, air/GN2 is used as active gas for ejector system that is stored in the high pressure cylinders. The wind tunnel facilities are used for conducting aerodynamic simulation experiments at/under various flow velocities and operating conditions. However, constructing both of these facilities require more laboratory space and expensive instruments. Because of this demerit, a novel scheme is implemented for conducting wind tunnel experiments by using the existing infrastructure available in the high altitude testing (HAT facility. This article presents the details about the methods implemented for suitably modifying the sub-scale HAT facility to conduct wind tunnel experiments. Hence, the design of nozzle for required area ratio A/A∗, realization of test section and the optimized configuration are focused in the present analysis. Specific insights into various rocket models including high thrust cryogenic engines and their holding mechanisms to conduct wind tunnel experiments in the HAT facility are analyzed. A detailed CFD analysis is done to propose this conversion without affecting the existing functional requirements of the HAT facility.

  8. Validation of the Lockheed Martin Morphing Concept with Wind Tunnel Testing

    Science.gov (United States)

    Ivanco, Thomas G.; Scott, Robert C.; Love, Michael H.; Zink Scott; Weisshaar, Terrence A.

    2007-01-01

    The Morphing Aircraft Structures (MAS) program is a Defense Advanced Research Projects Agency (DARPA) led effort to develop morphing flight vehicles capable of radical shape change in flight. Two performance parameters of interest are loiter time and dash speed as these define the persistence and responsiveness of an aircraft. The geometrical characteristics that optimize loiter time and dash speed require different geometrical planforms. Therefore, radical shape change, usually involving wing area and sweep, allows vehicle optimization across many flight regimes. The second phase of the MAS program consisted of wind tunnel tests conducted at the NASA Langley Transonic Dynamics Tunnel to demonstrate two morphing concepts and their enabling technologies with large-scale semi-span models. This paper will focus upon one of those wind tunnel tests that utilized a model developed by Lockheed Martin Aeronautics Company (LM). Wind tunnel success criteria were developed by NASA to support the DARPA program objectives. The primary focus of this paper will be the demonstration of the DARPA objectives by systematic evaluation of the wind tunnel model performance relative to the defined success criteria. This paper will also provide a description of the LM model and instrumentation, and document pertinent lessons learned. Finally, as part of the success criteria, aeroelastic characteristics of the LM derived MAS vehicle are also addressed. Evaluation of aeroelastic characteristics is the most detailed criterion investigated in this paper. While no aeroelastic instabilities were encountered as a direct result of the morphing design or components, several interesting and unexpected aeroelastic phenomenon arose during testing.

  9. Offshore and onshore wind turbine wake meandering studied in an ABL wind tunnel

    DEFF Research Database (Denmark)

    Barlas, Emre; Buckingham, Sophia; Glabeke, Gertjan

    2015-01-01

    Scaled wind turbine models have been installed in the VKI L1-B atmospheric boundary layer wind tunnel at offshore and onshore conditions. Time-resolved measurements were carried out with three component hot wire anemometry and stereo-PIV in the middle vertical plane of the wake up to eleven turbi...

  10. Open access wind tunnel measurements of a downwind free yawing wind turbine

    DEFF Research Database (Denmark)

    Verelst, David Robert; Larsen, Torben J.; van Wingerden, Jan-Willem

    2016-01-01

    A series of free yawing wind tunnel experiments was held in the Open Jet Facility (OJF) of the TU Delft. The ≈ 300 W turbine has three blades in a downwind configuration and is optionally free to yaw. Different 1.6m diameter rotor configurations are tested such as blade flexibility and sweep...

  11. Modeling the Benchmark Active Control Technology Wind-Tunnel Model for Active Control Design Applications

    Science.gov (United States)

    Waszak, Martin R.

    1998-01-01

    This report describes the formulation of a model of the dynamic behavior of the Benchmark Active Controls Technology (BACT) wind tunnel model for active control design and analysis applications. The model is formed by combining the equations of motion for the BACT wind tunnel model with actuator models and a model of wind tunnel turbulence. The primary focus of this report is the development of the equations of motion from first principles by using Lagrange's equations and the principle of virtual work. A numerical form of the model is generated by making use of parameters obtained from both experiment and analysis. Comparisons between experimental and analytical data obtained from the numerical model show excellent agreement and suggest that simple coefficient-based aerodynamics are sufficient to accurately characterize the aeroelastic response of the BACT wind tunnel model. The equations of motion developed herein have been used to aid in the design and analysis of a number of flutter suppression controllers that have been successfully implemented.

  12. A New Hybrid Method to Correct for Wind Tunnel Wall- and Support Interference On-line

    NARCIS (Netherlands)

    Horsten, B.J.C.; Veldhuis, L.L.M.

    2009-01-01

    Because support interference corrections are not properly understood, engineers mostly rely on expensive dummy measurements or CFD calculations. This paper presents a method based on uncorrected wind tunnel measurements and fast calculation techniques (it is a hybrid method) to calculate wall

  13. General purpose interface bus for personal computers used in wind tunnel data acquisition

    Science.gov (United States)

    Puram, Chith K.

    1993-01-01

    The use of the general purpose interface bus IEEE-488 to met the special requirements of wind tunnel testing involving PCs is discussed. The gearing of instrumentation to minimize test time, the choice of software to meet computer memory constraints, the use of graphics for improved use of tunnel run time, and the choice of data acquisition equipment to remove bottlenecks are addressed.

  14. Nonlinear flutter wind tunnel test and numerical analysis of folding fins with freeplay nonlinearities

    Directory of Open Access Journals (Sweden)

    Yang Ning

    2016-02-01

    Full Text Available The flutter characteristics of folding control fins with freeplay are investigated by numerical simulation and flutter wind tunnel tests. Based on the characteristics of the structures, fins with different freeplay angles are designed. For a 0° angle of attack, wind tunnel tests of these fins are conducted, and vibration is observed by accelerometers and a high-speed camera. By the expansion of the connected relationships, the governing equations of fit for the nonlinear aeroelastic analysis are established by the free-interface component mode synthesis method. Based on the results of the wind tunnel tests, the flutter characteristics of fins with different freeplay angles are analyzed. The results show that the vibration divergent speed is increased, and the divergent speed is higher than the flutter speed of the nominal linear system. The vibration divergent speed is increased along with an increase in the freeplay angle. The developed free-interface component mode synthesis method could be used to establish governing equations and to analyze the characteristics of nonlinear aeroelastic systems. The results of the numerical simulations and the wind tunnel tests indicate the same trends and critical velocities.

  15. An experimental system for release simulation of internal stores in a supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Wei Liu

    2017-02-01

    Full Text Available Aerodynamic parameters obtained from separation experiments of internal stores in a wind tunnel are significant in aircraft designs. Accurate wind tunnel tests can help to improve the release stability of the stores and in-flight safety of the aircrafts in supersonic environments. A simulative system for free drop experiments of internal stores based on a practical project is provided in this paper. The system contains a store release mechanism, a control system and an attitude measurement system. The release mechanism adopts a six-bar linkage driven by a cylinder, which ensures the release stability. The structure and initial aerodynamic parameters of the stores are also designed and adjusted. A high speed vision measurement system for high speed rolling targets is utilized to measure the pose parameters of the internal store models and an optimizing method for the coordinates of markers is presented based on a priori model. The experimental results show excellent repeatability of the system, and indicate that the position measurement precision is less than 0.13 mm, and the attitude measurement precision for pitch and yaw angles is less than 0.126°, satisfying the requirements of practical wind tunnel tests. A separation experiment for the internal stores is also conducted in the FL-3 wind tunnel of China Aerodynamics Research Institute.

  16. Experimental Aeroelastic Models Design and Wind Tunnel Testing for Correlation with New Theory

    Directory of Open Access Journals (Sweden)

    2016-04-01

    Full Text Available Several examples of experimental model designs, wind tunnel tests and correlation with new theory are presented in this paper. The goal is not only to evaluate a new theory, new computational method or new aeroelastic phonomenon, but also to provide new insights into nonlinear aeroelastic phenomena, flutter, limit cycle oscillation (LCO and gust response.

  17. Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection

    Science.gov (United States)

    Mingji, Huang; Geng, Wu; yan, Shan

    2017-11-01

    The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.

  18. Logic Foundry: Rapid Prototyping for FPGA-Based DSP Systems

    Directory of Open Access Journals (Sweden)

    Bhattacharyya Shuvra S

    2003-01-01

    Full Text Available We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal processing systems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in the integration of the various components, we have proposed a system that targets the following four areas of integration: design flow integration, component integration, platform integration, and software integration. Using the Logic Foundry, a system can be easily specified, and then automatically constructed and integrated with system level software.

  19. The scope of application of incremental rapid prototyping methods in foundry engineering

    Directory of Open Access Journals (Sweden)

    M. Stankiewicz

    2010-01-01

    Full Text Available The article presents the scope of application of selected incremental Rapid Prototyping methods in the process of manufacturing casting models, casting moulds and casts. The Rapid Prototyping methods (SL, SLA, FDM, 3DP, JS are predominantly used for the production of models and model sets for casting moulds. The Rapid Tooling methods, such as: ZCast-3DP, ProMetalRCT and VoxelJet, enable the fabrication of casting moulds in the incremental process. The application of the RP methods in cast production makes it possible to speed up the prototype preparation process. This is particularly vital to elements of complex shapes. The time required for the manufacture of the model, the mould and the cast proper may vary from a few to several dozen hours.

  20. Reverse Design and Rapid Prototyping ABS Part Assembly with Hard Material

    Directory of Open Access Journals (Sweden)

    Xu Yaodong

    2016-01-01

    Full Text Available In order to realize the variant design of the existing product , and rapid completion of the manufacturing and assembly, a new product was designed by reverse design method,and manufactured by rapid prototyping technology to finish assembly with hard material part. An experiment of rapid prototyping part with different model scales assembling with metal part was done to find the right scale of 1.008 of the model in H/h tolerance fit and 0.1mm more in size in interference fit. Through the static theory analysis, the amount of the interference fit was calculated by equal torque in contrast with mechanical assembly.The result was further proved by ProE mechanica simulation for stress and strain. Applying the rule of the results in experiment,prototyping part assembly with hard material part in different types of fit can be realized.

  1. [Effects and influential factors of rapid prototyping technology in dental restorations].

    Science.gov (United States)

    Pan, Qiao-Ling; Yuan, Jia-Kan

    2017-06-01

    To explore the effects and influential factors of rapid prototyping technology in dental restorations. From May 2013 to November 2014 in our hospital, 120 patients were divided into experimental group and conventional group. Patients in the experimental group were treated by rapid prototyping technology, while patients in the conventional group were treated by routine methods. The effects of the two groups were compared using SPSS 17.0 software package. The effective rate of the experimental group was significantly higher than that of the conventional group (P<0.05). Complications in the experimental group were significantly lower than those in the conventional group (P<0.05). Rapid prototyping technology can be used in the treatment of patients with dentition defects with satisfactory results and fewer adverse reactions.

  2. Individually Fitted Hearing Aid Device Manufactured Using Rapid Prototyping Based on Ear CT. A Case Report.

    Science.gov (United States)

    Chrzan, R; Miechowicz, S; Urbanik, A; Markowska, O; Kudasik, T

    2009-05-15

    Rapid prototyping is the technology of automatic freeform fabrication of physical objects from virtual CAD (computer aided design) models. For medical objects the models may be created using data from CT, MR or rotational angiography. We descriobe the case of a 83-year-old woman with essential bilateral hearing impairment as the effect of chronic otitis media. An individually fitted hearing aid was produced for the patient using stereolithography technology and vacuum casting based on data obtained during ear CT. Rapid prototyping may help in manufacturing individually adjusted biomedical prostheses, reducing the time of device production and improving its fitting.

  3. Design and optimization of the micro-engine turbine rotor manufacturing using the rapid prototyping technology

    Science.gov (United States)

    Vdovin, R. A.; Smelov, V. G.

    2017-02-01

    This work describes the experience in manufacturing the turbine rotor for the micro-engine. It demonstrates the design principles for the complex investment casting process combining the use of the ProCast software and the rapid prototyping techniques. At the virtual modelling stage, in addition to optimized process parameters, the casting structure was improved to obtain the defect-free section. The real production stage allowed demonstrating the performance and fitness of rapid prototyping techniques for the manufacture of geometrically-complex engine-building parts.

  4. Development and testing of a unique carousel wind tunnel to experimentally determine the effect of gravity and the interparticle force on the physics of wind-blown particles

    Science.gov (United States)

    Leach, R. N.; Greeley, Ronald; White, Bruce R.; Iversen, James D.

    1987-01-01

    In the study of planetary aeolian processes the effect of gravity is not readily modeled. Gravity appears in the equations of particle motion along with the interparticle forces but the two are not separable. A wind tunnel that perimits multiphase flow experiments with wind blown particles at variable gravity was built and experiments were conducted at reduced gravity. The equations of particle motion initiation (saltation threshold) with variable gravity were experimentally verified and the interparticle force was separated. A uniquely design Carousel Wind Tunnel (CWT) allows for the long flow distance in a small sized tunnel since the test section if a continuous loop and develops the required turbulent boundary layer. A prototype model of the tunnel where only the inner drum rotates was built and tested in the KC-135 Weightless Wonder 4 zero-g aircraft. Future work includes further experiments with walnut shell in the KC-135 which sharply graded particles of widely varying median sizes including very small particles to see how interparticle force varies with particle size, and also experiments with other aeolian material.

  5. Documentation and archiving of the Space Shuttle wind tunnel test data base. Volume 2: User's Guide to the Archived Data Base

    Science.gov (United States)

    Romere, Paul O.; Brown, Steve Wesley

    1995-01-01

    Development of the Space Shuttle necessitated an extensive wind tunnel test program, with the cooperation of all the major wind tunnels in the United States. The result was approximately 100,000 hours of Space Shuttle wind tunnel testing conducted for aerodynamics, heat transfer, and structural dynamics. The test results were converted into Chrysler DATAMAN computer program format to facilitate use by analysts, a very cost effective method of collecting the wind tunnel test results from many test facilities into one centralized location. This report provides final documentation of the Space Shuttle wind tunnel program. The two-volume set covers the evolution of Space Shuttle aerodynamic configurations and gives wind tunnel test data, titles of wind tunnel data reports, sample data sets, and instructions for accessing the digital data base.

  6. Development of Experimental Setup of Metal Rapid Prototyping Machine using Selective Laser Sintering Technique

    Science.gov (United States)

    Patil, S. N.; Mulay, A. V.; Ahuja, B. B.

    2016-08-01

    Unlike in the traditional manufacturing processes, additive manufacturing as rapid prototyping, allows designers to produce parts that were previously considered too complex to make economically. The shift is taking place from plastic prototype to fully functional metallic parts by direct deposition of metallic powders as produced parts can be directly used for desired purpose. This work is directed towards the development of experimental setup of metal rapid prototyping machine using selective laser sintering and studies the various parameters, which plays important role in the metal rapid prototyping using SLS technique. The machine structure in mainly divided into three main categories namely, (1) Z-movement of bed and table, (2) X-Y movement arrangement for LASER movements and (3) feeder mechanism. Z-movement of bed is controlled by using lead screw, bevel gear pair and stepper motor, which will maintain the accuracy of layer thickness. X-Y movements are controlled using timing belt and stepper motors for precise movements of LASER source. Feeder mechanism is then developed to control uniformity of layer thickness metal powder. Simultaneously, the study is carried out for selection of material. Various types of metal powders can be used for metal RP as Single metal powder, mixture of two metals powder, and combination of metal and polymer powder. Conclusion leads to use of mixture of two metals powder to minimize the problems such as, balling effect and porosity. Developed System can be validated by conducting various experiments on manufactured part to check mechanical and metallurgical properties. After studying the results of these experiments, various process parameters as LASER properties (as power, speed etc.), and material properties (as grain size and structure etc.) will be optimized. This work is mainly focused on the design and development of cost effective experimental setup of metal rapid prototyping using SLS technique which will gives the feel of

  7. New methodologies for calculation of flight parameters on reduced scale wings models in wind tunnel =

    Science.gov (United States)

    Ben Mosbah, Abdallah

    In order to improve the qualities of wind tunnel tests, and the tools used to perform aerodynamic tests on aircraft wings in the wind tunnel, new methodologies were developed and tested on rigid and flexible wings models. A flexible wing concept is consists in replacing a portion (lower and/or upper) of the skin with another flexible portion whose shape can be changed using an actuation system installed inside of the wing. The main purpose of this concept is to improve the aerodynamic performance of the aircraft, and especially to reduce the fuel consumption of the airplane. Numerical and experimental analyses were conducted to develop and test the methodologies proposed in this thesis. To control the flow inside the test sections of the Price-Paidoussis wind tunnel of LARCASE, numerical and experimental analyses were performed. Computational fluid dynamics calculations have been made in order to obtain a database used to develop a new hybrid methodology for wind tunnel calibration. This approach allows controlling the flow in the test section of the Price-Paidoussis wind tunnel. For the fast determination of aerodynamic parameters, new hybrid methodologies were proposed. These methodologies were used to control flight parameters by the calculation of the drag, lift and pitching moment coefficients and by the calculation of the pressure distribution around an airfoil. These aerodynamic coefficients were calculated from the known airflow conditions such as angles of attack, the mach and the Reynolds numbers. In order to modify the shape of the wing skin, electric actuators were installed inside the wing to get the desired shape. These deformations provide optimal profiles according to different flight conditions in order to reduce the fuel consumption. A controller based on neural networks was implemented to obtain desired displacement actuators. A metaheuristic algorithm was used in hybridization with neural networks, and support vector machine approaches and their

  8. Wind Tunnel Interference Effects on Tilt Rotor Testing Using Computational Fluid Dynamics

    Science.gov (United States)

    Koning, Witold J. F.

    2016-01-01

    Experimental techniques to measure rotorcraft aerodynamic performance are widely used. However, most of them are either unable to capture interference effects from bodies, or require an extremely large computational budget. The objective of the present research is to develop an XV-15 Tiltrotor Research Aircraft rotor model for investigation of wind tunnel wall interference using a novel Computational Fluid Dynamics (CFD) solver for rotorcraft, RotCFD. In RotCFD, a mid-fidelity Unsteady Reynolds Averaged Navier-Stokes (URANS) solver is used with an incompressible flow model and a realizable k-e turbulence model. The rotor is, however, not modeled using a computationally expensive, unsteady viscous body-fitted grid, but is instead modeled using a blade-element model (BEM) with a momentum source approach. Various flight modes of the XV-15 isolated rotor, including hover, tilt, and airplane mode, have been simulated and correlated to existing experimental and theoretical data. The rotor model is subsequently used for wind tunnel wall interference simulations in the National Full-Scale Aerodynamics Complex (NFAC) at Ames Research Center in California. The results from the validation of the isolated rotor performance showed good correlation with experimental and theoretical data. The results were on par with known theoretical analyses. In RotCFD the setup, grid generation, and running of cases is faster than many CFD codes, which makes it a useful engineering tool. Performance predictions need not be as accurate as high-fidelity CFD codes, as long as wall effects can be properly simulated. For both test sections of the NFAC wall, interference was examined by simulating the XV-15 rotor in the test section of the wind tunnel and with an identical grid but extended boundaries in free field. Both cases were also examined with an isolated rotor or with the rotor mounted on the modeled geometry of the Tiltrotor Test Rig (TTR). A "quasi linear trim" was used to trim the thrust

  9. Quantifying Density, Water Adsorption and Equilibration Properties of Wind Tunnel Materials

    Science.gov (United States)

    Yu, Xinting; Horst, Sarah; He, Chao; Bridges, Nathan; Burr, Devon M.; Sebree, Joshua

    2016-10-01

    Aeolian processes are found on various planetary bodies including Earth, Venus, Mars, Titan, Triton, Pluto, and Comet 67P. Wind tunnels can simulate aeolian processes under different planetary parameters, with the robustness of results relying on experimental conditions and understanding of experimental materials. Threshold wind speed, the minimum wind speed to initiate saltation, is one parameter that can be investigated in wind tunnels. Liquid water adsorbed on wind tunnel materials could greatly enhance the threshold wind speed by increasing the interparticle force, density, and effective size of particles. Previous studies have shown that this effect could increase the threshold by 100% by putting 0.3-0.6% of water into typical dry quartz sand (Fecan et al. 1998). In order to simulate the weight of particles on other planetary bodies where gravity is significantly lower than on Earth, low-density materials are used in planetary wind tunnels, including walnut shells, activated charcoal, iced tea, and instant coffee.We first quantified the densities for all wind tunnel materials using a pycnometer and updated the density for low-density materials (e.g., walnut shells have density of 1.4 g/cm3 instead of 1.1 g/cm3 in the literature (Greeley et al. 1980)). Then we present a set of measurements that quantify water adsorption for both low and high-density materials (sand, basalt, and chromite). We first measured the water content and equilibration timescales for the materials through gravimetric measurements. We found low-density materials tend to have much more water (>5%) compared to high-density materials ( 6 hrs) compared to high-density materials (10-50 minutes). Since only water adsorbed on the particle surface would change the interparticle force, we then separate the surface and internal water using thermo-gravimetric analysis, and found that >80% of the water is still on the surface. Thus we assume water adsorption for low-density materials could greatly

  10. Development of a drivable hybrid drive prototype in a rapid prototyping environment; Entwicklung einer Antriebssteuerung fuer ein Hybridfahrzeug in einer Rapid-Prototyping-Umgebung

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Klaus [ETAS GmbH, Stuttgart (Germany); Escherle, Thomas; Nazareth, Dieter [Hochschule Landshut (Germany). Fakultaet fuer Informatik

    2010-07-01

    At least since the automotive crisis hybrid drives for motor vehicles resound throughout the land. All automobile manufacturers and many suppliers are working on appropriate concepts and components. In order to train students in step with actual practice on this relevant topics, mechanical engineering professor Dr. Prexler hat the idea to develop a drivable hybrid drive prototype with students within three terms. A joint project of the departments of mechanical engineering, electrical engineering and information technology at university of Landshut succeeded in developing a drivable serial plug-in hybrid named ''MBL-ex-drive''. (orig.)

  11. Prototyping

    OpenAIRE

    Corsín Jiménez, Alberto

    2017-01-01

    The prototyping of method calls for, at a minimum, three operations of design: rethinking the proprietary and legal economy of research; rethinking the frontiers that separate those who use methods from those to whom methods are applied to; designing infrastructures of apprenticeships for every problem.

  12. A Rapid Prototyping Technique for Microfluidics with High Robustness and Flexibility

    Directory of Open Access Journals (Sweden)

    Zhenhua Liu

    2016-11-01

    Full Text Available In microfluidic device prototyping, master fabrication by traditional photolithography is expensive and time-consuming, especially when the design requires being repeatedly modified to achieve a satisfactory performance. By introducing a high-performance/cost-ratio laser to the traditional soft lithography, this paper describes a flexible and rapid prototyping technique for microfluidics. An ultraviolet (UV laser directly writes on the photoresist without a photomask, which is suitable for master fabrication. By eliminating the constraints of fixed patterns in the traditional photomask when the masters are made, this prototyping technique gives designers/researchers the convenience to revise or modify their designs iteratively. A device fabricated by this method is tested for particle separation and demonstrates good properties. This technique provides a flexible and rapid solution to fabricating microfluidic devices for non-professionals at relatively low cost.

  13. Rapid prototyping as a Tool for Designing and Manufacturing of Customised Anatomical Implants

    OpenAIRE

    RM Sherekar; AN Pawar; SV Bhalerao

    2014-01-01

    Rapid prototyping (RP) technologies are mostly related with applications in the product development and the design process as well as with small batch manufacturing. Due to their comparatively high rapidity and flexibility, however, they have also been engaged in various non-manufacturing applications. A field that attracts increasingly more attention by the scientific community is related to the application of technologies in medicine and health care. The associated research is focused both ...

  14. Rapid prototyping of centrifugal microfluidic modules for point of care blood testing

    CSIR Research Space (South Africa)

    Madzivhandila, Phophi

    2016-11-01

    Full Text Available We present modular centrifugal microfluidic devices that enable a series of blood tests to be performed towards a full blood count. The modular approach allows for rapid prototyping of device components in a generic format to complete different...

  15. A prototype Lab Box with DSK 'C6711/13 for rapid DSP algorithm development

    OpenAIRE

    Bertini, Graziano

    2007-01-01

    A system based on the TMS320C6711 DSK Starter Kit, enclosed in a special chassis, designed for real-time DSP algorithms testing, is described. Some evaluation of MATLab software Rapid Prototyping tools for a "Virtual Dubbing" application on damaged speech is also given.

  16. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report.

    Science.gov (United States)

    Holt, Andrew M; Starosolski, Zbigniew; Kan, J Herman; Rosenfeld, Scott B

    2017-01-01

    Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient's anatomy offered unparalleled, hands-on experience with the patient's anatomy pre-operatively and improved surgical precision. Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon's ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics.

  17. Low-Cost Rapid Prototyping of Whole-Glass Microfluidic Devices

    Science.gov (United States)

    Yuen, Po Ki; Goral, Vasiliy N.

    2012-01-01

    A low-cost, straightforward, rapid prototyping of whole-glass microfluidic devices is presented using glass-etching cream that can be easily purchased in local stores. A self-adhered vinyl stencil cut out by a desktop digital craft cutter was used as an etching mask for patterning microstructures in glass using the glass-etching cream. A specific…

  18. On-Line Flutter Prediction Tool for Wind Tunnel Flutter Testing using Parameter Varying Estimation Methodology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an on-line flutter prediction tool for wind tunnel model using the parameter varying estimation (PVE) technique to...

  19. Comparison of Resource Requirements for a Wind Tunnel Test Designed with Conventional vs. Modern Design of Experiments Methods

    Science.gov (United States)

    DeLoach, Richard; Micol, John R.

    2011-01-01

    The factors that determine data volume requirements in a typical wind tunnel test are identified. It is suggested that productivity in wind tunnel testing can be enhanced by managing the inference error risk associated with evaluating residuals in a response surface modeling experiment. The relationship between minimum data volume requirements and the factors upon which they depend is described and certain simplifications to this relationship are realized when specific model adequacy criteria are adopted. The question of response model residual evaluation is treated and certain practical aspects of response surface modeling are considered, including inference subspace truncation. A wind tunnel test plan developed by using the Modern Design of Experiments illustrates the advantages of an early estimate of data volume requirements. Comparisons are made with a representative One Factor At a Time (OFAT) wind tunnel test matrix developed to evaluate a surface to air missile.

  20. Measurement of Odor-Plume Structure in a Wind Tunnel Using a Photoionization Detector and a Tracer Gas

    National Research Council Canada - National Science Library

    Justus, Kristine

    2002-01-01

    The patterns of stimulus available to moths flying along pheromone plumes in a 3-m-long wind tunnel were characterized using a high frequency photoionization detector in conjunction with an inert tracer gas...

  1. Compact form fitting small antennas using three-dimensional rapid prototyping

    Science.gov (United States)

    Willis, Bryan Jon

    Three-dimensional (3D) rapid prototyping holds significant promise for future antenna designs. Many complex designs that would be unmanufacturable or costly are realizable on a 3D printing machine. The ability to create 3D designs of virtually any configuration makes it possible to build compact antennas that can form fit to any space. These antennas build on the concept that small antennas can best reach the ideal operating limit when utilizing the entire 3D space in a sphere surrounding the antenna. Antennas require a combination of dielectric and conductive materials. 3D rapid prototyping is already well advanced for plastics and dielectric materials (with more options coming online). Prototyping with conductive materials has lagged behind; due mainly to their higher melting points, but this is advancing as well. This dissertation focuses on 3D rapid prototyping for antenna design. A 3D antenna made from small cubical cells is optimized for 2.4--3GHz using a genetic algorithm (GA). The antennas are built using 3D printing of plastic covered by conductive paint. The effects of the conductivity of the paint and number of layers on the resonance and gain of the antenna are evaluated. These results demonstrate the feasibility of using 3D rapid prototyping for antenna design. A 3D dipole is also optimized using a GA to function from 510--910MHz. The antenna was built using 3D rapid prototyping from plastic. The 3D antenna was covered with a conductive coating and measured, showing good agreement with simulation. The 3D GA is used to design 3D antennas of random shape to fit inside the empty space in a cell phone case and optimized for cell phone bands 800--900MHz and 1.6--3.7GHz. The research also evaluates methods and materials that can be used to produce 3D antennas. In addition to the flexibility that 3D prototyping brings to antenna design, this paper describes how this new and emerging method for building antennas can provide fast and affordable antennas for

  2. Supersonic retropropulsion CFD validation with Ames Unitary Plan Wind Tunnel test data

    Science.gov (United States)

    Schauerhamer, D. G.; Zarchi, K. A.; Kleb, W. L.; Edquist, K. T.

    A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 9'× 7' Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.

  3. An efficient algorithm using matrix methods to solve wind tunnel force-balance equations

    Science.gov (United States)

    Smith, D. L.

    1972-01-01

    An iterative procedure applying matrix methods to accomplish an efficient algorithm for automatic computer reduction of wind-tunnel force-balance data has been developed. Balance equations are expressed in a matrix form that is convenient for storing balance sensitivities and interaction coefficient values for online or offline batch data reduction. The convergence of the iterative values to a unique solution of this system of equations is investigated, and it is shown that for balances which satisfy the criteria discussed, this type of solution does occur. Methods for making sensitivity adjustments and initial load effect considerations in wind-tunnel applications are also discussed, and the logic for determining the convergence accuracy limits for the iterative solution is given. This more efficient data reduction program is compared with the technique presently in use at the NASA Langley Research Center, and computational times on the order of one-third or less are demonstrated by use of this new program.

  4. Sonic wind tunnel of the Institute of Fluid Mechanics of Lille

    Science.gov (United States)

    Gontier, G.

    1982-01-01

    A 65 hp wind tunnel with a 40 mm by 240 mm airstream is described. This wind tunnel can achieve speeds in the neighborhood of the speed of sound, both subsonic and supersonic. It is useful in studying the transonic bump technique. The test section is 600 mm long. The side walls are made of transparent glass, and both the upper and lower walls are deformable, each through the use of nine jacks with elastic sleeves. So as to avoid condensation, the airstream's temperature is stabilized by an air exchanger at the temperature of the outside air. The first results for supersonic operation, the distribution of Mach numbers within the airstream between the parallel walls, the value of the use factor, and the diffuser's efficiency are all given.

  5. Full-scale wind tunnel investigation of a helicopter individual blade control system

    Science.gov (United States)

    Jacklin, Stephen A.; Leyland, Jane A.; Blaas, Achim

    1993-01-01

    This paper discusses the preparations and plans to test an individual rotor blade pitch control system in the 40- by 80- Foot Wind Tunnel at the NASA Ames Research Center. The test will be performed on a full-scale BO-105 rotor system using a control system made by Henschel Flugzeug-Werke, GmbH, Germany. The Individual Blade Control (IBC) actuators have been designed to replace the pitchlinks of the rotor system. The paper presents a brief historical perspective on the development of the individual blade control system and then describes the present IBC actuators and the wind tunnel test hardware. A discussion of the intended test matrix, expected potential benefits of IBC, and simulation results are included.

  6. Design and wind tunnel tests of winglets on a DC-10 wing

    Science.gov (United States)

    Gilkey, R. D.

    1979-01-01

    Results are presented of a wind tunnel test utilizing a 4.7 percent scale semi-span model in the Langley Research Center 8-foot transonic pressure wind tunnel to establish the cruise drag improvement potential of winglets as applied to the DC-10 wide body transport aircraft. Winglets were investigated on both the DC-10 Series 10 (domestic) and 30/40 (intercontinental) configurations and compared with the Series 30/40 configuration. The results of the investigation confirm that for the DC-10 winglets provide approximately twice the cruise drag reduction of wing-tip extensions for about the same increase in bending moment at the wing fuselage juncture. Furthermore, the winglet configurations achieved drag improvements which were in close agreement to analytical estimates. It was observed that relatively small changes in wing-winglet tailoring effected large improvements in drag and visual flow characteristics. All final winglet configurations exhibited visual flow characteristics on the wing and winglets

  7. 9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview

    Science.gov (United States)

    Stephens, David

    2016-01-01

    The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.

  8. Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel

    Science.gov (United States)

    Corlett, W. A.

    1982-01-01

    The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.

  9. Supersonic Retropropulsion CFD Validation with Ames Unitary Plan Wind Tunnel Test Data

    Science.gov (United States)

    Schauerhamer, Daniel G.; Zarchi, Kerry A.; Kleb, William L.; Edquist, Karl T.

    2013-01-01

    A validation study of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) was conducted using three Navier-Stokes flow solvers (DPLR, FUN3D, and OVERFLOW). The study compared results from the CFD codes to each other and also to wind tunnel test data obtained in the NASA Ames Research Center 90 70 Unitary PlanWind Tunnel. Comparisons include surface pressure coefficient as well as unsteady plume effects, and cover a range of Mach numbers, levels of thrust, and angles of orientation. The comparisons show promising capability of CFD to simulate SRP, and best agreement with the tunnel data exists for the steadier cases of the 1-nozzle and high thrust 3-nozzle configurations.

  10. Wind Tunnel Test Technique and Instrumentation Development at LaRC

    Science.gov (United States)

    Putnam, Lawrence E.

    1999-01-01

    LaRC has an aggressive test technique development program underway. This program has been developed using 3rd Generation R&D management techniques and is a closely coordinated program between suppliers and wind tunnel operators- wind tunnel customers' informal input relative to their needs has been an essential ingredient in developing the research portfolio. An attempt has been made to balance this portfolio to meet near term and long term test technique needs. Major efforts are underway to develop techniques for determining model wing twist and location of boundary layer transition in the NTF (National Transonic Facility). The foundation of all new instrumentation developments, procurements, and upgrades will be based on uncertainty analysis.

  11. On-line analysis capabilities developed to support the AFW wind-tunnel tests

    Science.gov (United States)

    Wieseman, Carol D.; Hoadley, Sherwood T.; Mcgraw, Sandra M.

    1992-01-01

    A variety of on-line analysis tools were developed to support two active flexible wing (AFW) wind-tunnel tests. These tools were developed to verify control law execution, to satisfy analysis requirements of the control law designers, to provide measures of system stability in a real-time environment, and to provide project managers with a quantitative measure of controller performance. Descriptions and purposes of the developed capabilities are presented along with examples. Procedures for saving and transferring data for near real-time analysis, and descriptions of the corresponding data interface programs are also presented. The on-line analysis tools worked well before, during, and after the wind tunnel test and proved to be a vital and important part of the entire test effort.

  12. Snowdrift – visualisation on an architectural model in wind tunnel testing

    DEFF Research Database (Denmark)

    Fiebig, Jennifer; Koss, Hans Holger Hundborg

    2016-01-01

    Wind-driven snow in cold regions is a significant problem for the built environment and the integration of snow deposition into the early design process is not sufficient implemented. Snowdrift simulation on a reduced scale in wind tunnel testing often investigates the similarity of particle...... effects on architectural models. A visual performance of the snowdrift simulation was carried out in a small boundary-layer wind tunnel at DTU Civil Engineering. The particle distribution and the effect of the substitute material on the surface and around the test model were performed. The applied method...... transport and deposition at and around buildings in comparison to the nature phenomenon. Although a number of studies performed the deposition on a test model with different snow substitutes, the scaling of the phenomenon is still not understood or inaccurate. The study is a visual method of the snow...

  13. Wind tunnel Measurement of Spray Drift from on-off Controlled Sprayer Nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul

    2014-01-01

    wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... were collected on 20 mm wide paper lines closer than 375 mm from the nozzle. The nozzle height was 400 mm and the nozzle was aligned at right angles to forward direction across the wind tunnel and perpendicular to the wind direction. The nozzles involved were mounted on a transporter system...... and arranged to deliver a pulse of spray using the WeedSeeker valve. The tests were conducted to determine accumulated spray deposit at different crosswind and forward speeds. In general, the deposits, especially those measured downwind close to the target zone showed significant increase as the crosswind...

  14. Comparative wind tunnel tests of NACA 23024 airfoils with several aileron and spoiler configurations

    Science.gov (United States)

    Wentz, W. H., Jr.; Snyder, M. H.

    1995-01-01

    This paper reviews research efforts at Wichita State University sponsored by NASA Lewis Research Center to design and evaluate aerodynamic braking devices which will be smaller and lighter than full-chord blade pitch control. Devices evaluated include a variety of aileron configurations, and spoilers located at both trailing edge and near the leading edge. The paper discusses analytical modeling, wind tunnel tests, and for some configurations, full-scale rotor tests. Current designs have not provided adequate control power at high angles of attack (low tip-speed-ratios). The reasons for these limitations are discussed. Analysis and wind tunnel test data indicate that several options are available to the designer to provide aerodynamic slowdown without full-chord pitch control. Three options are suggested; adding venting in front of the control surface hingeline, using spoilers located near the leading edge, and using a two-piece control combining downward deflection inboard with upward deflection outboard.

  15. Gust response analysis and wind tunnel test for a high-aspect ratio wing

    Directory of Open Access Journals (Sweden)

    Liu Yi

    2016-02-01

    Full Text Available A theoretical nonlinear aeroelastic response analysis for a flexible high-aspect ratio wing excited by harmonic gust load is presented along with a companion wind tunnel test. A multidisciplinary coupled numerical calculation is developed to simulate the flexible model wing undergoing gust load in the time domain via discrete nonlinear finite element structural dynamic analysis and nonplanar unsteady vortex lattice aerodynamic computation. A dynamic perturbation analysis about a nonlinear static equilibrium is also used to determine the small perturbation flutter boundary. A novel noncontact 3-D camera measurement analysis system is firstly used in the wind tunnel test to obtain the spatial large deformation and responses. The responses of the flexible wing under different static equilibrium states and frequency gust loads are discussed. The fair to good quantitative agreements between the theoretical and experimental results demonstrate that the presented analysis method is an acceptable way to predict the geometrically nonlinear gust response for flexible wings.

  16. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul

    wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... were collected on 20 mm wide paper lines closer than 375 mm from the nozzle. The nozzle height was 400 mm and the nozzle was aligned at right angles to forward direction across the wind tunnel and perpendicular to the wind direction. The nozzles involved were mounted on a transporter system...... and arranged to deliver a pulse of spray using the WeedSeeker valve. The tests were conducted to determine accumulated spray deposit at different crosswind and forward speeds. In general, the deposits, especially those measured downwind close to the target zone showed significant increase as the crosswind...

  17. Methodology for the Assessment of 3D Conduction Effects in an Aerothermal Wind Tunnel Test

    Science.gov (United States)

    Oliver, Anthony Brandon

    2010-01-01

    This slide presentation reviews a method for the assessment of three-dimensional conduction effects during test in a Aerothermal Wind Tunnel. The test objectives were to duplicate and extend tests that were performed during the 1960's on thermal conduction on proturberance on a flat plate. Slides review the 1D versus 3D conduction data reduction error, the analysis process, CFD-based analysis, loose coupling method that simulates a wind tunnel test run, verification of the CFD solution, Grid convergence, Mach number trend, size trends, and a Sumary of the CFD conduction analysis. Other slides show comparisons to pretest CFD at Mach 1.5 and 2.16 and the geometries of the models and grids.

  18. Aerodynamic testing model guided missiles with jets simulations in the T-35 wind tunnel

    Directory of Open Access Journals (Sweden)

    Ocokoljić Goran J.

    2014-01-01

    Full Text Available Testing of the Anti-Tank Missile with jets simulations in the T-35 wind tunnel is part of the development program of short range anti-tank system. The main task of this experiment was to provide an experimental data base for estimation of real jets influence. Analysis was presented for Mach number 0.2, model configurations with and without jets, and three jet tabs positions: tabs out of the jets, upper or lower tabs in the jets. Missile model designed that instead of the products of combustion through nozzles allow high pressure air corresponding mass flow. In additional to the wind tunnel test results the paper, also presents the results of CFD simulations. The results are presented by normal force and pitching moment coefficients.

  19. Signal processing and analysis in a buffet onset wind tunnel campaign

    Directory of Open Access Journals (Sweden)

    Mihai Victor PRICOP

    2015-06-01

    Full Text Available The purpose of the current work is to determine the buffet onset boundary in the case of an airliner type of wind tunnel model having a presumably laminar wing. A complex wind tunnel campaign took place, providing an important amount of data from a variety of sensors: steady and non-steady pressure sensors, strain gauges and accelerometer. The last two types of sensors are useful for buffeting investigation, which is the structural vibration and are considered to provide global indications. Pressure signals are providing local indications and also global when properly integrated in global indices. The paper shows the difficulties encountered in using global indicators, which fail to identify the buffeting and the delicate analysis of pressure signals and their qualitative analysis, which provide a good insight into the phenomena and are clearly indicating the buffet onset boundary, with the proper extrapolation.

  20. Boundary interference assessment and correction for open jet wind tunnels using panel methods

    Science.gov (United States)

    Mokhtar, Wael Ahmed

    The presence of nearby boundaries in a wind tunnel can lead to aerodynamic measurements on a model in the wind tunnel that differ from those that would be made when the boundaries of the moving fluid were infinitely far away. The differences, referred to as boundary interference or wall interference, can be quite large, such as when testing aircraft models developing high lift forces, or whose wingspan is a large fraction of the wind tunnel width, or high drag models whose frontal area is a large fraction of the tunnel cross section. Correction techniques for closed test section (solid walled) wind tunnels are fairly well developed, but relatively little recent work has addressed the case of open jet tunnels specifically for aeronautical applications. A method to assess the boundary interferences for open jet test sections is introduced. The main objective is to overcome some of the limitations in the classical and currently used methods for aeronautical and automotive wind tunnels, particularly where the levels of interference are large and distortion of the jet boundary becomes significant. The starting point is to take advantage of two well-developed approaches used in closed wall test sections, namely the boundary measurement approach and adaptive wall wind tunnels. A low-order panel code is developed because it offers a relatively efficient approach from the computational point of view, within the required accuracy. It also gives the method more flexibility to deal with more complex model geometries and test section cross sections. The method is first compared to the method of images. Several lifting and non-lifting model representations are used for both two- and three-dimensional studies. Then the method is applied to results of a test of a full-scale Wright Flyer replica inside the Langley Full Scale Tunnel. The study is extended to include the effect of model representation and the test section boundaries (closed, open and 3/4 open) on the interference

  1. Wind tunnel study of helical and straight-bladed vertical-axis wind turbine wakes

    Science.gov (United States)

    Bagheri, Maryam; Araya, Daniel

    2017-11-01

    It is hypothesized that blade curvature can serve as a passive means to control fluid entrainment and wake recovery in vertical-axis wind turbine (VAWT) arrays. We test this experimentally in a wind tunnel using two different VAWT configurations, one with straight blades and another with helical blades, keeping all other experimental parameters fixed. A small-scale, commercially available VAWT (15W max power) is used as the baseline wind tunnel model in each case. The commercial VAWT blades are replaced with either straight or helical blades that are 3D-printed extrusions of the same airfoil cross-section. Results from smoke flow visualization, three-component wake velocity measurements, and turbine power data are presented. These results give insight into the potential use of VAWTs with curved blades in utility-scale wind farms.

  2. Impact and Estimation of Balance Coordinate System Rotations and Translations in Wind-Tunnel Testing

    Science.gov (United States)

    Toro, Kenneth G.; Parker, Peter A.

    2017-01-01

    Discrepancies between the model and balance coordinate systems lead to biases in the aerodynamic measurements during wind-tunnel testing. The reference coordinate system relative to the calibration coordinate system at which the forces and moments are resolved is crucial to the overall accuracy of force measurements. This paper discusses sources of discrepancies and estimates of coordinate system rotation and translation due to machining and assembly differences. A methodology for numerically estimating the coordinate system biases will be discussed and developed. Two case studies are presented using this methodology to estimate the model alignment. Examples span from angle measurement system shifts on the calibration system to discrepancies in actual wind-tunnel data. The results from these case-studies will help aerodynamic researchers and force balance engineers to better the understand and identify potential differences in calibration systems due to coordinate system rotation and translation.

  3. Application of Wind Tunnel Free-Flight Technique for Wake Vortex Encounters

    Science.gov (United States)

    Brandon, Jay M.; Jordan, Frank L., Jr.; Stuever, Robert A.; Buttrill, Catherine W.

    1997-01-01

    A wind tunnel investigation was conducted in the Langley 30- by 60-Foot Tunnel to assess the free-flight test technique as a tool in research on wake vortex encounters. A typical 17.5-percent scale business-class jet airplane model was flown behind a stationary wing mounted in the forward portion of the wind tunnel test section. The span ratio (model span-generating wingspan) was 0.75. The wing angle of attack could be adjusted to produce a vortex of desired strength. The test airplane model was successfully flown in the vortex and through the vortex for a range of vortex strengths. Data obtained included the model airplane body axis accelerations, angular rates, attitudes, and control positions as a function of vortex strength and relative position. Pilot comments and video records were also recorded during the vortex encounters.

  4. Performance of a Micro-UAV lifting system built with the usage of rapid prototyping methods

    Science.gov (United States)

    Dalewski, R. T.; Gumowski, K.; Barczak, T.; Godek, J.

    2014-08-01

    This article presents results of the aerodynamic testing of a micro unmanned aerial vehicle rotor efficiency. The rotors were prepared as a set of two rotors in a counter-rotating ducted drive. Prototypes of the drives were made using two rapid prototyping techniques - FDM - fused deposition modelling method and SLS - selective laser sintering. Rotors were made then treated by introducing additional finishing cyanoacrylate coating and abrasive processing. Main differences between those models were observed in fan shape, porosity, surface roughness and mechanical properties - stiffness. An influence of these factors was observed on an aerodynamic efficiency. For the obtained prototypes both simulations and experimental testing were conducted with thrust, power, torque measurements, as well as the measurement of velocity and pressure distribution at the outlet of the duct. The results show the possibility of using rapid prototyping techniques to produce prototypes of drives operating in the low and medium Reynolds numbers (6000-60000), and the aerodynamic shape relevant factors affecting the preparation and performance of such drives. In addition, simulation studies were performed using the Fluent environment where experimental results were confronted with the results of simulation studies.

  5. Boundary-Layer Transition Detection in Cryogenic Wind Tunnel Using Fluorescent Paints

    Science.gov (United States)

    Sullivan, John

    1999-01-01

    Luminescent molecular probes imbedded in a polymer binder form a temperature or pressure paint. On excitation by light of the proper wavelength, the luminescence, which is quenched either thermally or by oxygen, is detected by a camera or photodetector. From the detected luminescent intensity, temperature and pressure can be determined. The basic photophysics, calibration, accuracy and time response of a luminescent paints is described followed by applications in low speed, transonic, supersonic and cryogenic wind tunnels and in rotating machinery.

  6. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    OpenAIRE

    Kolář Jan

    2012-01-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic sha...

  7. An important achievement of Professor Ion Stroescu: the wind tunnel of the Polytechnic School of Bucharest

    Directory of Open Access Journals (Sweden)

    Nicolae-Serban TOMESCU

    2011-12-01

    Full Text Available This paper summarizes the contribution of Ion Stroescu to the experimental aerodynamics development in Romania through the design, in collaboration with Professor Elie Carafoli, of the subsonic wind tunnel of the Polytechnic School in Bucharest. Without any exaggeration, the paper also presents the general context in which this construction was built, when aeronautical higher education was being set up in Romania and young aviation industry made strides to world affirmation by its achievements.

  8. Wind-tunnel Investigation of Effects of Rear Upper Surface Modification on a NASA Supercritical Airfoil

    Science.gov (United States)

    Harris, C. D.; Blackwell, J. A., Jr.

    1972-01-01

    Wind tunnel tests were conducted at Mach numbers from 0.60 to 0.81 to examine the effects on supercritical airfoil of modifying the rear upper surface to reduce the magnitude of an intermediate off design second velocity peak. The modification was accomplished by increasing the upper surface curvature around the 50 percent chord station and reducing the curvature over approximately the rearmost 30 percent of the airfoil while maintaining the same trailing edge thickness.

  9. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    Science.gov (United States)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark

    2017-01-01

    The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.

  10. Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6

    Science.gov (United States)

    Lee, George

    1993-01-01

    A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.

  11. Wind Speed Response of Sap Flow in Five Subtropical Trees Based on Wind Tunnel Experiments

    OpenAIRE

    Laplace, Sophie; Kume, Tomonori; Chu, Chia-Ren; Komatsu, Hikaru

    2013-01-01

    Aims: We evaluated the responses of tree sap flow to wind speeds in coniferous and broad-leaved plants under steady and unsteady wind conditions. Study Design: We performed sap flow and micro-meteorological measurements on two conifers, Chamaecyparis obtusa var. formosana and Araucaria cunninghamii, and three broadleaved species, Swietenia mahagoni, Michelia formosana and Plumeria acutifolia in a wind tunnel. Place and Duration of Study: Civil Engineering Department, National Central Universi...

  12. Smart-actuated continuous moldline technology (CMT) mini wind tunnel test

    Science.gov (United States)

    Pitt, Dale M.; Dunne, James P.; Kilian, Kevin J.

    1999-07-01

    The Smart Aircraft and Marine Propulsion System Demonstration (SAMPSON) Program will culminate in two separate demonstrations of the application of Smart Materials and Structures technology. One demonstration will be for an aircraft application and the other for marine vehicles. The aircraft portion of the program will examine the application of smart materials to aircraft engine inlets which will deform the inlet in-flight in order to regulate the airflow rate into the engine. Continuous Moldline Technology (CMT), a load-bearing reinforced elastomer, will enable the use of smart materials in this application. The capabilities of CMT to withstand high-pressure subsonic and supersonic flows were tested in a sub-scale mini wind- tunnel. The fixture, used as the wind-tunnel test section, was designed to withstand pressure up to 100 psi. The top and bottom walls were 1-inch thick aluminum and the side walls were 1-inch thick LEXAN. High-pressure flow was introduced from the Boeing St. Louis poly-sonic wind tunnel supply line. CMT walls, mounted conformal to the upper and lower surfaces, were deflected inward to obtain a converging-diverging nozzle. The CMT walls were instrumented for vibration and deflection response. Schlieren photography was used to establish shock wave motion. Static pressure taps, embedded within one of the LEXAN walls, monitored pressure variation in the mini-wind tunnel. High mass flow in the exit region. This test documented the response of CMT technology in the presence of high subsonic flow and provided data to be used in the design of the SAMPSON Smart Inlet.

  13. Cryogenic Technology, part 1. [conference proceedings; cryogenic wind tunnel design and instrumentation

    Science.gov (United States)

    1980-01-01

    Different engineering problems associated with the design of mechanisms and systems to operate in a cryogenic environment are discussed. The focal point for the entire engineering effort was the design of the National Transonic Facility, which is a closed-circuit cryogenic wind tunnel. The papers covered a variety of mechanical, structural, and systems design subjects including thermal structures insulation systems, noise, seals, and materials.

  14. Robust Multivariable Flutter Suppression for the Benchmark Active Control Technology (BACT) Wind-Tunnel Model

    Science.gov (United States)

    Waszak, Martin R.

    1997-01-01

    The Benchmark Active Controls Technology (BACT) project is part of NASA Langley Research Center s Benchmark Models Program for studying transonic aeroelastic phenomena. In January of 1996 the BACT wind-tunnel model was used to successfully demonstrate the application of robust multivariable control design methods (H and -synthesis) to flutter suppression. This paper addresses the design and experimental evaluation of robust multivariable flutter suppression control laws with particular attention paid to the degree to which stability and performance robustness was achieved.

  15. A Wind Tunnel Study of a Sting-Mounted Circulation Control Wing

    Science.gov (United States)

    1989-12-01

    referenced to 3 either wind, stability, or body axes systems (for a discussion of these axes systems, see Roskam (18)). Other 3 data collected by the...Fluids. New York: McGraw-Hill, Inc., 1982. 17. Pope, A. and W. H. Rae. Low-Speed Wind Tunnel Testing. New York: John Wiley & Sons, Inc., 1984. 18. Roskam ...J. Airplane Flight Dynamics and Automatic Flicht Controls: Part I. Ottawa: Roskam Aviation and Engineering Corp., 1979. 3 19. Systems Research

  16. Wind tunnel test on PC cable-stayed bridge; PC shachokyo no taifu seino shiken

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, Y. [Kyushu Inst. of Technology, Kitakyushu (Japan). Faculty of Engineering

    1997-05-30

    This paper describes the wind tunnel test on a PC cable-stayed bridge. The aerodynamic force that acts on a building is represented by the drag that works in the wind direction, the lift that works perpendicularly to the wind direction, and the aerodynamic moment that causes rotation. In the measurement of wind load, a girder is partially extracted in the wind tunnel and set in a three-component balance, and the drag, lift, and aerodynamic moment are measured using a strain meter while blowing the wind. In a wind tunnel experiment, the similarity on Reynolds number, field number, rigidity, hydraulic force, structural attenuation, and reduced wind velocity is required. However, the wind velocity in the actual bridge uses the same air as that in an experiment. The similarity rule on the Reynolds is not thus satisfied. It is necessary to cause no self-excited vibration (galloping and flutter) as wind-resistant performance and suppress the eddy excitation to less than the allowable amplitude. Moreover, the three-dimensional experiment using an elastic model is conducted in addition to the two-dimensional experiment using a rigid model. In the three-dimensional experiment, various vibration modes that occur in the actual bridge appear. 12 refs., 15 figs.

  17. Hypersonic wind-tunnel free-flying experiments with onboard instrumentation

    KAUST Repository

    Mudford, Neil R.

    2015-01-01

    Hypersonic wind-tunnel testing with "free-flight" models unconnected to a sting ensures that sting/wake flow interactions do not compromise aerodynamic coefficient measurements. The development of miniaturized electronics has allowed the demonstration of a variant of a new method for the acquisition of hypersonic model motion data using onboard accelerometers, gyroscopes, and a microcontroller. This method is demonstrated in a Mach 6 wind-tunnel flow, whose duration and pitot pressure are sufficient for the model to move a body length or more and turn through a significant angle. The results are compared with those obtained from video analysis of the model motion, the existing method favored for obtaining aerodynamic coefficients in similar hypersonic wind-tunnel facilities. The results from the two methods are in good agreement. The new method shows considerable promise for reliable measurement of aerodynamic coefficients, particularly because the data obtained are in more directly applicable forms of accelerations and rates of turn, rather than the model position and attitude obtained from the earlier visualization method. The ideal may be to have both methods operating together.

  18. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    Science.gov (United States)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  19. A New Global Regression Analysis Method for the Prediction of Wind Tunnel Model Weight Corrections

    Science.gov (United States)

    Ulbrich, Norbert Manfred; Bridge, Thomas M.; Amaya, Max A.

    2014-01-01

    A new global regression analysis method is discussed that predicts wind tunnel model weight corrections for strain-gage balance loads during a wind tunnel test. The method determines corrections by combining "wind-on" model attitude measurements with least squares estimates of the model weight and center of gravity coordinates that are obtained from "wind-off" data points. The method treats the least squares fit of the model weight separate from the fit of the center of gravity coordinates. Therefore, it performs two fits of "wind- off" data points and uses the least squares estimator of the model weight as an input for the fit of the center of gravity coordinates. Explicit equations for the least squares estimators of the weight and center of gravity coordinates are derived that simplify the implementation of the method in the data system software of a wind tunnel. In addition, recommendations for sets of "wind-off" data points are made that take typical model support system constraints into account. Explicit equations of the confidence intervals on the model weight and center of gravity coordinates and two different error analyses of the model weight prediction are also discussed in the appendices of the paper.

  20. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  1. A New Position Measurement System Using a Motion-Capture Camera for Wind Tunnel Tests

    Directory of Open Access Journals (Sweden)

    Yousok Kim

    2013-09-01

    Full Text Available Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS. The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape of the test specimen using system identification methods (frequency domain decomposition, FDD. By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape with the 3D measurements.

  2. Use of wind tunnel measurements for mathematical model comparison and validation

    Energy Technology Data Exchange (ETDEWEB)

    Corti, A.; Zanobini, M. [Firenze Univ. (Italy). Dept. of Energy; Canepa, E. [Genova Univ. (Italy). Dept. of Physics

    2002-07-01

    In this paper hourly average concentrations obtained by means of several dispersion mathematical models (DIMULA, ISC3, SAFEAIR and ADMS2) considering their various options for the calculation of dispersion parameters are compared against measurements performed in the wind tunnel of C.R.I.A.C.I.V. (Centro di Ricerca Interuniversitario di Aerodinamica delle Costruzioni ed Ingegneria del Vento) at Prato, Italy. Measurements are referred to diffusion experiments in neutral conditions using a 1:270 small scale model above flat terrain. Different experimental conditions were considered in dependence of height and number of emitting stacks (coupled or single) and wind direction. Wind tunnel simulated emissions were referred to a buoyancy condition using a mixture based on the presence of ethylene (20% vol) and helium (80% vol) in order to have a suitable tracer. The experimental results include ground level concentration (GLC) maps and vertical profiles, covering a distance range of about 1,3 km from the stacks at full scale. A statistical validation procedure was applied using wind tunnel experimental results as data set in order to evaluate model performances. (orig.)

  3. Wind-tunnel development of an SR-71 aerospike rocket flight test configuration

    Science.gov (United States)

    Smith, Stephen C.; Shirakata, Norm; Moes, Timothy R.; Cobleigh, Brent R.; Conners, Timothy H.

    1996-01-01

    A flight experiment has been proposed to investigate the performance of an aerospike rocket motor installed in a lifting body configuration. An SR-71 airplane would be used to carry the aerospike configuration to the desired flight test conditions. Wind-tunnel tests were completed on a 4-percent scale SR-71 airplane with the aerospike pod mounted in various locations on the upper fuselage. Testing was accomplished using sting and blade mounts from Mach 0.6 to Mach 3.2. Initial test objectives included assessing transonic drag and supersonic lateral-directional stability and control. During these tests, flight simulations were run with wind-tunnel data to assess the acceptability of the configurations. Early testing demonstrated that the initial configuration with the aerospike pod near the SR-71 center of gravity was unsuitable because of large nosedown pitching moments at transonic speeds. The excessive trim drag resulting from accommodating this pitching moment far exceeded the excess thrust capability of the airplane. Wind-tunnel testing continued in an attempt to find a configuration suitable for flight test. Multiple configurations were tested. Results indicate that an aft-mounted model configuration possessed acceptable performance, stability, and control characteristics.

  4. Wind tunnel test of a variable-diameter tiltrotor (VDTR) model

    Science.gov (United States)

    Matuska, David; Dale, Allen; Lorber, Peter

    1994-01-01

    This report documents the results from a wind tunnel test of a 1/6th scale Variable Diameter Tiltrotor (VDTR). This test was a joint effort of NASA Ames and Sikorsky Aircraft. The objective was to evaluate the aeroelastic and performance characteristics of the VDTR in conversion, hover, and cruise. The rotor diameter and nacelle angle of the model were remotely changed to represent tiltrotor operating conditions. Data is presented showing the propulsive force required in conversion, blade loads, angle of attack stability and simulated gust response, and hover and cruise performance. This test represents the first wind tunnel test of a variable diameter rotor applied to a tiltrotor concept. The results confirm some of the potential advantages of the VDTR and establish the variable diameter rotor a viable candidate for an advanced tiltrotor. This wind tunnel test successfully demonstrated the feasibility of the Variable Diameter rotor for tilt rotor aircraft. A wide range of test points were taken in hover, conversion, and cruise modes. The concept was shown to have a number of advantages over conventional tiltrotors such as reduced hover downwash with lower disk loading and significantly reduced longitudinal gust response in cruise. In the conversion regime, a high propulsive force was demonstrated for sustained flight with acceptable blade loads. The VDTR demonstrated excellent gust response capabilities. The horizontal gust response correlated well with predictions revealing only half the response to turbulence of the conventional civil tiltrotor.

  5. A new position measurement system using a motion-capture camera for wind tunnel tests.

    Science.gov (United States)

    Park, Hyo Seon; Kim, Ji Young; Kim, Jin Gi; Choi, Se Woon; Kim, Yousok

    2013-09-13

    Considering the characteristics of wind tunnel tests, a position measurement system that can minimize the effects on the flow of simulated wind must be established. In this study, a motion-capture camera was used to measure the displacement responses of structures in a wind tunnel test, and the applicability of the system was tested. A motion-capture system (MCS) could output 3D coordinates using two-dimensional image coordinates obtained from the camera. Furthermore, this remote sensing system had some flexibility regarding lab installation because of its ability to measure at relatively long distances from the target structures. In this study, we performed wind tunnel tests on a pylon specimen and compared the measured responses of the MCS with the displacements measured with a laser displacement sensor (LDS). The results of the comparison revealed that the time-history displacement measurements from the MCS slightly exceeded those of the LDS. In addition, we confirmed the measuring reliability of the MCS by identifying the dynamic properties (natural frequency, damping ratio, and mode shape) of the test specimen using system identification methods (frequency domain decomposition, FDD). By comparing the mode shape obtained using the aforementioned methods with that obtained using the LDS, we also confirmed that the MCS could construct a more accurate mode shape (bending-deflection mode shape) with the 3D measurements.

  6. A Computational Simulation Study of Fluid Mechanics of Low-Speed Wind Tunnel Contractions

    Directory of Open Access Journals (Sweden)

    Yi-Huan Kao

    2017-05-01

    Full Text Available In this work, the fluid mechanics performance of four different contraction wall shapes has been studied and compared side-by-side by computational simulation, and the effect of contraction cross-sectional shape on the flow uniformity at the contraction exit has been included as well. A different contraction wall shape could result in up to an extra 4% pressure drop of a closed-loop wind tunnel, and the contraction wall shape has a stronger influence on the pressure loss than the contraction cross-sectional shape. The first and the second derivatives from different wall shape equations could provide a hint for qualitatively comparing the flow uniformity at the contraction exits. A wind tunnel contraction with an octagonal shape provides not only better fluid mechanics performance than that with a circular or a square cross-sectional shape, but also lower manufacturing costs. Moreover, a smaller blockage ratio within the test section can be achieved by employing an octagonal cross-sectional shape instead of a circular cross-sectional shape under the same hydraulic diameter circumstance. A wind tunnel contraction with an octagonal cross-sectional shape is recommended to be a design candidate.

  7. Recent Advancements in the Infrared Flow Visualization System for the NASA Ames Unitary Plan Wind Tunnels

    Science.gov (United States)

    Garbeff, Theodore J., II; Baerny, Jennifer K.

    2017-01-01

    The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.

  8. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Science.gov (United States)

    de Lucas, Manuela; Ferrer, Miguel; Janss, Guyonne F E

    2012-01-01

    Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed). We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  9. Using wind tunnels to predict bird mortality in wind farms: the case of griffon vultures.

    Directory of Open Access Journals (Sweden)

    Manuela de Lucas

    Full Text Available BACKGROUND: Wind farms have shown a spectacular growth during the last 15 years. Avian mortality through collision with moving rotor blades is well-known as one of the main adverse impacts of wind farms. In Spain, the griffon vulture incurs the highest mortality rates in wind farms. METHODOLOGY/PRINCIPAL FINDINGS: As far as we know, this study is the first attempt to predict flight trajectories of birds in order to foresee potentially dangerous areas for wind farm development. We analyse topography and wind flows in relation to flight paths of griffon vultures, using a scaled model of the wind farm area in an aerodynamic wind tunnel, and test the difference between the observed flight paths of griffon vultures and the predominant wind flows. Different wind currents for each wind direction in the aerodynamic model were observed. Simulations of wind flows in a wind tunnel were compared with observed flight paths of griffon vultures. No statistical differences were detected between the observed flight trajectories of griffon vultures and the wind passages observed in our wind tunnel model. A significant correlation was found between dead vultures predicted proportion of vultures crossing those cells according to the aerodynamic model. CONCLUSIONS: Griffon vulture flight routes matched the predominant wind flows in the area (i.e. they followed the routes where less flight effort was needed. We suggest using these kinds of simulations to predict flight paths over complex terrains can inform the location of wind turbines and thereby reduce soaring bird mortality.

  10. Pose Measurement Method and Experiments for High-Speed Rolling Targets in a Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Zhenyuan Jia

    2014-12-01

    Full Text Available High-precision wind tunnel simulation tests play an important role in aircraft design and manufacture. In this study, a high-speed pose vision measurement method is proposed for high-speed and rolling targets in a supersonic wind tunnel. To obtain images with high signal-to-noise ratio and avoid impacts on the aerodynamic shape of the rolling targets, a high-speed image acquisition method based on ultrathin retro-reflection markers is presented. Since markers are small-sized and some of them may be lost when the target is rolling, a novel markers layout with which markers are distributed evenly on the surface is proposed based on a spatial coding method to achieve highly accurate pose information. Additionally, a pose acquisition is carried out according to the mentioned markers layout after removing mismatching points by Case Deletion Diagnostics. Finally, experiments on measuring the pose parameters of high-speed targets in the laboratory and in a supersonic wind tunnel are conducted to verify the feasibility and effectiveness of the proposed method. Experimental results indicate that the position measurement precision is less than 0.16 mm, the pitching and yaw angle precision less than 0.132° and the roll angle precision 0.712°.

  11. Supersonic and transonic Mach probe for calibration control in the Trisonic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Alexandru Marius PANAIT

    2017-12-01

    Full Text Available A supersonic and high speed transonic Pitot Prandtl is described as it can be implemented in the Trisonic Wind Tunnel for calibration and verification of Mach number precision. A new calculation method for arbitrary precision Mach numbers is proposed and explained. The probe is specially designed for the Trisonic wind tunnel and would greatly simplify obtaining a precise Mach calibration in the critical high transonic and low supersonic regimes, where typically wind tunnels exhibit poor performance. The supersonic Pitot Prandtl combined probe is well known in the aerospace industry, however the proposed probe is a derivative of the standard configuration, combining a stout cone-cylinder probe with a supersonic Pitot static port which allows this configuration to validate the Mach number by three methods: conical flow method – using the pressure ports on a cone generatrix, the Schlieren-optical method of shock wave angle photogrammetry and the Rayleigh supersonic Pitot equation, while having an aerodynamic blockage similar to that of a scaled rocket model commonly used in testing. The proposed probe uses an existing cone-cylinder probe forebody and support, adding only an afterbody with a support for a static port.

  12. Cryogenic wind tunnel technology. A way to measurement at higher Reynolds numbers

    Science.gov (United States)

    Beck, J. W.

    1984-01-01

    The goals, design, problems, and value of cryogenic transonic wind tunnels being developed in Europe are discussed. The disadvantages inherent in low-Reynolds-number (Re) wind tunnel simulations of aircraft flight at high Re are reviewed, and the cryogenic tunnel is shown to be the most practical method to achieve high Re. The design proposed for the European Transonic Wind tunnel (ETW) is presented: parameters include cross section. DISPLAY 83A46484/2 = 4 sq m, operating pressure = 5 bar, temperature = 110-120 K, maximum Re = 40 x 10 to the 6th, liquid N2 consumption = 40,000 metric tons/year, and power = 39,5 MW. The smaller Cologne subsonic tunnel being adapted to cryogenic use for preliminary studies is described. Problems of configuration, materials, and liquid N2 evaporation and handling and the research underway to solve them are outlined. The benefits to be gained by the construction of these costly installations are seen more in applied aerodynamics than in basic research in fluid physics. The need for parallel development of both high Re tunnels and computers capable of performing high-Re numerical analysis is stressed.

  13. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  14. Nacelle Chine Installation Based on Wind-Tunnel Test Using Efficient Global Optimization

    Science.gov (United States)

    Kanazaki, Masahiro; Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Jeong, Shinkyu; Yamamoto, Kazuomi

    Design exploration of a nacelle chine installation was carried out. The nacelle chine improves stall performance when deploying multi-element high-lift devices. This study proposes an efficient design process using a Kriging surrogate model to determine the nacelle chine installation point in wind-tunnel tests. The design exploration was conducted in a wind-tunnel using the JAXA high-lift aircraft model at the JAXA Large-scale Low-speed Wind Tunnel. The objective was to maximize the maximum lift. The chine installation points were designed on the engine nacelle in the axial and chord-wise direction, while the geometry of the chine was fixed. In the design process, efficient global optimization (EGO) which includes Kriging model and genetic algorithm (GA) was employed. This method makes it possible both to improve the accuracy of the response surface and to explore the global optimum efficiently. Detailed observations of flowfields using the Particle Image Velocimetry method confirmed the chine effect and design results.

  15. A surface flow visualisation technique for use in cryogenic wind tunnels

    Science.gov (United States)

    Kell, D. M.

    1978-01-01

    A method of surface flow visualization for use in cryogenic wind tunnels is described which requires injection of a cryogenic liquid onto the model while the tunnel is running. This necessitates the use of a substance that remains liquid over a large range of cryogenic wind tunnel operating temperatures. It is found that propane (C3H8) is a suitable substance. Experiments are conducted in a subsonic cryogenic wind tunnel to assess the practical application of liquid propane flow visualization. The propane is stored in a chamber cooled by liquid nitrogen and when required is pumped through pipes to a gallery inside the model and then out onto the surface through small holes. To color the liquid a suspension of pigment particles is used. Propane is supplied to the cooled chamber in gaseous form from a standard liquefied gas cylinder. The sequence of events is illustrated on a propane temperature-entropy diagram. The use of liquefied propane for flow visualization in a cryogenic tunnel operating at pressures up to 40 atm appears to be feasible. Illustrative examples are provided.

  16. Classification of spray nozzles based on droplet size distributions and wind tunnel tests.

    Science.gov (United States)

    De Schamphelerie, M; Spanoghe, P; Nuyttens, D; Baetens, K; Cornelis, W; Gabriels, D; Van der Meeren, P

    2006-01-01

    Droplet size distribution of a pesticide spray is recognised as a main factor affecting spray drift. As a first approximation, nozzles can be classified based on their droplet size spectrum. However, the risk of drift for a given droplet size distribution is also a function of spray structure, droplet velocities and entrained air conditions. Wind tunnel tests to determine actual drift potentials of the different nozzles have been proposed as a method of adding an indication of the risk of spray drift to the existing classification based on droplet size distributions (Miller et al, 1995). In this research wind tunnel tests were performed in the wind tunnel of the International Centre for Eremology (I.C.E.), Ghent University, to determine the drift potential of different types and sizes of nozzles at various spray pressures. Flat Fan (F) nozzles Hardi ISO 110 02, 110 03, 110 04, 110 06; Low-Drift (LD) nozzles Hardi ISO 110 02, 110 03, 110 04 and Injet Air Inclusion (AI) nozzles Hardi ISO 110 02, 110 03, 110 04 were tested at a spray pressures of 2, 3 and 4 bar. The droplet size spectra of the F and the LD nozzles were measured with a Malvern Mastersizer at spray pressures 2 bar, 3 bar and 4 bar. The Malvern spectra were used to calculate the Volume Median Diameters (VMD) of the sprays.

  17. Simulating flow around scaled model of a hypersonic vehicle in wind tunnel

    Science.gov (United States)

    Markova, T. V.; Aksenov, A. A.; Zhluktov, S. V.; Savitsky, D. V.; Gavrilov, A. D.; Son, E. E.; Prokhorov, A. N.

    2016-11-01

    A prospective hypersonic HEXAFLY aircraft is considered in the given paper. In order to obtain the aerodynamic characteristics of a new construction design of the aircraft, experiments with a scaled model have been carried out in a wind tunnel under different conditions. The runs have been performed at different angles of attack with and without hydrogen combustion in the scaled propulsion engine. However, the measured physical quantities do not provide all the information about the flowfield. Numerical simulation can complete the experimental data as well as to reduce the number of wind tunnel experiments. Besides that, reliable CFD software can be used for calculations of the aerodynamic characteristics for any possible design of the full-scale aircraft under different operation conditions. The reliability of the numerical predictions must be confirmed in verification study of the software. The given work is aimed at numerical investigation of the flowfield around and inside the scaled model of the HEXAFLY-CIAM module under wind tunnel conditions. A cold run (without combustion) was selected for this study. The calculations are performed in the FlowVision CFD software. The flow characteristics are compared against the available experimental data. The carried out verification study confirms the capability of the FlowVision CFD software to calculate the flows discussed.

  18. The application of cryogenics to high Reynolds number testing in wind tunnels. I - Evolution, theory, and advantages

    Science.gov (United States)

    Kilgore, R. A.; Dress, D. A.

    1984-01-01

    During the time which has passed since the construction of the first wind tunnel in 1870, wind tunnels have been developed to a high degree of sophistication. However, their development has consistently failed to keep pace with the demands placed on them. One of the more serious problems to be found with existing transonic wind tunnels is their inability to test subscale aircraft models at Reynolds numbers sufficiently near full-scale values to ensure the validity of using the wind tunnel data to predict flight characteristics. The Reynolds number capability of a wind tunnel may be increased by a number of different approaches. However, the best solution in terms of model, balance, and model support loads, as well as in terms of capital and operating cost appears to be related to the reduction of the temperature of the test gas to cryogenic temperatures. The present paper has the objective to review the evolution of the cryogenic wind tunnel concept and to describe its more important advantages.

  19. Additive manufacturing technologies 3D printing, rapid prototyping, and direct digital manufacturing

    CERN Document Server

    Gibson, Ian; Stucker, Brent

    2015-01-01

    This book covers in detail the various aspects of joining materials to form parts. A conceptual overview of rapid prototyping and layered manufacturing is given,  beginning with the fundamentals so that readers can get up to speed quickly. Unusual and emerging applications such as micro-scale manufacturing, medical applications, aerospace, and rapid manufacturing are also discussed. This book provides a comprehensive overview of rapid prototyping technologies as well as support technologies such as software systems, vacuum casting, investment casting, plating, infiltration and other systems. This book also: Reflects recent developments and trends and adheres to the ASTM, SI, and other standards Includes chapters on automotive technology, aerospace technology and low-cost AM technologies Provides a broad range of technical questions to ensure comprehensive understanding of the concepts covered  

  20. Parameterization of volcanic ash remobilization by wind-tunnel erosion experiments.

    Science.gov (United States)

    Del Bello, Elisabetta; Taddeucci, Jacopo; Merrison, Jonathan; Alois, Stefano; Iversen, Jens Jacob; Scarlato, Piergiorgio

    2017-04-01

    The remobilization of volcanic ash from the ground is one of the many problems posing threat to life and infrastructures during and after the course of an explosive volcanic eruption. A proper management of the risks connected to this problem requires a thorough understanding of the factors that influence and promote the dispersal of particles over large distances. Towards this target, we conducted a series of experiments aimed at defining first-order processes controlling the remobilization threshold of ash particles by wind erosion. In the framework of the EU-funded Europlanet project, we joinly used the environmental wind tunnel facility at Aarhus University (DK) and the state-of-the art high-speed imaging equipment of INGV experimental lab (Italy) to capture at unparalleled temporal and spatial resolution the removal dynamics of ash-sized (half-millimetre to micron-sized) particles. A homogenous layer of particles was set at on a plate placed downwind a boundary layer setup. Resuspension processes were filmed at 2000 fps and 50 micron pixel resolution, and the plate weighted pre and post-experiment. Explored variables include: 1) wind speed (from ca. 1 to 7 m/s) and boundary layer structure; 2) particle grain size (from 32-63 to 90-125 micron), and sample sorting); 3) chemical and textural features, using basalt and trachyte samples from Campi Flegrei (Pomici Principali,10 ka) and Eyjafjallajökull (May 2010) eruptions; and 4) temperature and humidity, by conducting experiments either at ambient conditions or with a heated sample. We found that the grain size distribution exerts a strong control on the fundamental dynamics of gas-particle coupling. Particles > 90 micron detach from the particles layer individually, also entering the gas flow individually. Conversely, removal < 63 micron particles occurs in clumps of aggregates. These clumps, once taken in charge by the gas flow, are frequently disaggregated and dispersed rapidly (order of few milliseconds). Our

  1. Model deformation measurements at a cryogenic wind tunnel using photogrammetry

    Science.gov (United States)

    Burner, A. W.; Snow, W. L.; Goad, W. K.

    1985-01-01

    A photogrammetric closed circuit television system to measure model deformation at the National Transonic Facility (NTF) is described. The photogrammetric approach was chosen because of its inherent rapid data recording of the entire object field. Video cameras are used to acquire data instead of film cameras due to the inaccessibility of cameras which must be housed within the cryogenic, high pressure plenum of this facility. Data reduction procedures and the results of tunnel tests at the NTF are presented.

  2. Simulation and Rapid Prototyping of Adaptive Control Systems using the Adaptive Blockset for Simulink

    DEFF Research Database (Denmark)

    Ravn, Ole

    1998-01-01

    The paper describes the design considerations and implementational aspects of the Adaptive Blockset for Simulink which has been developed in a prototype implementation. The concept behind the Adaptive Blockset for Simulink is to bridge the gap between simulation and prototype controller...... implementation. This is done using the code generation capabilities of Real Time Workshop in combination with C s-function blocks for adaptive control in Simulink. In the paper the design of each group of blocks normally found in adaptive controllers is outlined. The block types are, identification, controller...... design, controller and state variable filter.The use of the Adaptive Blockset is demonstrated using a simple laboratory setup. Both the use of the blockset for simulation and for rapid prototyping of a real-time controller are shown....

  3. Studies on the Process Parameters of Rapid Prototyping Technique (Stereolithography for the Betterment of Part Quality

    Directory of Open Access Journals (Sweden)

    Raju Bangalore Singe Gowda

    2014-01-01

    Full Text Available Rapid prototyping (RP has evolved as frontier technology in the recent times, which allows direct transformation of CAD files into functional prototypes where it tremendously reduces the lead time to produce physical prototypes necessary for design verification, fit, and functional analysis by generating the prototypes directly from the CAD data. Part quality in the rapid prototyping process is a function of build parameters such as hatch cure depth, layer thickness, orientation, and hatch spacing. Thus an attempt was made to identify, study, and optimize the process parameters governing the system which are related to part characteristics using Taguchi experimental design techniques quality. The part characteristics can be divided into physical part and mechanical part characteristics. The physical characteristics are surface finish, dimensional accuracy, distortion, layer thickness, hatch cure, and hatch file, whereas mechanical characteristics are flexural strength, ultimate tensile strength, and impact strength. Thus, this paper proposes to characterize the influence of the physical build parameters over the part quality. An L9 orthogonal array was designed with the minimum number of experimental runs with desired parameter settings and also by analysis tools such as ANOVA (analysis of variance. Establishment of experimentally verified correlations between the physical part characteristics and mechanical part characteristics to obtain an optimal process parameter level for betterment of part quality is obtained. The process model obtained by the empirical relation can be used to determine the strength of the prototype for the given set of parameters that shows the dependency of strength, which are essential for designers and RP machine users.

  4. Studying the Technology of Creating Cortical Electrode Instruments using the Rapid Prototyping Technology

    Directory of Open Access Journals (Sweden)

    Ablyaz T. R.

    2017-06-01

    Full Text Available This paper shows the results of studying the technology of manufacturing cortical electrode-instruments (EI with the use of indirect methods of the Rapid Prototyping technology. Functional EI prototypes were made by layered synthesis of the photopolymer material with the use of the stereolithography technology (SLA - Stereo Lithography Apparatus. The article is focused on two methods of indirect EI manufacturing. One of the EI prototypes was used for making a molded wax model for hot investment casting, followed by applying copper coating. The second prototype was used for applying copper plating to a prepared current-conductive layer. As a result of EDMing a steel workpiece, both EIs reached the desired depth, which is 1 mm. The copper plating applied to the EI preserves its integrity. Through the use of the casting technology, there is a possibility to cut the economic costs by 35%. Using a prototype with preliminarily applied conductive coating makes it possible to make geometrically-complex EIs.

  5. Rapid prototyping and 3D-virtual models for operative dentistry education in Brazil.

    Science.gov (United States)

    Soares, Paulo Vinícius; de Almeida Milito, Giovana; Pereira, Fabrícia Araújo; Reis, Bruno Rodrigues; Soares, Carlos José; de Sousa Menezes, Murilo; de Freitas Santos-Filho, Paulo César

    2013-03-01

    Many dental students struggle for visual recognition when first exposed to the study of tooth cavity preparation in the operative dentistry laboratory. Rapid prototypes and virtual models of different cavity preparations were developed for the incoming first-year class of 2010 at the Dental School of Federal University of Uberlândia, Brazil, to help them to visualize the subtle differences in cavity preparations and are described in this article. Rapid prototyping techniques have been used in dental therapy, mainly for the fabrication of models to ease surgical planning in implantology, orthodontics, and maxillofacial prostheses. On the other hand, the application of these technologies associated with 3D-virtual models in dental education is waiting to be exploited, once they have significant potential to complement conventional training methods in dentistry.

  6. A novel low-cost mobile robot for rapid prototyping of precision farming applications

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Neerup, Mathias Mikkel; Larsen, Leon Bonde

    field experiments using field robots which is typically a demanding task in terms of time consumption and logistics. Small indoor robots are sometimes used to emulate the larger field robots which allows for rapid prototyping and intermediate testing in the laboratory before moving to the field...... experiments. In this work we present a novel FrobitPro robot platform designed for rapid prototyping of FroboMind field robot applications. FrobitPro has a fundamental design similar to many current wheeled and tracked robots such as the Kongskilde Robotti, and the workflow of migrating from simulation...... to FrobitPro to field robot is therefore merely a matter of using different low level interface components. The FrobitPro robot is capable of carrying larger sensors such as RTK- GNSS, LIDAR and 3d stereo vision cameras. The platform supports interchangeable wheels for accurate indoor driving as well...

  7. Design of rapid prototype of UAV line-of-sight stabilized control system

    Science.gov (United States)

    Huang, Gang; Zhao, Liting; Li, Yinlong; Yu, Fei; Lin, Zhe

    2018-01-01

    The line-of-sight (LOS) stable platform is the most important technology of UAV (unmanned aerial vehicle), which can reduce the effect to imaging quality from vibration and maneuvering of the aircraft. According to the requirement of LOS stability system (inertial and optical-mechanical combined method) and UAV's structure, a rapid prototype is designed using based on industrial computer using Peripheral Component Interconnect (PCI) and Windows RTX to exchange information. The paper shows the control structure, and circuit system including the inertial stability control circuit with gyro and voice coil motor driven circuit, the optical-mechanical stability control circuit with fast-steering-mirror (FSM) driven circuit and image-deviation-obtained system, outer frame rotary follower, and information-exchange system on PC. Test results show the stability accuracy reaches 5μrad, and prove the effectiveness of the combined line-of-sight stabilization control system, and the real-time rapid prototype runs stable.

  8. Applications of the Rapid Prototyping Technology to Manufacture the Pelton Runners

    Directory of Open Access Journals (Sweden)

    Dorian Nedelcu

    2013-05-01

    Full Text Available The paper presents an application of the Rapid Prototyping technology using Objet Desktop 3D Printer to manufacture two Pelton runners that are destined for experimental measurements on a Pelton microturbine. The runners are different by bucket’s number and the bucket’s geometry of the second runner is similar with those of the first runner, but scaled in all directions with the bucket’s numbers ratio.

  9. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers

    Science.gov (United States)

    Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R.; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio

    2017-01-01

    Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology. PMID:28368318

  10. Low-Cost Inkjet Printing Technology for the Rapid Prototyping of Transducers.

    Science.gov (United States)

    Andò, Bruno; Baglio, Salvatore; Bulsara, Adi R; Emery, Teresa; Marletta, Vincenzo; Pistorio, Antonio

    2017-04-01

    Recently, there has been an upsurge in efforts dedicated to developing low-cost flexible electronics by exploiting innovative materials and direct printing technologies. This interest is motivated by the need for low-cost mass-production, shapeable, and disposable devices, and the rapid prototyping of electronics and sensors. This review, following a short overview of main printing processes, reports examples of the development of flexible transducers through low-cost inkjet printing technology.

  11. Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography.

    Science.gov (United States)

    Gomez, Laura Piedad Chia; Spangenberg, Arnaud; Ton, Xuan-Anh; Fuchs, Yannick; Bokeloh, Frank; Malval, Jean-Pierre; Tse Sum Bui, Bernadette; Thuau, Damien; Ayela, Cédric; Haupt, Karsten; Soppera, Olivier

    2016-07-01

    Two-photon stereolithography is used for rapid prototyping of submicrometre molecularly imprinted polymer-based 3D structures. The structures are evaluated as chemical sensing elements and their specific recognition properties for target molecules are confirmed. The 3D design capability is exploited and highlighted through the fabrication of an all-organic molecularly imprinted polymeric microelectromechanical sensor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Pre-Test Assessment of the Use Envelope of the Normal Force of a Wind Tunnel Strain-Gage Balance

    Science.gov (United States)

    Ulbrich, N.

    2016-01-01

    The relationship between the aerodynamic lift force generated by a wind tunnel model, the model weight, and the measured normal force of a strain-gage balance is investigated to better understand the expected use envelope of the normal force during a wind tunnel test. First, the fundamental relationship between normal force, model weight, lift curve slope, model reference area, dynamic pressure, and angle of attack is derived. Then, based on this fundamental relationship, the use envelope of a balance is examined for four typical wind tunnel test cases. The first case looks at the use envelope of the normal force during the test of a light wind tunnel model at high subsonic Mach numbers. The second case examines the use envelope of the normal force during the test of a heavy wind tunnel model in an atmospheric low-speed facility. The third case reviews the use envelope of the normal force during the test of a floor-mounted semi-span model. The fourth case discusses the normal force characteristics during the test of a rotated full-span model. The wind tunnel model's lift-to-weight ratio is introduced as a new parameter that may be used for a quick pre-test assessment of the use envelope of the normal force of a balance. The parameter is derived as a function of the lift coefficient, the dimensionless dynamic pressure, and the dimensionless model weight. Lower and upper bounds of the use envelope of a balance are defined using the model's lift-to-weight ratio. Finally, data from a pressurized wind tunnel is used to illustrate both application and interpretation of the model's lift-to-weight ratio.

  13. [Mandibular-driven simultaneous maxillo-mandibular distraction for hemifacial microsomia with rapid prototyping technology].

    Science.gov (United States)

    Gao, Quan-Wen; Song, Hui-Feng; Xu, Ming-Huo; Liu, Chun-Ming; Chai, Jia-Ke

    2013-11-01

    To explore the clinical application of mandibular-driven simultaneous maxillo-mandihular distraction to correct hemifacial microsomia with rapid prototyping technology. The patient' s skull resin model was manufactured with rapid prototyping technology. The osteotomy was designed on skull resin model. According to the preoperative design, the patients underwent Le Fort I osteotomy and mandibular ramus osteotomy. The internal mandible distractor was embedded onto the osteotomy position. The occlusal titanium pin was implanted. Distraction were carried out by mandibular-driven simultaneous maxillo-mandihular distraction 5 days after operation. The distraction in five patients was complete as designed. No infection and dysosteogenesis happened. The longest distance of distraction was 28 mm, and the shortest distance was 16 mm. The facial asymmetry deformity was significantly improved at the end of distraction. The ocelusal plane of patients obviously improved. Rapid prototyping technology is helpful to design precisely osteotomy before operation. Mandibular-driven simultaneous maxillo-mandibular distraction can correct hemifacial microsomia. It is worth to clinical application.

  14. Reconstruction of Frontal Bone With Custom-Made Prosthesis Using Rapid Prototyping.

    Science.gov (United States)

    Florentino, Vinícius Gabriel Barros; Mendonça, Diego Santiago de; Bezerra, Ariel Valente; Silva, Leonardo de Freitas; Pontes, Rafael Figueirêdo; Melo, Carlos Vinícius Mota de; Mello, Manoel de Jesus Rodrigues; de Aguiar, Andréa Silvia Walter

    2016-06-01

    Frontal bone fracture treatment is still an issue of research in craniofacial surgery and neurosurgery. The aims of the treatment are to reduce the complication risks and to keep the aesthetic of the face. Before the management of this fracture type, it is necessary to consider the permanence or not of the frontal sinus function. Rapid prototyping has been an aid tool on planning and simulation of the surgical procedure, improving the diagnostic quality and the implant manufacture, beyond reducing the operative time. Among the used materials on treatment of these fractures, titanium mesh shows large versatility and ease of handling. Poly(methyl methacrylate) has been used in defects of partial thickness or irregularities on cranial surface. The aim of this study is to report a case of a patient presenting sequelae of large fracture of anterior wall of frontal bone, treated by a titanium mesh associated with the customized poly(methyl methacrylate) implant from the rapid prototyping. It could be concluded that the use of this technique showed itself effective on patient treatment, and rapid prototyping demonstrated being a valuable tool showing predictable and satisfactory results.

  15. Implementation of Rapid Prototyping Tools for Power Loss and Cost Minimization of DC-DC Converters

    Directory of Open Access Journals (Sweden)

    Amruta V. Kulkarni

    2016-07-01

    Full Text Available In this paper, power loss and cost models of power electronic converters based on converter ratings and datasheet information are presented. These models aid in creating rapid prototypes which facilitate the component selection process. Through rapid prototyping, users can estimate power loss and cost which are essential in design decisions. The proposed approach treats main power electronic components of a converter as building blocks that can be arranged to obtain multiple topologies to facilitate rapid prototyping. In order to get system-level power loss and cost models, two processes are implemented. The first process automatically provides minimum power loss or cost estimates and identifies components for specific applications and ratings; the second process estimates power losses and costs of each component of interest as well as the whole system. Two examples are used to illustrate the proposed approaches—boost and buck converters in continuous conduction mode. Achieved cost and loss estimates are over 93% accurate when compared to measured losses and real cost data. This research presents derivations of the proposed models, experimental validation of the models and demonstration of a user friendly interface that integrates all the models. Tools presented in this paper are expected to be very useful for practicing engineers, designers, and researchers, and are flexible and adaptable with changing or new technologies and varying component prices.

  16. Rapid Prototyping of Field Programmable Gate Array-Based Discrete Cosine Transform Approximations

    Directory of Open Access Journals (Sweden)

    Trevor W. Fox

    2003-05-01

    Full Text Available A method for the rapid design of field programmable gate array (FPGA-based discrete cosine transform (DCT approximations is presented that can be used to control the coding gain, mean square error (MSE, quantization noise, hardware cost, and power consumption by optimizing the coefficient values and datapath wordlengths. Previous DCT design methods can only control the quality of the DCT approximation and estimates of the hardware cost by optimizing the coefficient values. It is shown that it is possible to rapidly prototype FPGA-based DCT approximations with near optimal coding gains that satisfy the MSE, hardware cost, quantization noise, and power consumption specifications.

  17. Rapid, low-cost prototyping of centrifugal microfluidic devices for effective implementation of various microfluidic components

    Directory of Open Access Journals (Sweden)

    Smith, Suzanne

    2015-05-01

    Full Text Available A centrifugal microfluidic platform to develop various microfluidic operations – the first of its kind in South Africa – is presented. Rapid and low-cost prototyping of centrifugal microfluidic disc devices, as well as a set-up to test the devices using centrifugal forces, is described. Preliminary results show that various microfluidic operations such as fluidic valving, transportation, and microfluidic droplet generation can be achieved. This work provides a complete centrifugal microfluidic platform and the building blocks on which to develop a variety of microfluidic applications and potential products rapidly and at a low cost.

  18. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior.

    Science.gov (United States)

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka; Pein-Hackelbusch, Miriam

    2018-02-01

    There is an increasing need to provide more detailed insight into the behavior of particulate systems. The current powder characterization tools are developed empirically and in many cases, modification of existing equipment is difficult. More flexible tools are needed to provide understanding of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries; overall goal was to assess mixing process of powder blends at small-scale with a combination of spectroscopic and mechanical monitoring. As part of the segregation evaluation studies, the flowability of three different paracetamol/filler-blends at different ratios was investigated, inter alia to define the percolation thresholds. Blends with a paracetamol wt% above the percolation threshold were subsequently investigated in relation to their segregation behavior. Rapid prototyping using 3D printing allowed designing two funnels with tailored flow behavior (funnel flow) of model formulations, which could be monitored with an in-line near-infrared (NIR) spectrometer. Calculating the root mean square (RMS) of the scores of the two first principal components of the NIR spectra visualized spectral variation as a function of process time. In a same setup, mechanical properties (basic flow energy) of the powder blend were monitored during blending. Rapid prototyping allowed for fast modification of powder testing geometries and easy interfacing with process analytical tools, opening new possibilities for more detailed powder characterization.

  19. Habitat Demonstration Unit Project: Leadership and Management Strategies for a Rapid Prototyping Project

    Science.gov (United States)

    Kennedy, Kriss J.; Toup, Larry; Gill, Tracy; Tri, Terry; Howe, Scott; Smitherman, David

    2011-01-01

    This paper gives an overview of the National Aeronautics and Space Administration (NASA) led multi-center Habitat Demonstration Unit (HDU) project leadership and management strategies being used by the NASA HDU team for a rapid prototyping project. The HDU project team constructed and tested an analog prototype lunar surface habitat/laboratory called the Pressurized Excursion Module (PEM) during 2010. The prototype unit subsystems were integrated in a short amount of time, utilizing a tiger team rapid prototyping approach that brought together over 20 habitation-related technologies and innovations from a variety of NASA centers. This paper describes the leadership and management strategies as well as lessons learned pertaining to leading and managing a multi-center diverse team in a rapid prototype environment. The PEM configuration went from a paper design to an operational surface habitat demonstration unit in less than 12 months. The HDU project is part of the strategic plan from the Exploration Systems Mission Directorate (ESMD) Directorate Integration Office (DIO) and the Exploration Mission Systems Office (EMSO) to test destination elements in analog environments. The 2011 HDU-Deep Space Habitat (DSH) configuration will build upon the PEM work, and emphasize validity of crew operations (remote working and living), EVA operations, mission operations, logistics operations, and science operations that might be required in a deep space context for Near Earth Object (NEO) exploration mission architectures. The 2011 HDU-DSH will be field-tested during the 2011 Desert Research and Technologies Studies (DRaTS) field tests. The HDU project is a "technology-pull" project that integrates technologies and innovations from multiple NASA centers. This project will repurpose the HDU 2010 demo unit that was field tested in the 2010 DRaTS, adding habitation functionality to the prototype unit. This paper will describe the strategy of establishing a multi-center project

  20. Validation of a wind tunnel testing facility for blade surface pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Fuglsang, P.; Antoniou, I.; Soerensen, N.N.; Madsen, H.A.

    1998-04-01

    This report concerns development and validation of a 2d testing facility for airfoil pressure measurements. The VELUX open jet wind tunnel was used with a test stand inserted. Reynolds numbers until 1.3 million were achieved with an airfoil chord of 0.45 m. The aerodynamic load coefficients were found from pressure distribution measurements and the total drag coefficient was calculated from wake rake measurements. Stationary inflow as well as dynamic inflow through pitching motion was possible. Wind tunnel corrections were applied for streamline curvature and down-wash. Even though the wind tunnel is not ideal for 2d testing, the overall quality of the flow was acceptable with a uniform flow field at the test stand position and a turbulence intensity of 1 % at the inlet of the test section. Reference values for free stream static and total pressure were found upstream of the test stand. The NACA 63-215 airfoil was tested and the results were compared with measurements from FFA and NACA. The measurements agreed well except for lift coefficient values at high angles of attack and the drag coefficient values at low angles of attack, that were slightly high. Comparisons of the measured results with numerical predictions from the XFOIL code and the EllipSys2D code showed good agreement. Measurements with the airfoil in pitching motion were carried out to study the dynamic aerodynamic coefficients. Steady inflow measurements at high angles of attack were used to investigate the double stall phenomenon. (au) EFP-94; EFP-95; EFP-97. 8 tabs., 82 ills., 16 refs.

  1. Pollutant Plume Dispersion over Hypothetical Urban Areas based on Wind Tunnel Measurements

    Science.gov (United States)

    Mo, Ziwei; Liu, Chun-Ho

    2017-04-01

    Gaussian plume model is commonly adopted for pollutant concentration prediction in the atmospheric boundary layer (ABL). However, it has a number of limitations being applied to pollutant dispersion over complex land-surface morphology. In this study, the friction factor (f), as a measure of aerodynamic resistance induced by rough surfaces in the engineering community, was proposed to parameterize the vertical dispersion coefficient (σz) in the Gaussian model. A series of wind tunnel experiments were carried out to verify the mathematical hypothesis and to characterize plume dispersion as a function of surface roughness as well. Hypothetical urban areas, which were assembled in the form of idealized street canyons of different aspect (building-height-to-street-width) ratios (AR = 1/2, 1/4, 1/8 and 1/12), were fabricated by aligning identical square aluminum bars at different separation apart in cross flows. Pollutant emitted from a ground-level line source into the turbulent boundary layer (TBL) was simulated using water vapour generated by ultrasonic atomizer. The humidity and the velocity (mean and fluctuating components) were measured, respectively, by humidity sensors and hot-wire anemometry (HWA) with X-wire probes in streamwise and vertical directions. Wind tunnel results showed that the pollutant concentration exhibits the conventional Gaussian distribution, suggesting the feasibility of using water vapour as a passive scalar in wind tunnel experiments. The friction factor increased with decreasing aspect ratios (widening the building separation). It was peaked at AR = 1/8 and decreased thereafter. Besides, a positive correlation between σz/xn (x is the distance from the pollutant source) and f1/4 (correlation coefficient r2 = 0.61) was observed, formulating the basic parameterization of plume dispersion over urban areas.

  2. Analysis of a Transonic Alternating Flow Phenomenon Observed During Ares Crew Launch Vehicle Wind Tunnel Tests

    Science.gov (United States)

    Sekula, Martin K.; Piatak, David J.; Rausch, Russ D.

    2010-01-01

    A transonic wind tunnel test of the Ares I-X Rigid Buffet Model (RBM) identified a Mach number regime where unusually large buffet loads are present. A subsequent investigation identified the cause of these loads to be an alternating flow phenomenon at the Crew Module-Service Module junction. The conical design of the Ares I-X Crew Module and the cylindrical design of the Service Module exposes the vehicle to unsteady pressure loads due to the sudden transition from separated to attached flow about the cone-cylinder junction with increasing Mach number. For locally transonic conditions at this junction, the flow randomly fluctuates back and forth between a subsonic separated flow and a supersonic attached flow. These fluctuations produce a square-wave like pattern in the pressure time histories which, upon integration result in large amplitude, impulsive buffet loads. Subsequent testing of the Ares I RBM found much lower buffet loads since the evolved Ares I design includes an ogive fairing that covers the Crew Module-Service Module junction, thereby making the vehicle less susceptible to the onset of alternating flow. An analysis of the alternating flow separation and attachment phenomenon indicates that the phenomenon is most severe at low angles of attack and exacerbated by the presence of vehicle protuberances. A launch vehicle may experience either a single or, at most, a few impulsive loads since it is constantly accelerating during ascent rather than dwelling at constant flow conditions in a wind tunnel. A comparison of a wind-tunnel-test-data-derived impulsive load to flight-test-data-derived load indicates a significant over-prediction in the magnitude and duration of the buffet load

  3. Experimental and Theoretical Study of Air Flow with Obstruction Through Test Section of Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Hayder Kraidy Rashid

    2016-03-01

    Full Text Available This paper estimates the sound and flow generated by a turbulent air flow in a duct from the knowledge of mean quantities (average velocity and sound pressure level.The sound excitation by fluid flow through duct can be used to predict fluid behavior. This behavior can be carried out by discovering the relation between sound excitation and fluid flow parameters like Reynolds number, Strouhal number and frequencies of turbulent fluid flow. However, the fluid flow container stability has to be taken in account simultaneously with fluid flow effect on sound generation and propagation. The experimental system used in this work is air flow through subsonic wind tunnel duct.The sound pressure levels of air flows through test section of subsonic wind tunnel (at three air flow velocities2.5, 7.3 and 12.5 m/s respectively were carried out experimentally. The sound excitation or generation by air flow throughout the test section of subsonic wind tunnel without any obstruction can't be used to imagine the fluid behavior. To predict fluid flow properties,an infinite cylinder was immersed in order to obstruct the air flow and generate a new source of sound.This case is relevant to a wide range of engineering applications including aircraft landing gear, rail pantographs and automotive side-mirrors. Sound measurements have been taken in an anechoic room at Babylon University. ANSYS program software is used to simulate all experimental results.The experimental and theoretical data that were presented in this paper will give further insight into the underlying sound generation mechanism.In the presented work, the linkage between sound generation and CFD results using thepresented work results and ANSYS simulation results was done.The results discuss the effects of fluid flow parameters such as Reynolds and Strouhal numbers on the sound generation, propagation features and vice-versa. The results are compared with other researchers which give good agreements.

  4. IDENTIFICATION OF WIND LOAD APPLIED TO THREE-DIMENSIONAL STRUCTURES BY VIRTUE OF ITS SIMULATION IN THE WIND TUNNEL

    Directory of Open Access Journals (Sweden)

    Doroshenko Sergey Aleksandrovich

    2012-10-01

    Full Text Available The authors discuss wind loads applied to a set of two buildings. The wind load is simulated with the help of the wind tunnel. In the Russian Federation, special attention is driven to the aerodynamics of high-rise buildings and structures. According to the Russian norms, identification of aerodynamic coefficients for high-rise buildings, as well as the influence of adjacent buildings and structures, is performed on the basis of models of structures exposed to wind impacts simulated in the wind tunnel. This article deals with the results of the wind tunnel test of buildings. The simulation was carried out with the involvement of a model of two twenty-three storied buildings. The experiment was held in a wind tunnel of the closed type at in the Institute of Mechanics of Moscow State University. Data were compared at the zero speed before and after the experiment. LabView software was used to process the output data. Graphs and tables were developed in the Microsoft Excel package. GoogleSketchUp software was used as a visualization tool. The three-dimensional flow formed in the wind tunnel can't be adequately described by solving the two-dimensional problem. The aerodynamic experiment technique is used to analyze the results for eighteen angles of the wind attack.

  5. Operating safety of a hot-shot wind tunnel with combined test gas heating in stabilization mode

    Science.gov (United States)

    Shumskii, V. V.; Yaroslavtsev, M. I.

    2017-07-01

    In the present paper, we analyze emergency situations typical of short-duration wind tunnels with electric-arc or combined test-gas heating in the presence of stabilization and diaphragm-rupturing systems, which occur in the case of no discharge initiation in the settling chamber, with the capacitor battery having remained charged during the start of wind-tunnel systems. For avoiding such emergency situations, some additional changes based on using feedback elements are introduced into the wind-tunnel design: the piston of the fast-response valve is made hollow for increasing the volume of the shutoff cavity and for making the release of pressure from this cavity unnecessary; the high-pressure channel, which connects the piston and the piston rod with the settling-chamber cavity, is filled with a liquid and is closed from the side of the settling chamber with a piston; the device for controlled diaphragm breakdown is provided with an external electric circuit intended to control the diaphragm-rupturing process. Those modifications allow subsequent functioning of the wind-tunnel systems only in the presence of heat-supply-induced pressure growth in the settling chamber of the wind tunnel.

  6. Applications of stereolithography for rapid prototyping of biologically compatible chip-based physiometers

    Science.gov (United States)

    Fuad, Nurul Mohd; Zhu, Feng; Kaslin, Jan; Wlodkowic, Donald

    2016-12-01

    Despite the growing demand and numerous applications for the biomedical community, the developments in millifluidic devices for small model organisms are limited compared to other fields of biomicrofluidics. The main reasons for this stagnanation are difficulties in prototyping of millimeter scale and high aspect ratio devices needed for large metazoan organisms. Standard photolithography is in this context a time consuming procedure not easily adapted for fabrication of molds with vertical dimensions above 1 mm. Moreover, photolithography is still largely unattainable to a gross majority of biomedical laboratories willing to pursue custom development of their own chip-based platforms due to costs and need for dedicated clean room facilities. In this work, we present application of high-definition additive manufacturing systems for fabrication of 3D printed moulds used in soft lithography. Combination of 3D printing with PDMS replica molding appears to be an alternative for millifluidic systems that yields rapid and cost effective prototyping pipeline. We investigated the important aspects on both 3D printed moulds and PDMS replicas such as geometric accuracies and surface topology. Our results demonstrated that SLA technologies could be applied for rapid and accurate fabrication of millifluidic devices for trapping of millimetre-sized specimens such as living zebrafish larvae. We applied the new manufacturing method in a proof-of-concept prototype device capable of trapping and immobilizing living zebrafish larvae for recording heart rate variation in cardio-toxicity experiments.

  7. SOAR telescope control system: a rapid prototype and development in LabVIEW

    Science.gov (United States)

    Ashe, Michael C.; Schumacher, German

    2000-06-01

    A Rapid Prototype and full development plan of the SOAR TCS is reviewed to show advances in: (1) Prototyping speed, which makes implementation and test of features faster than specification under older methods. This allows the development environment and prototype modules to become partners with and part of the specification documents. (2) Real-Time performance and reliability through use of RT Linux. (3) Visually Rich GUI development that allows an emphasis on `seeing' versus `reading'. (4) Long-Term DataLogging and Internet subscription service of all desired variables with instant recall of historical trend data. (5) A `plug-in' software architecture which enables rapid reconfiguration and reuse of the system and/or plug-ins utilizing LabVIEW graphical modules, a scripting language engine (in LabVIEW) and encapsulation of interfaces in `instrument-driver' style `plug-in' modules. (6) A platform- independent development environment and distributed architecture allowing secure internet observation and control via every major OS and hardware platform.

  8. Wind tunnel investigation of Space Shuttle Solid Rocket Booster drogue parachutes and deployment concepts

    Science.gov (United States)

    Bacchus, D. L.; Vickers, J. R.; Foughner, J. T., Jr.

    1975-01-01

    A wind tunnel test has been conducted on one-eighth scale models of the Space Shuttle Solid Rocket Booster drogue parachute system. The test included an investigation of four candidate drogue deployment concepts and a parametric steady state drag study of 20-degree conical ribbon parachutes. The results show that at least two of the four deployment concepts tested are viable candidates for the full scale deployment system. The interference free steady state drag results obtained show excellent agreement with available drop test results on large 20-degree conical ribbon parachutes.

  9. Background Acoustics Levels in the 9x15 Wind Tunnel and Linear Array Testing

    Science.gov (United States)

    Stephens, David

    2011-01-01

    The background noise level in the 9x15 foot wind tunnel at NASA Glenn has been documented, and the results compare favorably with historical measurements. A study of recessed microphone mounting techniques was also conducted, and a recessed cavity with a micronic wire mesh screen reduces hydrodynamic noise by around 10 dB. A three-microphone signal processing technique can provide additional benefit, rejecting up to 15 dB of noise contamination at some frequencies. The screen and cavity system offers considerable benefit to test efficiency, although there are additional calibration requirements.

  10. The state of the art of conventional flow visualization techniques for wind tunnel testing

    Science.gov (United States)

    Settles, G. S.

    1982-01-01

    Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.

  11. Wind tunnel investigation of active controls technology applied to a DC-10 derivative

    Science.gov (United States)

    Winther, B. A.; Shirley, W. A.; Heimbaugh, R. M.

    1980-01-01

    Application of active controls technology to reduce aeroelastic response offers a potential for significant payoffs in terms of aerodynamic efficiency and structural weight. As part of the NASA Energy Efficient Transport program, the impact upon flutter and gust load characteristics has been investigated by means of analysis and low-speed wind tunnel tests of a semispan model. The model represents a DC-10 derivative with increased wing span and an active aileron surface, responding to vertical acceleration at the wing tip. A control law satisfying both flutter and gust load constraints is presented and evaluated. In general, the beneficial effects predicted by analysis are in good agreement with experimental data.

  12. Simulation and analysis of natural rain in a wind tunnel via digital image processing techniques

    Science.gov (United States)

    Aaron, K. M.; Hernan, M.; Parikh, P.; Sarohia, V.; Gharib, M.

    1986-01-01

    It is desired to simulate natural rain in a wind tunnel in order to investigate its influence on the aerodynamic characteristics of aircraft. Rain simulation nozzles have been developed and tested at JPL. Pulsed laser sheet illumination is used to photograph the droplets in the moving airstream. Digital image processing techniques are applied to these photographs for calculation of rain statistics to evaluate the performance of the nozzles. It is found that fixed hypodermic type nozzles inject too much water to simulate natural rain conditions. A modification uses two aerodynamic spinners to flex a tube in a pseudo-random fashion to distribute the water over a larger area.

  13. Application of Computational Fluid Dynamics (CFD) in transonic wind-tunnel/flight-test correlation

    Science.gov (United States)

    Murman, E. M.

    1982-01-01

    The capability for calculating transonic flows for realistic configurations and conditions is discussed. Various phenomena which were modeled are shown to have the same order of magnitude on the influence of predicted results. It is concluded that CFD can make the following contributions to the task of correlating wind tunnel and flight test data: some effects of geometry differences and aeroelastic distortion can be predicted; tunnel wall effects can be assessed and corrected for; and the effects of model support systems and free stream nonuniformities can be modeled.

  14. Modal Analysis on the Wind Tunnel Test Bed based on Workbench

    Directory of Open Access Journals (Sweden)

    Shao Zi-yan

    2015-01-01

    Full Text Available This paper shows a wind tunnel test bed with parallelogram structure. The three-dimensional model was built by Solidworks after analyzing the movement principle. Then the model was imported to Workbench and carried out modal analysis according to the theory of finite element modal analysis. Finally the first six vibration mode and the natural frequency were got. This result provides theoretical support for the further research of the stability of the structure, and it also provides theoretical basis for the optimal design of the institution.

  15. Structural dynamic testing of composite propfan blades for a cruise missile wind tunnel model

    Science.gov (United States)

    Elgin, Stephen D.; Sutliff, Thomas J.

    1993-01-01

    The Naval Weapons Center at China Lake, California is currently evaluating a counter rotating propfan system as a means of propulsion for the next generation of cruise missiles. The details and results of a structural dynamic test program are presented for scale model graphite-epoxy composite propfan blades. These blades are intended for use on a cruise missile wind tunnel model. Both dynamic characteristics and strain operating limits of the blades are presented. Complications associated with high strain level fatigue testing methods are also discussed.

  16. Tests of the hydrogen-fueled detonation ramjet model in a wind tunnel with thrust measurements

    Science.gov (United States)

    Frolov, S. M.; Zvegintsev, V. I.; Ivanov, V. S.; Aksenov, V. S.; Shamshin, I. O.; Vnuchkov, D. A.; Nalivaichenko, D. G.; Berlin, A. A.; Fomin, V. M.

    2017-10-01

    Experimental studies of an axisymmetric hydrogen-fueled detonation ramjet model 1.05-meter long and 0.31 m in diameter with an expanding annular combustor were performed in a pulse wind tunnel under conditions of approaching air stream Mach number ranging from 4 to 8 with the stagnation temperature of 293 K. In a supersonic air flow entering the combustor, continuous and longitudinally pulsating modes of hydrogen detonation with the corresponding characteristic frequencies of 1250 and 900 Hz were obtained. The maximum measured values of the fuel-based specific impulse and total thrust were 3600 s and 2200 N.

  17. Turbulence Intensity at Inlet of 80- by 120-Foot Wind Tunnel Caused by Upwind Blockage

    Science.gov (United States)

    Salazar, Denise; Yuricich, Jillian

    2014-01-01

    In order to estimate the magnitude of turbulence in the National Full-Scale Aerodynamics Complex (NFAC) 80- by 120-Foot Wind Tunnel (80 x 120) caused by buildings located upwind from the 80 x 120 inlet, a 150th-scale study was performed that utilized a nominal two-dimensional blockage placed ahead of the inlet. The distance of the blockage ahead of the inlet was varied. This report describes velocity measurements made in the plane of the 80 x 120 model inlet for the case of zero ambient (atmospheric) wind.

  18. The state of the art of conventional flow visualization techniques for wind tunnel testing

    Science.gov (United States)

    Settles, G. S.

    1982-09-01

    Conventional wind tunnel flow visualization techniques which consist of surface flow methods, tracers, and optical methods are presented. Different surface flow methods are outlined: (1) liquid films (oil and fluorescent dye and UV lighting, renewable film via porous dispenser in model, volatile carrier fluid, cryogenic colored oil dots, oil film interferometry); (2) reactive surface treatment (reactive gas injection, reversible dye); (3) transition and heat transfer detectors (evaporation, sublimation, liquid crystals, phase change paints, IR thermography); and (4) tufts (fluorescent mini tufts, cryogenic suitability). Other methods are smoke wire techniques, vapor screens, and optical methods.

  19. Hot Wire Anemometer Turbulence Measurements in the wind Tunnel of LM Wind Power

    DEFF Research Database (Denmark)

    Fischer, Andreas

    Flow measurements were carried out in the wind tunnel of LM Wind Power A/S with a Dantec Streamline CTA system to characterize the flow turbulence. Besides the free tunnel flow with empty test section we also investigated the tunnel flow when two grids with different mesh size were introduced...... measured with the triple sensor probe. The turbulence intensity as well as the mean flow velocity downstream of the grids were not homogeneous in space. The grid with the finer mesh size created higher turbulence intensity. For both grids we found a functional form of the power spectral density...

  20. Advancement of proprotor technology. Task 2: Wind-tunnel test results

    Science.gov (United States)

    1971-01-01

    An advanced-design 25-foot-diameter flightworthy proprotor was tested in the NASA-Ames Large-Scale Wind Tunnel. These tests, have verified and confirmed the theory and design solutions developed as part of the Army Composite Aircraft Program. This report presents the test results and compares them with theoretical predictions. During performance tests, the results met or exceeded predictions. Hover thrust 15 percent greater than the predicted maximum was measured. In airplane mode, propulsive efficiencies (some of which exceeded 90 percent) agreed with theory.

  1. Cryogenic wind-tunnel model technology development activities at the NASA Langley Research Center

    Science.gov (United States)

    Young, C. P., Jr.; Bradshaw, J. F.; Rush, H. F., Jr.; Wallace, J. W.; Watkins, V. E., Jr.

    1984-01-01

    This paper summarizes the current cryogenic wind-tunnel model technology development activities at the NASA Langley Research Center. These research and development activities are being conducted in support of the design and fabrication of models for the new National Transonic Facility (NTF). The scope and current status of major research and development work is described and where available, data are presented from various investigations conducted to date. In addition, design and fabrication experience for existing developmental models to be tested in the NTF is discussed.

  2. Emerging technology for transonic wind-tunnel-wall interference assessment and corrections

    Science.gov (United States)

    Newman, P. A.; Kemp, W. B., Jr.; Garriz, J. A.

    1988-01-01

    Several nonlinear transonic codes and a panel method code for wind tunnel/wall interference assessment and correction (WIAC) studies are reviewed. Contrasts between two- and three-dimensional transonic testing factors which affect WIAC procedures are illustrated with airfoil data from the NASA/Langley 0.3-meter transonic cyrogenic tunnel and Pathfinder I data. Also, three-dimensional transonic WIAC results for Mach number and angle-of-attack corrections to data from a relatively large 20 deg swept semispan wing in the solid wall NASA/Ames high Reynolds number Channel I are verified by three-dimensional thin-layer Navier-Stokes free-air solutions.

  3. Interference-free wind-tunnel flows by adaptive-wall technology

    Science.gov (United States)

    Sears, W. R.; Vidal, R. J.; Erickson, J. C., Jr.; Ritter, A.

    1976-01-01

    The adaptive-wall or self-correcting wind tunnel has been proposed for such regimes as transonic and V/STOL where wall effects are large and cannot be corrected for. The power and generality of the concept are pointed out. In a two-dimensional transonic embodiment in the Calspan One-Foot Tunnel, the scheme has been shown to work at lower transonic Mach numbers. Several practical problems are cited, including instrumentation, the nature of the wall modification, and convergence of the iterative procedure. Moreover, questions of shock-wave neutralization at the wall and probable configuration of three-dimensional embodiments are discussed.

  4. A pilot biomedical engineering course in rapid prototyping for mobile health.

    Science.gov (United States)

    Stokes, Todd H; Venugopalan, Janani; Hubbard, Elena N; Wang, May D

    2013-01-01

    Rapid prototyping of medically assistive mobile devices promises to fuel innovation and provides opportunity for hands-on engineering training in biomedical engineering curricula. This paper presents the design and outcomes of a course offered during a 16-week semester in Fall 2011 with 11 students enrolled. The syllabus covered a mobile health design process from end-to-end, including storyboarding, non-functional prototypes, integrated circuit programming, 3D modeling, 3D printing, cloud computing database programming, and developing patient engagement through animated videos describing the benefits of a new device. Most technologies presented in this class are open source and thus provide unlimited "hackability". They are also cost-effective and easily transferrable to other departments.

  5. Using 3D Printing for Rapid Prototyping of Characterization Tools for Investigating Powder Blend Behavior

    DEFF Research Database (Denmark)

    Hirschberg, Cosima; Boetker, Johan P; Rantanen, Jukka

    2018-01-01

    be monitored with an in-line near-infrared (NIR) spectrometer. Calculating the root mean square (RMS) of the scores of the two first principal components of the NIR spectra visualized spectral variation as a function of process time. In a same setup, mechanical properties (basic flow energy) of the powder......There is an increasing need to provide more detailed insight into the behavior of particulate systems. The current powder characterization tools are developed empirically and in many cases, modification of existing equipment is difficult. More flexible tools are needed to provide understanding...... of complex powder behavior, such as mixing process and segregation phenomenon. An approach based on the fast prototyping of new powder handling geometries and interfacing solutions for process analytical tools is reported. This study utilized 3D printing for rapid prototyping of customized geometries...

  6. CAD – CAM PROCEDURE USING FOR RAPID PROTOTYPING WITH APPLICATION IN BIOMECHANICS

    Directory of Open Access Journals (Sweden)

    BRAUN Barbu

    2015-06-01

    Full Text Available The paper presents a new and efficient method for modeling some components with application in Biomechanics. It is shown the way in which this method could be successfully applied for orthopedic shoes, namely for foot insoles to correct any plantar deformities. The main advantages of the proposed method refer to low costs, successfully applying for different products for Biomechanics. The prototyped models via CAD/CAM method allowed a rapid and efficient improvement of their design. Another advantage refer to the fact that these can be properly and efficiently tested before prototyping by the point of view of mechanical stress, due to prior simulations, eliminating all costs meaning wastes or adjustments.

  7. Comparison of the NASA Common Research Model European Transonic Wind Tunnel Test Data to NASA Test Data

    Science.gov (United States)

    Rivers, Melissa; Quest, Juergen; Rudnik, Ralf

    2015-01-01

    Experimental aerodynamic investigations of the NASA Common Research Model have been conducted in the NASA Langley National Transonic Facility, the NASA Ames 11-ft wind tunnel, and the European Transonic Wind Tunnel. In the NASA Ames 11-ft wind tunnel, data have been obtained at only a chord Reynolds number of 5 million for a wing/body/tail = 0 degree incidence configuration. Data have been obtained at chord Reynolds numbers of 5, 19.8 and 30 million for the same configuration in the National Transonic Facility and in the European Transonic Facility. Force and moment, surface pressure, wing bending and twist, and surface flow visualization data were obtained in all three facilities but only the force and moment and surface pressure data are presented herein.

  8. An analysis of sound absorbing linings for the interior of the NASA Ames 80 x 120-foot wind tunnel

    Science.gov (United States)

    Wilby, J. F.; White, P. H.

    1985-01-01

    It is desirable to achieve low frequency sound absorption in the tests section of the NASA Ames 80X120-ft wind tunnel. However, it is difficult to obtain information regarding sound absorption characteristics of potential treatments because of the restrictions placed on the dimensions of the test chambers. In the present case measurements were made in a large enclosure for aircraft ground run-up tests. The normal impedance of the acoustic treatment was measured using two microphones located close to the surface of the treatment. The data showed reasonably good agreement with analytical methods which were then used to design treatments for the wind tunnel test section. A sound-absorbing lining is proposed for the 80X120-ft wind tunnel.

  9. Design and Development of a Deep Acoustic Lining for the 40-by 80-Foot Wind Tunnel Test Section

    Science.gov (United States)

    Soderman, Paul T.; Schmitz, Fredric H.; Allen, Christopher S.; Jaeger, Stephen M.; Sacco, Joe N.; Mosher, Marianne; Hayes, Julie A.

    2002-01-01

    The work described in this report has made effective use of design teams to build a state-of-the-art anechoic wind-tunnel facility. Many potential design solutions were evaluated using engineering analysis, and computational tools. Design alternatives were then evaluated using specially developed testing techniques, Large-scale coupon testing was then performed to develop confidence that the preferred design would meet the acoustic, aerodynamic, and structural objectives of the project. Finally, designs were frozen and the final product was installed in the wind tunnel. The result of this technically ambitious project has been the creation of a unique acoustic wind tunnel. Its large test section (39 ft x 79 ft x SO ft), potentially near-anechoic environment, and medium subsonic speed capability (M = 0.45) will support a full range of aeroacoustic testing-from rotorcraft and other vertical takeoff and landing aircraft to the take-off/landing configurations of both subsonic and supersonic transports.

  10. Demonstration of synchronised scanning Lidar measurements of 2D velocity fields in a boundary-layer wind tunnel

    DEFF Research Database (Denmark)

    van Dooren, M F; Kühn, M.; Petrovic, V.

    2016-01-01

    compared to hot wire probe measurements commonly used in wind tunnels. This yielded goodness of fit coefficients of 0.969 and 0.902 for the 1 Hz averaged u- and v-components of the wind speed, respectively, validating the 2D measurement capability of the Lidar scanners. Subsequently, the measurement......This paper combines the currently relevant research methodologies of scaled wind turbine model experiments in wind tunnels with remote-sensing short-range WindScanner Lidar measurement technology. The wind tunnel of the Politecnico di Milano was equipped with three wind turbine models and two short......-range WindScanner Lidars to demonstrate the benefits of synchronised scanning Lidars in such experimental surroundings for the first time. The dualLidar system can provide fully synchronised trajectory scans with sampling time scales ranging from seconds to minutes. First, staring mode measurements were...

  11. A vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel tests and its application in pollutant dispersion studies.

    Science.gov (United States)

    Gromke, Christof

    2011-01-01

    A new vegetation modeling concept for Building and Environmental Aerodynamics wind tunnel investigations was developed. The modeling concept is based on fluid dynamical similarity aspects and allows the small-scale modeling of various kinds of vegetation, e.g. field crops, shrubs, hedges, single trees and forest stands. The applicability of the modeling concept was validated in wind tunnel pollutant dispersion studies. Avenue trees in urban street canyons were modeled and their implications on traffic pollutant dispersion were investigated. The dispersion experiments proved the modeling concept to be practicable for wind tunnel studies and suggested to provide reliable concentration results. Unfavorable effects of trees on pollutant dispersion and natural ventilation in street canyons were revealed. Increased traffic pollutant concentrations were found in comparison to the tree-free reference case. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    Science.gov (United States)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  13. A comparison of different silver inks for printing of conductive tracks on paper substrates for rapid prototyping of electronic circuits

    CSIR Research Space (South Africa)

    Bezuidenhout, PH

    2015-11-01

    Full Text Available of the selection process of different conductive inks for printing onto paper substrates. These results can be utilized in the development process for fully printable rapidly prototyped electronic systems, which can range from environmental sensing solutions...

  14. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  15. Computational design of low aspect ratio wing-winglet configurations for transonic wind-tunnel tests

    Science.gov (United States)

    Kuhlman, John M.; Brown, Christopher K.

    1989-01-01

    Computational designs were performed for three different low aspect ratio wing planforms fitted with nonplanar winglets; one of the three configurations was selected to be constructed as a wind tunnel model for testing in the NASA LaRC 8-foot transonic pressure tunnel. A design point of M = 0.8, C(sub L) is approximate or = to 0.3 was selected, for wings of aspect ratio equal to 2.2, and leading edge sweep angles of 45 deg and 50 deg. Winglet length is 15 percent of the wing semispan, with a cant angle of 15 deg, and a leading edge sweep of 50 deg. Winglet total area equals 2.25 percent of the wing reference area. The design process and the predicted transonic performance are summarized for each configuration. In addition, a companion low-speed design study was conducted, using one of the transonic design wing-winglet planforms but with different camber and thickness distributions. A low-speed wind tunnel model was constructed to match this low-speed design geometry, and force coefficient data were obtained for the model at speeds of 100 to 150 ft/sec. Measured drag coefficient reductions were of the same order of magnitude as those predicted by numerical subsonic performance predictions.

  16. Unstructed Navier-Stokes Analysis of Wind-Tunnel Aeroelastic Effects on TCA Model 2

    Science.gov (United States)

    Frink, Neal T.; Allison, Dennis O.; Parikh, Paresh C.

    1999-01-01

    The aim of this work is to demonstrate a simple technique which accounts for aeroelastic deformations experienced by HSR wind-tunnel models within CFD computations. With improved correlations, CFD can become a more effective tool for augmenting the post-test understanding of experimental data. The present technique involves the loose coupling of a low-level structural representation within the ELAPS code, to an unstructured Navier-Stokes flow solver, USM3Dns. The ELAPS model is initially calibrated against bending characteristics of the wind-tunnel model. The strength of this method is that, with a single point calibration of a simple structural representation, the static aeroelastic effects can be accounted for in CFD calculations across a range of test conditions. No prior knowledge of the model deformation during the wind-on test is required. This approach has been successfully applied to the high aspect-ratio planforms of subsonic transports. The current challenge is to adapt the procedure to low aspect-ratio planforms typical of HSR configurations.

  17. Direct numerical simulations of an arc-powered heater for used in a hypersonic wind tunnel

    Science.gov (United States)

    Kim, Pilbum; Panesi, Marco; Freund, Jonathan

    2017-11-01

    We study a model arc-heater using direct numerical simulations, in a configuration motivated by its used to generated inflow of a high-speed wind tunnel for hypersonics research. The flow is assumed to be in local thermal equilibrium (LTE) and is modeled with with 11 species (N2, O2, NO, N, O, N2+,O2+,NO+, N+, O+, e-). The flow equations are solved in conjunction with an electrostatic field solver and the gas electric conductivity in LTE. The flow rate and the mean arc power are set to be 50.42 g/s and 84.7 kW with 214.0 V of the mean arc voltage , respectively. We study the flow details, the heading and thrust mechanisms, and make general comparisons with a corresponding, though geometrically more complex, experimental configuration. We particularly interested in the radical species it produces and will potentially be present in the wind-tunnel test section. This material is based in part upon work supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002374.

  18. Computational Support of 9x7 Wind Tunnel Test of Sonic Boom Models with Plumes

    Science.gov (United States)

    Jensen, James C.; Denison, Marie; Durston, Don; Cliff, Susan E.

    2017-01-01

    NASA and its industry partners are performing studies of supersonic aircraft concepts with low sonic boom pressure signatures. The interaction of the nozzle jet flow with the aircrafts' aft components is typically where the greatest uncertainly in the pressure signature is observed with high-fidelity numerical simulations. An extensive wind tunnel test was conducted in February 2016 in the NASA Ames 9- by 7- Foot Supersonic Wind Tunnel to help address the nozzle jet effects on sonic boom. Five test models with a variety of shock generators of differing waveforms and strengths were tested with a convergent-divergent nozzle for a wide range of nozzle pressure ratios. The LAVA unstructured flow solver was used to generate first CFD comparisons with the new experimental database using best practice meshing and analysis techniques for sonic boom vehicle design for all five different configurations. LAVA was also used to redesign the internal flow path of the nozzle and to better understand the flow field in the test section, both of which significantly improved the quality of the test data.

  19. Fluid flow analysis of a hot-core hypersonic wind-tunnel nozzle concept

    Science.gov (United States)

    Anders, J. B.; Sebacher, D. I.; Boatright, W. B.

    1972-01-01

    A hypersonic-wind-tunnel nozzle concept which incorporates a hot-core flow surrounded by an annular flow of cold air offers a promising technique for maximizing the model size while minimizing the power required to heat the test core. This capability becomes especially important when providing the true-temperature duplication needed for hypersonic propulsion testing. Several two-dimensional wind-tunnel nozzle configurations that are designed according to this concept are analyzed by using recently developed analytical techniques for prediction of the boundary-layer growth and the mixing between the hot and cold coaxial supersonic airflows. The analyses indicate that introduction of the cold annular flow near the throat results in an unacceptable test core for the nozzle size and stagnation conditions considered because of both mixing and condensation effects. Use of a half-nozzle with a ramp on the flat portion does not appear promising because of the thick boundary layer associated with the extra length. However, the analyses indicate that if the cold annular flow is introduced at the exit of a full two-dimensional nozzle, an acceptable test core will be produced. Predictions of the mixing between the hot and cold supersonic streams for this configuration show that mixing effects from the cold flow do not appreciably penetrate into the hot core for the large downstream distances of interest.

  20. Plasma Wind Tunnel Investigation of European Ablators in Nitrogen/Methane Using Emission Spectroscopy

    Directory of Open Access Journals (Sweden)

    Ricarda Wernitz

    2013-01-01

    Full Text Available For atmospheric reentries at high enthalpies ablative heat shield materials are used, such as those for probes entering the atmosphere of Saturn’s moon Titan, such as Cassini-Huygens in December, 2004. The characterization of such materials in a nitrogen/methane atmosphere is of interest. A European ablative material, AQ60, has been investigated in plasma wind tunnel tests at the IRS plasma wind tunnel PWK1 using the magnetoplasma dynamic generator RD5 as plasma source in a nitrogen/methane atmosphere. The dimensions of the samples are 45 mm in length with a diameter of 39 mm. The actual ablator has a thickness of 40 mm. The ablator is mounted on an aluminium substructure. The experiments were conducted at two different heat flux regimes, 1.4 MW/m2 and 0.3 MW/m2. In this paper, results of emission spectroscopy at these plasma conditions in terms of plasma species’ temperatures will be presented, including the investigation of the free-stream species, N2 and N2+, and the major erosion product C2, at a wavelength range around 500 nm–600 nm.

  1. WIND TUNNEL EVALUATION FOR CONTROL TRANSITION FROM ELEVATOR TO STABILATOR OF SMALL UAV

    Directory of Open Access Journals (Sweden)

    ZULHILMY SAHWEE

    2017-06-01

    Full Text Available Faulty control surface actuator in a small Unmanned Aerial Vehicles (sUAV could be overcome with a few techniques. Redundant actuators, analytical redundancy or combination of both are normally used as fault accommodation techniques. In this paper, the accommodation technique of faulty elevator actuator is presented. This technique uses a standby control surface as temporary control reallocation. Wind tunnel measurement facility is set up for the experimental validation and it is compared with FoilSim software. Flat plate airfoil which was used as horizontal stabilizer, is simulated using numerical model and it is validated using the wind tunnel test. Then, a flat airfoil is designed to be used as stabilator for the recovery of faulty elevator actuator. Results show the different deflection angle is needed when transferring from one control surface to another. From the analysis, the proposed method could be implemented without affecting the pitch stability during control surface transition. The alternate control surface accommodation technique proves to be promising for higher reliability sUAV in the case of a faulty on-board actuator.

  2. Case Studies for the Statistical Design of Experiments Applied to Powered Rotor Wind Tunnel Tests

    Science.gov (United States)

    Overmeyer, Austin D.; Tanner, Philip E.; Martin, Preston B.; Commo, Sean A.

    2015-01-01

    The application of statistical Design of Experiments (DOE) to helicopter wind tunnel testing was explored during two powered rotor wind tunnel entries during the summers of 2012 and 2013. These tests were performed jointly by the U.S. Army Aviation Development Directorate Joint Research Program Office and NASA Rotary Wing Project Office, currently the Revolutionary Vertical Lift Project, at NASA Langley Research Center located in Hampton, Virginia. Both entries were conducted in the 14- by 22-Foot Subsonic Tunnel with a small portion of the overall tests devoted to developing case studies of the DOE approach as it applies to powered rotor testing. A 16-47 times reduction in the number of data points required was estimated by comparing the DOE approach to conventional testing methods. The average error for the DOE surface response model for the OH-58F test was 0.95 percent and 4.06 percent for drag and download, respectively. The DOE surface response model of the Active Flow Control test captured the drag within 4.1 percent of measured data. The operational differences between the two testing approaches are identified, but did not prevent the safe operation of the powered rotor model throughout the DOE test matrices.

  3. Wind tunnel and field assessment of pollen dispersal in soybean [Glycine max (L.) Merr.].

    Science.gov (United States)

    Yoshimura, Yasuyuki

    2011-01-01

    Although genetically modified (GM) soybean has never been cultivated commercially in Japan, it is essential to set up the isolation distance required to prevent out-crossing between GM and conventional soybean in preparation for any future possibility of pollen transfer. The airborne soybean pollen was sampled using some Durham pollen samplers located in the range of 20 m from the field edge. In addition, the dispersal distance was assessed in a wind tunnel under constant air flow and then it was compared with the anticipated distances based on the pollen diameter. In the field, the maximum pollen density per day observed was 1.235 grains cm(-2) day(-1) at three observation points within 2.5 m from the field and inside the field the mean density did not reach the rate of 1 grain cm(-2 )day(-1) during 19 flowering days. The results of the wind tunnel experiment also showed that the plants had almost no airborne release of pollen and the dispersal distance was shorter than theoretical value due to clustered dispersal. This study showed little airborne pollen in and around the soybean field and the dispersal is restricted to a small area. Therefore, wind-mediated pollination appears to be negligible.

  4. The Performance and Wind Tunnel Test of Aerofoils for Small Wind Turbine Generating Systems

    Science.gov (United States)

    Tokuyama, Hideki; Ushiyama, Izumi; Seki, Kazuichi

    The small scale wind turbines have been used as the stand alone power source for years. Particularly these days, there is an increasing demand for the small wind turbines, of the output below 1kW, as monuments and educational materials. It is recommended that wind turbines of a diameter under 1.0m must be the low blade tip speed ratio type, owing to problems of both safety and blade noise. In these circumstances, it would be necessary to develop the system characteristics of the micro wind turbines for the purpose of much higher performance in spite of having the low Reynolds number regions. Therefore, in this work, in order to clarify the optimum aerofoil cross section for the micro wind turbine, we carried out a wind tunnel test of the two dimensional aerofoils in the low Reynolds number regions. Furthermore, we conducted the calculation of the turbine's performance based on the result of this wind tunnel tests. The model blades are manufactured with the blade chord of 0.15m, the blade span of 0.6m, and the maximum thickness of aerofoil cross sections from 8% to 32%. The experimental Reynolds number is around 150, 000. From this work, we have clarified the performance of the aerofoil cross sections in the low Reynolds number regions. Our work further proves that the turbine outputs were strongly influenced by the performance of the aerofoil cross section.

  5. Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach

    Science.gov (United States)

    Fisher, David; Thomas, Flint O.; Nelson, Robert C.

    1996-01-01

    Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

  6. Wind tunnel validation of AeroDyn within LIFES50+ project: imposed Surge and Pitch tests

    Science.gov (United States)

    Bayati, I.; Belloli, M.; Bernini, L.; Zasso, A.

    2016-09-01

    This paper presents the first set of results of the steady and unsteady wind tunnel tests, performed at Politecnico di Milano wind tunnel, on a 1/75 rigid scale model of the DTU 10 MW wind turbine, within the LIFES50+ project. The aim of these tests is the validation of the open source code AeroDyn developed at NREL. Numerical and experimental steady results are compared in terms of thrust and torque coefficients, showing good agreement, as well as for unsteady measurements gathered with a 2 degree-of-freedom test rig, capable of imposing the displacements at the base of the model, and providing the surge and pitch motion of the floating offshore wind turbine (FOWT) scale model. The measurements of the unsteady test configuration are compared with AeroDyn/Dynin module results, implementing the generalized dynamic wake (GDW) model. Numerical and experimental comparison showed similar behaviours in terms of non linear hysteresis, however some discrepancies are herein reported and need further data analysis and interpretations about the aerodynamic integral quantities, with a special attention to the physics of the unsteady phenomenon.

  7. DARPA/AFRL/NASA Smart Wing Second Wind Tunnel Test Results

    Science.gov (United States)

    Scherer, L. B.; Martin, C. A.; West, M.; Florance, J. P.; Wieseman, C. D.; Burner, A. W.; Fleming, G. A.

    2001-01-01

    To quantify the benefits of smart materials and structures adaptive wing technology, Northrop Grumman Corp. (NGC) built and tested two 16% scale wind tunnel models (a conventional and a "smart" model) of a fighter/attack aircraft under the DARPA/AFRL/NASA Smart Materials and Structures Development - Smart Wing Phase 1. Performance gains quantified included increased pitching moment (C(sub M)), increased rolling moment (C(subl)) and improved pressure distribution. The benefits were obtained for hingeless, contoured trailing edge control surfaces with embedded shape memory alloy (SMA) wires and spanwise wing twist effected by SMA torque tube mechanisms, compared to conventional hinged control surfaces. This paper presents an overview of the results from the second wind tunnel test performed at the NASA Langley Research Center s (LaRC) 16ft Transonic Dynamic Tunnel (TDT) in June 1998. Successful results obtained were: 1) 5 degrees of spanwise twist and 8-12% increase in rolling moment utilizing a single SMA torque tube, 2) 12 degrees of deflection, and 10% increase in rolling moment due to hingeless, contoured aileron, and 3) demonstration of optical techniques for measuring spanwise twist and deflected shape.

  8. Experimental Research on an Active Sting Damper in a Low Speed Acoustic Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Jinjin Chen

    2014-01-01

    Full Text Available Wind tunnels usually use long cantilever stings to support aerodynamic models in order to reduce support system flow interference on experimental data. However, such support systems are a potential source of vibration problems which limit the test envelope and affect data quality due to the inherently low structural damping of the systems. When exposed to tunnel flow, turbulence and model flow separation excite resonant Eigenmodes of a sting structure causing large vibrations due to low damping. This paper details the development and experimental evaluation of an active damping system using piezoelectric devices with balance signal feedback both in a lab and a low speed acoustic wind tunnel and presents the control algorithm verification tests with a simple cantilever beam. It is shown that the active damper, controlled separately by both PID and BP neural network, has effectively attenuated the vibration. For sting mode only, 95% reduction of displacement response under exciter stimulation and 98% energy elimination of sting mode frequency have been achieved.

  9. Wind Tunnel Test of an RPV with Shape-Change Control Effector and Sensor Arrays

    Science.gov (United States)

    Raney, David L.; Cabell, Randolph H.; Sloan, Adam R.; Barnwell, William G.; Lion, S. Todd; Hautamaki, Bret A.

    2004-01-01

    A variety of novel control effector concepts have recently emerged that may enable new approaches to flight control. In particular, the potential exists to shift the composition of the typical aircraft control effector suite from a small number of high authority, specialized devices (rudder, aileron, elevator, flaps), toward larger numbers of smaller, less specialized, distributed device arrays. The concept envisions effector and sensor networks composed of relatively small high-bandwidth devices able to simultaneously perform a variety of control functions using feedback from disparate data sources. To investigate this concept, a remotely piloted flight vehicle has been equipped with an array of 24 trailing edge shape-change effectors and associated pressure measurements. The vehicle, called the Multifunctional Effector and Sensor Array (MESA) testbed, was recently tested in NASA Langley's 12-ft Low Speed wind tunnel to characterize its stability properties, control authorities, and distributed pressure sensitivities for use in a dynamic simulation prior to flight testing. Another objective was to implement and evaluate a scheme for actively controlling the spanwise pressure distribution using the shape-change array. This report describes the MESA testbed, design of the pressure distribution controller, and results of the wind tunnel test.

  10. Low-speed wind tunnel test results of the Canard Rotor/Wing concept

    Science.gov (United States)

    Bass, Steven M.; Thompson, Thomas L.; Rutherford, John W.; Swanson, Stephen

    1993-01-01

    The Canard Rotor/Wing (CRW), a high-speed rotorcraft concept, was tested at the National Aeronautics and Space Administration (NASA) Ames Research Center's 40- by 80-Foot Wind Tunnel in Mountain View, California. The 1/5-scale model was tested to identify certain low-speed, fixed-wing, aerodynamic characteristics of the configuration and investigate the effectiveness of two empennages, an H-Tail and a T-Tail. The paper addresses the principal test objectives and the results achieved in the wind tunnel test. These are summarized as: i) drag build-up and differences between the H-Tail and T-Tail configuration, ii) longitudinal stability of the H-Tail and T-Tail configurations in the conversion and cruise modes, iii) control derivatives for the canard and elevator in the conversion and cruise modes, iv) aerodynamic characteristics of varying the rotor/wing azimuth position, and v) canard and tail lift/trim capability for conversion conditions.

  11. Turbulence intensity measurement in the wind tunnel used for airfoil flutter investigation

    Directory of Open Access Journals (Sweden)

    Šidlof Petr

    2017-01-01

    Full Text Available The paper reports on hot wire turbulence intensity measurements performed in the entry of a suction-type wind tunnel, used for investigation of flow-induced vibration of airfoils and slender structures. The airfoil is elastically supported with two degrees of freedom (pitch and plunge in the test section of the wind tunnel with lateral optical access for interferometric measurements, and free to oscillate. The turbulence intensity was measured for velocities up to M = 0.3 i with the airfoil blocked, ii with the airfoil self-oscillating. Measurements were performed for a free inlet and further with two different turbulence grids generating increased turbulence intensity levels. For the free inlet and static airfoil, the turbulence intensity lies below 0.4%. The turbulence grids G1 and G2 increase the turbulence level up to 1.8% and 2.6%, respectively. When the airfoil is free to oscillate due to fluid-structure interaction, its motion disturbs the surrounding flow field and increases the measured turbulence intensity levels up to 5%.

  12. Measuring Gas Concentration and Wind Intensity in a Turbulent Wind Tunnel with a Mobile Robot

    Directory of Open Access Journals (Sweden)

    Dani Martínez

    2016-01-01

    Full Text Available This paper presents the measurement of gas concentration and wind intensity performed with a mobile robot in a custom turbulent wind tunnel designed for experimentation with customizable wind and gas leak sources. This paper presents the representation in different information layers of the measurements obtained in the turbulent wind tunnel under different controlled environmental conditions in order to describe the plume of the gas and wind intensities inside the experimentation chamber. The information layers have been generated from the measurements gathered by individual onboard gas and wind sensors carried out by an autonomous mobile robot. On the one hand, the assumption was that the size and cost of these specialized sensors do not allow the creation of a net of sensors or other measurement alternatives based on the simultaneous use of several sensors, and on the other hand, the assumption is that the information layers created will have application on the development and test of automatic gas source location procedures based on reactive or nonreactive algorithms.

  13. Aerodynamic control of NASP-type vehicles through Vortex manipulation. Volume 2: Static wind tunnel tests

    Science.gov (United States)

    Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Forebody Vortex Control (FVC) was explored in this research program for potential application to a NASP-type configuration. Wind tunnel tests were conducted to evaluate a number of jet blowing schemes. The configuration tested has a slender forebody and a 78 deg swept delta wing. Blowing jets were implemented on the leeward side of the forebody with small circular tubes tangential to the surface that could be directed aft, forward, or at angles in between. The effects of blowing are observed primarily in the yawing and rolling moments and are highly dependent on the jet configuration and the angle of attack. Results show that the baseline flow field, without blowing activated, is quite sensitive to the geometry differences of the various protruding jets, as well as being sensitive to the blowing, particularly in the angle of attack range where the forebody vortices are naturally asymmetric. The time lag of the flow field response to the initiation of blowing was also measured. The time response was very short, on the order of the time required for the flow disturbance to travel the distance from the nozzle to the specific airframe location of interest at the free stream velocity. Overall, results indicate that sizable yawing and rolling moments can be induced with modest blowing levels. However, direct application of this technique on a very slender forebody would require thorough wind tunnel testing to optimize the jet location and configuration.

  14. LACIS-T - A humid wind tunnel for investigating the Interactions between Cloud Microphysics and Turbulence

    Science.gov (United States)

    Voigtländer, Jens; Niedermeier, Dennis; Siebert, Holger; Shaw, Raymond; Schumacher, Jörg; Stratmann, Frank

    2017-04-01

    To improve the fundamental and quantitative understanding of the interactions between cloud microphysical and turbulent processes, the Leibniz Institute for Tropospheric Research (TROPOS) has built up a new humid wind tunnel (LACIS-T). LACIS-T allows for the investigation of cloud microphysical processes, such as cloud droplet activation and freezing, under-well defined thermodynamic and turbulent flow conditions. It therewith allows for the straight forward continuation, extension, and completion of the cloud microphysics related investigations carried out at the Leipzig Aerosol Cloud Interaction Simulator (LACIS) under laminar flow conditions. Characterization of the wind tunnel with respect to flow, thermodynamics, and droplet microphysics is carried out with probes mounted inside (pitot tube and hot-wire anemometer for mean velocity and fluctuations, Pt100 sensor for mean temperature, cold-wire sensor for temperature fluctuations is in progress, as well as a dew-point mirror for mean water vapor concentration, a Lyman-alpha sensor for water vapor fluctuations is in progress) the measurement section, and from outside with optical detection methods (a laser light sheet is available for cloud droplet visualization, a digital holography system for detection of cloud droplet size distributions will be installed for tests in February 2017), respectively. Computational fluid dynamics (CFD) simulations have been carried out for defining suitable experimental conditions and assisting the interpretation of the experimental data. In this work, LACIS-T, its fundamental operating principle, and first preliminary results from ongoing characterization efforts will be presented.

  15. Simulative technology for auxiliary fuel tank separation in a wind tunnel

    Directory of Open Access Journals (Sweden)

    Ma Xin

    2016-06-01

    Full Text Available In this paper, we propose a simulative experimental system in wind tunnel conditions for the separation of auxiliary fuel tanks from an aircraft. The experimental system consists of a simulative release mechanism, a scaled model and a pose measuring system. A new release mechanism was designed to ensure stability of the separation. Scaled models of the auxiliary fuel tank were designed and their moment of inertia was adjusted by installing counterweights inside the model. Pose parameters of the scaled model were measured and calculated by a binocular vision system. Additionally, in order to achieve high brightness and high signal-to-noise ratio of the images in the dark enclosed wind tunnel, a new high-speed image acquisition method based on miniature self-emitting units was presented. Accuracy of the pose measurement system and repeatability of the separation mechanism were verified in the laboratory. Results show that the position precision of the pose measurement system can reach 0.1 mm, the precision of the pitch and yaw angles is less than 0.1° and that of the roll angle can be up to 0.3°. Besides, repeatability errors of models’ velocity and angular velocity controlled by the release mechanism remain small, satisfying the measurement requirements. Finally, experiments for the separation of auxiliary fuel tanks were conducted in the laboratory.

  16. Orbiter BLT Flight Experiment Wind Tunnel Simulations: Nearfield Flowfield Imaging and Surface Thermography

    Science.gov (United States)

    Danehy, Paul M.; Ivey, Christoper B.; Barthel, Brett F.; Inman, Jennifer A.; Jones, Stephen B.; Watkins, Anthony N.; Goodman, Kyle Z.; McCrea, Andrew C.; Leighty, Bradley D.; Lipford, William K.; hide

    2010-01-01

    This paper reports a series of wind tunnel tests simulating the near-field behavior of the Space Shuttle Orbiter Boundary Layer Transition Detailed Test Objective (BLT DTO) flight experiment. Hypersonic flow over a flat plate with an attached BLT DTO-shaped trip was tested in a Mach 10 wind tunnel. The sharp-leading-edge flat plate was oriented at an angle of 20 degrees with respect to the freestream flow, resulting in post-shock edge Mach number of approximately 4. The flowfield was visualized using nitric oxide (NO) planar laser-induced fluorescence (PLIF). Flow visualizations were performed at 10 Hz using a wide-field of view and high-resolution NO PLIF system. A lower spatial resolution and smaller field of view NO PLIF system visualized the flow at 500 kHz, which was fast enough to resolve unsteady flow features. At the lowest Reynolds number studied, the flow was observed to be laminar and mostly steady. At the highest Reynolds number, flow visualizations showed streak instabilities generated immediately downstream of the trip. These instabilities transitioned to unsteady periodic and spatially irregular structures downstream. Quantitative surface heating imagery was obtained using the Temperature Sensitive Paint (TSP) technique. Comparisons between the PLIF flow visualizations and TSP heating measurements show a strong correlation between flow patterns and surface heating trends.

  17. Enabling Advanced Wind-Tunnel Research Methods Using the NASA Langley 12-Foot Low Speed Tunnel

    Science.gov (United States)

    Busan, Ronald C.; Rothhaar, Paul M.; Croom, Mark A.; Murphy, Patrick C.; Grafton, Sue B.; O-Neal, Anthony W.

    2014-01-01

    Design of Experiment (DOE) testing methods were used to gather wind tunnel data characterizing the aerodynamic and propulsion forces and moments acting on a complex vehicle configuration with 10 motor-driven propellers, 9 control surfaces, a tilt wing, and a tilt tail. This paper describes the potential benefits and practical implications of using DOE methods for wind tunnel testing - with an emphasis on describing how it can affect model hardware, facility hardware, and software for control and data acquisition. With up to 23 independent variables (19 model and 2 tunnel) for some vehicle configurations, this recent test also provides an excellent example of using DOE methods to assess critical coupling effects in a reasonable timeframe for complex vehicle configurations. Results for an exploratory test using conventional angle of attack sweeps to assess aerodynamic hysteresis is summarized, and DOE results are presented for an exploratory test used to set the data sampling time for the overall test. DOE results are also shown for one production test characterizing normal force in the Cruise mode for the vehicle.

  18. Space Launch System Booster Separation Aerodynamic Testing in the NASA Langley Unitary Plan Wind Tunnel

    Science.gov (United States)

    Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.

    2016-01-01

    A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.

  19. Adaptive wall technology for minimization of wind tunnel boundary interferences - where are we now?

    Science.gov (United States)

    Wolf, Stephen W. D.

    1994-01-01

    The status of adaptive wall technology to improve wind tunnel simulations for 2- and 3-D testing is reviewed. This technology relies on the test section flow boundaries being adjustable, using a tunnel/computer system to control the boundary shapes without knowledge of the model under test. This paper briefly overviews the benefits and shortcomings of adaptive wall testing techniques. A historical perspective highlights the disjointed development of these testing techniques from 1938 to present. Currently operational transonic Adaptive Wall Test Sections (AWTSs) are detailed, showing a preference for the simplest AWTS design with two solid flexible walls. Research highlights show that quick wall adjustment procedures are available and AWTSs, with impervious or ventilated walls, can be used through the transonic range up to M(sub infinity) = 1.2. The requirements for production testing in AWTSs are discussed, and conclusions drawn as to the current status of adaptive wall technology. In 2-D testing, adaptive wall technology is mature enough for general use, even in cryogenic wind tunnels. In 3-D testing, this technology has not been pursued aggressively, because of the inertia against change in testing techniques, and preconceptions about the difficulties of using AWTSs.

  20. Flight and wind tunnel test results of the mechanical jet noise suppressor nozzle

    Science.gov (United States)

    Fitzsimmons, R. D.; McKinnon, R. A.; Johnson, E. S.; Brooks, J. R.

    1980-01-01

    Comprehensive acoustic and propulsion data are presented, based on flight and wind tunnel tests, of a mechanical jet noise suppressor designed to satisfy the requirements of an advanced supersonic transport (AST) under study by the McDonnell Douglas Corporation. The flight program was conducted jointly by MDC, Rolls-Royce Ltd., and the British Aerospace Corporation, using an HS-125 aircraft modified to accept an upgraded RR Viper 601 engine with conical reference and mechanical suppressor nozzles and an acoustically treated ejector. The nacelle, engine and nozzle configurations from the HS-125 were also tested in one of NASA's wind tunnels to obtain thrust performance at forward velocity and acoustic data. The acoustic flight test data, when scaled to an AST engine nozzle size and projected to a typical sideline distance, indicate reduction in effective perceived noise level of 16 EPNdB at the takeoff power setting. It is estimated that the in-flight thrust loss for a typical AST suppressor/ejector nozzle configuration (37.5 inch equivalent diameter) would be 5.4 percent at takeoff power settings and 6.6 percent at cutback power settings.

  1. Flutter Analysis of a Morphing Wing Technology Demonstrator: Numerical Simulation and Wind Tunnel Testing

    Directory of Open Access Journals (Sweden)

    Andreea KOREANSCHI

    2016-03-01

    Full Text Available As part of a morphing wing technology project, the flutter analysis of two finite element models and the experimental results of a morphing wing demonstrator equipped with aileron are presented. The finite element models are representing a wing section situated at the tip of the wing; the first model corresponds to a traditional aluminium upper surface skin of constant thickness and the second model corresponds to a composite optimized upper surface skin for morphing capabilities. The two models were analyzed for flutter occurrence and effects on the aeroelastic behaviour of the wing were studied by replacing the aluminium upper surface skin of the wing with a specially developed composite version. The morphing wing model with composite upper surface was manufactured and fitted with three accelerometers to record the amplitudes and frequencies during tests at the subsonic wind tunnel facility at the National Research Council. The results presented showed that no aeroelastic phenomenon occurred at the speeds, angles of attack and aileron deflections studied in the wind tunnel and confirmed the prediction of the flutter analysis on the frequencies and modal displacements.

  2. Producing Turbulent Wind Tunnel Inflows Relevant to Wind Turbines using an Active Grid

    Science.gov (United States)

    Rumple, Christopher; Welch, Matthew; Naughton, Jonathan

    2017-11-01

    The rise of industries like wind energy have provided motivation for generating realistic turbulent inflows in wind tunnels. Facilities with the ability to produce such inflows can study the interaction between the inflow turbulence and the flow of interest such as a wind turbine wake. An active grid - a system of actively driven elements - has gained increasing acceptance in turbulence research over the last 20 years. The ability to tailor the inflow turbulence quantities (e.g. turbulence intensities, integral length scale, and turbulence spectrum) is a driving reason for the growing use of active grids. An active grid with 40 independent axes located within the forward contraction of a low speed wind tunnel is used to explore the range of turbulent inflows possible using hot-wire anemometry to characterize the turbulence. Motor control algorithms (i.e. user waveform inputs) used to produce various turbulent inflows will be presented. Wind data available from meteorological towers are used to develop relevant inflows for wind turbines to demonstrate the usefulness of the active grid. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award # DE-SC0012671.

  3. The development of a prototype of a “rapid test” for detection of equine antibodies against tetanus

    OpenAIRE

    Stelzmann, Mareike

    2011-01-01

    the following dissertation, the prototype of a “rapid test” for detection of equine antibodies against tetanus is developed. This test makes it possible to detect antibodies against tetanus in equine serum within one hour. Moreover the prototype allows making a statement about the antibody titer. The standard values of the OIE (WORLD ORGANISATION FOR ANIMAL HEALTH, 2009) to validate in vitro-diagnostical tests for veterinary medicine were followed. The rapid test achieves results comparabl...

  4. New technologies applied to surgical processes: Virtual Reality and rapid prototyping.

    Science.gov (United States)

    Suárez-Mejías, Cristina; Gomez-Ciriza, Gorka; Valverde, Israel; Parra Calderón, Carlos; Gómez-Cía, Tomás

    2015-01-01

    AYRA is software of virtual reality for training, planning and optimizing surgical procedures. AYRA was developed under a research, development and innovation project financed by the Andalusian Ministry of Health, called VirSSPA. Nowadays AYRA has been successfully used in more than 1160 real cases and after proving its efficiency it has been introduced in the clinical practice at the Virgen del Rocío University Hospital . Furthermore, AYRA allows generating physical 3D biomodels using rapid prototyping technology. They are used for surgical planning support, intraoperative reference or defect reconstruction. In this paper, some of these tools and some real cases are presented.

  5. Novel Applications of Rapid Prototyping in Gamma-ray and X-ray Imaging

    Science.gov (United States)

    Miller, Brian W.; Moore, Jared W.; Gehm, Michael E.; Furenlid, Lars R.; Barrett, Harrison H.

    2010-01-01

    Advances in 3D rapid-prototyping printers, 3D modeling software, and casting techniques allow for the fabrication of cost-effective, custom components in gamma-ray and x-ray imaging systems. Applications extend to new fabrication methods for custom collimators, pinholes, calibration and resolution phantoms, mounting and shielding components, and imaging apertures. Details of the fabrication process for these components are presented, specifically the 3D printing process, cold casting with a tungsten epoxy, and lost-wax casting in platinum. PMID:22984341

  6. Rapid prototyping tools and methods for all-Topas (R) cyclic olefin copolymer fluidic microsystems

    DEFF Research Database (Denmark)

    Bundgaard, Frederik; Perozziello, Gerardo; Geschke, Oliver

    2006-01-01

    Topas (R), the cyclic olefin copolymer, from Topas Advanced Polymers GmbH has a number of advantages over polymers such as poly(methylmethacrylate), polydimethylsiloxane, and polycarbonate traditionally used in fluid microsystem manufacturing, such as low water absorption, high chemical resistance......, good machinability, and good optical properties. A number of different processes for rapid and low-cost prototyping of all-Topas microfluidic systems, made with desktop machinery, are presented. Among the processes are micromilling of fluidic structures with a width down to 25 p,m and sealing...

  7. Rapid tooling for functional prototyping of metal mold processes: Literature review on cast tooling

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, M.D. [Sandia National Labs., Albuquerque, NM (United States); Hochanadel, P.W. [Colorado School of Mines, Golden, CO (United States). Dept. of Metallurgical and Materials Engineering

    1995-11-01

    This report is a literature review on cast tooling with the general focus on AISI H13 tool steel. The review includes processing of both wrought and cast H13 steel along with the accompanying microstructures. Also included is the incorporation of new rapid prototyping technologies, such as Stereolithography and Selective Laser Sintering, into the investment casting of tool steel. The limiting property of using wrought or cast tool steel for die casting is heat checking. Heat checking is addressed in terms of testing procedures, theories regarding the mechanism, and microstructural aspects related to the cracking.

  8. Performance results from a test of an S-76 rotor in the NASA Ames 80- by 120-foot wind tunnel

    Science.gov (United States)

    Shinoda, Patrick M.; Johnson, Wayne

    1993-01-01

    A full-scale helicopter rotor wind tunnel test has been conducted which covers a wide range of rotor-shaft angles-of-attack and 0-100 kt thrust conditions. The hover performance data thus obtained were compared with the results of momentum theory calculations; forward flight rotor-performance data were compared with calculations from a comprehensive rotorcraft analysis. These comparisons suggest that hover testing at an outdoor facility in the absence of ground effect is required to make a final determination of the absolute accuracy of the wind tunnel hover data.

  9. Study of optical techniques for the Ames unitary wind tunnels. Part 2: Light sheet and vapor screen

    Science.gov (United States)

    Lee, George

    1992-01-01

    Light sheet and vapor screen methods have been studied with particular emphasis on those systems that have been used in large transonic and supersonic wind tunnels. The various fluids and solids used as tracers or light scatters and the methods for tracing generation have been studied. Light sources from high intensity lamps and various lasers have been surveyed. Light sheet generation and projection methods were considered. Detectors and location of detectors were briefly studied. A vapor screen system and a technique for location injection of tracers for the NASA Ames 9 by 7 foot Supersonic Wind Tunnel were proposed.

  10. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    Science.gov (United States)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  11. Rapid prototyping of the Central Safety System for Nuclear Risk in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Scibile, L. [ITER Organization, CS 90 046, St. Paul-lez-Durance, Cedex (France); Ambrosino, G. [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy); De Tommasi, G., E-mail: detommas@unina.i [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy); Pironti, A. [Consorzio CREATE, Universita degli Studi di Napoli Federico II, via Claudio 21, 80125, Napoli (Italy)

    2010-07-15

    The Central Safety System for Nuclear Risk (CSS-N) coordinates the safety control systems to ensure nuclear safety for the ITER complex. Since the CSS-N is a safety critical system, its validation and commissioning play a very important role; in particular the required level of reliability must be demonstrated. In such a scenario, it is strongly recommended to use modeling and simulation tools since the early design phase. Indeed, the modeling tools will help in the definition of the control system requirements. Furthermore the models can than be used for the rapid prototyping of the safety system. Hardware-in-the-loop simulations can also be performed in order to assess the performance of the control hardware against a plant simulator. The proposed approach relies on the availability of a plant simulator to develop the prototype of the control system. This paper introduces the methodology used to design and develop both the CSS-N Oriented Plant Simulator and the CSS-N Prototype.

  12. Reduction of the performance of a noise screen due to screen-induced wind-speed gradients: numerical computations and wind-tunnel experiments

    NARCIS (Netherlands)

    Salomons, E.M.

    1999-01-01

    Downwind sound propagation over a noise screen is investigated by numerical computations and scale model experiments in a wind tunnel. For the computations, the parabolic equation method is used, with a range-dependent sound-speed profile based on wind-speed profiles measured in the wind tunnel and

  13. Characterization of a New Open Jet Wind Tunnel to Optimize and Test Vertical Axis Wind Turbines Using Flow Visualization and Measurement

    DEFF Research Database (Denmark)

    Tourn, S.; Gilabert, R.; Sánchez, V.

    Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out.......Characterize a new open jet wind tunnel and define the uniform test section where performance studies of small VAWTs will be carried out....

  14. Design and manufacturing of ear prosthesis by means of rapid prototyping technology.

    Science.gov (United States)

    De Crescenzio, F; Fantini, M; Ciocca, L; Persiani, F; Scotti, R

    2011-03-01

    In this paper, the complete procedure to design and construct reusable moulds for implant-based ear prosthesis and manufacture substructures by means of a computer aided design-computer aided manufacturing (CAD-CAM) procedure and rapid prototyping (RP) technology is presented. The scan of the healthy ear, the virtual superimposition of its mirrored image on to the defective side, and the rapid manufacturing of the substructure and of the mould eliminate several steps of traditional procedures (wax, stone, try-in). Moreover, the precise design and customization of the substructure is presented, with the original and engineered shape for the retention of the silicone. The time and cost saving results of this protocol are presented together with a discussion of the main design features that make the prosthesis a stable and reproducible system to improve rehabilitation of patients with auricular defects or absence.

  15. Low-cost rapid prototyping of flexible plastic paper based microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This research presents a novel rapid prototyping method for paper-based flexible microfluidic devices. The microchannels were fabricated using laser ablation on a piece of plastic paper (permanent paper), the dimensions of the microchannels was carefully studied for various laser powers and scanning speeds. After laser ablation of the microchannels on the plastic paper, a transparent poly (methyl methacrylate)(PMMA) film was thermally bonded to the plastic paper to enclose the channels. After connection of tubing, the device was ready to use. An example microfluidic device (droplet generator) was also fabricated using this technique. Due to the flexibility of the fabricated device, this technique can be used to fabricate 3D microfluidic devices. The fabrication process was simple and rapid without any requirement of cleanroom facilities. © 2013 IEEE.

  16. Rapid prototyping of nanotube-based devices using topology-optimized microgrippers

    DEFF Research Database (Denmark)

    Sardan, Özlem; Eichhorn, Volkmar; Petersen, D.H.

    2008-01-01

    Nanorobotic handling of carbon nanotubes (CNTs) using microgrippers is one of the most promising approaches for the rapid characterization of the CNTs and also for the assembly of prototypic nanotube-based devices. In this paper, we present pick-and-place nanomanipulation of multi-walled CNTs...... in a rapid and a reproducible manner. We placed CNTs on copper TEM grids for structural analysis and on AFM probes for the assembly of AFM super-tips. We used electrothermally actuated polysilicon microgrippers designed using topology optimization in the experiments. The microgrippers are able to open...... with an amorphous carbon layer, which is locally removed at the contact points with the microgripper. The assembled AFM super-tips are used for AFM measurements of microstructures with high aspect ratios....

  17. Rapid Prototyping Technologies and their Applications in Prosthodontics, a Review of Literature

    Science.gov (United States)

    Torabi, Kianoosh; Farjood, Ehsan; Hamedani, Shahram

    2015-01-01

    The early computer-aided design/computer-aided manufacturing (CAD/CAM) systems were relied exclusively on subtractive methods. In recent years, additive methods by employing rapid prototyping (RP) have progressed rapidly in various fields of dentistry as they have the potential to overcome known drawbacks of subtractive techniques such as fit problems. RP techniques have been exploited to build complex 3D models in medicine since the 1990s. RP has recently proposed successful applications in various dental fields, such as fabrication of implant surgical guides, frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis, zirconia prosthesis and molds for metal castings, and maxillofacial prosthesis and finally, complete dentures. This paper aimed to offer a comprehensive literature review of various RP methods, particularly in dentistry, that are expected to bring many improvements to the field. A search was made through MEDLINE database and Google scholar search engine. The keywords; ‘rapid prototyping’ and ‘dentistry’ were searched in title/abstract of publications; limited to 2003 to 2013, concerning past decade. The inclusion criterion was the technical researches that predominately included laboratory procedures. The exclusion criterion was meticulous clinical and excessive technical procedures. A total of 106 articles were retrieved, recited by authors and only 50 met the specified inclusion criteria for this review. Selected articles had used rapid prototyping techniques in various fields in dentistry through different techniques. This review depicted the different laboratory procedures employed in this method and confirmed that RP technique have been substantially feasible in dentistry. With advancement in various RP systems, it is possible to benefit from this technique in different dental practices, particularly in implementing dental prostheses for different applications. PMID:25759851

  18. Effects of Hydrocarbon-Based Grease on Rapid Prototype Material Used for Grease Retention Shrouds

    Science.gov (United States)

    Zakrajsek, Andrew J.; Valco, Daniel J.; Street, Kenneth W., Jr.

    2010-01-01

    Effects of hydrocarbon-based greases on specific rapid prototype (RP) materials used to fabricate grease retention shrouds (GRS) were explored in this study. Grease retention shrouds are being considered as a way to maintain adequate grease lubrication at the gear mesh in a prototype research transmission system. Due to their design and manufacturing flexibility, rapid prototype materials were chosen for the grease retention shrouds. In order to gain a better understanding of the short and long term effects grease pose on RP materials, research was conducted on the interaction of hydrocarbon-based grease with RP materials. The materials used in this study were durable polyamide (nylon), acrylonitrile butadiene styrene (ABS), and WaterClear 10120. Testing was conducted using Mobilgrease 28 and Syn-Tech 3913G grease (gear coupling grease). These greases were selected due to their regular use with mechanical components. To investigate the effect that grease has on RP materials, the following methods were used to obtain qualitative and quantitative data: Fourier transform infrared spectroscopy (FT-IR), interference profilometer measurements, digital camera imaging, physical shape measurement, and visual observations. To record the changes in the RP materials due to contact with the grease, data was taken before and after the grease application. Results showed that the WaterClear 10120 RP material provided the best resistance to grease penetration as compared to nylon and ABS RP materials. The manufacturing process, and thus resulting surface conditions of the RP material, played a key role in the grease penetration properties and resilience of these materials.

  19. Rapid prototyping of an EEG-based brain-computer interface (BCI).

    Science.gov (United States)

    Guger, C; Schlögl, A; Neuper, C; Walterspacher, D; Strein, T; Pfurtscheller, G

    2001-03-01

    The electroencephalogram (EEG) is modified by motor imagery and can be used by patients with severe motor impairments (e.g., late stage of amyotrophic lateral sclerosis) to communicate with their environment. Such a direct connection between the brain and the computer is known as an EEG-based brain-computer interface (BCI). This paper describes a new type of BCI system that uses rapid prototyping to enable a fast transition of various types of parameter estimation and classification algorithms to real-time implementation and testing. Rapid prototyping is possible by using Matlab, Simulink, and the Real-Time Workshop. It is shown how to automate real-time experiments and perform the interplay between on-line experiments and offline analysis. The system is able to process multiple EEG channels on-line and operates under Windows 95 in real-time on a standard PC without an additional digital signal processor (DSP) board. The BCI can be controlled over the Internet, LAN or modem. This BCI was tested on 3 subjects whose task it was to imagine either left or right hand movement. A classification accuracy between 70% and 95% could be achieved with two EEG channels after some sessions with feedback using an adaptive autoregressive (AAR) model and linear discriminant analysis (LDA).

  20. Gene-modified stem cells combined with rapid prototyping techniques: a novel strategy for periodontal regeneration.

    Science.gov (United States)

    He, Huixia; Cao, Junkai; Wang, Dongsheng; Gu, Bing; Guo, Hong; Liu, Hongchen

    2010-03-01

    Periodontal disease, a worldwide prevalent chronic disease in adults, is characterized by the destruction of the periodontal supporting tissue including the cementum, periodontal ligament and alveolar bone. The regeneration of damaged periodontal tissue is the main goal of periodontal treatment. Because conventional periodontal treatments remain insufficient to attain complete and reliable periodontal regeneration, periodontal tissue engineering has emerged as a prospective alternative method for improving the regenerative capacity of periodontal tissue. However, the potential of periodontal regeneration seems to be limited by the understanding of the cellular and molecular events in the formation of periodontal tissue and by the insufficient collaboration of multi-disciplinary research that periodontal tissue engineering involves. In this paper, we first reviewed the recent advancements in stem cells, signaling factors, and scaffolds that relate to periodontal regeneration. Then we speculate that specific genes would improve regenerative capacity of these stem cells, which could differentiate into cementoblasts, osteoblasts and fibroblasts. In addition, the 3D scaffolds that mimic the different structure and physiologic functions of natural fibro-osseous tissue could be fabricated by rapid prototyping (RP) techniques. It was therefore hypothesized that gene-modified stem cells combined with rapid prototyping techniques would be a new strategy to promote more effective and efficient periodontal regeneration.

  1. Selective laser sintering: application of a rapid prototyping method in craniomaxillofacial reconstructive surgery.

    Science.gov (United States)

    Aung, S C; Tan, B K; Foo, C L; Lee, S T

    1999-09-01

    Advances in technology have benefited the medical world in many ways and a new generation of computed tomography (CT) scanners and three-dimensional (3-D) model making rapid prototyping systems (RPS) have taken craniofacial surgical planning and management to new heights. With the development of new rapid prototyping systems and the improvements in CT scan technology, such as the helical scanner, biomedical modelling has improved considerably and accurate 3-D models can now be fabricated to allow surgeons to visualise and physically handle a 3-D model on which simulation surgery can be performed. The principle behind this technology is to first acquire digital data (CT scan data) which is then imported to the RPS to fabricate fine layers or cuts of the model which are gradually built up to form the 3-D models. Either liquid resin or nylon powder or special paper may be used to make these models using the various RPS available today. Selective laser sintering (SLS), which employs a CO2 laser beam to solidify special nylon powder and build up the model in layers is described in this case report, where a 23-year old Chinese female with panfacial fracture and a skull defect benefited from SLS biomodelling in the preoperative workup.

  2. Replication of human tracheobronchial hollow airway models using a selective laser sintering rapid prototyping technique.

    Science.gov (United States)

    Clinkenbeard, Rodney E; Johnson, David L; Parthasarathy, Ramkumar; Altan, M Cengiz; Tan, Kah-Hoe; Park, Seok-Min; Crawford, Richard H

    2002-01-01

    Exposures to toxic or pathogenic aerosols are known to produce adverse health effects. The nature and severity of these effects often are governed in large part by the location and amount of aerosol deposition within the respiratory tract. Morphologically detailed replica hollow lung airway casts are widely used in aerosol deposition research; however, techniques are not currently available that allow replicate deposition studies in identical morphologically detailed casts produced from a common reference anatomy. This project developed a technique for the precision manufacture of morphologically detailed human tracheobronchial airway models based on high-resolution anatomical imaging data. Detailed physical models were produced using the selective laser sintering (SLS) rapid prototyping process. Input to the SLS process was a three-dimensional computer model developed by boundary-based two-dimension to three-dimension conversion of anatomical images from the original National Institutes of Health/National Library of Medicine Visible Human male data set. The SLS process produced identical replicate models that corresponded exactly to the anatomical section images, within the limits of the measurement. At least five airway generations were achievable, corresponding to airways less than 2 mm in diameter. It is anticipated that rapid prototyping manufacture of respiratory tract structures based on reference anatomies such as the Visible Male and Visible Female may provide "gold standard" models for inhaled aerosol deposition studies. Adaptations of the models to represent various disease states may be readily achieved, thereby promoting exploration of pharmaceutical research on targeted drug delivery via inhaled aerosols.

  3. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    Science.gov (United States)

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-01-08

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  4. Parametric Design and Rapid Prototyping of Installation Box for Vehicle Terminal PCB

    Directory of Open Access Journals (Sweden)

    Wang Xingxing

    2016-01-01

    Full Text Available Installation box for vehicle terminal PCB (Printed Circuit Board was took as research object, which is encountered in the process of project developing. Vehicle terminal PCB in actual development process was set as an example, point cloud data were acquired by three coordinate measuring method; Imageware software was used to reconstruct the vehicle terminal PCB model, basic size parameters of vehicle terminal PCB can be got and then design parameters of installation box for vehicle terminal PCB can be determined. Design of the installation box for vehicle terminal PCB was completed based on Solidworks software, then 3D modeling and 2D drawing of installation box for vehicle terminal PCB was gained. Up Plus 2 rapid prototype machine was used to manufacture installation box for vehicle terminal PCB rapidly based on 3D printing technology, then prototype of installation box for vehicle terminal PCB was obtained. It is of certain engineering significant for single (small amount manufacturing of installation box for general PCB.

  5. Development of novel hybrid poly(l-lactide)/chitosan scaffolds using the rapid freeze prototyping technique

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, N; Chen, X B [Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Li, M G [Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan (Canada); Cooper, D, E-mail: xbc719@mail.usask.ca [Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan (Canada)

    2011-09-15

    Engineered scaffolds have been shown to be critical to various tissue engineering applications. This paper presents the development of a novel three-dimensional scaffold made from a mixture of chitosan microspheres (CMs) and poly(l-lactide) by means of the rapid freeze prototyping (RFP) technique. The CMs were used to encapsulate bovine serum albumin (BSA) and improve the scaffold mechanical properties. Experiments to examine the BSA release were carried out; the BSA release could be controlled by adjusting the crosslink degree of the CMs and prolonged after the CMs were embedded into the PLLA scaffolds, while the examination of the mechanical properties of the scaffolds illustrates that they depend on the ratio of CMs to PLLA in the scaffolds as well as the cryogenic temperature used in the RFP fabrication process. The chemical characteristics of the PLLA/chitosan scaffolds were evaluated by Fourier transform infrared (FTIR) spectroscopy. The morphological and pore structure of the scaffolds were also examined by scanning electron microscopy and micro-tomography. The results obtained show that the scaffolds have higher porosity and enhanced pore size distribution compared to those fabricated by the dispensing-based rapid prototyping technique. This study demonstrates that the novel scaffolds have not only enhanced porous structure and mechanical properties but also showed the potential to preserve the bioactivities of the biomolecules and to control the biomolecule distribution and release rate.

  6. The Java Image Science Toolkit (JIST) for Rapid Prototyping and Publishing of Neuroimaging Software

    Science.gov (United States)

    Lucas, Blake C.; Bogovic, John A.; Carass, Aaron; Bazin, Pierre-Louis; Prince, Jerry L.; Pham, Dzung

    2010-01-01

    Non-invasive neuroimaging techniques enable extraordinarily sensitive and specific in vivo study of the structure, functional response and connectivity of biological mechanisms. With these advanced methods comes a heavy reliance on computer-based processing, analysis and interpretation. While the neuroimaging community has produced many excellent academic and commercial tool packages, new tools are often required to interpret new modalities and paradigms. Developing custom tools and ensuring interoperability with existing tools is a significant hurdle. To address these limitations, we present a new framework for algorithm development that implicitly ensures tool interoperability, generates graphical user interfaces, provides advanced batch processing tools, and, most importantly, requires minimal additional programming or computational overhead. Java-based rapid prototyping with this system is an efficient and practical approach to evaluate new algorithms since the proposed system ensures that rapidly constructed prototypes are actually fully-functional processing modules with support for multiple GUI's, a broad range of file formats, and distributed computation. Herein, we demonstrate MRI image processing with the proposed system for cortical surface extraction in large cross-sectional cohorts, provide a system for fully automated diffusion tensor image analysis, and illustrate how the system can be used as a simulation framework for the development of a new image analysis method. The system is released as open source under the Lesser GNU Public License (LGPL) through the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC). PMID:20077162

  7. Thermal and Pressure Characterization of a Wind Tunnel Force Balance Using the Single Vector System. Experimental Design and Analysis Approach to Model Pressure and Temperature Effects in Hypersonic Wind Tunnel Research

    Science.gov (United States)

    Lynn, Keith C.; Commo, Sean A.; Johnson, Thomas H.; Parker, Peter A,

    2011-01-01

    Wind tunnel research at NASA Langley Research Center s 31-inch Mach 10 hypersonic facility utilized a 5-component force balance, which provided a pressurized flow-thru capability to the test article. The goal of the research was to determine the interaction effects between the free-stream flow and the exit flow from the reaction control system on the Mars Science Laboratory aeroshell during planetary entry. In the wind tunnel, the balance was exposed to aerodynamic forces and moments, steady-state and transient thermal gradients, and various internal balance cavity pressures. Historically, these effects on force measurement accuracy have not been fully characterized due to limitations in the calibration apparatus. A statistically designed experiment was developed to adequately characterize the behavior of the balance over the expected wind tunnel operating ranges (forces/moments, temperatures, and pressures). The experimental design was based on a Taylor-series expansion in the seven factors for the mathematical models. Model inversion was required to calculate the aerodynamic forces and moments as a function of the strain-gage readings. Details regarding transducer on-board compensation techniques, experimental design development, mathematical modeling, and wind tunnel data reduction are included in this paper.

  8. Wind Tunnel Balance Calibration: Are 1,000,000 Data Points Enough?

    Science.gov (United States)

    Rhew, Ray D.; Parker, Peter A.

    2016-01-01

    Measurement systems are typically calibrated based on standard practices established by a metrology standards laboratory, for example the National Institute for Standards and Technology (NIST), or dictated by an organization's metrology manual. Therefore, the calibration is designed and executed according to an established procedure. However, for many aerodynamic research measurement systems a universally accepted standard, traceable approach does not exist. Therefore, a strategy for how to develop a calibration protocol is left to the developer or user to define based on experience and recommended practice in their respective industry. Wind tunnel balances are one such measurement system. Many different calibration systems, load schedules and procedures have been developed for balances with little consensus on a recommended approach. Especially lacking is guidance the number of calibration data points needed. Regrettably, the number of data points tends to be correlated with the perceived quality of the calibration. Often, the number of data points is associated with ones ability to generate the data rather than by a defined need in support of measurement objectives. Hence the title of the paper was conceived to challenge recent observations in the wind tunnel balance community that shows an ever increasing desire for more data points per calibration absent of guidance to determine when there are enough. This paper presents fundamental concepts and theory to aid in the development of calibration procedures for wind tunnel balances and provides a framework that is generally applicable to the characterization and calibration of other measurement systems. Questions that need to be answered are for example: What constitutes an adequate calibration? How much data are needed in the calibration? How good is the calibration? This paper will assist a practitioner in answering these questions by presenting an underlying theory on how to evaluate a calibration based on

  9. A model to relate wind tunnel measurements to open field odorant emissions from liquid area sources

    Science.gov (United States)

    Lucernoni, F.; Capelli, L.; Busini, V.; Sironi, S.

    2017-05-01

    Waste Water Treatment Plants are known to have significant emissions of several pollutants and odorants causing nuisance to the near-living population. One of the purposes of the present work is to study a suitable model to evaluate odour emissions from liquid passive area sources. First, the models describing volatilization under a forced convection regime inside a wind tunnel device, which is the sampling device that typically used for sampling on liquid area sources, were investigated. In order to relate the fluid dynamic conditions inside the hood to the open field and inside the hood a thorough study of the models capable of describing the volatilization phenomena of the odorous compounds from liquid pools was performed and several different models were evaluated for the open field emission. By means of experimental tests involving pure liquid acetone and pure liquid butanone, it was verified that the model more suitable to describe precisely the volatilization inside the sampling hood is the model for the emission from a single flat plate in forced convection and laminar regime, with a fluid dynamic boundary layer fully developed and a mass transfer boundary layer not fully developed. The proportionality coefficient for the model was re-evaluated in order to account for the specific characteristics of the adopted wind tunnel device, and then the model was related with the selected model for the open field thereby computing the wind speed at 10 m that would cause the same emission that is estimated from the wind tunnel measurement furthermore, the field of application of the proposed model was clearly defined for the considered models during the project, discussing the two different kinds of compounds commonly found in emissive liquid pools or liquid spills, i.e. gas phase controlled and liquid phase controlled compounds. Lastly, a discussion is presented comparing the presented approach for emission rates recalculation in the field, with other approaches

  10. Standardization of flux chamber and wind tunnel flux measurements for quantifying emissions from area sources at animal feeding operations

    Science.gov (United States)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and inaccuracy caused by inappropriate air velocity or sweep air flow...

  11. Pilot-scale concept of real-time wind speed-matching wind tunnel for measurements of gaseous emissions

    Science.gov (United States)

    Comprehensive control of odors, hydrogen sulfide (H2S), ammonia (NH3) and odorous volatile organic compound (VOC) emissions associated with animal production is a critical need. Current methods utilizing wind tunnels and flux chambers for measurements of gaseous emissions from area sources such as f...

  12. Fuel use and metabolic response to endurance exercise : a wind tunnel study of a long-distance migrant shorebird

    NARCIS (Netherlands)

    Jenni-Eiermann, Susanne; Jenni, Lukas; Kvist, Anders; Lindström, Åke; Piersma, Theunis; Visser, G. Henk

    This study examines fuel use and metabolism in a group of long-distance migrating birds, red knots Calidris canutus (Scolopacidae), flying under controlled conditions in a wind tunnel for up to 10 h. Data are compared with values for resting birds fasting for the same time. Plasma levels of free

  13. Boundary Condition Study for the Juncture Flow Experiment in the NASA Langley 14x22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Rumsey, C. L.; Carlson, J.-R.; Hannon, J. A.; Jenkins, L. N.; Bartram, S. M.; Pulliam, T. H.; Lee, H. C.

    2017-01-01

    Because future wind tunnel tests associated with the NASA Juncture Flow project are being designed for the purpose of CFD validation, considerable effort is going into the characterization of the wind tunnel boundary conditions, particularly at inflow. This is important not only because wind tunnel flowfield nonuniformities can play a role in integrated testing uncertainties, but also because the better the boundary conditions are known, the better CFD can accurately represent the experiment. This paper describes recent investigative wind tunnel tests involving two methods to measure and characterize the oncoming flow in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The features of each method, as well as some of their pros and cons, are highlighted. Boundary conditions and modeling tactics currently used by CFD for empty-tunnel simulations are also described, and some results using three different CFD codes are shown. Preliminary CFD parametric studies associated with the Juncture Flow model are summarized, to determine sensitivities of the flow near the wing-body juncture region of the model to a variety of modeling decisions.

  14. Development of procedures for the acquisition of metal Additive Manufacturing (AM) parts for use in the CSIR's wind tunnel models

    CSIR Research Space (South Africa)

    Johnston, C

    2015-11-04

    Full Text Available The first Additive Manufacturing (AM) non-load-bearing, client furnished part was used in the CSIR’s wind tunnels in 2007. The advent of metal-grown materials, and the acquisition of machines to grow them in South Africa, has made it feasible...

  15. Comparison of CFD simulations to non-rotating MEXICO blades experiment in the LTT wind tunnel of TUDelft

    NARCIS (Netherlands)

    Zhang, Y.; Van Zuijlen, A.; Van Bussel, G.

    2014-01-01

    In this paper, three dimensional flow over non-rotating MEXICO blades is simulated by CFD methods. The numerical results are compared with the latest MEXICO wind turbine blades measurements obtained in the low speed low turbulence (LTT) wind tunnel of Delft University of Technology. This study aims

  16. Development and Operation of an Automatic Rotor Trim Control System for the UH-60 Individual Blade Control Wind Tunnel Test

    Science.gov (United States)

    Theodore, Colin R.; Tischler, Mark B.

    2010-01-01

    An automatic rotor trim control system was developed and successfully used during a wind tunnel test of a full-scale UH-60 rotor system with Individual Blade Control (IBC) actuators. The trim control system allowed rotor trim to be set more quickly, precisely and repeatably than in previous wind tunnel tests. This control system also allowed the rotor trim state to be maintained during transients and drift in wind tunnel flow, and through changes in IBC actuation. The ability to maintain a consistent rotor trim state was key to quickly and accurately evaluating the effect of IBC on rotor performance, vibration, noise and loads. This paper presents details of the design and implementation of the trim control system including the rotor system hardware, trim control requirements, and trim control hardware and software implementation. Results are presented showing the effect of IBC on rotor trim and dynamic response, a validation of the rotor dynamic simulation used to calculate the initial control gains and tuning of the control system, and the overall performance of the trim control system during the wind tunnel test.

  17. Wind tunnels vs. flux chambers: Area source emission measurements and the necessity for VOC and odour correction factors

    Science.gov (United States)

    Wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC), odour, and ammonia (NH3) with little regard to air velocity or sweep air flow rates. As a result, flux measurements have been highly variable and scientists have been in disagreement as to the better...

  18. A comparison of peak pressure interference factors interference factors for high-rise buildings determined in two ABL wind tunnels

    NARCIS (Netherlands)

    Bronkhorst, A.J.; Uffelen, M. van; Geurts, C.P.W.; Aanen, L.; Bentum, C.A. van

    2013-01-01

    Pressure measurements were performed on various configurations of two high-rise building models in two atmospheric boundary layer wind tunnels in the Netherlands. A comparison was made of the interference factors of the minimum and maximum peak pressures over all pressure taps at 0 degree angle of

  19. Rapid prototyping compliant arterial phantoms for in-vitro studies and device testing

    Directory of Open Access Journals (Sweden)

    Biglino Giovanni

    2013-01-01

    Full Text Available Abstract Background Compliant vascular phantoms are desirable for in-vitro patient-specific experiments and device testing. TangoPlus FullCure 930® is a commercially available rubber-like material that can be used for PolyJet rapid prototyping. This work aims to gather preliminary data on the distensibility of this material, in order to assess the feasibility of its use in the context of experimental cardiovascular modelling. Methods The descending aorta anatomy of a volunteer was modelled in 3D from cardiovascular magnetic resonance (CMR images and rapid prototyped using TangoPlus. The model was printed with a range of increasing wall thicknesses (0.6, 0.7, 0.8, 1.0 and 1.5 mm, keeping the lumen of the vessel constant. Models were also printed in both vertical and horizontal orientations, thus resulting in a total of ten specimens. Compliance tests were performed by monitoring pressure variations while gradually increasing and decreasing internal volume. Knowledge of distensibility was thus derived and then implemented with CMR data to test two applications. Firstly, a patient-specific compliant model of hypoplastic aorta suitable for connection in a mock circulatory loop for in-vitro tests was manufactured. Secondly, the right ventricular outflow tract (RVOT of a patient necessitating pulmonary valve replacement was printed in order to physically test device insertion and assess patient’s suitability for percutaneous pulmonary valve intervention. Results The distensibility of the material was identified in a range from 6.5 × 10-3 mmHg-1 for the 0.6 mm case, to 3.0 × 10-3 mmHg-1 for the 1.5 mm case. The models printed in the vertical orientation were always more compliant than their horizontal counterpart. Rapid prototyping of a compliant hypoplastic aorta and of a RVOT anatomical model were both feasible. Device insertion in the RVOT model was successful. Conclusion Values of distensibility, compared with literature data, show that Tango

  20. Wind Tunnel Test Results for Gas Flows Inside Axisymmetric Cavities on Cylindric Bodies with Nose Cones

    Science.gov (United States)

    Shvets, A. L.; Gilinsky, M.; Blankson, I. M.

    2004-01-01

    Experimental test results of air flow inside and at the cylindrical cavity located on axisymmetric body are presented. These tests were conducted in the wind tunnel A-7 of Institute of Mechanics at Moscow State University. Pressure distribution along the cavities and optical measurements were obtained. Dependence of these characteristics of length of a cavity in the range: L/D = 0.5 - 14 and free stream Mach in the range: M(sub infinity) = 0.6 - 3.0 was determined. Flow structure inside the cavity, cause of flow regime change, separation zones geometry and others were studied. In particular, the flow modes of with open and closed separation zones are determined.