WorldWideScience

Sample records for rapid pressure measurements

  1. Pressure measurements in a rapidly sheared turbulent wall layer

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2014-11-01

    The aim of the present work is to improve understanding of the role of pressure fluctuations in the generation of coherent structures in wall-bounded turbulent flows, with particular regard to the rapid and slow source terms. The work is in part motivated by the recent numerical simulations of Sharma et al. (Phy. Fluids, 23, 2011), which showed the importance of pressure fluctuations (and their spatial gradients) in the dynamics of large-scale turbulent motions. Our experimental design consists of first generating a shearless boundary layer in a wind tunnel by passing a grid-generated turbulent flow over a moving floor whose speed is matched to the freestream velocity, and then shearing it rapidly by passing it over a stationary floor further downstream. Close to the leading edge of the stationary floor, the resulting flow is expected to satisfy the approximations of the Rapid Distortion Theory and therefore would be an ideal candidate for studying linear processes in wall turbulence. We carry out pressure measurements on the wall as well as within the flow - the former using surface mounted pressure transducers and the latter using a static pressure probe similar in design to that used by Tsuji et al. (J. Fluid. Mech. 585, 2007). We also present a comparison between the rapidly sheared flow and a more conventional boundary layer subjected to a turbulent free stream. We acknowledge the financial support from EPSRC (Grant No. EP/I037938).

  2. A method for rapid measurement of intrarenal and other tissue pressures.

    Science.gov (United States)

    SWANN, H G; MONTGOMERY, A V; DAVIS, J C; MICKLE, E R

    1950-12-01

    A rapid method for measuring tissue pressures has been designed. A pressure of 250 mm. Hg is imposed on a manometer. Then the system is allowed to discharge into a needle cannula inserted in the tissue. The manometer forces out fluid (about 10 c.mm.) until the pressure within it is the same as that within the tissue. Records of the pressure changes are made. Each observation takes about a minute. The method gives results that are closely comparable with other reports of tissue pressures. With this method, the pressure in the following organs of dogs was found to be: kidney, 26 mm. Hg, cerebral cortex, 0 to 5 mm., muscle, 1 to 10 mm., spleen, S to 16 mm., subcutaneous tissue, 0 to 3 mm., and liver -2 to 14 mm. The reliability of the method was tested on the kidneys of decerebrate dogs. Measurements were found to be the same within narrow limits over a period of an hour; they were the same when taken simultaneously in different regions of the same kidney or in opposite kidneys. They were independent of the volume of fluid forced into the tissue. Similar pressures were observed with 1 or 5 or 10 holes bored in the shaft of the cannulating needle. The intrarenal pressure was also measured by inserting a needle cannula into the tissue and then allowing the pressure to reach equilibrium passively with a manometer. This method gave similar results. The intrarenal pressure has now found to be the same when measured by three different technics.

  3. System for Rapid, Precise Modulation of Intraocular Pressure, toward Minimally-Invasive In Vivo Measurement of Intracranial Pressure.

    Directory of Open Access Journals (Sweden)

    Max A Stockslager

    Full Text Available Pathologic changes in intracranial pressure (ICP are commonly observed in a variety of medical conditions, including traumatic brain injury, stroke, brain tumors, and glaucoma. However, current ICP measurement techniques are invasive, requiring a lumbar puncture or surgical insertion of a cannula into the cerebrospinal fluid (CSF-filled ventricles of the brain. A potential alternative approach to ICP measurement leverages the unique anatomy of the central retinal vein, which is exposed to both intraocular pressure (IOP and ICP as it travels inside the eye and through the optic nerve; manipulating IOP while observing changes in the natural pulsations of the central retinal vein could potentially provide an accurate, indirect measure of ICP. As a step toward implementing this technique, we describe the design, fabrication, and characterization of a system that is capable of manipulating IOP in vivo with <0.1 mmHg resolution and settling times less than 2 seconds. In vitro tests were carried out to characterize system performance. Then, as a proof of concept, we used the system to manipulate IOP in tree shrews (Tupaia belangeri while video of the retinal vessels was recorded and the caliber of a selected vein was quantified. Modulating IOP using our system elicited a rapid change in the appearance of the retinal vein of interest: IOP was lowered from 10 to 3 mmHg, and retinal vein caliber sharply increased as IOP decreased from 7 to 5 mmHg. Another important feature of this technology is its capability to measure ocular compliance and outflow facility in vivo, as demonstrated in tree shrews. Collectively, these proof-of-concept demonstrations support the utility of this system to manipulate IOP for a variety of useful applications in ocular biomechanics, and provide a framework for further study of the mechanisms of retinal venous pulsation.

  4. Blood pressure measurement

    Science.gov (United States)

    ... reading; Measuring blood pressure; Hypertension - blood pressure measurement; High blood pressure - blood pressure measurement ... High blood pressure has no symptoms so you may not know if you have this problem. High blood pressure ...

  5. Simultaneous measurements of velocity, temperature, and pressure using rapid CW wavelength-modulation laser-induced fluorescence of OH

    Science.gov (United States)

    Chang, A. Y.; Battles, B. E.; Hanson, R. K.

    1990-01-01

    In high speed flows, laser induced fluorescence (LIF) on Doppler shifted transitions is an attractive technique for velocity measurement. LIF velocimetry was applied to combined single-point measurements of velocity, temperature, and pressure and 2-D imaging of velocity and pressure. Prior to recent research using NO, LIF velocimetry in combustion related flows relied largely on the use of seed molecules. Simultaneous, single-point LIF measurements is reported of velocity, temperature, and pressure using the naturally occurring combustion species OH. This experiment is an extension of earlier research in which a modified ring dye laser was used to make time resolved temperature measurements behind reflected shock waves by using OH absorption an in postflame gases by using OH LIF. A pair of fused-silica rhombs mounted on a single galvanonmeter in an intracavity-doubled Spectra-Physics 380 ring laser permit the UV output to be swept continuously over a few wave numbers at an effective frequency of 3kHz.

  6. Auscultatory versus oscillometric measurement of blood pressure in octogenarians

    DEFF Research Database (Denmark)

    Rosholm, Jens-Ulrik; Pedersen, Sidsel Arnspang; Matzen, Lars

    2012-01-01

    Auscultatory measurement using a sphygmomanometer has been the predominant method for clinical estimation of blood pressure, but it is now rapidly being replaced by oscillometric measurement.......Auscultatory measurement using a sphygmomanometer has been the predominant method for clinical estimation of blood pressure, but it is now rapidly being replaced by oscillometric measurement....

  7. Pressure Measurement Based on Thermocouples

    Science.gov (United States)

    Thomsen, K.

    2010-12-01

    Measuring gas pressures reliably in a harsh radiation environment was confirmed to be tricky during operation of the liquid spallation target of MEGAPIE at the Paul Scherrer Institute (PSI). Severe drift of calibration and the loss of a sensor were experienced. At the same time, the only instrumentation that worked flawlessly in the system were thermocouples. Motivated by this experience, a novel pressure sensor for application in high radiation fields has been developed, which is based on temperature measurement. The new sensor takes advantage of the fact that the thermal conductivity over a mechanical joint exhibits a strong dependence on the contact pressure. In the novel sensor heating is applied at one point and temperatures are measured at different specific locations of the pressure gage; in particular, the temperatures on the two sides of a mechanical contact are monitored. From the observed temperature distribution the gas pressure can be derived. By choosing specific mechanical details in the lay-out, it is possible to tailor the useful measurement range. In addition to yielding pressure values, the new sensor concept admits for obtaining a measure for the accuracy of the result. This is done by continuous self monitoring of the device. The health status and based thereupon the plausibility of the indicated pressure value can be deducted by comparing sensed temperatures to expectation values for any given heating power. Malfunctioning of the pressure gage is reliably detected from the diverse readings of only one device; this can be seen as providing internal redundancy while at the same time immunity to common mode failure. After some analytical and finite element studies to verify the concept in principle, a first prototype of such a novel pressure sensor has been built at PSI. Initial measurement campaigns demonstrated the correct operation of the device as anticipated. Further potential for optimization, like designing a gage for high temperature

  8. Blood Pressure Self-Measurement.

    Science.gov (United States)

    Wagner, Stefan

    2017-01-01

    Blood pressure self-measurement has been used extensively as part of several clinical processes including in the home monitoring setting for mitigating white coat effect and gaining more detailed insights into the blood pressure variability of patients over time. Self-measurement of BP is also being used as part of telemonitoring and telemedicine processes, as well as in the waiting rooms and self-measurement rooms of general practice clinics, specialized hospital department's outpatient clinics, and in other types of care facilitates and institutions.The aim of this review is to provide an overview of where, when, and how blood pressure self-measurement is being used, which official clinical guidelines and procedures are available for its implementation, as well as the opportunities and challenges that are related to its use.

  9. [Contemporary possibilities of intraocular pressure measurement].

    Science.gov (United States)

    Hornová, J; Baxant, A

    2013-10-01

    Authors introduced current possibilities of measuring intraocular pressure (IOP). A list of available methods of monitoring IOP is published; contact measurement method IOP directly on the cornea, but also over upper lid, methodology of minimal contact and non-contact measurement. Following contact methods are described; former measurements of IOP by impression Schiotz tonometer and the current methodology applanation. So far as the gold standard measurement Goldmann applanation tonometer (GAT) is considered, another methodology with applanation measurements are compared: Pascal dynamic contoured tonometer (DCT ), BioResonator - resonant applanation tonometer (ART ), digital applanation tonometer Tonopen and last hit: continuous measurement of IOP by Sensimed Triggerfish. Orientation and rapid assessment is palpation pressure control over the lid and measuring by tonometer Diaton. Rebound tonometer (RBT) iCare belongs to measurements with minimal contact, no need anesthetic drops and fluorescein, therefore a self - home version of IOP measurements (Icare ONE) is developed. Non-contact measurement of IOP by different pneumotonometers is popular for screening assessment of IOP. Reichert Ocular Response Analyzer (ORA) is a non-contact applanation IOP measurement and reveals additional properties of the cornea. In the discussion of a range methodology is evaluated, the experience of other authors and their own experience is compared. For monitoring of patients is necessary to select the most suitable methodology, measure repeatedly and accurately to allow long-term monitoring of intraocular pressure.

  10. Optimal operation of rapid pressure swing adsorption with slop recycling

    NARCIS (Netherlands)

    Betlem, Bernardus H.L.; Gotink, R.W.M.; Bosch, H.

    1998-01-01

    Rapid pressure swing adsorption (RPSA) is a cyclic process operating, basically, in three phases: a pressurization, a delay, and a depressurization phase. A new, modified operation is suggested by the addition of either a raffinate recycle phase or an extract recycle phase, during which raffinate

  11. Rapid Assessment of Protected area Pressures and Threats in ...

    African Journals Online (AJOL)

    Regular evaluation of protected area operations can enable policy makers develop strategic responses to pervasive management problems. Pressures and threats in seven National Parks of the National Park Service (NPS) were therefore assessed using the Rapid Assessment and Prioritization of Protected Area ...

  12. Reconstruction of brachial artery pressure from noninvasive finger pressure measurements

    NARCIS (Netherlands)

    Bos, W. J.; van Goudoever, J.; van Montfrans, G. A.; van den Meiracker, A. H.; Wesseling, K. H.

    1996-01-01

    Pulse wave distortions, mainly caused by reflections, and pressure gradients, caused by flow in the resistive vascular tree, may cause differences between finger and brachial artery pressures. These differences may limit the use of finger pressure measurements. We investigated whether brachial

  13. Reevaluation of the needle method for measuring interstitial fluid pressure.

    Science.gov (United States)

    Brace, R A; Guyton, A C; Taylor, A E

    1975-09-01

    Inserting a needle into subcutaneous spaces should allow a subatmospheric pressure to be measured if interstitial fluid pressure is truly negative as measured by the capsule and wick techniques. Previous needle measurements of interstitial fluid pressure have produced a positive value, but in most instances fluid has been injected into the tissues prior to recording of pressure. Therefore, we measured subcutaneous needle pressure in anesthetized dogs without fluid injection into the tissues. Approximately 30 min are required for an equilibrium pressure after insertion of the needle. The mean 30-min pressure was 4.6 +/- 0.5 (SE) mmHg (n equals 41). With observable edema, interstitial fluid pressures as measured with the needle were always positive. However, the needle method for continuous recording of pressure lacks rapid sensitivity to changes in tissue fluid pressures. In order to develop a needle method that would follow changes in interstitial fluid pressure, 0.5-1 mul of saline was injected into or withdrawn from the tissue. With this method, pressure plateaued in 10-20 min. This plateau pressure increased with tissue hydration and decreased with dehydration.

  14. Corrosion of metal samples rapidly measured

    Science.gov (United States)

    Maskell, C. E.

    1966-01-01

    Corrosion of a large number of metal samples that have been exposed to controlled environment is accurately and rapidly measured. Wire samples of the metal are embedded in clear plastic and sectioned for microexamination. Unexposed wire can be included in the matrix as a reference.

  15. Pressures Detector Calibration and Measurement

    CERN Document Server

    AUTHOR|(CDS)2156315

    2016-01-01

    This is report of my first and second projects (of 3) in NA61. I did data taking and analysis in order to do calibration of pressure detectors and verified it. I analyzed the data by ROOT software using the C ++ programming language. The first part of my project was determination of calibration factor of pressure sensors. Based on that result, I examined the relation between pressure drop, gas flow rate of in paper filter and its diameter.

  16. Diffraction and rapidity gap measurements with ATLAS

    CERN Document Server

    Kus, V; The ATLAS collaboration

    2014-01-01

    Two diffraction related measurements of proton-proton collisions in the ATLAS experiment of the Large Hadron Collider at $\\surd s$ = 7 TeV centre-of-mass energy are reviewed. First of them is a fraction of diffractive contribution to the inelastic cross section. Second measurement is dedicated to the identification of Single Diffractive interactions with large pseudo-rapidity gaps using early 2010 data sample of integrated luminosity 7.1 $\\mu b^{-1}$. Differential cross sections of largest forward areas of the ATLAS detector starting at its most forward edges $\\eta = \\pm 4.9$ without any particle activity above different transverse momentum thresholds are measured. Results are compared to several distinctive Monte Carlo models resulting in constraint of Pomeron intercept value in triple Pomeron based approach. Furthermore, proton-proton interactions in small pseudo-rapidity gap region test qualitatively a description of different hadronisation models as well as statistical fluctuations during hadronisation pr...

  17. High Precision Pressure Measurement with a Funnel

    Science.gov (United States)

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  18. New Vision Sensor to Measure Gas Pressure

    Directory of Open Access Journals (Sweden)

    Murawski Krzysztof

    2015-06-01

    Full Text Available The paper presents the construction and operation of a video sensor developed for video-manometer. In the publication the use of video-manometer for measuring gas pressure is presented. A characteristic feature of the device is pressure measurement based on diaphragm deformation and digital image processing. Presented measuring technique eliminates restrictions in the construction of the measuring apparatus arising from non-linear nature of diaphragm deformation. It also allows performing measurements of gas pressure, also of explosive gas, providing galvanic isolation between the factor measured and the measuring device. The paper presents the results of video-manometer calibration and measurements taken during the laboratory tests. It has been shown that the developed video-manometer, that is equipped with a flat silicone diaphragm, allows measuring the gas pressure in the range of 0 – 100 mbar with an error less than 2 %. In the experiments the CO2 pressure was measured.

  19. Diffraction and rapidity gap measurements in ATLAS

    CERN Document Server

    Bernat, P; The ATLAS collaboration

    2012-01-01

    The early data recorded by the ATLAS detector during 2010 presents a great opportunity to study diffraction cross section in proton-proton collision. The differential cross section of diffractive dissociation is studied as a function of the maximum rapidity gap, up to 8 in rapidity units. Data are compared to different models of diffractive dynamics in standard event generators. A rise at large rapidity gaps is interpreted with a triple pomeron based approach, using Pythia 8 prediction (with a Donnachie-Landshoff model). A pomeron intercept of 1.058 ± 0.003(stat) +0.034-0.039 (syst) is found. A measurement of the dijet production with a jet veto on additional central activity using 2010 data is also presented. The use of a veto scale at 20 GeV allows to measure the jet activity in dijet events. As the veto scale is much larger than Lambda_s different QCD phenomena can be studied. Moreover, ATLAS data explores regions of the phase space for the first time. The main observable in this analysis is the fraction ...

  20. Blood pressure measurement on the cheek

    Directory of Open Access Journals (Sweden)

    Schneider Sarah

    2016-09-01

    Full Text Available In a large group of patients, it is impossible to measure blood pressure using an upper arm cuff. An alternative, non-invasive method of blood pressure measurement is required for patients with severe limb deformities or obesity, for amputees, and in the emergency medicine. The device proposed here measures blood pressure in the cheek using a small pressure pad and a pump to occlude the cheek artery – arteria facialis – and assesses blood flow with an infrared light source and a detector. The infrared light signal is analysed to assess the systolic and diastolic blood pressure of the patient. Manual evaluation of the light intensity signal showed a good agreement between cheek blood pressure measurement and a reference measurement using an upper arm cuff.

  1. Foot Plantar Pressure Measurement System: A Review

    Directory of Open Access Journals (Sweden)

    Yufridin Wahab

    2012-07-01

    Full Text Available Foot plantar pressure is the pressure field that acts between the foot and the support surface during everyday locomotor activities. Information derived from such pressure measures is important in gait and posture research for diagnosing lower limb problems, footwear design, sport biomechanics, injury prevention and other applications. This paper reviews foot plantar sensors characteristics as reported in the literature in addition to foot plantar pressure measurement systems applied to a variety of research problems. Strengths and limitations of current systems are discussed and a wireless foot plantar pressure system is proposed suitable for measuring high pressure distributions under the foot with high accuracy and reliability. The novel system is based on highly linear pressure sensors with no hysteresis.

  2. Blood pressure measurements taken by patients are similar to home and ambulatory blood pressure measurements

    Directory of Open Access Journals (Sweden)

    Angela M. G. Pierin

    2008-01-01

    Full Text Available OBJECTIVE: To compare blood pressure measurements taken at home by physicians, nurses, and patients with office blood pressure measurement , ambulatory blood pressure monitoring and home blood pressure measurement. METHODS: A total of 44 patients seen by a home care program were studied. Protocol 1 a blood pressure was measured by the patient, a physician and a nurse during a regular home visit (Home1; b home blood pressure measurement was measured for 4 days (HBPM1; c office blood pressure measurement was measured by a physician, a nurse, and the patient; and by 24-hour ambulatory blood pressure monitoring. Protocol 2 blood pressure was measured by the patient, a physician, and a nurse during a special home visit in the presence of a physician and a nurse only (Home2; and b home blood pressure measurement was taken for the second time (HBPM2. Echocardiography, guided by a two-dimensional echocardiograph, was performed. RESULTS: Protocol 1: a office blood pressure measurement and Home1 were significantly higher than ambulatory blood pressure monitoring, except for systolic and diastolic office blood pressure measurement taken by the patient or a family member, systolic blood pressure taken by a nurse, and diastolic blood pressure taken by a physician. b ambulatory blood pressure monitoring and HBPM1 were similar. Protocol 2: a HBPM2 and Home2 were similar. b Home2 was significantly lower than Home1, except for diastolic blood pressure taken by a nurse or the patient. There were significant relationships between: a diastolic blood pressure measured by the patient and the thickness of the interventricular septum, posterior wall, and left ventricular mass; and b ambulatory and HBPM2 diastolic and systolic blood pressure taken by a physician (home2 and left ventricular mass. Therefore, the data indicate that home blood pressure measurement and ambulatory blood pressure monitoring had good prognostic values relative to "office measurement

  3. An underwater blood pressure measuring device.

    Science.gov (United States)

    Sieber, Arne; Kuch, Benjamin; L'abbate, Antonio; Wagner, Matthias; Dario, Paolo; Bedini, Remo

    2008-09-01

    Measurement of arterial blood pressure is an important vital sign for monitoring the circulation. However, up to now no instrument has been available that enables the measurement of blood pressure underwater. The present paper details a novel, oscillometric, automatic digital blood pressure (BP) measurement device especially designed for this purpose. It consists mainly of analogue and digital electronics in a lexan housing that is rated to a depth of up to 200 metres' sea water, a cuff and a solenoid for inflation of the cuff with air supplied from a scuba tank. An integrated differential pressure sensor, exposed to the same ambient pressure as the cuff, allows accurate BP measurement. Calculation of systolic and diastolic pressures is based on the analysis of pressure oscillations recorded during the deflation. In hyperbaric chamber tests to pressures up to 405 kPa, BP measurements taken with the prototype were comparable to those obtained with established manual and automated methods. Swimming pool tests confirmed the correct functioning of the system underwater. The quality of the recorded pressure oscillations was very good even at 10 metres' fresh water, and allowed determination of diastolic and systolic pressure values. Based on these results we envisage that this device will lead to a better understanding of human cardiovascular physiology in underwater and hyperbaric environments.

  4. Oscillometric blood pressure measurements: differences between measured and calculated mean arterial pressure.

    NARCIS (Netherlands)

    Kiers, H.D.; Hofstra, J.M.; Wetzels, J.F.M.

    2008-01-01

    Mean arterial pressure (MAP) is often used as an index of overall blood pressure. In recent years, the use of automated oscillometric blood pressure measurement devices is increasing. These devices directly measure and display MAP; however, MAP is often calculated from systolic blood pressure (SBP)

  5. Optical Measurement Of Sound Pressure

    Science.gov (United States)

    Trinh, Eugene H.; Gaspar, Mark; Leung, Emily W.

    1989-01-01

    Noninvasive technique does not disturb field it measures. Sound field deflects laser beam proportionally to its amplitude. Knife edge intercepts undeflected beam, allowing only deflected beam to reach photodetector. Apparatus calibrated by comparing output of photodetector with that of microphone. Optical technique valuable where necessary to measure in remote, inaccessible, or hostile environment or to avoid perturbation of measured region.

  6. Pirani pressure sensor with distributed temperature measurement

    NARCIS (Netherlands)

    de Jong, B.R.; Bula, W.P.; Zalewski, D.R.; van Baar, J.J.J.; Wiegerink, Remco J.

    2003-01-01

    Surface micro-machined distributed Pirani pressure gauges, with designed heater-to-heat sink distances (gap-heights) of 0.35 μm and 1.10 μm, are successfully fabricated, modeled and characterized. Measurements and model response correspond within 5% of the measured value in a pressure range of 10 to

  7. Auscultatory versus oscillometric measurement of blood pressure in octogenarians.

    Science.gov (United States)

    Rosholm, Jens-Ulrik; Arnspang, Sidsel; Matzen, Lars; Jacobsen, Ib A

    2012-10-01

    Auscultatory measurement using a sphygmomanometer has been the predominant method for clinical estimation of blood pressure, but it is now rapidly being replaced by oscillometric measurement. To compare blood pressure by auscultatory and oscillometric measurements in patients ≥ 80 years. 100 patients had blood pressure measured by auscultation with a sphygmomanometer and by an electronic device using the oscillometric method. For each patient the mean of two blood pressures with each method measured within 15 min were compared. The mean age of participants was 85.8 years; 55.8% were women. The correlation coefficient for systolic blood pressure was 0.88 and for diastolic 0.79. Differences between auscultatory and oscillometric values were less than 10 mmHg in 70.6% of systolic blood pressures and in 83.2% for diastolic. Arrhythmia and hypertension did not influence the results, and there was no correlation between the magnitude of the differences and the level of blood pressure. Agreement between oscillometric and auscultatory measurements of blood pressure in octogenarians was found to be less than required by validation protocols. However, semi-automatic equipment, which is observer-independent, may be used even in the very elderly, particularly if multiple readings are performed.

  8. Micro packaged MEMS pressure sensor for intracranial pressure measurement

    Science.gov (United States)

    Xiong, Liu; Yan, Yao; Jiahao, Ma; Yanhang, Zhang; Qian, Wang; Zhaohua, Zhang; Tianling, Ren

    2015-06-01

    This paper presents a micro packaged MEMS pressure sensor for intracranial pressure measurement which belongs to BioMEMS. It can be used in lumbar puncture surgery to measure intracranial pressure. Miniaturization is key for lumbar puncture surgery because the sensor must be small enough to allow it be placed in the reagent chamber of the lumbar puncture needle. The size of the sensor is decided by the size of the sensor chip and package. Our sensor chip is based on silicon piezoresistive effect and the size is 400 × 400 μm2. It is much smaller than the reported polymer intracranial pressure sensors such as liquid crystal polymer sensors. In terms of package, the traditional dual in-line package obviously could not match the size need, the minimal size of recently reported MEMS-based intracranial pressure sensors after packaging is 10 × 10 mm2. In this work, we are the first to introduce a quad flat no-lead package as the package form of piezoresistive intracranial pressure sensors, the whole size of the sensor is minimized to only 3 × 3 mm2. Considering the liquid measurement environment, the sensor is gummed and waterproof performance is tested; the sensitivity of the sensor is 0.9 × 10-2 mV/kPa. Project supported by the National Natural Science Foundation of China (Nos. 61025021, 61434001), and the ‘Thousands Talents’ Program for Pioneer Researchers and Its Innovation Team, China.

  9. Rapid Heat Treatment of Aluminum High-Pressure Diecastings

    Science.gov (United States)

    Lumley, R. N.; Polmear, I. J.; Curtis, P. R.

    2009-07-01

    Recently, it has been demonstrated that common high-pressure diecasting (HPDC) alloys, such as those based on the Al-Si-Cu and Al-Si-Mg-(Cu) systems, may be successfully heat treated without causing surface blistering or dimensional instability. In some compositions, the capacity to exploit age hardening may allow the proof stress values to be doubled when compared to the as-cast condition. This heat treatment procedure involves the use of severely truncated solution treatment cycles conducted at lower than normal temperatures, followed by quenching and natural or artificial aging. The potential therefore exists to develop and evaluate secondary HPDC alloys designed specifically for rapid heat treatment, while still displaying high castability. This article reports results of an experimental program in which responses of various alloy compositions to age hardening have been investigated with the primary aim of further reducing the duration and cost of the heat treatment cycle while maintaining high tensile properties. Composition ranges have been established for which values of 0.2 pct proof stress exceeding 300 MPa ( i.e., increases of ~100 pct above as-cast values) can be achieved using a procedure that involves a total time for solution treatment plus age hardening of only 30 minutes. This rapid aging behavior is shown to be related to precipitation of the complex Q' phase, which forms primarily when Mg contents of the alloys are above ~0.2 wt pct.

  10. Borehole pressure and temperature measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Perales, K.L.

    1990-12-11

    This patent describes apparatus for continuously measuring fluctuating pressure and temperature of a downhole fluid in a borehole at a desired depth. It comprises a tube positioned within the borehole; a housing suspended in the borehole at the desired depth from the tube; a pressurized test fluid source at the surface for initially pressuring the flow path in the tube and a portion of the chamber in the housing; a valve for selectively isolating fluid communications between the tube and the pressurized test fluid source; a thermocouple line including two dissimilar metal conductors; a manifold at the surface for sealing the selected fluid within the flow path; a pressure measuring device at the surface and in fluid communication; and a temperature measuring device at the surface for receiving the thermocouple line.

  11. Measurement and Applications of Radiation Pressure

    Science.gov (United States)

    Ma, Dakang; Garrett, Joseph; Murray, Joseph; Munday, Jeremy; Munday Lab Team

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Measuring and utilizing radiation pressure have aroused growing interest in a wide spectrum of research fields. Micromechanical transducers and oscillators are good candidates for measuring radiation pressure, but accompanying photothermal effects often obscure the measurement. In this work, we investigate the accurate measurement of the radiation force on microcantilevers in ambient conditions and ways to separate radiation pressure and photothermal effects. Further, we investigate an optically broadband switchable device based on polymer dispersed liquid crystal which has potential applications in solar sails and maneuvering spacecraft without moving parts. The authors would like to thank NASA Early Career Faculty Award and NASA Smallsat Technology Partnership Award for their funding support.

  12. Attempted eyelid closure affects intraocular pressure measurement.

    Science.gov (United States)

    Gandhi, P D; Gürses-Ozden, R; Liebmann, J M; Ritch, R

    2001-04-01

    To evaluate the effect of attempted eyelid closure on intraocular pressure measurement. Normal subjects underwent intraocular pressure measurement in both eyes using Goldmann applanation tonometry and Tono-pen XL (Mentor, Inc, Norwell, Massachusetts) by the same examiner holding the eyelids open, both with and without the subject simultaneously attempting forced eyelid closure. Subjects were seated during all measurements and waited 5 minutes between measurements with each instrument; the order of measurement was randomized. Thirty eyes of 15 subjects (six men, nine women) were enrolled. Mean age was 30.5 +/- 5.2 years (range, 24 to 40 years). With Goldmann applanation tonometry, intraocular pressure increased in both eyes with attempted eyelid closure by a mean of 1.5 +/- 2.0 mm Hg (P =.0002, paired t test; range, -2 to 8 mm Hg). With the Tono-pen XL, intraocular pressure also increased in both eyes with attempted eyelid closure by a mean of 1.9 +/- 2.7 mm Hg (P =.0002, paired t test; range, -2 to 9 mm Hg). Tono-pen XL mean intraocular pressure values in both eyes (14.4 +/- 2.3 mm Hg) consistently overestimated those of Goldmann applanation tonometry (13.0 +/- 2.2 mm Hg) by a mean of 1.4 +/- 2.3 mm Hg. Attempted forced eyelid closure is a common and statistically significant source of error in routine outpatient measurement of intraocular pressure and could influence clinical management of glaucoma.

  13. Measuring Pressure Drop Under Non Ideal Conditions

    Directory of Open Access Journals (Sweden)

    Austin M

    2014-12-01

    Full Text Available The method of measurement of the pressure drop (PD of cigarette filter rods and the draw resistance of cigarettes is defined in ISO 6565-2002 (1. This standard defines the calibration and use of a transfer standard to calibrate the measuring instrument and also defines the measurement procedure for cigarette and filter samples. The procedure described in the standard assumes that the measurement conditions are constant and that the sample is in equilibrium with the measurement environment.

  14. Pancreas tumor interstitial pressure catheter measurement

    Science.gov (United States)

    Nieskoski, Michael D.; Gunn, Jason; Marra, Kayla; Trembly, B. Stuart; Pogue, Brian W.

    2016-03-01

    This paper highlights the methodology in measuring interstitial pressure in pancreatic adenocarcinoma tumors. A Millar Mikrotip pressure catheter (SPR-671) was used in this study and a system was built to amplify and filter the output signal for data collection. The Millar pressure catheter was calibrated prior to each experiment in a water column at 37°C, range of 0 to 60 inH2O (112 mmHg), resulting in a calibration factor of 33 mV / 1 inH2O. The interstitial pressures measured in two orthotopically grown pancreatic adenocarcinoma tumor were 57 mmHg and 48 mmHg, respectively. Verteporfin uptake into the pancreatic adenocarcinoma tumor was measured using a probe-based experimental dosimeter.

  15. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, while...... calorimetric methods relate to wave energy. Measurements with some typical ultrasound fields are performed with a novel type of hydrophone, and these allow an estimate to be made of the magnitude of the discrepancy to be expected between the two types of output measurement in a typical case....

  16. Working meeting on blood pressure measurement: suggestions for measuring blood pressure to use in populations surveys.

    Science.gov (United States)

    2003-11-01

    As part of the Pan American Hypertension Initiative (PAHI), the Pan American Health Organization and the National Heart, Lung, and Blood Institute of the National Institutes of Health of the United States of America conducted a working meeting to discuss blood pressure (BP) measurement methods used in various hypertension prevalence surveys and clinical trials, with the objective of developing a BP measurement protocol for use in hypertension prevalence surveys in the Americas. No such common protocol has existed in the Americas, so it has been difficult to compare hypertension prevention and intervention strategies. This piece describes a proposed standard method for measuring blood pressure for use in population surveys in the Region of the Americas. The piece covers: considerations for developing a common blood pressure measurement protocol, critical issues in measuring blood pressure in national surveys, minimum procedures for blood pressure measurement during surveillance, and quality assessment of blood pressure.

  17. Detecting rapid mass movements using electrical self-potential measurements

    Science.gov (United States)

    Heinze, Thomas; Limbrock, Jonas; Pudasaini, Shiva P.; Kemna, Andreas

    2017-04-01

    Rapid mass movements are a latent danger for lives and infrastructure in almost any part of the world. Often such mass movements are caused by increasing pore pressure, for example, landslides after heavy rainfall or dam breaking after intrusion of water in the dam. Among several other geophysical methods used to observe water movement, the electrical self-potential method has been applied to a broad range of monitoring studies, especially focusing on volcanism and dam leakage but also during hydraulic fracturing and for earthquake prediction. Electrical self-potential signals may be caused by various mechanisms. Though, the most relevant source of the self-potential field in the given context is the streaming potential, caused by a flowing electrolyte through porous media with electrically charged internal surfaces. So far, existing models focus on monitoring water flow in non-deformable porous media. However, as the self-potential is sensitive to hydraulic parameters of the soil, any change in these parameters will cause an alteration of the electric signal. Mass movement will significantly influence the hydraulic parameters of the solid as well as the pressure field, assuming that fluid movement is faster than the pressure diffusion. We will present results of laboratory experiments under drained and undrained conditions with fluid triggered as well as manually triggered mass movements, monitored with self-potential measurements. For the undrained scenarios, we observe a clear correlation between the mass movements and signals in the electric potential, which clearly differ from the underlying potential variations due to increased saturation and fluid flow. In the drained experiments, we do not observe any measurable change in the electric potential. We therefore assume that change in fluid properties and release of the load causes disturbances in flow and streaming potential. We will discuss results of numerical simulations reproducing the observed effect. Our

  18. Patient-Specific Oscillometric Blood Pressure Measurement.

    Science.gov (United States)

    Liu, Jiankun; Cheng, Hao-Min; Chen, Chen-Huan; Sung, Shih-Hsien; Moslehpour, Mohsen; Hahn, Jin-Oh; Mukkamala, Ramakrishna

    2016-06-01

    Most automatic cuff blood pressure (BP) measurement devices are based on oscillometry. These devices estimate BP from the envelopes of the cuff pressure oscillations using fixed ratios. The values of the fixed ratios represent population averages, so the devices may only be accurate in subjects with normal BP levels. The objective was to develop and demonstrate the validity of a patient-specific oscillometric BP measurement method. The idea of the developed method was to represent the cuff pressure oscillation envelopes with a physiologic model, and then estimate the patient-specific parameters of the model, which includes BP levels, by optimally fitting it to the envelopes. The method was investigated against gold standard reference BP measurements from 57 patients with widely varying pulse pressures. A portion of the data was used to optimize the patient-specific method and a fixed-ratio method, while the remaining data were used to test these methods and a current office device. The patient-specific method yielded BP root-mean-square-errors ranging from 6.0 to 9.3 mmHg. On an average, these errors were nearly 40% lower than the errors of each existing method. The patient-specific method may improve automatic cuff BP measurement accuracy. A patient-specific oscillometric BP measurement method was proposed and shown to be more accurate than the conventional method and a current device.

  19. Oscillometric blood pressure measurements: A signal analysis

    Science.gov (United States)

    Barbé, K.; Van Moer, W.; Lauwers, L.

    2010-07-01

    In this paper, the oscillometric waveform measured by automatic non-invasive blood pressure meters (NIBP) is analyzed by transforming the data from the time domain to the frequency domain. The signal's spectrum of the oscillometric waveform is in current literature badly understood or explored. The only known link between the oscillometric waveform and the blood pressure is the maximum of the oscillometry's envelope equalling the mean arterial pressure (MAP). This link is established under the assumption that the oscillometry is an AM-signal. Unfortunately, computing the MAP is difficult in practice due to the non-sinusoidal nature of the actual measured signals. In this paper, we construct the best AM-signal approximation of the oscillometry and explore its use to compute the MAP.

  20. Pore Pressure Measurements Inside Rubble Mound Breakwaters

    DEFF Research Database (Denmark)

    Helgason, Einar; Burcharth, H. F.; Grüne, Joachim

    2004-01-01

    The present paper presents pore pressure measurements from large scale model tests performed at the Large Wave Channel, Hannover, Germany and small scale model test performed at the Hydraulic & Coastal Engineering Laboratory, Aalborg University, Denmark. Information on pore pressure attenuation...... and wave damping in the core and important for the scaling of core materials in small scale hydraulic models. The main objectives are to study and examine the wave damping in the core of rubble mound breakwater models. the acquired test results are compared with results available from the literature...

  1. Noninvasive measurement of central venous pressure

    Science.gov (United States)

    Webster, J. G.; Mastenbrook, S. M., Jr.

    1972-01-01

    A technique for the noninvasive measurement of CVP in man was developed. The method involves monitoring venous velocity at a point in the periphery with a transcutaneous Doppler ultrasonic velocity meter while the patient performs a forced expiratory maneuver. The idea is the CVP is related to the value of pressure measured at the mouth which just stops the flow in the vein. Two improvements were made over the original procedure. First, the site of venous velocity measurement was shifted from a vein at the antecubital fossa (elbow) to the right external jugular vein in the neck. This allows for sensing more readily events occurring in the central veins. Secondly, and perhaps most significantly, a procedure for obtaining a curve of relative mean venous velocity vs mouth pressure was developed.

  2. Diffraction and rapidity gap measurements with the ATLAS detector

    CERN Document Server

    Bernat, P; The ATLAS collaboration

    2012-01-01

    These proceedings report of two measurements performed with the ATLAS detector. These measurements use the notion of 'rapidity gaps', although the definition of gap and the probed physics are quite different. The paper [1] presents the rapidity gap cross sections measured with the ATLAS detector using early 2010 pp collisions data. Gap translates the absence of particle produced in a rapidity region. Diffractive events are recorded using the Minimum Bias Trigger Scintillators mounted in front of the end-cap calorimeters. The paper [2] presents the measurement of dijet production with a jet veto on additional central jet activity in pp collisions recorded by ATLAS in 2010. Rapidity gaps are defined by the absence of jet in the rapidity interval bounded by the dijet system, of transverse momentum above 20 GeV. There is therefore some QCD activity in these rapidity gaps. Dijet events are collected using calorimeters jets trigger.

  3. Automatic Blood Pressure Measurements During Exercise

    Science.gov (United States)

    Weaver, Charles S.

    1985-01-01

    Microprocessor circuits and a computer algorithm for automatically measuring blood pressure during ambulatory monitoring and exercise stress testing have been under development at SRI International. A system that records ECG, Korotkov sound, and arm cuff pressure for off-line calculation of blood pressure has been delivered to NASA, and an LSLE physiological monitoring system that performs the algorithm calculations in real-time is being constructed. The algorithm measures the time between the R-wave peaks and the corresponding Korotkov sound on-set (RK-interval). Since the curve of RK-interval versus cuff pressure during deflation is predictable and slowly varying, windows can be set around the curve to eliminate false Korotkov sound detections that result from noise. The slope of this curve, which will generally decrease during exercise, is the inverse of the systolic slope of the brachial artery pulse. In measurements taken during treadmill stress testing, the changes in slopes of subjects with coronary artery disease were markedly different from the changes in slopes of healthy subjects. Measurements of slope and O2 consumption were also made before and after ten days of bed rest during NASA/Ames Research Center bed rest studies. Typically, the maximum rate of O2 consumption during the post-bed rest test is less than the maximum rate during the pre-bed rest test. The post-bed rest slope changes differ from the pre-bed rest slope changes, and the differences are highly correlated with the drop in the maximum rate of O2 consumption. We speculate that the differences between pre- and post-bed rest slopes are due to a drop in heart contractility.

  4. Principles of Blood Pressure Measurement - Current Techniques, Office vs Ambulatory Blood Pressure Measurement.

    Science.gov (United States)

    Vischer, Annina S; Burkard, Thilo

    2017-01-01

    Blood pressure measurement has a long history and a crucial role in clinical medicine. Manual measurement using a mercury sphygmomanometer and a stethoscope remains the Gold Standard. However, this technique is technically demanding and commonly leads to faulty values. Automatic devices have helped to improve and simplify the technical aspects, but a standardised procedure of obtaining comparable measurements remains problematic and may therefore limit their validity in clinical practice. This underlines the importance of less error-prone measurement methods such as ambulatory or home blood pressure measurements and automated office blood pressure measurements. These techniques may help to uncover patients with otherwise unrecognised or overestimated arterial hypertension. Additionally these techniques may yield a better prognostic value.

  5. Hybrid Optical Unobtrusive Blood Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Guangfei Zhang

    2017-07-01

    Full Text Available Blood pressure (BP is critical in diagnosing certain cardiovascular diseases such as hypertension. Some previous studies have proved that BP can be estimated by pulse transit time (PTT calculated by a pair of photoplethysmography (PPG signals at two body sites. Currently, contact PPG (cPPG and imaging PPG (iPPG are two feasible ways to obtain PPG signals. In this study, we proposed a hybrid system (called the ICPPG system employing both methods that can be implemented on a wearable device, facilitating the measurement of BP in an inconspicuous way. The feasibility of the ICPPG system was validated on a dataset with 29 subjects. It has been proved that the ICPPG system is able to estimate PTT values. Moreover, the PTT measured by the new system shows a correlation on average with BP variations for most subjects, which could facilitate a new generation of BP measurement using wearable and mobile devices.

  6. Measuring elevated intracranial pressure through noninvasive methods

    DEFF Research Database (Denmark)

    Kristiansson, Helena; Nissborg, Emelie; Bartek, Jiri

    2013-01-01

    techniques available. Several methods for noninvasive measuring of elevated ICP have been proposed: radiologic methods including computed tomography and magnetic resonance imaging, transcranial Doppler, electroencephalography power spectrum analysis, and the audiological and ophthalmological techniques......Elevated intracranial pressure (ICP) is an important cause of secondary brain injury, and a measurement of ICP is often of crucial value in neurosurgical and neurological patients. The gold standard for ICP monitoring is through an intraventricular catheter, but this invasive technique...... is associated with certain risks. Intraparenchymal ICP monitoring methods are considered to be a safer alternative but can, in certain conditions, be imprecise due to zero drift and still require an invasive procedure. An accurate noninvasive method to measure elevated ICP would therefore be desirable...

  7. Decreasing pressure ulcer risk during hospital procedures: a rapid process improvement workshop.

    Science.gov (United States)

    Haugen, Vicki; Pechacek, Judy; Maher, Travis; Wilde, Joy; Kula, Larry; Powell, Julie

    2011-01-01

    A 300-bed acute care community hospital used a 2-day "Rapid Process Improvement Workshop" to identify factors contributing to facility-acquired pressure ulcers (PU). The Rapid Process Improvement Workshop included key stakeholders from all procedural areas providing inpatient services and used standard components of rapid process improvement: data analysis, process flow charting, factor identification, and action plan development.On day 1, the discovery process revealed increased PU risk related to prolonged immobility when transporting patients for procedures, during imaging studies, and during the perioperative period. On day 2, action plans were developed that included communication of PU risk or presence of an ulcer,measures to shorten procedure times when clinically appropriate, implementation of prevention techniques during procedures, and recommendations for mattress upgrades. In addition, educational programs about PU prevention were developed, schedules for presentations were established, and an online power point presentation was completed and placed in a learning management system module. Finally, our nursing department amended a hospital wide handoff communication tool to include skin status and PU risk level. This tool is used in all patient handoff situations, including nonnursing departments such as radiology. Patients deemed at risk for ulcers were provided "Braden Risk" armbands to enhance interdepartmental awareness.

  8. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Rapid control prototyping for cylinder pressure indication; Rapid Control Prototyping fuer Zylinderdruckindizierung

    Energy Technology Data Exchange (ETDEWEB)

    Pfluger, Jan [RWTH Aachen Univ. (Germany). Lehrstuhl fuer Verbrennungskraftmaschinen; Andert, Jakob [FEV GmbH, Aachen (Germany). Fahrzeugelektronik/E-Mobilitaet; Ross, Holger; Mertens, Frank [dSpace GmbH, Paderborn (Germany). Rapid Control Prototyping Systems

    2012-11-15

    Cylinder-pressure-based controls that allow cycle-synchronous reactions to events in the combustion chamber are a particularly promising possibility further optimising engine combustion processes. However, the requirements of real-time cylinder indication are fast pushing today's systems up against their limits. The Institute for Combustion Engines at RWTH Aachen University and dSpace together developed a high performance prototype for online indication with cycle-synchronous combustion control. (orig.)

  10. Pressure and Quantity Thresholds for Ignition of Oil Contamination by Rapid Pressurization in Oxygen Systems

    Science.gov (United States)

    Tapia, Susana; Smith, Sarah; Peralta, Steve; Stoltzfus, Joel

    2009-01-01

    This slide presentation reviews the problem and solution of oil contamination and increased ignition hazard in oxygen systems. The experiments that were used are reviewed, and the contamination level threshold and the oxygen pressure threshold are reviewed.

  11. 21 CFR 890.1600 - Intermittent pressure measurement system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Intermittent pressure measurement system. 890.1600 Section 890.1600 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Intermittent pressure measurement system. (a) Identification. An intermittent pressure measurement system is an...

  12. 21 CFR 870.1130 - Noninvasive blood pressure measurement system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Noninvasive blood pressure measurement system. 870... SERVICES (CONTINUED) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Diagnostic Devices § 870.1130 Noninvasive blood pressure measurement system. (a) Identification. A noninvasive blood pressure measurement...

  13. Relating external compressing pressure to mean arterial pressure in non-invasive blood pressure measurements.

    Science.gov (United States)

    Chin, K Y; Panerai, R B

    2015-01-01

    Arterial volume clamping uses external compression of an artery to provide continuous non-invasive measurement of arterial blood pressure. It has been assumed that mean arterial pressure (MAP) corresponds to the point where unloading leads to the maximum oscillation of the arterial wall as reflected by photoplethysmogram (PPG), an assumption that has been challenged. Five subjects were recruited for the study (three males, mean age (SD) = 32 (15) years). The PPG waveform was analysed to identify the relationship between the external compressing pressure, PPG pulse amplitude and MAP. Two separate tests were carried out at compression step intervals of 10 mmHg and 2 mmHg, respectively. No significant differences were found between the two tests. The bias between the compressing pressure and the MAP was -4.7 ± 5.63 mmHg (p < 0.001) showing a normal distribution. Further research is needed to identify optimal algorithms for estimation of MAP using PPG associated with arterial compression.

  14. Organic Electroluminescent Sensor for Pressure Measurement

    Directory of Open Access Journals (Sweden)

    Tomohide Niimi

    2012-10-01

    Full Text Available We have proposed a novel concept of a pressure sensor called electroluminescent pressure sensor (ELPS based on oxygen quenching of electroluminescence. The sensor was fabricated as an organic light-emitting device (OLED with phosphorescent dyes whose phosphorescence can be quenched by oxygenmolecules, and with a polymer electrode which permeates oxygen molecules. The sensor was a single-layer OLED with Platinum (II octaethylporphine (PtOEP doped into poly(vinylcarbazole (PVK as an oxygen sensitive emissive layer and poly(3,4-ethylenedioxythiophene mixed with poly(styrenesulfonate (PEDOT:PSS as an oxygen permeating polymer anode. The pressure sensitivity of the fabricated ELPS sample was equivalent to that of the sensor excited by an illumination light source. Moreover, the pressure sensitivity of the sensor is equivalent to that of conventional pressure-sensitive paint (PSP, which is an optical pressure sensor based on photoluminescence.

  15. Blood Pressure Measurement: Clinic, Home, Ambulatory, and Beyond

    Science.gov (United States)

    Drawz, Paul E.; Abdalla, Mohamed; Rahman, Mahboob

    2014-01-01

    Blood pressure has traditionally been measured in the clinic setting using the auscultory method and a mercury sphygmomanometer. Technological advances have led to improvements in measuring clinic blood pressure and allowed for measuring blood pressures outside the clinic. This review outlines various methods for evaluating blood pressure and the clinical utility of each type of measurement. Home blood pressures and 24 hour ambulatory blood pressures have improved our ability to evaluate risk for target organ damage and hypertension related morbidity and mortality. Measuring home blood pressures may lead to more active participation in health care by patients and has the potential to improve blood pressure control. Ambulatory blood pressure monitoring enables the measuring nighttime blood pressures and diurnal changes, which may be the most accurate predictors of risk associated with elevated blood pressure. Additionally, reducing nighttime blood pressure is feasible and may be an important component of effective antihypertensive therapy. Finally, estimating central aortic pressures and pulse wave velocity are two of the newer methods for assessing blood pressure and hypertension related target organ damage. PMID:22521624

  16. Rapid Response Measurements of Hurricane Waves and Storm Surge

    Science.gov (United States)

    Gravois, U.

    2010-12-01

    Andrew (1992), Katrina (2005), and Ike (2008) are recent examples of extensive damage that resulted from direct hurricane landfall. Some of the worst damages from these hurricanes are caused by wind driven waves and storm surge flooding. The potential for more hurricane disasters like these continues to increase as a result of population growth and real estate development in low elevation coastal regions. Observational measurements of hurricane waves and storm surge play an important role in future mitigation efforts, yet permanent wave buoy moorings and tide stations are more sparse than desired. This research has developed a rapid response method using helicopters to install temporary wave and surge gauges ahead of hurricane landfall. These temporary installations, with target depths from 10-15 m and 1-7 km offshore depending on the local shelf slope, increase the density of measurement points where the worst conditions are expected. The method has progressed to an operational state and has successfully responded to storms Ernesto (2006), Noel (2007), Fay (2008), Gustav (2008), Hanna (2008) and Ike (2008). The temporary gauges are pressure data loggers that measure at 1 Hz continuously for 12 days and are post-processed to extract surge and wave information. For the six storms studied, 45 out of 49 sensors were recovered by boat led scuba diver search teams, with 43 providing useful data for an 88 percent success rate. As part of the 20 sensor Hurricane Gustav response, sensors were also deployed in lakes and bays inLouisiana, east of the Mississippi river delta. Gustav was the largest deployment to date. Generally efforts were scaled back for storms that were not anticipated to be highly destructive. For example, the cumulative total of sensors deployed for Ernesto, Noel, Fay and Hanna was only 20. Measurement locations for Gustav spanned over 800 km of exposed coastline from Louisiana to Florida with sensors in close proximity to landfall near Cocodrie

  17. Non-invasive blood pressure measurement in mice.

    Science.gov (United States)

    Feng, Minjie; DiPetrillo, Keith

    2009-01-01

    Hypertension is a leading cause of heart attack, stroke, and kidney failure and represents a serious medical issue worldwide. The genetic basis of hypertension is well-established, but few causal genes have been identified thus far. Non-invasive blood pressure measurements are a critical component of high-throughput genetic studies to identify genes controlling blood pressure. Whereas this technique is fairly routine for blood pressure measurements in rats, non-invasive blood pressure measurement in mice has proven to be more challenging. This chapter describes an experimental protocol measuring blood pressure in mice using a CODA non-invasive blood pressure monitoring system. This method enables accurate blood pressure phenotyping in mice for linkage or mutagenesis studies, as well as for other experiments requiring high-throughput blood pressure measurement.

  18. Retention curves measured using pressure plate and pressure membrane apparatus

    DEFF Research Database (Denmark)

    Hansen, Morten Hjorslev

    This report presents a proposal for a test method for the measurement of the retention curve, especially in the high moisture content range, and the pore size distribution of building materials. The test method includes the measurement of apparent density, solid density, and open porosity. The re...

  19. Measuring Fluctuating Pressures With Recessed Gauges

    Science.gov (United States)

    Parrott, Tony L.; Jones, Michael G.

    1993-01-01

    Report discusses use of pressure gauges mounted in recesses in interior wall of model scramjet engine. Consists of brief memorandum plus excerpts from NASA Technical Paper 3189, "Unsteady Pressure Loads In A Generic High-Speed Engine Model." Focuses mainly on factors affecting accuracy of gauge readings.

  20. Retention curves measured using pressure plate and pressure membrane apparatus

    DEFF Research Database (Denmark)

    Hansen, Morten Hjorslev

    This report presents a proposal for a test method for the measurement of the retention curve, especially in the high moisture content range, and the pore size distribution of building materials. The test method includes the measurement of apparent density, solid density, and open porosity. The re....... The results of an interlaboratory comparison of the test method are presented and analysed along the guidelines given in ISO 5725-5.......This report presents a proposal for a test method for the measurement of the retention curve, especially in the high moisture content range, and the pore size distribution of building materials. The test method includes the measurement of apparent density, solid density, and open porosity...

  1. [An integrated system of blood pressure measurement with bluetooth communication].

    Science.gov (United States)

    Wang, Wei; Wang, Jing; Sun, Hongyang; Xu, Zuyang; Chai, Xinyu

    2012-07-01

    The development of the integrated blood pressure system with bluetooth communication function is introduced. Experimental results show that the system can complete blood pressure measurement and data transmission wireless effectively, which can be used in m-Health in future.

  2. Measuring Blast-Related Intracranial Pressure Within the Human Head

    Science.gov (United States)

    2011-02-01

    4 Pressure sensors Commercially available sensors from Endevco (models 8515C and 8530C), FISO Technologies (FOP-MIV model) and PCB...monitoring of the ambient overpressure at the target was provided by a pressure probe that contained two Endevco sensors placed frontally and sideon with...pressure sensor measuring the static component of the shock wave in air along the tube; (B) pressure sensor using Endevco sensor to measure static and

  3. Rapid Measurement of Tectonic Deformation Using Structure-from-Motion

    Science.gov (United States)

    Pickering, A.; DeLong, S.; Lienkaemper, J. J.; Hecker, S.; Prentice, C. S.; Schwartz, D. P.; Sickler, R. R.

    2016-12-01

    Rapid collection and distribution of accurate surface slip data after earthquakes can support emergency response, help coordinate scientific response, and constrain coseismic slip that can be rapidly overprinted by postseismic slip, or eliminated as evidence of surface deformation is repaired or obscured. Analysis of earthquake deformation can be achieved quickly, repeatedly and inexpensively with the use of Structure-from-Motion (SfM) photogrammetry. Traditional methods of measuring surface slip (e.g. manual measurement with tape measures) have proven inconsistent and irreproducible, and sophisticated methods such as laser scanning require specialized equipment and longer field time. Here we present a simple, cost-effective workflow for rapid, three-dimensional imaging and measurement of features affected by earthquake rupture. As part of a response drill performed by the USGS and collaborators on May 11, 2016, geologists documented offset cultural features along the creeping Hayward Fault in northern California, in simulation of a surface-rupturing earthquake. We present several photo collections from smart phones, tablets, and DSLR cameras from a number of locations along the fault collected by users with a range of experience. Using professionally calibrated photogrammetric scale bars we automatically and accurately scale our 3D models to 1 mm accuracy for precise measurement in three dimensions. We then generate scaled 3D point clouds and extract offsets from manual measurement and multiple linear regression for comparison with collected terrestrial scanner data. These results further establish dense photo collection and SfM processing as an important, low-cost, rapid means of quantifying surface deformation in the critical hours after a surface-rupturing earthquake and emphasize that researchers with minimal training can rapidly collect three-dimensional data that can be used to analyze and archive the surface effects of damaging earthquakes.

  4. Towards a standard for the dynamic measurement of pressure based on laser absorption spectroscopy.

    Science.gov (United States)

    Douglass, K O; Olson, D A

    2016-06-01

    We describe an approach for creating a standard for the dynamic measurement of pressure based on the measurement of fundamental quantum properties of molecular systems. From the linewidth and intensities of ro-vibrational transitions we plan on making an accurate determination of pressure and temperature. The goal is to achieve an absolute uncertainty for time-varying pressure of 5 % with a measurement rate of 100 kHz, which will in the future serve as a method for the traceable calibration of pressure sensors used in transient processes. To illustrate this concept we have used wavelength modulation spectroscopy (WMS), due to inherent advantages over direct absorption spectroscopy, to perform rapid measurements of carbon dioxide in order to determine the pressure. The system records the full lineshape profile of a single ro-vibrational transition of CO2 at a repetition rate of 4 kHz and with a systematic measurement uncertainty of 12 % for the linewidth measurement. A series of pressures were measured at a rate of 400 Hz (10 averages) and from these measurements the linewidth was determined with a relative uncertainty of about 0.5 % on average. The pressures measured using WMS have an average difference of 0.6 % from the absolute pressure measured with a capacitance diaphragm sensor.

  5. Skin perfusion pressure on the legs measured as the external pressure required for skin reddening after blanching

    DEFF Research Database (Denmark)

    Holstein, P; Nielsen, P.E.; Lund, P

    1980-01-01

    The skin perfusion on the calf was measured photo-electrically and by isotope washout technique using external counter pressure by a blood pressure cuff. By the photocell the skin blanching threshold external pressure (BTEP) was recorded on histamine flared red skin. By isotope washout technique......-187) compared to 80.8 mmHg (range 18-158) (P > 0.1). A normal material was obtained from twenty-four subjects measured on the thigh, calf and ankle; the average gradients between the auscultatory brachial mean blood pressure and the BTEP were: thigh 10.7 mmHg (SD 12.7); calf 4.0 mmHg (SD 12.1); ankle 5.1 mm......Hg (SD 8.7). As compared to the intra-arterial blood pressure the BTEP was found to lie close to the mean blood pressure in normal subjects as well as in hypertensive subjects. The present data indicate that the skin perfusion pressure on the legs can be measured by the rapid photo-electric technique...

  6. Ionic conductivity measurements of zirconia under pressure using impedance spectroscopy

    CERN Document Server

    Takebe, H; Ohtaka, O; Fukui, H; Yoshiasa, A; Yamanaka, T; Ota, K; Kikegawa, T

    2002-01-01

    We have set up an electrical conductivity measurement system under high-pressure and high-temperature conditions with a multi-anvil high-pressure apparatus using an AC complex impedance method. With this system, we have successfully measured the electrical conductivity of stabilized ZrO sub 2 (Y sub 2 O sub 3 -ZrO sub 2 solid solution) under pressures up to 5 GPa in the temperature range from 300 to 1200 K. The electrical conductivities obtained under pressure are compatible with those of previous results measured at ambient pressure.

  7. Automated measurement of pressure injury through image processing.

    Science.gov (United States)

    Li, Dan; Mathews, Carol

    2017-11-01

    To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YCb Cr colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure injuries

  8. Methods of Blood Pressure Measurement in the ICU

    Science.gov (United States)

    Lehman, Li-wei H.; Saeed, Mohammed; Talmor, Daniel; Mark, Roger; Malhotra, Atul

    2013-01-01

    Objective Minimal clinical research has investigated the significance of different blood pressure monitoring techniques in the ICU and whether systolic vs. mean blood pressures should be targeted in therapeutic protocols and in defining clinical study cohorts. The objectives of this study are to compare real-world invasive arterial blood pressure with noninvasive blood pressure, and to determine if differences between the two techniques have clinical implications. Design We conducted a retrospective study comparing invasive arterial blood pressure and noninvasive blood pressure measurements using a large ICU database. We performed pairwise comparison between concurrent measures of invasive arterial blood pressure and noninvasive blood pressure. We studied the association of systolic and mean invasive arterial blood pressure and noninvasive blood pressure with acute kidney injury, and with ICU mortality. Setting Adult intensive care units at a tertiary care hospital. Patients Adult patients admitted to intensive care units between 2001 and 2007. Interventions None. Measurements and Main Results Pairwise analysis of 27,022 simultaneously measured invasive arterial blood pressure/noninvasive blood pressure pairs indicated that noninvasive blood pressure overestimated systolic invasive arterial blood pressure during hypotension. Analysis of acute kidney injury and ICU mortality involved 1,633 and 4,957 patients, respectively. Our results indicated that hypotensive systolic noninvasive blood pressure readings were associated with a higher acute kidney injury prevalence (p = 0.008) and ICU mortality (p invasive arterial blood pressure in the same range (≤70 mm Hg). Noninvasive blood pressure and invasive arterial blood pressure mean arterial pressures showed better agreement; acute kidney injury prevalence (p = 0.28) and ICU mortality (p = 0.76) associated with hypotensive mean arterial pressure readings (≤60 mm Hg) were independent of measurement technique

  9. Acoustic sensor for remote measuring of pressure

    Directory of Open Access Journals (Sweden)

    Kataev V. F.

    2008-04-01

    Full Text Available The paper deals with sensors based on delay lines on surface acoustic waves (SAW, having a receiving-emitting and a reflective interdigital transducers (IDT. The dependence of the reflection coefficient of SAW on type and intensity of the load was studied. The authors propose a composite delay line in which the phase of the reflection coefficient depends on the pressure. Pressure leads to a shift of the reflective IDT relative to the transceiver, because they are located on different substrates. The paper also presents functional diagrams of the interrogator.

  10. Continuous positive airway pressure (CPAP) changes in bariatric surgery patients undergoing rapid weight loss.

    Science.gov (United States)

    Lankford, D Alan; Proctor, Charles D; Richard, Robert

    2005-03-01

    Obstructive sleep apnea (OSA) is a common condition in morbidly obese patients, with the reported prevalence ranging from 12-78%. There is increasing recognition of the need to diagnose and treat/manage OSA both preoperatively and postoperatively. Nasal CPAP is the preferred treatment of OSA; however, weight loss is associated with a reduction in required pressures. We evaluated the CPAP pressure requirements in a group of patients undergoing rapid weight loss following Roux-en-Y gastric bypass. 15 patients who had been diagnosed with OSA before surgery were retrospectively evaluated. All patients had demonstrated compliance on home CPAP therapy, were minimally 3 months post-surgery and had follow-up reports that their CPAP was less effective. We obtained data on age, sex, weight, BMI, and apnea/hypopnea index (AHI). Optimal CPAP pressure was obtained initially through attended in-laboratory complex polysomnography. Follow-up CPAP pressure was obtained using an auto-titrating PAP device at home. These data were used to evaluate the pressure changes that accompanied weight loss. This group of patients had lost an average of 44.5 +/- 19.4 kg. Four patients had achieved their goal weight. Their starting CPAP pressures averaged 11 +/- 3.0 cm H2O, with a range of 7-18 cm H2O. Follow-up CPAP pressures averaged 9 +/- 2.7 cm H2O, with a range of 4-12 cm H2O, representing an overall reduction of 18%. The subgroup of patients who had achieved goal weight had a pressure reduction of 22% (9 +/- 2.0 to 7 +/- 1.0 cm H2O). CPAP pressure requirements change considerably in bariatric surgery patients undergoing rapid weight loss. Auto-titrating PAP devices have promise for facilitating the management of CPAP therapy during this time. Consideration should also be given to the use of autotitrating PAP units as the treatment of choice in these patients.

  11. Indirect Measurement of Left Ventricular EndDiastolic Pressure in ...

    African Journals Online (AJOL)

    Pulmonary artery diastolic and pulmonary capillary wedge mean pressures were measured in 30 patients with congestive cardiomyopathy and in 30 patients with constrictive pericarditis. These measurements were compared with left ventricular end-diastolic pressure (LVEDP) to assess their value as indirect measurements ...

  12. BLOOD PRESSURE MEASUREMENTS IN ADULT IN-PATIENTS

    African Journals Online (AJOL)

    measurement“. non-invasive blood pressure measurement is the norm in routine clinical practice. Non-invasive blood pressure (NIBP) measurement is an easy and reasonably reliable method of clinical evaluation and monitoring of patients. The measurement may be achieved by uuscultatory or oscillometric methods. The.

  13. Compressibility measurements of gases using externally heated pressure vessels.

    Science.gov (United States)

    Presnall, D. C.

    1971-01-01

    Most of the data collected under conditions of high temperature and pressure have been determined using a thick-walled bomb of carefully measured and fixed volume which is externally heated by an electric furnace or a thermostatically controlled bath. There are numerous variations on the basic method depending on the pressure-temperature range of interest, and the particular gas or gas mixture being studied. The construction and calibration of the apparatus is discussed, giving attention to the pressure vessel, the volume of the bomb, the measurement of pressure, the control and measurement of temperature, and the measurement of the amount and composition of gas in the bomb.

  14. Blood pressure and anthropometric measurements in healthy ...

    African Journals Online (AJOL)

    To describe blood pressure and its relationship to weight and height in healthy newly enrolled school entrants in. Jos, Plateau State ... 10.0) mmHg, respectively, and were significantly higher in private school pupils compared with public school pupils (97.1 (SD ..... as young as 5 years of age.12 Gender and race do not have.

  15. Molecular concentrators measure colloid osmotic pressure

    African Journals Online (AJOL)

    1981-04-22

    Apr 22, 1981 ... the forces involved in capillary filtration on a com- parative basis. Although various formulae have been ... membrane fracture during assembly with resultant pressure leakage and thus underestimation of C.O.P. If ... Water and dissolved molecules of molecular mass less than 10 000 are thus removed and ...

  16. Validation of an Endoscopic Fibre-Optic Pressure Sensor for Noninvasive Measurement of Variceal Pressure

    Science.gov (United States)

    Sun, Bin; Kong, De-Run; Li, Su-Wen; Yu, Dong-Feng; Wang, Ging-Jing; Yu, Fang-Fang; Wu, Qiong; Xu, Jian-Ming

    2016-01-01

    In this study, the authors have developed endoscopic fibre-optic pressure sensor to detect variceal pressure and presented the validation of in vivo and in vitro studies, because the HVPG requires catheterization of hepatic veins, which is invasive and inconvenient. Compared with HVPG, it is better to measure directly the variceal pressure without puncturing the varices in a noninvasive way. PMID:27314010

  17. Anaesthetic machine pipeline inlet pressure gauges do not always measure pipeline pressure.

    Science.gov (United States)

    Craig, D B; Longmuir, J

    1980-09-01

    Some anaesthetic gas machines have pipeline inlet pressure gauges which indicate the higher of either pipeline pressure, or machine circuit pressure (the pressure distal to the pressure reducing valve, and proximal to the flowmeter control valve). Failure by the operator to appreciate this feature may in specific circumstances lead to a delayed appreciation of pipeline malfunction or disconnection. The Canadian Standards Association Z168.3-M1980 Anaesthetic Gas Machine Standard requires pipeline inlet gauges which measure only pipeline (hose) pressure. Existing machines should be modified to accommodate this requirement.

  18. Simultaneous Global Pressure and Temperature Measurement Technique for Hypersonic Wind Tunnels

    Science.gov (United States)

    Buck, Gregory M.

    2000-01-01

    High-temperature luminescent coatings are being developed and applied for simultaneous pressure and temperature mapping in conventional-type hypersonic wind tunnels, providing global pressure as well as Global aeroheating measurements. Together, with advanced model fabrication and analysis methods, these techniques will provide a more rapid and complete experimental aerodynamic and aerothermodynamic database for future aerospace vehicles. The current status in development of simultaneous pressure- and temperature-sensitive coatings and measurement techniques for hypersonic wind tunnels at Langley Research Center is described. and initial results from a feasibility study in the Langley 31-Inch Mach 10 Tunnel are presented.

  19. Enhancements in Photon Pressure Measurements Using a Solar Simulator

    Science.gov (United States)

    Gray, P. A.; Edwards, D. L.; Carruth, M. R., Jr.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Initial proof of concept photon momentum measurements were reported at the AIAA Conference in Reno Nevada, January 8-11, 2001. That presentation verified that photon pressure on a simulated solar sail material can be measured under high vacuum conditions using a full spectrum solar simulator and a vacuum compatible force measurement system. Modifications to this test system were implemented to enhance the accuracy of the photon pressure measurement. This paper describes the photon pressure measurement technique and modifications to increase the measurement accuracy using a candidate sail material, aluminized Mylar.

  20. Pressure Change Measurement Leak Testing Errors

    Energy Technology Data Exchange (ETDEWEB)

    Pryor, Jeff M [ORNL; Walker, William C [ORNL

    2014-01-01

    A pressure change test is a common leak testing method used in construction and Non-Destructive Examination (NDE). The test is known as being a fast, simple, and easy to apply evaluation method. While this method may be fairly quick to conduct and require simple instrumentation, the engineering behind this type of test is more complex than is apparent on the surface. This paper intends to discuss some of the more common errors made during the application of a pressure change test and give the test engineer insight into how to correctly compensate for these factors. The principals discussed here apply to ideal gases such as air or other monoatomic or diatomic gasses; however these same principals can be applied to polyatomic gasses or liquid flow rate with altered formula specific to those types of tests using the same methodology.

  1. Design and Development of a Pressure Transducer for High Hydrostatic Pressure Measurements up to 200 MPa

    Science.gov (United States)

    Kumar, Anuj; Yadav, Sanjay; Agarwal, Ravinder

    2017-08-01

    A number of pressure transducers, based on strain gauge, capacitance/inductance type, frequency resonators, are commercially available and are being used for sensing and producing an electrical output proportional to applied pressure. These sensors have their own advantages and limitations due to operational ease, measurement uncertainty and the costs. Strain gauge type transducers are now well established devices for accurate and precise measurement of pressure within measurement uncertainty up to 0.1 % of full scale. In the present research work, an indigenous strain gauge pressure transducer has been designed, developed, tested and calibrated for pressure measurement up to 200 MPa. The measurement uncertainty estimated using the pressure transducer was found better than 0.1 % of full scale. This transducer was developed using four foil type strain gauges, bonded, two in axial direction while other two in radial direction, to the controlled stress zones of a tubular maraging steel active cylinder working also as diaphragm. The strain gages were then connected to a Wheatstone bridge arrangement to measure stress generated strains. The pressure was applied through matching connector designed in the same tubular transducer active element. The threaded unique design in a single piece through collar, ferule and tubing arrangement provides leak proof pressure connections with external devices without using additional seals. The calibration and performance checking of the pressure transducer was carried out using dead weight type national pressure standard using the internationally accepted calibration procedure.

  2. A new method of non-invasive blood pressure measurement

    Science.gov (United States)

    Gu, Liangling; Yang, Yongming; Yu, Chengbo; Guo, Qiaohui; Zhu, Gang

    2005-12-01

    Blood pressure reflects a person's health.It is proposed here that the method of detecting blood pressure may be the key to improving the precision of blood pressure measurements. The oscillometric blood pressure measurement technique is widely used in automatic blood pressure measurement instruments correctly. A method of blood pressure measurement by oscillometric method is first presented. In the oscillometric method, the basic principle of the "feature point" method and the "amplitude characteristic ratios" method is also explained and discussed here. A new method of blood pressure measurement, namely the coefficient difference comparative method, is proposed here,which is based on the feature point method and amplitude characteristic ratios method. The method is proved both effective and reliable through the analysis of many cases and clinical tests. Utilizing Visual C++, software for this new and novel method was developed and passed criterion simulation apparatus test. When applied in hospital situation, its error was +/-5%. It is concluded that the oscillometric blood pressure measurement method can provide better means of blood pressure measurements reference for doctors.

  3. Innovations in plantar pressure and foot temperature measurements in diabetes

    NARCIS (Netherlands)

    Bus, S. A.

    2016-01-01

    Plantar pressure and temperature measurements in the diabetic foot primarily contribute to identifying abnormal values that increase risk for foot ulceration, and they are becoming increasingly more integrated in clinical practice and daily life of the patient. While plantar pressure measurements

  4. Rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser.

    Science.gov (United States)

    Qu, Yanchen; Ren, Deming; Hu, Xiaoyong; Liu, Fengmei; Zhao, Jingshan

    2002-08-20

    An experimental study of a rapidly tuning miniature transversely excited atmospheric-pressure CO2 laser is reported. To rapidly shift laser wavelengths over selected transitions in the 9-11 microm wavelength region, we have utilized a high-frequency stepping motor and a diffraction grating. The laser is highly automated with a monolithic microprocessor controlled laser line selection. For the achievement of stable laser output, a system of laser excitation with a voltage of 10 kV, providing effective surface corona preionization and allowing one to work at various gas pressures, is utilized. Laser operation at 59 emission lines of the CO2 molecule rotational transition is obtained and at 51 lines, the pulse energy of laser radiation exceeds 30 mJ. The system can be tuned between two different rotational lines spanning the wavelength range from 9.2 to 10.8 microm within 10 ms.

  5. Orthostatic circulatory control in the elderly evaluated by non-invasive continuous blood pressure measurement

    NARCIS (Netherlands)

    Imholz, B. P.; Dambrink, J. H.; Karemaker, J. M.; Wieling, W.

    1990-01-01

    1. Continuous orthostatic responses of blood pressure and heart rate were measured in 40 healthy and active elderly subjects over 70 years of age in order to assess the time course and rapidity of orthostatic cardiovascular adaptation in old age. 2. During the first 30 s (initial phase) the effects

  6. Comparison of ambulatory blood pressure measurement with home, office and pharmacy measurements: is arterial blood pressure measured at pharmacy reliable?

    Science.gov (United States)

    Mutlu, Sinan; Sari, Oktay; Arslan, Erol; Aydogan, Umit; Doganer, Yusuf C; Koc, Bayram

    2016-02-01

    Standardizing arterial blood pressure (BP) measurement is difficult because of different performers like doctor or pharmacy employee. We investigated the reliability between different BP measurement methods. The study was conducted in an internal medicine service with 160 patients in Ankara, Turkey. First, the subjects' BP was measured by doctor. Then, 24-hour BP monitoring devices were placed. Participants were then instructed to measure their BPs both at home and in pharmacy. The next day, arterial BP was measured by the doctor for the second time. The prevalence rates of masked and white coat hypertension were 8.8% (n = 14) and 8.1% (n = 13), respectively. There was no statistically significant differences between ambulatory measurement and home, office and pharmacy measurements (P > 0.05). The consistency rate between ambulatory and home measurements was 97.5% (kappa = 0.947, P home measurement. There was a moderate positive correlation between ambulatory and other measurements in both systolic and diastolic values. There was a positive and very strong correlation between ambulatory and home measurements of systolic and diastolic ABP values (respectively; r = 0.926 and r = 0.968) and there was a statistically significant relation between these measurements (P home measurement when compared with ambulatory measurement. But both office and pharmacy measurements had also high sensitivity and specificity. © 2015 John Wiley & Sons, Ltd.

  7. Measurement of earthworm radial pressures during peristaltic motion

    Science.gov (United States)

    Ruiz, Siul; Or, Dani

    2017-04-01

    Earthworm activity and formation of burrowing networks are important for soil structure formation and transport processes. We developed models for earthworm penetration cavity expansion that consider soil hydration and mechanical status. A key parameter is the maxima axial and radial pressure exerted by the earthworm hydroskeleton (presently estimated at 200 kPa). To test a range of pressures exerted by moving earthworms we developed a coaxial chamber consisting of Plexiglas tube fitted with a thin and inflatable silicon tubing that hosts the earthworm. We pressurize the gap between the Plexiglas and flexible tubing using an incompressible liquid linked to a pressure transducer. Earthworm motion and concurrent pressure were recorded by the transducer and a dedicated video camera. The instrument was calibrated using a cardiac catheter resulting in close agreement between the catheter and chamber pressures. Measurements using anecic earthworms passing across the cylinder show mean radial pressures of 70 kPa, consistent with earlier findings of anecic earthworm pressure measurements using different measurement techniques. Analyses are underway to resolve local pressures induced during peristaltic motion. The study delineates mechanical constraints to soil bioturbation by earthworms for different mechanical conditions including compaction. Tests are underway for direct measurement of plant root pressures during growth.

  8. Modern gas-based temperature and pressure measurements

    CERN Document Server

    Pavese, Franco

    2013-01-01

    This 2nd edition volume of Modern Gas-Based Temperature and Pressure Measurements follows the first publication in 1992. It collects a much larger set of information, reference data, and bibliography in temperature and pressure metrology of gaseous substances, including the physical-chemical issues related to gaseous substances. The book provides solutions to practical applications where gases are used in different thermodynamic conditions. Modern Gas-Based Temperature and Pressure Measurements, 2nd edition is the only comprehensive survey of methods for pressure measurement in gaseous media used in the medium-to-low pressure range closely connected with thermometry. It assembles current information on thermometry and manometry that involve the use of gaseous substances which are likely to be valid methods for the future. As such, it is an important resource for the researcher. This edition is updated through the very latest scientific and technical developments of gas-based temperature and pressure measurem...

  9. Velocity-pressure correlation measurements in complex free shear flows

    Energy Technology Data Exchange (ETDEWEB)

    Naka, Yoshitsugu [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail: y09774@educ.cc.keio.ac.jp; Obi, Shinnosuke [Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-city 223-8522 (Japan)], E-mail: obsn@mech.keio.ac.jp

    2009-06-15

    Simultaneous measurements of fluctuating velocity and pressure were performed in various turbulent free shear flows including a turbulent mixing layer and the wing-tip vortex trailing from a NACA0012 half-wing. Two different methods for fluctuating static pressure measurement were considered: a direct method using a miniature Pitot tube and an indirect method where static pressure was calculated from total pressure. The pressure obtained by either of these methods was correlated with the velocity measured by an X-type hot-wire probe. The results from these two techniques agreed with each other in the turbulent mixing layer. In the wing-tip vortex case, however, some discrepancies were found, although overall characteristics of the pressure-related statistics were adequately captured by both methods.

  10. An ultra-fast fiber optic pressure sensor for blast event measurements

    Science.gov (United States)

    Wu, Nan; Zou, Xiaotian; Tian, Ye; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2012-05-01

    Soldiers who are exposed to explosions are at risk of suffering traumatic brain injury (TBI). Since the causal relationship between a blast and TBI is poorly understood, it is critical to have sensors that can accurately quantify the blast dynamics and resulting wave propagation through a helmet and skull that are imparted onto and inside the brain. To help quantify the cause of TBI, it is important to record transient pressure data during a blast event. However, very few sensors feature the capabilities of tracking the dynamic pressure transients due to the rapid change of the pressure during blast events, while not interfering with the physical material layers or wave propagation. In order to measure the pressure transients efficiently, a pressure sensor should have a high resonant frequency and a high spatial resolution. This paper describes an ultra-fast fiber optic pressure sensor based on the Fabry-Perot principle for the application of measuring the rapid pressure changes in a blast event. A shock tube experiment performed in US Army Natick Soldier Research, Development and Engineering Center has demonstrated that the resonant frequency of the sensor is 4.12 MHz, which is relatively close to the designed theoretical value of 4.113 MHz. Moreover, the experiment illustrated that the sensor has a rise time of 120 ns, which demonstrates that the sensor is capable of observing the dynamics of the pressure transient during a blast event.

  11. Preliminary Photon Pressure Measurements Using a Solar Simulator

    Science.gov (United States)

    Gray, Perry A.; Edwards, David L.; Carruth, M. Ralph, Jr.; Carruth, M. Ralph, Jr. (Technical Monitor)

    2001-01-01

    Initial proof of concept photon momentum measurements reported verifying photon pressure on a simulated sail material can be measured under high vacuum conditions using a full spectrum solar simulator and a vacuum compatible force measurement system. Second order effects such as sample reflectivity, beam uniformity, radiometric flux measurement accuracy, and the optical system have been accounted for in evaluating these measurements.

  12. New technologies for measuring intraocular pressure.

    Science.gov (United States)

    Garcia-Feijoo, Julian; Martinez-de-la-Casa, Jose María; Morales-Fernandez, Laura; Saenz Frances, Federico; Santos-Bueso, Enrique; Garcia-Saenz, Sofia; Mendez-Hernandez, Carmen

    2015-01-01

    The level of intraocular pressure (IOP) is the main known risk factor for the development and progression of glaucomatous optic neuropathy. Despite Goldmann applanation tonometry (GAT) being the gold standard for determining IOP since the last century, its limitations were obvious from the start and include substantial effects of several eye variables such as axial length, curvature, rigidity, and corneal thickness. These limitations have prompted the development of numerous formulas and nomograms designed to compensate for the ocular characteristics effect on GAT, but none of these methods has been entirely satisfactory. Similarly, as a result of efforts to mitigate some of the limitations of conventional tonometry, several new tonometers have appeared on the scene. © 2015 Elsevier B.V. All rights reserved.

  13. Measuring blood pressure in mice using volume pressure recording, a tail-cuff method.

    Science.gov (United States)

    Daugherty, Alan; Rateri, Debra; Hong, Lu; Balakrishnan, Anju

    2009-05-15

    The CODA 8-Channel High Throughput Non-Invasive Blood Pressure system measures the blood pressure in up to 8 mice or rats simultaneously. The CODA tail-cuff system uses Volume Pressure Recording (VPR) to measure the blood pressure by determining the tail blood volume. A specially designed differential pressure transducer and an occlusion tail-cuff measure the total blood volume in the tail without the need to obtain the individual pulse signal. Special attention is afforded to the length of the occlusion cuff in order to derive the most accurate blood pressure readings. VPR can easily obtain readings on dark-skinned rodents, such as C57BL6 mice and is MRI compatible. The CODA system provides you with measurements of six (6) different blood pressure parameters; systolic and diastolic blood pressure, heart rate, mean blood pressure, tail blood flow, and tail blood volume. Measurements can be made on either awake or anesthetized mice or rats. The CODA system includes a controller, laptop computer, software, cuffs, animal holders, infrared warming pads, and an infrared thermometer. There are seven different holder sizes for mice as small as 8 grams to rats as large as 900 grams.

  14. Monitoring Personalized Trait Using Oscillometric Arterial Blood Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Young-Suk Shin

    2012-01-01

    Full Text Available The blood pressure patterns obtained from a linearly or stepwise deflating cuff exhibit personalized traits, such as fairly uniform peak patterns and regular beat geometry; it can support the diagnosis and monitoring of hypertensive patients with reduced sensitivity to fluctuations in Blood Pressure (BP over time. Monitoring of personalized trait in Oscillometric Arterial Blood Pressure Measurements (OABPM uses the Linear Discriminant Analysis (LDA algorithm. The representation of personalized traits with features from the oscillometric waveforms using LDA algorithm includes four phases. Data collection consists of blood pressure data using auscultatory measurements and pressure oscillations data obtained from the oscillometric method. Preprocessing involves the normalization of various sized oscillometric waveforms to a uniform size. Feature extraction involves the use of features from oscillometric amplitudes, and trait identification involves the use of the LDA algorithm. In this paper, it presents a novel OABPM-based blood pressure monitoring system that can monitor personalized blood pressure pattern. Our approach can reduce sensitivity to fluctuations in blood pressure with the features extracted from the whole area in oscillometric arterial blood pressure measurement. Therefore this technique offers reliable blood pressure patterns. This study provides a cornerstone for the diagnosis and management of hypertension in the foreseeable future.

  15. Blood pressure self-measurement in the obstetric waiting room

    DEFF Research Database (Denmark)

    Wagner, Stefan; Kamper, Christina H.; Toftegaard, Thomas Skjødeberg

    2013-01-01

    Background: Pregnant diabetic patients are often required to self- measure their blood pressure in the waiting room before consulta- tion. Currently used blood pressure devices do not guarantee valid measurements when used unsupervised. This could lead to misdi- agnosis and treatment error. The aim...... of this study was to investigate current use of blood pressure self-measurement in the waiting room in order to identify challenges that could influence the resulting data quality. Also, we wanted to investigate the potential for addressing these challenges with e-health and telemedicine technology. Subjects...... a reliable blood pressure reading. Results: We found that the patients did not adhere to given instructions when performing blood pressure self-measurement in the waiting room. None of the 81 patients adhered to all six inves- tigated recommendations, while around a quarter adhered to five out of six...

  16. The effect of clothes on blood pressure measurement

    Science.gov (United States)

    Ertug, Nurcan; Cakal, Tugba; Ozturk, Seyda Busra; Verim, Muhammet

    2017-01-01

    Objective: To determine the effect of clothes on blood pressure measurement. Methods: One group pretest-posttest design was used in this study. The study consisted of 162 undergraduate students studying nursing and physiotherapy at a university in Ankara, Turkey. Blood pressure was measured over the sleeve and below a rolled-up sleeve with a mercury-filled column sphygmomanometer. All blood pressure measurements were performed on the right arm during morning hours by the same nurse. Each participant’s height, weight and clothing thickness were measured. Results: The mean age of the participants was 20.71. The median systolic blood pressure values were 110.07 mmHg over the sleeve and 110.37 mmHg below the rolled-up sleeve. There were no statistically significant differences between measurements taken over the sleeve and below a rolled-up sleeve (p=0.222). The median diastolic blood pressure values were 69.56 mmHg over the sleeve and 69.59 mmHg below the rolled-up sleeve. There were no statistically significant differences between measurements taken over the sleeve and below a rolled-up sleeve (p=0.572). Conclusion: It was found that clothes have no statistically significant effect on systolic/diastolic blood pressure measurements. Measuring blood pressure over a sleeve may save time. PMID:28367201

  17. Rapid measurement of transient velocity evolution using GERVAIS.

    Science.gov (United States)

    Davies, Colin J; Sederman, Andrew J; Pipe, Chris J; McKinley, Gareth H; Gladden, Lynn F; Johns, Mike L

    2010-01-01

    Rapid velocity measurements using GERVAIS (Gradient Echo Rapid Velocity and Acceleration Imaging Sequence), an EPI (Echo Planar Imaging) based technique capable of measuring velocity over an observation time of several milliseconds, are performed on a wide-gap Couette Rheo-NMR cell for the first time. A variable delay time between a control signal to initiate a transition in flow and the start of the measurement sequence is incorporated to allow investigation of the transient evolution of the velocity field following a step change in rotation rate. Both the commencement and the cessation of imposed shear stress are investigated for (i) a shear banding micellar solution of CPyCl (cetylpyridiniumchloride)/NaSal (sodium salicylate) in brine and (ii) a low molecular weight PDMS (polydimethylsiloxane) oil. With respect to the micellar solution, an elastic shear wave is seen to propagate across the cell following the commencement of shear stress whilst an oscillatory 'recoil' is observed following the cessation of shear stress; neither of these phenomena were observed for the PDMS oil which exhibited a purely viscous response as expected for an incompressible Newtonian fluid. This technique has potential applications across a wide range of transient rheological investigations, particularly with respect to optically opaque materials. Copyright 2009 Elsevier Inc. All rights reserved.

  18. Monitoring Personalized Trait Using Oscillometric Arterial Blood Pressure Measurements

    OpenAIRE

    Young-Suk Shin

    2012-01-01

    The blood pressure patterns obtained from a linearly or stepwise deflating cuff exhibit personalized traits, such as fairly uniform peak patterns and regular beat geometry; it can support the diagnosis and monitoring of hypertensive patients with reduced sensitivity to fluctuations in Blood Pressure (BP) over time. Monitoring of personalized trait in Oscillometric Arterial Blood Pressure Measurements (OABPM) uses the Linear Discriminant Analysis (LDA) algorithm. The representation of personal...

  19. Differential intracochlear sound pressure measurements in normal human temporal bones.

    Science.gov (United States)

    Nakajima, Hideko Heidi; Dong, Wei; Olson, Elizabeth S; Merchant, Saumil N; Ravicz, Michael E; Rosowski, John J

    2009-03-01

    We present the first simultaneous sound pressure measurements in scala vestibuli and scala tympani of the cochlea in human cadaveric temporal bones. The technique we employ, which exploits microscale fiberoptic pressure sensors, enables the study of differential sound pressure at the cochlear base. This differential pressure is the input to the cochlear partition, driving cochlear waves and auditory transduction. In our results, the sound pressure in scala vestibuli (P (SV)) was much greater than scala tympani pressure (P (ST)), except for very low and high frequencies where P (ST) significantly affected the input to the cochlea. The differential pressure (P (SV) - P (ST)) is a superior measure of ossicular transduction of sound compared to P (SV) alone: (P (SV)-P (ST)) was reduced by 30 to 50 dB when the ossicular chain was disarticulated, whereas P (SV) was not reduced as much. The middle ear gain P (SV)/P (EC) and the differential pressure normalized to ear canal pressure (P (SV) - P (ST))/P (EC) were generally bandpass in frequency dependence. At frequencies above 1 kHz, the group delay in the middle ear gain is about 83 micros, over twice that of the gerbil. Concurrent measurements of stapes velocity produced estimates of cochlear input impedance, the differential impedance across the partition, and round window impedance. The differential impedance was generally resistive, while the round window impedance was consistent with compliance in conjunction with distributed inertia and damping. Our technique of measuring differential pressure can be used to study inner ear conductive pathologies (e.g., semicircular dehiscence), as well as non-ossicular cochlear stimulation (e.g., round window stimulation and bone conduction)--situations that cannot be completely quantified by measurements of stapes velocity or scala vestibuli pressure by themselves.

  20. TREATMENT OF HYPERTENSION USING TELEMEDICAL HOME BLOOD PRESSURE MEASUREMENTS

    DEFF Research Database (Denmark)

    Hoffmann-Petersen, N; Lauritzen, T; Bech, J N

    2015-01-01

    of the measurements and subsequent communication by telephone or E-mail. In the control group, patients received usual care. Primary outcome was reduction in daytime ambulatory blood pressure measurements (ABPM) from baseline to 3 months' follow-up. RESULTS: In both groups, daytime ABPM decreased significantly......OBJECTIVE: Telemonitoring of home blood pressure measurements (TBPM) is a new and promising supplement to diagnosis, control and treatment of hypertension. We wanted to compare the outcome of antihypertensive treatment based on TBPM and conventional monitoring of blood pressure. DESIGN AND METHOD....../181), p = 0.34. Blood pressure reduction in the TBPM group varied with the different practices. CONCLUSIONS: No further reduction in ABPM or number of patients reaching blood pressure targets was observed when electronic transmission of TBPM was applied in the treatment of hypertension by GPs. Thus...

  1. A note on measurement of sound pressure with intensity probes

    DEFF Research Database (Denmark)

    Juhl, Peter; Jacobsen, Finn

    2004-01-01

    be improved under a variety of realistic sound field conditions by applying a different weighting of the two pressure signals from the probe. The improved intensity probe can measure the sound pressure more accurately at high frequencies than an ordinary sound intensity probe or an ordinary sound level meter......The effect of scattering and diffraction on measurement of sound pressure with "two-microphone" sound intensity probes is examined using an axisymmetric boundary element model of the probe. Whereas it has been shown a few years ago that the sound intensity estimated with a two-microphone probe...... is reliable up to 10 kHz when using 0.5 in. microphones in the usual face-to-face arrangement separated by a 12 mm spacer, the sound pressure measured with the same instrument will typically be underestimated at high frequencies. It is shown in this paper that the estimate of the sound pressure can...

  2. Blood pressure measurement in adults: large cuffs for all?

    OpenAIRE

    Croft, P R; Cruickshank, J K

    1990-01-01

    STUDY OBJECTIVE--The aim of the study was to determine whether a single size of cuff for adult blood pressure measurements is appropriate for general clinical practice. DESIGN--The study was a prospective survey of a sample of adult blood pressure measurements using two cuffs with different bladder sizes (12 X 23 cm and 15 X 33 cm) in a randomised design using a random zero sphygmomanometer. SETTING--Blood pressures were measured in a general practice and in a hospital outpatient clinic. PART...

  3. Salt pressure derived from GMS-B1 measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vonka, V.

    1992-11-01

    The GMS system is successfully used to measure gaps between the liner tube and the disc in the B1 hole. GMS was designed for evaluation of minimum tube diameter. In this report measured results are used to estimate the tube compression. The compression is recalculated into the salt pressure acting on the liner tube from outside. It is concluded that the GMS measurements are accurately executed. Also the evaluation procedure to eliminate the thermal expansion effect is correctly applied. Through the B1 liner tube compression the salt pressure on the tube is evaluated. Apart from several thermocouples no other measuring instrument has been used. The resulting salt pressure estimate is consequently considered as independent of other HAW salt pressure measurements. (author). 6 refs., 10 figs., 2 tabs.

  4. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements.

    Science.gov (United States)

    Knoblauch, Jan; Mullendore, Daniel L; Jensen, Kaare H; Knoblauch, Michael

    2014-11-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods. © 2014 American Society of Plant Biologists. All Rights Reserved.

  5. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods.......Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells......, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped...

  6. A practical and reliable method of measuring blood pressure in the neonate by pulse oximetry.

    Science.gov (United States)

    Langbaum, M; Eyal, F G

    1994-10-01

    We investigated the reliability of the plethysmographic waveform of the pulse oximeter to measure systolic blood pressure in sick neonates. Fifty infants admitted to the neonatal intensive care unit, with indwelling arterial catheters placed for their ongoing care, were enrolled. Median gestational age was 31 weeks (range, 24 to 40 weeks), and the mean birth weight was 1711 gm (range, 546 to 3856 gm). Blood pressure was recorded by an oscillometric method as well as from a transducer connected to an arterial catheter. Additionally, pulse oximeter blood pressures were obtained by gradually inflating an appropriately sized blood pressure cuff in increments of 2 to 5 mm Hg, on the same extremity as the oximeter probe, until the waveform just disappeared. The cuff was then rapidly inflated another 20 mm Hg and then gradually deflated in increments of 2 to 5 mm Hg until the waveform reappeared on the oximeter screen display. The pulse oximeter blood pressures were calculated both as the blood pressure noted at disappearance of the pulse oximeter waveform and as the blood pressure noted by the average pulse oximeter blood pressure at the disappearance and reappearance of the waveform. The mean intraarterial systolic blood pressure was 54 mm Hg (range, 36 to 82 mm Hg). Blood pressures obtained by pulse oximetry showed a significantly better correlation with intraarterial measurements in comparison with those obtained by oscillometric instruments. Additionally, the limits of agreement (mean difference +/- 2 SD) between blood pressures obtained by intraarterial measurements and those obtained by pulse oximetry were within a clinically acceptable range as opposed to those obtained by the comparison of intraarterial and oscillometric methods. Measurements of blood pressure in the neonate by means of pulse oximetry waveform analysis are easily obtainable and more accurate than those obtained by the oscillometric method.

  7. Characterizing the dynamic property of the vortex tail in a gas cyclone by wall pressure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Cuizhi; Sun, Guogang; Dong, Ruiqian; Fu, Shuangcheng [State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249 (China)

    2010-08-15

    To explore a determination method for cyclone vortex tail, the wall pressures at different axial and radial positions of a cylinder-on-cone cyclone were measured and analyzed by the Fast Fourier Transform (FFT) and probability density analyses in this paper. The cyclone vortex tail was also visualized by a red ink tracer. The results show that the cyclone wall pressure does not change in the cylindrical section and gradually decreases in the conical section. The magnitudes of wall pressure at different azimuths are almost identical, indicating an axisymmetrical wall pressure radial profile in these parts of the cyclone. Whereas in the lower part of the cone and/or the upper part of dipleg, there is a sudden fall of wall pressure and non-axisymmetrical pressure radial profile. The minimum wall pressure occurs at about 270 azimuth in this region. Underneath in the next part of the dipleg, the wall pressure rapidly rises and returns to axisymmetry. These characteristics indicate that the vortex tail is bended to wall, turns around in this region, and can be used as evidences of the vortex tail. The position determined by the pressure measurement is close to the position of the rotating ring observed in the tracing experiment. It is also found that the frequency of the inner vortex is different from that of the outer vortex. The inner vortex flow fluctuates stronger and faster than its outer partner. At the vortex tail zone, the vortex breaks and the inner vortex fluctuation is involved in the wall pressure signal. Therefore, the position and dynamic property of the vortex tail can be well identified from the wall pressure measurement. The pressure measurement could provide some solid experimental basis for assessing relations of natural vortex length. (author)

  8. Perilymphatic pressure measurement in patients with Meniere's disease

    NARCIS (Netherlands)

    Mateijsen, DJM; Rosingh, HJ; Wit, HP; Albers, FWJ

    The MMS-10 Tympanic Displacement Analyser is a new device for measuring perilymphatic pressure in humans. This instrument was used in 70 patients with Meniere's disease (44 affected ears) and a group of 50 young normal hearing subjects. No significant differences in perilymphatic pressure

  9. Definition-consistent measurement of exchange market pressure

    NARCIS (Netherlands)

    Klaassen, F.; Jager, H.

    2011-01-01

    Currencies can be under severe pressure, but in a managed exchange rate regime that is not fully visible via the change in the exchange rate. The literature has proposed a way to measure such exchange market pressure (EMP) indirectly, by adding interest rate changes and forex interventions to the

  10. Measuring static seated pressure distributions and risk for skin pressure ulceration in ice sledge hockey players.

    Science.gov (United States)

    Darrah, Shaun D; Dicianno, Brad E; Berthold, Justin; McCoy, Andrew; Haas, Matthew; Cooper, Rory A

    2016-01-01

    To determine whether sledge hockey players with physical disability have higher average seated pressures compared to non-disabled controls. Fifteen age-matched controls without physical disability and 15 experimental participants with physical disability were studied using a pressure mapping device to determine risk for skin pressure ulceration and the impact of cushioning and knee angle positioning on seated pressure distributions. Regardless of participant group, cushioning, or knee angle, average seated pressures exceeded clinically acceptable seated pressures. Controls had significantly higher average seated pressures than the disability group when knees were flexed, both with the cushion (p = 0.013) and without (p = 0.015). Knee extension showed significantly lower average pressures in controls, both with the cushion (p hockey players utilize positioning with larger knee flexion angles. Implications for Rehabilitation Ice sledge hockey is a fast growing adaptive sport. Adaptive sports have been associated with several positive improvements in overall health and quality of life, though may be putting players at risk for skin ulceration. Measured static seated pressure in sledges greatly exceeds current clinically accepted clinical guidelines. With modern improvements in wheelchair pressure relief/cushioning there are potential methods for improvement of elevated seated pressure in ice hockey sledges.

  11. Development of a Blood Pressure Measurement Instrument with Active Cuff Pressure Control Schemes

    Directory of Open Access Journals (Sweden)

    Chung-Hsien Kuo

    2017-01-01

    Full Text Available This paper presents an oscillometric blood pressure (BP measurement approach based on the active control schemes of cuff pressure. Compared with conventional electronic BP instruments, the novelty of the proposed BP measurement approach is to utilize a variable volume chamber which actively and stably alters the cuff pressure during inflating or deflating cycles. The variable volume chamber is operated with a closed-loop pressure control scheme, and it is activated by controlling the piston position of a single-acting cylinder driven by a screw motor. Therefore, the variable volume chamber could significantly eliminate the air turbulence disturbance during the air injection stage when compared to an air pump mechanism. Furthermore, the proposed active BP measurement approach is capable of measuring BP characteristics, including systolic blood pressure (SBP and diastolic blood pressure (DBP, during the inflating cycle. Two modes of air injection measurement (AIM and accurate dual-way measurement (ADM were proposed. According to the healthy subject experiment results, AIM reduced 34.21% and ADM reduced 15.78% of the measurement time when compared to a commercial BP monitor. Furthermore, the ADM performed much consistently (i.e., less standard deviation in the measurements when compared to a commercial BP monitor.

  12. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  13. Measurement of partial pressures in vacuum technology and vacuum physics

    Science.gov (United States)

    Huber, W. K.

    1986-01-01

    It is pointed out that the measurement of gaseous pressures of less than 0.0001 torr is based on the ionization of gas atoms and molecules due to collisions with electrons. The particle density is determined in place of the pressure. The ionization cross sections for molecules of various gases are discussed. It is found that the true pressure in a vacuum system cannot be determined with certainty if it is unknown which gas is present. Effects of partial pressure determination on the condition of the vacuum system are discussed together with ion sources, systems of separation, and ion detection.

  14. Rapid core measure improvement through a "business case for quality".

    Science.gov (United States)

    Perlin, Jonathan B; Horner, Stephen J; Englebright, Jane D; Bracken, Richard M

    2014-01-01

    Incentives to improve performance are emerging as revenue or financial penalties are linked to the measured quality of service provided. The HCA "Getting to Green" program was designed to rapidly increase core measure performance scores. Program components included (1) the "business case for quality"-increased awareness of how quality drives financial performance; (2) continuous communication of clinical and financial performance data; and (3) evidence-based clinical protocols, incentives, and tools for process improvement. Improvement was measured by comparing systemwide rates of adherence to national quality measures for heart failure (HF), acute myocardial infarction (AMI), pneumonia (PN), and surgical care (SCIP) to rates from all facilities reporting to the Centers for Medicare and Medicaid Services (CMS). As of the second quarter of 2011, 70% of HCA total measure set composite scores were at or above the 90th percentile of CMS scores. A test of differences in regression coefficients between the CMS national average and the HCA average revealed significant differences for AMI (p = .001), HF (p = .012), PN (p quality, transparency in performance data, and clearly defined goals could cultivate the desire to use improvement tools and resources to raise performance. © 2012 National Association for Healthcare Quality.

  15. A technique to measure eyelid pressure using piezoresistive sensors.

    Science.gov (United States)

    Shaw, Alyra J; Davis, Brett A; Collins, Michael J; Carney, Leo G

    2009-10-01

    In this paper, novel procedures were developed using a thin (0.17 mm) tactile piezoresistive pressure sensor mounted on a rigid contact lens to measure upper eyelid pressure. A hydrostatic calibration system was constructed, and the influence of conditioning (prestressing), drift (continued increasing response with a static load), and temperature variations on the response of the sensor were examined. To optimally position the sensor-contact lens combination under the upper eyelid margin, an in vivo measurement apparatus was constructed. Calibration gave a linear relationship between raw sensor output and actual pressure units for loads between 1 and 10 mmHg ( R(2) = 0.96 ). Conditioning the sensor prior to use regulated the measurement response, and sensor output stabilized about 10 s after loading. While sensor output drifts slightly over several hours, it was not significant beyond the measurement time of 1 min used for eyelid pressure. The error associated with calibrating at room temperature but measuring at ocular surface temperature led to a very small overestimation of pressure. Eyelid pressure readings were observed when the upper eyelid was placed on the sensor, and removed during a recording. When the eyelid pressure was increased by pulling the lids tighter against the eye, the readings from the sensor significantly increased.

  16. Automated analysis of blood pressure measurements (Korotkov sound)

    Science.gov (United States)

    Golden, D. P.; Hoffler, G. W.; Wolthuis, R. A.

    1972-01-01

    Automatic system for noninvasive measurements of arterial blood pressure is described. System uses Korotkov sound processor logic ratios to identify Korotkov sounds. Schematic diagram of system is provided to show components and method of operation.

  17. System for measuring multiphase flow using multiple pressure differentials

    Science.gov (United States)

    Fincke, James R.

    2003-01-01

    An improved method and system for measuring a multi-phase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multi-phase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The system for determining the mass flow of the high void fraction fluid flow and the gas flow includes taking into account a pressure drop experienced by the gas phase due to work performed by the gas phase in accelerating the liquid phase.

  18. Pressure-Sensitive Paint Measurement Technique Development for Turbomachinery Application

    Science.gov (United States)

    1997-12-01

    maximum 200 words ) Pressure- sensitive paint measurement on a transonic compressor rotor required the prior development of phase-locked cumulative...reported. 14. SUBJECT TERMS Pressure- Sensitive Paint, Phase-Locked Imaging , Transonic Rotor Measurements, CFD Analysis 15. NUMBER OF PAGES 98 16... image was saved in a .TIFF picture format in the hard drive memory of the PC under directory C:/4MIP/ IMAGES /. The turbine was then shut down and

  19. Feasibility study of measuring the temperature and pressure of warm dense matter.

    Energy Technology Data Exchange (ETDEWEB)

    Rambo, Patrick K.; Schwarz, Jens

    2008-09-01

    We have investigated the feasibility of making accurate measurements of the temperature and pressure of solid-density samples rapidly heated by the Z-Petawatt laser to warm dense matter (WDM) conditions, with temperatures approaching 100eV. The study focused specifically on the heating caused by laser generated proton beams. Based on an extensive literature search and numerical investigations, a WDM experiment is proposed which will accurately measure temperature and pressure based on optical emission from the surface and sample expansion velocity.

  20. Blood pressure measurement for hypertension in pregnancy.

    Science.gov (United States)

    Dehaeck, Ulrike; Thurston, Jackie; Gibson, Paul; Stephanson, Kirk; Ross, Sue

    2010-04-01

    Ambulatory BP monitoring (ABPM) has been proposed as a logical approach to overcoming many of the problems associated with clinical BP measurement. The extent of its use in diagnosing hypertension in pregnancy is unknown. The objective of this study was to identify the practices surrounding use of ABPM by practitioners to diagnose hypertension (HTN) and white coat hypertension (WCH) in pregnant women. We mailed questionnaires to all obstetricians and family doctors practising obstetrics who were listed in the online medical directory of the College of Physicians and Surgeons of Alberta. Data were analyzed using SPSS. Completed questionnaires were received from 81 obstetricians and 86 primary care physicians who manage hypertension in pregnancy. The majority of obstetricians (83%) and primary care physicians (79%) indicated that they "almost always" or "often" attempt to differentiate WCH from true HTN in pregnancy. The most popular method identified to differentiate WCH from true HTN in pregnancy was self (intermittent) home BP monitoring (78% of obstetricians and 69% of primary care physicians, P = 0.18). A minority of physicians in each group reported using ABPM to evaluate HTN in pregnancy, with significantly fewer obstetricians using ABPM diagnostically than primary care physicians (12% vs. 26%, P = 0.04). Obstetrical care providers in Alberta are aware that WCH is an issue among pregnant women. While ABPM is chosen in a minority of cases, both obstetricians and primary care physicians appear to have a strong preference to use self BP monitoring for further BP evaluation.

  1. Pressure and Relative Humidity Measurement Devices for Mars 2020 Rover

    Science.gov (United States)

    Hieta, M.; Genzer, M.; Nikkanen, T.; Haukka, H.; Harri, A.-M.; Polkko, J.; Rodriguez-Manfredi, J. A.

    2017-09-01

    One of the scientific payloads onboard the NASA Mars 2020 rover mission is Mars Environmental Dynamic Analyzer (MEDA): a set of environmental sensors for Mars surface weather measurements. Finnish Meteorological Institute (FMI) provides a pressure measurement device (MEDA PS) and a relative humidity measurement device (MEDA HS) for MEDA.

  2. Compression-tracking photoacoustic perfusion and microvascular pressure measurements

    Science.gov (United States)

    Choi, Min; Zemp, Roger

    2017-03-01

    We propose a method to measure blood pressure of small vessels non-invasively and in-vivo: by combining PA imaging with compression US. Using this method, we have shown pressure-lumen area tracking, as well as estimation of the internal vessel pressure, located 2 mm deep in tissue. Additionally, reperfusion can be tracked by measuring the total PA signal within a region of interest (ROI) after compression has been released. The ROI is updated using cross-correlation based displacement tracking1. The change in subcutaneous perfusion rates can be seen when the temperature of the hand of a human subject drops below the normal.

  3. Rapid inactivation of Penicillium digitatum spores using high-density nonequilibrium atmospheric pressure plasma

    Science.gov (United States)

    Iseki, Sachiko; Ohta, Takayuki; Aomatsu, Akiyoshi; Ito, Masafumi; Kano, Hiroyuki; Higashijima, Yasuhiro; Hori, Masaru

    2010-04-01

    A promising, environmentally safe method for inactivating fungal spores of Penicillium digitatum, a difficult-to-inactivate food spoilage microorganism, was developed using a high-density nonequilibrium atmospheric pressure plasma (NEAPP). The NEAPP employing Ar gas had a high electron density on the order of 1015 cm-3. The spores were successfully and rapidly inactivated using the NEAPP, with a decimal reduction time in spores (D value) of 1.7 min. The contributions of ozone and UV radiation on the inactivation of the spores were evaluated and concluded to be not dominant, which was fundamentally different from the conventional sterilizations.

  4. Rapid measurement of meat spoilage using fluorescence spectroscopy

    Science.gov (United States)

    Wu, Binlin; Dahlberg, Kevin; Gao, Xin; Smith, Jason; Bailin, Jacob

    2017-02-01

    Food spoilage is mainly caused by microorganisms, such as bacteria. In this study, we measure the autofluorescence in meat samples longitudinally over a week in an attempt to develop a method to rapidly detect meat spoilage using fluorescence spectroscopy. Meat food is a biological tissue, which contains intrinsic fluorophores, such as tryptophan, collagen, nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) etc. As meat spoils, it undergoes various morphological and chemical changes. The concentrations of the native fluorophores present in a sample may change. In particular, the changes in NADH and FAD are associated with microbial metabolism, which is the most important process of the bacteria in food spoilage. Such changes may be revealed by fluorescence spectroscopy and used to indicate the status of meat spoilage. Therefore, such native fluorophores may be unique, reliable and nonsubjective indicators for detection of spoiled meat. The results of the study show that the relative concentrations of all above fluorophores change as the meat samples kept in room temperature ( 19° C) spoil. The changes become more rapidly after about two days. For the meat samples kept in a freezer ( -12° C), the changes are much less or even unnoticeable over a-week-long storage.

  5. Use of an Ethanol-Driven Pressure Cell to Measure Hydrostatic Pressure Response of Protein-Stabilized Gold Nanoclusters

    Science.gov (United States)

    2016-01-01

    ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure...ARL-TR-7577 ● JAN 2016 US Army Research Laboratory Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure Response of...DATES COVERED (From - To) May 2014–September 2014 4. TITLE AND SUBTITLE Use of an Ethanol -Driven Pressure Cell to Measure Hydrostatic Pressure

  6. Rapid Ammonia Deposition Measured Near Concentrated Animal Feeding Operations

    Science.gov (United States)

    Stanton, L. G.; Pan, D.; Sun, K.; Golston, L.; Tao, L.; Zondlo, M. A.

    2014-12-01

    Concentrated animal feeding operations (CAFOs) emit massive amounts of ammonia (NH3) to the atmosphere. Current measurements of NH3 are generally conducted far away from the sources (satellites, airplanes, etc.). There is insufficient knowledge about the dry deposition rate of NH3 near the sources, which might contribute to the large discrepancies between measured concentrations at CAFOs and those from models. During the 2014 NASA DISCOVER-AQ campaign, we designed a series of tests to measure the deposition rate of NH3 by utilizing a suite of sensors, including a LICOR LI-7700 methane sensor and Princeton University's custom open path NH3 sensor, which was mounted on top of a small SUV. Our mobile sampling technique enables us to follow feedlot emission plumes to see how ambient NH3 concentration decays as gases moves away from the CAFO. The mobile platform is used to perform upwind and downwind sampling to characterize the NH3 emission source. We tracked the change of the enhancement of NH3 concentration relative to the enhancement of CH4 concentration (ΔNH3:ΔCH4), while transecting the plume of individual cattle feedlots. Measured data shows that the high concentration of NH3 seen at the source decreases quickly as one moves further downwind from it. A time constant of approximately ten minutes has been calculated from the decay of the ΔNH3:ΔCH4 ratios while moving away from the sources. We also will compare our measurements with those of NASA's P-3B aerosol measurements to show that the majority must be lost to dry deposition. This rapid deposition suggests that large amounts of NH3 are being deposited in very close proximity to these CAFOs, which is consistent with previous findings of locally high soil pH near NH3 sources. Our results will be used to better characterize nitrogen deposition from cattle feedlots and estimate NH3 lifetime.

  7. Indirect measurement of arterial blood pressure: physiotherapists’ theoretical knowledge

    Directory of Open Access Journals (Sweden)

    Marcelle Morgana Vieira de Assis

    2003-12-01

    Full Text Available Blood pressure checking and its theoretical knowledge are crucial to obtain reliable data in clinical examination. Although it is considered a simple technique to be learned and applied, it is not fully dealt with at physiotherapy university courses. Therefore, a wide range of mistakes and misinterpretations are likely to threaten treatment quality. This work aims to evaluate the theory background of physiotherapists for blood pressure measurement. From June to October 2002, 55 physiotherapists answered a 20- question multiple-choice questionnaire on general knowledge related to concepts, anatomy and physiology, suitable equipment, indirect measurement, blood pressure values, mistakes and misinterpretation factors related to blood pressure measurement. The results disclose faulty theory concepts in the sample studied, indicating the need of deeper approach to this complex theme during course and ongoing updating of professionals.

  8. Hepatic venous pressure gradients measured by duplex ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Tasu, J.-P.; Rocher, L.; Peletier, G.; Kuoch, V.; Kulh, E.; Miquel, A.; Buffet, C.; Biery, M

    2002-08-01

    AIMS: The hepatic venous pressure gradient is a major prognostic factor in portal hypertension but its measurement is complex and requires invasive angiography. This study investigated the relationship between the hepatic venous pressure gradient and a number of Doppler measurements, including the arterial acceleration index. METHOD: We measured the hepatic venous pressure gradient in 50 fasting patients at hepatic venography. Immediately afterwards, a duplex sonographic examination of the liver was performed at which multiple measurements and indices of the venous and arterial hepatic vasculature were made. RESULTS: Hepatic arterial acceleration was correlated directly with the hepatic venous pressure gradient (r = 0.83, P < 0.0001) and with the Child-Pugh score (r = 0.63, P < 0.0001). An acceleration index cut-off value of 1 m.s{sup -2} provided a positive predictive value of 95%, a sensitivity of 65% and a specificity of 95% for detecting patients with severe portal hypertension (hepatic venous pressure gradient > 12 mmHg). A correlation between the hepatic venous pressure gradient and the congestion index of the portal vein velocity (r = 0.45,P = 0.01) and portal vein velocity (r = 0.40,P = 0.044), was also noted. CONCLUSION: Measuring the hepatic arterial acceleration index may help in the non-invasive evaluation of portal hypertension. Tasu, J.-P. et al. (2002)

  9. Two-pulse rapid remote surface contamination measurement.

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Jeffrey M.; Kulp, Thomas J.; Bisson, Scott E.; Reichardt, Thomas A.; Farrow, Roger L.

    2010-11-01

    This project demonstrated the feasibility of a 'pump-probe' optical detection method for standoff sensing of chemicals on surfaces. Such a measurement uses two optical pulses - one to remove the analyte (or a fragment of it) from the surface and the second to sense the removed material. As a particular example, this project targeted photofragmentation laser-induced fluorescence (PF-LIF) to detect of surface deposits of low-volatility chemical warfare agents (LVAs). Feasibility was demonstrated for four agent surrogates on eight realistic surfaces. Its sensitivity was established for measurements on concrete and aluminum. Extrapolations were made to demonstrate relevance to the needs of outside users. Several aspects of the surface PF-LIF physical mechanism were investigated and compared to that of vapor-phase measurements. The use of PF-LIF as a rapid screening tool to 'cue' more specific sensors was recommended. Its sensitivity was compared to that of Raman spectroscopy, which is both a potential 'confirmer' of PF-LIF 'hits' and is also a competing screening technology.

  10. Correction of static pressure on a research aircraft in accelerated flight using differential pressure measurements

    Directory of Open Access Journals (Sweden)

    A. R. Rodi

    2012-11-01

    Full Text Available A method is described that estimates the error in the static pressure measurement on an aircraft from differential pressure measurements on the hemispherical surface of a Rosemount model 858AJ air velocity probe mounted on a boom ahead of the aircraft. The theoretical predictions for how the pressure should vary over the surface of the hemisphere, involving an unknown sensitivity parameter, leads to a set of equations that can be solved for the unknowns – angle of attack, angle of sideslip, dynamic pressure and the error in static pressure – if the sensitivity factor can be determined. The sensitivity factor was determined on the University of Wyoming King Air research aircraft by comparisons with the error measured with a carefully designed sonde towed on connecting tubing behind the aircraft – a trailing cone – and the result was shown to have a precision of about ±10 Pa over a wide range of conditions, including various altitudes, power settings, and gear and flap extensions. Under accelerated flight conditions, geometric altitude data from a combined Global Navigation Satellite System (GNSS and inertial measurement unit (IMU system are used to estimate acceleration effects on the error, and the algorithm is shown to predict corrections to a precision of better than ±20 Pa under those conditions. Some limiting factors affecting the precision of static pressure measurement on a research aircraft are discussed.

  11. Comparison of ambulatory blood pressure monitoring and office blood pressure measurements in obese children and adolescents.

    Science.gov (United States)

    Renda, Rahime

    2017-10-24

    Obesity in adults has been related to hypertension and abnormal nocturnal dipping of blood pressure, which are associated with poor cardiovascular and renal outcomes. Here, we aimed to resolve the relationship between the degree of obesity, the severity of hypertension and dipping status on ambulatory blood pressure in obese children. A total 72 patients with primary obesity aged 7 to 18 years (mean: 13.48 ± 3.25) were selected. Patients were divided into three groups based on body mass index (BMİ) Z-score. Diagnosis and staging of ambulatory hypertension based on 24-h blood pressure measurements, obtained from ambulatory blood pressure monitoring. Based on our ambulatory blood pressure data, 35 patients (48.6%) had hypertension, 7 (20%) had ambulatory prehypertension, 21 (60%) had hypertension, and 7 patients (20%) had severe ambulatory hypertension. There was a significant relationship between severity of hypertension and the degree of obesity (p < 0.05). Thirty-one patients (88.6%) had isolated nighttime hypertension, and 53 patients (73.6%) were non-dippers. All systolic blood pressure results and loads were similar between groups. Diastolic and mean arterial blood pressure levels during the night, diastolic blood pressure loads, and heart rate during the day were significantly higher in Group 3 (p < 0.05). Nocturnal non-dipping was not associated with severity of obesity. Obesity was associated with severity of hypertension, higher diastolic blood pressure at night, mean arterial pressure at night, diastolic blood pressure loads and heart rate at day. Increase in BMI Z-score does not a significant impact on daytime blood pressure and nocturnal dipping status.

  12. Rapid Response Teams: Is it Time to Reframe the Questions of Rapid Response Team Measurement?

    Science.gov (United States)

    Salvatierra, Gail G; Bindler, Ruth C; Daratha, Kenn B

    2016-11-01

    The purpose of this article is to present an overview of rapid response team (RRT) history in the United States, provide a review of prior RRT effectiveness research, and propose the reframing of four new questions of RRT measurement that are designed to better understand RRTs in the context of contemporary nursing practice as well as patient outcomes. RRTs were adopted in the United States because of their intuitive appeal, and despite a lack of evidence for their effectiveness. Subsequent studies used mortality and cardiac arrest rates to measure whether or not RRTs "work." Few studies have thoroughly examined the effect of RRTs on nurses and on nursing practice. An extensive literature review provided the background. Suppositions and four critical, unanswered questions arising from the literature are suggested. The results of RRT effectiveness, which have focused on patient-oriented outcomes, have been ambiguous, contradictory, and difficult to interpret. Additionally, they have not taken into account the multiple ways in which these teams have impacted nurses and nursing practice as well as patient outcomes. What happens in terms of RRT process and utilization is likely to have a major impact on nurses and nursing care on general medical and surgical wards. What that impact will be depends on what we can learn from measuring with an expanded yardstick, in order to answer the question, "Do RRTs work?" Evidence for the benefits of RRTs depends on proper framing of questions relating to their effectiveness, including the multiple ways RRTs contribute to nursing efficacy. © 2016 Sigma Theta Tau International.

  13. [Measuring pressure distribution on the human tibia in ski boots].

    Science.gov (United States)

    Schaff, P; Hauser, W

    1987-09-01

    Pressure distribution inside shoes is of great importance for orthopaedic and biomechanical inquiries. Especially in sports, safety and comfort depend essentially on this quantity, which also determines whether a shoe is well suited for a certain discipline. Therefore, the measurement of pressure distribution allows detailed and objective statements about these factors. Using a set of newly developed thin and highly flexible measuring mats and the corresponding electronic equipment, such statements have become possible. First results with this method were obtained in alpine skiing. 8 different types of ski boots (sizes 5 and 8) worn by 14 subjects were tested on different foreward leans and temperatures using 7-point measuring mats (2 cm2/point) fixed between the boot shaft and the front of the lower leg of each leg. Additional measurements on three different types of boots using a 3 x 24-point mat (1 cm2/point) for the lower leg, as well as measurements underneath the foot with a 14-point (2 cm2/point) and a 80-point (1 cm2/point) mat were performed. A complementary determination of the force at the heel element of a ski binding and a registration of muscular activity (EMG) helped in the interpretation of the results. Some field research using telemetry completed our study. Considerable variations between different boots were found in value and location of pressure maxima. Traditional boots show high pressure values over the instep at foreward leans of 35 degrees and a rise of pressure underneath the forefoot while fixing the buckles, whereas minimal pressure over the instep, no compression of the forefoot and a pressure maximum near the upper end of the shaft are observed in rear entry boots. The force at the heel-important for binding release-varies widely between different boots at the same foreward lean. There was no asymmetry between the pressure distributions of right and left. The pressure distributions for different subjects measured in the same boot were

  14. Validating Center of Pressure Balance Measurements Using the MatScan® Pressure Mat.

    Science.gov (United States)

    Goetschius, John; Feger, Mark A; Hertel, Jay; Hart, Joseph M

    2017-07-17

    Measurements of center of pressure (COP) excursions during balance are common practice in clinical and research settings to evaluate adaptations in postural control due to pathological or environmental conditions. Traditionally measured using laboratory force-plates, pressure-mat devices may be a suitable option for clinicians and scientist to measure COP excursions. Compare COP measures and changes during balance between MatScan® pressure-mat and force-plate. Validation study. Laboratory. Thirty healthy, young adults (19 female,11 male, 22.7±3.4 years, 70.3±SD kg, 1.71±0.09 m). COP excursions were simultaneously measured using pressure-mat and force-plate devices. Participants completed 3 eyes-open and 3 eyes-closed single-leg balance trials (10-seconds). Mean of the 3 trials was used to calculate four COP variables, medial-lateral and anterior-posterior excursion, total distance, and area, with eyes-open and eyes-closed. Percent-change and effect sizes were calculated between eyes-open to closed conditions for each variable and for both devices. All COP variables were highly correlated between devices for eyes-open and eyes-closed conditions (all r > .92, P .85, P 2.25) and similar magnitude between devices. COP measures were correlated between devices, but values tended to be smaller using the pressure-mat. The pressure-mat and force-plate detected comparable magnitude changes in COP measurements between eyes-open and eyes-closed. Pressure-mats may provide be a viable option for detecting large magnitude changes in postural control during short duration testing.

  15. Foldable micro coils for a transponder system measuring intraocular pressure

    Energy Technology Data Exchange (ETDEWEB)

    Ullerich, S.; Schnakenberg, U. [Technische Hochschule Aachen (Germany). Inst. of Materials in Electrical Engineering 1; Mokwa, W. [Technische Hochschule Aachen (Germany). Inst. of Materials in Electrical Engineering 1]|[Fraunhofer Inst. of Microelectronic Circuits and Systems, Duisburg (Germany); Boegel, G. vom [Fraunhofer Inst. of Microelectronic Circuits and Systems, Duisburg (Germany)

    2001-07-01

    A foldable transponder system consisting of a chip and a micro coil for measuring intraocular pressure continuously is presented. The system will be integrated in the haptic of a soft artificial intraocular lens. Calculations of planar micro coils with 6 mm and 10.3 mm in diameter show the limits for planar coils with an outer diameter of 6 mm. For the realisation of the transponder system a 20 {mu}m thick coil with an outer diameter of 10.3 mm, an inner diameter of 7.7 mm, 16 turns and a gap of 20 {mu}m between the windings was selected. Measurements show a good agreement between calculated and measured values. Wireless pressure measurements were carried out showing a linear behaviour of the output signal with respect to the applied pressure. (orig.)

  16. Invasive v. non-invasive blood pressure measurements the ...

    African Journals Online (AJOL)

    A reasonable correlation exists between invasive and noninvasive methods of measuring systemic blood pressure. However, there are frequent individual differences between these methods and these variations have often caused the validity of the non-invasive measurement to be questioned. The hypothesis that certain ...

  17. Wavenumber-frequency Spectra of Pressure Fluctuations Measured via Fast Response Pressure Sensitive Paint

    Science.gov (United States)

    Panda, J.; Roozeboom, N. H.; Ross, J. C.

    2016-01-01

    The recent advancement in fast-response Pressure-Sensitive Paint (PSP) allows time-resolved measurements of unsteady pressure fluctuations from a dense grid of spatial points on a wind tunnel model. This capability allows for direct calculations of the wavenumber-frequency (k-?) spectrum of pressure fluctuations. Such data, useful for the vibro-acoustics analysis of aerospace vehicles, are difficult to obtain otherwise. For the present work, time histories of pressure fluctuations on a flat plate subjected to vortex shedding from a rectangular bluff-body were measured using PSP. The light intensity levels in the photographic images were then converted to instantaneous pressure histories by applying calibration constants, which were calculated from a few dynamic pressure sensors placed at selective points on the plate. Fourier transform of the time-histories from a large number of spatial points provided k-? spectra for pressure fluctuations. The data provides first glimpse into the possibility of creating detailed forcing functions for vibro-acoustics analysis of aerospace vehicles, albeit for a limited frequency range.

  18. High Pressure Burn Rate Measurements on an Ammonium Perchlorate Propellant

    Energy Technology Data Exchange (ETDEWEB)

    Glascoe, E A; Tan, N

    2010-04-21

    High pressure deflagration rate measurements of a unique ammonium perchlorate (AP) based propellant are required to design the base burn motor for a Raytheon weapon system. The results of these deflagration rate measurements will be key in assessing safety and performance of the system. In particular, the system may experience transient pressures on the order of 100's of MPa (10's kPSI). Previous studies on similar AP based materials demonstrate that low pressure (e.g. P < 10 MPa or 1500 PSI) burn rates can be quite different than the elevated pressure deflagration rate measurements (see References and HPP results discussed herein), hence elevated pressure measurements are necessary in order understand the deflagration behavior under relevant conditions. Previous work on explosives have shown that at 100's of MPa some explosives will transition from a laminar burn mechanism to a convective burn mechanism in a process termed deconsolidative burning. The resulting burn rates that are orders-of-magnitude faster than the laminar burn rates. Materials that transition to the deconsolidative-convective burn mechanism at elevated pressures have been shown to be considerably more violent in confined heating experiments (i.e. cook-off scenarios). The mechanisms of propellant and explosive deflagration are extremely complex and include both chemical, and mechanical processes, hence predicting the behavior and rate of a novel material or formulation is difficult if not impossible. In this work, the AP/HTPB based material, TAL-1503 (B-2049), was burned in a constant volume apparatus in argon up to 300 MPa (ca. 44 kPSI). The burn rate and pressure were measured in-situ and used to calculate a pressure dependent burn rate. In general, the material appears to burn in a laminar fashion at these elevated pressures. The experiment was reproduced multiple times and the burn rate law using the best data is B = (0.6 {+-} 0.1) x P{sup (1.05{+-}0.02)} where B is the burn

  19. Accuracy of measurement of hand compartment pressures: a cadaveric study.

    Science.gov (United States)

    Wong, Justin C; Vosbikian, Michael M; Dwyer, Joseph M; Ilyas, Asif M

    2015-04-01

    To determine the accuracy of digital palpation for clinical assessment of elevated intracompartmental pressure compared with needle manometry in a simulated compartment syndrome of the hand. Three cadaveric hands were configured with interstitial fluid infusion and an arterial line pressure monitor to create and continuously measure intracompartmental pressure in the thenar and hypothenar compartments. Seventeen assessors clinically judged the presence or absence of compartment syndrome based on digital palpation for firmness and then measured pressures with a handheld manometer. An intracompartmental pressure threshold of 30 mm Hg or greater was used to diagnose compartment syndrome. The sensitivity and specificity of digital palpation of the thenar eminence were 49% and 79%, respectively, with a positive predictive value (PPV) of 86% and negative predictive value (NPV) of 37%. Using the handheld manometer, the sensitivity and specificity increased to 97% and 86% with a PPV of 95% and NPV of 92%. The sensitivity and specificity of digital palpation of the hypothenar eminence were 62% and 83%, respectively, with improvement of 100% and 100%, respectively, with a handheld manometer. For the hypothenar compartment, use of a handheld manometer improved the PPV from 92% to 100% and the NPV from 40% to 100% compared with digital palpation. Digital palpation alone was insufficient to detect elevated compartment pressures in hands at risk for compartment syndrome. Handheld invasive pressure measurement was a useful adjunct for detecting elevated interstitial tissue pressures and may aid in diagnosing compartment syndrome. Diagnostic II. Copyright © 2015 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  20. Automatic blood pressure measurement: the oscillometric waveform shape is a potential contributor to differences between oscillometric and auscultatory pressure measurements.

    Science.gov (United States)

    Amoore, John N; Lemesre, Yann; Murray, Ian C; Mieke, Stephan; King, Susan T; Smith, Fiona E; Murray, Alan

    2008-01-01

    To explore the differences between oscillometric and auscultatory measurements. From a simulator evaluation of a non-invasive blood pressure (NIBP) device regenerating 242 oscillometric blood pressure waveforms from 124 subjects, 10 waveforms were selected based on the differences between the NIBP (oscillometric) and auscultatory pressure measurements. Two waveforms were selected for each of five criteria: systolic over and underestimation; diastolic over and underestimation; and close agreement for both systolic and diastolic pressures. The 10 waveforms were presented to seven different devices and the oscillometric-auscultatory pressure differences were compared between devices and with the oscillometric waveform shapes. Consistent patterns of waveform-dependent over and underestimation of systolic and diastolic pressures were shown for all seven devices. The mean and standard deviation, for all devices, of oscillometric-auscultatory pressure differences were: for the systolic overestimated waveforms, 36 +/- 28/-6 +/- 3 and 23 +/- 2/-1 +/- 3 mmHg (systolic/diastolic differences); for systolic underestimated waveforms, -21 +/- 5/-4 +/- 3 and -11 +/- 4/-3 +/- 3 mmHg; for diastolic overestimated waveforms, 3 +/- 4/12 +/- 5 and 17 +/- 6/10 +/- 2 mmHg; for diastolic underestimated waveforms, 1 +/- 4/-22 +/- 4 and -9 +/- 6/-29 +/- 4 mmHg; and for the two waveforms with good agreement, 0 +/- 6/0 +/- 3 and -2 +/- 4/-4 +/- 3 mmHg. Waveforms for which devices showed good oscillometric and auscultatory agreement had smooth envelopes with clearly defined peaks, compared with the broader plateau and complex shapes of those waveforms for which devices over or underestimated pressures. By increasing the understanding of the characteristics and limitations of the oscillometric method and the effects of waveform shape on pressure measurements, simulator evaluation should lead to improvements in NIBP devices.

  1. MEASUREMENTS OF PRESSURE DISTRIBUTIONS ON A ROTOR BLADE USING PSP TECHNIQUES

    Directory of Open Access Journals (Sweden)

    Kidong Kim

    2011-12-01

    Full Text Available Surface pressure distributions on a rotating blade were measured by using pressure sensitive paint (PSP to understand aerodynamic characteristics of a rotor blade. The present study was conducted to investigate the PSP techniques for measuring the pressure distributions on a rotor blade. In order to perform the experiment, the PSP was required to response very fast due to rapid pressure fluctuations on a rotor blade. High energy excitation light source was also needed to acquire proper intensity images in a short excitation time. The techniques were based on a lifetime method. Qualitative pressure distributions on an upper surface of small scale rotor in hovering condition were measured as a preliminary experiment prior to forward flight conditions in the KARI low speed wind tunnel laboratory. From measured pressure distributions, striking pressure gradient was observed on an upper surface of rotor blade and the resulting pressure showed expected gradient depending on different collective pitch angles. ABSTRAK : Pengagihan tekanan permukaan ke atas berbilah putar disukat menggunakan cat sensitive tekanan (pressure sensitive paint (PSP untuk memahami sifat-sifat aerodinamik suatu berbilah putar. Kajian telah dijalankan untuk menyelidik teknik-teknik PSP dengan mengukur agihan tekanan ke atas suatu berbilah putar. Agar eksperimen dapat dijalankan dengan baik, PSP harus bertindak cepat kerana tekanan naik turun dengan pantas ke atas berbilah putar. Sumber cahaya ujaan tenaga tinggi diperlukan untuk mendapatkan imej keamatan wajar dalam jangka masa ujaan yang pendek. Teknik-teknik tersebut terhasil daripada kajian semasa hayat. Agihan tekanan kualitatif ke permukaan atas berskala kecil pemutar dalam keadaan mengapung diukur sebagai permulaan eksperimen, sebelum penerbangan kehadapan dalam makmal terowong angin laju rendah KARI. Daripada agihan tekanan yang disukat, kecerunan tekanan yang ketara diperolehi daripada permerhatian terhadap permukaan

  2. Rapid and sensitive measure of gluconeogenesis in isolated bovine hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Azain, M.J.; Kasser, T.R.; Atwell, C.A.; Baile, C.A.

    1986-03-05

    Available methods for determining glucose synthesis from radiolabelled precursors using ion exchange column chromatography limit the number of samples that can be processed. To facilitate this process, a rapid method for determining glucose synthesis from 3-carbon precursors was developed using suspensions of anion and cation exchange resins. Hepatocytes were prepared from calf liver by collagenase perfusion of the caudate lobe. Isolated cells were incubated with /sup 14/C-labelled lactate or propionate in the presence or absence of glucagen and/or palmitate. Glucose synthesis was determined by vortexing an aliquot of cell suspension with a 50% slurry of anion exchange resin (acetate form), followed by cation exchange resin. After centrifugation /sup 14/C-glucose was recovered in the supernatant and measured by scintillation counting. Using this method, more than 95% of unused labelled precursor was bound to the ion exchange resin and essentially 100% of /sup 14/C-glucose tracer was recovered in the supernatant. In hepatocyte suspensions, radioactivity recovered in the supernatants was confirmed to be glucose by pre-incubating aliquots of media with glucose oxidase prior to addition of ion exchange resins. The present system allows determination of hepatic gluconeogenesis, is sensitive to substrate and hormonal manipulations and has the capacity for processing several hundred samples per day.

  3. Nursing student caring behaviors during blood pressure measurement.

    Science.gov (United States)

    Becker, Mary Kay; Blazovich, Linda; Schug, Vicki; Schulenberg, Cathy; Daniels, Jessie; Neal, Diana; Pearson, Gloria; Preston, Sara; Ridgeway, Sharon; Simones, Joyce; Swiggum, Paula; Wenkel, Linda; Smith, MaryJo O

    2008-03-01

    The purpose of this multisite, nonexperimental study was to examine, using a repeated measures design, the effects of a teaching intervention designed to promote caring behaviors as students learn the psychomotor skill of blood pressure measurement. Watson's theory of human caring and a combination of cognitive and connectionist learning theories were used as the organizing construct. Baccalaureate nursing student participants were videotaped and evaluated at two points in time while performing the psychomotor skill of blood pressure measurement on a role-player. Role-players rated the students' caring behaviors using the Role Player Survey of Caring Behaviors During Blood Pressure Measurement instrument. Between these data collection points, students learned about caring behaviors through analysis of a videotaped role-play and required readings. An evaluator randomly selected 10 student videotapes from each of the 6 baccalaureate nursing program study sites and noted the presence or absence of caring behaviors on the Caring Behaviors During Blood Pressure Measurement instrument. Pretest and posttest scores on both subjective and objective research instruments were compared using descriptive statistics and repeated measures analysis of variance (ANOVA). Students demonstrated a significant improvement in objective and subjective caring behaviors between the two performance examinations. The findings support further investigation of teaching interventions to promote the development of caring behaviors during nursing psychomotor skill development.

  4. Measurement of digital blood pressure after local cooling

    DEFF Research Database (Denmark)

    Nielsen, S L; Lassen, N A

    1977-01-01

    A double-inlet plastic cuff was designed for local cooling and systolic blood pressure measurement on the middle phalanx of the fingers. With a tourniquet on the proximal phalanx of one finger, cooling for 5 min made the digital artery temperature equal the skin temperature. The difference between...... the systolic pressure in a control finger and in the cooled finger give the reopening pressure in the digital arteries. At 30, 25, 20, 15, and 10 degrees C, respectively the percent decrease of the finger pressure was 0.2 (0.2), 1.5 (2.5), 8.5 (3.7), 11.4 (3.4), and 15.3 (3.1) in normal young women...

  5. Design Considerations of a Fiber Optic Pressure Sensor Protective Housing for Intramuscular Pressure Measurements.

    Science.gov (United States)

    Go, Shanette A; Jensen, Elisabeth R; O'Connor, Shawn M; Evertz, Loribeth Q; Morrow, Duane A; Ward, Samuel R; Lieber, Richard L; Kaufman, Kenton R

    2017-03-01

    Intramuscular pressure (IMP), defined as skeletal muscle interstitial fluid pressure, reflects changes in individual muscle tension and may provide crucial insight into musculoskeletal biomechanics and pathologies. IMP may be measured using fiber-optic fluid pressure sensors, provided the sensor is adequately anchored to and shielded from surrounding muscle tissue. Ineffective anchoring enables sensor motion and inadequate shielding facilitates direct sensor-tissue interaction, which result in measurement artifacts and force-IMP dissociation. The purpose of this study was to compare the effectiveness of polyimide and nitinol protective housing designs to anchor pressure sensors to muscle tissue, prevent IMP measurement artifacts, and optimize the force-IMP correlation. Anchoring capacity was quantified as force required to dislodge sensors from muscle tissue. Force-IMP correlations and non-physiological measurement artifacts were quantified during isometric muscle activations of the rabbit tibialis anterior. Housing structural integrity was assessed after both anchoring and activation testing. Although there was no statistically significant difference in anchoring capacity, nitinol housings demonstrated greater structural integrity and superior force-IMP correlations. Further design improvements are needed to prevent tissue accumulation in the housing recess associated with artificially high IMP measurements. These findings emphasize fundamental protective housing design elements crucial for achieving reliable IMP measurements.

  6. Leuna methods of rapid emptying and pressure release of operating equipment filled with combustible liquids and gases, as means of prevention of spreading fires

    Energy Technology Data Exchange (ETDEWEB)

    1944-12-14

    At times, the considerable amounts of combustible liquids in the equipment during distillation, gas separation, scrubbing, etc. required special precautionary measures even under normal conditions. Obviously, such amounts of combustibles carried the danger of spreading fires from any disturbance, such as breaks in the piping, of the slides, explosions, and small fires. The past precautions taken in this matter had been fire extinguishers, construction of localizing compartments, spray systems, reduction of the amount of liquids, and other similar measures. However, such measures were of little use in case of an attack. Leuna decided to provide a means of rapid emptying with a simultaneous rapid exhausting of all equipment under danger. Releasing the pressure would prevent the formation of sharp-pointed flames with their devastating consequences. The installation consisted essentially of groups of valves (easily accessible), long pipe lines, storage farms for liquids, and a discharge into the air. Provisions were made for returning the materials under atmospheric pressure to prevent losses. The figures showed rapid emptying of scrubbers for circulating gas under high pressure, gasoline catchpot still, and pressure release of gas separation unit. These installations proved worthy and became a necessary part of operations. Four diagrams are given showing this installation. 4 diagrams

  7. Measuring Surface Pressure on Rotating Compressor Blades Using Pressure Sensitive Paint

    Directory of Open Access Journals (Sweden)

    Markus Pastuhoff

    2016-03-01

    Full Text Available Pressure sensitive paint (PSP was used to measure pressure on the blades of a radial compressor with a 51 mm inlet diameter rotating at speeds up to 50 krpm using the so called lifetime method. A diode laser with a scanning-mirror system was used to illuminate the paint and the luminescent lifetime was registered using a photo multiplier. With the described technique the surface-pressure fields were acquired for eight points in the compressor map, useful for general understanding of the flow field and for CFD validation. The PSP was of so called fast type, which makes it possible to observe pressure variations with frequencies up to several kHz. Through frequency spectrum analysis we were able to detect the pulsating flow frequency when the compressor was driven to surge.

  8. Pressure wire used to measure gradient in chronic mesenteric ischemia.

    Science.gov (United States)

    Hannawi, Bashar; Lam, Wilson W; Younis, George Antoine

    2012-01-01

    Chronic mesenteric ischemia is a rare disorder in the United States. Frequently, its symptoms correlate poorly with the angiographically apparent degree of mesenteric artery stenosis. Measuring the pressure gradient with a small-caliber catheter is an established means of determining whether a particular stenosis is flow-limiting, thus guiding the interventional decision when stenoses are of indeterminate angiographic significance. Using a 0.014-in guidewire, however, is potentially more accurate because it eliminates any measurement error attributable to the use of a larger, potentially obstructive catheter. We present a case of chronic mesenteric ischemia in a 70-year-old woman who had abdominal pain with multiple possible causes. We used a 0.014-in pressure wire to calculate pressure gradients and guide our decision to stent tandem lesions in the superior mesenteric artery. After revascularization, the patient's symptoms improved dramatically. To the best of our knowledge, this is the first published case in which a pressure wire was used to measure a pressure gradient in chronic mesenteric ischemia.

  9. A novel approach to office blood pressure measurement: 30-minute office blood pressure vs daytime ambulatory blood pressure

    NARCIS (Netherlands)

    Wel, M.C. van der; Buunk, I.E.; Weel, C. van; Thien, Th.; Bakx, J.C.

    2011-01-01

    PURPOSE: Current office blood pressure measurement (OBPM) is often not executed according to guidelines and cannot prevent the white-coat effect. Serial, automated, oscillometric OBPM has the potential to overcome both these problems. We therefore developed a 30-minute OBPM method that we compared

  10. Design optimization and fabrication of a novel structural piezoresistive pressure sensor for micro-pressure measurement

    Science.gov (United States)

    Li, Chuang; Cordovilla, Francisco; Ocaña, José L.

    2018-01-01

    This paper presents a novel structural piezoresistive pressure sensor with a four-beams-bossed-membrane (FBBM) structure that consisted of four short beams and a central mass to measure micro-pressure. The proposed structure can alleviate the contradiction between sensitivity and linearity to realize the micro measurement with high accuracy. In this study, the design, fabrication and test of the sensor are involved. By utilizing the finite element analysis (FEA) to analyze the stress distribution of sensitive elements and subsequently deducing the relationships between structural dimensions and mechanical performance, the optimization process makes the sensor achieve a higher sensitivity and a lower pressure nonlinearity. Based on the deduced equations, a series of optimized FBBM structure dimensions are ultimately determined. The designed sensor is fabricated on a silicon wafer by using traditional MEMS bulk-micromachining and anodic bonding technology. Experimental results show that the sensor achieves the sensitivity of 4.65 mV/V/kPa and pressure nonlinearity of 0.25% FSS in the operating range of 0-5 kPa at room temperature, indicating that this novel structure sensor can be applied in measuring the absolute micro pressure lower than 5 kPa.

  11. Effect of respiration on Korotkoff sounds and oscillometric cuff pressure pulses during blood pressure measurement.

    Science.gov (United States)

    Zheng, Dingchang; Di Marco, Luigi Yuri; Murray, Alan

    2014-05-01

    Blood pressure (BP) measurement accuracy depends on consistent changes in Korotkoff sounds (KorS) for manual measurement and oscillometric pulses for automated measurement, yet little is known about the direct effect of respiration on these physiological signals. The aim of this research was to quantitatively assess the modulation effect of respiration on Korotkoff sounds and oscillometric pulses. Systolic and diastolic blood pressures were measured manually from 30 healthy subjects (age 41 ± 12 years). Three static cuff pressure conditions were studied for two respiratory rates. Cuff pressure [with oscillometric pulses (OscP)], ECG, chest motion respiration [respiration signal (Resp), from magnetometer] and Korotkoff sounds (KorS, from digital stethoscope) were recorded twice for 20 s. The physiological data were evenly resampled. Respiratory frequency was calculated from Resp (fR), OscP (fO) and KorS (fK) from peak spectral frequency. There was no statistically significant difference between fR and fO or fK. Respiratory modulation was observed in all subjects. OscP amplitude modulation changed significantly between the two respiratory rates (p oscillometric pulse and Korotkoff sound amplitudes from which BP is measured.

  12. Office blood pressure measurements with oscillometric devices in adolescents: a comparison with home blood pressure.

    Science.gov (United States)

    Jardim, Thiago Veiga; Gaziano, Thomas A; Nascente, Flávia Miquetichuc; Carneiro, Carolina de Souza; Morais, Polyana; Roriz, Vanessa; Mendonça, Karla Lorena; Póvoa, Thaís Inácio Rolim; Barroso, Weimar Kunz Sebba; Sousa, Ana Luiza Lima; Jardim, Paulo César Veiga

    2017-10-01

    Compare multiple in office BP measurements in adolescents using an oscillometric device with out-of-office blood pressure measurements (home blood pressure monitoring - HBPM). Office measurements were performed with validated semi-automatic devices twice (3 minutes interval) in two different moments (1 week apart), with a total of four readings. These BP readings were named R1, R2, R3 and R4 (following the sequence they were performed), FDM (mean of two readings on first day) and SDM (mean of two readings on second day) and SRM (R2-R4 means). The HBPM protocol included two day-time and two evening-time measurements over 6 days. A total of 1024 students between 12 and 17 years were included (mean age 14.68 years; 52.4% females). The mean systolic blood pressure (SBP) values of R2, SDM and SRM were similar to HBPM values. Regarding diastolic blood pressure (DBP) HBPM value was different than R4. High SBP and DBP correlation coefficients with HBPM values were found for R2, SDM and SRM values. The second office BP measurement performed with an oscilometric device in adolescents was comparable to HBPM values, suggesting that two office readings might be suitable to rule out hypertension in this age group.

  13. Experimental viscosity measurements of biodiesels at high pressure

    Directory of Open Access Journals (Sweden)

    Schaschke C.J.

    2016-01-01

    Full Text Available The viscosity of biodiesels of soybean and rapeseed biodiesels blended with mineral diesel fuel were measured at pressures of up to 200 MPa. Using a falling sinker-type viscometer reproducible viscosity data were obtained based on the time taken for a sinker to descend a fixed distance down an enclosed tube under the influence of gravity. Measurements were taken using pressures which correspond to those of interest in automotive common rail diesel engines, and at temperatures of between 25ºC and 80ºC. In all cases, the viscosity of the biodiesel blends were found to increase exponentially for which the blends were noted as being more viscous than pure mineral fuels. A pressure-freezing effect was not observed for the blends.

  14. Rapid intracranial pressure drop as a cause for posterior reversible encephalopathy syndrome: Two case reports.

    Science.gov (United States)

    Niwa, Ryoko; Oya, Soichi; Nakamura, Takumi; Hana, Taijun; Matsui, Toru

    2017-01-01

    Posterior reversible encephalopathy syndrome (PRES) is characterized by reversible edematous lesions on radiological examinations as well as symptoms of altered consciousness and seizures. To date, the underlying mechanism remains largely unknown. Case 1 is a 72-year-old man with a history of hypertension presented with a subarachnoid hemorrhage. Fourteen days after the successful clipping of a ruptured aneurysm; he experienced inadvertent overdrainage via the intraventricular drain. Nine hours later, he started to have seizures followed by disturbances in consciousness. An emergency magnetic resonance imaging showed multiple high-intensity lesions in the frontal, temporal, parietal, and occipital lobes, basal ganglia, brainstem, and cerebellar hemispheres bilaterally, which are compatible with typical magnetic resonance findings in PRES patients. He was treated conservatively and recovered well. Case 2 is a 68-year-old woman with a mild history of hypertension and a ventriculo-peritoneal shunt for obstructive hydrocephalus, who underwent a cysto-peritoneal shunt placement because of an enlarging symptomatic arachnoid cyst. Immediately following surgery, she experienced disturbances in consciousness and developed status epilepticus. Radiological examinations revealed remarkable shrinkage of the arachnoid cyst and multiple edematous lesions, which led us to strongly suspect PRES. With conservative treatment, her symptoms and the radiological abnormalities disappeared. Based on the previous literature and our cases, we believe that the association between rapid reduction of intracranial pressure (ICP) and the development of PRES should be recognized because most neurosurgical procedures such as craniotomy or cerebrospinal fluid diversion present a potential risk of rapid reduction of ICP.

  15. Evaluation of pancreatic tissue fluid pressure measurements intraoperatively and by sonographically guided fine-needle puncture

    DEFF Research Database (Denmark)

    Ebbehøj, N; Borly, L; Bülow, J

    1990-01-01

    pressure measurements by direct puncture of pancreatic tissue and duct. In patients with chronic pancreatitis we found small week-to-week variations in sonographically guided percutaneous pressure measurements and good agreement between preoperative percutaneous pressure measurements and intraoperative...

  16. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response

    Directory of Open Access Journals (Sweden)

    Wang Wenxue

    2012-12-01

    Full Text Available Abstract Background Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague–Dawley rats. Results Experiments were carried out on 41 male Sprague–Dawley albino rats weighing 160–280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p p p Conclusions Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain.

  17. Indications for portal pressure measurement in chronic liver disease

    DEFF Research Database (Denmark)

    Hobolth, Lise; Bendtsen, Flemming; Møller, Søren

    2012-01-01

    Portal hypertension leads to development of serious complications such as esophageal varices, ascites, renal and cardiovascular dysfunction. The importance of the degree of portal hypertension has been substantiated within recent years. Measurement of the portal pressure is simple and safe and th...

  18. When and how should we measure intra-abdominal pressure ...

    African Journals Online (AJOL)

    A sustained increase in intra-abdominal pressure (IAP) may result in abdominal compartment syndrome (ACS). This is a well documented complication in critically ill patients, but there appears to be a reluctance to routinely measure IAP in patients at high risk of developing intra-abdominal hypertension (IAH) and ACS.

  19. Model-free measurement of exchange market pressure

    NARCIS (Netherlands)

    Klaassen, F.J.G.M.; Jager, H.

    2006-01-01

    If there is exchange market pressure (EMP), monetary authorities can use the interest rate and official interventions to offset this depreciation tendency, or they can let the exchange rate change. We introduce a new approach to derive how these three variables should be combined to measure EMP.

  20. Surface pressure measurements for CFD code validation in hypersonic flow

    Energy Technology Data Exchange (ETDEWEB)

    Oberkampf, W.L.; Aeschliman, D.P.; Henfling, J.F.; Larson, D.E.

    1995-07-01

    Extensive surface pressure measurements were obtained on a hypersonic vehicle configuration at Mach 8. All of the experimental results were obtained in the Sandia National Laboratories Mach 8 hypersonic wind tunnel for laminar boundary layer conditions. The basic vehicle configuration is a spherically blunted 10{degrees} half-angle cone with a slice parallel with the axis of the vehicle. The bluntness ratio of the geometry is 10% and the slice begins at 70% of the length of the vehicle. Surface pressure measurements were obtained for angles of attack from {minus}10 to + 18{degrees}, for various roll angles, at 96 locations on the body surface. A new and innovative uncertainty analysis was devised to estimate the contributors to surface pressure measurement uncertainty. Quantitative estimates were computed for the uncertainty contributions due to the complete instrumentation system, nonuniformity of flow in the test section of the wind tunnel, and variations in the wind tunnel model. This extensive set of high-quality surface pressure measurements is recommended for use in the calibration and validation of computational fluid dynamics codes for hypersonic flow conditions.

  1. An Ultra Miniature MEMS Capacitor for Arterial Pressure Measurement

    Science.gov (United States)

    Monga, A.; Vig, R.

    2012-12-01

    In biomedical field, there is a need for improving medical technologies to provide accurate diagnosis to patients. The objective is to develop a minimally invasive, implantable, pressure sensing system that continuously monitors physiological changes in real-time. For implementing, three different shapes of MEMS capacitive pressure sensor having same area of diaphragm 0.126 mm² is designed and simulated for blood pressure measurement. The various shapes which are taken are circular, square and rectangular. COMSOL multiphysics tool is used for simulation. For these shapes capacitance and deflection variation of membrane with applied pressure is studied. Result shows a sensitivity of 0.255 aF/kPa, 0.125 aF/kPa and 0.09 aF/kPa for circular, square and rectangular shape, respectively. So, circular MEMS capacitor provides the greater sensitivity than all other shapes and also provides greater deflection of diaphragm due to applied pressure of 40 kPa. Also deflection is more in circular diaphragm capacitive pressure sensor.

  2. Dynamic material strength measurement utilizing magnetically applied pressure-shear

    Directory of Open Access Journals (Sweden)

    Alexander C.S.

    2012-08-01

    Full Text Available Magnetically applied pressure-shear (MAPS is a recently developed technique used to measure dynamic material strength developed at Sandia National Laboratories utilizing magneto-hydrodynamic (MHD drive pulsed power systems. MHD drive platforms generate high pressures by passing a large current through a pair of parallel plate conductors which, in essence, form a single turn magnet coil. Lorentz forces resulting from the interaction of the self-generated magnetic field and the drive current repel the plates and result in a high pressure ramp wave propagating in the conductors. This is the principle by which the Sandia Z Machine operates for dynamic material testing. MAPS relies on the addition of a second, external magnetic field applied orthogonally to both the drive current and the self-generated magnetic field. The interaction of the drive current and this external field results in a shear wave being induced directly in the conductors. Thus both longitudinal and shear stresses are generated. These stresses are coupled to a sample material of interest where shear strength is probed by determining the maximum transmissible shear stress in the state defined by the longitudinal compression. Both longitudinal and transverse velocities are measured via a specialized velocity interferometer system for any reflector (VISAR. Pressure and shear strength of the sample are calculated directly from the VISAR data. Results of tests on several materials at modest pressures (∼10GPa will be presented and discussed.

  3. Dynamic material strength measurement utilizing magnetically applied pressure-shear

    Science.gov (United States)

    Alexander, C. S.

    2012-08-01

    Magnetically applied pressure-shear (MAPS) is a recently developed technique used to measure dynamic material strength developed at Sandia National Laboratories utilizing magneto-hydrodynamic (MHD) drive pulsed power systems. MHD drive platforms generate high pressures by passing a large current through a pair of parallel plate conductors which, in essence, form a single turn magnet coil. Lorentz forces resulting from the interaction of the self-generated magnetic field and the drive current repel the plates and result in a high pressure ramp wave propagating in the conductors. This is the principle by which the Sandia Z Machine operates for dynamic material testing. MAPS relies on the addition of a second, external magnetic field applied orthogonally to both the drive current and the self-generated magnetic field. The interaction of the drive current and this external field results in a shear wave being induced directly in the conductors. Thus both longitudinal and shear stresses are generated. These stresses are coupled to a sample material of interest where shear strength is probed by determining the maximum transmissible shear stress in the state defined by the longitudinal compression. Both longitudinal and transverse velocities are measured via a specialized velocity interferometer system for any reflector (VISAR). Pressure and shear strength of the sample are calculated directly from the VISAR data. Results of tests on several materials at modest pressures (˜10GPa) will be presented and discussed.

  4. A history of intraocular pressure and its measurement.

    Science.gov (United States)

    Stamper, Robert L

    2011-01-01

    Doctors have not always associated elevated intraocular pressure with the vision loss from glaucoma. Although several individuals appear to have noted firmness of the eye in this condition as far back as the 10th century, elevated intraocular pressure was not routinely assessed until the latter part of the 19th century. von Graefe developed the first instrument for measuring intraocular pressure in 1865. The first reasonably accurate instrument was the Maklakoff applanation tonometer of the late 19th century; it was in widespread use throughout Eastern Europe until relatively recently. Schiötz developed an indentation tonometer that was widely used throughout the world during the first two thirds of the 20th century. Goldmann's applanation tonometer of 1950 began the era of truly accurate intraocular pressure measurement. It is still the most widely used tonometer in the world. Other devices such as the McKay-Marg tonometer (or its offspring the Tono-Pen), the pneumatonometer, and airpuff applanation tonometers are gaining adherents. The dynamic contour tonometer is the first totally new concept in tonometry in over 100 years. It is probably the most accurate of all the tonometers and is relatively independent of corneal biomechanical properties unlike its predecessors. Transpalpebral tonometers are attractive as they do not require topical anesthesia; however, they add the biomechanical properties of the eyelid to the list of potential errors and have not proven very accurate. The future should, hopefully, bring tonometers that can give diurnal or even longer indications of intraocular pressure variation. Although intraocular pressure elevation (or its absence) no longer can be counted on for diagnostic purposes, the role of intraocular pressure in the management of glaucomatous optic neuropathy remains critical.

  5. Invasively Measured Aortic Systolic Blood Pressure and Office Systolic Blood Pressure in Cardiovascular Risk Assessment

    DEFF Research Database (Denmark)

    Laugesen, Esben; Knudsen, Søren T; Hansen, Klavs W

    2016-01-01

    Aortic systolic blood pressure (BP) represents the hemodynamic cardiac and cerebral burden more directly than office systolic BP. Whether invasively measured aortic systolic BP confers additional prognostic value beyond office BP remains debated. In this study, office systolic BP and invasively...

  6. Effects of Middle Ear Pressure on Otoacoustic Emission Measures.

    Science.gov (United States)

    Zhang, Ming

    1995-01-01

    Otoacoustic emissions (OAEs) are used extensively in hearing evaluations. Changes in middle ear pressure may have an effect on both forward and backward transmission of signals through the middle ear. The effect that such changes have on OAEs may depend on extent of pressure change, stimulus frequency, and stimulus level. This study quantitatively evaluates the effects of these variables on distortion product OAEs (DPOAEs) and cochlear microphonic distortion products (CMDPs) for a wide range of stimuli. Pigmented adult guinea pigs were experimental subjects. An animal surgical model was established to manipulate pressure in the middle ear and CMDP and DPOAE were simultaneously measured. The effects on forward transmission were determined from the CMDP data. It was assumed that the DPOAE measures were affected by changes in both forward and backward transmission. The effects on backward transmission were determined from the DPOAE data after the effect on forward transmission were subtracted out. For all conditions the frequency ratio rm f_2/f_1 was held at 1.2 and the level ratio rm L_1/L_2 was 10 dB. The effects on forward transmission were similar to those for backward transmission in all experimental conditions. Negative pressure had a greater effect than positive pressure. Positive pressures of +10 and +20 cmH_2O affected transmission for low frequency stimuli (f_2 = 1620 and 2680 Hz) but had little effect for high frequency stimuli (f_2 = 6980 and 10250 Hz). Negative pressures of -2.5 to -10 cmH_2O affected transmission across all frequencies tested. The effect at low frequencies is hypothesized to be related to tympanic membrane stiffness. The effect of negative pressure at high frequencies may be related to change in the incudostapedial joint. The slope of growth function decreased with the pressure change for DPOAEs but changed little for CMDPs. The decrease in slope for DPOAEs suggests that the level chosen for analysis can influence the result of the

  7. Piston cylinder cell for high pressure ultrasonic pulse echo measurements

    Energy Technology Data Exchange (ETDEWEB)

    Kepa, M. W., E-mail: mkepa@staffmail.ed.ac.uk; Huxley, A. D. [SUPA, Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Ridley, C. J.; Kamenev, K. V. [Centre for Science at Extreme Conditions and School of Engineering, University of Edinburgh, Edinburgh EH9 3FD (United Kingdom)

    2016-08-15

    Ultrasonic techniques such as pulse echo, vibrating reed, or resonant ultrasound spectroscopy are powerful probes not only for studying elasticity but also for investigating electronic and magnetic properties. Here, we report on the design of a high pressure ultrasonic pulse echo apparatus, based on a piston cylinder cell, with a simplified electronic setup that operates with a single coaxial cable and requires sample lengths of mm only. The design allows simultaneous measurements of ultrasonic velocities and attenuation coefficients up to a pressure of 1.5 GPa. We illustrate the performance of the cell by probing the phase diagram of a single crystal of the ferromagnetic superconductor UGe{sub 2}.

  8. A comparison of methods for detonation pressure measurement

    Science.gov (United States)

    Pachman, J.; Künzel, M.; Němec, O.; Majzlík, J.

    2017-09-01

    Detonation pressure is an important parameter describing the process of detonation. The paper compares three methods for determination of detonation pressure on the same explosive charge design. Pressed RDX/wax pellets with a density of 1.66 g cm^{-3} were used as test samples. The following methods were used: flyer plate method, impedance window method, and detonation electric effect. Photonic Doppler velocimetry was used for particle velocity measurements in the first two cases. The outputs of the three methods are compared to the literature values and to thermochemical calculation predictions.

  9. Low-speed pressure measurements using a luminescent coating system

    Science.gov (United States)

    Brown, Owen Clayton

    In this work, the history of the development of the Pressure Sensitive Paint (PSP) technique in both the United States and Russia is first discussed in detail. A review of the various PSP tests conducted to date is given. A thorough discussion of the physics and chemistry of luminescent coatings is provided. The processes of converting intensity signals in digital data values are described; image processing procedures used to remove noise sources and convert intensity data into pressure measurements are reviewed. A general uncertainty analysis of the technique is then conducted. A baseline series of low-speed tests at M NASCAR racing model at various drafting orientations.

  10. Variation in the rapid shallow breathing index associated with common measurement techniques and conditions.

    Science.gov (United States)

    Patel, Kapil N; Ganatra, Kalpesh D; Bates, Jason H T; Young, Michael P

    2009-11-01

    The rapid-shallow-breathing index (RSBI) is widely used to evaluate mechanically ventilated patients for weaning and extubation, but it is determined in different clinical centers in a variety of ways, under conditions that are not always comparable. We hypothesized that the value of RSBI may be significantly influenced by common variations in measurement conditions and technique. Sixty patients eligible for a weaning evaluation after >or=72 hours of mechanical ventilation were studied over 15 months in a medical intensive care unit. RSBI was measured while the patients were on 2 different levels of ventilator support: 5 cm H2O continuous positive airway pressure (CPAP) versus T-piece. RSBI was also calculated in 2 different ways: using the values of minute ventilation and respiratory rate provided by the digital output of the ventilator, versus values obtained manually with a Wright spirometer. Finally, RSBI was measured at 2 different times of the day. RSBI was significantly less when measured on 5 cm H2O CPAP, compared to T-piece: the medians and interquartile ranges were 71 (52-88) breaths/min/L versus 90 (59-137) breaths/min/L, respectively (Pventilator-derived versus manual measures of the breathing pattern. RSBI was also not significantly different in the morning versus evening measurements. RSBI can be significantly affected by the level of ventilator support, but is relatively unaffected by both the technique used to determine the breathing pattern and the time of day at which it is measured.

  11. Thermodynamic and fluid mechanic analysis of rapid pressurization in a dead-end tube

    Science.gov (United States)

    Leslie, Ian H.

    1989-01-01

    Three models have been applied to very rapid compression of oxygen in a dead-ended tube. Pressures as high as 41 MPa (6000 psi) leading to peak temperatures of 1400 K are predicted. These temperatures are well in excess of the autoignition temperature (750 K) of teflon, a frequently used material for lining hoses employed in oxygen service. These findings are in accord with experiments that have resulted in ignition and combustion of the teflon, leading to the combustion of the stainless steel braiding and catastrophic failure. The system analyzed was representative of a capped off-high-pressure oxygen line, which could be part of a larger system. Pressurization of the larger system would lead to compression in the dead-end line, and possible ignition of the teflon liner. The model consists of a large plenum containing oxygen at the desired pressure (500 to 6000 psi). The plenum is connected via a fast acting valve to a stainless steel tube 2 cm inside diameter. Opening times are on the order of 15 ms. Downstream of the valve is an orifice sized to increase filling times to around 100 ms. The total length from the valve to the dead-end is 150 cm. The distance from the valve to the orifice is 95 cm. The models describe the fluid mechanics and thermodynamics of the flow, and do not include any combustion phenomena. A purely thermodynamic model assumes filling to be complete upstream of the orifice before any gas passes through the orifice. This simplification is reasonable based on experiment and computer modeling. Results show that peak temperatures as high as 4800 K can result from recompression of the gas after expanding through the orifice. An approximate transient model without an orifice was developed assuming an isentropic compression process. An analytical solution was obtained. Results indicated that fill times can be considerably shorter than valve opening times. The third model was a finite difference, 1-D transient compressible flow model. Results from

  12. Measurement of low shock pressures with piezoresistive carbon gauges.

    Science.gov (United States)

    Krehl, P

    1978-10-01

    A new sensitive technique which permits the detection of small pressures in shock waves down to 5 bars with good time resolution has been developed. It consists of a pulsed double-compensated Wheatstone bridge in conjunction with piezoresistive carbon gauge transducers. It is shown that the advantages of piezoresistive gauges, such as short rise time, small dimensions, and in-material stress measurement, may be utilized for low shock pressure recording even in explosive environments, an area previously dominated by piezoelectric gauges. Comparative data for the two types of sensors are presented for shock tube side-on and head-on collision experiments and underwater explosions. This new development opens the possibility of PRG applications in classical fields of low shock pressure recording such as gas dynamics and underwater explosions.

  13. Modified AC Wheatstone Bridge Network for Accurate Measurement of Pressure Using Strain Gauge Type Pressure Sensor

    Directory of Open Access Journals (Sweden)

    Subrata CHATTOPADHYAY

    2012-01-01

    Full Text Available In order to achieve high quality of products at lesser cost, accurate measurement of different process variables is of vital importance in any industry. There are different well-established techniques of measurement and control instrumentations of these variables. In the resistive transducer like strain gauge, the small resistance generally changes linearly with a process variable like pressure but their measurement by usual AC Wheatstone bridge circuit may suffer from errors due to the effect of stray capacitance between bridge nodal points and ground and stray inductance on the strain gauge grid respectively. Though the conventional Wagner-Earth technique may be used to reduced the error but not suitable for continuous measurement. In the present paper, a modified operational amplifier based AC Wheatstone bridge measurement technique has been proposed in which the effect of stray capacitance and inductance is minimized. This bridge performance has been studied experimentally with the strain gauge type pressure transducer. The linear characteristics over a wide range of pressure with good repeatability, linearity and variable sensitivity have been described.

  14. Body mass index and blood pressure measurement during pregnancy.

    LENUS (Irish Health Repository)

    Hogan, Jennifer L

    2012-02-01

    OBJECTIVE: The accurate measurement of blood pressure requires the use of a large cuff in subjects with a high mid-arm circumference (MAC). This prospective study examined the need for a large cuff during pregnancy and its correlation with maternal obesity. METHODS: Maternal body mass index (BMI), fat mass, and MAC were measured. RESULTS: Of 179 women studied, 15.6% were obese. With a BMI of level 1 obesity, 44% needed a large cuff and with a BMI of level 2 obesity 100% needed a large cuff. CONCLUSION: All women booking for antenatal care should have their MAC measured to avoid the overdiagnosis of pregnancy hypertension.

  15. IR Temperature Measurement in Pressure-Shear Plate Impact

    Science.gov (United States)

    Jiao, Tong; Malhotra, Pinkesh; Clifton, Rodney; School of Engineering, Brown University Team

    2017-06-01

    Pressure-Shear Plate Impact (PSPI) experiments on samples sandwiched between two hard plates have been developed previously for measuring the shearing resistance of materials at high strain rates, large inelastic shear strains, and high pressures. To enhance the value of such experiments in developing constitutive models for the dynamic response of materials, concurrent temperature measurements are being pursued by monitoring the infrared radiation emitted from the sample/rear-plate interface. The emitted radiation is collected by fast HgCdTe detectors through a pair of 90o off-axis parabolic reflectors. ZnSe is used as the rear plate (window) because its transmission band (0.6 μm -16 μm) covers an exceptionally wide range of wavelengths - extending beyond the cutoff wavelength of the IR detector. Moreover, ZnSe remains nominally linear-elastic up to a pressure of 12 GPa - encompassing the pressure range for most PSPI experiments. Because temperatures generated in PSPI experiments are modest, the emissivity of the interface is increased by applying a thin layer of SiC at the sample/window interface. The high shearing resistance of SiC ensures that the allowable range of shear stresses is not limited by the presence of the high-emissivity layer. Pilot experiments will be assessed for their potential and limitations. This work is supported by Air Force Office of Scientific Research.

  16. Falls event detection using triaxial accelerometry and barometric pressure measurement.

    Science.gov (United States)

    Bianchi, Federico; Redmond, Stephen J; Narayanan, Michael R; Cerutti, Sergio; Celler, Branko G; Lovell, Nigel H

    2009-01-01

    A falls detection system, employing a Bluetooth-based wearable device, containing a triaxial accelerometer and a barometric pressure sensor, is described. The aim of this study is to evaluate the use of barometric pressure measurement, as a surrogate measure of altitude, to augment previously reported accelerometry-based falls detection algorithms. The accelerometry and barometric pressure signals obtained from the waist-mounted device are analyzed by a signal processing and classification algorithm to discriminate falls from activities of daily living. This falls detection algorithm has been compared to two existing algorithms which utilize accelerometry signals alone. A set of laboratory-based simulated falls, along with other tasks associated with activities of daily living (16 tests) were performed by 15 healthy volunteers (9 male and 6 female; age: 23.7 +/- 2.9 years; height: 1.74 +/- 0.11 m). The algorithm incorporating pressure information detected falls with the highest sensitivity (97.8%) and the highest specificity (96.7%).

  17. Surface Pressure Measurements of Atmospheric Tides Using Smartphones

    Science.gov (United States)

    Price, Colin; Maor, Ron

    2017-04-01

    Similar to the oceans, the atmosphere also has tides that are measured in variations of atmospheric pressure. However, unlike the gravitational tides in the oceans, the atmospheric tides are caused primarily in the troposphere and stratosphere when the atmosphere is periodically heated by the sun, due to tropospheric absorption by water vapor and stratospheric absorption by ozone. Due to the forcing being always on the day side of the globe, the tides migrate around the globe following the sun (migrating tides) with a dominant periodicity of 12 hours (and less so at 24 hours). In recent years smartphones have been equipped with sensitive, cheap and reliable pressure sensors that can easily detect these atmospheric tides. By 2020 it is expected that there will be more than 6 billion smartphones globally, each measuring continuously atmospheric pressure at 1Hz temporal resolution. In this presentation we will present some control experiments we have performed with smartphones to monitor atmospheric tides, while also using random pressure data from more than 50,000 daily users via the WeatherSignal application. We conclude that smartphones are a useful tool for studying atmospheric tides on local and global scales.

  18. Twenty-four hour intraocular pressure measurements and home tonometry.

    Science.gov (United States)

    Meier-Gibbons, Frances; Berlin, Michael S; Töteberg-Harms, Marc

    2018-03-01

    IOP is the only treatable risk factor contributing to glaucoma and most management and treatment of glaucoma is based on IOP. However, current IOP measurements are limited to office hours and control of glaucoma in many patients would benefit from the ability to monitor IOP diurnally so as not to miss abnormal pressures, which occur outside of office hours Consequently, to improve patient care, the ability to enable accurate and minimally disruptive diurnal IOP monitoring would improve caring for these patients. The studies we selected for this review can be divided into three categories: self-/home-tonometry, continuous invasive intraocular pressure measurements, and continuous noninvasive ocular measurements. The desire to obtain better insight in our patients' true diurnal IOP has led to the development of home-tonometers, in addition to extraocular and intraocular continuous pressure measurement devices. All of the devices have respective advantages and disadvantages, but none to date completely fulfills the goal of providing a true diurnal IOP profile.Video abstracthttp://links.lww.com/COOP/A27.

  19. High Temperature High Pressure Thermodynamic Measurements for Coal Model Compounds

    Energy Technology Data Exchange (ETDEWEB)

    John C. Chen; Vinayak N. Kabadi

    1998-11-12

    The overall objective of this project is to develop a better thermodynamic model for predicting properties of high-boiling coal derived liquids, especially the phase equilibria of different fractions at elevated temperatures and pressures. The development of such a model requires data on vapor-liquid equilibria (VLE), enthalpy, and heat capacity which would be experimentally determined for binary systems of coal model compounds and compiled into a database. The data will be used to refine existing models such as UNIQUAC and UNIFAC. The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for thk project. The modifications include better and more accurate sampling technique and addition of a digital recorder to monitor temperature, pressure and liquid level inside the VLE cell. VLE data measurements for system benzene-ethylbenzene have been completed. The vapor and liquid samples were analysed using the Perkin-Elmer Autosystem gas chromatography.

  20. Rapid-Response Impulsivity: Definitions, Measurement Issues, and Clinical Implications

    OpenAIRE

    Hamilton, Kristen R.; Littlefield, Andrew K.; Anastasio, Noelle C.; Cunningham, Kathryn A.; Fink, Latham H.; Wing, Victoria C.; Mathias, Charles W.; Lane, Scott D; Schutz, Christian; Swann, Alan C.; Lejuez, C.W.; Clark, Luke; Moeller, F. Gerard; Potenza, Marc N.

    2015-01-01

    Impulsivity is a multi-faceted construct that is a core feature of multiple psychiatric conditions and personality disorders. However, progress in understanding and treating impulsivity in the context of these conditions is limited by a lack of precision and consistency in its definition and assessment. Rapid-response-impulsivity (RRI) represents a tendency toward immediate action that occurs with diminished forethought and is out of context with the present demands of the environment. Expert...

  1. Uncertainty of Five-Hole Probe Measurements. [of total flow pressure, static pressure, and flow

    Science.gov (United States)

    Reichert, Bruce A.; Wendt, Bruce J.

    1994-01-01

    A new algorithm for five-hole probe calibration and data reduction using a non-nulling technique was developed, verified, and reported earlier (Wendt and Reichert, 1993). The new algorithm's simplicity permits an analytical treatment of the propagation of uncertainty in five-hole probe measurement. The objectives of the uncertainty analysis are to quantify the uncertainty of five-hole probe results (e.g., total pressure, static pressure, and flow direction) and to determine the dependence of the result uncertainty on the uncertainty of all underlying experimental and calibration measurands. This study outlines a general procedure that other researchers may use to determine five-hole probe result uncertainty and provides guidance for improving the measurement technique.

  2. Optical Measurement Technology for Calibratiing Inner Defects of Pressure Vessel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Do; Chang, Seog Weon; Jhang, Kyung Young [Hanyang University, Seoul (Korea, Republic of)

    2005-04-15

    The pressure vessel may have crucial defects in its inner surfaces, which can be more dangerous than those in outer surfaces because the inner defects can hardly be measured or calibrated. Conventional methods for detecting or measuring the inner defects of pressure vessel have been utilizing ultrasonic, X-ray or eddy current. But the conventional NDE(Non-Destructive-Evaluation) methods are applied to limited area or environment because the prove or film must be located close to the objects although the methods are NDE tools. Recently, optical measurement technologies for detecting the inner defects such as cracks, flaws or corrosions are utilized very much. The optical measurement technologies are known as much useful as to have the capabilities of short working time, non-contact and full-field measurement. Among them, shearography is considered to be one of the most available tools, because of its feature of not requiring strict environmental stability, which is essential to other optical tools. In this study, the availability of the optical measurement technology using shearography for detecting and calibrating the inner defects is verified.

  3. Interpretation of Strain Measurements on Nuclear Pressure Vessels

    DEFF Research Database (Denmark)

    Andersen, Svend Ib Smidt; Engbæk, Preben

    1980-01-01

    Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts. The resu......Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts....... The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as a detailed knowledge of the behaviour of the signal...... from the individual gauges during the test is necessary. If this is omitted, it can be extremely difficult to distinguish between the real structural behaviour and a malfunctioning of a specific gauge installation. In general, most of the measuring results exhibit a very linear behaviour...

  4. Cardiovascular Risk in Hypertension in Relation to Achieved Blood Pressure Using Automated Office Blood Pressure Measurement.

    Science.gov (United States)

    Myers, Martin G; Kaczorowski, Janusz; Dolovich, Lisa; Tu, Karen; Paterson, J Michael

    2016-10-01

    The SPRINT (Systolic Blood Pressure Intervention Trial) reported that some older, higher risk patients might benefit from a target systolic blood pressure (BP) of <120 versus <140 mm Hg. However, it is not yet known how the BP target and measurement methods used in SPRINT relate to cardiovascular outcomes in real-world practice. SPRINT used the automated office BP technique, which requires the patient to be resting quietly and alone, with multiple readings being recorded automatically using an electronic oscillometric sphygmomanometer. We studied the relationship between achieved automated office BP at baseline and cardiovascular events in 6183 community-dwelling residents of Ontario aged ≥66 years who were receiving antihypertensive therapy and followed for a mean of 4.6 years. Adjusted hazard ratios (95% confidence intervals) were computed for 10 mm Hg increments in achieved automated office BP at baseline using Cox proportional hazards regression and the BP category with the lowest event rate as the reference category. Based on 904 fatal and nonfatal cardiovascular events, the nadir of cardiovascular events was at the systolic pressure category of 110 to 119 mm Hg, which was lower than the next highest category of 120 to 129 mm Hg (hazard ratio 1.30 [1.01, 1.66]). The hazard ratio for diastolic pressure was relatively unchanged above 60 mm Hg. Pulse pressure exhibited an increase in hazard ratio (1.33 [1.02, 1.72]) at ≥80 mm Hg. These results using automated office BP measurement in a usual treatment setting extend the finding in SPRINT of an optimum target systolic BP of <120 mm Hg to routine clinical practice. © 2016 American Heart Association, Inc.

  5. A noncontact intraocular pressure measurement device using a micro reflected air pressure sensor for the prediagnosis of glaucoma

    Science.gov (United States)

    Kim, Kyoung Hwan; Kim, Byeong Hee; Seo, Young Ho

    2012-03-01

    This study investigates a novel, portable tonometer using a micro reflected air pressure sensor for the prediagnosis of glaucoma. Because glaucoma progresses slowly and is not painful, glaucoma patients require a portable prediagnosis system to periodically measure intraocular pressure at home. Conventionally, intraocular pressure is measured by an air-puff tonometer whereby the cornea is deformed by a short pulse of air pressure and the magnitude of the corneal deformation is measured by optic systems such as a combination of laser- and photodiodes. In this study, a micro reflected air pressure sensor was designed, fabricated, and tested in order to measure the magnitude of corneal deformation without optic systems. In an experimental study, artificial eyes with different internal pressures were fabricated and these pressures were measured by the aforementioned system.

  6. Computerized invasive measurement of time-dependent intraocular pressure

    Directory of Open Access Journals (Sweden)

    T.V.O. Campos

    2006-09-01

    Full Text Available Several methods have been described to measure intraocular pressure (IOP in clinical and research situations. However, the measurement of time varying IOP with high accuracy, mainly in situations that alter corneal properties, has not been reported until now. The present report describes a computerized system capable of recording the transitory variability of IOP, which is sufficiently sensitive to reliably measure ocular pulse peak-to-peak values. We also describe its characteristics and discuss its applicability to research and clinical studies. The device consists of a pressure transducer, a signal conditioning unit and an analog-to-digital converter coupled to a video acquisition board. A modified Cairns trabeculectomy was performed in 9 Oryctolagus cuniculus rabbits to obtain changes in IOP decay parameters and to evaluate the utility and sensitivity of the recording system. The device was effective for the study of kinetic parameters of IOP, such as decay pattern and ocular pulse waves due to cardiac and respiratory cycle rhythm. In addition, there was a significant increase of IOP versus time curve derivative when pre- and post-trabeculectomy recordings were compared. The present procedure excludes corneal thickness and error related to individual operator ability. Clinical complications due to saline infusion and pressure overload were not observed during biomicroscopic evaluation. Among the disadvantages of the procedure are the requirement of anesthesia and the use in acute recordings rather than chronic protocols. Finally, the method described may provide a reliable alternative for the study of ocular pressure dynamic alterations in man and may facilitate the investigation of the pathogenesis of glaucoma.

  7. How to measure low-pressure steam boiler efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Katrakis, J.T. (Katrakis and Associates, Chicago, IL (United States)); Zawacki, T.S. (Phillips Engineering, St. Joseph, MI (United States))

    1993-09-01

    Low-pressure central steam systems are the predominant type of space heating system in pre-World War II multifamily housing throughout the northern urban areas of the US. In Chicago alone, over 300,000 low to middle income residences are heated in this manner. Heating costs in these buildings are frequently over 50% higher than for buildings with newer hot water or forced air systems. High costs are a major cause of the precarious financial picture of these older low to moderate income buildings. Efforts to address this problem include research aimed at identifying effective and affordable ways of enhancing the efficiency of the heating systems in these buildings. The boilers are one major area where efficiency improvements are possible. These buildings use intermediate-sized low-pressure steam boilers that are also commonly found in commercial, institutional and small industrial applications for space and process water heating. As a group, their performance is the least well documented among all the heating plant technologies. Ranging in input capacity from 300,000 Btu per hour to 4,000,000 Btu per hour (87.9 kW to 1,172 kW), they are too small to warrant the cost of installing and maintaining standard commercially available steam metering equipment. Yet, they are larger than the heating plants that are subject to the federally-mandated AFUE testing. As part of the research to improve the efficiency of these heating systems, it was necessary to develop simple and affordable methods to measure the seasonal efficiency of low-pressure steam boilers in buildings. As reported in this article two methods were developed to measure the in-situ seasonal efficiency of these boilers: a benchmark method based on ANSI standards for measuring the flue and jacket losses; and a simplified method, the Time-to-Make-Steam (TTMS) method that is easy to apply and appropriate for low-pressure steam boilers.

  8. Prospective blood pressure measurement in renal transplant recipients

    Directory of Open Access Journals (Sweden)

    V G David

    2014-01-01

    Full Text Available Blood pressure (BP control at home is difficult when managed only with office blood pressure monitoring (OBPM. In this prospective study, the reliability of BP measurements in renal transplant patients with OBPM and home blood pressure monitoring (HBPM was compared with ambulatory blood pressure monitoring (ABPM as the gold standard. Adult patients who had living-related renal transplantation from March 2007 to February 2008 had BP measured by two methods; OBPM and ABPM at pretransplantation, 2 nd , 4 th , 6 th , and 9 th months and all the three methods : OBPM, ABPM, and HBPM at 6 months after transplantation. A total of 49 patients, age 35 ± 11 years, on prednisolone, tacrolimus, and mycophenolate were evaluated. A total of 39 were males (79.6%. Systolic BP (SBP and diastolic BP (DBP measured by OBPM were higher than HBPM when compared with ABPM. When assessed using OBPM and awake ABPM, both SBP and DBP were significantly overestimated by OBPM with mean difference of 3-12 mm Hg by office SBP and 6-8 mm Hg for office DBP. When HBPM was compared with mean ABPM at 6 months both the SBP and DBP were overestimated by and 7 mm Hg respectively. At 6 months post transplantation, when compared with ABPM, OBPM was more specific than HBPM in diagnosing hypertension (98% specificity, Kappa : 0.88 vs. 89% specificity, Kappa : 0.71. HBPM was superior to OBPM in identifying patients achieving goal BP (89% specificity, Kappa : 0.71 vs. 50% specificity Kappa : 0.54. In the absence of a gold standard for comparison the latent class model analysis still showed that ABPM was the best tool for diagnosing hypertension and monitoring patients reaching targeted control. OBPM remains an important tool for the diagnosis and management of hypertension in renal transplant recipients. HBPM and ABPM could be used to achieve BP control.

  9. Experimental apparatus for measurement of density of supercooled water at high pressure

    Directory of Open Access Journals (Sweden)

    Peukert Pavel

    2012-04-01

    Full Text Available Thermodynamic behavior of supercooled water (metastable fluid water existing transiently below the equilibrium freezing point at high pressures was subject to many recent theoretical studies. Some of them assume that a second critical point of water exists, related to two liquid phases of supercooled water: the low-density liquid and the high-density liquid. To test these theories, an original experimental cryogenic apparatus is being developed. The volume changes are measured optically in custom-treated fused-silica capillary tubes. The capillaries are placed in a metal vessel designed for pressures up to 200 MPa. The vessel is connected to a circulation thermostat enabling a rapid change of temperature to prevent freezing. A new high-vacuum device was developed for degassing of the ultrapure water sample and filling it into the measuring capillaries. The experiments will contribute to fundamental understanding of the anomalous behavior of water and to applications in meteorology, aerospace engineering, cryobiology etc.

  10. Quality of blood pressure measurement in community health centres.

    Science.gov (United States)

    Sandoya-Olivera, Edgardo; Ferreira-Umpiérrez, Augusto; Machado-González, Federico

    To determine the quality of the blood pressure measurements performed during routine care in community health centres. An observational, cross-sectional study was conducted in 5 private and public health centres in Maldonado, Uruguay, in July-August 2015. The observations were made during the measurements performed by health personnel, using the requirements established by the American Heart Association. An analysis was made on 36 variables that were grouped in categories related to environment, equipment, interrogation, patient, and observer. Statistical analysis was performed using Chi2 test or Fisher test. Statistical significance was considered to be less than 5% (pattitude (82%), and intermediate in the attitudes of the operator (64%), and poor in relation to the interrogation (18%), with the mean of correct variables per measurement being 69%. The main flaws in the procedure were the operator. The measurement of blood pressure is a manoeuvre that healthcare professionals perform thousands of times a year. If the measurement is used for the diagnosis and/or chronic management of arterial hypertension, not systematically applying the established recommendations leads to an inappropriate care of a very significant number of patients. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  11. Pressure applied by the healthcare staff on a cricoids cartilage simulator during Sellick's maneuver in rapid sequence intubation

    NARCIS (Netherlands)

    J.A. Calvache (Jose Andrés); L.C.B. Sandoval (Luz); W.A. Vargas (William Andres)

    2013-01-01

    textabstractBackground: Sellick's maneuver or cricoid pressure is a strategy used to prevent bronchoaspiration during the rapid intubation sequence. Several studies have described that the force required for an adequate maneuver is of 2.5-3.5 kg. The purpose of this paper was to determine the force

  12. Acute pressure on the sciatic nerve results in rapid inhibition of the wide dynamic range neuronal response.

    Science.gov (United States)

    Wang, Wenxue; Tan, Wei; Luo, Danping; Lin, Jianhua; Yu, Yaoqing; Wang, Qun; Zhao, Wangyeng; Wu, Buling; Chen, Jun; He, Jiman

    2012-12-04

    Acute pressure on the sciatic nerve has recently been reported to provide rapid short-term relief of pain in patients with various pathologies. Wide dynamic range (WDR) neurons transmit nociceptive information from the dorsal horn to higher brain centers. In the present study, we examined the effect of a 2-min application of sciatic nerve pressure on WDR neuronal activity in anesthetized male Sprague-Dawley rats. Experiments were carried out on 41 male Sprague-Dawley albino rats weighing 160-280 grams. Dorsal horn WDR neurons were identified on the basis of characteristic responses to mechanical stimuli applied to the cutaneous receptive field. Acute pressure was applied for 2 min to the sciatic nerve using a small vascular clip. The responses of WDR neurons to three mechanical stimuli applied to the cutaneous receptive field were recorded before, and 2, 5 and 20 min after cessation of the 2-min pressure application on the sciatic nerve. Two-min pressure applied to the sciatic nerve caused rapid attenuation of the WDR response to pinching, pressure and brushing stimuli applied to the cutaneous receptive field. Maximal attenuation of the WDR response to pinching and pressure was noted 5 min after release of the 2-min pressure on the sciatic nerve. The mean firing rate decreased from 31.7±1.7 Hz to 13±1.4 Hz upon pinching (p < 0.001), from 31.2±2.3 Hz to 10.9±1.4 Hz (p < 0.001) when pressure was applied, and from 18.9±1.2 Hz to 7.6±1.1 Hz (p < 0.001) upon brushing. Thereafter, the mean firing rates gradually recovered. Our results indicate that acute pressure applied to the sciatic nerve exerts a rapid inhibitory effect on the WDR response to both noxious and innocuous stimuli. Our results may partially explain the rapid analgesic effect of acute sciatic nerve pressure noted in clinical studies, and also suggest a new model for the study of pain.

  13. A user's guide to intra-abdominal pressure measurement.

    LENUS (Irish Health Repository)

    Sugrue, Michael

    2015-01-01

    The intra-abdominal pressure (IAP) measurement is a key to diagnosing and managing critically ill medical and surgical patients. There are an increasing number of techniques that allow us to measure the IAP at the bedside. This paper reviews these techniques. IAP should be measured at end-expiration, with the patient in the supine position and ensuring that there is no abdominal muscle activity. The intravesicular IAP measurement is convenient and considered the gold standard. The level where the mid-axillary line crosses the iliac crest is the recommended zero reference for the transvesicular IAP measurement; moreover, marking this level on the patient increases reproducibility. Protocols for IAP measurement should be developed for each ICU based on the locally available tools and equipment. IAP measurement techniques are safe, reproducible and accurate and do not increase the risk of urinary tract infection. Continuous IAP measurement may offer benefits in specific situations in the future. In conclusion, the IAP measurement is a reliable and essential adjunct to the management of patients at risk of intra-abdominal hypertension.

  14. Deagglomeration and mixing via the rapid expansion of high pressure and supercritical suspensions

    Science.gov (United States)

    To, Daniel

    Nano-materials are the focus of many research activities due to the desirable properties imparted from their small grain size and high interfacial surface area. However, these materials are highly cohesive powders in the dry state and typically form large agglomerates, leading to a diminished surface area or even grain growth, which minimizes the effectiveness of these nanomaterials. This dissertation addresses the issue of mixing nanopowders constituents by deagglomerating them and achieving simultaneous mixing so that even after inevitable reagglomeration, the effectiveness of large interfacial surface area may be preserved. Nano-particle mixtures were prepared using the environmentally benign dry mixing methods of Stirring in Supercritical Fluids and the Rapid Expansion of High Pressure and Supercritical Suspensions (REHPS). Stirring in Supercritical Fluids was capable of producing course scale nano-particle mixtures that were comparable to mixtures produced with more traditional liquid solvents, without the necessity of filtration and caking issues that are typically associated with them. The REHPS process was capable of producing high-quality mixtures on the sub-micron scale, and was made far superior when the nano-powders were first pre-mixed by stirring to decrease inhomogeneity of the feed. It was also shown that in general, conditions that enhanced turbulent shear stress, and thereby deagglomeration, also enhanced mixing, however this effect could be obscured by inhomogeneities introduced by the feed mixtures. Previous authors have suggested that the primary deagglomeration mechanism is the explosive expansion of the carbon dioxide from within the agglomerate as it transitions from a high pressure to an ambient environment. In this study two other deagglomeration mechanisms were proposed, namely intense turbulent shear stress imparted by the fluid in the nozzle and impaction with the Mach disc near the exit of the nozzle. Explosive expansion was observed

  15. Extraction of airfoil data using PIV and pressure measurements

    DEFF Research Database (Denmark)

    Yang, Hua; Shen, Wen Zhong; Sørensen, Jens Nørkær

    2011-01-01

    A newly developed technique for determining the angle of attack (AOA) on a rotating blade is used to extract AOAs and airfoil data from measurements obtained during the MEXICO (Model rotor EXperiments in COntrolled conditions) rotor experiment. Detailed surface pressure and Particle Image...... Velocimetry (PIV) flow fields at different rotor azimuth positions are examined for determining sectional airfoil data. The AOA is derived locally by determining the local circulation on the blade from pressure data and subtracting the induction of the bound circulation from the local velocity. The derived...... airfoil data are compared to 2D data from wind tunnel experiments and XFOIL computations. The comparison suggests that the rotor is subject to severe 3D effects originating from the geometry of the rotor, and explains why the Blade Element Momentum technique with 2D airfoil data over‐predicts the loading...

  16. A batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement

    Science.gov (United States)

    Maleki, Teimour; Fogle, Benjamin; Ziaie, Babak

    2011-05-01

    In this paper, we present the design, fabrication and test of a batch fabricated capacitive pressure sensor with an integrated Guyton capsule for interstitial fluid pressure measurement. The sensor is composed of 12 µm thick single crystalline silicon membrane and a 3 µm gap, hermetically sealed through silicon-glass anodic bonding. A novel batch scale method for creating electrical feed-throughs inside the sealed capacitor chamber is developed. The Guyton capsule consists of an array of 10 µm diameter access holes etched onto a silicon back-plate separated from the silicon sensing membrane by a gap of 5 µm. The presence of the Guyton capsule (i.e. plates with access holes plus the gap separating them from the sensing membrane) allows for the ingress of interstitial fluid inside the 5 µm gap following the implantation, thus, providing an accurate measurement of interstitial fluid pressure. The fabricated sensor is 3 × 2 × 0.42 mm3 in dimensions and has a maximum sensitivity of 10 fF mmHg-1.

  17. An insole pressure measurement system: repeatability of postural data.

    Science.gov (United States)

    Bauer, J A; Cauraugh, J H; Tillman, M D

    2000-03-01

    This study analyzed the ability of an in-shoe plantar pressure measurement system to provide repeatable measurements of postural sway data for both healthy and clinical patients. Each participant's in-shoe pressure data were recorded for three trials during each test session during quiet stance. Healthy individuals (n = 9) participated on three consecutive days while clinical participants (n = 5) were tested on one day. Nine response variables were measured to assess their postural stability. Intrasubject measures were evaluated using the Kerlinger reliability procedure. Values provided directly by the Parotec System for a single day of testing yielded the following average coefficients: r = 0.95 (left), r = 0.97 (right) with mean coefficient values from the three day tests of: r = 0.98 (left), r = 0.98 (right). Variables calculated from raw data on a single day produced mean coefficients of: r = 0.77 (left), r = 0.76 (right) and over three days of: r = 0.65 (left), r = 0.66 (right). The ability to record highly reproducible data of postural sway parameters should assist clinicians to treat patients more confidently for balance deficiencies.

  18. Pathophysiology of glaucoma and continuous measurements of intraocular pressure.

    Science.gov (United States)

    Sit, Arthur J; Liu, John H K

    2009-03-01

    Glaucoma is a leading cause of visual impairment and blindness worldwide. The main risk factor for glaucoma is an elevated intraocular pressure (IOP), which is also the only currently treatable risk factor. Despite its importance, our understanding of IOP is incomplete and our ability to measure IOP is limited. IOP is known to undergo both random fluctuations as well as variations following a circadian pattern. In humans, IOP is highest at night and lower during the daytime, largely due to changes in body position, although other factors appear to contribute. In rabbits, IOP is also highest at night and lower during the day, likely due to circadian variations in sympathetic nervous system activity. Random and circadian IOP variations may be important to glaucoma pathogenesis, independent of the diurnal IOP level. However, due to limitations with current IOP measurement technology, clinical practice typically involves only a few IOP measurements per year. As well, current technology does not allow 24-hour monitoring of pressure without the use of sleep laboratories or hospital admission. Two strategies for automating IOP measurement are temporary (non-invasive) monitoring and permanent (implantable) monitoring. Efforts at developing devices to allow continuous IOP monitoring have occurred for over 40 years without producing a clinical device. Current technological progress would seem to suggest that such devices are possible at this time, and a review of previous attempts provides guidelines for their development.

  19. Agreement between two oscillometric blood pressure technologies and invasively measured arterial pressure in the dog.

    Science.gov (United States)

    da Cunha, Anderson F; Ramos, Sara J; Domingues, Michelle; Beaufrère, Hugues; Shelby, Amanda; Stout, Rhett; Acierno, Mark J

    2016-03-01

    To compare two commonly used oscillometric technologies for obtaining noninvasive blood pressure (NIBP) measurements and to determine if there is a difference in agreement between these systems and invasive blood pressure (IBP) measurements. Prospective, experimental study. Twenty adult laboratory dogs. Each dog was anesthetized and its median caudal artery catheterized for IBP monitoring. An NIBP cuff was placed in the middle third of the antebrachium and attached to either monitor-1 or monitor-2. Four pairs of concurrent NIBP and IBP measurements were recorded with each monitor. Agreement between IBP and NIBP measurements was explored using Bland-Altman analysis, as well as the American College of Veterinary Internal Medicine (ACVIM) and Association for the Advancement of Medical Instrumentation (AAMI) guidelines for the validation of NIBP devices. Both NIBP technologies produced results that met the ACVIM and AAMI guidelines for the validation of NIBP devices. For monitor-1, analyses of agreement showed biases of 0.2 mmHg [95% limits of agreement (LoA) -11.8 to 12.3 mmHg] in systolic arterial pressure (SAP) values, -2.6 mmHg (95% LoA -14.4 to 9.1 mmHg) in diastolic arterial pressure (DAP) values, and -2.5 mmHg (95% LoA -12.7 to 7.3 mmHg) in mean arterial pressure (MAP) values. For monitor-2, analyses of agreement showed biases of 3.4 mmHg (95% LoA -8.7 to 15.5 mmHg) in SAP values, 2.2 mmHg (95% LoA -6.6 to 10.9 mmHg) in DAP values, and 1.6 mmHg (95% LoA -5.9 to 8.9 mmHg) in MAP values. Multi-function monitors can contain components from various manufacturers. Clinicians should consider whether these have been validated in the species to be monitored. Both of the technologies studied here seem appropriate for use in dogs. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  20. Comparison of three protocols for measuring the maximal respiratory pressures

    Directory of Open Access Journals (Sweden)

    Isabela Maria B. Sclauser Pessoa

    Full Text Available Introduction To avoid the selection of submaximal efforts during the assessment of maximal inspiratory and expiratory pressures (MIP and MEP, some reproducibility criteria have been suggested. Criteria that stand out are those proposed by the American Thoracic Society (ATS and European Respiratory Society (ERS and by the Brazilian Thoracic Association (BTA. However, no studies were found that compared these criteria or assessed the combination of both protocols. Objectives To assess the pressure values selected and the number of maneuvers required to achieve maximum performance using the reproducibility criteria proposed by the ATS/ERS, the BTA and the present study. Materials and method 113 healthy subjects (43.04 ± 16.94 years from both genders were assessed according to the criteria proposed by the ATS/ERS, BTA and the present study. Descriptive statistics were used for analysis, followed by ANOVA for repeated measures and post hoc LSD or by Friedman test and post hoc Wilcoxon, according to the data distribution. Results The criterion proposed by the present study resulted in a significantly higher number of maneuvers (MIP and MEP – median and 25%-75% interquartile range: 5[5-6], 4[3-5] and 3[3-4] for the present study criterion, BTA and ATS/ERS, respectively; p < 0.01 and higher pressure values (MIP – mean and 95% confidence interval: 103[91.43-103.72], 100[97.19-108.83] and 97.6[94.06-105.95]; MEP: median and 25%-75% interquartile range: 124.2[101.4-165.9], 123.3[95.4-153.8] and 118.4[95.5-152.7]; p < 0.05. Conclusion The proposed criterion resulted in the selection of pressure values closer to the individual’s maximal capacity. This new criterion should be considered in future studies concerning MIP and MEP measurements.

  1. Energy expenditure estimation using triaxial accelerometry and barometric pressure measurement.

    Science.gov (United States)

    Voleno, Matteo; Redmond, Stephen J; Cerutti, Sergio; Lovell, Nigel H

    2010-01-01

    Energy expenditure (EE) is a parameter of great relevance in studies involving the assessment of physical activity. However, most reliable techniques for EE estimation are impractical for use in free-living environments, and those which are practically useful often poorly track EE when the subject is working to change their altitude, for example when ascending or descending stairs or slopes. The aim of this study is to evaluate the utility of adding barometric pressure related features, as a surrogate measure for altitude, to existing accelerometry related features to estimate the subject's EE. The EE estimation system described is based on a triaxial accelerometer (triax) and a barometric pressure sensor. The device is wireless, with Bluetooth connectivity for data retrieval, and is mounted at the subject's waist. Using a number of features extracted from the triax and barometric pressure signals, a linear model is trained for EE estimation. This EE estimation model is compared to its counterpart, which solely utilizes accelerometry signals. A protocol (comprising lying, sitting, standing, walking phases) was performed by 13 healthy volunteers (8 male and 5 female; age: 23.8 ± 3.7 years; weight: 70.5 ± 14.9 kg), whose instantaneous oxygen uptake was measured by means of an indirect calorimetry system. The model incorporating barometric pressure information estimated the oxygen uptake with the lowest mean square error of 4.5 ± 1.7 (mlO(2).min(-1).kg(-1))(2), in comparison to 7.1 ± 2.3 (mlO(2).min(-1).kg(-1))(2) using only accelerometry-based features.

  2. Effects of Rapid Vaccine Injection Without Aspiration and Applying Manual Pressure Before Vaccination on Pain and Crying Time in Infants.

    Science.gov (United States)

    Göl, İlknur; Altuğ Özsoy, Süheyla

    2017-04-01

    To compare effects of rapid injection without aspiration and 10-second manual pressure before injection on pain severity and crying time in 4- to 6-month-old infants given the vaccine DTaP/IPV/Hib. This is a randomized double-blind controlled study. The study population included all the infants presenting for DTaP/IPV/Hib to two family health centers between April and August in 2015. The study sample included 128 infants based on confidence interval of 95% and statistical power of 80%. The sample was divided into four groups: manual pressure, rapid injection without aspiration, manual pressure combined with rapid injection without aspiration, and control groups. There were 32 infants in each group. Gender was adjusted in all groups. Stratified and block randomizations were used. Pain severity scores and crying time during and after the injections were significantly lower in the three intervention groups than in the control group (p = .001). The lowest increase in the mean heart rate during and after the injections occurred in the rapid injection without aspiration group (p injections was significantly lower in this group than in the other groups (p injection without aspiration group had low oxygen saturation levels starting before the injections. In fact, mean oxygen saturations did not change across time. This suggests that lower oxygen saturation in the rapid injection without aspiration group cannot be due to vaccines or the techniques used. Manual pressure and rapid injection without aspiration are effective and useful in relief of pain and reduction of crying time due to vaccine injections in 4- to 6-month-old infants. © 2017 Sigma Theta Tau International.

  3. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The flow VLE apparatus designed and built for a previous project was upgraded and recalibrated for data measurements for this project. The modifications include better and more accurate sampling technique, addition of a digital recorder to monitor temperature and pressure inside the VLE cell, and a new technique for remote sensing of the liquid level in the cell. VLE data measurements for three binary systems, tetralin-quinoline, benzene--ethylbenzene and ethylbenzene--quinoline, have been completed. The temperature ranges of data measurements were 325 C to 370 C for the first system, 180 C to 300 C for the second system, and 225 C to 380 C for the third system. The smoothed data were found to be fairly well behaved when subjected to thermodynamic consistency tests. SETARAM C-80 calorimeter was used for incremental enthalpy and heat capacity measurements for benzene--ethylbenzene binary liquid mixtures. Data were measured from 30 C to 285 C for liquid mixtures covering the entire composition range. An apparatus has been designed for simultaneous measurement of excess volume and incremental enthalpy of liquid mixtures at temperatures from 30 C to 300 C. The apparatus has been tested and is ready for data measurements. A flow apparatus for measurement of heat of mixing of liquid mixtures at high temperatures has also been designed, and is currently being tested and calibrated.

  4. A high pressure cell for simultaneous osmotic pressure and x-ray diffraction measurements

    Science.gov (United States)

    Gauthé, Béatrice L. L. E.; Heron, Andrew J.; Seddon, John M.; Ces, Oscar; Templer, Richard H.

    2009-03-01

    In this paper, we report on a novel osmotic cell, developed to simultaneously subject a sample to osmotic stress and measure structural changes by small angle x-ray diffraction. The osmotic cell offers many advantages over more conventional methods of osmotically stressing soft materials to measure their structural response. In particular, a full osmotic analysis can be performed with a single small sample (25 μl). This reduces sample handling and the associated systematic errors, as well as enabling tight control and monitoring of the thermodynamic environment during osmosis, thereby increasing measurement precision. The cell design enables control of osmotic pressure to ±0.04 bar over a pressure range of 1-100 bar, and temperature control to ±0.05 °C. Under these conditions, the lattice spacing in lyotropic structures was resolved to better than ±0.005 Å. Using the osmotic cell, we demonstrate good agreement with previous conventional measurements on the energy of dehydrating the fluid lamellar phase of dioleoylphosphatidylcholine in water.

  5. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  6. Increase of Short-Term Heart Rate Variability Induced by Blood Pressure Measurements during Ambulatory Blood Pressure Monitoring

    OpenAIRE

    Attila Frigy; Annamária Magdás; Victor-Dan Moga; Ioana Georgiana Coteț; Miklós Kozlovszky; László Szilágyi

    2017-01-01

    Objective. The possible effect of blood pressure measurements per se on heart rate variability (HRV) was studied in the setting of concomitant ambulatory blood pressure monitoring (ABPM) and Holter ECG monitoring (HM). Methods. In 25 hypertensive patients (14 women and 11 men, mean age: 58.1 years), 24-hour combined ABPM and HM were performed. For every blood pressure measurement, 2-minute ECG segments (before, during, and after measurement) were analyzed to obtain time domain parameters of H...

  7. Non-invasive continuous finger blood pressure measurement during orthostatic stress compared to intra-arterial pressure

    NARCIS (Netherlands)

    Imholz, B. P.; Settels, J. J.; van der Meiracker, A. H.; Wesseling, K. H.; Wieling, W.

    1990-01-01

    The aim of the study was to evaluate whether invasive blood pressure responses to orthostatic stress can be replaced by non-invasive continuous finger blood pressure responses. DESIGN - Intrabrachial and Finapres blood pressures were simultaneously measured during passive head up tilt and during

  8. NORMAL PRESSURE AND FRICTION STRESS MEASUREMENT IN ROLLING PROCESSES

    DEFF Research Database (Denmark)

    Henningsen, Poul; Arentoft, Mogens; Lagergren, Jonas

    2005-01-01

    A load transducer has been developed to measure the contact forces in the deformation zone during rolling. The transducer consists of a strain gauge equipped insert, embedded in the surface of the roll. The length of the insert exceeds the contact length between material and roll. By analyzing...... the output from the transducer, the friction stress and normal pressure in the contact zone can be determined. The new concept differs from existing pin designs by a lower disturbance of lubricant film and material flow and limited penetration of material between transducer and roll. Aluminum, cupper...... and steel strips with a width of 40 mm was rolled with reduction varying from 2.7% to 29%, in a pilot mill. For evaluating the transducer, the measured contact forces are compared with external measurements of roll separating forces and torque. The determined friction coefficients are compared with values...

  9. Step Prediction During Perturbed Standing Using Center Of Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Milos R. Popovic

    2007-04-01

    Full Text Available The development of a sensor that can measure balance during quiet standing and predict stepping response in the event of perturbation has many clinically relevant applica- tions, including closed-loop control of a neuroprothesis for standing. This study investigated the feasibility of an algorithm that can predict in real-time when an able-bodied individual who is quietly standing will have to make a step to compensate for an external perturbation. Anterior and posterior perturbations were performed on 16 able-bodied subjects using a pul- ley system with a dropped weight. A linear relationship was found between the peak center of pressure (COP velocity and the peak COP displacement caused by the perturbation. This result suggests that one can predict when a person will have to make a step based on COP velocity measurements alone. Another important feature of this finding is that the peak COP velocity occurs considerably before the peak COP displacement. As a result, one can predict if a subject will have to make a step in response to a perturbation sufficiently ahead of the time when the subject is actually forced to make the step. The proposed instability detection algorithm will be implemented in a sensor system using insole sheets in shoes with minitur- ized pressure sensors by which the COPv can be continuously measured. The sensor system will be integrated in a closed-loop feedback system with a neuroprosthesis for standing in the near future.

  10. Continuous intraocular pressure (IOP) measurement during glaucoma drainage device implantation.

    Science.gov (United States)

    Gouws, Pieter; Moss, Edward B; Trope, Graham E; Ethier, C Ross

    2007-05-01

    To measure the effect of the implantation of a glaucoma drainage device on the intraocular pressure (IOP) during the implantation surgery. We implanted telemetry devices into 1 eye each of 3 white New Zealand rabbits. Once the telemetry was found to be working and the rabbits had fully recovered from surgery, we implanted a glaucoma drainage device into the same eye while continually monitoring the IOP with the telemetry devices. During surgery IOP was extremely variable, however, extremely high pressures were recorded in association with suturing and viscoelastic injection. The fact that pressures are significantly raised during some surgical events should make surgeons aware that manipulations need to be kept as short as possible to prevent further potential damage to glaucomatous optic nerves. There is a possibility of dramatically raising the IOP during surgery, specifically in complicated cases requiring prolonged manipulation and/or forcible deepening of the anterior chamber. In such cases, it may be a good idea to time the duration of manipulations to prevent prolonged episodes of elevated IOP.

  11. A Procedure for Measuring Microplastics using Pressurized Fluid Extraction.

    Science.gov (United States)

    Fuller, Stephen; Gautam, Anil

    2016-06-07

    A method based on pressurized fluid extraction (PFE) was developed for measuring microplastics in environmental samples. This method can address some limitations of the current microplastic methods and provide laboratories with a simple analytical method for quantifying common microplastics in a range of environmental samples. The method was initially developed by recovering 101% to 111% of spiked plastics on glass beads and was then applied to a composted municipal waste sample with spike recoveries ranging from 85% to 94%. The results from municipal waste samples and soil samples collected from an industrial area demonstrated that the method is a promising alternative for determining the concentration and identity of microplastics in environmental samples.

  12. Measuring the local pressure amplitude in microchannel acoustophoresis

    DEFF Research Database (Denmark)

    Barnkob, Rune; Augustsson, Per; Laurell, Thomas

    2010-01-01

    /glass microchannels. The system is actuated by a PZT piezo transducer attached beneath the chip and driven by an applied ac voltage near its eigenfrequency of 2 MHz. For a given frequency a number of particle tracks are recorded by a CCD camera and fitted to a theoretical expression for the acoustophoretic motion......A new method is reported on how to measure the local pressure amplitude and the Q factor of ultrasound resonances in microfluidic chips designed for acoustophoresis of particle suspensions. The method relies on tracking individual polystyrene tracer microbeads in straight water-filled silicon...

  13. The dynamic pressure response to rapid dilatation of the resting urethra in healthy women

    DEFF Research Database (Denmark)

    Bagi, P; Thind, P; Colstrup, H

    1993-01-01

    The urethral pressure response to a sudden forced dilatation was studied at the bladder neck, in the high-pressure zone and in the distal urethra in ten healthy female volunteers. The pressure response was fitted with a double exponential function of the form Pt = Pequ + P alpha e-t/tau alpha + P...... tissues were computed. The results showed significant differences along the urethra, with the high-pressure zone showing the highest maximum and equilibrium pressures, fastest pressure decay and highest elastic coefficient. The pressure response represents an integrated stress response from...... a detailed assessment of static and dynamic urethral responses to dilatation which can be applied as an experimental simulation of urine ingression, and is therefore presumed to be of value in the evaluation of normal and pathological urethral sphincter function....

  14. Continuous cardiac output measurement: arterial pressure analysis versus thermodilution technique during cardiac surgery with cardiopulmonary bypass

    NARCIS (Netherlands)

    Lorsomradee, S.; Lorsomradee, S. R.; Cromheecke, S.; de Hert, S. G.

    2007-01-01

    This study compared cardiac output measured with an arterial pressure-based cardiac output measurement system and a thermodilution cardiac output measurement system. We studied 36 patients undergoing cardiac surgery with cardiopulmonary bypass. Simultaneous arterial pressure-based and thermodilution

  15. Prospective Comparative Analysis of 4 Different Intraocular Pressure Measurement Techniques and Their Effects on Pressure Readings.

    Science.gov (United States)

    Berk, Thomas A; Yang, Patrick T; Chan, Clara C

    2016-10-01

    To compare intraocular pressure (IOP) measurement using the Goldmann applanation tonometry (GAT) without fluorescein, with fluorescein strips, with fluorescein droplets, and IOP measurement with Tono-Pen Avia (TPA). This was a prospective comparative clinical analysis. It was performed in clinical practice. The study population consisted of 40 volunteer patients, 1 eye per patient. All patients who were 18 years and older having routine ophthalmological examination were eligible to participate. Active corneal abrasions and/or ulcers, previous glaucoma surgery, or prostheses interfering with GAT measurement were excluded. GAT IOP was measured first without fluorescein, then with fluorescein strip, then with fluorescein droplet, and finally with the TPA device. The main outcome measure was central corneal IOP. Mean±SD IOP measurements for GAT without fluorescein, with fluorescein strip, with fluorescein droplet, and for TPA groups were 12.65±3.01, 14.70±2.82, 15.78±2.64, and 16.33±3.08 mm Hg, respectively. Repeated-measures analysis of variance corrected with the Greenhouse-Geisser estimate ([Latin Small Letter Open E]=0.732) showed that measuring technique had a significant effect on IOP measurements (F2.20,85.59=34.66, Pmeasurement ranging from 5.89 mm Hg in the GAT with fluorescein strip versus droplet compared with 11.83 mm Hg in the GAT with fluorescein strip versus TPA comparison. IOP measurement technique significantly impacted the values obtained. The ophthalmologist should ensure consistent measurement technique to minimize variability when following patients.

  16. Rapid and fully automated Measurement of Water Vapor Sorption Isotherms

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Tuller, Markus; Møldrup, Per

    2014-01-01

    Eminent environmental challenges such as remediation of contaminated sites, the establishment and maintenance of nuclear waste repositories, or the design of surface landfill covers all require accurate quantification of the soil water characteristic at low water contents. Furthermore, several...... and pesticide volatilization, toxic organic vapor sorption kinetics, and soil water repellency are illustrated. Several methods to quantify hysteresis effects and to derive soil clay content and specific surface area from VSA-measured isotherms are presented. Besides above mentioned applications, potential...... essential but difficult-to-measure soil properties such as clay content and specific surface area are intimately related to water vapor sorption. Until recently, it was a major challenge to accurately measure detailed water vapor sorption isotherms within an acceptable time frame. This priority...

  17. On Measuring Cosmic Ray Energy Spectra with the Rapidity Distributions

    Science.gov (United States)

    Bashindzhagyan, G.; Adams, J.; Chilingarian, A.; Drury, L.; Egorov, N.; Golubkov, S.; Korotkova, N.; Panasyuk, M.; Podorozhnyi, D.; Procqureur, J.

    2000-01-01

    An important goal of cosmic ray research is to measure the elemental energy spectra of galactic cosmic rays up to 10(exp 16) eV. This goal cannot be achieved with an ionization calorimeter because the required instrument is too massive for space flight. An alternate method will be presented. This method is based on measuring the primary particle energy by determining the angular distribution of secondaries produced in a target layer. The proposed technique can be used over a wide range of energies (10 (exp 11) -10 (exp 16) eV) and gives an energy resolution of 60% or better. Based on this technique, a conceptual design for a new instrument (KLEM) will be presented. Due to its light weight, this instrument can have a large aperture enabling the direct measurement of cosmic rays to 1016 eV.

  18. Strategies to reduce pitfalls in measuring blood pressure

    Directory of Open Access Journals (Sweden)

    Hamidreza Badeli

    2014-01-01

    Full Text Available Errors in blood pressure (BP measurement are common in the clinical practice. Inaccurate measurements of BP may lead to misdiagnosis and inappropriate treatment of hypertension. The preferred method of BP measurement in the clinical setting is auscultation, using the first and the fifth Korotkoff sounds. However, the use of mercury sphygmomanometer is declining. Automated oscillometric devices are an acceptable alternative method of BP measurements if the proper cuff size is used. Aneroid devices are suitable, but they require frequent calibration. There is increasing evidence that home readings predict cardiovascular events and are particularly useful for monitoring the effects of treatment. At 24 h ambulatory monitoring is also useful for diagnosing white-coat hypertension and resistance hypertension. There is increasing evidence that lack of nocturnal BP dipping during the night may be associated with increased cardiovascular event. This report attempts to address the need for accurate BP measurements in children and adolescents by reducing human and equipment errors and providing clinicians with the accurate measurement of BP, which is essential to classify individuals, to ascertain BP-related CV risks and to guide management.

  19. Influence of probe pressure on diffuse reflectance spectra of human skin measured in vivo.

    Science.gov (United States)

    Popov, Alexey P; Bykov, Alexander V; Meglinski, Igor V

    2017-11-01

    Mechanical pressure superficially applied on the human skin surface by a fiber-optic probe influences the spatial distribution of blood within the cutaneous tissues. Upon gradual load of weight on the probe, a stepwise increase in the skin reflectance spectra is observed. The decrease in the load follows the similar inverse staircase-like tendency. The observed stepwise reflectance spectra changes are due to, respectively, sequential extrusion of blood from the topical cutaneous vascular beds and their filling afterward. The obtained results are confirmed by Monte Carlo modeling. This implies that pressure-induced influence during the human skin diffuse reflectance spectra measurements in vivo should be taken into consideration, in particular, in the rapidly developing area of wearable gadgets for real-time monitoring of various human body parameters. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  20. Rapid mapping of volumetric machine errors using distance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Krulewich, D.A.

    1998-04-01

    This paper describes a relatively inexpensive, fast, and easy to execute approach to maping the volumetric errors of a machine tool, coordinate measuring machine, or robot. An error map is used to characterize a machine or to improve its accuracy by compensating for the systematic errors. The method consists of three steps: (1) models the relationship between volumetric error and the current state of the machine, (2) acquiring error data based on distance measurements throughout the work volume; and (3)fitting the error model using the nonlinear equation for the distance. The error model is formulated from the kinematic relationship among the six degrees of freedom of error an each moving axis. Expressing each parametric error as function of position each is combined to predict the error between the functional point and workpiece, also as a function of position. A series of distances between several fixed base locations and various functional points in the work volume is measured using a Laser Ball Bar (LBB). Each measured distance is a non-linear function dependent on the commanded location of the machine, the machine error, and the location of the base locations. Using the error model, the non-linear equation is solved producing a fit for the error model Also note that, given approximate distances between each pair of base locations, the exact base locations in the machine coordinate system determined during the non-linear filling procedure. Furthermore, with the use of 2048 more than three base locations, bias error in the measuring instrument can be removed The volumetric errors of three-axis commercial machining center have been mapped using this procedure. In this study, only errors associated with the nominal position of the machine were considered Other errors such as thermally induced and load induced errors were not considered although the mathematical model has the ability to account for these errors. Due to the proprietary nature of the projects we are

  1. Quantitative Thermochemical Measurements in High-Pressure Gaseous Combustion

    Science.gov (United States)

    Kojima, Jun J.; Fischer, David G.

    2012-01-01

    We present our strategic experiment and thermochemical analyses on combustion flow using a subframe burst gating (SBG) Raman spectroscopy. This unconventional laser diagnostic technique has promising ability to enhance accuracy of the quantitative scalar measurements in a point-wise single-shot fashion. In the presentation, we briefly describe an experimental methodology that generates transferable calibration standard for the routine implementation of the diagnostics in hydrocarbon flames. The diagnostic technology was applied to simultaneous measurements of temperature and chemical species in a swirl-stabilized turbulent flame with gaseous methane fuel at elevated pressure (17 atm). Statistical analyses of the space-/time-resolved thermochemical data provide insights into the nature of the mixing process and it impact on the subsequent combustion process in the model combustor.

  2. Sound field separation with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclère, Quentin

    2012-01-01

    and the velocity in a single layer are proposed. The two methods use an equivalent source formulation with separate transfer matrices for the outgoing and incoming waves, so that the sound from the two sides of the array can be modeled independently. A weighting scheme is proposed to account for the distance......In conventional near-field acoustic holography (NAH) it is not possible to distinguish between sound from the two sides of the array, thus, it is a requirement that all the sources are confined to only one side and radiate into a free field. When this requirement cannot be fulfilled, sound field...... separation techniques make it possible to distinguish between outgoing and incoming waves from the two sides, and thus NAH can be applied. In this paper, a separation method based on the measurement of the particle velocity in two layers and another method based on the measurement of the pressure...

  3. Thermally moderated hollow fiber sorbent modules in rapidly cycled pressure swing adsorption mode for hydrogen purification

    KAUST Repository

    Lively, Ryan P.

    2012-10-01

    We describe thermally moderated multi-layered pseudo-monolithic hollow fiber sorbents entities, which can be packed into compact modules to provide small-footprint, efficient H2 purification/CO2 removal systems for use in on-site steam methane reformer product gas separations. Dual-layer hollow fibers are created via dry-jet, wet-quench spinning with an inner "active" core of cellulose acetate (porous binder) and zeolite NaY (69 wt% zeolite NaY) and an external sheath layer of pure cellulose acetate. The co-spun sheath layer reduces the surface porosity of the fiber and was used as a smooth coating surface for a poly(vinyl-alcohol) post-treatment, which reduced the gas permeance through the fiber sorbent by at least 7 orders of magnitude, essentially creating an impermeable sheath layer. The interstitial volume between the individual fibers was filled with a thermally-moderating paraffin wax. CO2 breakthrough experiments on the hollow fiber sorbent modules with and without paraffin wax revealed that the "passively" cooled paraffin wax module had 12.5% longer breakthrough times than the "non-isothermal" module. The latent heat of fusion/melting of the wax offsets the released latent heat of sorption/desorption of the zeolites. One-hundred rapidly cycled pressure swing adsorption cycles were performed on the "passively" cooled hollow fiber sorbents using 25 vol% CO2/75 vol% He (H2 surrogate) at 60 °C and 113 psia, resulting in a product purity of 99.2% and a product recovery of 88.1% thus achieving process conditions and product quality comparable to conventional pellet processes. Isothermal and non-isothermal dynamic modeling of the hollow fiber sorbent module and a traditional packed bed using gPROMS® indicated that the fiber sorbents have sharper fronts (232% sharper) and longer adsorbate breakthrough times (66% longer), further confirming the applicability of the new fiber sorbent approach for H2 purification. © 2012, Hydrogen Energy Publications, LLC

  4. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    Science.gov (United States)

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  5. Measurement of lying and standing blood pressure in hospital.

    Science.gov (United States)

    O'Riordan, Shelagh; Vasilakis, Naomi; Hussain, Labib; Schoo, Rowena; Whitney, Julie; Windsor, Julie; Horton, Khim; Martin, Finbarr

    2017-09-29

    Measuring lying and standing blood pressure (BP) is an important clinical observation in older hospital inpatients. This is because a drop in BP on standing, known as orthostatic hypotension (OH) is common in older people and in acute illness and, therefore, in hospital patients. OH increases the risk of a fall in hospital. Simple measures such as changes in medication or rehydration can reduce this drop in BP and reduce the risk of falls. In a recent snapshot audit in England and Wales of 179 acute hospitals and 4,846 patients aged 65 years and over admitted with an acute illness, only 16% had a lying and standing BP recorded within 48 hours. A review of the literature showed that existing advice on how to measure and interpret lying and standing BP was often not appropriate for use on the ward with frail and unwell inpatients. An online survey of 275 clinicians' usual practice highlighted variation and the need for clarity and pragmatism. In the light of the survey findings, a clinical guide has been developed on when to measure lying and standing BP, how to measure it and what is considered a significant result. ©2012 RCN Publishing Company Ltd. All rights reserved. Not to be copied, transmitted or recorded in any way, in whole or part, without prior permission of the publishers.

  6. Differential pressure gauge has fast response

    Science.gov (United States)

    Weber, H. S.

    1965-01-01

    Differential pressure gage with semiconductor type strain gage elements measures rapidly changing pressure. Output of the strain gage elements is a dc voltage that is directly proportional to the pressure difference being measured.

  7. Measurements of intraperitoneal pressure and the development of a feedback control valve for regulating pressure during flexible transgastric surgery (NOTES).

    Science.gov (United States)

    Bergström, Maria; Swain, Paul; Park, Per-Ola

    2007-07-01

    High intraabdominal pressures during laparoscopy (greater than 15 mm Hg) are dangerous. Pressures developed during translumenal endosurgery when using flexible endoscopes without feed-back regulation are unknown. To measure and control intraabdominal pressures during transgastric endosurgery. In a blinded study, intraabdominal pressures during unregulated transgastric cholecystectomy and tubal ligation were measured by using Veress needles in 5 pigs (group 1). The accessory channel valve of a double-channel gastroscope was modified to allow measurement and control of intraabdominal pressures with a laparoscopic insufflator. This was tested prospectively in another blinded study in 5 pigs (group 2) that underwent identical procedures to those in group 1, with independent Veress needle pressure measurements. This ethically approved study was performed in an experimental surgical operating theater. Transgastric cholecystectomy (n=4) and tubal resection (n=6). Intraabdominal pressure measurements during transgastric endosurgery, with and without feed-back control. The mean (standard deviation) number of pressure measurements per procedure greater than 20 mm Hg was 11+/-1.41 in group 1 and 0+/-0 in group 2 (PFeedback pressure regulation through a modified valve prevented overinflation.

  8. RAPID COMMUNICATION: Conducting triangular chambers for EMC measurements

    Science.gov (United States)

    Huang, Yi

    1999-03-01

    Conducting rectangular chambers have been used extensively for electromagnetic compatibility (EMC) shielding and measurement applications. In this communication, conducting triangular chambers are investigated as an alternative structure for rectangular EMC reverberation chambers, which are becoming an increasingly important and powerful tool for both radiated immunity and emission tests. A prime consideration of designing such a system is the total possible number of modes inside the chamber. A new approach is introduced to obtain this parameter for three different triangular chambers. The initial study has demonstrated that triangular chambers may offer better performance in some cases than their rectangular counterparts.

  9. A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method

    Science.gov (United States)

    Najafi, Navid; Rozati, S. M.

    2018-03-01

    Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.

  10. A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method

    Science.gov (United States)

    Najafi, Navid; Rozati, S. M.

    2017-12-01

    Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.

  11. Context-aware patient guidance during blood pressure self-measurement

    DEFF Research Database (Denmark)

    Sandager, Puk; Lindahl, Camilla; Schlütter, Jacob Mørup

    2013-01-01

    The importance of accurate measurement of blood pressure in the screening and management of hypertension during pregnancy is well established. Blood pressure levels can be measured manually by healthcare staff or by using a blood pressure self-measurement device, either at home or in the clinic...... the blood pressure self-measurement process. Preliminary results indicate that such active and context-aware guidance leads to more reliable measurements by inhibiting non-adherent patient behavior...

  12. Clinic blood pressure measurements and blood pressure load in the diagnosis of hypertension.

    OpenAIRE

    Lee, D. R.; Sivakumaran, P.; Brown, R.

    1993-01-01

    We have retrospectively compared the blood pressure load derived from 24 hour ambulatory blood pressure monitoring in patients with all clinic blood pressure readings elevated with those with only some elevated pressures to establish whether clinic readings alone are good predictors of blood pressure status. Fifty-seven patients attending a district general hospital hypertension clinic who were not on anti-hypertensive treatment were selected. Between two and six clinic readings were taken ov...

  13. Comparison of aneroid and oscillometric blood pressure measurements in children.

    Science.gov (United States)

    Eliasdottir, Sigridur B; Steinthorsdottir, Sandra D; Indridason, Olafur S; Palsson, Runolfur; Edvardsson, Vidar O

    2013-11-01

    Limited data exist on the comparison of blood pressure (BP) measurements using aneroid and oscillometric devices. The purpose of the study was to investigate the difference in BP obtained using oscillometric and aneroid BP monitors in 9- to 10-year-old children. A total of 979 children were divided into group O, which underwent two oscillometric BP readings followed by two aneroid readings, and group A, which had BP measured in the reverse order. No significant difference was found between the mean (±standard deviation) of the two systolic BP readings obtained using the oscillometric and aneroid devices (111.5±8.6 vs 111.3±8.1 mm Hg; P=.39), whereas the mean diastolic BP was lower with the oscillometric monitor (61.5±8.0 vs 64.5±6.8 mm Hg; P<.001). A significant downward trend in BP was observed with each consecutive measurement, and agreement between the two monitors was limited. Multiple BP measurements are, therefore, recommended before the diagnosis of elevated BP or hypertension is made with either method. ©2013 Wiley Periodicals, Inc.

  14. Reliable intraocular pressure measurement using automated radio-wave telemetry

    Directory of Open Access Journals (Sweden)

    Paschalis EI

    2014-01-01

    Full Text Available Eleftherios I Paschalis,* Fabiano Cade,* Samir Melki, Louis R Pasquale, Claes H Dohlman, Joseph B CiolinoMassachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA*These authors contributed equally to this workPurpose: To present an autonomous intraocular pressure (IOP measurement technique using a wireless implantable transducer (WIT and a motion sensor.Methods: The WIT optical aid was implanted within the ciliary sulcus of a normotensive rabbit eye after extracapsular clear lens extraction. An autonomous wireless data system (AWDS comprising of a WIT and an external antenna aided by a motion sensor provided continuous IOP readings. The sensitivity of the technique was determined by the ability to detect IOP changes resulting from the administration of latanoprost 0.005% or dorzolamide 2%, while the reliability was determined by the agreement between baseline and vehicle (saline IOP.Results: On average, 12 diurnal and 205 nocturnal IOP measurements were performed with latanoprost, and 26 diurnal and 205 nocturnal measurements with dorzolamide. No difference was found between mean baseline IOP (13.08±2.2 mmHg and mean vehicle IOP (13.27±2.1 mmHg (P=0.45, suggesting good measurement reliability. Both antiglaucoma medications caused significant IOP reduction compared to baseline; latanoprost reduced mean IOP by 10% (1.3±3.54 mmHg; P<0.001, and dorzolamide by 5% (0.62±2.22 mmHg; P<0.001. Use of latanoprost resulted in an overall twofold higher IOP reduction compared to dorzolamide (P<0.001. Repeatability was ±1.8 mmHg, assessed by the variability of consecutive IOP measurements performed in a short period of time (≤1 minute, during which the IOP is not expected to change.Conclusion: IOP measurements in conscious rabbits obtained without the need for human interactions using the AWDS are feasible and provide reproducible results.Keywords: IOP, pressure transducer, wireless, MEMS, implant, intraocular

  15. Seeking a blood pressure-independent measure of vascular properties.

    Science.gov (United States)

    Steppan, Jochen; Sikka, Gautam; Hori, Daijiro; Nyhan, Daniel; Berkowitz, Dan E; Gottschalk, Allan; Barodka, Viachaslau

    2016-01-01

    Pulse wave velocity (PWV) and pulse pressure (PP) are blood pressure (BP)-dependent surrogates for vascular stiffness. Considering that there are no clinically useful markers for arterial stiffness that are BP-independent, our objective was to identify novel indices of arterial stiffness and compare them with previously described markers. PWV and PP were measured in young and old male Fisher rats and in young and old male spontaneously hypertensive rats (SHR) over a wide range of BPs. The BP dependence of these and several other indices of vascular stiffness were evaluated. An index incorporating PWV and PP was also constructed. Both PWV and PP increase in a non-linear manner with rising BP for both strains of animals (Fisher and SHRs). Age markedly changes the relationship between PWV or PP and BP. The previously described Ambulatory Arterial Stiffness Index (AASI) was able to differentiate between young and old vasculature, whereas the Cardio-Ankle Vascular Index (CAVI) did not reliably differentiate between the two. The novel Arterial Stiffness Index (ASI) differentiated stiffer from more compliant vasculature. Considering the limitations of the currently available indices of arterial stiffness, we propose a novel index of intrinsic arterial stiffness, the ASI, which is robust over a range of BPs and allows one to distinguish between compliant and stiff vasculature in both Fisher rats and SHRs. Further studies are necessary to validate this index in other settings.

  16. Stress Rupture Life Reliability Measures for Composite Overwrapped Pressure Vessels

    Science.gov (United States)

    Murthy, Pappu L. N.; Thesken, John C.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2007-01-01

    Composite Overwrapped Pressure Vessels (COPVs) are often used for storing pressurant gases onboard spacecraft. Kevlar (DuPont), glass, carbon and other more recent fibers have all been used as overwraps. Due to the fact that overwraps are subjected to sustained loads for an extended period during a mission, stress rupture failure is a major concern. It is therefore important to ascertain the reliability of these vessels by analysis, since the testing of each flight design cannot be completed on a practical time scale. The present paper examines specifically a Weibull statistics based stress rupture model and considers the various uncertainties associated with the model parameters. The paper also examines several reliability estimate measures that would be of use for the purpose of recertification and for qualifying flight worthiness of these vessels. Specifically, deterministic values for a point estimate, mean estimate and 90/95 percent confidence estimates of the reliability are all examined for a typical flight quality vessel under constant stress. The mean and the 90/95 percent confidence estimates are computed using Monte-Carlo simulation techniques by assuming distribution statistics of model parameters based also on simulation and on the available data, especially the sample sizes represented in the data. The data for the stress rupture model are obtained from the Lawrence Livermore National Laboratories (LLNL) stress rupture testing program, carried out for the past 35 years. Deterministic as well as probabilistic sensitivities are examined.

  17. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    2000-05-01

    The Vapor Liquid Equilibrium measurement setup of this work was first established several years ago. It is a flow type high temperature high pressure apparatus which was designed to operate below 500 C temperature and 2000 psia pressure. Compared with the static method, this method has three major advantages: the first is that large quantity of sample can be obtained from the system without disturbing the equilibrium state which was established before; the second is that the residence time of the sample in the equilibrium cell is greatly reduced, thus decomposition or contamination of the sample can be effectively prevented; the third is that the flow system allows the sample to degas as it heats up since any non condensable gas will exit in the vapor stream, accumulate in the vapor condenser, and not be recirculated. The first few runs were made with Quinoline-Tetralin system, the results were fairly in agreement with the literature data . The former graduate student Amad used the same apparatus acquired the Benzene-Ethylbenzene system VLE data. This work used basically the same setup (several modifications had been made) to get the VLE data of Ethylbenzene-Quinoline system.

  18. The Correlation between Systolic Blood Pressure Measured by Return to Flow Versus Systolic Blood Pressure Measured by Arterial Catheter in the Adult Anesthetized Patient.

    Science.gov (United States)

    1986-12-01

    36 The Development of the Blood Pressure Cuff ....... 38 Pulse Detection ...................................39 The Development of the Oscillometric ...48 tq Measurement Tools .................................50 Oscillometric Blood Pressure Monitor...24• 6. Chart Recording of Oscillometric Automatic Blood Pressure Monitor Determination Cycle ................ 51 7. Chart Recording of Sys Stat

  19. The Rapid Inactivation of Porcine Skin by Applying High Hydrostatic Pressure without Damaging the Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Naoki Morimoto

    2015-01-01

    Full Text Available We previously reported that high hydrostatic pressure (HHP of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW, could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10 × 2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix.

  20. The rapid inactivation of porcine skin by applying high hydrostatic pressure without damaging the extracellular matrix.

    Science.gov (United States)

    Morimoto, Naoki; Mahara, Atsushi; Shima, Kouji; Ogawa, Mami; Jinno, Chizuru; Kakudo, Natsuko; Kusumoto, Kenji; Fujisato, Toshia; Suzuki, Shigehiko; Yamaoka, Tetsuji

    2015-01-01

    We previously reported that high hydrostatic pressure (HHP) of 200 MPa for 10 minutes could induce cell killing. In this study, we explored whether HHP at 200 MPa or HHP at lower pressure, in combination with hyposmotic distilled water (DW), could inactivate the skin, as well as cultured cells. We investigated the inactivation of porcine skin samples 4 mm in diameter. They were immersed in either a normal saline solution (NSS) or DW, and then were pressurized at 100 and 200 MPa for 5, 10, 30, or 60 min. Next, we explored the inactivation of specimens punched out from the pressurized skin 10×2 cm in size. The viability was evaluated using a WST-8 assay and an outgrowth culture. The histology of specimens was analyzed histologically. The mitochondrial activity was inactivated after the pressurization at 200 MPa in both experiments, and no outgrowth was observed after the pressurization at 200 MPa. The arrangement and proportion of the dermal collagen fibers or the elastin fibers were not adversely affected after the pressurization at 200 MPa for up to 60 minutes. This study showed that a HHP at 200 MPa for 10 min could inactivate the skin without damaging the dermal matrix.

  1. Use of molecular beacons for the rapid analysis of DNA damage induced by exposure to an atmospheric pressure plasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Kurita, Hirofumi, E-mail: kurita@ens.tut.ac.jp, E-mail: mizuno@ens.tut.ac.jp; Miyachika, Saki; Yasuda, Hachiro; Takashima, Kazunori; Mizuno, Akira, E-mail: kurita@ens.tut.ac.jp, E-mail: mizuno@ens.tut.ac.jp [Department of Environmental and Life Sciences, Toyohashi University of Technology, Aichi 441-8580 (Japan)

    2015-12-28

    A rapid method for evaluating the damage caused to DNA molecules upon exposure to plasma is demonstrated. Here, we propose the use of a molecular beacon for rapid detection of DNA strand breaks induced by atmospheric pressure plasma jet (APPJ) irradiation. Scission of the molecular beacon by APPJ irradiation leads to separation of the fluorophore-quencher pair, resulting in an increase in fluorescence that directly correlates with the DNA strand breaks. The results show that the increase in fluorescence intensity is proportional to the exposure time and the rate of fluorescence increase is proportional to the discharge power. This simple and rapid method allows the estimation of DNA damage induced by exposure to a non-thermal plasma.

  2. In situ viscosity measurements of albite melt under high pressure

    CERN Document Server

    Funakoshi, K I; Terasaki, H

    2002-01-01

    The viscosities of albite (NaAlSi sub 3 O sub 8) melt under high pressures have been measured using an x-ray radiography falling sphere method with synchrotron radiation. This method has enabled us to determine the precise sinking velocity directly. Recent experiments of albite melt showed the presence of a viscosity minimum around 5 GPa (Poe et al 1997 Science 276 1245, Mori et al 2000 Earth Planet. Sci. Lett. 175 87). We present the results for albite melt up to 5.2 GPa at 1600 and 1700 deg. C. The viscosity minimum is clearly observed to be around 4.5 GPa, and it might be explained not by the change of the compression mechanism in albite melt but by change of the phase itself.

  3. The dynamic pressure response to rapid dilatation of the resting urethra in healthy women

    DEFF Research Database (Denmark)

    Bagi, P; Thind, P; Colstrup, H

    1993-01-01

    beta e-t/tau beta, where Pequ, P alpha and P beta are constants, and tau alpha and tau beta are time constants; this equation has previously been demonstrated to describe the pressure decay following dilatation. On the basis of a theoretical model the elastic and viscous constants for the urethral......The urethral pressure response to a sudden forced dilatation was studied at the bladder neck, in the high-pressure zone and in the distal urethra in ten healthy female volunteers. The pressure response was fitted with a double exponential function of the form Pt = Pequ + P alpha e-t/tau alpha + P...... a detailed assessment of static and dynamic urethral responses to dilatation which can be applied as an experimental simulation of urine ingression, and is therefore presumed to be of value in the evaluation of normal and pathological urethral sphincter function....

  4. Methods of Blood Pressure Measurement in the ICU*

    OpenAIRE

    Talmor, Daniel; Malhotra, Atul; Lehman, Li-Wei; Saeed, Mohammed; Mark, Roger G

    2013-01-01

    OBJECTIVE:: Minimal clinical research has investigated the significance of different blood pressure monitoring techniques in the ICU and whether systolic vs. mean blood pressures should be targeted in therapeutic protocols and in defining clinical study cohorts. The objectives of this study are to compare real-world invasive arterial blood pressure with noninvasive blood pressure, and to determine if differences between the two techniques have clinical implications. DESIGN:: We conducted a re...

  5. Measurement of the change in the number of ultrafine bubbles through pressurization

    Science.gov (United States)

    Tuziuti, T.; Yasui, K.; Kanematsu, Wataru

    2014-08-01

    The present study deals with, for the first time, a measurement of the number of bubbles of submicron in size before and after pressurization. Measurement of ultrafine bubbles of submicron size was conducted and it was clarified that greater number of submicron sized bubbles existed before the pressurization in comparison with that after the pressurization. The application of high pressure of gas for its dissolution into water and the ambient-pressure reduction has a possibility to increase the number of ultrafine bubbles.

  6. Liquid crystalline fiber optic colorimeter for hydrostatic pressure measurement

    Science.gov (United States)

    Wolinski, Tomasz R.; Bajdecki, Waldemar K.; Domanski, Andrzej W.; Karpierz, Miroslaw A.; Konopka, Witold; Nasilowski, T.; Sierakowski, Marek W.; Swillo, Marcin; Dabrowski, Roman S.; Nowinowski-Kruszelnicki, Edward; Wasowski, Janusz

    2001-08-01

    This paper presents results of tests performed on a fiber optic system of liquid crystalline transducer for hydrostatic pressure monitoring based on properties of colorimetry. The system employs pressure-induced deformations occurring in liquid crystalline (LC) cells configured in a homogeneous Frederiks geometry. The sensor is compared of a round LC cell placed inside a specially designed pressure chamber. As a light source we used a typical diode operating at red wavelength and modulated using standard techniques. The pressure transducer was connected to a computer with a specially designed interface built on the bas of advanced ADAM modules. Results indicate that the system offers high response to pressure with reduced temperature sensitivity and, depending on the LC cell used, can be adjusted for monitoring of low hydrostatic pressures up to 6 MPa. These studies have demonstrated the feasibility of fiber optic liquid crystal colorimeter for hydrostatic pressure sensing specially dedicated to pipe- lines, mining instrumentation, and process-control technologies.

  7. Urethral pressure reflectometry. A method for simultaneous measurements of pressure and cross-sectional area in the female urethra

    DEFF Research Database (Denmark)

    Klarskov, Niels

    2012-01-01

    A novel technique for simultaneous measurements of pressure and cross-sectional area (CA) in the female urethra, denoted Urethral Pressure Reflectometry (UPR), was devised. A very thin and highly flexible polyurethane-bag was placed in the urethra. A pump applied increasing and decreasing pressures...... to the polyurethane-bag and thereby opened and closed the urethra. Sound waves were continually sent into the polyurethane-bag and the cross-sectional area (CA) of the bag (urethra) could be measured from the reflections with Acoustic Reflectometry. The CA of the bag was measured for each mm of the bag and 10 times...

  8. Comparison of automated oscillometric versus auscultatory blood pressure measurement.

    Science.gov (United States)

    Landgraf, Johanna; Wishner, Stanley H; Kloner, Robert A

    2010-08-01

    Most clinical offices rely on automated oscillometric devices to measure blood pressure (BP), but the accuracy of this technique versus auscultatory determination using a mercury manometer is controversial. To assess the accuracy of automated oscillometric readings, BP was measured from the same site and cuff, in 337 consecutive patients seen in a routine cardiology office, using a simultaneous connection to an automated oscillometric and a mercury manometer technique. The mean systolic BP (133 +/- 20 mm Hg) and diastolic BP (72 +/- 11 mm Hg) were significantly greater using the mercury manometer than the automated oscillometric technique (systolic 131 +/- 18 and diastolic 70 +/- 12 mm Hg, p oscillometric and greater mercury manometer) in systolic BP were seen in 22% of all patients. Discrepancies in diastolic BP were seen in 20% of all patients. The mean of the discrepancy between the 2 techniques was 1.95 +/- 5 mm Hg (range 1 to 26) for systolic BP and 1.3 +/- 4 mm Hg (range 1 to 25) for diastolic BP. The discrepancies were greater in patients >65 years. In conclusion, the mercury manometer technique resulted in consistently greater BP values than oscillometric devices. These findings have important clinical implications, including the concept that patients whose BP appears to be under control using the oscillometric technique might not be at their goal BP and might have been undertreated. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  9. Possibility for rapid generation of high-pressure phases in single-crystal silicon by fast nanoindentation

    Science.gov (United States)

    Huang, Hu; Yan, Jiwang

    2015-11-01

    High-pressure phases of silicon such as Si-XII/Si-III exhibit attractive optical, electrical and chemical properties, but until now, it has been technologically impossible to produce a significant quantity of Si-XII or Si-III. In this study, to explore the possibility of generating high-pressure silicon phases efficiently, comparative nanoindentation experiments were conducted. Effects of the loading rate, unloading rate and maximum indentation load were investigated, and key factors affecting the high-pressure phase formation were identified. A new nanoindentation protocol is proposed that introduces an intermediate holding stage into the unloading process. The resulting end phases under the indent were detected by a laser micro-Raman spectrometer and compared with those formed in conventional nanoindentation. The results indicate that high-pressure phases Si-XII and Si-III were successfully formed during the intermediate holding stage even with a very high loading/unloading rate. This finding demonstrates the possibility of rapid production of high-pressure phases of silicon through fast mechanical loading and unloading.

  10. Increase of Short-Term Heart Rate Variability Induced by Blood Pressure Measurements during Ambulatory Blood Pressure Monitoring

    Directory of Open Access Journals (Sweden)

    Attila Frigy

    2017-01-01

    Full Text Available Objective. The possible effect of blood pressure measurements per se on heart rate variability (HRV was studied in the setting of concomitant ambulatory blood pressure monitoring (ABPM and Holter ECG monitoring (HM. Methods. In 25 hypertensive patients (14 women and 11 men, mean age: 58.1 years, 24-hour combined ABPM and HM were performed. For every blood pressure measurement, 2-minute ECG segments (before, during, and after measurement were analyzed to obtain time domain parameters of HRV: SDNN and rMSSD. Mean of normal RR intervals (MNN, SDNN/MNN, and rMSSD/MNN were calculated, too. Parameter variations related to blood pressure measurements were analyzed using one-way ANOVA with multiple comparisons. Results. 2281 measurements (1518 during the day and 763 during the night were included in the analysis. Both SDNN and SDNN/MNN had a constant (the same for 24-hour, daytime, and nighttime values and significant change related to blood pressure measurements: an increase during measurements and a decrease after them (p<0.01 for any variation. Conclusion. In the setting of combined ABPM and HM, the blood pressure measurement itself produces an increase in short-term heart rate variability. Clarifying the physiological basis and the possible clinical value of this phenomenon needs further studies.

  11. Ultra-rapid microwave variable pressure-induced histoprocessing : Description of a new tissue processor

    NARCIS (Netherlands)

    Visinoni, F; Milios, J; Leong, ASY; Boon, ME; Kok, LP; Malcangi, F

    We describe a new method of ultra-rapid histoprocessing that reduces the processing times for needle and endoscopic biopsies to 30 min and that of other surgical biopsy tissue blocks of up to 4 mm thick to 120 min. The MicroMED U R M Histoprocessor, which combines microwave irradiation with precise

  12. Characterization of metal powder based rapid prototyping components under aluminium high pressure die casting process conditions

    CSIR Research Space (South Africa)

    Pereira, MFVT

    2009-11-01

    Full Text Available used in metal high pressure die casting toolsets. The specimens were subjected to a program of cyclic immersion in molten aluminium alloy and cooling in water based die release medium. The heat checking and soldering phenomena were analyzed through...

  13. Correlation of Blood Pressure Variability as Measured By Clinic, Self-measurement at Home, and Ambulatory Blood Pressure Monitoring.

    Science.gov (United States)

    Abellán-Huerta, José; Prieto-Valiente, Luis; Montoro-García, Silvia; Abellán-Alemán, José; Soria-Arcos, Federico

    2018-02-09

    Blood pressure variability (BPV) has been postulated as a potential predictor of cardiovascular outcomes. No agreement exists as to which measurement method is best for BPV estimation. We attempt to assess the correlation between BPV obtained at the doctor's office, self-measurement at home (SMBP) and ambulatory BP monitoring (ABPM). Eight weekly clinic BP measurements, 2 SMBP series, and 1 24-hour ABPM recording were carried out in a sample of treated hypertensive patients. BPV was calculated using the SD, the "coefficient of variation" and the "average real variability." Determinants of short-, mid-, and long-term BPV (within each measurement method) were also calculated. The different BPV determinants were correlated "intramethod" and "intermethod" by linear regression test. For the 104 patients (66.5 ± 7.7 years, 58.7% males), the ABPM BPV (SD, systolic/diastolic: 14.5 ± 3.1/9.8 ± 2.5 mm Hg) was higher than the SMBP (12.2 ± 9.8/7.4 ± 5.8 mm Hg; P < 0.001) and clinic BPV (10 ± 8.9/5.9 ± 4.9 mm Hg; P = 0.001). The main BPV correlation between methods was weak, with a maximum R2 = 0.17 (P < 0.001) between clinic and SMBP systolic BPV. The "intramethod" correlation of BPV yielded a maximum R2 = 0.21 (P < 0.001) between morning diastolic SMBP intershift/intermeans variability. The "intermethod" correlation of short-, mid-, and long-term BPV determinants was weak (maximum R2 = 0.22, P < 0.001, between clinic intraday variability/SMBP morning intershift variability). The "intramethod" and "intermethod" correlation between BPV determinants was weak or nonexistent, even when comparing determinants reflecting the same type of temporal BPV. Our data suggest that BPV reflects a heterogeneous phenomenon that strongly depends on the estimation method and the time period evaluated.

  14. Measuring the level of agreement between directly measured blood pressure and pressure readings obtained with a veterinary-specific oscillometric unit in anesthetized dogs.

    Science.gov (United States)

    Acierno, Mark J; Fauth, Erika; Mitchell, Mark A; da Cunha, Anderson

    2013-01-01

    To determine if an oscillometric device optimized for use in dogs produces systolic, diastolic, and mean arterial pressures (MAPs) measurements that are in good agreement with directly obtained pressures Prospective study. University teaching hospital. Twenty-one dogs under general anesthesia for surgical procedures. A 20-Ga catheter was placed into the dorsal pedal artery and systolic, diastolic, and MAPs were directly measured using a validated blood pressure measurement system. Indirect blood pressure measurements were collected using a widely available veterinary oscillometric blood pressure unit. Results obtained by the 2 methods were then compared. Agreement between the directly and indirectly measured pressure demonstrated a bias of 9.9 mm Hg and limits of agreement (LOA) 73.7 to -53.9, a bias of -8.9 mm Hg and LOA 23.3 to -41.2, and a bias of -6.3 mm Hg and LOA 28.2 to -40.8 for systolic, diastolic, and MAP, respectively. There was poor agreement between the direct and indirect measured blood pressure measurement systems. Therefore, use of the oscillometric blood pressure unit evaluated in this study for monitoring patients under anesthesia cannot be recommended at this time. © Veterinary Emergency and Critical Care Society 2013.

  15. Measurement of vacuum pressure with a magneto-optical trap: A pressure-rise method.

    Science.gov (United States)

    Moore, Rowan W G; Lee, Lucie A; Findlay, Elizabeth A; Torralbo-Campo, Lara; Bruce, Graham D; Cassettari, Donatella

    2015-09-01

    The lifetime of an atom trap is often limited by the presence of residual background gases in the vacuum chamber. This leads to the lifetime being inversely proportional to the pressure. Here, we use this dependence to estimate the pressure and to obtain pressure rate-of-rise curves, which are commonly used in vacuum science to evaluate the performance of a system. We observe different rates of pressure increase in response to different levels of outgassing in our system. Therefore, we suggest that this is a sensitive method which will find useful applications in cold atom systems, in particular, where the inclusion of a standard vacuum gauge is impractical.

  16. Grip pressure measurements during activities of daily life

    Science.gov (United States)

    Sanford, Joe; Young, Carolyn; Popa, Dan; Bugnariu, Nicoleta; Patterson, Rita

    2014-06-01

    Research has expanded human-machine communication methods past direct programming and standard hand- held joystick control. Individual force sensors have been used as a simple means of providing environmental information to a robot and research has shown that more advanced sensitive skins can be viable input devices. These touch sensitive surfaces allow for additional modes of interaction between machines in open, undefined environments. These interactions include object detection for navigation and safety but can also be used for recognition of users command gestures by their machine partner. Key to successful implementation of these gestures is the understanding of varied strategies used for communication and interaction and the development of performance limits. Data of dominant hand grip forces was collected using a Tekscan Grip VersaTek Pressure Measurement System during opening of a door. Analysis of data from 10 male and female subjects is presented. The results of qualitative and quantitative analysis of these data show variability in hand configurations between users. Average data over the cohort is reported. These data will be used in future work to provide human metrology constraints and limits for use in simulation and design of new, physical human-robot interaction systems.

  17. Effect of peripheral edema on oscillometric blood pressure measurement.

    Science.gov (United States)

    Ghaffari, Shamsi; Malaki, Majid; Rezaeifar, Afshin; Abdollahi Fakhim, Shahin

    2014-01-01

    Blood pressure (BP) measurement is essential for epidemiological studies and clinical decisions. It seems that tissue characteristics can affect BP results and we try to find edema effect on BP results taken by different methods. BP of 55 children before open heart surgery were measured and compared according to three methods: Arterial as standard and reference, oscillometric and auscultatory methods. Peripheral edema as a tissue characteristic was defined in higher than +2 as marked edema and in equal or lower than +2 as no edema. data was expressed as Mean and 95% of confidence interval (CI 95%). Comparison of two groups was performed by T independent test and of more than two groups by ANOVA test. Mann-Whitney U and paired T-test were used for serially comparisons of changes. P less than 0.05 was considered significant. Fifty five children aged 29.4±3.9 months were divided into two groups: 10 children with peripheral edema beyond +2 and 45 cases without edema. Oscillometric method overestimated systolic BP and the Mean (CI 95%) difference of oscillometric to arterial was 4.8 (8/-1, P=0.02) in edematous and 4.2 (7/1, p=0.004) in non edematous. Oscillometric method underestimated diastolic BP as -9 (-1.8/-16.5, P=0.03) in edematous group and 2.6 (-0.7/+5, P= 0.2) in non edematous compared to arterial method. Oscillometric device standards cannot cover all specific clinical conditions. It underestimates diastolic BP significantly in edematous children, which was 9.2 mmHg in average beyond the acceptable standards.

  18. Anthropometric measures can better predict high blood pressure in adolescents.

    Science.gov (United States)

    Papalia, Teresa; Greco, Rosita; Lofaro, Danilo; Mollica, Agata; Roberti, Rita; Bonofiglio, Renzo

    2013-01-01

    Among children, obesity and overweight may be predictors of cardiovascular (CV) risk. The purpose of this study was to examine whether body mass index (BMI), waist circumference (WC) and waist to height ratio (WHtR) were related to blood pressure (BP) among healthy southern Italian students enrolled in 3 different secondary schools. Weight, height, BP and WC were measured; BMI and WHtR were calculated for 872 Italian students. Based on percentiles of BMI, the subjects were classified as underweight, normal weight, overweight or obese. Systolic BP or diastolic BP >95th percentile were considered as high BP values (according to the 2004 guidelines of the US National Heart, Lung, and Blood Institute). Central obesity was defined as WC >75th percentile or WHtR =0.5. Of the students, 8.7% were obese, 29% with WC >75th percentile and 29.5% with WHtR >0.5, while 4.6% showed high BP. Logistic regression showed a strong correlation between BMI and high BP (odds ratio [OR] = 1.030, p<0.0001), between WC and high BP (OR = 1.029, p<0.0001). Also WHtR (OR = 3.403, p<0.0001) was shown to be a predictor of high BP. In the male group, all of the variables considered showed a good capability to predict high BP, while in the females, only BMI (OR = 1.019, p<0.05) and WHtR (OR = 2.685, p<0.05) were associated with high BP. In this study, we found a different correlation between BMI, WC and BP in the 2 subgroups: males and females. Only WHtR showed a significant ability to predict high BP in both groups. WHtR might represent an easily measurable anthropometric index and a better predictor of CV risk in adolescents.

  19. Prehospital endotracheal intubation; need for routine cuff pressure measurement?

    NARCIS (Netherlands)

    Peters, J.H.; Hoogerwerf, N.

    2013-01-01

    In endotracheal intubation, a secured airway includes an insufflated cuff distal to the vocal cords. High cuff pressures may lead to major complications occurring after a short period of time. Cuff pressures are not routinely checked after intubation in the prehospital setting, dealing with a

  20. Reliability of blood pressure measurement and cardiovascular risk prediction

    NARCIS (Netherlands)

    van der Hoeven, N.V.

    2016-01-01

    High blood pressure is one of the leading risk factors for cardiovascular disease, but difficult to reliably assess because there are many factors which can influence blood pressure including stress, exercise or illness. The first part of this thesis focuses on possible ways to improve the

  1. Central venous pulse pressure analysis using an R-synchronized pressure measurement system.

    Science.gov (United States)

    Fujita, Yoshihisa; Hayashi, Daisuke; Wada, Shinya; Yoshioka, Naoki; Yasukawa, Takeshi; Pestel, Gunther

    2006-12-01

    The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.

  2. Pyramidal Traceability Hierarchy for Pressure Measurements and Calibrations at NIS- Egypt

    Directory of Open Access Journals (Sweden)

    A. A. ELTAWIL

    2012-01-01

    Full Text Available Pressure balances are excellent standards for measuring pressure with acceptable uncertainty and they are widely used at the primary pressure laboratories in the world. This study aims to study the propagation of uncertainty from primary standard piston cylinder assembly (PCA up to 500 MPa. The hierarchy of pressure measurements at NIS is based on using large effective area PCA in defining the pressure of 1 MPa. Characterization of primary standard PCA is presented transferring the obtained results to other level pressure standard described. Uncertainty calculation method at each level was studied. Propagation of uncertainty from primary standards through national standards to digital pressure gauges, digital pressure calibrators, pressure sensors and pressure transducers were investigated. Study of the effect of each variable on the uncertainty calculation was discussed.

  3. A comparison of blood pressure measurements in newborns.

    LENUS (Irish Health Repository)

    O'Shea, Joyce

    2012-02-01

    Blood pressure monitoring is an essential component of neonatal intensive care. We compared invasive and noninvasive (Dinamap, Marquette, and Dash) recordings in newborns and also noninvasive values obtained from upper and lower limbs. Infants\\' blood pressure was recorded every 6 hours for 72 hours using three noninvasive devices and compared with invasive readings taken simultaneously. Twenty-five babies were enrolled in the study, with birth weights of 560 to 4500 g and gestation 24 + 1 to 40 + 5 weeks. Three hundred thirty-two recordings were obtained. Comparison between invasive and noninvasive readings revealed that all three noninvasive monitors overread mean blood pressure. There was no significant difference between the cuff recordings obtained from the upper or lower limbs. All three noninvasive devices overestimated mean blood pressure values compared with invasive monitoring. Clinicians may be falsely reassured by noninvasive monitoring. Mean blood pressure values obtained from the upper and lower limb are similar.

  4. Continuous urethral pressure measurements; measurement techniques; pressure variations; clinical interpretations; and clinical relevance. A Systematic Literature Analysis.

    Science.gov (United States)

    Kummeling, Maxime T M; Rosier, Peter F W M; Elzevier, Henk W; Groenendijk, Pieter M

    2017-01-01

    The clinical relevance of urethral pressure variations (UPV) in the pathophysiology of over active bladder syndrome (OAB) has remained controversial to date. Some studies report an association with OAB and/or detrusor over activity (DO). Recently the International Consultation on Incontinence-Research Society recommended new clinical research to be performed on this subject. We provide a systematic review of the literature to specify this recommendation. Literature search was performed in PubMed, Embase, Web of Science, Cochrane, Central, Cinahl, Academic Science Premier, Science Direct, and Wiley Online using a sensitive search string combination. All authors independently reviewed and scored full text papers and consensus about methodological quality was obtained according to Oxford Level of Evidence (LoE). Four hundred eighty seven abstracts were screened, 25 papers met all predefined inclusion selection criteria. Incidence figures of UPV varied between 2% and 95%. Studies are of poor methodological quality with Oxford LoE scores of 3B and 4. Measurement methods and techniques show a large variety. The above mentioned association of DO/OAB with UPV is however frequently reported. There exists a phenomenon of UPV, apart from DO, which may be a separate entity within OAB syndrome. Large variation in measurement techniques and patient populations hinders fundamental research as well as clinical progress. Clinical relevance of UPV and consequences for treatment therefore are yet to be established. Future prospective research with well-defined patient population and standardised urodynamic measurement techniques is needed. Results of standardized and objective evaluations should be compared to clinical signs and symptoms by validated questionnaires. Neurourol. Urodynam. 36:51-56, 2017. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  5. Measurement of Intraocular Pressure by Patients With Glaucoma.

    Science.gov (United States)

    Pronin, Savva; Brown, Lyndsay; Megaw, Roly; Tatham, Andrew J

    2017-10-01

    The ability of patients to measure their own intraocular pressure (IOP) would allow more frequent measurements and better appreciation of peak IOP and IOP fluctuation. To examine whether patients with glaucoma can perform self-tonometry using a rebound tonometer and examine patient acceptability. An observational study in which IOP was assessed using Goldmann applanation tonometry and a rebound tonometer. Consecutive patients were provided with a patient information sheet and those consenting to take part in the study received standardized self-tonometry training and were then instructed to measure their own IOP under observation. This study was conducted at a glaucoma clinic at a university hospital from March 1, 2016, to December 30, 2016, and included both eyes of 100 patients with glaucoma or ocular hypertension. The percentage of patients who could successfully perform self-tonometry. Complete success was defined by a good technique and an IOP reading within 5 mm Hg of that obtained by a clinician using the same device. A 3-item questionnaire was used to examine perceptions of self-tonometry among patients. Among the 100 patients, the mean (SD) age was 67.5 (10.9) years (53% female). A total 73 of 100 patients (73%) met the complete success criteria. An additional 6 patients could use the device but had IOP readings greater than 5 mm Hg different from those obtained by the clinician. On average, IOP by the rebound tonometer was 2.66 mm Hg lower than Goldmann applanation tonometry (95% limits of agreement, -3.48 to 8.80 mm Hg). The IOPs with the rebound tonometer were similar whether obtained by self-tonometry or investigator, with excellent reproducibility with an intraclass correlation coefficient of 0.903 (95% CI, 0.867-0.928). A total of 56 of 79 successful or partially successful patients (71%) felt self-tonometry was easy, with 73 of 79 (92%) reporting self-tonometry to be comfortable, and a similar number happy to perform self-tonometry in the future

  6. Effects of the O-ring used for sealing in high-pressure balances on measurements of pressure

    Science.gov (United States)

    Woo, S. Y.; Lee, Y. J.; Choi, I. M.; Kim, B. S.; Shin, H. H.

    2002-08-01

    An oil-operated pressure balance is standard equipment widely used in the field of pressure metrology. Most of the commonly used pressure balances are in a simple piston-cylinder configuration where the piston and the cylinder can deform freely under pressure. This simple piston-cylinder assembly has an O-ring chamber on the cylinder bottom to seal the cylinder. The effects of this O-ring seal on the effective area are not well known. This paper demonstrates by the numerical method using finite element method and the experimental method that, when performing precise measurements of pressure using a pressure balance, the cylinder will be deformed by the oil pressure exerted on the bottom of the cylinder surrounded by the O-ring, causing a non-linearity in the change of effective area, and that, when the piston-cylinder assembly is used in the body with different diameters of O-ring, the effective area, i.e. the pressure, can be significantly changed. The effects of O-ring seals on the effective area of a DH5306 oil-operated pressure balance were investigated using two piston-cylinder assemblies with nominal effective areas of 2 mm2 over the pressure range of 100-300 MPa. Three different sizes of O-ring, 4.8, 8.0 and 11.7 mm in diameter, were used. The maximum change of the effective area can reach 30 ppm at 300 MPa and 18 ppm at 100 MPa due to the change of O-ring. Therefore, for precise pressure measurement, the correct understanding of the O-ring under the cylinder is required along with checking of the size of the O-ring under the cylinder whenever calibrating the piston-cylinder assembly.

  7. Estimation of bladder contractility from intravesical pressure-volume measurements.

    Science.gov (United States)

    Fry, Christopher H; Gammie, Andrew; Drake, Marcus John; Abrams, Paul; Kitney, Darryl Graham; Vahabi, Bahareh

    2017-04-01

    To describe parameters from urodynamic pressure recordings that describe urinary bladder contractility through the use of principles of muscle mechanics. Subtracted detrusor pressure and voided flow were recorded from patients undergoing filling cystometry. The isovolumetric increase of detrusor pressure, P, of a voluntary bladder contraction before voiding was used to generate a plot of (dP/dt)/P versus P. Extrapolation of the plot to the y-axis and the x-axis generated a contractility parameter, vCE (the maximum rate of pressure development) and the maximum isovolumetric pressure, P0 , respectively. Similar curves were obtained in ex vivo pig bladders with different concentrations of the inotropic agent carbachol and shown in a supplement. Values of vCE , but not P0 , diminished with age in female subjects. vCE was most significantly associated with the 20-80% duration of isovolumetric contraction t20-80 ; and a weaker association with maximum flow rate and BCI in women. P0 was not associated with any urodynamic variable in women, but in men was with t20-80 and isovolumetric pressure indices. The rate of isovolumetric subtracted detrusor pressure (t20-80 ) increase shows a very significant association with indices of bladder contractility as derived from a derived force-velocity curve. We propose that t20-80 is a detrusor contractility parameter (DCP). Neurourol. Urodynam. 36:1009-1014, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Performance evaluation of Honeywell silicon piezoresistive pressure transducers for oceanographic and limnological measurements

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Joseph, A.; Desai, R.G.P.; Prabhudesai, S.; Nagvekar, S.; Damodaran, V.

    and limnological measurements, have been carried out at four differing temperatures (10 degrees, 20 degrees, 30 degrees, and 40 degrees C) to evaluate their suitability for such applications. The full-scale pressure range of these shallow water absolute pressure...

  9. Measurements of the charged particle multiplicity distribution in restricted rapidity intervals

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1995-01-01

    Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| \\leq 0.5,1.0, 1.5,2.0\\/ along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.

  10. Thirty-minute compared to standardised office blood pressure measurement in general practice.

    NARCIS (Netherlands)

    Scherpbier-de Haan, N.D.; Wel, M. van der; Schoenmakers, G.; Boudewijns, S.; Peer, P.G.M.; Weel, C. van; Thien, Th.; Bakx, J.C.

    2011-01-01

    Background Although blood pressure measurement is one of the most frequently performed measurements in clinical practice, there are concerns about its reliability. Serial, automated oscillometric blood pressure measurement has the potential to reduce measurement bias and white-coat effect' Aim To

  11. Rapid Atmospheric-Pressure-Plasma-Jet Processed Porous Materials for Energy Harvesting and Storage Devices

    Directory of Open Access Journals (Sweden)

    Jian-Zhang Chen

    2015-01-01

    Full Text Available Atmospheric pressure plasma jet (APPJ technology is a versatile technology that has been applied in many energy harvesting and storage devices. This feature article provides an overview of the advances in APPJ technology and its application to solar cells and batteries. The ultrafast APPJ sintering of nanoporous oxides and 3D reduced graphene oxide nanosheets with accompanying optical emission spectroscopy analyses are described in detail. The applications of these nanoporous materials to photoanodes and counter electrodes of dye-sensitized solar cells are described. An ultrashort treatment (1 min on graphite felt electrodes of flow batteries also significantly improves the energy efficiency.

  12. Adjustable Sample Holder With Pressure Contacts for Photoconductivity Measurement

    OpenAIRE

    Sanjeev Kumar

    2011-01-01

    A sample holder is designed to hold and apply pressure contacts on the electrodes of the photoconducting material to study the photoresponse transient. The sample holder is assembled on an aluminium base plate. The needle pointed probes are constrained to move under the spring action to provide the pressure contacts. One of the probes is provided with the facility of ± x directional movement to provide contacts on the samples having different spacing between the electrodes. The setup is simpl...

  13. Real-time measurement of the vaginal pressure profile using an optical-fiber-based instrumented speculum

    Science.gov (United States)

    Parkinson, Luke A.; Gargett, Caroline E.; Young, Natharnia; Rosamilia, Anna; Vashi, Aditya V.; Werkmeister, Jerome A.; Papageorgiou, Anthony W.; Arkwright, John W.

    2016-12-01

    Pelvic organ prolapse (POP) occurs when changes to the pelvic organ support structures cause descent or herniation of the pelvic organs into the vagina. Clinical evaluation of POP is a series of manual measurements known as the pelvic organ prolapse quantification (POP-Q) score. However, it fails to identify the mechanism causing POP and relies on the skills of the practitioner. We report on a modified vaginal speculum incorporating a double-helix fiber-Bragg grating structure for distributed pressure measurements along the length of the vagina and include preliminary data in an ovine model of prolapse. Vaginal pressure profiles were recorded at 10 Hz as the speculum was dilated incrementally up to 20 mm. At 10-mm dilation, nulliparous sheep showed higher mean pressures (102±46 mmHg) than parous sheep (39±23 mmHg) (P=0.02), attributable largely to the proximal (cervical) end of the vagina. In addition to overall pressure variations, we observed a difference in the distribution of pressure that related to POP-Q measurements adapted for the ovine anatomy, showing increased tissue laxity in the upper anterior vagina for parous ewes. We demonstrate the utility of the fiber-optic instrumented speculum for rapid distributed measurement of vaginal support.

  14. Novel formula to measure mean pulmonary artery pressure

    Directory of Open Access Journals (Sweden)

    Francisco Jose Chacon-Lozsan

    2016-11-01

    Full Text Available Mean Pulmonary Arterial Pressure (MPAP is an important parameter in evaluation of patients with pulmonary hypertension. The aim of this study is to correlate a new formula using non-invasive blood pressure and Bernoulli’s right ventricle systolic pressure (RVSP with invasive method. To archive the objectives, we enrolled 143 patients with suspected pulmonary hypertension from January 2015 till January 2016; all patients underwent right heart catheter evaluation and simultaneously RVSP by transthoracic echocardiography and non-invasive blood pressure to calculate MPAP by the formula MPAP = Pulse Pressure / (Mean Arterial Pressure/RVSP; and the results were compared using the Pearson’s simple-linear correlation method. We found a significant association between invasive and equation results with a Pearson’s correlation of 0,872 with a confidence interval from 0,795 to 0,921; sensitivity was 1,538% with a 95% confidence of interval (CI from 0,038% to 8,276%, and Specificity was 100% with 95% CI from 94,48% to 100%. Our results suggest that the new formula have a good correlation estimating MPAP compared with invasive right heart catheterization method.

  15. Measuring bacterial activity and community composition at high hydrostatic pressure using a novel experimental approach: a pilot study.

    Science.gov (United States)

    Wannicke, Nicola; Frindte, Katharina; Gust, Giselher; Liskow, Iris; Wacker, Alexander; Meyer, Andreas; Grossart, Hans-Peter

    2015-05-01

    In this pilot study, we describe a high-pressure incubation system allowing multiple subsampling of a pressurized culture without decompression. The system was tested using one piezophilic (Photobacterium profundum), one piezotolerant (Colwellia maris) bacterial strain and a decompressed sample from the Mediterranean deep sea (3044 m) determining bacterial community composition, protein production (BPP) and cell multiplication rates (BCM) up to 27 MPa. The results showed elevation of BPP at high pressure was by a factor of 1.5 ± 1.4 and 3.9 ± 2.3 for P. profundum and C. maris, respectively, compared to ambient-pressure treatments and by a factor of 6.9 ± 3.8 fold in the field samples. In P. profundum and C. maris, BCM at high pressure was elevated (3.1 ± 1.5 and 2.9 ± 1.7 fold, respectively) compared to the ambient-pressure treatments. After 3 days of incubation at 27 MPa, the natural bacterial deep-sea community was dominated by one phylum of the genus Exiguobacterium, indicating the rapid selection of piezotolerant bacteria. In future studies, our novel incubation system could be part of an isopiestic pressure chain, allowing more accurate measurement of bacterial activity rates which is important both for modeling and for predicting the efficiency of the oceanic carbon pump. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Time-resolved temperature measurements in a rapid compression machine using quantum cascade laser absorption in the intrapulse mode

    KAUST Repository

    Nasir, Ehson Fawad

    2016-07-16

    A temperature sensor based on the intrapulse absorption spectroscopy technique has been developed to measure in situ temperature time-histories in a rapid compression machine (RCM). Two quantum-cascade lasers (QCLs) emitting near 4.55μm and 4.89μm were operated in pulsed mode, causing a frequency "down-chirp" across two ro-vibrational transitions of carbon monoxide. The down-chirp phenomenon resulted in large spectral tuning (δν ∼2.8cm-1) within a single pulse of each laser at a high pulse repetition frequency (100kHz). The wide tuning range allowed the application of the two-line thermometry technique, thus making the sensor quantitative and calibration-free. The sensor was first tested in non-reactive CO-N2 gas mixtures in the RCM and then applied to cases of n-pentane oxidation. Experiments were carried out for end of compression (EOC) pressures and temperatures ranging 9.21-15.32bar and 745-827K, respectively. Measured EOC temperatures agreed with isentropic calculations within 5%. Temperature rise measured during the first-stage ignition of n-pentane is over-predicted by zero-dimensional kinetic simulations. This work presents, for the first time, highly time-resolved temperature measurements in reactive and non-reactive rapid compression machine experiments. © 2016 Elsevier Ltd.

  17. Correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter during endovascular repair of abdominal aortic aneurysm

    Directory of Open Access Journals (Sweden)

    Pierre Galvagni Silveira

    2008-01-01

    Full Text Available PURPOSE: To establish a correlation between intrasac pressure measurements of a pressure sensor and an angiographic catheter placed in the same aneurysm sac before and after its exclusion by an endoprosthesis. METHODS: Patients who underwent endovascular abdominal aortic aneurysm repair and received an EndoSureTM wireless pressure sensor implant between March 19 and December 11, 2004 were enrolled in the study. Simultaneous readings of systolic, diastolic, mean, and pulse pressure within the aneurysm sac were obtained from the catheter and the sensor, both before and after sac exclusion by the endoprosthesis (Readings 1 and 2, respectively. Intrasac pressure measurements were compared using Pearson's correlation and Student's t test. Statistical significance was set at p0.05, mean (p>0.05, and pulse (p0.05 by the sensor. CONCLUSION: The excellent agreement between intrasac pressure readings recorded by the catheter and the sensor justifies use of the latter for detection of post-exclusion abdominal aortic aneurysm pressurization.

  18. Pressure Measurement Techniques for Abdominal Hypertension: Conclusions from an Experimental Model

    Directory of Open Access Journals (Sweden)

    Sascha Santosh Chopra

    2015-01-01

    Full Text Available Introduction. Intra-abdominal pressure (IAP measurement is an indispensable tool for the diagnosis of abdominal hypertension. Different techniques have been described in the literature and applied in the clinical setting. Methods. A porcine model was created to simulate an abdominal compartment syndrome ranging from baseline IAP to 30 mmHg. Three different measurement techniques were applied, comprising telemetric piezoresistive probes at two different sites (epigastric and pelvic for direct pressure measurement and intragastric and intravesical probes for indirect measurement. Results. The mean difference between the invasive IAP measurements using telemetric pressure probes and the IVP measurements was −0.58 mmHg. The bias between the invasive IAP measurements and the IGP measurements was 3.8 mmHg. Compared to the realistic results of the intraperitoneal and intravesical measurements, the intragastric data showed a strong tendency towards decreased values. The hydrostatic character of the IAP was eliminated at high-pressure levels. Conclusion. We conclude that intragastric pressure measurement is potentially hazardous and might lead to inaccurately low intra-abdominal pressure values. This may result in missed diagnosis of elevated abdominal pressure or even ACS. The intravesical measurements showed the most accurate values during baseline pressure and both high-pressure plateaus.

  19. Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements.

    OpenAIRE

    Redington, A N; Gray, H. H.; Hodson, M E; Rigby, M L; Oldershaw, P.J.

    1988-01-01

    The normal right ventricular pressure-volume relation was studied by recording biplane right ventriculograms with simultaneous high fidelity pressure recordings in 10 adults found to have normal coronary arteries and haemodynamic function at diagnostic cardiac catheterisation. Right ventricular volume was measured frame by frame from digitised ventriculograms by a modification of Simpson's rule. The accuracy of this method was tested in a study of 22 human and animal right ventricular casts. ...

  20. Measurement of pleural pressure swings with a fluid-filled esophageal catheter vs pulmonary artery occlusion pressure.

    Science.gov (United States)

    Verscheure, S; Massion, P B; Gottfried, S; Goldberg, P; Samy, L; Damas, P; Magder, S

    2017-02-01

    Pleural pressure measured with esophageal balloon catheters (Peso) can guide ventilator management and help with the interpretation of hemodynamic measurements, but these catheters are not readily available or easy to use. We tested the utility of an inexpensive, fluid-filled esophageal catheter (Peso) by comparing respiratory-induced changes in pulmonary artery occlusion (Ppao), central venous (CVP), and Peso pressures. We studied 30 patients undergoing elective cardiac surgery who had pulmonary artery and esophageal catheters in place. Proper placement was confirmed by chest compression with airway occlusion. Measurements were made during pressure-regulated volume control (VC) and pressure support (PS) ventilation. The fluid-filled esophageal catheter provided a high-quality signal. During VC and PS, change in Ppao (∆Ppao) was greater than ∆Peso (bias = -2 mm Hg) indicating an inspiratory increase in cardiac filling. During VC, ∆CVP bias was 0 indicating no change in right heart filling, but during PS, CVP fell less than Peso indicating an inspiratory increase in filling. Peso measurements detected activation of expiratory muscles, development of non-west zone 3 lung conditions during inspiration, and ventilator-triggered inspiratory efforts. A fluid-filled esophageal catheter provides a high-quality, easily accessible, and inexpensive measure of change in pleural pressure and provided insights into patient-ventilator interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Lateral flow assay with pressure meter readout for rapid point-of-care detection of disease-associated protein.

    Science.gov (United States)

    Lin, Bingqian; Guan, Zhichao; Song, Yanling; Song, Eunyeong; Lu, Zifei; Liu, Dan; An, Yuan; Zhu, Zhi; Zhou, Leiji; Yang, Chaoyong

    2018-02-26

    Paper-based assays such as lateral flow assays are good candidates for portable diagnostics owing to their user-friendly format and low cost. In terms of analytical detection, lateral flow assays usually require dedicated instruments to obtain quantitative results. Here we demonstrate a lateral flow assay with handheld pressure meter readout for the rapid detection of disease-related protein with high sensitivity and selectivity. Based on the pressure change produced by the catalytic reaction of Pt nanoparticles related to the concentration of the target, a quantitative reaction platform was established. During the lateral flow assay, the Pt nanoparticles are aggregated in the test line to form a gray band by biomolecular recognition and finally convert the recognition signal into highly sensitive pressure readout for quantitative analysis. Without sophisticated instrumentation and complicated operations, the whole detection process can be completed within 20 minutes. The limit of detection for myoglobin (2.9 ng mL -1 in diluted serum samples) meets the requirements of clinical monitoring. With the advantages of low cost, ease of operation, high sensitivity and selectivity, the method represents a versatile platform for point-of-care testing of disease biomarkers.

  2. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model

    Directory of Open Access Journals (Sweden)

    Babbs Charles F

    2012-08-01

    Full Text Available Abstract Background The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. Methods A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. Results The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. Conclusions A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain.

  3. Oscillometric measurement of systolic and diastolic blood pressures validated in a physiologic mathematical model

    Science.gov (United States)

    2012-01-01

    Background The oscillometric method of measuring blood pressure with an automated cuff yields valid estimates of mean pressure but questionable estimates of systolic and diastolic pressures. Existing algorithms are sensitive to differences in pulse pressure and artery stiffness. Some are closely guarded trade secrets. Accurate extraction of systolic and diastolic pressures from the envelope of cuff pressure oscillations remains an open problem in biomedical engineering. Methods A new analysis of relevant anatomy, physiology and physics reveals the mechanisms underlying the production of cuff pressure oscillations as well as a way to extract systolic and diastolic pressures from the envelope of oscillations in any individual subject. Stiffness characteristics of the compressed artery segment can be extracted from the envelope shape to create an individualized mathematical model. The model is tested with a matrix of possible systolic and diastolic pressure values, and the minimum least squares difference between observed and predicted envelope functions indicates the best fit choices of systolic and diastolic pressure within the test matrix. Results The model reproduces realistic cuff pressure oscillations. The regression procedure extracts systolic and diastolic pressures accurately in the face of varying pulse pressure and arterial stiffness. The root mean squared error in extracted systolic and diastolic pressures over a range of challenging test scenarios is 0.3 mmHg. Conclusions A new algorithm based on physics and physiology allows accurate extraction of systolic and diastolic pressures from cuff pressure oscillations in a way that can be validated, criticized, and updated in the public domain. PMID:22913792

  4. Glucose Monitoring System Based on Osmotic Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Alexandra LEAL

    2011-02-01

    Full Text Available This paper presents the design and development of a prototype sensor unit for implementation in a long-term glucose monitoring system suitable for estimating glucose levels in people suffering from diabetes mellitus. The system utilizes osmotic pressure as the sensing mechanism and consists of a sensor prototype that is integrated together with a pre-amplifier and data acquisition unit for both data recording and processing. The sensor prototype is based on an embedded silicon absolute pressure transducer and a semipermeable nanoporous membrane that is enclosed in the sensor housing. The glucose monitoring system facilitates the integration of a low power microcontroller that is combined with a wireless inductive powered communication link. Experimental verification have proven that the system is capable of tracking osmotic pressure changes using albumin as a model compound, and thereby show a proof of concept for novel long term tracking of blood glucose from remote sensor nodes.

  5. UNIVERSAL AUTO-CALIBRATION FOR A RAPID BATTERY IMPEDANCE SPECTRUM MEASUREMENT DEVICE

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; John L. Morrison; William H. Morrison

    2014-03-01

    Electrochemical impedance spectroscopy has been shown to be a valuable tool for diagnostics and prognostics of energy storage devices such as batteries and ultra-capacitors. Although measurements have been typically confined to laboratory environments, rapid impedance spectrum measurement techniques have been developed for on-line, embedded applications as well. The prototype hardware for the rapid technique has been validated using lithium-ion batteries, but issues with calibration had also been identified. A new, universal automatic calibration technique was developed to address the identified issues while also enabling a more simplified approach. A single, broad-frequency range is used to calibrate the system and then scaled to the actual range and conditions used when measuring a device under test. The range used for calibration must be broad relative to the expected measurement conditions for the scaling to be successful. Validation studies were performed by comparing the universal calibration approach with data acquired from targeted calibration ranges based on the expected range of performance for the device under test. First, a mid-level shunt range was used for calibration and used to measure devices with lower and higher impedance. Next, a high excitation current level was used for calibration, followed by measurements using lower currents. Finally, calibration was performed over a wide frequency range and used to measure test articles with a lower set of frequencies. In all cases, the universal calibration approach compared very well with results acquired following a targeted calibration. Additionally, the shunts used for the automated calibration technique were successfully characterized such that the rapid impedance measurements compare very well with laboratory-scale measurements. These data indicate that the universal approach can be successfully used for onboard rapid impedance spectra measurements for a broad set of test devices and range of

  6. [Mobile Health: IEEE Standard for Wearable Cuffless Blood Pressure Measuring Devices].

    Science.gov (United States)

    Zhou, Xia; Wu, Wenli; Bao, Shudi

    2015-07-01

    IEEE Std 1708-2014 breaks through the traditional standards of cuff based blood pressure measuring devices and establishes a normative definition of wearable cuffless blood pressure measuring devices and the objective performance evaluation of this kind of devices. This study firstly introduces the background of the new standard. Then, the standard details will be described, and the impact of cuffless blood pressure measuring devices with the new standard on manufacturers and end users will be addressed.

  7. A new estimate technology of non-invasive continuous blood pressure measurement based on electrocardiograph

    OpenAIRE

    Chung-Min Wu; Chueh Yu Chuang; Yeou-Jiunn Chen; Shih-Chung Chen

    2016-01-01

    Various physiological parameters have been widely used in the prevention and detection of diseases. In particular, the occurrence of cardiovascular diseases can be observed through daily measurement of blood pressure. Currently, the most common blood pressure measurement method records blood pressure on the upper arm. This can lead to the subject feeling uncomfortable and tension in the arm from the stress may lead to measurement errors. An electrocardiogram represents the electrical activity...

  8. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 105 Pa

    OpenAIRE

    Berg, Robert F.

    2015-01-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 105 Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures ...

  9. An automated flow calorimeter for heat capacity and enthalpy measurements at elevated temperatures and pressures

    Energy Technology Data Exchange (ETDEWEB)

    Yesavage, V.F.

    1990-08-31

    The need for highly accurate thermal property data for a broad range of new application fluids is well documented. To facilitate expansion of the current thermophysical database, an automated flow calorimeter was developed for the measurement of highly accurate isobaric heat capacities and enthalpies of fluids at elevated temperatures and pressures. The experimental technique utilizes traditional electrical power input, adiabatic flow calorimetry with a precision metering pump that eliminates the need for on-line flow rate monitoring. In addition, a complete automation system, greatly simplifies the operation of the apparatus and increases the rapidity of the measurement process. The range over which the instrument was tested, was 300--600 K and 0--12 Mpa, although the calorimeter should perform up to the original design goals of 700 K and 30 MPa. The new flow calorimeter was evaluated by measuring the mean, isobaric, specific heat capacities of liquid water and n-pentane. These experiments yielded an average deviation from the standard literature data of +0.02% and a total variation of 0.05%. Additional data analysis indicated that the overall measurement uncertainty was conservatively estimated as 0.2% with an anticipated precision of 0.1--0.15% at all operating conditions. 44 refs., 27 figs., 2 tabs.

  10. ON THE USEFULNESS OF FINGER BLOOD-PRESSURE MEASUREMENTS FOR STUDIES ON MENTAL WORKLOAD

    NARCIS (Netherlands)

    VELDMAN, JBP; RUDDEL, H; ROBBE, HWJ; Mulder, Lambertus; Mulder, Gysbertus

    Two experiments were conducted to explore the usefulness of the Penaz method for non-invasive, continuous finger blood pressure measurements during mental stress testing. In the first study, blood pressure was measured with the Penaz method, in the second it was measured intra-arterially. Two

  11. Interface pressure measurement during surgery: a comparison of four operating table surfaces.

    Science.gov (United States)

    Keller, B P J A; van Overbeeke, J; van der Werken, Chr

    2006-01-01

    To compare the pressure-reducing and pressure-redistributing characteristics of four operating room (OR) table mattresses using interface pressure measurements, in two positions adopted for surgical procedures. Support surfaces were randomly assigned to 80 patients. These were: an overlay pad filled with fibres (the standard OR mattress), a custom-made viscoelastic polyurethane foam mattress, an inflatable mattress with air-filled cells and a fluid mattress. An XSENSOR full-body pressure-mapping pad was used to record interface pressures of 40 patients in the supine position and 40 patients in the lithotomy position. Measurements were analysed for peak pressure, peak pressure index, total contact surface area and the occurrence of a significant increase in interface pressure during the surgical procedure. The highest interface pressures were measured on the standard mattress, in both the supine and lithotomy position. Overall, the fluid mattress showed the best pressure-reducing and pressure-redistributing capacities. As long as no reference values are available for interface pressures under which no pressure-related damage will occur, clinical testing of OR table surfaces is still necessary.

  12. Payments for carbon sequestration to alleviate development pressure in a rapidly urbanizing region

    Science.gov (United States)

    Smith, Jordan W.; Dorning, Monica; Shoemaker, Douglas A.; Méley, Andréanne; Dupey, Lauren; Meentemeyer, Ross K.

    2017-01-01

    The purpose of this study was to determine individuals' willingness to enroll in voluntary payments for carbon sequestration programs through the use of a discrete choice experiment delivered to forest owners living in the rapidly urbanizing region surrounding Charlotte, North Carolina. We examined forest owners' willingness to enroll in payments for carbon sequestration policies under different levels of financial incentives (annual revenue), different contract lengths, and different program administrators (e.g., private companies versus a state or federal agency). We also examined the influence forest owners' sense of place had on their willingness to enroll in hypothetical programs. Our results showed a high level of ambivalence toward participating in payments for carbon sequestration programs. However, both financial incentives and contract lengths significantly influenced forest owners' intent to enroll. Neither program administration nor forest owners' sense of place influenced intent to enroll. Although our analyses indicated that payments from carbon sequestration programs are not currently competitive with the monetary returns expected from timber harvest or property sales, certain forest owners might see payments for carbon sequestration programs as a viable option for offsetting increasing tax costs as development encroaches and property values rise.

  13. Healing of ulcers on the feet correlated with distal blood pressure measurements in occlusive arterial disease

    DEFF Research Database (Denmark)

    Holstein, P; Lassen, N A

    1980-01-01

    The frequency of healing in subchronic ulcers in 66 feet in 62 patients with arterial occlusive disease was correlated with the systolic digital blood pressure (SDBP) and the systolic ankle blood pressure (SABP), both measured with a strain gauge, and with the skin perfusion pressure on the heel ...

  14. Measuring Vapor Pressure with an Isoteniscope: A Hands-on Introduction to Thermodynamic Concepts

    Science.gov (United States)

    Chen, Wenqian; Haslam, Andrew J.; Macey, Andrew; Shah, Umang V.; Brechtelsbauer, Clemens

    2016-01-01

    Characterization of the vapor pressure of a volatile liquid or azeotropic mixture, and its fluid phase diagram, can be achieved with an isoteniscope and an industrial grade digital pressure sensor using the experimental method reported in this study. We describe vapor-pressure measurements of acetone and n-hexane and their azeotrope, and how the…

  15. Home blood pressure measurement : reproducibility and relationship with left ventricular mass

    NARCIS (Netherlands)

    Kok, R.H.; Beltman, F.W.; Terpstra, W.F.; Smit, A.J.; May, J.F.; de Graeff, P.A.; Meyboom-de Jong, B.

    1999-01-01

    OBJECTIVE: To evaluate the reproducibility and relationship with left ventricular mass index of home blood pressure in comparison with ambulatory and office blood pressures. METHODS: We measured home, ambulatory and office blood pressures of 84 previously untreated hypertensive patients, aged 60-74

  16. Rapid Analysis of Cefazolin in Serum by High-Pressure Liquid Chromatography

    Science.gov (United States)

    Wold, John S.

    1977-01-01

    A high-pressure liquid chromatography (HPLC) method has been developed for the analysis of cefazolin in serum. Serum was deproteinized by the addition of 6% trichloroacetic acid and injected onto a reverse-phase column with a mobile phase of 10 to 15% methanol in 1% aqueous acetic acid. Cefazolin chromatographed without interference from ultraviolet-absorbing components of serum, with a retention time of 3.1 min. Standard curves comparing peak area with concentration prepared from dog or human sera were linear over a range of 1.6 to 200 μg/ml. Results from the HPLC assay were compared with microbiological assays (cylinder plate method) on both standard serum samples and sera from dogs and human subjects receiving intramuscular cefazolin. The HPLC method was somewhat more accurate in comparison with the microbiological assay performed on serum samples of known concentration. The comparison of results from an analysis of serum levels of dogs or human subjects receiving cefazolin indicated that the two methods would lead to identical conclusions concerning pharmacokinetics or the achievement of therapeutic serum levels. The HPLC assay method presents an alternative to conventional microbiological assays, with marked improvement in speed (30 min) and considerable potential for future development. PMID:836007

  17. Aero-acoustic Measurement and Monitoring of Dynamic Pressure Fields Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovative and practical measurement and monitoring system optimally defines dynamic pressure fields, including sound fields. It is based on passive acoustic...

  18. X-ray reflectivity measurements of liquid/solid interfaces under high hydrostatic pressure conditions.

    Science.gov (United States)

    Wirkert, Florian J; Paulus, Michael; Nase, Julia; Möller, Johannes; Kujawski, Simon; Sternemann, Christian; Tolan, Metin

    2014-01-01

    A high-pressure cell for in situ X-ray reflectivity measurements of liquid/solid interfaces at hydrostatic pressures up to 500 MPa (5 kbar), a pressure regime that is particularly important for the study of protein unfolding, is presented. The original set-up of this hydrostatic high-pressure cell is discussed and its unique properties are demonstrated by the investigation of pressure-induced adsorption of the protein lysozyme onto hydrophobic silicon wafers. The presented results emphasize the enormous potential of X-ray reflectivity studies under high hydrostatic pressure conditions for the in situ investigation of adsorption phenomena in biological systems.

  19. Measurement of Aeroplane Takeoff Speed and Cabin Pressure.

    Science.gov (United States)

    Wardle, D. A.

    1999-01-01

    Describes two experiments in which a pendulum was used to determine acceleration along the runway during the takeoff of a plane and the takeoff speed. Uses a water-filled nanometer to determines the drop in cabin pressure during the flight. (CCM)

  20. Measures of blood pressure and cognition in dialysis patients

    Science.gov (United States)

    There are few reports on the relationship of blood pressure with cognitive function in maintenance dialysis patients. The Cognition and Dialysis Study is an ongoing investigation of cognitive function and its risk factors in six Boston area hemodialysis units. In this analysis, we evaluated the rela...

  1. Clinical implications of non-invasive measurement of central aortic blood pressure.

    Science.gov (United States)

    Stepień, Mariusz; Banach, Maciej; Jankowski, Piotr; Rysz, Jacek

    2010-11-01

    Central arterial systolic blood pressure is a very important factor in the pathophysiology of cardiovascular diseases. Central arterial pressure is a better predictor of cardiovascular risk than peripheral brachial blood pressure. Measurement of central blood pressure is useful for a diagnosis of spurious systolic hypertension in young people. Antihypertensive drugs have a different impact on central blood pressure, for example angiotensin converting enzyme inhibitors, antagonists of angiotensin II receptors, calcium channel blockers more effectively lower central blood pressure than betablockers, despite all of those drugs (including beta-blockers) having a similar impact on peripheral pressure. This mechanism may be responsible for the beneficial effect of some antihypertensive drugs on cardiovascular end points observed in clinical trials, despite a low peripheral hypotensive effect. However, further clinical trials are required to provide more evidence for the prognostic and therapeutic implications of the measurement of central blood pressure before adopting its routine application in clinical practice.

  2. An evaluation of pressure and flow measurement in the Molten Salt Test Loop (MSTL) system.

    Energy Technology Data Exchange (ETDEWEB)

    Gill, David Dennis; Kolb, William J.; Briggs, Ronald J.

    2013-07-01

    The National Solar Thermal Test Facility at Sandia National Laboratories has a unique test capability called the Molten Salt Test Loop (MSTL) system. MSTL allows customers and researchers to test components in flowing, molten nitrate salt at plant-like conditions for pressure, flow, and temperature. An important need in thermal storage systems that utilize molten salts is for accurate flow and pressure measurement at temperatures above 535ÀC. Currently available flow and pressure instrumentation for molten salt is limited to 535ÀC and even at this temperature the pressure measurement appears to have significant variability. It is the design practice in current Concentrating Solar Power plants to measure flow and pressure on the cold side of the process or in dead-legs where the salt can cool, but this practice wont be possible for high temperature salt systems. For this effort, a set of tests was conducted to evaluate the use of the pressure sensors for flow measurement across a device of known flow coefficient Cv. To perform this task, the pressure sensors performance was evaluated and was found to be lacking. The pressure indicators are severely affected by ambient conditions and were indicating pressure changes of nearly 200psi when there was no flow or pressure in the system. Several iterations of performance improvement were undertaken and the pressure changes were reduced to less than 15psi. The results of these pressure improvements were then tested for use as flow measurement. It was found that even with improved pressure sensors, this is not a reliable method of flow measurement. The need for improved flow and pressure measurement at high temperatures remains and will need to be solved before it will be possible to move to high temperature thermal storage systems with molten salts.

  3. Nanocomposite-Based Microstructured Piezoresistive Pressure Sensors for Low-Pressure Measurement Range

    Directory of Open Access Journals (Sweden)

    Vasileios Mitrakos

    2018-01-01

    Full Text Available Piezoresistive pressure sensors capable of detecting ranges of low compressive stresses have been successfully fabricated and characterised. The 5.5 × 5 × 1.6 mm3 sensors consist of a planar aluminium top electrode and a microstructured bottom electrode containing a two-by-two array of truncated pyramids with a piezoresistive composite layer sandwiched in-between. The responses of two different piezocomposite materials, a Multiwalled Carbon Nanotube (MWCNT-elastomer composite and a Quantum Tunneling Composite (QTC, have been characterised as a function of applied pressure and effective contact area. The MWCNT piezoresistive composite-based sensor was able to detect pressures as low as 200 kPa. The QTC-based sensor was capable of detecting pressures as low as 50 kPa depending on the contact area of the bottom electrode. Such sensors could find useful applications requiring the detection of small compressive loads such as those encountered in haptic sensing or robotics.

  4. Proposal to Measure Hadron Scattering with a Gaseous High Pressure TPC for Neutrino Oscillation Measurements

    CERN Document Server

    Andreopoulos, C; Bordoni, S; Boyd, S; Brailsford, D; Brice, S; Catanesi, G; Chen-Wishart, Z; Denner, P; Dunne, P; Giganti, C; Gonzalez Diaz, D; Haigh, J; Hamacher-Baumann, P; Hallsjo, S; Hayato, Y; Irastorza, I; Jamieson, B; Kaboth, A; Korzenev, A; Kudenko, Y; Leyton, M; Luk, K-B; Ma, W; Mahn, K; Martini, M; McCauley, N; Mermod, P; Monroe, J; Mosel, U; Nichol, R; Nieves, J; Nonnenmacher, T; Nowak, J; Parker, W; Raaf, J; Rademacker, J; Radermacher, T; Radicioni, E; Roth, S; Saakyan, R; Sanchez, F; Sgalaberna, D; Shitov, Y; Sobczyk, J; Soler, F; Touramanis, C; Valder, S; Walding, J; Ward, M; Wascko, M; Weber, A; Yokoyama, M; Zalewska, A; Ziembicki, M

    2017-01-01

    We propose to perform new measurements of proton and pion scattering on argon using a prototype High Pressure gas Time Projection Chamber (HPTPC) detector, and by doing so to develop the physics case for, and the technological readiness of, an HPTPC as a neutrino detector for accelerator neutrino oscillation searches. The motivation for this work is to improve knowledge of final state interactions, in order to ultimately achieve 1-2% systematic error on neutrino-nucleus scattering for oscillation measurements at 0.6 GeV and 2.5 GeV neutrino energy, as required for the Charge-Parity (CP) violation sensitivity projections by the Hyper-Kamiokande experiment (Hyper-K) and the Deep Underground Neutrino Experiment (DUNE). The final state interaction uncertainties in neutrino-nucleus interactions dominate cross-section systematic errors, currently 5–10% at these energies, and therefore R&D is needed to explore new approaches to achieve this substantial improvement.

  5. Pressure drop measurement for flow-measuring dummy fuel assemblies in HANARO core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Taek; Chung, Heung June [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    In order to characterize the flow distribution of HANARO core, flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies) were to be used in the HANARO commissioning. To do this instrumented dummy fuel assemblies were developed and the calibration tests were conducted in the thermal-hydraulic laboratory. Through this experiment the correlations for 6 instrumented dummy fuel assemblies were derived. The measured total pressure drop for the 36-element dummy fuel assembly was 211 kPa, which meets the design requirement, 209 kPa {+-} 5%. The form loss coefficients for the spacers were re-evaluated and the new correlation was obtained. 7 tabs., 13 figs., 2 refs. (Author).

  6. Reliability and applicability of DSTs and bottomhole pressure measurements in Texas Gulf Coast Tertiary formations

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, M.S.; Kreitler, C.W. (Texas Univ., Austin, TX (USA))

    1990-01-01

    Pressure data gathered from drillstem tests (DSTs) and bottomhole pressure measurements provide critical information toward formation evaluation and can be used for an assessment of prevailing pressure regimes and their influence on the migration potential of formation fluids. Reliability of such pressure data is an issue of major concern in reservoir engineering practice and can be established through an appropriate screening procedure. 17 figs., 10 refs.

  7. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure.

    NARCIS (Netherlands)

    Zomeren, van A.; Comans, R.N.J.

    2007-01-01

    Although humic substances (HS) strongly facilitate the transport of metals and hydrophobic organic contaminants in environmental systems, their measurement is hampered by the time-consuming nature of currently available methods for their isolation and purification. We present and apply a new rapid

  8. Rapid Anomaly Detection and Tracking via Compressive Time-Spectra Measurement

    Science.gov (United States)

    2016-02-12

    0002AM Title: Rapid anomaly detection and tracking via compressive time- spectra measurement Contract performance period: 05 Nov 2013 - 04... ground truth signal broadening technique...and tracking has direct applications in lower- cost, higher- performance sensors particularly in the shortwave infrared where focal plane array

  9. Measuring Negative Pore Pressures in Partially Frozen Saturated Soils

    OpenAIRE

    Holten, Johannes Gaspar

    2017-01-01

    Freezing of soil is an issue which has many implications on modern infrastructure, in which frost heave plays a pivotal role. During freezing the behavior of the soil and the flow of water is altered. In an engineering perspective, it is important to grasp the driving forces behind these behavioral changes. The main contributor to frost heave is the development of a large negative pore pressure in the unfrozen water in partially frozen fine-grained soil, termed cryosuction. The suction leads...

  10. Field measurement of local ice pressures on the ARAON in the Beaufort Sea

    Directory of Open Access Journals (Sweden)

    Tak-Kee Lee

    2014-12-01

    Full Text Available This study conducted four field measurements of local ice pressure during the icebreaking voyage of the icebreaking research vessel “ARAON” in the Chukchi and Beaufort seas from July to August of 2010. For measurements, 14 strain gauges, including 8 strain gauge rosettes, were set on the bow of the port side. Influence coefficients were determined using a finite element model of the instrumented area and they were used to convert the measured strains on the hull structure to local ice pressures. The converted maximum pressure was calculated as 2.12 MPa on an area of 0.28 m2. Pressure-area curves were developed from the surveyed pressure data and the results were compared with previously measured data. The study results are expected to provide an understanding of local ice pressures and thus be useful in the structural design of ice class ships.

  11. Influence on Calculated Blood Pressure of Measurement Posture for the Development of Wearable Vital Sign Sensors

    Directory of Open Access Journals (Sweden)

    Shouhei Koyama

    2017-01-01

    Full Text Available We studied a wearable blood pressure sensor using a fiber Bragg grating (FBG sensor, which is a highly accurate strain sensor. This sensor is installed at the pulsation point of the human body to measure the pulse wave signal. A calibration curve is built that calculates the blood pressure by multivariate analysis using the pulse wave signal and a reference blood pressure measurement. However, if the measurement height of the FBG sensor is different from the reference measurement height, an error is included in the reference blood pressure. We verified the accuracy of the blood pressure calculation with respect to the measurement height difference and the posture of the subject. As the difference between the measurement height of the FBG sensor and the reference blood pressure measurement increased, the accuracy of the blood pressure calculation decreased. When the measurement height was identical and only posture was changed, good accuracy was achieved. In addition, when calibration curves were built using data measured in multiple postures, the blood pressure of each posture could be calculated from a single calibration curve. This will allow miniaturization of the necessary electronics of the sensor system, which is important for a wearable sensor.

  12. Advanced lifetime PSP imaging system for pressure and temperature field measurement

    Science.gov (United States)

    Mitsuo, Kazunori; Asai, Keisuke; Takahashi, Akira; Mizushima, Hiroshi

    2006-06-01

    The newly designed lifetime imaging system (LIS), which was composed of a multi-gated CCD camera and LED illuminators, has been developed to measure simultaneously pressure and temperature field from luminescent lifetime decay of pressure-sensitive paint (PSP). The new system could reduce the measurement error due to shot noise of a CCD and laser speckle, compared to the previous lifetime imaging system. Optimization of PSP film thickness on white basecoat was also conducted for improving measurement accuracy, and could minimize the measurement error. As a verification test, pressure and temperature images on a simple delta wing were visualized by the newly designed LIS. The quality of the pressure image was considerably improved in comparison with that measured by the previous system. These results indicated that the new LIS was a practical measurement tool to acquire simultaneously pressure and temperature field on an aerodynamic model surface.

  13. Design, Manufacture and Testing of Capacitive Pressure Sensors for Low-Pressure Measurement Ranges

    Directory of Open Access Journals (Sweden)

    Vasileios Mitrakos

    2017-02-01

    Full Text Available This article presents the design, manufacture and testing of a capacitive pressure sensor with a high, tunable performance to low compressive loads (<10 kPa and a resolution of less than 0.5 kPa. Such a performance is required for the monitoring of treatment efficacy delivered by compression garments to treat or prevent medical conditions such as deep vein thrombosis, leg ulcers, varicose veins or hypertrophic scars. Current commercial sensors used in such medical applications have been found to be either impractical, costly or of insufficient resolution. A microstructured elastomer film of a polydimethylsiloxane (PDMS blend with a tunable Young’s modulus was used as the force-sensing dielectric medium. The resulting 18 mm × 18 mm parallel-plate capacitive pressure sensor was characterised in the range of 0.8 to 6.5 kPa. The microstructuring of the surface morphology of the elastomer film combined with the tuning of the Young’s modulus of the PDMS blend is demonstrated to enhance the sensor performance achieving a 0.25 kPa pressure resolution and a 10 pF capacitive change under 6.5 kPa compressive load. The resulting sensor holds good potential for the targeted medical application.

  14. Comparison of ultrasonic Doppler flow monitor, oscillometric, and direct arterial blood pressure measurements in ill dogs.

    Science.gov (United States)

    Bosiack, Ann P; Mann, F A; Dodam, John R; Wagner-Mann, Colette C; Branson, Keith R

    2010-04-01

    To compare blood pressure measurements obtained via ultrasonic Doppler flow monitor (DOP) and 2 oscillometric noninvasive blood pressure monitors (CAR and PAS) to invasive blood pressure (IBP) in hospitalized, conscious dogs with a range of blood pressures. Prospective clinical study. University teaching hospital. Eleven client-owned dogs aged between 4 months and 11.5 years (median 6 y), and weighing between 5.8 and 37.5 kg (median 30.2 kg). Blood pressure measurement. Three consecutive measurements of systolic, diastolic, and mean arterial pressure (MAP) were recorded for each of the 3 indirect devices (only systolic for DOP), along with concurrent IBP measurements. The data were categorized into 3 groups: hypotensive (direct MAPor=100 mm Hg), and hypertensive (direct MAP>100 mm Hg). Each indirect method was compared with the corresponding direct arterial pressure using the Bland-Altman method. Within the hypotensive group, each indirect method overestimated the corresponding IBP. Within the normotensive group all indirect systolic measurements and the PAS diastolic measurements underestimated the corresponding IBP. The remaining indirect measurements overestimated the corresponding IBP. Within the hypertensive group, DOP and CAR systolic measurements underestimated the corresponding IBP, and the remaining indirect measurements overestimated the corresponding IBP. In hypertensive dogs oscillometric systolic measurements were more accurate than MAP. In hypotensive dogs MAP measurements were more accurate than systolic measurements. All indirect measurements were most accurate in hypertensive dogs. The noninvasive blood pressure monitors in our study did not meet the validation standards set in human medicine. However, CAR diastolic and MAP measurements within the normotensive group, CAR MAP measurements within the hypertensive group, and PAS diastolic measurements in all groups were close to these standards. All indirect measurements showed greater bias during

  15. The measurement of digital systolic blood pressure by strain gauge technique

    DEFF Research Database (Denmark)

    Nielsen, P E; Bell, G; Lassen, N A

    1972-01-01

    The systolic blood pressure on the finger, toe, and ankle has been measured by a strain gauge technique in 10 normal subjects aged 17-31 years and 14 normal subjects aged 43-57 years. The standard deviation in repeated measurements lies between 2 and 6 mm Hg. The finger pressure in the younger gr...

  16. Accuracy of non-invasive blood pressure measurements in obese patients.

    Science.gov (United States)

    Arnold, Abigail; McNaughton, Amanda

    2018-01-11

    This article describes an evidence-based literature review, comparing upper arm and forearm blood pressure measurements using non-invasive devices on obese patients. The focus on blood pressure monitoring was in response to regularly witnessing inappropriately applied blood pressure cuffs on obese patient's upper arms in practice. An inaccurately obtained blood pressure measurement can result in the misdiagnosis and treatment of hypertension. As the prevalence of obesity grows worldwide, healthcare settings need to ensure they have the necessary equipment and trained staff to accurately measure obese patients' blood pressure. The aim of this review was to identify whether a forearm measurement provided a suitable alternative to upper arm measurements. The article discusses the development and execution of a search strategy, as well as the critical appraisal of a selected article. The results of the review demonstrated that forearm blood pressure measurements in obese patients do not replace upper arm blood pressure measurements taken with an appropriate cuff. It is recommended that further research is undertaken in order to identify suitable alternatives for obtaining an accurate non-invasive blood pressure measurement in obese patients.

  17. Validation of the urine column measurement as an estimation of the intra-abdominal pressure.

    NARCIS (Netherlands)

    Steeg, H.J.J. van der; Akkeren, J.P. van; Houterman, S.; Roumen, R.M.H.

    2009-01-01

    OBJECTIVE: To evaluate the efficacy of the urine column (UC) measurement compared to the intra-vesicular pressure (IVP) measurement as an estimation of intra-abdominal pressure (IAP) in patients with IAP up to 30 mmHg. METHODS: Fifteen patients undergoing a laparoscopic cholecystectomy were studied.

  18. Prediction of walking speed using single stance force or pressure measurements in healthy subjects

    NARCIS (Netherlands)

    Keijsers, N.L.W.; Stolwijk, N.M.; Renzenbrink, G.J.; Duysens, J.

    2016-01-01

    Walking speed is one of the best measures of overall walking capacity. In plantar pressure measurements, walking speed can be assessed using contact time, but it is only moderately correlated with walking speed. The center of pressure might be of more value to indicate walking speed since walking

  19. The position of the arm during blood pressure measurement in sitting position.

    NARCIS (Netherlands)

    Adiyaman, A.; Verhoeff, R.; Lenders, J.W.M.; Deinum, J.; Thien, Th.

    2006-01-01

    OBJECTIVE: Determining the influence of the position of the arm on blood pressure measurement in the sitting position. METHODS: Blood pressure of 128 individuals (the majority being treated hypertensive patients) visiting the outpatient clinic was measured simultaneously on both arms with arms in

  20. Arterial pressure measurement: Is the envelope curve of the oscillometric method influenced by arterial stiffness?

    Energy Technology Data Exchange (ETDEWEB)

    Gelido, G [Electronic department, Universidad Tecnologica Nacional FRBA, Bs. As. (Argentina); Angiletta, S [Electronic department, Universidad Tecnologica Nacional FRBA, Bs. As. (Argentina); Pujalte, A [Electronic department, Universidad Tecnologica Nacional FRBA, Bs. As. (Argentina); Quiroga, P [Electronic department, Universidad Favaloro FICEN, Bs. As. (Argentina); Cornes, P [Electronic department, Universidad Favaloro FICEN, Bs. As. (Argentina); Craiem, D [Electronic department, Universidad Favaloro FICEN, Bs. As. (Argentina)

    2007-11-15

    Measurement of peripheral arterial pressure using the oscillometric method is commonly used by professionals as well as by patients in their homes. This non invasive automatic method is fast, efficient and the required equipment is affordable with a low cost. The measurement method consists of obtaining parameters from a calibrated decreasing curve that is modulated by heart beats witch appear when arterial pressure reaches the cuff pressure. Diastolic, mean and systolic pressures are obtained calculating particular instants from the heart beats envelope curve. In this article we analyze the envelope of this amplified curve to find out if its morphology is related to arterial stiffness in patients. We found, in 33 volunteers, that the envelope waveform width correlates to systolic pressure (r=0.4, p<0.05), to pulse pressure (r=0.6, p<0.05) and to pulse pressure normalized to systolic pressure (r=0.6, p<0.05). We believe that the morphology of the heart beats envelope curve obtained with the oscillometric method for peripheral pressure measurement depends on arterial stiffness and can be used to enhance pressure measurements.

  1. Adding Impacts and Mitigation Measures to OpenEI's RAPID Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Erin

    2017-05-01

    The Open Energy Information platform hosts the Regulatory and Permitting Information Desktop (RAPID) Toolkit to provide renewable energy permitting information on federal and state regulatory processes. One of the RAPID Toolkit's functions is to help streamline the geothermal permitting processes outlined in the National Environmental Policy Act (NEPA). This is particularly important in the geothermal energy sector since each development phase requires separate land analysis to acquire exploration, well field drilling, and power plant construction permits. Using the Environmental Assessment documents included in RAPID's NEPA Database, the RAPID team identified 37 resource categories that a geothermal project may impact. Examples include impacts to geology and minerals, nearby endangered species, or water quality standards. To provide federal regulators, project developers, consultants, and the public with typical impacts and mitigation measures for geothermal projects, the RAPID team has provided overview webpages of each of these 37 resource categories with a sidebar query to reference related NEPA documents in the NEPA Database. This project is an expansion of a previous project that analyzed the time to complete NEPA environmental review for various geothermal activities. The NEPA review not only focused on geothermal projects within the Bureau of Land Management and U.S. Forest Service managed lands, but also projects funded by the Department of Energy. Timeline barriers found were: extensive public comments and involvement; content overlap in NEPA documents, and discovery of impacted resources such as endangered species or cultural sites.

  2. Flexible Piezoelectric-Induced Pressure Sensors for Static Measurements Based on Nanowires/Graphene Heterostructures.

    Science.gov (United States)

    Chen, Zefeng; Wang, Zhao; Li, Xinming; Lin, Yuxuan; Luo, Ningqi; Long, Mingzhu; Zhao, Ni; Xu, Jian-Bin

    2017-05-23

    The piezoelectric effect is widely applied in pressure sensors for the detection of dynamic signals. However, these piezoelectric-induced pressure sensors have challenges in measuring static signals that are based on the transient flow of electrons in an external load as driven by the piezopotential arisen from dynamic stress. Here, we present a pressure sensor with nanowires/graphene heterostructures for static measurements based on the synergistic mechanisms between strain-induced polarization charges in piezoelectric nanowires and the caused change of carrier scattering in graphene. Compared to the conventional piezoelectric nanowire or graphene pressure sensors, this sensor is capable of measuring static pressures with a sensitivity of up to 9.4 × 10 -3 kPa -1 and a fast response time down to 5-7 ms. This demonstration of pressure sensors shows great potential in the applications of electronic skin and wearable devices.

  3. Calibrating airborne measurements of airspeed, pressure and temperature using a Doppler laser air-motion sensor

    Directory of Open Access Journals (Sweden)

    W. A. Cooper

    2014-09-01

    Full Text Available A new laser air-motion sensor measures the true airspeed with a standard uncertainty of less than 0.1 m s−1 and so reduces uncertainty in the measured component of the relative wind along the longitudinal axis of the aircraft to about the same level. The calculated pressure expected from that airspeed at the inlet of a pitot tube then provides a basis for calibrating the measurements of dynamic and static pressure, reducing standard uncertainty in those measurements to less than 0.3 hPa and the precision applicable to steady flight conditions to about 0.1 hPa. These improved measurements of pressure, combined with high-resolution measurements of geometric altitude from the global positioning system, then indicate (via integrations of the hydrostatic equation during climbs and descents that the offset and uncertainty in temperature measurement for one research aircraft are +0.3 ± 0.3 °C. For airspeed, pressure and temperature, these are significant reductions in uncertainty vs. those obtained from calibrations using standard techniques. Finally, it is shown that although the initial calibration of the measured static and dynamic pressures requires a measured temperature, once calibrated these measured pressures and the measurement of airspeed from the new laser air-motion sensor provide a measurement of temperature that does not depend on any other temperature sensor.

  4. Non-invasive assessment of arterial stiffness using oscillometric blood pressure measurement

    Directory of Open Access Journals (Sweden)

    Komine Hidehiko

    2012-02-01

    Full Text Available Abstract Background Arterial stiffness is a major contributor to cardiovascular diseases. Because current methods of measuring arterial stiffness are technically demanding, the purpose of this study was to develop a simple method of evaluating arterial stiffness using oscillometric blood pressure measurement. Methods Blood pressure was conventionally measured in the left upper arm of 173 individuals using an inflatable cuff. Using the time series of occlusive cuff pressure and the amplitudes of pulse oscillations, we calculated local slopes of the curve between the decreasing cuff pressure and corresponding arterial volume. Whole pressure-volume curve was derived from numerical integration of the local slopes. The curve was fitted using an equation and we identified a numerical coefficient of the equation as an index of arterial stiffness (Arterial Pressure-volume Index, API. We also measured brachial-ankle (baPWV PWV and carotid-femoral (cfPWV PWV using a vascular testing device and compared the values with API. Furthermore, we assessed carotid arterial compliance using ultrasound images to compare with API. Results The slope of the calculated pressure-volume curve was steeper for compliant (low baPWV or cfPWV than stiff (high baPWV or cfPWV arteries. API was related to baPWV (r = -0.53, P r = -0.49, P r = 0.32, P Conclusions These results suggest that our method can simply and simultaneously evaluate arterial stiffness and blood pressure based on oscillometric measurements of blood pressure.

  5. Non-invasive assessment of arterial stiffness using oscillometric blood pressure measurement

    Science.gov (United States)

    2012-01-01

    Background Arterial stiffness is a major contributor to cardiovascular diseases. Because current methods of measuring arterial stiffness are technically demanding, the purpose of this study was to develop a simple method of evaluating arterial stiffness using oscillometric blood pressure measurement. Methods Blood pressure was conventionally measured in the left upper arm of 173 individuals using an inflatable cuff. Using the time series of occlusive cuff pressure and the amplitudes of pulse oscillations, we calculated local slopes of the curve between the decreasing cuff pressure and corresponding arterial volume. Whole pressure-volume curve was derived from numerical integration of the local slopes. The curve was fitted using an equation and we identified a numerical coefficient of the equation as an index of arterial stiffness (Arterial Pressure-volume Index, API). We also measured brachial-ankle (baPWV) PWV and carotid-femoral (cfPWV) PWV using a vascular testing device and compared the values with API. Furthermore, we assessed carotid arterial compliance using ultrasound images to compare with API. Results The slope of the calculated pressure-volume curve was steeper for compliant (low baPWV or cfPWV) than stiff (high baPWV or cfPWV) arteries. API was related to baPWV (r = -0.53, P blood pressure based on oscillometric measurements of blood pressure. PMID:22325084

  6. Non-invasive assessment of arterial stiffness using oscillometric blood pressure measurement.

    Science.gov (United States)

    Komine, Hidehiko; Asai, Yoshiyuki; Yokoi, Takashi; Yoshizawa, Mutsuko

    2012-02-10

    Arterial stiffness is a major contributor to cardiovascular diseases. Because current methods of measuring arterial stiffness are technically demanding, the purpose of this study was to develop a simple method of evaluating arterial stiffness using oscillometric blood pressure measurement. Blood pressure was conventionally measured in the left upper arm of 173 individuals using an inflatable cuff. Using the time series of occlusive cuff pressure and the amplitudes of pulse oscillations, we calculated local slopes of the curve between the decreasing cuff pressure and corresponding arterial volume. Whole pressure-volume curve was derived from numerical integration of the local slopes. The curve was fitted using an equation and we identified a numerical coefficient of the equation as an index of arterial stiffness (Arterial Pressure-volume Index, API). We also measured brachial-ankle (baPWV) PWV and carotid-femoral (cfPWV) PWV using a vascular testing device and compared the values with API. Furthermore, we assessed carotid arterial compliance using ultrasound images to compare with API. The slope of the calculated pressure-volume curve was steeper for compliant (low baPWV or cfPWV) than stiff (high baPWV or cfPWV) arteries. API was related to baPWV (r = -0.53, P blood pressure based on oscillometric measurements of blood pressure.

  7. Clinical significance of home blood pressure measurements for the prevention and management of high blood pressure.

    Science.gov (United States)

    Imai, Yutaka; Hosaka, Miki; Elnagar, Noha; Satoh, Michihiro

    2014-01-01

    1. Ambulatory blood pressure (ABP) monitoring (M) provides BP information at many points on any particular day during unrestricted routine daily activities, whereas home blood pressure (HBP) monitoring provides a lot of BP information obtained under fixed times and conditions over a long period of time, thus mean values of HBP provide high reproducibility, and thus an overall superiority compared with ABP.  2. HBP is at least equally or better able than ABP to predict hypertensive target organ damage and prognosis of cardiovascular disease.  3. HBPM allows for ongoing disease monitoring by patients, improves adherence to antihypertensive treatment, and can provide health-care providers with timely clinical data and direct and immediate feedback regarding diagnosis and treatment of hypertension.  4. HBPM provides BP information in relation to time; that is, BP in the morning, in the evening and at night during sleep, and it is an essential tool for the diagnosis of white-coat and masked hypertension.  5. HBPM yields minimal alerting affects and no or minimal placebo effect, and can therefore distinguish small, but significant, serial changes in BP. It is thus the most practical method for monitoring BP in the day-to-day management of hypertension. 6. The superiority of HBPM over ABPM and clinic BPM is apparent from almost all practical and clinical research perspectives. © 2013 Wiley Publishing Asia Pty Ltd.

  8. Theoretical and experimental studies on freezing point depression and vapor pressure deficit as methods to measure osmotic pressure of aqueous polyethylene glycol and bovine serum albumin solutions.

    Science.gov (United States)

    Kiyosawa, Keitaro

    2003-05-01

    For survival in adverse environments where there is drought, high salt concentration or low temperature, some plants seem to be able to synthesize biochemical compounds, including proteins, in response to changes in water activity or osmotic pressure. Measurement of the water activity or osmotic pressure of simple aqueous solutions has been based on freezing point depression or vapor pressure deficit. Measurement of the osmotic pressure of plants under water stress has been mainly based on vapor pressure deficit. However, differences have been noted for osmotic pressure values of aqueous polyethylene glycol (PEG) solutions measured by freezing point depression and vapor pressure deficit. For this paper, the physicochemical basis of freezing point depression and vapor pressure deficit were first examined theoretically and then, the osmotic pressure of aqueous ethylene glycol and of PEG solutions were measured by both freezing point depression and vapor pressure deficit in comparison with other aqueous solutions such as NaCl, KCl, CaCl(2), glucose, sucrose, raffinose, and bovine serum albumin (BSA) solutions. The results showed that: (1) freezing point depression and vapor pressure deficit share theoretically the same physicochemical basis; (2) theoretically, they are proportional to the molal concentration of the aqueous solutions to be measured; (3) in practice, the osmotic pressure levels of aqueous NaCl, KCl, CaCl(2), glucose, sucrose, and raffinose solutions increase in proportion to their molal concentrations and there is little inconsistency between those measured by freezing point depression and vapor pressure deficit; (4) the osmotic pressure levels of aqueous ethylene glycol and PEG solutions measured by freezing point depression differed from the values measured by vapor pressure deficit; (5) the osmotic pressure of aqueous BSA solution measured by freezing point depression differed slightly from that measured by vapor pressure deficit.

  9. HIGH TEMPERATURE HIGH PRESSURE THERMODYNAMIC MEASUREMENTS FOR COAL MODEL COMPOUNDS

    Energy Technology Data Exchange (ETDEWEB)

    Vinayak N. Kabadi

    1999-02-20

    It is well known that the fluid phase equilibria can be represented by a number of {gamma}-models , but unfortunately most of them do not function well under high temperature. In this calculation, we mainly investigate the performance of UNIQUAC and NRTL models under high temperature, using temperature dependent parameters rather than using the original formulas. the other feature of this calculation is that we try to relate the excess Gibbs energy G{sup E}and enthalpy of mixing H{sup E}simultaneously. In other words, we will use the high temperature and pressure G{sup E} and H{sup E}data to regress the temperature dependant parameters to find out which model and what kind of temperature dependant parameters should be used.

  10. More accurate systolic blood pressure measurement is required for improved hypertension management: a perspective.

    Science.gov (United States)

    Nitzan, Meir; Slotki, Itzchak; Shavit, Linda

    2017-01-01

    The commonly used techniques for systolic blood pressure (SBP) and diastolic blood pressure (DBP) measurement are the auscultatory Korotkoff-based sphygmomanometry and oscillometry. The former technique is relatively accurate but is limited to a physician's office because its automatic variant is subject to noise artifacts. Consequently, the Korotkoff-based measurement overestimates the blood pressure in some patients due to white coat effect, and because it is a single measurement, it cannot properly represent the variable blood pressure. Automatic oscillometry can be used at home by the patient and is preferred even in clinics. However, the technique's accuracy is low and errors of 10-15 mmHg are common. Recently, we have developed an automatic technique for SBP measurement, based on an arm pressure cuff and a finger photoplethysmographic probe. The technique was found to be significantly more accurate than oscillometry, and comparable to the Korotkoff-based technique, the reference-standard for non-invasive blood pressure measurements. The measurement of SBP is a mainstay for the diagnosis and follow-up of hypertension, which is a major risk factor for several adverse events, mainly cardiovascular. Lowering blood pressure evidently reduces the risk, but excessive lowering can result in hypotension and consequently hypoperfusion to vital organs, since blood pressure is the driving force for blood flow. Erroneous measurement by 10 mmHg can lead to a similar unintended reduction of SBP and may adversely affect patients treated to an SBP of 120-130 mmHg. In particular, in elderly patients, unintended excessive reduction of blood pressure due to inaccurate SBP measurement can result in cerebral hypoperfusion and consequent cognitive decline. By using a more accurate technique for automatic SBP measurement (such as the photoplethysmographic-based technique), the optimal blood pressure target can be achieved with lower risk for hypotension and its adverse events.

  11. Non-destructive estimation of root pressure using sap flow, stem diameter measurements and mechanistic modelling.

    Science.gov (United States)

    De Swaef, Tom; Hanssens, Jochen; Cornelis, Annelies; Steppe, Kathy

    2013-02-01

    Upward water movement in plants via the xylem is generally attributed to the cohesion-tension theory, as a response to transpiration. Under certain environmental conditions, root pressure can also contribute to upward xylem water flow. Although the occurrence of root pressure is widely recognized, ambiguity exists about the exact mechanism behind root pressure, the main influencing factors and the consequences of root pressure. In horticultural crops, such as tomato (Solanum lycopersicum), root pressure is thought to cause cells to burst, and to have an important impact on the marketable yield. Despite the challenges of root pressure research, progress in this area is limited, probably because of difficulties with direct measurement of root pressure, prompting the need for indirect and non-destructive measurement techniques. A new approach to allow non-destructive and non-invasive estimation of root pressure is presented, using continuous measurements of sap flow and stem diameter variation in tomato combined with a mechanistic flow and storage model, based on cohesion-tension principles. Transpiration-driven sap flow rates are typically inversely related to stem diameter changes; however, this inverse relationship was no longer valid under conditions of low transpiration. This decoupling between sap flow rates and stem diameter variations was mathematically related to root pressure. Root pressure can be estimated in a non-destructive, repeatable manner, using only external plant sensors and a mechanistic model.

  12. Multiplex pressure measurement in microsystems using volume displacement of particle suspensions.

    Science.gov (United States)

    Chung, Kwanghun; Lee, Hyewon; Lu, Hang

    2009-12-07

    We demonstrate a simple image-based method to measure pressure in microsystems using volume displacement of fluorescent particle suspensions. These micro pressure-sensors are composed of two layers with a poly(dimethylsiloxane) (PDMS) membrane in between: the flow layer includes a flow channel and the sensor layer contains a detection channel filled with suspensions of fluorescent particles. The pressure increase in the flow channel deflects the membrane, and this membrane deformation can be quantified by measuring the cross-sectional areas at specific focal planes. These simple sensors have the advantage that a broad sensing-range can be achieved by tuning the mechanical property and the geometry of the membrane during design and fabrication, and even simpler by tuning the focal plane or the pressure of a reference chamber while in operation. We also demonstrate here a pressure transduction scheme coupled with the image-based sensing method as a multiplex pressure measurement tool for simultaneously detecting pressures in multiple locations in a microsystem. Overall, the image-based pressure sensing method has high precision when operated in both direct and remote detection modes. Compared to conventional mechanical methods of pressure detection, this technique is inexpensive because it does not require complex off-chip equipment to quantify the pressure-dependent membrane deformation. In addition, the image analysis using the software code developed here is fast, and it generates data that are simple to interpret.

  13. Measurement of blood pressure, ankle blood pressure and calculation of ankle brachial index in general practice

    DEFF Research Database (Denmark)

    Nexøe, Jørgen; Damsbo, Bent; Lund, Jens Otto

    2012-01-01

    BACKGROUND: Low ankle brachial index (ABI) is a sensitive measure of 'burden' of atherosclerosis, indicating cardiovascular risk of the asymptomatic patient. Conventionally, ABI values......BACKGROUND: Low ankle brachial index (ABI) is a sensitive measure of 'burden' of atherosclerosis, indicating cardiovascular risk of the asymptomatic patient. Conventionally, ABI values...

  14. Respiratory modulation of oscillometric cuff pressure pulses and Korotkoff sounds during clinical blood pressure measurement in healthy adults.

    Science.gov (United States)

    Chen, Diliang; Chen, Fei; Murray, Alan; Zheng, Dingchang

    2016-05-10

    Accurate blood pressure (BP) measurement depends on the reliability of oscillometric cuff pressure pulses (OscP) and Korotkoff sounds (KorS) for automated oscillometric and manual techniques. It has been widely accepted that respiration is one of the main factors affecting BP measurement. However, little is known about how respiration affects the signals from which BP measurement is obtained. The aim was to quantify the modulation effect of respiration on oscillometric pulses and KorS during clinical BP measurement. Systolic and diastolic BPs were measured manually from 40 healthy subjects (from 23 to 65 years old) under normal and regular deep breathing. The following signals were digitally recorded during linear cuff deflation: chest motion from a magnetometer to obtain reference respiration, cuff pressure from an electronic pressure sensor to derive OscP, and KorS from a digital stethoscope. The effects of respiration on both OscP and KorS were determined from changes in their amplitude associated with respiration between systole and diastole. These changes were normalized to the mean signal amplitude of OscP and KorS to derive the respiratory modulation depth. Reference respiration frequency, and the frequencies derived from the amplitude modulation of OscP and KorS were also calculated and compared. Respiratory modulation depth was 14 and 40 % for OscP and KorS respectively under normal breathing condition, with significant increases (both p  0.05) during deep breathing, and for the oscillometric signal during normal breathing (p > 0.05). Our study confirmed and quantified the respiratory modulation effect on the oscillometric pulses and KorS during clinical BP measurement, with increased modulation depth under regular deeper breathing.

  15. PIV-based pressure, force, and torque measurements of a robotic model swimmer

    Science.gov (United States)

    Dabiri, John; Lucas, Kelsey; Thornycroft, Patrick; Lauder, George

    2014-11-01

    We apply a recently developed technique for non-invasive pressure measurement to study the dynamics of anguilliform swimming by a robotic flapping foil. The method is based on spatial integration of time-resolved particle image velocimetry measurements. The pressure gradient computed from the Navier-Stokes equations is integrated along multiple paths in the domain, and the local pressure is determined by the median value of the integration results. In addition, the pressure field is integrated on the surface of the foil to compute the instantaneous forces and torque exerted by the foil on the fluid. Direct force and torque measurements from a load cell are used to confirm the accuracy of the PIV-based measurements. Results for flapping foils of varying flexibility are compared to infer the role of the pressure field in the dynamics and energetic efficiency of locomotion.

  16. A novel non-invasive blood pressure waveform measuring system compared to Millar applanation tonometry.

    Science.gov (United States)

    Földi, Sándor; Horváth, Tamás; Zieger, Flóra; Sótonyi, Péter; Cserey, György

    2017-10-04

    The accurate, non-invasive, measuring of the continuous arterial blood pressure waveform faces some difficulties and an innovative blood pressure measurement technology is urgently needed. However, the arterial blood pressure waveform plays an essential role in health care by providing diagnostic information and base for calculating several heart function parameters. The aim of this study is to introduce a novel non-invasive measuring system that can measure the arterial blood pressure waveform with high accuracy in comparison to an applanation tonometry system. The applied measuring device utilizes a new measurement strategy enabled by the OptoForce 3D force sensor, which is attached to the wrist at the radial artery. To validate the accuracy, 30 simultaneous measurements were taken with a Millar tonometer. For the simultaneously recorded non-invasive signals, the similarity was high (the average correlation was [Formula: see text]). The differences in the systolic and the diastolic blood pressure measured by the two systems are small. The average differences ([Formula: see text]) for simultaneously recorded systolic, diastolic, mean arterial and incisura pressures were: [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text], respectively. These results satisfy the AAMI criteria. Based on our results, this new system requires further development and validation against invasive arterial blood pressure monitoring in order to prove its usefulness in patient monitoring, emergency care, and pulse diagnosis.

  17. A series of self-measurements by the patient is a reliable alternative to ambulatory blood pressure measurement

    NARCIS (Netherlands)

    Brueren, M. M.; Schouten, H. J.; de Leeuw, P. W.; van Montfrans, G. A.; van Ree, J. W.

    1998-01-01

    Several studies have reported overdiagnosis and overtreatment of hypertensive patients, especially in borderline hypertensives. To find a blood pressure measurement procedure that reduces the risk of misclassification to an acceptable level. Comparative, prospective study over seven months of

  18. Treatment of hypertension based on measurement of blood pressure variability: lessons from animal studies.

    Science.gov (United States)

    Su, Ding-Feng

    2006-09-01

    Blood pressure variability, a quantitative index for the spontaneous variation in blood pressure, has been proposed as a risk factor for end-organ damage and to determine the efficacy of hypertension treatment. Animal studies indicate that blood pressure variability is as important as blood pressure level in determining end-organ damage, and that high blood pressure variability is associated with end-organ damage, including myocardial lesions, aortic hypertrophy, vascular remodeling and renal damage. Although the organ damage induced by high blood pressure variability was similar to that induced by hypertension, comparative studies in sinoaortic-denervated and spontaneously hypertensive rats revealed that aortic hypertrophy is a sensitive index of high blood pressure variability, and left ventricular hypertrophy is a sensitive index of high blood pressure level. The possible mechanisms for high blood pressure variability-induced end-organ damage include: direct endothelial lesions, renin-angiotensin system activation, inflammation initiation and cardiomyocyte apoptosis augmentation. Blood pressure variability reduction contributes importantly to the organ-protective effect of some antihypertensive drugs. Although animal studies suggest some advantages in blood pressure variability measurements, clinical trials are necessary before the widespread use of blood pressure variability as a predictor of hypertensive organ damage and a new strategy for the treatment of hypertension.

  19. Proportion and characteristics of patients who measure their blood pressure at home: Nationwide survey in Slovenia

    Directory of Open Access Journals (Sweden)

    Petek-Šter Marija

    2009-01-01

    Full Text Available Introduction. Home blood pressure monitoring has several advantages over blood pressure monitoring at a physician's office, and has become a useful instrument in the management of hypertension. Objective. To explore the rate and characteristics of patients who measure their blood pressure at home. Methods. A sample of 2,752 patients with diagnosis of essential arterial hypertension was selected from 12596 consecutive office visitors. Data of 2,639 patients was appropriate for analysis. The data concerning home blood pressure measurement and patients' characteristics were obtained from the patients' case histories. Results 1,835 (69.5% out of 2,639 patients measured their blood pressure at home. 1,284 (70.0% of home blood pressure patients had their own blood pressure measurement device. There were some important differences between these two groups: home blood pressure patients were more frequently male, of younger age, better educated, from urban area, mostly non-smokers, more likely to have diabetes mellitus and ischemic heart disease and had higher number of co-morbidities and were on other drugs beside antihypertensive medication. Using the logistic regression analysis we found that the most powerful predictors of home blood pressure monitoring had higher education level than primary school OR=1.80 (95% CI 1.37-2.37, non-smoking OR=2.16 (95% CI 1.40-3.33 and having a physician in urban area OR=1.32 (95% CI 1.02-1.71. Conclusion. Home blood pressure monitoring is popular in Slovenia. Patients who measured blood pressure at home were different from patients who did not. Younger age, higher education, non-smoking, having a physician in urban area and longer duration of hypertension were predictors of home blood pressure monitoring.

  20. Liquid sinusoidal pressure measurement by laser interferometry based on the refractive index of water.

    Science.gov (United States)

    Yang, Jun; Fan, Shangchun; Li, Cheng; Guo, Zhanshe; Li, Bo; Shi, Bo

    2016-12-01

    A new method with laser interferometry is used to enhance the traceability for sinusoidal pressure calibration in water. The laser vibrometer measures the dynamic pressure based on the acousto-optic effect. The relation of the refractive index of water and the optical path length with the pressure's change is built based on the Lorentz-Lorenz equation, and the conversion coefficients are tested by static calibration in situ. A device with a piezoelectric transducer and resonant pressure pipe with water is set up to generate sinusoidal pressure up to 20 kHz. With the conversion coefficients, the reference sinusoidal pressure is measured by the laser interferometer for pressure sensors' dynamic calibration. The experiment results show that under 10 kHz, the measurement results between the laser vibrometer and a piezoelectric sensor are in basic agreement and indicate that this new method and its measurement system are feasible in sinusoidal pressure calibration. Some disturbing components including small amplitude, temperature change, pressure maldistribution, and glass windows' vibration are also analyzed, especially for the dynamic calibrations above 10 kHz.

  1. Home blood pressure in children and adolescents: a comparison with office and ambulatory blood pressure measurements.

    Science.gov (United States)

    Salgado, Cláudia Maria; Jardim, Paulo César Brandão Veiga; Viana, Jackeline Karoline Brito; Jardim, Thiago de Souza Veiga; Velasquez, Paola Patrícia Castillo

    2011-10-01

    To compare BP measurements of children and adolescents using different methods office BP (OBP), ambulatory BP monitoring (ABPM) and home BP measurement (HBPM) and to study their correlations. Individuals were evaluated between 5 and 15 years of age who had been referred because of a previous high BP. OBP was measured with the OMRON-705CP. Three measurements were carried out at 5-min intervals. HBPM were taken using the same device, two measurements at 5-min intervals in the morning and in the evening during 7 days. ABPM was performed using the SpaceLabs 90207 monitors. A total of 109 children and adolescents were evaluated (9.82 ± 2.63 years), 52.3% boys, 56.9% non-white. The office systolic BP (SBP) was lower than in daytime ABPM (p office diastolic BP (DBP) was lower than daytime ABPM (p home readings (SBP r = 0.731 and DBP r = 0.616) than with office's readings (SBP r = 0.653 and DBP r = 0.394). The BP of children and adolescents varies depending on the place and manner of measurement. ABPM presents better correlation with HBPM than with the office measurements. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.

  2. Coagulation-induced resistance to fluid flow in small-diameter vascular grafts and graft mimics measured by purging pressure.

    Science.gov (United States)

    Nichols, Michael D; Choudhary, Rewa; Kodali, Santhisri; Reichert, William M

    2013-11-01

    In this study, the coagulation-induced resistance to flow in small-diameter nonpermeable Tygon tubes and permeable expanded polytetrafluoroethylene (ePTFE) vascular grafts was characterized by measuring the upstream pressure needed to purge the coagulum from the tube lumen. This purging pressure was monitored using a closed system that compressed the contents of the tubes at a constant rate. The pressure system was validated using a glycerin series with well-defined viscosities and precisely controlled reductions in cross-sectional area available for flow. This system was then used to systematically probe the upstream pressure buildup as fibrin glue, platelet-rich plasma (PRP) or whole blood coagulated in small-diameter Tygon tubing and or ePTFE grafts. The maximum purging pressures rose with increased clot maturity for fibrin glue, PRP, and whole blood in both Tygon and ePTFE tubes. Although the rapidly coagulating fibrin glue in nonpermeable Tygon tubing yielded highly consistent purging curves, the significantly longer and more variable clotting times of PRP and whole blood, and the porosity of ePTFE grafts, significantly diminished the consistency of the purging curves. Copyright © 2013 Wiley Periodicals, Inc.

  3. ϕ Meson Measurements at Forward/Backward Rapidity at RHIC with PHENIX Detector

    Science.gov (United States)

    He, Xiaochun; Phenix Collaboration

    2016-09-01

    Given the relatively small hadronic interaction cross section, ϕ meson production provide a unique and complimentary method for exploring the hot and dense medium properties created in the relativistic heavy ion collisions. In this talk, a summary of the ϕ measurements at forward and backward rapidities in p+p, d+Au, Cu+Au collisions in the PHENIX experiment at RHIC will be given. Office of Science, Department of Energy.

  4. A fibre based triature interferometer for measuring rapidly evolving, ablatively driven plasma densities

    Science.gov (United States)

    Macdonald, J.; Bland, S. N.; Threadgold, J.

    2015-08-01

    We report on the first use of a fibre interferometer incorporating triature analysis for measuring rapidly evolving plasma densities of ne ˜ 1013/cm3 and above, such as those produced by simple coaxial plasma guns. The resultant system is extremely portable, easy to field in experiments, relatively cheap to produce, and—with the exception of a small open area in which the plasma is sampled—safe in operation as all laser light is enclosed.

  5. The mean machine; accurate non-invasive blood pressure measurement in the critically ill patient.

    Science.gov (United States)

    Muecke, Sandy; Bersten, Andrew; Plummer, John

    2009-10-01

    Accurate indirect prehospital blood pressure measurement in the critically ill patient remains an important challenge to both patient management and prehospital research. Ambulatory blood pressure measuring devices have not been trialled for prehospital use in critically ill patients. Prior to prehospital validation where conditions are suboptimal, we aimed to test under favourable conditions in the Intensive Care Unit, a selection of ambulatory devices that may be suitable for use in the field. Systolic, diastolic and mean pressures of three ambulatory devices were compared to the average of 1 min of independently recorded, high fidelity intra-arterial reference pressures. Eighteen critically ill patients were recruited. Device performance was required to fulfil the Association for the Advancement of Medical Instrumentation (AAMI) protocol. Additionally, agreement between measurement methods was examined using Bland-Altman plots. Two-level linear mixed model analyses were under- taken. For each device, 150 paired measurements (arterial reference and device) were analysed. According to the AAMI protocol, no device measured systolic pressures accurately. One device measured diastolic pressures accurately. Integrated mean pressures were accurately measured by all devices. Overall, SunTech Medical's Oscar 2 performed best with mean pressure error not exceeding 17 mmHg. For this device, Bland-Altman plots showed uniform agreement across a wide range of mean pressures. Two-level linear mixed effects analyses showed that Oscar 2 mean error reduced during vasopressor use by (-) 3.9 mmHg (95% CI -5.9, -1.9; P tension. In the Intensive Care Unit, the performance of one device, the Oscar 2, surpassed the others and fulfilled the AAMI protocol criteria for mean pressure measurement. This device is suitable for prehospital validation.

  6. Dynamic Temperature and Pressure Measurements in the Core of a Propulsion Engine

    Science.gov (United States)

    Schuster, Bill; Gordon, Grant; Hultgren, Lennart S.

    2015-01-01

    Dynamic temperature and pressure measurements were made in the core of a TECH977 propulsion engine as part of a NASA funded investigation into indirect combustion noise. Dynamic temperature measurements were made in the combustor, the inter-turbine duct, and the mixer using ten two-wire thermocouple probes. Internal dynamic pressure measurements were made at the same locations using piezoresistive transducers installed in semi-infinite coils. Measurements were acquired at four steady state operating conditions covering the range of aircraft approach power settings. Fluctuating gas temperature spectra were computed from the thermocouple probe voltage measurements using a compensation procedure that was developed under previous NASA test programs. A database of simultaneously acquired dynamic temperature and dynamic pressure measurements was produced. Spectral and cross-spectral analyses were conducted to explore the characteristics of the temperature and pressure fluctuations inside the engine, with a particular focus on attempting to identify the presence of indirect combustion noise.

  7. Evaluation of oscillometric and Doppler ultrasonic devices for blood pressure measurements in anesthetized and conscious dogs.

    Science.gov (United States)

    Vachon, Catherine; Belanger, Marie C; Burns, Patrick M

    2014-08-01

    Two non-invasive blood pressure (NIBP) devices (oscillometry and Doppler) were compared to invasive blood pressure using a Bland-Altman analysis, in anesthetized and conscious dogs. When considering the systolic arterial pressure only during general anesthesia, both NIBP devices slightly underestimated the systolic arterial blood pressure however the precision and the limits of agreement for the Doppler were of a greater magnitude. This indicates a worse clinical performance by the Doppler. The performance of both NIBP devices deteriorated as measured in conscious animals. In general, for the oscillometric device, determination of invasive diastolic and mean arterial pressures was better than the invasive systolic arterial pressure. Overall, the oscillometric device satisfied more of the criteria set by the American College of Veterinary Internal Medicine consensus statement. Based upon these results, the oscillometric device is more reliable than the Doppler in the determination of blood pressure in healthy medium to large breed dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. A pitfall in the measurement of arterial blood pressure in the ischaemic limb during elevation

    DEFF Research Database (Denmark)

    Bülow, J; Jelnes, Rolf

    1987-01-01

    In order to evaluate if elevation of the ischaemic limb above heart level is an alternative to the conventionally applied method with external counterpressure for estimation of skin perfusion pressure, femoral and popliteal artery pressures were measured directly in eight patients with occlusion...... arterial pressure decreased only by 20% of the value expected from the degree of elevation of the calf above the level of the heart. Thus, it could be calculated that calf vascular resistance increased two- to three-fold on average during elevation. Four patients were reexamined with the venous pressure...... kept at 10 mmHg during elevation. In these patients, the increase in vascular resistance was significantly less compared with the situation in which venous pressure was 0 mmHg during elevation. The arterial pressure still did not decrease. It is concluded that perfusion pressure in the ischaemic lower...

  9. Femoral artery pressure measurement to predict the outcome of arterial surgery in patients with multilevel disease

    DEFF Research Database (Denmark)

    Faris, I; Tønnesen, K H; Agerskov, K

    1982-01-01

    Direct measurement of the femoral artery pressure before operation has been used to predict the postoperative change in ankle and toe pressure in 102 limbs (83 patients) that underwent aortoiliac surgery for the treatment of atherosclerotic occlusion or stenosis affecting both the aortoiliac...... 25 mm Hg was associated with a high probability that amputation would be required. The chances of an amputation were less than 3% if a toe pressure higher than 40 mm Hg was predicted. If the predicted ankle pressure index was lower than 0.56, there was a 90% chance that intermittent claudication...... would persist. Measurement of the femoral artery pressure allows prediction of the toe and ankle pressure response to surgery to be made with sufficient accuracy to permit a preoperative decision to be made between the need for a single-level or a two-level arterial reconstruction: no patients who had...

  10. PIEZOELECTRIC WAVEGUIDE SENSOR FOR MEASURING PULSE PRESSURE IN CLOSED LIQUID VOLUMES AT HIGH VOLTAGE ELECTRIC DISCHARGE

    Directory of Open Access Journals (Sweden)

    V. G. Zhekul

    2017-10-01

    Full Text Available Purpose. Investigations of the characteristics of pressure waves presuppose the registration of the total profile of the pressure wave at a given point in space. For these purposes, various types of «pressure to the electrical signal» transmitters (sensors are used. Most of the common sensors are unsuitable for measuring the pulse pressure in a closed water volume at high hydrostatic pressures, in particular to study the effect of a powerful high-voltage pulse discharge on increasing the inflow of minerals and drinking water in wells. The purpose of the work was to develop antijamming piezoelectric waveguide sensor for measuring pulse pressure at a close distance from a high-voltage discharge channel in a closed volume of a liquid. Methodology. We have applied the calibration method as used as a secondary standard, the theory of electrical circuits. Results. We have selected the design and the circuit solution of the waveguide pressure sensor. We have developed a waveguide pulse-pressure sensor DTX-1 with a measuring loop. This sensor makes it possible to study the spectral characteristics of pressure waves of high-voltage pulse discharge in closed volumes of liquid at a hydrostatic pressure of up to 20 MPa and a temperature of up to 80 °C. The sensor can be used to study pressure waves with a maximum amplitude value of up to 150 MPa and duration of up to 80 µs. According to the results of the calibration, the sensitivity of the developed sensor DTX-1 with a measuring loop is 0.0346 V/MPa. Originality. We have further developed the theory of designing the waveguide piezoelectric pulse pressure sensors for measuring the pulse pressure at a close distance from a high-voltage discharge channel in a closed fluid volume by controlling the attenuation of the amplitude of the pressure signal. Practical value. We have developed, created, calibrated, used in scientific research waveguide pressure pulse sensors DTX-1. We propose sensors DTX-1 for sale

  11. Embedded optical probes for simultaneous pressure and temperature measurement of materials in extreme conditions

    Science.gov (United States)

    Sandberg, R. L.; Rodriguez, G.; Gibson, L. L.; Dattelbaum, D. M.; Stevens, G. D.; Grover, M.; Lalone, B. M.; Udd, E.

    2014-05-01

    We present recent efforts at Los Alamos National Laboratory (LANL) to develop sensors for simultaneous, in situ pressure and temperature measurements under dynamic conditions by using an all-optical fiber-based approach. While similar tests have been done previously in deflagration-to-detonation tests (DDT), where pressure and temperature were measured to 82 kbar and 400°C simultaneously, here we demonstrate the use of embedded fiber grating sensors to obtain high temporal resolution, in situ pressure measurements in inert materials. We present two experimental demonstrations of pressure measurements: (1) under precise shock loading from a gas-gun driven plate impact and (2) under high explosive driven shock in a water filled vessel. The system capitalizes on existing telecom components and fast transient digitizing recording technology. It operates as a relatively inexpensive embedded probe (single-mode 1550 nm fiber-based Bragg grating) that provides a continuous fast pressure record during shock and/or detonation. By applying well-controlled shock wave pressure profiles to these inert materials, we study the dynamic pressure response of embedded fiber Bragg gratings to extract pressure amplitude of the shock wave and compare our results with particle velocity wave profiles measured simultaneously.

  12. Reproduction of pressure field in ultrasonic-measurement-integrated simulation of blood flow.

    Science.gov (United States)

    Funamoto, Kenichi; Hayase, Toshiyuki

    2013-07-01

    Ultrasonic-measurement-integrated (UMI) simulation of blood flow is used to analyze the velocity and pressure fields by applying feedback signals of artificial body forces based on differences of Doppler velocities between ultrasonic measurement and numerical simulation. Previous studies have revealed that UMI simulation accurately reproduces the velocity field of a target blood flow, but that the reproducibility of the pressure field is not necessarily satisfactory. In the present study, the reproduction of the pressure field by UMI simulation was investigated. The effect of feedback on the pressure field was first examined by theoretical analysis, and a pressure compensation method was devised. When the divergence of the feedback force vector was not zero, it influenced the pressure field in the UMI simulation while improving the computational accuracy of the velocity field. Hence, the correct pressure was estimated by adding pressure compensation to remove the deteriorating effect of the feedback. A numerical experiment was conducted dealing with the reproduction of a synthetic three-dimensional steady flow in a thoracic aneurysm to validate results of the theoretical analysis and the proposed pressure compensation method. The ability of the UMI simulation to reproduce the pressure field deteriorated with a large feedback gain. However, by properly compensating the effects of the feedback signals on the pressure, the error in the pressure field was reduced, exhibiting improvement of the computational accuracy. It is thus concluded that the UMI simulation with pressure compensation allows for the reproduction of both velocity and pressure fields of blood flow. Copyright © 2012 John Wiley & Sons, Ltd.

  13. The impact of rapid sediment accumulation on pore pressure development and dehydration reactions during shallow subduction in the Gulf of Alaska

    Science.gov (United States)

    Meridth, Lanie N.; Screaton, Elizabeth J.; Jaeger, John M.; James, Stephanie R.; Villaseñor, Tania

    2017-01-01

    In the Gulf of Alaska region, sediment has rapidly accumulated (>1 km/my) in the trench sourced from intensified glaciation in the past ˜1.2 million years. This rapid sediment accumulation increases overburden and should accelerate dehydration of hydrous minerals by insulating the underlying sediment column. These processes have the potential to generate fluid overpressures in the low permeability sediments entering the subduction zone. A 1-D model was developed to simulate dehydration reaction progress and investigate excess pore pressures as sediments approach the trench and are subducted. At the deformation front, simulated temperatures increase by ˜30°C due to the insulating effect of trench sediments. As a result, opal-A begins to react to form quartz while smectite remains mostly unreacted. Loading due to the trench sediments elevates excess pore pressures to ˜30% of lithostatic pressure at the deformation front; however, deformation front excess pore pressures are sensitive to assumptions about the permeability of outer wedge sediments. If the outer wedge sediments are coarse-grained and high-permeability rather than mud-dominated, excess pore pressures are lower but still have an insulating effect. During early subduction, simulated pore pressures continue to rise and reach ˜70% of lithostatic by 60 km landward. The 1-D modeling results suggest that the elevated pore pressures are primarily due to loading and that dehydration reactions are not a significant component of excess pore pressure generation at this margin.

  14. A method for extracting respiratory frequency during blood pressure measurement, from oscillometric cuff pressure pulses and Korotkoff sounds recorded during the measurement.

    Science.gov (United States)

    Diliang Chen; Fei Chen; Murray, Alan; Dingchang Zheng

    2016-08-01

    Respiratory frequency is an important physiological feature commonly used to assess health. However, the current measurements involve dedicated devices which not only increase the medical cost but also make health monitoring inconvenient. Earlier studies have shown that respiratory frequency could be extracted from electrocardiography (ECG) signal, but little was done to assess the possibility of extracting respiratory frequency from oscillometric cuff pressure pulses (OscP) or Korotkoff sounds (KorS), which are normally used for measuring blood pressure and more easily accessible than the ECG signal. This study presented a method to extract respiratory frequency from OscP and KorS during clinical blood pressure measurement. The method was evaluated with clinical data collected from 15 healthy participants, and its measurement accuracy was compared with a reference respiratory rate obtained with a magnetometer. Experimental results showed small non-significant mean absolute bias (0.019 Hz for OscP and 0.024 Hz for KorS) and high correlation (0.7 for both OscP and KorS) between the reference respiratory frequency and respiratory frequency extracted from OscP or KorS, indicating the high reliability of extracting respiratory frequency from OscP and KorS during normal blood pressure measurement.

  15. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    Science.gov (United States)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  16. Mobile Universal Lexicon Evaluation System (MULES) test: A new measure of rapid picture naming for concussion.

    Science.gov (United States)

    Cobbs, Lucy; Hasanaj, Lisena; Amorapanth, Prin; Rizzo, John-Ross; Nolan, Rachel; Serrano, Liliana; Raynowska, Jenelle; Rucker, Janet C; Jordan, Barry D; Galetta, Steven L; Balcer, Laura J

    2017-01-15

    This study introduces a rapid picture naming test, the Mobile Universal Lexicon Evaluation System (MULES), as a novel, vision-based performance measure for concussion screening. The MULES is a visual-verbal task that includes 54 original photographs of fruits, objects and animals. We piloted MULES in a cohort of volunteers to determine feasibility, ranges of picture naming responses, and the relation of MULES time scores to those of King-Devick (K-D), a rapid number naming test. A convenience sample (n=20, age 34±10) underwent MULES and K-D (spiral bound, iPad versions). Administration order was randomized; MULES tests were audio-recorded to provide objective data on temporal variability and ranges of picture naming responses. Scores for the best of two trials for all tests were 40-50s; average times required to name each MULES picture (0.72±0.14s) was greater than those needed for each K-D number ((spiral: 0.33±0.05s, iPad: 0.36±0.06s, 120 numbers), psystems than more commonly used rapid number naming tasks. Rapid picture naming may require additional processing devoted to color perception, object identification, and categorization. Both tests rely on initiation and sequencing of saccadic eye movements. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Standing orthostatic blood pressure measurements cannot be replaced by sitting measurements.

    Science.gov (United States)

    Breeuwsma, Anna C; Hartog, Laura C; Kamper, Adriaan M; Groenier, Klaas H; Bilo, Henk Jg; Kleefstra, Nanne; Van Hateren, Kornelis Jj

    2017-08-01

    As many elderly patients are not able to stand for several minutes, sitting orthostatic blood pressure (BP) measurements are sometimes used as an alternative. We aimed to investigate the difference in BP response and orthostatic hypotension (OH) prevalence between the standard postural change to the sitting and the standing position in a cross-sectional observational study. BP was measured with a continuous BP measurement device during two postural changes, from supine to the sitting and from supine to the standing position. Linear mixed models were used to investigate the differences in changes (Δ) of systolic BP (SBP) and diastolic BP (DBP) between the two postural changes. The prevalence and the positive and negative proportions of agreement of OH were calculated of the two postural changes. One hundred and four patients with a mean age of 69 years were included. ΔSBP was significantly larger in the standing position compared with the sitting between 0 and 44 s. ΔDBP was significantly larger in the sitting position compared with the standing 75-224 s after postural change. The prevalence of OH was 66.3% (95% confidence interval (CI) 57.2, 75.4) in the standing position and 67.3% (95% CI 58.3, 76.3) in the sitting position. The positive proportion of agreement was 74.8% and the negative proportion of agreement was 49.3%. A clear difference was seen in BP response between the two postural changes. Although no significant difference in prevalence of OH was observed, the positive and negative proportion of agreement of the prevalence of OH were poor to moderate, which indicates a different outcome between both postural changes.

  18. Rapid assessment methodology in NORM measurements from building materials of Uzbekistan.

    Science.gov (United States)

    Safarov, A A; Safarov, A N; Azimov, A N; Darby, I G

    2017-04-01

    Utilizing low cost NaI(Tl) scintillation detector systems we present methodology for the rapid screening of building material samples and the determination of their Radium Equivalent Activity (Raeq). Materials from Uzbekistan as a representative developing country have been measured and a correction coefficient for Radium activity is deduced. The use of the correction coefficient offers the possibility to decrease analysis times thus enabling the express measurement of a large quantity of samples. The reduction in time, cost and the use of inexpensive equipment can democratize the practice of screening NORM in building materials in the international community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Pressure-Decay Measurements Improve Bubble-Point Test

    Science.gov (United States)

    Silkey, J. S.; Orton, G. F.

    1983-01-01

    Technique reduces by factor of about 100 minimum detectable flaw size in bubble-point test. By measuring rate of slow leakage, flaws as small as about 10-4 in. 2 (0.06mm2) are detected. Since technique does not require observation of screen, tests run on screens already installed inside tanks and pipes.

  20. Comparison of current tonometry techniques in measurement of intraocular pressure

    Directory of Open Access Journals (Sweden)

    Behrooz Kouchaki

    2017-06-01

    Conclusion: Although the mean difference of measured IOP by NCT, DCT, and ORA with GAT was less than 2 mmHg, the limit of agreement was relatively large. CCT and CRF were important influencing factors in the four types of tonometers.

  1. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    for isotropic fluids to the estimated velocity fields. The velocity fields were measured for a steady flow on a carotid bifurcation phantom (Shelley Medical, Canada) with a 70% constriction on the internal branch. Scanning was performed with a BK8670 linear transducer (BK Medical, Denmark) connected to a BK...

  2. Clinical aviation medicine research : comparison of simultaneous measurements of intra-aortic and auscultatory blood pressures with pressure-flow dynamics during rest and excercise.

    Science.gov (United States)

    1966-10-01

    The study provides correlative information with respect to the comparative accuracy of the traditional 'cuff' clinical method of obtaining blood pressure and the laboratory catheterization procedure which measures actual blood pressure. The informati...

  3. Corneal biomechanical properties and intraocular pressure measurement in Marfan patients.

    Science.gov (United States)

    Kara, Necip; Bozkurt, Ercument; Baz, Okkes; Altinkaynak, Hasan; Dundar, Huseyin; Yuksel, Kemal; Yazici, Ahmet Taylan; Demirok, Ahmet; Candan, Sukru

    2012-02-01

    To compare the biomechanical properties of the cornea and intraocular pressure (IOP) between patients with Marfan syndrome and age-matched controls. Departments of Ophthalmology and Genetics, Bakirkoy Maternity and Children Diseases Hospital, and Beyoglu Eye Education and Research Hospital, Istanbul, Turkey. Cross-sectional study. This study comprised patients with Marfan syndrome (study group) and healthy individuals (control group). The study group was subdivided into patients with ectopia lentis and patients without ectopia lentis. In the right eye of each patient, the corneal hysteresis (CH), corneal resistance factor (CRF), Goldman-correlated IOP, and corneal-compensated IOP were recorded. Overall, the mean CH, CRF, Goldman-correlated IOP, and corneal-compensated IOP were not significantly different between the study group and the control group. The mean CH was 9.9 mm Hg ± 1.2 (SD) in study eyes with ectopia lentis and 11.2 ± 1.5 mm Hg in study eyes without ectopia lentis (P=.016); the mean CRF was 8.2 ± 1.8 mm Hg and 11.3 ± 1.9 mm Hg, respectively (P<.001). The mean Goldman-correlated IOP was 11.7 ± 2.7 mm Hg in study eyes with ectopia lentis and 16.2 ± 4.3 in study eyes without ectopia lentis (P=.003); the mean corneal-compensated IOP was 13.5 ± 4.1 mm Hg and 15.6 ± 3.8 mm Hg, respectively (P=.07). The CH, CRF, and Goldman-correlated IOP were significantly lower in the Marfan syndrome eyes with ectopia lentis than in the Marfan syndrome eyes without ectopia lentis. Copyright © 2011 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  4. Apparatus to measure the vapor pressure of slowly decomposing compounds from 1 Pa to 105 Pa

    Science.gov (United States)

    Berg, Robert F.

    2016-01-01

    This article describes an apparatus and method for measuring vapor pressures in the range from 1 Pa to 105 Pa. Its three distinctive elements are : (1) the static pressure measurements were made with only a small temperature difference between the vapor and the condensed phase, (2) the sample was degassed in situ, and (3) the temperature range extended up to 200 °C. The apparatus was designed to measure metal-organic precursors, which often are toxic, pyrophoric, or unstable. Vapor pressures are presented for naphthalene, ferrocene, diethyl phthalate, and TEMAH (tetrakisethylmethylaminohafnium). Also presented are data for the temperature-dependent decomposition rate of TEMAH. PMID:27274567

  5. Development of a Rapid Beam Emittance Measurement System using a Real-Time Beam Profile Monitor

    Science.gov (United States)

    Kamakura, Keita; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Yorita, Tetsuhiko; Ueda, Hiroshi; Saito, Takane; Morinobu, Shunpei; Nagayama, Keiichi; Tamura, Hitoshi; Yasuda, Yuusuke

    2016-06-01

    We have developed a rapid beam emittance measurement system for the injection beam of the K140 azimuthally varying field (AVF) cyclotron at Research Center for Nuclear Physics (RCNP). So far, a conventional emittance monitor has been used in a section of a medium energy beam transport (MEBT) system to evaluate the quality of the injected beam to the K400 ring cyclotron. Two kinds of emittance monitors were supplemented in the low energy beam line for evaluation of ion beams from ion sources. One of them is a conventional type consisting of two sets of position-variable slits and a three-wire profile monitor (TPM), similar to the one installed in the MEBT system of the AVF cyclotron. It takes about 30 min to get emittances in both the horizontal and vertical planes. For quick emittance measurements, we have developed a new system equipped with a set of fast moving slits with a fixed gap and a real-time beam profile monitor (BPM83) with a rotating helical wire. With this system the measurement time was considerably reduced to 70 s for both the horizontal and vertical emittances. Moreover the data analysis and graphical processing were completely automated. The overall measurement and analysis time was successfully minimized within 75 s. This rapid emittance measurement system has contributed to improve the beam quality by optimizing parameters of ion sources and the beam transport system.

  6. Pressure ulcer healing: what is it? What influences it? How is it measured?

    Science.gov (United States)

    Xakellis, G C; Frantz, R A

    1997-09-01

    Defining healing requires a set of measurements that quantify the physical factors that change during healing. Such a list of measures gives a de facto definition of what constitutes pressure ulcer healing and what influences it. This paper attempts to answer a more specific question: Which measurements are strong candidates for inclusion in a tool for monitoring pressure ulcer healing? Three sets of clinical measurements are analyzed--the assessment proposed by the Agency for Health Care Policy and Research Guideline Development Panel for the Treatment of Pressure Ulcers; the recommendations of the Wound Healing Society; and the Pressure Sore Status Tool. The validity of the 11 clinical measures common across these assessment methods is examined using empiric evidence from studies of wound healing.

  7. Pico Gauges for Minimally Invasive Intracellular Hydrostatic Pressure Measurements1[C][W][OPEN

    Science.gov (United States)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare H.; Knoblauch, Michael

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods. PMID:25232014

  8. Rapid directional change degrades GPS distance measurement validity during intermittent intensity running.

    Directory of Open Access Journals (Sweden)

    Jonathan C Rawstorn

    Full Text Available Use of the Global Positioning System (GPS for quantifying athletic performance is common in many team sports. The effect of running velocity on measurement validity is well established, but the influence of rapid directional change is not well understood in team sport applications. This effect was systematically evaluated using multidirectional and curvilinear adaptations of a validated soccer simulation protocol that maintained identical velocity profiles. Team sport athletes completed 90 min trials of the Loughborough Intermittent Shuttle-running Test movement pattern on curvilinear, and multidirectional shuttle running tracks while wearing a 5 Hz (with interpolated 15 Hz output GPS device. Reference total distance (13 200 m was systematically over- and underestimated during curvilinear (2.61±0.80% and shuttle (-3.17±2.46% trials, respectively. Within-epoch measurement uncertainty dispersion was widest during the shuttle trial, particularly during the jog and run phases. Relative measurement reliability was excellent during both trials (Curvilinear r = 1.00, slope = 1.03, ICC = 1.00; Shuttle r = 0.99, slope = 0.97, ICC = 0.99. Absolute measurement reliability was superior during the curvilinear trial (Curvilinear SEM = 0 m, CV = 2.16%, LOA ± 223 m; Shuttle SEM = 119 m, CV = 2.44%, LOA ± 453 m. Rapid directional change degrades the accuracy and absolute reliability of GPS distance measurement, and caution is recommended when using GPS to quantify rapid multidirectional movement patterns.

  9. Nurse-measured or ambulatory blood pressure in routine hypertension care

    NARCIS (Netherlands)

    Veerman, D. P.; van Montfrans, G. A.

    1993-01-01

    Nurses are considered to evoke less white-coat hypertension, and might therefore be able to estimate average blood pressure as well as and more conveniently than ambulatory monitoring. The objective of the present study was to determine the correspondence between blood pressure measured by a doctor

  10. Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements

    Science.gov (United States)

    Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.

    2011-01-01

    Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (30 s) effects of probe pressure on diffuse reflectance and fluorescence measurements. Short-term light probe pressure (P0 physiological properties extracted from diffuse reflectance and fluorescence measurements, and less than 0 +/- 5% for diagnostically significant physiological properties. Absorption decreases with site-specific variations due to blood being compressed out of the sampled volume. Reduced scattering coefficient variation is site specific. Intrinsic fluorescence shows a large standard error, although no specific pressure-related trend is observed. Differences in tissue structure and morphology contribute to site-specific probe pressure effects. Therefore, the effects of pressure can be minimized when the pressure is small and applied for a short amount of time; however, long-term and large pressures induce significant distortions in measured spectra.

  11. Using Smartphone Pressure Sensors to Measure Vertical Velocities of Elevators, Stairways, and Drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are…

  12. Blood pressure measurement of all five fingers by strain gauge plethysmography

    DEFF Research Database (Denmark)

    Hirai, M; Nielsen, S L; Lassen, N A

    1976-01-01

    The aim of the present paper was to study the methodological problems involved in measuring systolic blood pressure in all five fingers by the strain gauge technique. In 24 normal subjects, blood pressure at the proximal phalanx of finger I and both at the proximal and the intermediate phalanx of...

  13. The feasibility and reliability of capillary blood pressure measurements in the fingernail fold

    NARCIS (Netherlands)

    de Graaff, Jurgen C.; Ubbink, Dirk Th; Lagarde, Sjoerd M.; Jacobs, Michael J. H. M.

    2002-01-01

    Capillary blood pressure is an essential parameter in the study of the (patho-)physiology of microvascular perfusion. Currently, capillary pressure measurements in humans are performed using a servo-nulling micropressure system containing an oil-water interface, which suffers some drawbacks. In

  14. Pressure/cross-sectional area probe in the assessment of urethral closure function. Reproducibility of measurement

    DEFF Research Database (Denmark)

    Lose, G; Schroeder, T

    1990-01-01

    -pressure zone and distally in the urethra. The in vitro study showed that cross sectional areas of 13-79 mm2 were determined with a SD of 1.4 mm2. In vivo measurements revealed that the urethral parameters: elastance, hysteresis, pressure and power of contraction during coughing and squeezing were fairly...

  15. A semi-empirical airfoil stall noise model based on surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Fischer, Andreas

    2017-01-01

    This work is concerned with the experimental study of airfoil stall and the modelling of stall noise. Using pressure taps and high-frequency surface pressure microphones flush-mounted on airfoils measured in wind tunnels and on an operating wind turbine blade, the characteristics of stall are ana...

  16. Center of Pressure Displacement of Standing Posture during Rapid Movements Is Reorganised Due to Experimental Lower Extremity Muscle Pain.

    Directory of Open Access Journals (Sweden)

    Shinichiro Shiozawa

    Full Text Available Postural control during rapid movements may be impaired due to musculoskeletal pain. The purpose of this study was to investigate the effect of experimental knee-related muscle pain on the center of pressure (CoP displacement in a reaction time task condition.Nine healthy males performed two reaction time tasks (dominant side shoulder flexion and bilateral heel lift before, during, and after experimental pain induced in the dominant side vastus medialis or the tibialis anterior muscles by hypertonic saline injections. The CoP displacement was extracted from the ipsilateral and contralateral side by two force plates and the net CoP displacement was calculated.Compared with non-painful sessions, tibialis anterior muscle pain during the peak and peak-to-peak displacement for the CoP during anticipatory postural adjustments (APAs of the shoulder task reduced the peak-to-peak displacement of the net CoP in the medial-lateral direction (P<0.05. Tibialis anterior and vastus medialis muscle pain during shoulder flexion task reduced the anterior-posterior peak-to-peak displacement in the ipsilateral side (P<0.05.The central nervous system in healthy individuals was sufficiently robust in maintaining the APA characteristics during pain, although the displacement of net and ipsilateral CoP in the medial-lateral and anterior-posterior directions during unilateral fast shoulder movement was altered.

  17. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Hsiao-Wei; Liang, Sheng-Ping; Wu, Ting-Jui; Chang, Haoming; Kao, Peng-Kai; Hsu, Cheng-Che; Chen, Jian-Zhang; Chou, Pi-Tai; Cheng, I-Chun

    2014-09-10

    In this work, we present the use of reduced graphene oxide (rGO) as the counter electrode materials in dye-sensitized solar cells (DSSCs). rGO was first deposited on a fluorine-doped tin oxide glass substrate by screen-printing, followed by post-treatment to remove excessive organic additives. We investigated the effect of atmospheric pressure plasma jet (APPJ) treatment on the DSSC performance. A power conversion efficiency of 5.19% was reached when DSSCs with an rGO counter electrode were treated by APPJs in the ambient air for a few seconds. For comparison, it requires a conventional calcination process at 400 °C for 15 min to obtain comparable efficiency. Scanning electron micrographs show that the APPJ treatment modifies the rGO structure, which may reduce its conductivity in part but simultaneously greatly enhances its catalytic activity. Combined with the rapid removal of organic additives by the highly reactive APPJ, DSSCs with APPJ-treated rGO counter electrode show comparable efficiencies to furnace-calcined rGO counter electrodes with greatly reduced process time. This ultrashort process time renders an estimated energy consumption per unit area of 1.1 kJ/cm(2), which is only one-third of that consumed in a conventional furnace calcination process. This new methodology thus saves energy, cost, and time, which is greatly beneficial to future mass production.

  18. Rapid and stable measurement of respiratory rate from Doppler radar signals using time domain autocorrelation model.

    Science.gov (United States)

    Sun, Guanghao; Matsui, Takemi

    2015-01-01

    Noncontact measurement of respiratory rate using Doppler radar will play a vital role in future clinical practice. Doppler radar remotely monitors the tiny chest wall movements induced by respiration activity. The most competitive advantage of this technique is to allow users fully unconstrained with no biological electrode attachments. However, the Doppler radar, unlike other contact-type sensors, is easily affected by the random body movements. In this paper, we proposed a time domain autocorrelation model to process the radar signals for rapid and stable estimation of the respiratory rate. We tested the autocorrelation model on 8 subjects in laboratory, and compared the respiratory rates detected by noncontact radar with reference contact-type respiratory effort belt. Autocorrelation model showed the effects of reducing the random body movement noise added to Doppler radar's respiration signals. Moreover, the respiratory rate can be rapidly calculated from the first main peak in the autocorrelation waveform within 10 s.

  19. Comparison of two species-specific oscillometric blood pressure monitors with direct blood pressure measurement in anesthetized cats.

    Science.gov (United States)

    Cerejo, Sofia A; Teixeira-Neto, Francisco J; Garofalo, Natache A; Rodrigues, Jéssica C; Celeita-Rodríguez, Nathalia; Lagos-Carvajal, Angie P

    2017-07-01

    To compare the performance of 2 species-specific oscillometric blood pressure (OBP) monitors (petMAPclassic and petMAPgraphic ) with direct blood pressure measurement in anesthetized cats. Prospective, experimental study. Veterinary teaching hospital. Eight adult cats (3.2-5.5 kg). During isoflurane anesthesia, OBP cuffs were placed on the thoracic limb and on the base of the tail while invasive blood pressure (IBP) was recorded from a dorsal pedal artery. End-tidal isoflurane concentrations, with or without intravenous dopamine (n = 8), norepinephrine (n = 1), or phenylephrine (n = 1) were adjusted to change invasive mean arterial pressure (MAP) between 40 to 100 mm Hg. Data were analyzed by the Bland-Altman method and 4-quadrant plots. Mean biases and limits of agreement (LOA: ± 1.96 SD) (mm Hg) recorded between the petMAPclassic (thoracic limb) and IBP for systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and MAP were 4.2 ± 28.5, -6.1 ± 13.2, and -1.9 ± 14.6, respectively; mean biases and LOA (mm Hg) recorded with the tail cuff were 7.2 ± 31.3 (SAP), -6.1 ± 11.6 (DAP), and -1.1 ± 11.7 (MAP). Mean biases and LOA (mm Hg) between petMAPgraphic (thoracic limb) and IBP were 7.7 ± 27.0 (SAP), -4.3 ± 11.5 (DAP), 0.2 ± 13.0 (MAP); values recorded with the tail cuff were 10.9 ± 29.6 (SAP), -4.4 ± 11.7 (DAP), and -0.1 ± 12.1 (MAP). Concordance rates after excluding arterial pressure changes ≤ 5 mm Hg was ≥ 93% for both devices. Although both OBP monitors provide unacceptable SAP estimations, MAP values derived from both monitors and DAP measured by the petMAPgraphic result in acceptable agreement with the reference method according to the Association for the Advancement of Medical Instrumentation (mean bias ≤ 5 mm Hg with LOA ≤ ± 16 mm Hg). Both monitors provide acceptable trending ability for SAP, DAP, and MAP. © Veterinary Emergency and Critical Care Society 2017.

  20. Determination of dynamic pressure on infinite piezoelectric hollow cylinder from electric potential difference measurement

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H.M. [Department of Mechanics, School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027 (China)], E-mail: wanghuiming@zju.edu.cn; Ding, H.J. [Department of Civil Engineering, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027 (China)

    2009-06-15

    An analytical method is developed for evaluating the dynamic pressure acted at the surface of infinite piezoelectric hollow cylinder by measuring the electric potential difference between the internal and external surfaces. By virtue of the separation of variables method and the orthogonal expansion technique, the inverse boundary problem is transformed to a second kind Volterra integral equation about the unknown dynamic pressure. The interpolation method is employed to solve the integral equation and the dynamic pressure is determined. The present method is suitable for the hollow cylinder with arbitrary thickness subjected to arbitrary dynamic pressure. Numerical experiments are also presented.

  1. Second-harmonic-generation measurements on ZnSe under high pressure

    CERN Document Server

    Jin Ming Xing; Mukhtar, E; Ding Da Jun

    2002-01-01

    Second-harmonic-generation (SHG) measurements on ZnSe at high pressure, up to 7 GPa, have been reported. The zinc-blende-rock-salt transition pressure has been determined at room temperature from the SHG in ZnSe using a femtosecond laser. The pressure required to induce transformation from a zinc-blende to a rock-salt structure decreases from 11.5 to 1.07 GPa in a femtosecond laser field. SHG can be used to monitor structural changes under pressure of some materials with nonlinear optical properties.

  2. Pressure-stability of phospholipid bicelles: Measurement of residual dipolar couplings under extreme conditions

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, E.; Arnold, M.R.; Kremer, W.; Kalbitzer, H.R. [University of Regensburg, Institute of Biophysics and Physical Biochemistry (Germany)

    2001-10-15

    High-pressure NMR of proteins in solutions currently gains increasing interest. 3D structure determination of proteins under high pressure is, however, so far impossible due to the lack of NOE information. Residual dipolar couplings induced by the addition of magnetically orienting media are known to be capable of replacing NOE information to a very high extent. In the present contribution we study the pressure-wstability of dimyristoylphosphatidylcholine (DMPC)/ dihexanoylphosphatidylcholine (DHPC) bicelles and demonstrate the feasibility of measuring residual dipolar couplings in proteins under high pressure.

  3. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Science.gov (United States)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  4. The effect of clothes on sphygmomanometric blood pressure measurement in hypertensive patients.

    Science.gov (United States)

    Pinar, Rukiye; Ataalkin, Sıddıka; Watson, Roger

    2010-07-01

    To test whether there is any difference between blood pressure readings with patients wearing clothes under the manometer's cuff and not wearing clothes. The few studies published on this subject have shown that blood pressure measurements give similar results whether the patients' arm is covered by clothing or not. However, it has not been clarified whether this is also true in hypertensive patients. Blood pressure was measured on non-sleeved arm, sleeved arm and again on non-sleeved arm in 258 hypertensive patients using a mercury-filled column sphygmomanometer. Three nurses who were experienced and specially trained for the study performed blood pressure measurements. They were unaware of the purpose of the research. Measuring blood pressure with the manometer's cuff over participant's sleeved arm did not differ significantly from non-sleeved arm measurements. Sleeves have no effect on blood pressure results. Blood pressure readings taken over the sleeves will be much more practical and time saving in busy departments like emergency rooms, during disasters like earthquake where decisions have to make in minutes. Additionally, it will be time saving for general health screening surveys. Finally, it may have preferable because of hygiene concerns, patient privacy and religious beliefs. © 2010 Blackwell Publishing Ltd.

  5. Evaluation of skills and knowledge on orthostatic blood pressure measurements in elderly patients.

    NARCIS (Netherlands)

    Vloet, L.C.M.; Smits, R.; Frederiks, C.M.A.; Hoefnagels, W.H.L.; Jansen, R.W.M.M.

    2002-01-01

    OBJECTIVES: orthostatic hypotension is a common and potentially dangerous condition in elderly patients, often accompanied by dizziness and falls. To diagnose orthostatic hypotension, many physicians rely on blood pressure measurements performed by nurses. DESIGN: observational and descriptive

  6. In-Situ Rolling Element Bearing Temperature and/or Pressure Measurement

    National Research Council Canada - National Science Library

    Nickel, David

    1999-01-01

    ... attitude-control wheels. Thin-film deposition and patterning processes have been formulated for the production of thin-film resistive sensors for in-situ measurement of pressure and temperature transients in lubricated contacts...

  7. Poor Reliability of Wrist Blood Pressure Self-Measurement at Home: A Population-Based Study.

    Science.gov (United States)

    Casiglia, Edoardo; Tikhonoff, Valérie; Albertini, Federica; Palatini, Paolo

    2016-10-01

    The reliability of blood pressure measurement with wrist devices, which has not previously been assessed under real-life circumstances in general population, is dependent on correct positioning of the wrist device at heart level. We determined whether an error was present when blood pressure was self-measured at the wrist in 721 unselected subjects from the general population. After training, blood pressure was measured in the office and self-measured at home with an upper-arm device (the UA-767 Plus) and a wrist device (the UB-542, not provided with a position sensor). The upper-arm-wrist blood pressure difference detected in the office was used as the reference measurement. The discrepancy between office and home differences was the home measurement error. In the office, systolic blood pressure was 2.5% lower at wrist than at arm (P=0.002), whereas at home, systolic and diastolic blood pressures were higher at wrist than at arm (+5.6% and +5.4%, respectively; Phome measurement error of at least ±5 mm Hg and 455 of at least ±10 mm Hg (bad measurers). In multivariable linear regression, a lower cognitive pattern independently determined both the systolic and the diastolic home measurement error and a longer forearm the systolic error only. This was confirmed by logistic regression having bad measurers as dependent variable. The use of wrist devices for home self-measurement, therefore, leads to frequent detection of falsely elevated blood pressure values likely because of a poor memory and rendition of the instructions, leading to the wrong position of the wrist. © 2016 American Heart Association, Inc.

  8. Thermal separation of soil particles from thermal conductivity measurement under various air pressures

    Science.gov (United States)

    Lu, Sen; Ren, Tusheng; Lu, Yili; Meng, Ping; Zhang, Jinsong

    2017-01-01

    The thermal conductivity of dry soils is related closely to air pressure and the contact areas between solid particles. In this study, the thermal conductivity of two-phase soil systems was determined under reduced and increased air pressures. The thermal separation of soil particles, i.e., the characteristic dimension of the pore space (d), was then estimated based on the relationship between soil thermal conductivity and air pressure. Results showed that under both reduced and increased air pressures, d estimations were significantly larger than the geometrical mean separation of solid particles (D), which suggested that conductive heat transfer through solid particles dominated heat transfer in dry soils. The increased air pressure approach gave d values lower than that of the reduced air pressure method. With increasing air pressure, more collisions between gas molecules and solid surface occurred in micro-pores and intra-aggregate pores due to the reduction of mean free path of air molecules. Compared to the reduced air pressure approach, the increased air pressure approach expressed more micro-pore structure attributes in heat transfer. We concluded that measuring thermal conductivity under increased air pressure procedures gave better-quality d values, and improved soil micro-pore structure estimation.

  9. Pressure measurements on a rectangular wing with a NACA0012 airfoil during conventional flutter

    Science.gov (United States)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Durham, Michael H.; Bennett, Robert M.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA LaRC has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. The first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Two wind-tunnel tests were conducted with the first model. Several dynamic instability boundaries were investigated such as a conventional flutter boundary, a transonic plunge instability region near Mach = 0.90, and stall flutter. In addition, wing surface unsteady pressure data were acquired along two model chords located at the 60 to 95-percent span stations during these instabilities. At this time, only the pressure data for the conventional flutter boundary is presented. The conventional flutter boundary and the wing surface unsteady pressure measurements obtained at the conventional flutter boundary test conditions in pressure coefficient form are presented. Wing surface steady pressure measurements obtained with the model mount system rigidized are also presented. These steady pressure data were acquired at essentially the same dynamic pressure at which conventional flutter had been encountered with the mount system flexible.

  10. Development of a tonometric sensor for measurement and recording of arterial pressure waveform

    Science.gov (United States)

    Tomczuk, K.; Werszko, M.; Sasiadek, J. Z.; Kosek, J.; Berny, W.; Weiser, A.; Feder-Kubis, J.

    2013-09-01

    There are many techniques and devices for measurement and recording of arterial blood pressure. Some of them allow (enable) additionally to observe the shape of a wave of arterial pressure, which can be regarded as one of the most important diagnostic parameters of human cardiovascular system. This paper presents a novel design and prototype of a new, non-invasive blood waveform measuring device. It expounds theoretical and experimental (including latest preliminary clinical) results obtained during several years of extensive investigations into blood pressure waveform measuring and monitoring problem. According to investigations performed in the laboratory and preliminary clinical evaluation, the sensor has linear steady-state characteristics and satisfactory dynamic properties. It is an efficient and accurate tool for blood pressure waveform monitoring and assessing the cardiovascular condition of the patients. The novelty of this solution is that the device is equipped with a pneumatic pressure sensor based on the pneumatic nozzle flapper amplifier principle with negative feedback. Due to such a technical solution, the device does not require any cuff, which remains an essential component of the majority of contemporary non-invasive blood pressure measurement devices; therefore, it can be used on the artery where the application of a cuff would be impossible (e.g., carotid artery). This advantage makes possible to obtain an accurate shape of blood pressure waveform with high fidelity, comparable to a direct measurement method. Moreover, during the measurement the device converts directly "pressure into pressure." Such a principle of operation makes possible to eliminate additional calibration (at the current stage of research we have eliminated the necessity of calibration in laboratory conditions).

  11. In vitro measurement of ambient pressure changes using a realistic clinical setup

    DEFF Research Database (Denmark)

    Andersen, Klaus Scheldrup; Jensen, Jørgen Arendt

    2008-01-01

    In vitro measurement of ambient pressure changes using a realistic clinical setup Klaus Scheldrup Andersen and Jørgen Arendt Jensen Motivation and objective: Many attempts to find a non-invasive procedure to measure the local blood pressure have been made. In the last decade independent experiments...... correspondence with results by Shi et al 1999 and Adam et al 2005 who both used a receiver separated from the emitting single element transducer....

  12. Implications of Dynamic Pressure Transducer Mounting Variations on Measurements in Pyrotechnic Test Apparatus

    Science.gov (United States)

    Dibbern, Andreas; Crisafulli, Jeffrey; Hagopia, Michael; McDougle, Stephen H.; Saulsberry, Regor L.

    2009-01-01

    Accurate dynamic pressure measurements are often difficult to make within small pyrotechnic devices, and transducer mounting difficulties can cause data anomalies that lead to erroneous conclusions. Delayed initial pressure response followed by data ringing has been observed when using miniaturized pressure transducer mounting adapters required to interface transducers to small test chambers. This delayed pressure response and ringing, combined with a high data acquisition rate, has complicated data analysis. This paper compares the output signal characteristics from different pressure transducer mounting options, where the passage distance from the transducer face to the pyrotechnic chamber is varied in length and diameter. By analyzing the data and understating the associated system dynamics, a more realistic understanding of the actual dynamic pressure variations is achieved. Three pressure transducer mounting configurations (elongated, standard, and face/flush mount) were simultaneously tested using NASA standard initiators in closed volume pressure bombs. This paper also presents results of these pressure transducer mounting configurations as a result of a larger NASA Engineering and Safety Center pyrovalve test project. Results from these tests indicate the improved performance of using face/flush mounted pressure transducers in this application. This type of mounting improved initial pressure measurement response time by approximately 19 s over standard adapter mounting, eliminating most of the lag time; provided a near step-function type initial pressure increase; and greatly reduced data ringing in high data acquisition rate systems. The paper goes on to discuss other issues associated with the firing and instrumentation that are important for the tester to understand.

  13. Measuring and predicting head space pressure during retorting of thermally processed foods.

    Science.gov (United States)

    Ghai, Gaurav; Teixeira, Arthur A; Welt, Bruce A; Goodrich-Schneider, Renee; Yang, Weihua; Almonacid, Sergio

    2011-04-01

    Traditional metal cans and glass jars have been the mainstay in thermally processed canned foods for more than a century, but are now sharing shelf space with increasingly popular flexible pouches and semi-rigid trays. These flexible packages lack the strength of metal cans and glass jars, and need greater control of external retort pressure during processing. Increasing internal package pressure without counter pressure causes volumetric expansion, putting excessive strain on package seals that may lead to serious container deformation and compromised seal integrity. The primary objective of this study was to measure internal pressure build-up within a rigid air-tight container (module) filled with various model food systems undergoing a retort process in which internal product temperature and pressure, along with external retort temperature and pressure, were measured and recorded at the same time. The pressure build-up in the module was compared with the external retort pressure to determine the pressure differential that would cause package distortion in the case of a flexible package system. The secondary objective was to develop mathematical models to predict these pressure profiles in response to known internal temperature and initial and boundary conditions for the case of the very simplest of model food systems (pure water and aqueous saline and sucrose solutions), followed by food systems of increasing compositional complexity (green beans in water and sweet peas in water). Results showed that error between measured and predicted pressures ranged from 2% to 4% for water, saline, and green beans, and 7% to 13% for sucrose solution and sweet peas.   Flexible packages have limited strength, and need more accurate and closer control of retort pressure during processing. The package becomes more flexible as it heats and might expand with increasing internal pressure that may cause serious deformation or rupture if not properly controlled and

  14. Public-use blood pressure measurement: the kiosk quandary.

    Science.gov (United States)

    Alpert, Bruce S; Dart, Richard A; Sica, Domenic A

    2014-10-01

    It is important to note the opportunity that validated public-use kiosks offer the U.S. healthcare system in terms of ease of public access, reduced cost of screening/monitoring, and the opportunity to support coordinated care between physicians, pharmacists, and patients. It is equally important to recognize that all public-use BP kiosks are not equivalent. Members of the AAMI Sphygmomanometer Committee and other ‘‘concerned citizens’’ are working with FDA officials to try to improve both device validation and cuff range performance of these devices. In reality, regulatory changes will be slow to take effect, and for the foreseeable future, the burden of device accuracy assessment lies with the private sector and the public. There is a device currently available that has undergone full validation testing and offers a wide-range cuff validated for almost all US adult arms. We recognize the importance of innovation in out-of-office BP measurement. Therefore, in the interest of public health, we strongly urge those business professionals buying such devices, and those health professionals advising patients on their use, to become better informed and more discriminant in their device selection.

  15. Should blood pressure be measured with the cuff on a bare arm?

    NARCIS (Netherlands)

    Thien, T.; Keltjens, E.B.; Lenders, J.W.M.; Deinum, J.

    2015-01-01

    OBJECTIVE: To establish whether the results of blood pressure (BP) measurements are affected by wearing clothing underneath the BP cuff during measurement. METHODS: Normotensive and hypertensive patients (n=133; 65 men) of an outpatient clinic participated in this study. BP was measured according to

  16. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  17. Precise electrical transport measurements by using Bridgman type pressure cell at low temperature

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Takayuki [Division of Civil and Enviromental Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan); Ohashi, Masashi [Faculty of Environmental Design, Kanazawa University, Kakuma-machi, Kanazawa 920-1192 (Japan)

    2010-03-01

    We report a technique for the precise measurement of the electrical resisivity under high pressure at low temperature by using Bridgman anvils made of tungsten carbide. Quasi-hydrostatic pressure is generated up to {approx}15 GPa in the relatively large working space which allows the use of large specimens and simple experimental procedures rather than using a standard diamond anvil cell. The application is demonstrated by the measurements of the electrical resistivity of lead in order to describe the effect of pressure on the superconducting transition.

  18. Real-time separation of non-stationary sound fields with pressure and particle acceleration measurements.

    Science.gov (United States)

    Bi, Chuan-Xing; Geng, Lin; Zhang, Xiao-Zheng

    2014-06-01

    To extract the desired non-stationary sound field generated by a target source in the presence of disturbing sources, a real-time sound field separation method with pressure and particle acceleration measurements is proposed. In this method, the pressure and particle acceleration signals at a time instant are first measured on one measurement plane, where the particle acceleration is obtained by the finite difference approximation with the aid of an auxiliary measurement plane; then, the desired pressure signal generated by the target source at the same time instant can be extracted in a timely manner, by a simple superposition of the measured pressure and the convolution between the measured particle acceleration and the derived impulse response function. Thereby, the proposed method possesses a significant feature of real-time separation of non-stationary sound fields, which provides the potential to in situ analyze the radiation characteristics of a non-stationary source. The proposed method was examined through numerical simulation and experiment. Results demonstrated that the proposed method can not only extract the desired time-evolving pressure signal generated by the target source at any space point, but can also obtain the desired spatial distribution of the pressure field generated by the target source at any time instant.

  19. Dynamic calibration of piezoelectric transducers for ballistic high-pressure measurement

    Directory of Open Access Journals (Sweden)

    Elkarous Lamine

    2016-01-01

    Full Text Available The development of a dynamic calibration standard for high-amplitude pressure piezoelectric transducers implies the implementation of a system which can provide reference pressure values with known characteristics and uncertainty. The reference pressure must be issued by a sensor, as a part of a measuring chain, with a guaranteed traceability to an international standard. However, this operation has not been completely addressed yet until today and is still calling further investigations. In this paper, we introduce an experimental study carried out in order to contribute to current efforts for the establishment of a reference dynamic calibration method. A suitable practical calibration method based on the calculation of the reference pressure by measurement of the displacement of the piston in contact with an oil-filled cylindrical chamber is presented. This measurement was achieved thanks to a high speed camera and an accelerometer. Both measurements are then compared. In the first way, pressure was generated by impacting the piston with a free falling weight and, in the second way, with strikers of known weights and accelerated to the impact velocities with an air gun. The aim of the experimental setup is to work out a system which may generate known hydraulic pressure pulses with high-accuracy and known uncertainty. Moreover, physical models were also introduced to consolidate the experimental study. The change of striker’s velocities and masses allows tuning the reference pressure pulses with different shapes and, therefore, permits to sweep a wide range of magnitudes and frequencies.

  20. Laser Induced Fluorescence Measurements in a Hall Thruster Plume as a Function of Background Pressure

    Science.gov (United States)

    Spektor, R.; Tighe, W. G.; Kamhawi, H.

    2016-01-01

    A set of Laser Induced Fluorescence (LIF) measurements in the near-field region of the NASA- 173M Hall thruster plume is presented at four background pressure conditions varying from 9.4 x 10(exp -6) torr to 3.3 x 10(exp -5) torr. The xenon ion velocity distribution function was measured simultaneously along the axial and radial directions. An ultimate exhaust velocity of 19.6+/-0.25 km/s achieved at a distance of 20 mm was measured, and that value was not sensitive to pressure. On the other hand, the ion axial velocity at the thruster exit was strongly influenced by pressure, indicating that the accelerating electric field moved inward with increased pressure. The shift in electric field corresponded to an increase in measured thrust. Pressure had a minor effect on the radial component of ion velocity, mainly affecting ions exiting close to the channel inner wall. At that radial location the radial component of ion velocity was approximately 1000 m/s greater at the lowest pressure than at the highest pressure. A reduction of the inner magnet coil current by 0.6 A resulted in a lower axial ion velocity at the channel exit while the radial component of ion velocity at the channel inner wall location increased by 1300 m/s, and at the channel outer wall location the radial ion velocity remained unaffected. The ultimate exhaust velocity was not significantly affected by the inner magnet current.

  1. Laboratory experiments on rainfall-induced flowslide from pore pressure and moisture content measurements

    OpenAIRE

    M. R. Hakro; I. S. H. Harahap

    2015-01-01

    During or immediately after rainfall many slope failures have been observed. The slope failure occurred due to rainfall infiltration that rapidly increase the pore pressure and trigger the slope failure. Numerous studies have been conducted to investigate the rainfall-induced slope failure, but the mechanism of slope failure is still not well clarified. To investigate mechanism of rainfall-induced slope failure laboratory experiments have been conducted in f...

  2. Time-Resolved In Situ Measurements During Rapid Alloy Solidification: Experimental Insight for Additive Manufacturing

    Science.gov (United States)

    McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.

    2016-03-01

    Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.

  3. A Rapid Method for Measuring Strontium-90 Activity in Crops in China

    Directory of Open Access Journals (Sweden)

    Pan Lingjing Pan

    2017-01-01

    Full Text Available A rapid method for measuring Sr-90 activity in crop ashes is presented. Liquid scintillation counting, combined with ion exchange columns 4‘, 4“(5“-di-t-butylcyclohexane-18-crown-6, is used to determine the activity of Sr-90 in crops. The yields of chemical procedure are quantified using gravimetric analysis. The conventional method that uses ion-exchange resin with HDEHP could not completely remove all the bismuth when comparatively large lead and bismuth exist in the samples. This is overcome by the rapid method. The chemical yield of this method is about 60% and the MDA for Sr-90 is found to be 2:32 Bq/kg. The whole procedure together with using spectrum analysis to determine the activity only takes about one day, which is really a large improvement compared with the conventional method. A modified conventional method is also described here to verify the value of the rapid one. These two methods can meet di_erent needs of daily monitoring and emergency situation.

  4. A Rapid Method for Measuring Strontium-90 Activity in Crops in China

    Science.gov (United States)

    Pan, Lingjing Pan; Yu, Guobing; Wen, Deyun; Chen, Zhi; Sheng, Liusi; Liu, Chung-King; Xu, X. George

    2017-09-01

    A rapid method for measuring Sr-90 activity in crop ashes is presented. Liquid scintillation counting, combined with ion exchange columns 4`, 4"(5")-di-t-butylcyclohexane-18-crown-6, is used to determine the activity of Sr-90 in crops. The yields of chemical procedure are quantified using gravimetric analysis. The conventional method that uses ion-exchange resin with HDEHP could not completely remove all the bismuth when comparatively large lead and bismuth exist in the samples. This is overcome by the rapid method. The chemical yield of this method is about 60% and the MDA for Sr-90 is found to be 2:32 Bq/kg. The whole procedure together with using spectrum analysis to determine the activity only takes about one day, which is really a large improvement compared with the conventional method. A modified conventional method is also described here to verify the value of the rapid one. These two methods can meet di_erent needs of daily monitoring and emergency situation.

  5. Rapid and variable-volume sample loading in sieving electrophoresis microchips using negative pressure combined with electrokinetic force.

    Science.gov (United States)

    Qi, Li-Ya; Yin, Xue-Feng; Zhang, Lei; Wang, Min

    2008-07-01

    A rapid and variable-volume sample loading scheme for chip-based sieving electrophoresis was developed by negative pressure combined with electrokinetic force. This was achieved by using a low-cost microvacuum pump and a single potential supply at a constant voltage. Both 12% linear polyacrylamide (LPA) with a high viscosity of 15000 cP and 2% hydroxyethylcellulose (HEC) with a low viscosity of 102 cP were chosen as the sieving materials to study the behavior and the versatility of the proposed method. To reduce the hydrodynamic resistance in the sampling channel, sieving material was only filled in the separation channel between the buffer waste reservoir (BW) to the edge of the crossed intersection. By applying a subambient pressure to the headspace of sample waste reservoir (SW), sample and buffer solution were drawn immediately from sample reservoir (S) and buffer reservoir (B) across the intersection to SW. At the same time, the charged sample in the sample flow was driven across the interface between the sample flow and the sieving matrix into the sieving material filled separation channel by the applied electric field. The injected sample plug length is in proportion with the loading time. Once the vacuum in SW reservoir was released to activate electrophoretic separation, flows from S and B to SW were immediately terminated by the back flow induced by the difference of the liquid levels in the reservoirs to prevent sample leakage during the separation stage. The sample consumption was about 1.7 x 10(2) nL at a loading time of 1 s for each cycle. Only 0.024 s was required to transport bias-free analyte to the injection point. It is easy to freely choose the sample plug volume in this method by simply changing the loading time and to inject high quality sample plug with non-distorted shape into the separation channel. The system has been proved to possess an exciting potential for improving throughput, repeatability, sensitivity and separation performance of

  6. A rapid and robust gradient measurement technique using dynamic single-point imaging.

    Science.gov (United States)

    Jang, Hyungseok; McMillan, Alan B

    2017-09-01

    We propose a new gradient measurement technique based on dynamic single-point imaging (SPI), which allows simple, rapid, and robust measurement of k-space trajectory. To enable gradient measurement, we utilize the variable field-of-view (FOV) property of dynamic SPI, which is dependent on gradient shape. First, one-dimensional (1D) dynamic SPI data are acquired from a targeted gradient axis, and then relative FOV scaling factors between 1D images or k-spaces at varying encoding times are found. These relative scaling factors are the relative k-space position that can be used for image reconstruction. The gradient measurement technique also can be used to estimate the gradient impulse response function for reproducible gradient estimation as a linear time invariant system. The proposed measurement technique was used to improve reconstructed image quality in 3D ultrashort echo, 2D spiral, and multi-echo bipolar gradient-echo imaging. In multi-echo bipolar gradient-echo imaging, measurement of the k-space trajectory allowed the use of a ramp-sampled trajectory for improved acquisition speed (approximately 30%) and more accurate quantitative fat and water separation in a phantom. The proposed dynamic SPI-based method allows fast k-space trajectory measurement with a simple implementation and no additional hardware for improved image quality. Magn Reson Med 78:950-962, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  7. Comparison of arterial blood pressure measurements and hypertension scores obtained by use of three indirect measurement devices in hospitalized dogs.

    Science.gov (United States)

    Wernick, Morena B; Höpfner, Robert M; Francey, Thierry; Howard, Judith

    2012-04-15

    To evaluate the agreement of blood pressure measurements and hypertension scores obtained by use of 3 indirect arterial blood pressure measurement devices in hospitalized dogs. Design-Diagnostic test evaluation. 29 client-owned dogs. 5 to 7 consecutive blood pressure readings were obtained from each dog on each of 3 occasions with a Doppler ultrasonic flow detector, a standard oscillometric device (STO), and a high-definition oscillometric device (HDO). When the individual sets of 5 to 7 readings were evaluated, the coefficient of variation for systolic arterial blood pressure (SAP) exceeded 20% for 0% (Doppler), 11 % (STO), and 28% (HDO) of the sets of readings. After readings that exceeded a 20% coefficient of variation were discarded, repeatability was within 25 (Doppler), 37 (STO), and 39 (HDO) mm Hg for SAP. Correlation of mean values among the devices was between 0.47 and 0.63. Compared with Doppler readings, STO underestimated and HDO overestimated SAP. Limits of agreement between mean readings of any 2 devices were wide. With the hypertension scale used to score SAP, the intraclass correlation of scores was 0.48. Linear-weighted inter-rater reliability between scores was 0.40 (Doppler vs STO), 0.38 (Doppler vs HDO), and 0.29 (STO vs HDO). Results of this study suggested that no meaningful clinical comparison can be made between blood pressure readings obtained from the same dog with different indirect blood pressure measurement devices.

  8. Lab-on-a-Chip Device for Rapid Measurement of Vitamin D Levels.

    Science.gov (United States)

    Peter, Harald; Bistolas, Nikitas; Schumacher, Soeren; Laurisch, Cecilia; Guest, Paul C; Höller, Ulrich; Bier, Frank F

    2018-01-01

    Lab-on-a-chip assays allow rapid analysis of one or more molecular analytes on an automated user-friendly platform. Here we describe a fully automated assay and readout for measurement of vitamin D levels in less than 15 min using the Fraunhofer in vitro diagnostics platform. Vitamin D (25-hydroxyvitamin D 3 [25(OH)D 3 ]) dilution series in buffer were successfully tested down to 2 ng/mL. This could be applied in the future as an inexpensive point-of-care analysis for patients suffering from a variety of conditions marked by vitamin D deficiencies.

  9. Method and system for measuring multiphase flow using multiple pressure differentials

    Science.gov (United States)

    Fincke, James R.

    2001-01-01

    An improved method and system for measuring a multiphase flow in a pressure flow meter. An extended throat venturi is used and pressure of the multiphase flow is measured at three or more positions in the venturi, which define two or more pressure differentials in the flow conduit. The differential pressures are then used to calculate the mass flow of the gas phase, the total mass flow, and the liquid phase. The method for determining the mass flow of the high void fraction fluid flow and the gas flow includes certain steps. The first step is calculating a gas density for the gas flow. The next two steps are finding a normalized gas mass flow rate through the venturi and computing a gas mass flow rate. The following step is estimating the gas velocity in the venturi tube throat. The next step is calculating the pressure drop experienced by the gas-phase due to work performed by the gas phase in accelerating the liquid phase between the upstream pressure measuring point and the pressure measuring point in the venturi throat. Another step is estimating the liquid velocity in the venturi throat using the calculated pressure drop experienced by the gas-phase due to work performed by the gas phase. Then the friction is computed between the liquid phase and a wall in the venturi tube. Finally, the total mass flow rate based on measured pressure in the venturi throat is calculated, and the mass flow rate of the liquid phase is calculated from the difference of the total mass flow rate and the gas mass flow rate.

  10. Measurements of adiposity and high blood pressure among children and adolescents living in Belo Horizonte.

    Science.gov (United States)

    Ribeiro, Robespierre C; Lamounier, Joel A; Oliveira, Reynaldo G; Bensenor, Isabela M; Lotufo, Paulo A

    2009-09-01

    To verify an association, if it exists, between obesity and blood pressure raised beyond the 90th percentile in children and adolescents, and to determine the measure of adiposity that best correlates with blood pressure in these subjects. Cross-sectional study. A school-based study in Belo Horizonte, Brazil. We selected randomly 1,403 students, aged from 6 to 18 years, from 545,046 students attending 521 public and private schools. Those selected completed the study. MAIN MEASURES OF OUTCOME: We recorded the weight, height, skin fold in the triceps, subscapular, and suprailiac areas, waist and hip circumference, body-mass index, and resting systolic and diastolic blood pressures using a mercury sphygmomanometer. In univariate analyses, body mass index greater or lesser than 85th percentile, measurements of skin thickness in the subscapular and suprailiac areas, and the sum of all measurements of skinfold thickness, were associated with both systolic and diastolic measurements of blood pressure. After multivariate analyses that adjusted for all measurements of adiposity except itself, and age, race, and socioeconomic state, we found that the increased body mass index was associated with a 3.6-fold increased frequency of elevated systolic measurements of blood pressure, with 95% confidence intervals from 2.2 to 5.8, and a 2.7-fold increased frequency of elevated measurements of diastolic blood pressure, with 95% confidence intervals from 1.9 to 4.0. Body-mass index serves as a better predictor of elevated blood pressure among children than do local measurements of adiposity.

  11. Relationship between intracranial pressure and phase contrast cine MRI derived measures of intracranial pulsations in idiopathic normal pressure hydrocephalus.

    Science.gov (United States)

    Jaeger, Matthias; Khoo, Angela K; Conforti, David A; Cuganesan, Ramesh

    2016-11-01

    Phase contrast cine MRI with determination of pulsatile aqueductal cerebrospinal fluid (CSF) stroke volume and flow velocity has been suggested to assess intracranial pulsations in idiopathic normal pressure hydrocephalus (iNPH). We aimed to compare this non-invasive measure of pulsations to intracranial pressure (ICP) pulse wave amplitude from continuous ICP monitoring. We hypothesised that a significant correlation between these two markers of intracranial pulsations exists. Fifteen patients with suspected iNPH had continuous computerised ICP monitoring with calculation of mean ICP pulse wave amplitude (MWA) from time-domain analysis. MRI measured CSF aqueductal stroke volume and peak flow velocity. Mean MWA was 5.4mmHg (range 2.3-12.4mmHg). Mean CSF stroke volume and peak flow velocity were 65μl (range 3-195μl) and 9.31cm/s (range 1.68-15.0cm/s), respectively. No significant correlation between the invasive and non-invasive measures of pulsations existed (Spearman r=-0.30 and r=-0.27, respectively; p>0.05). We observed marked intra-individual fluctuation of MWA during continuous ICP monitoring of an average of 6.0mmHg (range 2.8-12.2mmHg). The results suggest a complex interplay between measures of pulsations derived from snapshot MRI measurements and continuous computerised ICP measurements, as no significant relationship existed in our data. Further study is needed to better understand the temporal profile of CSF MRI flow studies, as substantial variation in MWA over the course of several hours of ICP monitoring is common, suggesting that these physiologic fluctuations might obscure MRI snapshot measures of intracranial pulsations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Measurements of blood pressure with various techniques in daily practice: uncertainty in diagnosing office hypertension with short-term in-hospital registration of blood pressure

    NARCIS (Netherlands)

    Braun, H. J.; Rabouw, H.; Werner, H.; van Montfrans, G. A.; de Stigter, C.; Zwinderman, A. H.

    1999-01-01

    To predict blood pressure outside the clinic from a short-term in-hospital registration for patients referred for ambulatory blood pressure monitoring (ABPM) with special attention to office hypertension. A series of measurements of blood pressure was performed by the same technician for 187

  13. Acoustic pressure measurement of pulsed ultrasound using acousto-optic diffraction

    Science.gov (United States)

    Jia, Lecheng; Chen, Shili; Xue, Bin; Wu, Hanzhong; Zhang, Kai; Yang, Xiaoxia; Zeng, Zhoumo

    2018-01-01

    Compared with continuous ultrasound wave, pulsed ultrasound has been widely used in ultrasound imaging. The aim of this work is to show the applicability of acousto-optic diffraction on pulsed ultrasound transducer. In this paper, acoustic pressure of two ultrasound transducers is measured based on Raman-Nath diffraction. The frequencies of transducers are 5MHz and 10MHz. The pulse-echo method and simulation data are used to evaluate the results. The results show that the proposed method is capable to measure the absolute sound pressure. We get a sectional view of acoustic pressure using a displacement platform as an auxiliary. Compared with the traditional sound pressure measurement methods, the proposed method is non-invasive with high sensitivity and spatial resolution.

  14. An Inexpensive Microscale Method for Measuring Vapor Pressure, Associated Thermodynamic Variables, and Molecular Weight

    Science.gov (United States)

    Demuro, Jason C.; Margarian, Hovanes; Mkhikian, Artavan; No, Kwang Hi; Peterson, Andrew R.

    1999-08-01

    Existing methods for measuring vapor pressure are too expensive or not quantitative enough for chemistry classes in secondary schools. Our method measures the vapor pressure inside a bubble trapped in a graduated microtube made from a disposable 1-mL glass pipet. Vapor pressures of water, methanol, and ethanol are measured over temperature ranges of 4-90 °C. The enthalpy and entropy of vaporization and boiling points, calculated using the Clausius-Clapeyron equation, agree well with published values. The vapor pressures of aqueous solutions of ethanol and methanol plotted against mole fractions of water give positive deviations from Raoult's law, but concentrations were identified from which molecular weights of the alcohols could be calculated. These molecular weights are not significantly different from published values. Sources of error in the method are analyzed. A procedure for use in secondary schools is outlined.

  15. Rapid sample classification using an open port sampling interface coupled with liquid introduction atmospheric pressure ionization mass spectrometry.

    Science.gov (United States)

    Van Berkel, Gary J; Kertesz, Vilmos

    2017-02-15

    An "Open Access"-like mass spectrometric platform to fully utilize the simplicity of the manual open port sampling interface for rapid characterization of unprocessed samples by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The in-house developed integrated software with a simple, small and relatively low-cost mass spectrometry system introduced here fills this void. Software was developed to operate the mass spectrometer, to collect and process mass spectrometric data files, to build a database and to classify samples using such a database. These tasks were accomplished via the vendor-provided software libraries. Sample classification based on spectral comparison utilized the spectral contrast angle method. Using the developed software platform near real-time sample classification is exemplified using a series of commercially available blue ink rollerball pens and vegetable oils. In the case of the inks, full scan positive and negative ion ESI mass spectra were both used for database generation and sample classification. For the vegetable oils, full scan positive ion mode APCI mass spectra were recorded. The overall accuracy of the employed spectral contrast angle statistical model was 95.3% and 98% in case of the inks and oils, respectively, using leave-one-out cross-validation. This work illustrates that an open port sampling interface/mass spectrometer combination, with appropriate instrument control and data processing software, is a viable direct liquid extraction sampling and analysis system suitable for the non-expert user and near real-time sample classification via database matching. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.

  16. Measurement of Turbulent Pressure and Temperature Fluctuations in a Gas Turbine Combustor

    Science.gov (United States)

    Povinelli, Louis (Technical Monitor); LaGraff, John E.; Bramanti, Cristina; Pldfield, Martin; Passaro, Andrea; Biagioni, Leonardo

    2004-01-01

    The report summarizes the results of the redesign efforts directed towards the gas-turbine combustor rapid-injector flow diagnostic probe developed under sponsorship of NASA-GRC and earlier reported in NASA-CR-2003-212540. Lessons learned during the theoretical development, developmental testing and field-testing in the previous phase of this research were applied to redesign of both the probe sensing elements and of the rapid injection device. This redesigned probe (referred to herein as Turboprobe) has been fabricated and is ready, along with the new rapid injector, for field-testing. The probe is now designed to capture both time-resolved and mean total temperatures, total pressures and, indirectly, one component of turbulent fluctuations.

  17. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  18. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    Science.gov (United States)

    McCoy, Chad A.; Knudson, Marcus D.; Root, Seth

    2017-11-01

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurements of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. Combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.

  19. Reproducibility of 24-h ambulatory blood pressure and measures of autonomic function.

    Science.gov (United States)

    Morrin, Niamh M; Stone, Mark R; Henderson, Keiran J

    2017-06-01

    Determining the number of familiarization sessions required for accurate recordings of ambulatory blood pressure monitoring and autonomic function is a prerequisite for the appropriate design of intervention studies. The benefit of familiarization trials remains largely unexplored. The objective of the current investigation was to assess the reproducibility of 24-h ambulatory blood pressure, 24-h heart rate variability (HRV) and resting measurements of HRV and blood pressure variability (BPV). Eleven prehypertensive and hypertensive adults participated. Ambulatory blood pressure and HRV were measured across 24 h on four occasions. In addition, 5-min resting measures of HRV and BPV were recorded and analysed. Variability between consecutive pairs of trials was calculated. The typical error induced by ambulatory recordings of systolic blood pressure reduced over time (3.8-2.8 mmHg). The greatest effect of familiarization was observed at night. Ambulatory HRV was more reproducible than resting measures. The most reproducible markers were root mean square of successive differences [coefficient of variation (CV): 13.2-10%] and high frequency normalized units (CV: 15.2-6.4%), with the percentage of adjacent NN intervals differing by more than 50 ms showing the poorest reproducibility (CV: 23.9-20.7%). Overall BPV (SD) was more reproducible than the frequency domain low frequency component. Familiarization trials are required for the most accurate recordings of both 24-h ambulatory blood pressure monitoring and HRV. Ambulatory HRV provide superior reproducibility to resting measurements.

  20. JMorph: Software for performing rapid morphometric measurements on digital images of fossil assemblages

    Science.gov (United States)

    Lelièvre, Peter G.; Grey, Melissa

    2017-08-01

    Quantitative morphometric analyses of form are widely used in palaeontology, especially for taxonomic and evolutionary research. These analyses can involve several measurements performed on hundreds or even thousands of samples. Performing measurements of size and shape on large assemblages of macro- or microfossil samples is generally infeasible or impossible with traditional instruments such as vernier calipers. Instead, digital image processing software is required to perform measurements via suitable digital images of samples. Many software packages exist for morphometric analyses but there is not much available for the integral stage of data collection, particularly for the measurement of the outlines of samples. Some software exists to automatically detect the outline of a fossil sample from a digital image. However, automatic outline detection methods may perform inadequately when samples have incomplete outlines or images contain poor contrast between the sample and staging background. Hence, a manual digitization approach may be the only option. We are not aware of any software packages that are designed specifically for efficient digital measurement of fossil assemblages with numerous samples, especially for the purposes of manual outline analysis. Throughout several previous studies, we have developed a new software tool, JMorph, that is custom-built for that task. JMorph provides the means to perform many different types of measurements, which we describe in this manuscript. We focus on JMorph's ability to rapidly and accurately digitize the outlines of fossils. JMorph is freely available from the authors.

  1. Planar near-nozzle velocity measurements during a single high-pressure fuel injection

    Science.gov (United States)

    Schlüßler, Raimund; Gürtler, Johannes; Czarske, Jürgen; Fischer, Andreas

    2015-09-01

    In order to reduce the fuel consumption and exhaust emissions of modern Diesel engines, the high-pressure fuel injections have to be optimized. This requires continuous, time-resolved measurements of the fuel velocity distribution during multiple complete injection cycles, which can provide a deeper understanding of the injection process. However, fuel velocity measurements at high-pressure injection nozzles are a challenging task due to the high velocities of up to 300 m/s, the short injection durations in the range and the high fuel droplet density especially near the nozzle exit. In order to solve these challenges, a fast imaging Doppler global velocimeter with laser frequency modulation (2D-FM-DGV) incorporating a high-speed camera is presented. As a result, continuous planar velocity field measurements are performed with a measurement rate of 200 kHz in the near-nozzle region of a high-pressure Diesel injection. The injection system is operated under atmospheric surrounding conditions with injection pressures up to 1400 bar thereby reaching fuel velocities up to 380 m/s. The measurements over multiple entire injection cycles resolved the spatio-temporal fluctuations of the fuel velocity, which occur especially for low injection pressures. Furthermore, a sudden setback of the velocity at the beginning of the injection is identified for various injection pressures. In conclusion, the fast measurement system enables the investigation of the complete temporal behavior of single injection cycles or a series of it. Since this eliminates the necessity of phase-locked measurements, the proposed measurement approach provides new insights for the analysis of high-pressure injections regarding unsteady phenomena.

  2. Measurement of distal limb sub-bandage pressure over 96 hours in horses.

    Science.gov (United States)

    Canada, N C; Beard, W L; Guyan, M E; White, B J

    2017-05-01

    Currently, there is no objective information quantifying pressures exerted by distal limb bandages. To quantify the pressure exerted by each compression layer, a polo wrap (DLP), a compression bandage (DLC), and to measure the effect of time on sub-bandage pressure. Longitudinal observational experiment. A DLC construct included a cotton roll compressed with brown gauze and elastic layers and the DLP construct included a pillow pad compressed by a cloth wrap. Dorsal and lateral sensors were placed on the mid-metacarpus. In healthy horses, sub-bandage pressures were recorded during application (n = 8) and at scheduled time points over the 24 (n = 9) and 96 h periods (n = 8). A generalised linear model was used to evaluate associations between pressure and sensor location, bandage type and time (Ppressures were 187 mmHg (95% CI 185-189 mmHg) and 142 mmHg (95% CI 133-151 mmHg). Combined sensor pressure after application of the brown gauze was 80 mmHg (95% CI 75-85 mmHg) and rose to 165 mmHg (95% CI 160-170 mmHg) after the elastic layer. Combined pressure at the end of the 96 h period was 135 mmHg (95% CI 123-147 mmHg). For the DLP bandage, location but not time was significant. Combined pressures ranged between 75 mmHg (95% CI 53-97 mmHg) and 85 mmHg (95% CI 63-107 mmHg). Pressure distribution was not uniform. The DLP pressures were maintained for a 24 h period. The DLC maintained high pressures for 96 h, but a significant decrease in pressure occurred between 6 and 12 h. Providing there are no other reasons to change a bandage, a 4 day interval between bandages may be appropriate if maintaining distal limb compression is the principal indication. © 2016 EVJ Ltd.

  3. A rapid and sensitive method for measuring N-acetylglucosaminidase activity in cultured cells.

    Directory of Open Access Journals (Sweden)

    Victor Mauri

    Full Text Available A rapid and sensitive method to quantitatively assess N-acetylglucosaminidase (NAG activity in cultured cells is highly desirable for both basic research and clinical studies. NAG activity is deficient in cells from patients with Mucopolysaccharidosis type IIIB (MPS IIIB due to mutations in NAGLU, the gene that encodes NAG. Currently available techniques for measuring NAG activity in patient-derived cell lines include chromogenic and fluorogenic assays and provide a biochemical method for the diagnosis of MPS IIIB. However, standard protocols require large amounts of cells, cell disruption by sonication or freeze-thawing, and normalization to the cellular protein content, resulting in an error-prone procedure that is material- and time-consuming and that produces highly variable results. Here we report a new procedure for measuring NAG activity in cultured cells. This procedure is based on the use of the fluorogenic NAG substrate, 4-Methylumbelliferyl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (MUG, in a one-step cell assay that does not require cell disruption or post-assay normalization and that employs a low number of cells in 96-well plate format. We show that the NAG one-step cell assay greatly discriminates between wild-type and MPS IIIB patient-derived fibroblasts, thus providing a rapid method for the detection of deficiencies in NAG activity. We also show that the assay is sensitive to changes in NAG activity due to increases in NAGLU expression achieved by either overexpressing the transcription factor EB (TFEB, a master regulator of lysosomal function, or by inducing TFEB activation chemically. Because of its small format, rapidity, sensitivity and reproducibility, the NAG one-step cell assay is suitable for multiple procedures, including the high-throughput screening of chemical libraries to identify modulators of NAG expression, folding and activity, and the investigation of candidate molecules and constructs for applications in

  4. Simultaneous measurement of pressure evolution of crystal structure and superconductivity in FeSe[subscript 0.92] using designer diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh; Wolanyk, Nathaniel; Rao, Sistla Muralidhara; Wu, Maw-Kuen; Weir, Samuel (LLNL); (UAB); (IP-Taiwan); (IWU)

    2017-04-19

    Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-ray diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.

  5. A rapid method for measuring soil water content in the field with a areometer

    Directory of Open Access Journals (Sweden)

    Calbo Adonai Gimenez

    2002-01-01

    Full Text Available The availability of a rapid method to evaluate the soil water content (U can be an important tool to determine the moment to irrigate. The soil areometer consists of an elongated hydrostatic balance with a weighing pan, a graduated neck, a float and a pynometric flask. In this work an areometer was adapted to rapidly measure soil water content without the need of drying the soil. The expression U = (M A - M AD/(M M -M A was used to calculate the soil water content. In this equation M M is the mass to level the areometer with the pycnometric flask filled with water, M A the mass to level the areometer with a mass M M of soil in the pycnometer, the volume being completed with water, and similarly M AD the mass added to the pan to level the areometer with a mass M M of dried soil in the pycnometric flask. The convenience of this method is that the values M M and M AD are known. Consequently, the decision on irrigation can be made after a measurement that takes, about, ten minutes. The procedure involves only stirring the soil with water for at least 2 minutes to remove the adhered air. The soil water content data obtained with the areometric method were similar to those obtained weighing the soil before and after drying to constant weight, in an oven at 105º C.

  6. More accurate systolic blood pressure measurement is required for improved hypertension management: a perspective

    Directory of Open Access Journals (Sweden)

    Nitzan M

    2017-07-01

    Full Text Available Meir Nitzan,1 Itzchak Slotki,2 Linda Shavit2 1Department of Applied Physics/Electro-Optics, Jerusalem College of Technology, 2Department of Nephrology, Shaare Zedek Medical Center, Jerusalem, Israel Abstract: The commonly used techniques for systolic blood pressure (SBP and diastolic blood pressure (DBP measurement are the auscultatory Korotkoff-based sphygmomanometry and oscillometry. The former technique is relatively accurate but is limited to a physician’s office because its automatic variant is subject to noise artifacts. Consequently, the Korotkoff-based measurement overestimates the blood pressure in some patients due to white coat effect, and because it is a single measurement, it cannot properly represent the variable blood pressure. Automatic oscillometry can be used at home by the patient and is preferred even in clinics. However, the technique’s accuracy is low and errors of 10–15 mmHg are common. Recently, we have developed an automatic technique for SBP measurement, based on an arm pressure cuff and a finger photoplethysmographic probe. The technique was found to be significantly more accurate than oscillometry, and comparable to the Korotkoff-based technique, the reference-standard for non-invasive blood pressure measurements. The measurement of SBP is a mainstay for the diagnosis and follow-up of hypertension, which is a major risk factor for several adverse events, mainly cardiovascular. Lowering blood pressure evidently reduces the risk, but excessive lowering can result in hypotension and consequently hypoperfusion to vital organs, since blood pressure is the driving force for blood flow. Erroneous measurement by 10 mmHg can lead to a similar unintended reduction of SBP and may adversely affect patients treated to an SBP of 120–130 mmHg. In particular, in elderly patients, unintended excessive reduction of blood pressure due to inaccurate SBP measurement can result in cerebral hypoperfusion and consequent cognitive

  7. Rapid measurement of phytosterols in fortified food using gas chromatography with flame ionization detection.

    Science.gov (United States)

    Duong, Samantha; Strobel, Norbert; Buddhadasa, Saman; Stockham, Katherine; Auldist, Martin; Wales, Bill; Orbell, John; Cran, Marlene

    2016-11-15

    A novel method for the measurement of total phytosterols in fortified food was developed and tested using gas chromatography with flame ionization detection. Unlike existing methods, this technique is capable of simultaneously extracting sterols during saponification thus significantly reducing extraction time and cost. The rapid method is suitable for sterol determination in a range of complex fortified foods including milk, cheese, fat spreads, oils and meat. The main enhancements of this new method include accuracy and precision, robustness, cost effectiveness and labour/time efficiencies. To achieve these advantages, quantification and the critical aspects of saponification were investigated and optimised. The final method demonstrated spiked recoveries in multiple matrices at 85-110% with a relative standard deviation of 1.9% and measurement uncertainty value of 10%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Measurements of crystal growth kinetics at extreme deviations from equilibrium. [Rapid solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, M.J.

    1993-05-07

    We have measured solute trapping of Sn in Al over a wide enough range of velocities to make a quantitative test of theory. The Continuous Growth Model of Aziz is the only one-parameter model that fits the data. We have also measured the diffusive speed - the growth rate at which interfacial partitioning is in mid-transition between equilibrium partitioning and complete solute trapping - for several solutes in A1. We have found an inverse correlation between the equilibrium partition coefficient and the diffusive speed. Taken together, these results give us heretofore unprecedented predictive capability in modeling rapid solidification processing. We have also examined theoretically short-range diffusion-limited growth, characteristic of incomplete solute trapping, and interface-limited growth, characteristic of complete solute trapping, in alloy solidification and have shown that the two regimes fall naturally out of a single unified theory of solidification.

  9. Three-Dimensional Force Measurements During Rapid Palatal Expansion in Sus scrofa

    Directory of Open Access Journals (Sweden)

    Kelly Goeckner

    2016-04-01

    Full Text Available Rapid palatal expansion is an orthodontic procedure widely used to correct the maxillary arch. However, its outcome is significantly influenced by factors that show a high degree of variability amongst patients. The traditional treatment methodology is based on an intuitive and heuristic treatment approach because the forces applied in the three dimensions are indeterminate. To enable optimal and individualized treatment, it is essential to measure the three-dimensional (3D forces and displacements created by the expander. This paper proposes a method for performing these 3D measurements using a single embedded strain sensor, combining experimental measurements of strain in the palatal expander with 3D finite element analysis (FEA. The method is demonstrated using the maxillary jaw from a freshly euthanized pig (Sus scrofa and a hyrax-design rapid palatal expander (RPE appliance with integrated strain gage. The strain gage measurements are recorded using a computer interface, following which the expansion forces and extent of expansion are estimated by FEA. A total activation of 2.0 mm results in peak total force of about 100 N—almost entirely along the direction of expansion. The results also indicate that more than 85% of the input activation is immediately transferred to the palate and/or teeth. These studies demonstrate a method for assessing and individualizing expansion magnitudes and forces during orthopedic expansion of the maxilla. This provides the basis for further development of smart orthodontic appliances that provide real-time readouts of forces and movements, which will allow personalized, optimal treatment.

  10. Usefulness of a rapid immunometric assay for intraoperative parathyroid hormone measurements

    Directory of Open Access Journals (Sweden)

    M.N. Ohe

    2003-06-01

    Full Text Available Intraoperative parathyroid hormone (IO-PTH measurements have been proposed to improve operative success rates in primary, secondary and tertiary hyperparathyroidism (PHP, SHP and THP. Thirty-one patients requiring parathyroidectomy were evaluated retrospectively from June 2000 to January 2002. Sixteen had PHP, 7 SHP and 8 THP. Serum samples were taken at times 0 (before resection, 10, 20 and 30 min after resection of each abnormal parathyroid gland. Samples from 28 patients were frozen at -70ºC for subsequent tests, whereas samples from three patients were tested while surgery was being performed. IO-PTH was measured using the Elecsys immunochemiluminometric assay (Roche, Mannheim, Germany. The time necessary to perform the assay was 9 min. All samples had a second measurement taken by a conventional immunofluorimetric method. We considered as cured patients who presented normocalcemia in PHP and THP, and normal levels of PTH in SHP one month after surgery and who remained in this condition throughout the follow-up of 1 to 20 months. When rapid PTH assay was compared with a routine immunofluorimetric assay, excellent correlation was observed (r = 0.959, P < 0.0001. IO-PTH measurement showed a rapid average decline of 78.8% in PTH 10 min after adenoma resection in PHP and all patients were cured. SHP patients had an average IO-PTH decrease of 89% 30 min after total parathyroidectomy and cure was observed in 85.7%. THP showed an average IO-PTH decrease of 91.9%, and cure was obtained in 87.5% of patients. IO-PTH can be a useful tool that might improve the rate of successful treatment of PHP, SHP and THP.

  11. Rapid SAR and GPS Measurements and Models for Hazard Science and Situational Awareness

    Science.gov (United States)

    Owen, S. E.; Yun, S. H.; Hua, H.; Agram, P. S.; Liu, Z.; Moore, A. W.; Rosen, P. A.; Simons, M.; Webb, F.; Linick, J.; Fielding, E. J.; Lundgren, P.; Sacco, G. F.; Polet, J.; Manipon, G.

    2016-12-01

    The Advanced Rapid Imaging and Analysis (ARIA) project for Natural Hazards is focused on rapidly generating higher level geodetic imaging products and placing them in the hands of the solid earth science and local, national, and international natural hazard communities by providing science product generation, exploration, and delivery capabilities at an operational level. Space-based geodetic measurement techniques such as Interferometric Synthetic Aperture Radar (InSAR), Differential Global Positioning System (DGPS), SAR-based change detection, and image pixel tracking have recently become critical additions to our toolset for understanding and mapping the damage caused by earthquakes, volcanic eruptions, landslides, and floods. Analyses of these data sets are still largely handcrafted following each event and are not generated rapidly and reliably enough for response to natural disasters or for timely analysis of large data sets. The ARIA project, a joint venture co-sponsored by California Institute of Technology (Caltech) and by NASA through the Jet Propulsion Laboratory (JPL), has been capturing the knowledge applied to these responses and building it into an automated infrastructure to generate imaging products in near real-time that can improve situational awareness for disaster response. In addition, the ARIA project is developing the capabilities to provide automated imaging and analysis capabilities necessary to keep up with the imminent increase in raw data from geodetic imaging missions planned for launch by NASA, as well as international space agencies. We will present the progress we have made on automating the analysis of SAR data for hazard monitoring and response using data from Sentinel 1a/b as well as continuous GPS stations. Since the beginning of our project, our team has imaged events and generated response products for events around the world. These response products have enabled many conversations with those in the disaster response community

  12. Effect of ultrasonic cavitation on measurement of sound pressure using hydrophone

    Science.gov (United States)

    Thanh Nguyen, Tam; Asakura, Yoshiyuki; Okada, Nagaya; Koda, Shinobu; Yasuda, Keiji

    2017-07-01

    Effect of ultrasonic cavitation on sound pressure at the fundamental, second harmonic, and first ultraharmonic frequencies was investigated from low to high ultrasonic intensities. The driving frequencies were 22, 304, and 488 kHz. Sound pressure was measured using a needle-type hydrophone and ultrasonic cavitation was estimated from the broadband integrated pressure (BIP). With increasing square root of electric power applied to a transducer, the sound pressure at the fundamental frequency linearly increased initially, dropped at approximately the electric power of cavitation inception, and afterward increased again. The sound pressure at the second harmonic frequency was detected just below the electric power of cavitation inception. The first ultraharmonic component appeared at around the electric power of cavitation inception at 304 and 488 kHz. However, at 22 kHz, the first ultraharmonic component appeared at a higher electric power than that of cavitation inception.

  13. A Quad-Cantilevered Plate micro-sensor for intracranial pressure measurement.

    Science.gov (United States)

    Lalkov, Vasko; Qasaimeh, Mohammad A

    2017-07-01

    This paper proposes a new design for pressure-sensing micro-plate platform to bring higher sensitivity to a pressure sensor based on piezoresistive MEMS sensing mechanism. The proposed design is composed of a suspended plate having four stepped cantilever beams connected to its corners, and thus defined as Quad-Cantilevered Plate (QCP). Finite element analysis was performed to determine the optimal design for sensitivity and structural stability under a range of applied forces. Furthermore, a piezoresistive analysis was performed to calculate sensor sensitivity. Both the maximum stress and the change in resistance of the piezoresistor associated with the QCP were found to be higher compared to previously published designs, and linearly related to the applied pressure as desired. Therefore, the QCP demonstrates greater sensitivity, and could be potentially used as an efficient pressure sensor for intracranial pressure measurement.

  14. Prognostic significance of distal blood pressure measurements in patients with severe ischaemia

    DEFF Research Database (Denmark)

    Paaske, William; Tønnesen, K H

    1980-01-01

    The clinical course was followed and the ankle and toe blood pressures were measured with the strain gauge technique on 5 occasions during 2 years in 43 patients with pain at rest and/or ischaemic ulceration due to severe ischaemia of the legs on the basis of occlusive arterial disease. Although...... arteriosclerosis of the legs in non-diabetic patients is generally considered a benign disease from the standpoint of limb survival, the critical level of TPI (systolic toe blood pressure/systolic arm blood pressure) was found to be 0.07 as a TPI below this value was associated with an overall 82% risk...... of amputation. With TPI above 0.07, the chance of successful conservative therapy was about 40%. Diabetics with severe ischaemia must be regarded as a high risk group in respect of amputation (64%) and lethality (64%). A variance analysis was made on the pressure data: In patients with low pressure peripheral...

  15. Unsteady blade pressures on a propfan - Predicted and measured compressibility effects

    Science.gov (United States)

    Nallasamy, M.

    1992-01-01

    The effect of compressibility on unsteady blade pressures is studied by solving the 3D Euler equations. The operation of the eight-bladed SR7L propfan at 4.75 deg angle of attack was considered. Euler solutions were obtained for three Mach numbers, 0.6, 0.7, and 0.8 and the predicted blade pressure waveforms were compared with flight data. In general, the effect of Mach number on pressure waveforms are correctly predicted. The change in pressure waveforms are minimal when the Mach number is increased from 0.6 to 0.7. Increasing the Mach number from 0.7 to 0.8 produces significant changes in predicted pressure levels. The predicted amplitudes, however, differ from measurements at some transducer locations. Also the predicted appearance of a shock in the highly loaded portion of the blade revolution is not indicated by the measurements. At all the three Mach numbers, the measured (installed propfan) pressure waveforms show a relative phase lag compared to the computed (propfan alone) waveforms due to installation effects. Measured waveforms in the blade tip region show nonlinear variations which are not captured by the present numerical procedure.

  16. A combined Settling Tube-Photometer for rapid measurement of effective sediment particle size

    Science.gov (United States)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas

    2017-04-01

    Sediment and its movement in water is commonly described based on the size distribution of the mineral particles forming the sediment. While this approach works for coarse sand, pebbles and gravel, smaller particles often form aggregates, creating material of larger diameters than the mineral grain size distribution indicates, but lower densities than often assumed 2.65 g cm-3 of quartz. The measurement of the actual size and density of such aggregated sediment is difficult. For the assessment of sediment movement an effective particle size for the use in mathematical can be derived based on the settling velocity of sediment. Settling velocity of commonly measured in settling tubes which fractionate the sample in settling velocity classes by sampling material at the base in selected time intervals. This process takes up to several hours, requires a laboratory setting and carries the risk of either destruction of aggregates during transport or coagulation while sitting in rather still water. Measuring the velocity of settling particles in situ, or at least a rapidly after collection, could avoids these problems. In this study, a settling tube equipped with four photometers used to measure the darkening of a settling particle cloud is presented and the potential to improve the measurement of settling velocities are discussed.

  17. Comparison of invasive and noninvasive blood pressure measurements in anaesthetized horses using the Surgivet V9203.

    Science.gov (United States)

    Drynan, Eleanor A; Schier, Mara; Raisis, Anthea L

    2016-05-01

    To determine the bias and precision of noninvasive versus invasive blood pressure measurements obtained using the Surgivet V9203 in anaesthetized horses; to compare these with the current American College of Veterinary Internal Medicine Hypertension Consensus Panel (AHCP) and Veterinary Blood Pressure Society (VBPS) recommendations; and to investigate whether noninvasive blood pressure monitoring could be a clinically useful alternative to invasive blood pressure monitoring in anaesthetized horses. Prospective clinical study in a university teaching hospital. Forty-three horses with an average weight of 485 ± 90 kg and a mean age of 103.4 ± 57.6 months. Arterial blood pressure (BP) was measured noninvasively (NIBP) via a cuff placed over either the ventral coccygeal artery or the metacarpal artery, and invasively (IBP) via a catheter in either the facial artery or the metatarsal artery. A total of 143 paired readings were obtained. Comparison of measurements was carried out using the Bland-Altman method. Analysis was performed using all the data, and these data were subdivided according to the position of the horse and the magnitude of the pressure measurement. To determine the accuracy of the noninvasive measurements, the calculated precision and bias were compared with AHCP and VBPS guidelines. For all categories, NIBP measurements were generally lower than IBP measurements. For pooled data, the bias and precision for systolic arterial pressure (SAP) were 6.8 and 11.9 mmHg; for mean arterial pressure (MAP) the values were 1.9 and 10.0 mmHg; and for diastolic arterial pressure (DAP) they were 5.7 and 10.8 mmHg. The bias and precision for MAP and DAP measurements were within the recommended guidelines defined by the AHCP and VBPS. These results suggests that systolic, mean and diastolic NIBP measured using the Surgivet V9203 are a clinically acceptable alternative to IBP measurements in anaesthetized horses undergoing routine elective surgeries. © 2015

  18. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements

    Science.gov (United States)

    Yang, Mingzhi; Du, Juntao; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton’s second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable. PMID:28095441

  19. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.

    Directory of Open Access Journals (Sweden)

    Mingzhi Yang

    Full Text Available A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.

  20. [The research in a foot pressure measuring system based on LabVIEW].

    Science.gov (United States)

    Li, Wei; Qiu, Hong; Xu, Jiang; He, Jiping

    2011-01-01

    This paper presents a system of foot pressure measuring system based on LabVIEW. The designs of hardware and software system are figured out. LabVIEW is used to design the application interface for displaying plantar pressure. The system can realize the plantar pressure data acquisition, data storage, waveform display, and waveform playback. It was also shown that the testing results of the system were in line with the changing trend of normal gait, which conformed to human system engineering theory. It leads to the demonstration of system reliability. The system gives vivid and visual results, and provides a new method of how to measure foot-pressure and some references for the design of Insole System.

  1. A novel wearable device for continuous, non-invasion blood pressure measurement.

    Science.gov (United States)

    Xin, Qin; Wu, Jianping

    2017-08-01

    In this paper, we have developed a wearable cuffless device for daily blood pressure (BP) measurement. We incorporated the light based sensor and other hard wares in a small volume for BP detection. With optimized algorithm, the real-time BP reading could be achieved, the data could be presented in the screen and be transmitted by internet of things (IoT) for history data comparison and multi-terminal viewing. Thus, further analysis provides the probability for diet or sports suggestion and alarm. We have measured BP from more than 60 subjects, compare to traditional mercury blood pressure meter, no obvious error in both systolic blood pressure (SBP) and diastolic blood pressure (DBP) are detected. Such device can be used for continues non-invasion BP detection, and further data docking and health analysis could be achieved. Copyright © 2017. Published by Elsevier Ltd.

  2. Moving Model Test of High-Speed Train Aerodynamic Drag Based on Stagnation Pressure Measurements.

    Science.gov (United States)

    Yang, Mingzhi; Du, Juntao; Li, Zhiwei; Huang, Sha; Zhou, Dan

    2017-01-01

    A moving model test method based on stagnation pressure measurements is proposed to measure the train aerodynamic drag coefficient. Because the front tip of a high-speed train has a high pressure area and because a stagnation point occurs in the center of this region, the pressure of the stagnation point is equal to the dynamic pressure of the sensor tube based on the obtained train velocity. The first derivation of the train velocity is taken to calculate the acceleration of the train model ejected by the moving model system without additional power. According to Newton's second law, the aerodynamic drag coefficient can be resolved through many tests at different train speeds selected within a relatively narrow range. Comparisons are conducted with wind tunnel tests and numerical simulations, and good agreement is obtained, with differences of less than 6.1%. Therefore, the moving model test method proposed in this paper is feasible and reliable.

  3. Reliable blood pressure self-measurement in the obstetric waiting room

    DEFF Research Database (Denmark)

    Wagner, Stefan; Kamper, C. H.; Rasmussen, Niels H

    2014-01-01

    Background: Patients often fail to adhere to clinical recommendations when using current blood pressure self-measurement (BPSM) methods and equipment. As existing BPSM equipment is not able to detect non-adherent behavior, this could result in misdiagnosis and treatment error. To overcome...... patients scheduled for self-measuring their blood pressure (BP) in the waiting room at an obstetrics department's outpatient clinic to perform an additional BPSM using ValidAid. We then compared the automatically measured and classified values from ValidAid with our manual observations. Results: We found...

  4. Direct measurement of gas solubilities in polymers with a high-pressure microbalance

    DEFF Research Database (Denmark)

    von Solms, Nicolas; Nielsen, Johannes Kristoffer; Hassager, Ole

    2004-01-01

    Solubility and diffusion data are presented for methane and carbon dioxide gases in high-density polyethylene. The polymer was cut from extruded piping intended for use in offshore oil and gas applications. The measurements were carried out with a high-pressure microbalance. The properties were...... determined from 25 to 50degreesC and from 50 to 150 bar for methane and from 20 to 40 bar for carbon dioxide. In general, a good agreement was obtained with similar measurements reported in the literature. The solubility followed Henry's law (linear) dependence with pressure, except at high pressures...... for methane, for which negative deviations from Henry's law behavior were observed. The diffusion coefficients for each of the gases in the polymer were also measured with the balance, although the uncertainty was greater than for the solubility measurements. (C) 2003 Wiley Periodicals, Inc. J Appl Polyrn Sci...

  5. Non-invasive Measurement of Pressure Gradients in Pulsatile Flow using Ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes

    2013-01-01

    This paper demonstrates how pressure gradients in a pulsatile flow environment can be measured non-invasively using ultrasound. The proposed method relies on vector velocity fields acquired from ultrasound data. 2-D flow data are acquired at 18-23 frames/sec using the Transverse Oscillation...... approach. Pressure gradients are calculated from the measured velocity fields using the Navier-Stokes equation. Velocity fields are measured during constant and pulsating flow on a carotid bifurcation phantom and on a common carotid artery in-vivo. Scanning is performed with a 5 MHz BK8670 linear...... transducer using a BK Medical 2202 UltraView Pro Focus scanner. The calculated pressure gradients are validated through a finite element simulation of the constant flow model. The geometry of the flow simulation model is reproduced using MRI data, thereby providing identical flow domains in measurement...

  6. Use of Repeated Blood Pressure and Cholesterol Measurements to Improve Cardiovascular Disease Risk Prediction

    DEFF Research Database (Denmark)

    Paige, Ellie; Barrett, Jessica; Pennells, Lisa

    2017-01-01

    The added value of incorporating information from repeated blood pressure and cholesterol measurements to predict cardiovascular disease (CVD) risk has not been rigorously assessed. We used data on 191,445 adults from the Emerging Risk Factors Collaboration (38 cohorts from 17 countries with data...... encompassing 1962-2014) with more than 1 million measurements of systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol. Over a median 12 years of follow-up, 21,170 CVD events occurred. Risk prediction models using cumulative mean values of repeated measurements and summary...... improvements were 0.0369 (95% CI: 0.0303, 0.0436) for the cumulative-means model and 0.0177 (95% CI: 0.0110, 0.0243) for the longitudinal model. In conclusion, incorporating repeated measurements of blood pressure and cholesterol into CVD risk prediction models slightly improves risk prediction....

  7. Direct measurement of acoustic intensity: Application to the identification of pressure pulse sources in ducts

    Science.gov (United States)

    Badiecassagnet, A.; Bockhoff, M.; Lambert, J. M.

    1981-10-01

    Application of sound intensity measurements in order to study acoustic problems in hydraulic or gas ducts was investigated. Theory demonstrates that it is possible to completely characterize a quasi-stationary plane wave in a duct. The acoustic pressure at two points in a duct and the phase difference between the two signals are measured. For broadband noise, the phase difference is found by simultaneous determination of the Fourier transforms of the pressure signals. With these three values, (a) a measure of the vector intensity which characterizes the global energy flux in a section and especially its direction, (b) the progressive wave rate that is the root of the relation between the pressure minima and maxima, and (c) the distance between the measurement point and the reflector which is the cause of the quasi-stationary wave are obtained. Experiments with pure tones and broadband noise in a Kundt tube and in two hydraulic circuits of different dimensions confirm the method.

  8. Soot particle size measurements in ethylene diffusion flames at elevated pressures

    KAUST Repository

    Steinmetz, Scott

    2016-05-07

    Soot particle size is investigated in laminar nitrogen-diluted ethylene coflow diffusion flames at 4, 8, 12 and 16 atm. Line of sight attenuation and scattering are used to measure two-dimensional soot volume fraction and particle size fields for the first time at elevated pressures. Soot volume fraction dependence on pressure is consistent with the observations of similar studies, scaling approximately with the square of pressure. Scattering intensity is analyzed through Rayleigh and Rayleigh-Debye-Gans polydisperse fractal aggregate theories to provide two estimates of particle size. An increase in overall particle sizes with pressure is found, consistent with similar one-dimensional studies. Particle diameters in the annulus of the flame increase faster with pressure than those on centerline. Contrary to previous studies, the dependence of particle size on pressure was found to taper off between 8 and 12 atm, with little observed growth beyond 12 atm. The measurements provide additional data for one of the International Sooting Flame (ISF) workshop\\'s target pressurized flames.

  9. Diabetic foot ulcer incidence in relation to plantar pressure magnitude and measurement location.

    Science.gov (United States)

    Ledoux, William R; Shofer, Jane B; Cowley, Matthew S; Ahroni, Jessie H; Cohen, Victoria; Boyko, Edward J

    2013-01-01

    We prospectively examined the relationship between site-specific peak plantar pressure (PPP) and ulcer risk. Researchers have previously reported associations between diabetic foot ulcer and elevated plantar foot pressure, but the effect of location-specific pressures has not been studied. Diabetic subjects (n=591) were enrolled from a single VA hospital. Five measurements of in-shoe plantar pressure were collected using F-Scan. Pressures were measured at 8 areas: heel, lateral midfoot, medial midfoot, first metatarsal, second through fourth metatarsal, fifth metatarsal, hallux, and other toes. The relationship between incident plantar foot ulcer and PPP or pressure-time integral (PTI) was assessed using Cox regression. During follow-up (2.4years), 47 subjects developed plantar ulcers (10 heel, 12 metatarsal, 19 hallux, 6 other). Overall mean PPP was higher for ulcer subjects (219 vs. 194kPa), but the relationship differed by site (the metatarsals with ulcers had higher pressure, while the opposite was true for the hallux and heel). A statistical analysis was not performed on the means, but hazard ratios from a Cox survival analysis were nonsignificant for PPP across all sites and when adjusted for location. However, when the metatarsals were considered separately, higher baseline PPP was significantly associated with greater ulcer risk; at other sites, this relationship was nonsignificant. Hazard ratios for all PTI data were nonsignificant. Location must be considered when assessing the relationship between PPP and plantar ulceration. © 2013.

  10. The tonometric sensor, a new device for the measurement of intraocular pressure

    NARCIS (Netherlands)

    Voorthuyzen, J.A.; den Besten, C.; Bergveld, Piet

    1989-01-01

    In this paper we present a new sensor for the measurement of intraocular pressure. We have applied the indentation principle, in which the eye is indented by exerting a force on it, while the size of the indented area is monitored. To measure the force we have used a commercial force sensor. The

  11. Home blood pressure measurement in women with pregnancy-related hypertensive disorders.

    Science.gov (United States)

    Lan, Patrick G; Hyett, Jon; Gillin, Adrian G

    2017-10-01

    To determine if home blood pressure measurement (HBPM) provides comparable results to clinic blood pressure (BP) measurement. A prospective, single-centre study of 37 pregnant and early post-partum women with a hypertensive pregnancy or at high-risk of developing a hypertensive pregnancy were asked to perform HBPM for a minimum period of one week. This was subsequently compared to clinic BP measurement both before and after the period of home measurement. The accuracy of HBPM compared to clinic measurement, and the acceptability by patients for HBPM. The HBPM was comparable to clinic measurements [for the systolic blood pressure (SBP), the mean home reading was 123.4mmHg (122.0-124.9mmHg) versus 123.9mmHg (121.3-126.5mmHg) for the clinic reading (p=0.69); for the diastolic blood pressure (DBP) the mean home reading was 81.6mmHg (80.4-82.8mmHg) versus 84.4mmHg (82.6-86.2mmHg) for the clinic (pmeasurement. It is also an acceptable technique for pregnant and early post-partum women. However, it should be used as an adjunct to clinic measurement, and cannot at this present stage replace clinic visits or clinic BP measurement. Copyright © 2017 International Society for the Study of Hypertension in Pregnancy. Published by Elsevier B.V. All rights reserved.

  12. Simultaneous measurement of hysteresis in capillary pressure and electric permittivity for multiphase flow through porous media

    NARCIS (Netherlands)

    Plug, W.J.; Slob, E.C.; Bruining, J.; Moreno Tirado, L.M.

    2007-01-01

    We present a tool that simultaneously measures the complex permittivity and the capillary pressure characteristics for multiphase flow. The sample holder is a parallel plate capacitor. A precision component analyzer is used to measure the impedance amplitude and phase angle as a function of

  13. 'Diagnostic mode' improves adherence to the home blood pressure measurement schedule

    NARCIS (Netherlands)

    Wessel, Stephanie E.; van der Hoeven, Niels V.; Cammenga, Marianne; van Montfrans, Gert A.; van den Born, Bert-Jan H.

    2012-01-01

    Background The accuracy of home blood pressure measurement (HBPM) depends on adherence to the measurement schedule. We investigated the number of deviations from the requested schedule using an HBPM device equipped with a diagnostic mode that only allows patients to take a fixed number of BP

  14. Pressure measurements on a thick cambered and twisted 58 deg delta wing at high subsonic speeds

    Science.gov (United States)

    Chu, Julio; Lamar, John E.

    1987-01-01

    A pressure experiment at high subsonic speeds was conducted by a cambered and twisted thick delta wing at the design condition (Mach number 0.80), as well as at nearby Mach numbers (0.75 and 0.83) and over an angle-of-attack range. Effects of twin vertical tails on the wing pressure measurements were also assessed. Comparisons of detailed theoretical and experimental surface pressures and sectional characteristics for the wing alone are presented. The theoretical codes employed are FLO-57, FLO-28, PAN AIR, and the Vortex Lattice Method-Suction Analogy.

  15. Controlling a Conventional LS-pump based on Electrically Measured LS-pressure

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard

    2008-01-01

    As a result of the increasing use of sensors in mobile hydraulic equipment, the need for hydraulic pilot lines is decreasing, being replaced by electrical wiring and electrically controllable components. For controlling some of the existing hydraulic components there are, however, still a need...... for being able to generate a hydraulic pilot pressure. In this paper controlling a hydraulic variable pump is considered. The LS-pressure is measured electrically and the hydraulic pilot pressure is generated using a small spool valve. From a control point of view there are two approaches for controlling...

  16. Short-term reproducibility of intraocular pressure and ocular perfusion pressure measurements in Chinese volunteers and glaucoma patients.

    Science.gov (United States)

    Gao, Yanlin; Wan, Bing; Li, Peiyu; Zhang, Yan; Tang, Xin

    2016-08-18

    To evaluate the short-term reproducibility of diurnal intraocular pressure (IOP) and ocular perfusion pressure (OPP) measurements in normal volunteers, untreated normal-tension glaucoma (NTG) and primary open-angle glaucoma (POAG) patients. Fifty-four healthy volunteers (control group), 67 NTG patients and 54 POAG patients were recruited. The IOPs of both eyes were measured with a Goldmann applanation tonometer at 3-h intervals over 2 consecutive days. Blood pressure (BP) measurements were collected at the same times. The mean IOP/OPP, peak IOP/OPP, trough IOP/OPP and IOP/OPP fluctuations on each day were also calculated. The intraclass correlation coefficients (ICCs) were used to evaluate the reproducibilities. In the control group, the ICCs of mean IOP, peak IOP, trough IOP and IOP fluctuation were 0.921, 0.889, 0.888, and 0.661, respectively, and the ICCs of the mean OPP, peak OPP, trough OPP and OPP fluctuations were 0.962, 0.918, 0.953, and 0.680, respectively. In the NTG group, the ICCs of the mean IOP, peak IOP, trough IOP and IOP fluctuation were 0.862, 0.741, 0.798, and 0.290, respectively, and the ICCs of the mean OPP, peak OPP, trough OPP and OPP fluctuations were 0.947, 0.828, 0.927, and -0.008, respectively. In the POAG group, the ICCs of the mean IOP, peak IOP, trough IOP and IOP fluctuation were 0.857, 0.666, 0.808, and 0.546, respectively, and the ICCs of the mean OPP, peak OPP, trough OPP and OPP fluctuation were 0.934, 0.842, 0.910, and 0.093, respectively. The IOP measurements within a single day were not highly reproducible in the short-term. The normal volunteers exhibited better IOP and OPP reproducibilities than the glaucoma patients. The IOP and OPP fluctuations could not be accurately evaluated based on the IOP or OPP measurements within a single day.

  17. Cost estimation of hypertension management based on home blood pressure monitoring alone or combined office and ambulatory blood pressure measurements.

    Science.gov (United States)

    Boubouchairopoulou, Nadia; Karpettas, Nikos; Athanasakis, Kostas; Kollias, Anastasios; Protogerou, Athanase D; Achimastos, Apostolos; Stergiou, George S

    2014-10-01

    This study aims at estimating the resources consumed and subsequent costs for hypertension management, using home blood pressure (BP) monitoring (HBPM) alone versus combined clinic measurements and ambulatory blood pressure monitoring (C/ABPM). One hundred sixteen untreated hypertensive subjects were randomized to use HBPM or C/ABPM for antihypertensive treatment initiation and titration. Health resources utilized within 12-months follow-up, their respective costs, and hypertension control were assessed. The total cost of the first year of hypertension management was lower in HBPM than C/ABPM arm (€1336.0 vs. €1473.5 per subject, respectively; P cost was identical in both arms. There was no difference in achieved BP control and drug expenditure (HBPM: €233.1 per subject; C/ABPM: €247.6 per subject; P = not significant), whereas the cost of BP measurements and/or visits was higher in C/ABPM arm (€393.9 vs. €516.9, per patient, respectively P cost for subsequent years (>1) was €348.9 and €440.2 per subject, respectively for HBPM and C/ABPM arm and €2731.4 versus €3234.3 per subject, respectively (P cost than C/ABPM, and the same trend is observed in 5-year projection. The results on the resources consumption can be used to make cost estimates for other health-care systems.

  18. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    OpenAIRE

    Naidu, M.U.R.; C Prabhakar Reddy

    2012-01-01

    Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV) measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG) with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood p...

  19. Repeated Blood Pressure Measurements in Childhood in Prediction of Hypertension in Adulthood.

    Science.gov (United States)

    Oikonen, Mervi; Nuotio, Joel; Magnussen, Costan G; Viikari, Jorma S A; Taittonen, Leena; Laitinen, Tomi; Hutri-Kähönen, Nina; Jokinen, Eero; Jula, Antti; Cheung, Michael; Sabin, Matthew A; Daniels, Stephen R; Raitakari, Olli T; Juonala, Markus

    2016-01-01

    Hypertension may be predicted from childhood risk factors. Repeated observations of abnormal blood pressure in childhood may enhance prediction of hypertension and subclinical atherosclerosis in adulthood compared with a single observation. Participants (1927, 54% women) from the Cardiovascular Risk in Young Finns Study had systolic and diastolic blood pressure measurements performed when aged 3 to 24 years. Childhood/youth abnormal blood pressure was defined as above 90th or 95th percentile. After a 21- to 31-year follow-up, at the age of 30 to 45 years, hypertension (>140/90 mm Hg or antihypertensive medication) prevalence was found to be 19%. Carotid intima-media thickness was examined, and high-risk intima-media was defined as intima-media thickness >90th percentile or carotid plaques. Prediction of adulthood hypertension and high-risk intima-media was compared between one observation of abnormal blood pressure in childhood/youth and multiple observations by improved Pearson correlation coefficients and area under the receiver operating curve. When compared with a single measurement, 2 childhood/youth observations improved the correlation for adult systolic (r=0.44 versus 0.35, Pblood pressure. In addition, 2 abnormal childhood/youth blood pressure observations increased the prediction of hypertension in adulthood (0.63 for 2 versus 0.60 for 1 observation, P=0.003). When compared with 2 measurements, third observation did not provide any significant improvement for correlation or prediction (P always >0.05). A higher number of childhood/youth observations of abnormal blood pressure did not enhance prediction of adult high-risk intima-media thickness. Compared with a single measurement, the prediction of adult hypertension was enhanced by 2 observations of abnormal blood pressure in childhood/youth. © 2015 American Heart Association, Inc.

  20. Probe pressure effects on human skin diffuse reflectance and fluorescence spectroscopy measurements

    OpenAIRE

    Lim, Liang; Nichols, Brandon; Rajaram, Narasimhan; Tunnell, James W.

    2011-01-01

    Diffuse reflectance and fluorescence spectroscopy are popular research techniques for noninvasive disease diagnostics. Most systems include an optical fiber probe that transmits and collects optical spectra in contact with the suspected lesion. The purpose of this study is to investigate probe pressure effects on human skin spectroscopic measurements. We conduct an in-vivo experiment on human skin tissue to study the short-term (30 s) effects of probe pressure on diffuse reflectance and fluor...

  1. Classification of peripheral occlusive arterial diseases based on symptoms, signs and distal blood pressure measurements

    DEFF Research Database (Denmark)

    Tønnesen, K H; Noer, Ivan; Paaske, William

    1980-01-01

    Systolic blood pressures at toe and ankle were measured in 459 consecutive patients with occlusive arterial disease. Fifty-eight per cent had intermittent claudication with arterial disease of all degrees of severity. Seventeen per cent complained of rest pain having toe systolic pressures below 30...... occlusive arterial disease which was located distally on the legs. A classification in three groups is suggested: (1) ischemia only during exercise; (2) ischemia at rest with or without ulcerations: and (3) diabetics with chronic ulcerations....

  2. Measurement of Milwaukee Brace Pad Pressure in Adolescent Round Back Deformity Treatment

    Science.gov (United States)

    Babaee, Taher; Ahmadi, Amir; Sanjari, Mohammad Ali; Ganjavian, Mohammad Saleh

    2017-01-01

    Study Design In this prospective study, we measured the pad pressures of the Milwaukee brace in adolescent hyperkyphosis treatment. Purpose We evaluated the skin-brace interface forces exerted by the main pads of the Milwaukee brace. Overview of Literature A fundamental factor associated with brace effectiveness in spinal deformity is pad force adjustment. However, few studies have evaluated the in-brace force magnitude and its effect on curve correction. Methods Interface forces at four pads of the Milwaukee brace were measured in 73 patients withround back deformity (mean age, 14.04±1.97 years [range, 10–18]; mean initial Cobb angle,67.70°±9.23° [range, 50°–86°]). We used a modified aneroid sphygmomanometer to measure the shoulder and kyphosis pad pressures. Each patient underwent measurement in the standing and sitting positions during inhalation/exhalation. Results The mean pad pressures were significantly higher in the standing than in thesitting position, and significantly higher pressures were observed during inhalation compared toexhalation (p=0.001).There were no statistically significant differences between right and left shoulder pad pressures (p>0.05); however, the pressure differences between the right and left kyphosis pads were statistically significant (p<0.05). In a comparison of corrective forces with bracing for less or more than 6 months, corrective force was larger with bracing for less than 6 months (p=0.02). In the standing position, there were no statistically significant correlations between pad pressures and kyphosis curve correction. Conclusions In the sitting position, there was a trend toward lower forces at the skin-brace interface; therefore, brace adjustment in the standing position may be useful and more effective. There was no significant correlation between the magnitude of the pad pressures and the degree of in-brace curve correction. PMID:28874982

  3. Which anthropometric measurements is most closely related to elevated blood pressure?

    Science.gov (United States)

    Yalcin, Bektas Murat; Sahin, Erkan Melih; Yalcin, Esra

    2005-10-01

    Epidemiological studies find a progressive increase in the prevalence of elevated blood pressure with increasing adipose tissue. But there is no common opinion about which effectiveness of the anthropometric measurement tools indicating general or android obesity are most important to follow up in patients with elevated blood pressures. To identify which anthropometric measurements are most closely related to blood pressure elevation. A cross-sectional descriptive study of 1727 subjects [894 (50.6%) men and 833 (48.2%) women, aged 18-65 years old] was held in Edirne, Turkey. Each subject's weight, height, waist and hip circumference, triceps skin fold and blood pressures was measured; waist to hip ratio and body mass index were calculated. The relations between blood pressure and different anthropometric variables in both genders were investigated in linear regression models. The mean systolic and diastolic blood pressures were 123.49 +/- 17.60 and 78.79 +/- 10.37 mmHg. According to body mass index 23.7% of the subjects were obese (.29.9 kg/m(2)). When waist circumference cut-off points were compared with waist to hip ratio the android obesity ratio was doubled (32.3% versus 16.6%). 119 subjects (6.8%) were not obese according to body mass index but nonetheless had waist circumference measurements above the cut-off points suggesting a high cardiovascular risk. In the linear regression models waist circumference was found to be an independent risk factor for blood pressure in men; however body mass was more important index and waist circumference somewhat less so for women. In primary care waist circumference should be a useful tool screening for and following android obesity in patients with elevated blood pressure.

  4. Unsteady blade pressures on a propfan: Predicted and measured compressibility effects

    Science.gov (United States)

    Nallasamy, M.

    1992-01-01

    The effect of compressibility on unsteady blade pressures is studied by solving the three-dimensional Euler equations. The operation of the eight-bladed SR7L propfan at a 4.75 deg angle of attack was considered. Euler solutions were obtained for three Mach numbers, 0.6, 0.7 and 0.8, and the predicted blade pressure waveforms were compared with flight data. The comparisons show that in general, the effect of Mach number on pressure waveforms are correctly predicted. The change in pressure waveforms are minimal when the Mach number is increased from 0.6 to 0.7. Increasing the Mach number from 0.7 to 0.8 produces significant changes in predicted pressure levels. The predicted amplitudes, however, differ from measurements at some transducer locations. At all the three Mach numbers, the measured (installed propfan) pressure waveforms show a relative phase lag compared to the computed (propfan along) waveforms due to installation effects. Measured waveforms in the blade tip region show nonlinear variations which are not captured by the present numerical procedure.

  5. Comparison of high definition oscillometric and Doppler ultrasonic devices for measuring blood pressure in anaesthetised cats.

    Science.gov (United States)

    Petric, Aleksandra Domanjko; Petra, Zrimsek; Jerneja, Sredensek; Alenka, Seliskar

    2010-10-01

    Indirect blood pressure measurements using high definition oscillometric (HDO) and Doppler devices were compared in 50 anaesthetised client-owned cats presented for various surgical procedures. Sites of cuff placement for Doppler were identified as forelimb and hindlimb and for HDO as forelimb and tail. Oscillometric and Doppler readings were obtained in 90.05% and 100% of attempts, respectively. Both devices enabled precise measurement of systolic arterial pressure (SAP), although the Doppler device gave higher precision. In the low pressure group (SAP150 mmHg; n=62), 86.7% and 75.0% of discrepancy, respectively, were lower than 10 mmHg. Frequency of discrepancy at the range of 15 mmHg showed similar differences between pressure groups. There were significantly higher discrepancies when the cuff was positioned on the tail rather than on the leg. The SAP value obtained by HDO can be calculated from the Doppler measurement from SAP (HDO)=0.8515 × SAP (Doppler)+19.221 mmHg. Compared to Doppler, HDO overestimated low pressure and underestimated high pressure values. Copyright © 2010 ISFM and AAFP. Published by Elsevier Ltd. All rights reserved.

  6. Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System

    Science.gov (United States)

    Scroggins, Ashley R.; Fiebig, Mark D.

    2014-01-01

    The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.

  7. Can subjective comfort be used as a measure of plantar pressure in football boots?

    Science.gov (United States)

    Okholm Kryger, Katrine; Jarratt, Vicky; Mitchell, Séan; Forrester, Steph

    2017-05-01

    Comfort has been shown to be the most desired football boot feature by players. Previous studies have shown discomfort to be related to increased plantar pressures for running shoes which, in some foot regions, has been suggested to be a causative factor in overuse injuries. This study examined the correlation between subjective comfort data and objective plantar pressure for football boots during football-specific drills. Eight male university football players were tested. Plantar pressure data were collected during four football-specific movements for each of three different football boots. The global and local peak pressures based on a nine-sectioned foot map were compared to subjective comfort measures recorded using a visual analogue scale for global discomfort and a discomfort foot map for local discomfort. A weak (rs = -0.126) yet significant (P comfort. The model only significantly predicted (P > 0.001) the outcome for two (medial and lateral forefoot) of the nine foot regions. Subjective comfort data is therefore not a reliable measure of increased plantar pressures for any foot region. The use of plantar pressure measures is therefore needed to optimise injury prevention when designing studded footwear.

  8. Blood Pressure Variability and Cognitive Function Among Older African Americans: Introducing a New Blood Pressure Variability Measure.

    Science.gov (United States)

    Tsang, Siny; Sperling, Scott A; Park, Moon Ho; Helenius, Ira M; Williams, Ishan C; Manning, Carol

    2017-09-01

    Although blood pressure (BP) variability has been reported to be associated with cognitive impairment, whether this relationship affects African Americans has been unclear. We sought correlations between systolic and diastolic BP variability and cognitive function in community-dwelling older African Americans, and introduced a new BP variability measure that can be applied to BP data collected in clinical practice. We assessed cognitive function in 94 cognitively normal older African Americans using the Mini-Mental State Examination (MMSE) and the Computer Assessment of Mild Cognitive Impairment (CAMCI). We used BP measurements taken at the patients' three most recent primary care clinic visits to generate three traditional BP variability indices, range, standard deviation, and coefficient of variation, plus a new index, random slope, which accounts for unequal BP measurement intervals within and across patients. MMSE scores did not correlate with any of the BP variability indices. Patients with greater diastolic BP variability were less accurate on the CAMCI verbal memory and incidental memory tasks. Results were similar across the four BP variability indices. In a sample of cognitively intact older African American adults, BP variability did not correlate with global cognitive function, as measured by the MMSE. However, higher diastolic BP variability correlated with poorer verbal and incidental memory. By accounting for differences in BP measurement intervals, our new BP variability index may help alert primary care physicians to patients at particular risk for cognitive decline.

  9. A rapid method of fruit cell isolation for cell size and shape measurements

    Directory of Open Access Journals (Sweden)

    Johnston Jason W

    2009-04-01

    Full Text Available Abstract Background Cell size is a structural component of fleshy fruit, contributing to important traits such as fruit size and texture. There are currently a number of methods for measuring cell size; most rely either on tissue sectioning or digestion of the tissue with cell wall degrading enzymes or chemicals to release single cells. Neither of these approaches is ideal for assaying large fruit numbers as both require a considerable time to prepare the tissue, with current methods of cell wall digestions taking 24 to 48 hours. Additionally, sectioning can lead to a measurement of a plane that does not represent the widest point of the cell. Results To develop a more rapid way of measuring fruit cell size we have developed a protocol that solubilises pectin in the middle lamella of the plant cell wall releasing single cells into a buffered solution. Gently boiling small fruit samples in a 0.05 M Na2CO3 solution, osmotically balanced with 0.3 M mannitol, produced good cell separation with little cellular damage in less than 30 minutes. The advantage of combining a chemical treatment with boiling is that the cells are rapidly killed. This stopped cell shape changes that could potentially occur during separation. With this method both the rounded and angular cells of the apple cultivars SciRos 'Pacific Rose' and SciFresh 'Jazz'™ were observed in the separated cells. Using this technique, an in-depth analysis was performed measuring cell size from 5 different apple cultivars. Cell size was measured using the public domain ImageJ software. For each cultivar a minimum of 1000 cells were measured and it was found that each cultivar displayed a different distribution of cell size. Cell size within cultivars was similar and there was no correlation between flesh firmness and cell size. This protocol was tested on tissue from other fleshy fruit including tomato, rock melon and kiwifruit. It was found that good cell separation was achieved with flesh

  10. [Measurement of tube cuff pressure levels in intensive care unit: considerations on the benefits of training].

    Science.gov (United States)

    Juliano, Silvia Renata Rezek; Juliano, Maria Cecília Rezek; Cividanes, Jose Paulo; Houly, João Geraldo Simões; Gebara, Otavio Celso Eluf; Cividanes, Gil Vicente L; Catão, Elaine C

    2007-09-01

    The tube cuff pressure directly transmitted on the tracheal wall in an irregular form can cause injuries and lead to bronchoaspiration. The aim of this study was to demonstrate that the implementation of routine tube cuff pressure measurements result in a reliable control to maintain the measurements within the parameters considered safe, thus preventing the described complications. A total of 3,195 tube cuff measurements were obtained from 1,194 male and female patients admitted at the Intensive Care Unit (ICU) and Coronary Unit (CU), who were undergoing mechanical ventilation with endotracheal prosthesis and tracheotomy cannula, during the morning and afternoon periods. From March to August 2005 the follow-up of the measurements obtained by the physical therapy professionals was carried out and it was observed that the measurements were irregular, on average, in 80% of the cases. Thus, a training program was established, which was focused on the Nursing Teams of the ICU and CU, consisting in providing directions for the adequate procedures performed at the bedside (in loco training). The training procedures were carried out at two different periods (morning and afternoon) in order to include the whole team. It is suggested that it is necessary to monitor tube cuff pressure through the implementation of routine measurements in the morning, afternoon and evening periods as a prophylactic measure, in order to prevent the possible complications of tracheal prosthesis balloon pressure.

  11. Thirty-minute compared to standardised office blood pressure measurement in general practice

    Science.gov (United States)

    Scherpbier-de Haan, Nynke; van der Wel, Mark; Schoenmakers, Gijs; Boudewijns, Steve; Peer, Petronella; van Weel, Chris; Thien, Theo; Bakx, Carel

    2011-01-01

    Background Although blood pressure measurement is one of the most frequently performed measurements in clinical practice, there are concerns about its reliability. Serial, automated oscillometric blood pressure measurement has the potential to reduce measurement bias and white-coat effect' Aim To study agreement of 30-minute office blood pressure measurement (OBPM) with standardised OBPM, and to compare repeatability Design and setting Method comparison study in two general practices in the Netherlands Method Thirty-minute and standardised OBPM was carried out with the same, validated device in 83 adult patients, and the procedure was repeated after 2 weeks. During 30-minute OBPM, blood pressure was measured automatically every 3 minutes, with the patient in a sitting position, alone in a quiet room. Agreement between 30-minute and standardised OBPM was assessed by Bland–Altman analysis. Repeatability of the blood pressure measurement methods after 2 weeks was expressed as the mean difference in combination with the standard deviation of difference (SDD) Results Mean 30-minute OBPM readings were 7.6/2.5 mmHg (95% confidence interval [CI] = 6.1 to 9.1/1.5 to 3.4 mmHg) lower than standardised OBPM readings. The mean difference and SDD between repeated 30-minute OBPMs (mean difference = 3/1 mmHg, 95% CI = 1 to 5/0 to 2 mmHg; SDD 9.5/5.3 mmHg) were lower than those of standardised OBPMs (mean difference = 6/2 mmHg, 95% CI = 4 to 8/1 to 4 mmHg; SDD 10.9/6.3 mmHg). Conclusion Thirty-minute OBPM resulted in lower readings than standardised OBPM and had a better repeatability. These results suggest that 30-minute OBPM better reflects the patient's true blood pressure than standardised OBPM does. PMID:22152748

  12. Impact of sample geometry on the measurement of pressure-saturation curves: Experiments and simulations

    Science.gov (United States)

    Moura, M.; Fiorentino, E.-A.; Mâløy, K. J.; Schäfer, G.; Toussaint, R.

    2015-11-01

    In this paper, we study the influence of sample geometry on the measurement of pressure-saturation relationships, by analyzing the drainage of a two-phase flow from a quasi-2-D random porous medium. The medium is transparent, which allows for the direct visualization of the invasion pattern during flow, and is initially saturated with a viscous liquid (a dyed glycerol-water mix). As the pressure in the liquid is gradually reduced, air penetrates from an open inlet, displacing the liquid which leaves the system from an outlet on the opposite side. Pressure measurements and images of the flow are recorded and the pressure-saturation relationship is computed. We show that this relationship depends on the system size and aspect ratio. The effects of the system's boundaries on this relationship are measured experimentally and compared with simulations produced using an invasion percolation algorithm. The pressure build up at the beginning and end of the invasion process are particularly affected by the boundaries of the system whereas at the central part of the model (when the air front progresses far from these boundaries), the invasion happens at a statistically constant capillary pressure. These observations have led us to propose a much simplified pressure-saturation relationship, valid for systems that are large enough such that the invasion is not influenced by boundary effects. The properties of this relationship depend on the capillary pressure thresholds distribution, sample dimensions, and average pore connectivity and its applications may be of particular interest for simulations of two-phase flow in large porous media.

  13. Thermoresponsive Magnetic Nano-Biosensors for Rapid Measurements of Inorganic Arsenic and Cadmium

    Directory of Open Access Journals (Sweden)

    Isamu Maeda

    2012-10-01

    Full Text Available Green fluorescent protein-tagged sensor proteins, ArsR-GFP and CadC-GFP, have been produced as biosensors for simple and low-cost quantification of As(III or Cd(II. In this study, the sensor protein-promoter DNA complexes were reconstructed on the surfaces of magnetic particles of different sizes. After the surface modification all the particles could be attracted by magnets, and released different amounts of GFP-tagged protein, according to the metal concentrations within 5 min, which caused significant increases in fluorescence. A detection limit of 1 µg/L for As(III and Cd(II in purified water was obtained only with the nanoparticles exhibiting enough magnetization after heat treatment for 1 min. Therefore, thermoresponsive magnetic nano-biosensors offer great advantages of rapidity and sensitivity for the measurement of the toxic metals in drinking water.

  14. Validation of a rapid conductimetric test for the measurement of wine tartaric stability.

    Science.gov (United States)

    Bosso, Antonella; Motta, Silvia; Petrozziello, Maurizio; Guaita, Massimo; Asproudi, Andriani; Panero, Loretta

    2016-12-01

    This work was aimed at optimizing a rapid and reproducible conductivity test for the evaluation of wine tartaric stability, in order to improve the practices for the prevention of tartaric precipitations during bottle aging. The test consists in measuring the drop of conductivity in wines kept under stirring for a fixed time, at low temperature, after the addition of micronized potassium bitartrate crystals (KHT). An experimental design was planned to study three factors affecting the test: temperature, duration and dose of added potassium bitartrate. A standard protocol was defined to produce a micronized potassium bitartrate starting from available commercial products, since the dimensions of the crystals can affect the final conductivity values. After the choice of the best conditions the method was validated. Two different stability thresholds were defined for white wines and for red/rosé wines by comparing the results of the mini-contact test with those of the cold test. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating

    Science.gov (United States)

    Liu, J. P.; Kirchhoff, J.; Zhou, L.; Zhao, M.; Grapes, M. D.; Dale, D. S.; Tate, M. D.; Philipp, H. T.; Gruner, S. M.; Weihs, T. P.; Hufnagel, T. C.

    2017-01-01

    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s−1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases. PMID:28664887

  16. X-ray reflectivity measurement of interdiffusion in metallic multilayers during rapid heating.

    Science.gov (United States)

    Liu, J P; Kirchhoff, J; Zhou, L; Zhao, M; Grapes, M D; Dale, D S; Tate, M D; Philipp, H T; Gruner, S M; Weihs, T P; Hufnagel, T C

    2017-07-01

    A technique for measuring interdiffusion in multilayer materials during rapid heating using X-ray reflectivity is described. In this technique the sample is bent to achieve a range of incident angles simultaneously, and the scattered intensity is recorded on a fast high-dynamic-range mixed-mode pixel array detector. Heating of the multilayer is achieved by electrical resistive heating of the silicon substrate, monitored by an infrared pyrometer. As an example, reflectivity data from Al/Ni heated at rates up to 200 K s-1 are presented. At short times the interdiffusion coefficient can be determined from the rate of decay of the reflectivity peaks, and it is shown that the activation energy for interdiffusion is consistent with a grain boundary diffusion mechanism. At longer times the simple analysis no longer applies because the evolution of the reflectivity pattern is complicated by other processes, such as nucleation and growth of intermetallic phases.

  17. Quantitative Micro-Raman Spectroscopy for Partial Pressure Measurement in Small Volumes.

    Science.gov (United States)

    Karlen, Sylvain; Gobet, Jean; Overstolz, Thomas; Haesler, Jacques; Lecomte, Steve

    2017-12-01

    We demonstrate the quantitative capabilities of Raman confocal microscopy as a nondestructive method to measure the partial pressure of molecular gases in mm3 range sealed volume having an optical access. Thanks to a calibration procedure, we apply this technique for the characterization of the absolute nitrogen partial pressure inside buffered micro electromechanical system (MEMS) atomic vapor cells developed for atomic clocks. Our results are compared with measurements obtained by rubidium hyperfine frequency spectroscopy and a good agreement is demonstrated between the two methods, with a three-sigma detection limit below 10 mbar for a 1 h integration time, using a 33 mW 532 nm excitation laser. These results prove the potential of confocal micro-Raman spectroscopy as a simple and nondestructive method for small-scale pressure measurements.

  18. Ionization cross section, pressure shift and isotope shift measurements of osmium

    Science.gov (United States)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  19. Bulk conductivity measurement of paper by a new in situ pressure cell

    Science.gov (United States)

    Josefowicz, Jack Y.; Anczurowski, Edward; Jones, Arthur Y.; Deslandes, Yves

    1981-06-01

    In this report a new bulk conductivity cell design is described which can be used to characterize both conductivized and nonconductive paper. By the use of optically flat stainless steel electrodes under a pressure of 115 bars during the conductivity measurement, it is shown that the contact resistance between the paper sample and the electrodes is reduced to negligible proportions. The effect of paper surface morphology on the contact resistance during the measurement of bulk conductivity was studied by a comparison between the polished stainless steel electrodes and electrodes composed of liquid Galium Indium, which make intimate contact with the paper surface. Bulk conductivity measurements were determined for paper samples having different basis weights and different degrees of calendering. The results obtained with the pressurized stainless steel electrodes for these paper samples indicate that the contact resistance is essentially eliminated for all the papers studied by using an applied pressure of 115 bars.

  20. High-pressure plastic scintillation detector for measuring radiogenic gases in flow systems

    CERN Document Server

    Schell, W R; Yoon, S R; Tobin, M J

    1999-01-01

    Radioactive gases are emitted into the atmosphere from nuclear electric power and nuclear fuel reprocessing plants, from hospitals discarding xenon used in diagnostic medicine, as well as from nuclear weapons tests. A high-pressure plastic scintillation detector was constructed to measure atmospheric levels of such radioactive gases by detecting the beta and internal conversion (IC) electron decays. Operational tests and calibrations were made that permit integration of the flow detectors into a portable Gas Analysis, Separation and Purification system (GASP). The equipment developed can be used for measuring fission gases released from nuclear reactor sources and/or as part of monitoring equipment for enforcing the Comprehensive Test Ban Treaty. The detector is being used routinely for in-line gas separation efficiency measurements, at the elevated operational pressures used for the high-pressure swing analysis system (2070 kPa) and at flow rates of 5-15 l/min . This paper presents the design features, opera...

  1. Fast Fourier transform to measure pressure coefficient of muons in the GRAPES-3 experiment

    Science.gov (United States)

    Mohanty, P. K.; Ahmad, S.; Antia, H. M.; Arunbabu, K. P.; Chandra, A.; Dugad, S. R.; Gupta, S. K.; Hariharan, B.; Hayashi, Y.; Jagadeesan, P.; Jain, A.; Kawakami, S.; Kojima, H.; Morris, S. D.; Nayak, P. K.; Oshima, A.; Rao, B. S.; Reddy, L. V.; Shibata, S.

    2016-06-01

    The GRAPES-3 large area (560 m2) tracking muon telescope is operating at Ooty in India since 2001. It records 4 × 109 muons of energy ≥ 1 GeV every day. These high statistics data have enabled extremely sensitive measurements of solar phenomena, including the solar anisotropies, Forbush decreases, coronal mass ejections etc. to be made. However, prior to such studies, the variation in observed muon rate caused by changes in atmospheric pressure needs to be corrected. Traditionally, the pressure coefficient (β) for the muon rate was derived from the observed data. But the influence of various solar effects makes the measurement of β somewhat difficult. In the present work, a different approach to circumvent this difficulty was used to measure β, almost independent of the solar activity. This approach exploits a small amplitude (∼1 hPa) periodic (12 h) variation of atmospheric pressure at Ooty that introduces a synchronous variation in the muon rate. By using the fast Fourier transform technique the spectral power distributions at 12 h from the atmospheric pressure, and muon rate were used to measure β. The value of pressure coefficient was found to be β =(- 0.128 ± 0.005) % hPa-1.

  2. Estimating the solar wind pressure at comet 67P from Rosetta magnetic field measurements

    Science.gov (United States)

    Nemeth, Z.; Dósa, M.; Goetz, C.; Madanian, H.; Opitz, A.; Richter, I.; Szego, K.; Timar, A.

    2017-09-01

    The solar wind pressure is an important parameter of planetary space weather, which plays a crucial role in the interaction of the solar wind with the planetary plasma environment. Unfortunately, it is not always possible to measure its value at every locations where it would be useful or needed. Spacecraft observing the internal dynamics of a planetary magnetosphere, for example, would benefit greatly from solar wind pressure data, but as the solar wind does not penetrate to their locations, direct measurements are impossible. It is well known that the maximum of the magnetic field in the pile-up region of a magnetosphere is proportional to the square root of the solar wind pressure. Recent investigation of Rosetta data revealed that the maximum of the magnetic field in the pile-up region can be approximated by magnetic field measurements performed in the inner regions of the cometary magnetosphere close to the boundary of the diamagnetic cavity. This relationship holds for several months spanning from June 2015 to January 2016. Here we investigate the possibility to use this relationship to determine a solar wind pressure proxy for this time interval using magnetic field data measured by the Rosetta Magnetometer. This pressure proxy would be useful not only for other Rosetta related studies, but could also serve as a new independent input database for space weather propagation to other locations in the Solar System.

  3. Arthroscopic measurement of chondromalacia of patella cartilage using a microminiature pressure transducer.

    Science.gov (United States)

    Dashefsky, J H

    1987-01-01

    A microminiature pressure transducer was constructed to measure chondromalacia of the medial patellar facet under arthroscopic control. Normal and abnormal values were established. Among a group of 58 knees with no patellofemoral symptoms or signs, 30 knees measured "soft" using this instrument. Among a group of 107 knees with patellofemoral symptoms and signs, 98 knees measured "soft." Of these 98 knees, 55 had no observable change in the articular surface of the patella.

  4. Comparison of the sound pressure measurement and the speed measurement of the gearbox vibrating surface

    Directory of Open Access Journals (Sweden)

    Tomasz FIGLUS

    2012-01-01

    Full Text Available The paper attempts to assess the utility of sound pressure level registered in the near field of about 0,01 m away from the vibrating surface in the studies of the housing vibroacoustic activity. Based on the studies performed for the four pairs of wheels, with different loads and different speeds of gearbox, have been indicated the usefulness of the noise recorded in near field in vibroacoustic analysis.

  5. Rapid and quantitative measuring of telomerase activity using an electrochemiluminescent sensor

    Science.gov (United States)

    Zhou, Xiaoming; Xing, Da; Zhu, Debin; Jia, Li

    2007-11-01

    Telomerase, a ribonucleoprotein enzyme that adds telomeric repeats to the 3'end of chromosomal DNA for maintaining chromosomal integrity and stability. This strong association of telomerase activity with tumors establishing it is the most widespread cancer marker. A number of assays based on the polymerase chain reaction (PCR) have been developed for the evaluation of telomerase activity. However, those methods require gel electrophoresis and some staining procedures. We developed an electrochemiluminescent (ECL) sensor for the measuring of telomerase activity to overcome these problems such as troublesome post-PCR procedures and semi-quantitative assessment in the conventional method. In this assay 5'-biotinylated telomerase synthesis (TS) primer serve as the substrate for the extension of telomeric repeats under telomerase. The extension products were amplified with this TS primer and a tris-(2'2'-bipyridyl) ruthenium (TBR)-labeled reversed primer. The amplified products was separated and enriched in the surface of electrode by streptavidin-coated magnetic beads, and detected by measuring the ECL signals of the TBR labeled. Measuring telomerase activity use the sensor is easy, sensitive, rapid, and applicable to quantitative analysis, should be clinically useful for the detection and monitoring of telomerase activity.

  6. Direct measurement of the instantaneous linewidth of rapidly wavelength-swept lasers.

    Science.gov (United States)

    Biedermann, Benjamin R; Wieser, Wolfgang; Eigenwillig, Christoph M; Klein, Thomas; Huber, Robert

    2010-11-15

    The instantaneous linewidth of rapidly wavelength-swept laser sources as used for optical coherence tomography (OCT) is of crucial interest for a deeper understanding of physical effects involved in their operation. Swept lasers for OCT, typically sweeping over ~15 THz in ~10 μs, have linewidths of several gigahertz. The high optical-frequency sweep speed makes it impossible to measure the instantaneous spectrum with standard methods. Hence, up to now, experimental access to the instantaneous linewidth was rather indirect by the inverse Fourier transform of the coherence decay. In this Letter, we present a method by fast synchronous time gating and extraction of a "snapshot" of the instantaneous spectrum with an electro-optic modulator, which can subsequently be measured with an optical spectrum analyzer. This new method is analyzed in detail, and systematic artifacts, such as sideband generation due to the modulation and residual wavelength uncertainty due to the sweeping operation, are quantified. The method is checked for consistency with results from the common, more indirect measurement via coherence properties.

  7. Rapid Impedance Spectrum Measurements for State-of-Health Assessment of Energy Storage Devices

    Energy Technology Data Exchange (ETDEWEB)

    Jon P. Christophersen; John L. Morrison; Chester G. Motloch; William H. Morrison

    2012-04-01

    Harmonic compensated synchronous detection (HCSD) is a technique that can be used to measure wideband impedance spectra within seconds based on an input sum-of-sines signal having a frequency spread separated by harmonics. The battery (or other energy storage device) is excited with a sum-of-sines current signal that has a duration of at least one period of the lowest frequency. The voltage response is then captured and synchronously detected at each frequency of interest to determine the impedance spectra. This technique was successfully simulated using a simplified battery model and then verified with commercially available Sanyo lithium-ion cells. Simulations revealed the presence of a start-up transient effect when only one period of the lowest frequency is included in the excitation signal. This transient effect appears to only influence the low-frequency impedance measurements and can be reduced when a longer input signal is used. Furthermore, lithium-ion cell testing has indicated that the transient effect does not seem to impact the charge transfer resistance in the mid-frequency region. The degradation rates for the charge transfer resistance measured from the HCSD technique were very similar to the changes observed from standardized impedance spectroscopy methods. Results from these studies, therefore, indicate that HCSD is a viable, rapid alternative approach to acquiring impedance spectra.

  8. Measurement of humic and fulvic acid concentrations and dissolution properties by a rapid batch procedure

    Energy Technology Data Exchange (ETDEWEB)

    Van Zomeren, A.; Comans, R.N.J. [ECN Biomass, Coal and Environmental Research, Petten (Netherlands)

    2007-08-29

    Although humic substances (HS) strongly facilitate the transport of metals and hydrophobic organic contaminants in environmental systems, their measurement is hampered by the time-consuming nature of currently available methods for their isolation and purification. We present and apply a new rapid batch method to measure humic (HA) and fulvic (FA) acid concentrations and dissolution properties in both solid and aqueous samples. The method is compared with the conventional procedures and is shown to substantially facilitate HS concentration measurements, particularly for applications such as geochemical modeling where HS purification is not required. The new method can be performed within 1.5-4 h per sample and multiple samples can be processed simultaneously, while the conventional procedures typically require approximately 40 h for a single sample. In addition, specific dissolution properties of HS are identified and are consistent with recent views on the molecular structure of HS that emphasize molecular interactions of smaller entities over distinct macromolecular components. Because the principles of the new method are essentially the same as those of generally accepted conventional procedures, the identified HA and FA properties are of general importance for the interpretation of the environmental occurrence and behavior of HS.

  9. VAPOR PRESSURE ISOTOPE EFFECTS IN THE MEASUREMENT OF ENVIRONMENTAL TRITIUM SAMPLES.

    Energy Technology Data Exchange (ETDEWEB)

    Kuhne, W.

    2012-12-03

    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The magnitude of the vapor pressure isotope effect is characterized as functions of the amount of water distilled from the sample aliquot and the heat settings for the distillation process. The tritium concentration in the distillate is higher than the tritium concentration in the sample early in the distillation process, it then sharply decreases due to the vapor pressure isotope effect and becomes lower than the tritium concentration in the sample, until the high tritium concentration retained in the boiling flask is evaporated at the end of the process. At that time, the tritium concentration in the distillate again overestimates the sample tritium concentration. The vapor pressure isotope effect is more pronounced the slower the evaporation and distillation process is conducted; a lower heat setting during the evaporation of the sample results in a larger bias in the tritium measurement. The experimental setup used and the fact that the current study allowed for an investigation of the relative change in vapor pressure isotope effect in the course of the distillation process distinguish it from and extend previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.034 {+-} 0.033, 1.052 {+-} 0.025, and 1.066 {+-} 0.037, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples, this implies that

  10. Using smartphone pressure sensors to measure vertical velocities of elevators, stairways, and drones

    Science.gov (United States)

    Monteiro, Martín; Martí, Arturo C.

    2017-01-01

    We measure the vertical velocities of elevators, pedestrians climbing stairs, and drones (flying unmanned aerial vehicles), by means of smartphone pressure sensors. The barometric pressure obtained with the smartphone is related to the altitude of the device via the hydrostatic approximation. From the altitude values, vertical velocities are derived. The approximation considered is valid in the first hundred meters of the inner layers of the atmosphere. In addition to pressure, acceleration values were also recorded using the built-in accelerometer. Numerical integration was performed, obtaining both vertical velocity and altitude. We show that data obtained using the pressure sensor is significantly less noisy than that obtained using the accelerometer. Error accumulation is also evident in the numerical integration of the acceleration values. In the proposed experiments, the pressure sensor also outperforms GPS, because this sensor does not receive satellite signals indoors and, in general, the operating frequency is considerably lower than that of the pressure sensor. In the cases in which it is possible, comparison with reference values taken from the architectural plans of buildings validates the results obtained using the pressure sensor. This proposal is ideally performed as an external or outreach activity with students to gain insight about fundamental questions in mechanics, fluids, and thermodynamics.

  11. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Science.gov (United States)

    2011-01-01

    Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS) offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural) within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput. PMID:21896164

  12. A technique for measurement of intraoral lip pressures with lip bumper therapy.

    Science.gov (United States)

    Soo, N D; Moore, R N

    1991-05-01

    One of the reported effects of functional appliance therapy is muscular adaptation achieved through the use of vestibular shields. To develop a method for measuring these effects, 10 children with Class I molar occlusion in the late mixed-dentition stage underwent lip bumper therapy for 8 months. Semiconductor pressure transducers mounted on Tru-Tain stents in the mandibular midline and left canine areas were used to measure lip pressures with the patient at rest and during five functional exercises. Resting and speaking lip pressures for the midline transducer showed significant increases 1 month after lip bumper placement and then decreased to near or below pretreatment levels, possibly an adaptive response. Left-side resting pressures also showed a gradual decrease. In contrast, left-side speaking pressures showed no significant changes over time. The swallowing pressures were not replicable because of excessive background fluctuations. The results of this study indicate that this method has potential for improving clinical diagnosis. The preliminary data also suggest an adaptive response of lip muscles that varies according to anatomic location.

  13. Comparison of pressure reconstruction approaches based on measured and simulated velocity fields

    Directory of Open Access Journals (Sweden)

    Manthey Samuel

    2017-09-01

    Full Text Available The pressure drop over a pathological vessel section can be used as an important diagnostic indicator. However, it cannot be measured non-invasively. Multiple approaches for pressure reconstruction based on velocity information are available. Regarding in-vivo data introducing uncertainty these approaches may not be robust and therefore validation is required. Within this study, three independent methods to calculate pressure losses from velocity fields were implemented and compared: A three dimensional and a one dimensional method based on the Pressure Poisson Equation (PPE as well as an approach based on the work-energy equation for incompressible fluids (WERP. In order to evaluate the different approaches, phantoms from pure Computational Fluid Dynamics (CFD simulations and in-vivo PC-MRI measurements were used. The comparison of all three methods reveals a good agreement with respect to the CFD pressure solutions for simple geometries. However, for more complex geometries all approaches lose accuracy. Hence, this study demonstrates the need for a careful selection of an appropriate pressure reconstruction algorithm.

  14. The friction measuring tool: Real-time estimates of sandface pressure during fracture treatments

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.L.; Amick, P.C.; Shaw, J.S. [Reuben L. Graham, Inc., Charleston, WV (United States); Hill, D.G.

    1994-12-31

    This paper describes a Friction Measuring Tool (FMT) and how it is used to estimate pressure loss from friction in the wellbore while a foam fracture treatment is being pumped. Combined with standard surface equipment, such as densitometers, flowmeters, and pressure transducers, this tool (located on the surface) offers real-time estimates of bottomhole treating pressures during the fracture treatment. Field examples are presented comparing calculated bottomhole treating pressures, based on the FMT, to actual pressures measured with downhole electronic pressure gauges (installed in the casing just below the treated zone) during stimulation treatments. In addition to the provided field examples which verify application of the FMT, the theory and mathematical background underlying the use of the FMT are described. Construction of the tool, actual use in the field, and trouble-shooting are also presented. This tool is also applicable to foam for coiled tubing operations or stable foam drilling. Development of the FMT is one product of a cooperative research program sponsored by the Gas Research Institute (GRI) where one of the broad research objectives is improved stimulation techniques.

  15. Use of automated radon measurements for rapid assessment of groundwater flow into Florida streams

    Science.gov (United States)

    Burnett, William C.; Peterson, Richard N.; Santos, Isaac R.; Hicks, Richard W.

    2010-01-01

    SummaryNaturally occurring 222Rn (radon; t1/2 = 3.8 days) is a good natural tracer of groundwater discharge because it is conservative and typically 2-3 orders of magnitude higher in groundwater than surface waters. In addition, new technology has allowed rapid and inexpensive field measurements of radon-in-water. Results from the C-25 Canal, a man-made canal in east-central Florida thought to be dominated by groundwater inflows, display how one can quickly assess a water body for locations of groundwater inputs. Although only the eastern portion of the canal was surveyed, use of a few assumptions together with some continuous radon measurements allowed reasonable estimates of the groundwater inflows to be made. Groundwater discharge estimates of 327,000 m 3/day and 331,000 m 3/day were measured for two stations based on determining the groundwater fraction of the total stream flow. This fraction in each case was calculated by correcting radon concentrations for decay over transit times determined from concentration differences between the apparent focal point of groundwater discharge (with a concentration of 520 ± 80 dpm/L) estimated to be ˜17.7 km upstream from the downstream sample locations. During the same period, an average flow of 312,000 ± 70,000 m 3/day was determined from time-series measurements of radon at a fixed downstream location. Coincident current meter readings and a measured cross-section area allowed an independent assessment of the total stream discharge of 336,000 m 3/day. The radon-derived estimates thus indicate that >90% of the total flow is groundwater derived, consistent with the known characteristics of this waterway.

  16. Measurement of interlayer pressure in micro-clearance based on photonic crystal fiber

    Science.gov (United States)

    Yi, Zhang; Zhi, Zhuang; Minghai, Li; Shaoquan, Hu; Rong, Zhang; Yang, Minghong

    2017-06-01

    A novel measurement method for interlayer pressure in micro-clearance based on photonic crystal fiber is proposed and experimentally demonstrated. A sensor with a height of only 230 µm was fabricated using polarization-maintaining photonic crystal fiber with higher birefringence. Experimental results show that the linearity and repeatability of the proposed sensor are 1.61%FS and 0.55%FS respectively. The sensor covered by a flimsy cushion material exhibits a large bearing pressure capability of 18.2 MPa, and the work range extends to 5 MPa. Such measurement technology could be very promising for mechanical characterization in narrow space.

  17. Density measurements under pressure for the binary system (ethanol plus methylcyclohexane)

    DEFF Research Database (Denmark)

    Zeberg-Mikkelsen, Claus Kjær; Lugo, L.; Fernandez, J.

    2005-01-01

    The density of the asymmetrical binary system composed of ethanol and methylcyclohexane has been measured under pressure using a vibrating tube densimeter. The measurements have been performed for eight different compositions as well as the pure compounds at eight temperatures in the range 283.15 K...... and influence of temperature, pressure and composition on the excess molar volume, the isothermal compressibility, and the isobaric thermal expansion, revealing that a volume expansion occurs for this binary system. The results have been interpreted as due to changes in the intermolecular distances or free...

  18. Blood pressure estimation from pulse wave velocity measured on the chest.

    Science.gov (United States)

    Puke, Sawa; Suzuki, Takuji; Nakayama, Kanako; Tanaka, Hirokazu; Minami, Shigenobu

    2013-01-01

    Recently, monitoring of blood pressure fluctuation in the daily life is focused on in the hypertension care area to predict the risk of cardiovascular and cerebrovascular disease events. In this paper, in order to propose an alternative system to the existed ambulatory blood pressure monitoring (ABPM) sphygmomanometer, we have developed a prototype of small wearable device consisting of electrocardiogram (ECG) and photopelthysmograph (PPG) sensors. In addition, it was examined whether blood pressure can be estimated based on pulse wave transit time (PWTT) only by attaching that device on the surface of the chest. We indicated that our system could also sense tendency of time-dependent change of blood pressure by measuring pulse of vessel over the sternum while its propagation distance is short.

  19. A photostable bi-luminophore pressure-sensitive paint measurement system developed with mesoporous silica nanoparticles.

    Science.gov (United States)

    Mochizuki, Dai; Tamura, Shinichi; Yasutake, Hiroaki; Kataoka, Tomoharu; Mitsuo, Kazunori; Wada, Yuji

    2013-04-01

    The accurate and high-resolution measurement of surface pressure is achieved by a pressure/ temperature-sensitive composite paint (bi-PSP), whereas the pressure-sensitive dye photodegraded the temperature sensitive dye in close arrangement of both dyes. In the present study, an attempt was made to synthesize a homogeneous bi-PSP membrane without light-induced degradation of the dye using mesoporous silica. Mesoporous silica as a molecular sieve was the separation of pressure- and temperature-sensitive dyes. Both achievement of control of photodegradation in temperature-sensitive paints with molecule-screening capacity and macroscopically uniform placement of insoluble pigments in the respective solvent, was accomplished using the mesoporous silica nanoparticles in a compound PSP.

  20. Using smartphones' pressure sensors to measure vertical velocities in elevators, stairways and drones

    CERN Document Server

    Monteiro, Martin

    2016-01-01

    By means of smartphones' pressure sensors we measure vertical velocities of elevators, pedestrians climbing stairways and flying unmanned aerial vehicles (or \\textit{drones}). The barometric pressure obtained with the smartphone is related, thanks to the hydrostatic approximation, to the altitude of the device. From the altitude values, the vertical velocity is accordingly derived. The approximation considered is valid in the first hundreds meters of the inner layers of the atmosphere. Simultaneously to the pressure, the acceleration values, reported by the buit-in accelerometers, are also recorded. Integrating numerically the acceleration, vertical velocity and altitude are also obtained. We show that data obtained with the pressure sensor is considerable less noisy than that obtained with the accelerometer in the experiments proposed here. Accumulatioin of errors are also evident in the numerical integration of the acceleration values. The comparison with reference values taken from the architectural plans ...