WorldWideScience

Sample records for rapid precise accurate

  1. High precision, rapid laser hole drilling

    Science.gov (United States)

    Chang, Jim J.; Friedman, Herbert W.; Comaskey, Brian J.

    2013-04-02

    A laser system produces a first laser beam for rapidly removing the bulk of material in an area to form a ragged hole. The laser system produces a second laser beam for accurately cleaning up the ragged hole so that the final hole has dimensions of high precision.

  2. Hydrogen atoms can be located accurately and precisely by x-ray crystallography.

    Science.gov (United States)

    Woińska, Magdalena; Grabowsky, Simon; Dominiak, Paulina M; Woźniak, Krzysztof; Jayatilaka, Dylan

    2016-05-01

    Precise and accurate structural information on hydrogen atoms is crucial to the study of energies of interactions important for crystal engineering, materials science, medicine, and pharmacy, and to the estimation of physical and chemical properties in solids. However, hydrogen atoms only scatter x-radiation weakly, so x-rays have not been used routinely to locate them accurately. Textbooks and teaching classes still emphasize that hydrogen atoms cannot be located with x-rays close to heavy elements; instead, neutron diffraction is needed. We show that, contrary to widespread expectation, hydrogen atoms can be located very accurately using x-ray diffraction, yielding bond lengths involving hydrogen atoms (A-H) that are in agreement with results from neutron diffraction mostly within a single standard deviation. The precision of the determination is also comparable between x-ray and neutron diffraction results. This has been achieved at resolutions as low as 0.8 Å using Hirshfeld atom refinement (HAR). We have applied HAR to 81 crystal structures of organic molecules and compared the A-H bond lengths with those from neutron measurements for A-H bonds sorted into bonds of the same class. We further show in a selection of inorganic compounds that hydrogen atoms can be located in bridging positions and close to heavy transition metals accurately and precisely. We anticipate that, in the future, conventional x-radiation sources at in-house diffractometers can be used routinely for locating hydrogen atoms in small molecules accurately instead of large-scale facilities such as spallation sources or nuclear reactors.

  3. Precise and accurate isotope ratio measurements by ICP-MS.

    Science.gov (United States)

    Becker, J S; Dietze, H J

    2000-09-01

    The precise and accurate determination of isotope ratios by inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) is important for quite different application fields (e.g. for isotope ratio measurements of stable isotopes in nature, especially for the investigation of isotope variation in nature or age dating, for determining isotope ratios of radiogenic elements in the nuclear industry, quality assurance of fuel material, for reprocessing plants, nuclear material accounting and radioactive waste control, for tracer experiments using stable isotopes or long-lived radionuclides in biological or medical studies). Thermal ionization mass spectrometry (TIMS), which used to be the dominant analytical technique for precise isotope ratio measurements, is being increasingly replaced for isotope ratio measurements by ICP-MS due to its excellent sensitivity, precision and good accuracy. Instrumental progress in ICP-MS was achieved by the introduction of the collision cell interface in order to dissociate many disturbing argon-based molecular ions, thermalize the ions and neutralize the disturbing argon ions of plasma gas (Ar+). The application of the collision cell in ICP-QMS results in a higher ion transmission, improved sensitivity and better precision of isotope ratio measurements compared to quadrupole ICP-MS without the collision cell [e.g., for 235U/238U approximately 1 (10 microg x L(-1) uranium) 0.07% relative standard deviation (RSD) vs. 0.2% RSD in short-term measurements (n = 5)]. A significant instrumental improvement for ICP-MS is the multicollector device (MC-ICP-MS) in order to obtain a better precision of isotope ratio measurements (with a precision of up to 0.002%, RSD). CE- and HPLC-ICP-MS are used for the separation of isobaric interferences of long-lived radionuclides and stable isotopes by determination of spallation nuclide abundances in an irradiated tantalum target.

  4. Rapid and accurate biofuel moisture content gauging using magnetic resonance measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Jaervinen, T.

    2013-04-15

    Biomass is extensively utilised in energy production and as a raw material, such as for the production of liquid biofuels. All those processes will benefit if the moisture content of bio material is known in advance as accurately as possible under transient circumstances. Biofuel trade is increasingly based on the calorific value of fuels. In the first step, this also increases the need for rapid and accurate moisture content determination. During the last few years, large biofuel standardisation has been implemented, emphasising biofuel quality control at all stages of the utilisation chain. In principle, the moisture instrumental measurement can be utilised by many technologies and procedures. Typical techniques are infrared, radiofrequency, microwave, radiometric, electrical conductivity, capacitance, and impedance. Nuclear magnetic resonance (MR) and thermal neutron absorption are also applied. The MR measurement principle has been known and utilised already since the early 1950s. It has become the basic instrumental analysis tool in chemistry. It is also well-known as a very accurate method for analysing most compounds, especially substances containing hydrogen. The utilisation of MR metering is expanded extensively to medical diagnostics as a form of magnetic resonance imaging (MRI). Because of the precision of the MR principle, there have for a long time been efforts to apply it in new and different areas, and to make more user-friendly, smaller, and even portable devices. Such a device was designed by Vaisala a few years ago. VTT has utilised Vaisala's MR prototype for approximately one year for moisture content measurement of different biofuels. The first step in the use of an MR device for moisture determination was the definition of its measurement accuracy compared to the standard method (EN 14774). Those tests proved that the absolute precision seems to be comparable to the standard moisture content measurement method. It was also found out that

  5. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Chang Wang

    Full Text Available The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR spectroscopy with partial least squares (PLS analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  6. Rapid and accurate evaluation of the quality of commercial organic fertilizers using near infrared spectroscopy.

    Science.gov (United States)

    Wang, Chang; Huang, Chichao; Qian, Jian; Xiao, Jian; Li, Huan; Wen, Yongli; He, Xinhua; Ran, Wei; Shen, Qirong; Yu, Guanghui

    2014-01-01

    The composting industry has been growing rapidly in China because of a boom in the animal industry. Therefore, a rapid and accurate assessment of the quality of commercial organic fertilizers is of the utmost importance. In this study, a novel technique that combines near infrared (NIR) spectroscopy with partial least squares (PLS) analysis is developed for rapidly and accurately assessing commercial organic fertilizers quality. A total of 104 commercial organic fertilizers were collected from full-scale compost factories in Jiangsu Province, east China. In general, the NIR-PLS technique showed accurate predictions of the total organic matter, water soluble organic nitrogen, pH, and germination index; less accurate results of the moisture, total nitrogen, and electrical conductivity; and the least accurate results for water soluble organic carbon. Our results suggested the combined NIR-PLS technique could be applied as a valuable tool to rapidly and accurately assess the quality of commercial organic fertilizers.

  7. Precise and accurate train run data: Approximation of actual arrival and departure times

    DEFF Research Database (Denmark)

    Richter, Troels; Landex, Alex; Andersen, Jonas Lohmann Elkjær

    with the approximated actual arrival and departure times. As a result, all future statistics can now either be based on track circuit data with high precision or approximated actual arrival times with a high accuracy. Consequently, performance analysis will be more accurate, punctuality statistics more correct, KPI...

  8. Accurate and emergent applications for high precision light small aerial remote sensing system

    Science.gov (United States)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Qingwu, Hu; Xiaofeng, Sun

    2014-03-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized.

  9. Accurate and emergent applications for high precision light small aerial remote sensing system

    International Nuclear Information System (INIS)

    Pei, Liu; Yingcheng, Li; Yanli, Xue; Xiaofeng, Sun; Qingwu, Hu

    2014-01-01

    In this paper, we focus on the successful applications of accurate and emergent surveying and mapping for high precision light small aerial remote sensing system. First, the remote sensing system structure and three integrated operation modes will be introduced. It can be combined to three operation modes depending on the application requirements. Second, we describe the preliminary results of a precision validation method for POS direct orientation in 1:500 mapping. Third, it presents two fast response mapping products- regional continuous three-dimensional model and digital surface model, taking the efficiency and accuracy evaluation of the two products as an important point. The precision of both products meets the 1:2 000 topographic map accuracy specifications in Pingdingshan area. In the end, conclusions and future work are summarized

  10. Accurate and Precise Titriraetric Analysis of Uranium in Nuclear Fuels. RCN Report

    International Nuclear Information System (INIS)

    Tolk, A.; Lingerak, W.A.; Verheul-Klompmaker, T.A.

    1970-09-01

    For the accurate and precise titrimetric analysis of uranium in nuclear fuels, the material is dissolved in orthophosphoric and nitric acids. The nitric acid is fumed off, and the U (VI) present is analysed reductometrically in a CO 2 -atmosphere with iron (II) ammonium sulfate. For U 3 O 8 -test-sample aliquots of resp. 800 and 80 mg coefficients of variation of 0.012 resp. 0.11% are measured. (author)

  11. An investigation of highly accurate and precise robotic hole measurements using non-contact devices

    Directory of Open Access Journals (Sweden)

    Usman Zahid

    2016-01-01

    Full Text Available Industrial robots arms are widely used in manufacturing industry because of their support for automation. However, in metrology, robots have had limited application due to their insufficient accuracy. Even using error compensation and calibration methods, robots are not effective for micrometre (μm level metrology. Non-contact measurement devices can potentially enable the use of robots for highly accurate metrology. However, the use of such devices on robots has not been investigated. The research work reported in this paper explores the use of different non-contact measurement devices on an industrial robot. The aim is to experimentally investigate the effects of robot movements on the accuracy and precision of measurements. The focus has been on assessing the ability to accurately measure various geometric and surface parameters of holes despite the inherent inaccuracies of industrial robot. This involves the measurement of diameter, roundness and surface roughness. The study also includes scanning of holes for measuring internal features such as start and end point of a taper. Two different non-contact measurement devices based on different technologies are investigated. Furthermore, effects of eccentricity, vibrations and thermal variations are also assessed. The research contributes towards the use of robots for highly accurate and precise robotic metrology.

  12. Rapid subsidence in damaging sinkholes: Measurement by high-precision leveling and the role of salt dissolution

    Science.gov (United States)

    Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.

    2018-02-01

    Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.

  13. Rapid identification of sequences for orphan enzymes to power accurate protein annotation.

    Directory of Open Access Journals (Sweden)

    Kevin R Ramkissoon

    Full Text Available The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the "back catalog" of enzymology--"orphan enzymes," those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC database alone. In this study, we demonstrate how this orphan enzyme "back catalog" is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology's "back catalog" another powerful tool to drive accurate genome annotation.

  14. Rapid Identification of Sequences for Orphan Enzymes to Power Accurate Protein Annotation

    Science.gov (United States)

    Ojha, Sunil; Watson, Douglas S.; Bomar, Martha G.; Galande, Amit K.; Shearer, Alexander G.

    2013-01-01

    The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation. PMID:24386392

  15. Rapid whole genome sequencing and precision neonatology.

    Science.gov (United States)

    Petrikin, Joshua E; Willig, Laurel K; Smith, Laurie D; Kingsmore, Stephen F

    2015-12-01

    Traditionally, genetic testing has been too slow or perceived to be impractical to initial management of the critically ill neonate. Technological advances have led to the ability to sequence and interpret the entire genome of a neonate in as little as 26 h. As the cost and speed of testing decreases, the utility of whole genome sequencing (WGS) of neonates for acute and latent genetic illness increases. Analyzing the entire genome allows for concomitant evaluation of the currently identified 5588 single gene diseases. When applied to a select population of ill infants in a level IV neonatal intensive care unit, WGS yielded a diagnosis of a causative genetic disease in 57% of patients. These diagnoses may lead to clinical management changes ranging from transition to palliative care for uniformly lethal conditions for alteration or initiation of medical or surgical therapy to improve outcomes in others. Thus, institution of 2-day WGS at time of acute presentation opens the possibility of early implementation of precision medicine. This implementation may create opportunities for early interventional, frequently novel or off-label therapies that may alter disease trajectory in infants with what would otherwise be fatal disease. Widespread deployment of rapid WGS and precision medicine will raise ethical issues pertaining to interpretation of variants of unknown significance, discovery of incidental findings related to adult onset conditions and carrier status, and implementation of medical therapies for which little is known in terms of risks and benefits. Despite these challenges, precision neonatology has significant potential both to decrease infant mortality related to genetic diseases with onset in newborns and to facilitate parental decision making regarding transition to palliative care. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Rapid and Accurate Idea Transfer: Presenting Ideas with Concept Maps

    Science.gov (United States)

    2008-07-30

    questions from the Pre-test were included in the Post-test. I. At the end of the day, people in the camps take home about __ taka to feed their families. 2...teachers are not paid regularly. Tuition fees for different classes are 40 to 80 taka (Bangladesh currency) 27 per month which is very high for the...October 26, 2002. 27 In April 2005, exchange rate, one $ = 60 taka . 44 Rapid and Accurate Idea Transfer: CDRL (DI-MIS-807 11 A, 00012 1) Presenting

  17. A rapid stability assessment of China's IGS sites after the Ms7. 0 Lushan earthquake

    Directory of Open Access Journals (Sweden)

    Meng Jie

    2013-05-01

    Full Text Available A rapid and accurate assessment of the stability of surveying and mapping reference points is important for post – disaster rescue, disaster relief and reconstruction activities. Using Precise Point Positioning (PPP technology, a rapid assessment of the stability of the IGS sites in China was performed after the Ms 7. 0 Lushan earthquake using rapid precise ephemeris and rapid precise satellite clock products. The results show that the earthquake had a very small impact and did not cause significant permanent deformation at the IGS sites. Most of the sites were unaffected and remained stable after the earthquake.

  18. Improving multi-GNSS ultra-rapid orbit determination for real-time precise point positioning

    Science.gov (United States)

    Li, Xingxing; Chen, Xinghan; Ge, Maorong; Schuh, Harald

    2018-03-01

    Currently, with the rapid development of multi-constellation Global Navigation Satellite Systems (GNSS), the real-time positioning and navigation are undergoing dramatic changes with potential for a better performance. To provide more precise and reliable ultra-rapid orbits is critical for multi-GNSS real-time positioning, especially for the three merging constellations Beidou, Galileo and QZSS which are still under construction. In this contribution, we present a five-system precise orbit determination (POD) strategy to fully exploit the GPS + GLONASS + BDS + Galileo + QZSS observations from CDDIS + IGN + BKG archives for the realization of hourly five-constellation ultra-rapid orbit update. After adopting the optimized 2-day POD solution (updated every hour), the predicted orbit accuracy can be obviously improved for all the five satellite systems in comparison to the conventional 1-day POD solution (updated every 3 h). The orbit accuracy for the BDS IGSO satellites can be improved by about 80, 45 and 50% in the radial, cross and along directions, respectively, while the corresponding accuracy improvement for the BDS MEO satellites reaches about 50, 20 and 50% in the three directions, respectively. Furthermore, the multi-GNSS real-time precise point positioning (PPP) ambiguity resolution has been performed by using the improved precise satellite orbits. Numerous results indicate that combined GPS + BDS + GLONASS + Galileo (GCRE) kinematic PPP ambiguity resolution (AR) solutions can achieve the shortest time to first fix (TTFF) and highest positioning accuracy in all coordinate components. With the addition of the BDS, GLONASS and Galileo observations to the GPS-only processing, the GCRE PPP AR solution achieves the shortest average TTFF of 11 min with 7{°} cutoff elevation, while the TTFF of GPS-only, GR, GE and GC PPP AR solution is 28, 15, 20 and 17 min, respectively. As the cutoff elevation increases, the reliability and accuracy of GPS-only PPP AR solutions

  19. High-Precision Computation and Mathematical Physics

    International Nuclear Information System (INIS)

    Bailey, David H.; Borwein, Jonathan M.

    2008-01-01

    At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for most scientific applications. However, for a rapidly growing body of important scientific computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion effort. This paper presents a survey of recent applications of these techniques and provides some analysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, scattering amplitudes of quarks, gluons and bosons, nonlinear oscillator theory, Ising theory, quantum field theory and experimental mathematics. We conclude that high-precision arithmetic facilities are now an indispensable component of a modern large-scale scientific computing environment.

  20. Modeling of Non-Gravitational Forces for Precise and Accurate Orbit Determination

    Science.gov (United States)

    Hackel, Stefan; Gisinger, Christoph; Steigenberger, Peter; Balss, Ulrich; Montenbruck, Oliver; Eineder, Michael

    2014-05-01

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The precise reconstruction of the satellite's trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency Integrated Geodetic and Occultation Receiver (IGOR) onboard the spacecraft. The increasing demand for precise radar products relies on validation methods, which require precise and accurate orbit products. An analysis of the orbit quality by means of internal and external validation methods on long and short timescales shows systematics, which reflect deficits in the employed force models. Following the proper analysis of this deficits, possible solution strategies are highlighted in the presentation. The employed Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for gravitational and non-gravitational forces. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). The satellite TerraSAR-X flies on a dusk-dawn orbit with an altitude of approximately 510 km above ground. Due to this constellation, the Sun almost constantly illuminates the satellite, which causes strong across-track accelerations on the plane rectangular to the solar rays. The indirect effect of the solar radiation is called Earth Radiation Pressure (ERP). This force depends on the sunlight, which is reflected by the illuminated Earth surface (visible spectra) and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed. The scope of

  1. Fundamentals of precision medicine

    Science.gov (United States)

    Divaris, Kimon

    2018-01-01

    Imagine a world where clinicians make accurate diagnoses and provide targeted therapies to their patients according to well-defined, biologically-informed disease subtypes, accounting for individual differences in genetic make-up, behaviors, cultures, lifestyles and the environment. This is not as utopic as it may seem. Relatively recent advances in science and technology have led to an explosion of new information on what underlies health and what constitutes disease. These novel insights emanate from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, as well as epigenomics and exposomics—such ‘omics data can now be generated at unprecedented depth and scale, and at rapidly decreasing cost. Making sense and integrating these fundamental information domains to transform health care and improve health remains a challenge—an ambitious, laudable and high-yield goal. Precision dentistry is no longer a distant vision; it is becoming part of the rapidly evolving present. Insights from studies of the human genome and microbiome, their associated transcriptomes, proteomes and metabolomes, and epigenomics and exposomics have reached an unprecedented depth and scale. Much more needs to be done, however, for the realization of precision medicine in the oral health domain. PMID:29227115

  2. Sensitivity Analysis of Deviation Source for Fast Assembly Precision Optimization

    Directory of Open Access Journals (Sweden)

    Jianjun Tang

    2014-01-01

    Full Text Available Assembly precision optimization of complex product has a huge benefit in improving the quality of our products. Due to the impact of a variety of deviation source coupling phenomena, the goal of assembly precision optimization is difficult to be confirmed accurately. In order to achieve optimization of assembly precision accurately and rapidly, sensitivity analysis of deviation source is proposed. First, deviation source sensitivity is defined as the ratio of assembly dimension variation and deviation source dimension variation. Second, according to assembly constraint relations, assembly sequences and locating, deviation transmission paths are established by locating the joints between the adjacent parts, and establishing each part’s datum reference frame. Third, assembly multidimensional vector loops are created using deviation transmission paths, and the corresponding scalar equations of each dimension are established. Then, assembly deviation source sensitivity is calculated by using a first-order Taylor expansion and matrix transformation method. Finally, taking assembly precision optimization of wing flap rocker as an example, the effectiveness and efficiency of the deviation source sensitivity analysis method are verified.

  3. Prompt and Precise Prototyping

    Science.gov (United States)

    2003-01-01

    For Sanders Design International, Inc., of Wilton, New Hampshire, every passing second between the concept and realization of a product is essential to succeed in the rapid prototyping industry where amongst heavy competition, faster time-to-market means more business. To separate itself from its rivals, Sanders Design aligned with NASA's Marshall Space Flight Center to develop what it considers to be the most accurate rapid prototyping machine for fabrication of extremely precise tooling prototypes. The company's Rapid ToolMaker System has revolutionized production of high quality, small-to-medium sized prototype patterns and tooling molds with an exactness that surpasses that of computer numerically-controlled (CNC) machining devices. Created with funding and support from Marshall under a Small Business Innovation Research (SBIR) contract, the Rapid ToolMaker is a dual-use technology with applications in both commercial and military aerospace fields. The advanced technology provides cost savings in the design and manufacturing of automotive, electronic, and medical parts, as well as in other areas of consumer interest, such as jewelry and toys. For aerospace applications, the Rapid ToolMaker enables fabrication of high-quality turbine and compressor blades for jet engines on unmanned air vehicles, aircraft, and missiles.

  4. A Trace Data-Based Approach for an Accurate Estimation of Precise Utilization Maps in LTE

    Directory of Open Access Journals (Sweden)

    Almudena Sánchez

    2017-01-01

    Full Text Available For network planning and optimization purposes, mobile operators make use of Key Performance Indicators (KPIs, computed from Performance Measurements (PMs, to determine whether network performance needs to be improved. In current networks, PMs, and therefore KPIs, suffer from lack of precision due to an insufficient temporal and/or spatial granularity. In this work, an automatic method, based on data traces, is proposed to improve the accuracy of radio network utilization measurements collected in a Long-Term Evolution (LTE network. The method’s output is an accurate estimate of the spatial and temporal distribution for the cell utilization ratio that can be extended to other indicators. The method can be used to improve automatic network planning and optimization algorithms in a centralized Self-Organizing Network (SON entity, since potential issues can be more precisely detected and located inside a cell thanks to temporal and spatial precision. The proposed method is tested with real connection traces gathered in a large geographical area of a live LTE network and considers overload problems due to trace file size limitations, which is a key consideration when analysing a large network. Results show how these distributions provide a very detailed information of network utilization, compared to cell based statistics.

  5. Accurate and precise determination of 2-25mg amounts of uranium by means of a special automatic potentiometric titration

    International Nuclear Information System (INIS)

    Slanina, J.; Bakker, F.; Groen, A.J.P.; Lingerak, W.A.

    1978-01-01

    A precise and accurate potentiometric titration of 2-25 mg of uranium is described. The uranium is reduced to U(IV) according to the method of Eberle et al. [3], and titrated with 0.05 N potassium dichromate, using a platinum indicator electrode. During the sample preparation the walls of the titration vessel are cleaned by centrifugation. To avoid overshoot of the set point a special differentiator is described, that interrupts the titration until equilibrium is reached. The precision of the method is 0.02%, the accuracy is better than 0.04% rel. Each titration takes 5 min. (orig.) [de

  6. Toward accurate and precise estimates of lion density.

    Science.gov (United States)

    Elliot, Nicholas B; Gopalaswamy, Arjun M

    2017-08-01

    Reliable estimates of animal density are fundamental to understanding ecological processes and population dynamics. Furthermore, their accuracy is vital to conservation because wildlife authorities rely on estimates to make decisions. However, it is notoriously difficult to accurately estimate density for wide-ranging carnivores that occur at low densities. In recent years, significant progress has been made in density estimation of Asian carnivores, but the methods have not been widely adapted to African carnivores, such as lions (Panthera leo). Although abundance indices for lions may produce poor inferences, they continue to be used to estimate density and inform management and policy. We used sighting data from a 3-month survey and adapted a Bayesian spatially explicit capture-recapture (SECR) model to estimate spatial lion density in the Maasai Mara National Reserve and surrounding conservancies in Kenya. Our unstructured spatial capture-recapture sampling design incorporated search effort to explicitly estimate detection probability and density on a fine spatial scale, making our approach robust in the context of varying detection probabilities. Overall posterior mean lion density was estimated to be 17.08 (posterior SD 1.310) lions >1 year old/100 km 2 , and the sex ratio was estimated at 2.2 females to 1 male. Our modeling framework and narrow posterior SD demonstrate that SECR methods can produce statistically rigorous and precise estimates of population parameters, and we argue that they should be favored over less reliable abundance indices. Furthermore, our approach is flexible enough to incorporate different data types, which enables robust population estimates over relatively short survey periods in a variety of systems. Trend analyses are essential to guide conservation decisions but are frequently based on surveys of differing reliability. We therefore call for a unified framework to assess lion numbers in key populations to improve management and

  7. A novel approach for high precision rapid potentiometric titrations: application to hydrazine assay.

    Science.gov (United States)

    Sahoo, P; Malathi, N; Ananthanarayanan, R; Praveen, K; Murali, N

    2011-11-01

    We propose a high precision rapid personal computer (PC) based potentiometric titration technique using a specially designed mini-cell to carry out redox titrations for assay of chemicals in quality control laboratories attached to industrial, R&D, and nuclear establishments. Using this technique a few microlitre of sample (50-100 μl) in a total volume of ~2 ml solution can be titrated and the waste generated after titration is extremely low comparing to that obtained from the conventional titration technique. The entire titration including online data acquisition followed by immediate offline analysis of data to get information about concentration of unknown sample is completed within a couple of minutes (about 2 min). This facility has been created using a new class of sensors, viz., pulsating sensors developed in-house. The basic concept in designing such instrument and the salient features of the titration device are presented in this paper. The performance of the titration facility was examined by conducting some of the high resolution redox titrations using dilute solutions--hydrazine against KIO(3) in HCl medium, Fe(II) against Ce(IV) and uranium using Davies-Gray method. The precision of titrations using this innovative approach lies between 0.048% and 1.0% relative standard deviation in different redox titrations. With the evolution of this rapid PC based titrator it was possible to develop a simple but high precision potentiometric titration technique for quick determination of hydrazine in nuclear fuel dissolver solution in the context of reprocessing of spent nuclear fuel in fast breeder reactors. © 2011 American Institute of Physics

  8. Accurate Rapid Lifetime Determination on Time-Gated FLIM Microscopy with Optical Sectioning.

    Science.gov (United States)

    Silva, Susana F; Domingues, José Paulo; Morgado, António Miguel

    2018-01-01

    Time-gated fluorescence lifetime imaging microscopy (FLIM) is a powerful technique to assess the biochemistry of cells and tissues. When applied to living thick samples, it is hampered by the lack of optical sectioning and the need of acquiring many images for an accurate measurement of fluorescence lifetimes. Here, we report on the use of processing techniques to overcome these limitations, minimizing the acquisition time, while providing optical sectioning. We evaluated the application of the HiLo and the rapid lifetime determination (RLD) techniques for accurate measurement of fluorescence lifetimes with optical sectioning. HiLo provides optical sectioning by combining the high-frequency content from a standard image, obtained with uniform illumination, with the low-frequency content of a second image, acquired using structured illumination. Our results show that HiLo produces optical sectioning on thick samples without degrading the accuracy of the measured lifetimes. We also show that instrument response function (IRF) deconvolution can be applied with the RLD technique on HiLo images, improving greatly the accuracy of the measured lifetimes. These results open the possibility of using the RLD technique with pulsed diode laser sources to determine accurately fluorescence lifetimes in the subnanosecond range on thick multilayer samples, providing that offline processing is allowed.

  9. High-Precision Computation: Mathematical Physics and Dynamics

    International Nuclear Information System (INIS)

    Bailey, D.H.; Barrio, R.; Borwein, J.M.

    2010-01-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  10. High-Precision Computation: Mathematical Physics and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, D. H.; Barrio, R.; Borwein, J. M.

    2010-04-01

    At the present time, IEEE 64-bit oating-point arithmetic is suficiently accurate for most scientic applications. However, for a rapidly growing body of important scientic computing applications, a higher level of numeric precision is required. Such calculations are facilitated by high-precision software packages that include high-level language translation modules to minimize the conversion e ort. This pa- per presents a survey of recent applications of these techniques and provides someanalysis of their numerical requirements. These applications include supernova simulations, climate modeling, planetary orbit calculations, Coulomb n-body atomic systems, studies of the one structure constant, scattering amplitudes of quarks, glu- ons and bosons, nonlinear oscillator theory, experimental mathematics, evaluation of orthogonal polynomials, numerical integration of ODEs, computation of periodic orbits, studies of the splitting of separatrices, detection of strange nonchaotic at- tractors, Ising theory, quantum held theory, and discrete dynamical systems. We conclude that high-precision arithmetic facilities are now an indispensable compo- nent of a modern large-scale scientic computing environment.

  11. Is digital photography an accurate and precise method for measuring range of motion of the hip and knee?

    Science.gov (United States)

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2017-09-07

    Accurate measurements of knee and hip motion are required for management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion at the hip and knee. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, hip flexion/abduction/internal rotation/external rotation and knee flexion/extension were measured using visual estimation, goniometry, and photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard, while precision was defined by the proportion of measurements within either 5° or 10°. Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although two statistically significant differences were found in measurement accuracy between the three techniques, neither of these differences met clinical significance (difference of 1.4° for hip abduction and 1.7° for the knee extension). Precision of measurements was significantly higher for digital photography than: (i) visual estimation for hip abduction and knee extension, and (ii) goniometry for knee extension only. There was no clinically significant difference in measurement accuracy between the three techniques for hip and knee motion. Digital photography only showed higher precision for two joint motions (hip abduction and knee extension). Overall digital photography shows equivalent accuracy and near-equivalent precision to visual estimation and goniometry.

  12. Is digital photography an accurate and precise method for measuring range of motion of the shoulder and elbow?

    Science.gov (United States)

    Russo, Russell R; Burn, Matthew B; Ismaily, Sabir K; Gerrie, Brayden J; Han, Shuyang; Alexander, Jerry; Lenherr, Christopher; Noble, Philip C; Harris, Joshua D; McCulloch, Patrick C

    2018-03-01

    Accurate measurements of shoulder and elbow motion are required for the management of musculoskeletal pathology. The purpose of this investigation was to compare three techniques for measuring motion. The authors hypothesized that digital photography would be equivalent in accuracy and show higher precision compared to the other two techniques. Using infrared motion capture analysis as the reference standard, shoulder flexion/abduction/internal rotation/external rotation and elbow flexion/extension were measured using visual estimation, goniometry, and digital photography on 10 fresh frozen cadavers. These measurements were performed by three physical therapists and three orthopaedic surgeons. Accuracy was defined by the difference from the reference standard (motion capture analysis), while precision was defined by the proportion of measurements within the authors' definition of clinical significance (10° for all motions except for elbow extension where 5° was used). Analysis of variance (ANOVA), t-tests, and chi-squared tests were used. Although statistically significant differences were found in measurement accuracy between the three techniques, none of these differences met the authors' definition of clinical significance. Precision of the measurements was significantly higher for both digital photography (shoulder abduction [93% vs. 74%, p < 0.001], shoulder internal rotation [97% vs. 83%, p = 0.001], and elbow flexion [93% vs. 65%, p < 0.001]) and goniometry (shoulder abduction [92% vs. 74%, p < 0.001] and shoulder internal rotation [94% vs. 83%, p = 0.008]) than visual estimation. Digital photography was more precise than goniometry for measurements of elbow flexion only [93% vs. 76%, p < 0.001]. There was no clinically significant difference in measurement accuracy between the three techniques for shoulder and elbow motion. Digital photography showed higher measurement precision compared to visual estimation for shoulder abduction, shoulder

  13. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Science.gov (United States)

    Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E

    2006-01-01

    Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid

  14. Rapid and accurate pyrosequencing of angiosperm plastid genomes

    Directory of Open Access Journals (Sweden)

    Farmerie William G

    2006-08-01

    Full Text Available Abstract Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20 System (454 Life Sciences Corporation, to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae and Platanus occidentalis (Platanaceae. Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy

  15. SpineAnalyzer™ is an accurate and precise method of vertebral fracture detection and classification on dual-energy lateral vertebral assessment scans

    International Nuclear Information System (INIS)

    Birch, C.; Knapp, K.; Hopkins, S.; Gallimore, S.; Rock, B.

    2015-01-01

    Osteoporotic fractures of the spine are associated with significant morbidity, are highly predictive of hip fractures, but frequently do not present clinically. When there is a low to moderate clinical suspicion of vertebral fracture, which would not justify acquisition of a radiograph, vertebral fracture assessment (VFA) using Dual-energy X-ray Absorptiometry (DXA) offers a low-dose opportunity for diagnosis. Different approaches to the classification of vertebral fractures have been documented. The aim of this study was to measure the precision and accuracy of SpineAnalyzer™, a quantitative morphometry software program. Lateral vertebral assessment images of 64 men were analysed using SpineAnalyzer™ and standard GE Lunar software. The images were also analysed by two expert readers using a semi-quantitative approach. Agreement between groups ranged from 95.99% to 98.60%. The intra-rater precision for the application of SpineAnalyzer™ to vertebrae was poor in the upper thoracic regions, but good elsewhere. SpineAnalyzer™ is a reproducible and accurate method for measuring vertebral height and quantifying vertebral fractures from VFA scans. - Highlights: • Vertebral fracture assessment (VFA) using Dual-energy X-ray Absorptiometry (DXA) offers a low-dose opportunity for diagnosis. • Agreement between VFA software (SpineAnalyzer™) and expert readers is high. • Intra-rater precision of SpineAnalyzer™ applied to upper thoracic vertebrae is poor, but good elsewhere. • SpineAnalyzer™ is reproducible and accurate for vertebral height measurement and fracture quantification from VFA scans

  16. Rapid and accurate determination of radiochemical purity of sup(99m)Tc compounds

    International Nuclear Information System (INIS)

    Tamat, S.R.

    1977-01-01

    The wide spread use of sup(99m)Tc-labelled radiopharmaceuticals and limitation of the short half-life of the isotope, is associated with an urgent need for a rapid, simple but accurate method for determining the radiochemical purity of the compound. A short paper chromatographic (KK) or thin layer chromatographic (KLT) method using 95% methanol or 0.9% saline solution as solvents, has solved the problem. With these methods, the amount of free sup(99m)Tc pertechnetate in a compound, can be determined in only a few minutes. These methods compare satisfactorily with lengtheir procedures. (author)

  17. Flow-Based Systems for Rapid and High-Precision Enzyme Kinetics Studies

    Directory of Open Access Journals (Sweden)

    Supaporn Kradtap Hartwell

    2012-01-01

    Full Text Available Enzyme kinetics studies normally focus on the initial rate of enzymatic reaction. However, the manual operation of steps of the conventional enzyme kinetics method has some drawbacks. Errors can result from the imprecise time control and time necessary for manual changing the reaction cuvettes into and out of the detector. By using the automatic flow-based analytical systems, enzyme kinetics studies can be carried out at real-time initial rate avoiding the potential errors inherent in manual operation. Flow-based systems have been developed to provide rapid, low-volume, and high-precision analyses that effectively replace the many tedious and high volume requirements of conventional wet chemistry analyses. This article presents various arrangements of flow-based techniques and their potential use in future enzyme kinetics applications.

  18. Precise and accurate assay of pregnenolone and five other neurosteroids in monkey brain tissue by LC-MS/MS.

    Science.gov (United States)

    Dury, Alain Y; Ke, Yuyong; Labrie, Fernand

    2016-09-01

    A series of steroids present in the brain have been named "neurosteroids" following the possibility of their role in the central nervous system impairments such as anxiety disorders, depression, premenstrual dysphoric disorder (PMDD), addiction, or even neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Study of their potential role requires a sensitive and accurate assay of their concentration in the monkey brain, the closest model to the human. We have thus developed a robust, precise and accurate liquid chromatography-tandem mass spectrometry method for the assay of pregnenolone, pregnanolone, epipregnanolone, allopregnanolone, epiallopregnanolone, and androsterone in the cynomolgus monkey brain. The extraction method includes a thorough sample cleanup using protein precipitation and phospholipid removal, followed by hexane liquid-liquid extraction and a Girard T ketone-specific derivatization. This method opens the possibility of investigating the potential implication of these six steroids in the most suitable animal model for neurosteroid-related research. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Triple-frequency GPS precise point positioning with rapid ambiguity resolution

    Science.gov (United States)

    Geng, Jianghui; Bock, Yehuda

    2013-05-01

    At present, reliable ambiguity resolution in real-time GPS precise point positioning (PPP) can only be achieved after an initial observation period of a few tens of minutes. In this study, we propose a method where the incoming triple-frequency GPS signals are exploited to enable rapid convergences to ambiguity-fixed solutions in real-time PPP. Specifically, extra-wide-lane ambiguity resolution can be first achieved almost instantaneously with the Melbourne-Wübbena combination observable on L2 and L5. Then the resultant unambiguous extra-wide-lane carrier-phase is combined with the wide-lane carrier-phase on L1 and L2 to form an ionosphere-free observable with a wavelength of about 3.4 m. Although the noise of this observable is around 100 times the raw carrier-phase noise, its wide-lane ambiguity can still be resolved very efficiently, and the resultant ambiguity-fixed observable can assist much better than pseudorange in speeding up succeeding narrow-lane ambiguity resolution. To validate this method, we use an advanced hardware simulator to generate triple-frequency signals and a high-grade receiver to collect 1-Hz data. When the carrier-phase precisions on L1, L2 and L5 are as poor as 1.5, 6.3 and 1.5 mm, respectively, wide-lane ambiguity resolution can still reach a correctness rate of over 99 % within 20 s. As a result, the correctness rate of narrow-lane ambiguity resolution achieves 99 % within 65 s, in contrast to only 64 % within 150 s in dual-frequency PPP. In addition, we also simulate a multipath-contaminated data set and introduce new ambiguities for all satellites every 120 s. We find that when multipath effects are strong, ambiguity-fixed solutions are achieved at 78 % of all epochs in triple-frequency PPP whilst almost no ambiguities are resolved in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes, or even shorter if raw carrier-phase precisions are

  20. Improved method for rapid and accurate isolation and identification of Streptococcus mutans and Streptococcus sobrinus from human plaque samples.

    Science.gov (United States)

    Villhauer, Alissa L; Lynch, David J; Drake, David R

    2017-08-01

    Mutans streptococci (MS), specifically Streptococcus mutans (SM) and Streptococcus sobrinus (SS), are bacterial species frequently targeted for investigation due to their role in the etiology of dental caries. Differentiation of S. mutans and S. sobrinus is an essential part of exploring the role of these organisms in disease progression and the impact of the presence of either/both on a subject's caries experience. Of vital importance to the study of these organisms is an identification protocol that allows us to distinguish between the two species in an easy, accurate, and timely manner. While conducting a 5-year birth cohort study in a Northern Plains American Indian tribe, the need for a more rapid procedure for isolating and identifying high volumes of MS was recognized. We report here on the development of an accurate and rapid method for MS identification. Accuracy, ease of use, and material and time requirements for morphological differentiation on selective agar, biochemical tests, and various combinations of PCR primers were compared. The final protocol included preliminary identification based on colony morphology followed by PCR confirmation of species identification using primers targeting regions of the glucosyltransferase (gtf) genes of SM and SS. This method of isolation and identification was found to be highly accurate, more rapid than the previous methodology used, and easily learned. It resulted in more efficient use of both time and material resources. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Photogrammetry-Based Head Digitization for Rapid and Accurate Localization of EEG Electrodes and MEG Fiducial Markers Using a Single Digital SLR Camera.

    Science.gov (United States)

    Clausner, Tommy; Dalal, Sarang S; Crespo-García, Maité

    2017-01-01

    The performance of EEG source reconstruction has benefited from the increasing use of advanced head modeling techniques that take advantage of MRI together with the precise positions of the recording electrodes. The prevailing technique for registering EEG electrode coordinates involves electromagnetic digitization. However, the procedure adds several minutes to experiment preparation and typical digitizers may not be accurate enough for optimal source reconstruction performance (Dalal et al., 2014). Here, we present a rapid, accurate, and cost-effective alternative method to register EEG electrode positions, using a single digital SLR camera, photogrammetry software, and computer vision techniques implemented in our open-source toolbox, janus3D . Our approach uses photogrammetry to construct 3D models from multiple photographs of the participant's head wearing the EEG electrode cap. Electrodes are detected automatically or semi-automatically using a template. The rigid facial features from these photo-based models are then surface-matched to MRI-based head reconstructions to facilitate coregistration to MRI space. This method yields a final electrode coregistration error of 0.8 mm, while a standard technique using an electromagnetic digitizer yielded an error of 6.1 mm. The technique furthermore reduces preparation time, and could be extended to a multi-camera array, which would make the procedure virtually instantaneous. In addition to EEG, the technique could likewise capture the position of the fiducial markers used in magnetoencephalography systems to register head position.

  2. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    Science.gov (United States)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  3. Building, testing and validating a set of home-made von Frey filaments: a precise, accurate and cost effective alternative for nociception assessment.

    Science.gov (United States)

    de Sousa, Marcelo Victor Pires; Ferraresi, Cleber; de Magalhães, Ana Carolina; Yoshimura, Elisabeth Mateus; Hamblin, Michael R

    2014-07-30

    A von Frey filament (vFF) is a type of aesthesiometer usually made of nylon perpendicularly held in a base. It can be used in paw withdrawal pain threshold assessment, one of the most popular tests for pain evaluation using animal models. For this test, a set of filaments, each able to exert a different force, is applied to the animal paw, from the weakest to the strongest, until the paw is withdrawn. We made 20 low cost vFF using nylon filaments of different lengths and constant diameter glued perpendicularly to the ends of popsicle sticks. They were calibrated using a laboratory balance scale. Building and calibrating took around 4h and confirmed the theoretical prediction that the force exerted is inversely proportional to the length and directly proportional to the width of the filament. The calibration showed that they were precise and accurate. We analyzed the paw withdrawal threshold assessed with the set of home-made vFF and with a high quality commercial set of 5 monofilaments vFF (Stoelting, Wood Dale, USA) in two groups (n=5) of healthy mice. The home-made vFF precisely and accurately measured the hind paw withdrawal threshold (20.3±0.9 g). The commercial vFF have different diameters while our set has the same diameter avoiding the problem of lower sensitivity to larger diameter filaments. Building a set of vFF is easy, cost effective, and depending on the kind of tests, can increase precision and accuracy of animal nociception evaluation. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Bit Grooming: statistically accurate precision-preserving quantization with compression, evaluated in the netCDF Operators (NCO, v4.4.8+)

    Science.gov (United States)

    Zender, Charles S.

    2016-09-01

    Geoscientific models and measurements generate false precision (scientifically meaningless data bits) that wastes storage space. False precision can mislead (by implying noise is signal) and be scientifically pointless, especially for measurements. By contrast, lossy compression can be both economical (save space) and heuristic (clarify data limitations) without compromising the scientific integrity of data. Data quantization can thus be appropriate regardless of whether space limitations are a concern. We introduce, implement, and characterize a new lossy compression scheme suitable for IEEE floating-point data. Our new Bit Grooming algorithm alternately shaves (to zero) and sets (to one) the least significant bits of consecutive values to preserve a desired precision. This is a symmetric, two-sided variant of an algorithm sometimes called Bit Shaving that quantizes values solely by zeroing bits. Our variation eliminates the artificial low bias produced by always zeroing bits, and makes Bit Grooming more suitable for arrays and multi-dimensional fields whose mean statistics are important. Bit Grooming relies on standard lossless compression to achieve the actual reduction in storage space, so we tested Bit Grooming by applying the DEFLATE compression algorithm to bit-groomed and full-precision climate data stored in netCDF3, netCDF4, HDF4, and HDF5 formats. Bit Grooming reduces the storage space required by initially uncompressed and compressed climate data by 25-80 and 5-65 %, respectively, for single-precision values (the most common case for climate data) quantized to retain 1-5 decimal digits of precision. The potential reduction is greater for double-precision datasets. When used aggressively (i.e., preserving only 1-2 digits), Bit Grooming produces storage reductions comparable to other quantization techniques such as Linear Packing. Unlike Linear Packing, whose guaranteed precision rapidly degrades within the relatively narrow dynamic range of values that

  5. High precision determination of 16O in high Tc superconductors by DIGME

    International Nuclear Information System (INIS)

    Vickridge, I.; Tallon, J.; Presland, M.

    1994-01-01

    A method is described for measuring the 16 O content of high T c superconductors with better than 1% precision by exploiting the detection of gamma rays emitted when they are irradiated by an MeV deuterium beam. The method is presently less accurate than the widely used titration and thermogravimetric methods, however it is rapid, and may be applied to materials such as Tl-containing high T c superconductors which pose serious problems for the usual analytical methods. (orig.)

  6. Multifrequency Excitation Method for Rapid and Accurate Dynamic Test of Micromachined Gyroscope Chips

    Directory of Open Access Journals (Sweden)

    Yan Deng

    2014-10-01

    Full Text Available A novel multifrequency excitation (MFE method is proposed to realize rapid and accurate dynamic testing of micromachined gyroscope chips. Compared with the traditional sweep-frequency excitation (SFE method, the computational time for testing one chip under four modes at a 1-Hz frequency resolution and 600-Hz bandwidth was dramatically reduced from 10 min to 6 s. A multifrequency signal with an equal amplitude and initial linear-phase-difference distribution was generated to ensure test repeatability and accuracy. The current test system based on LabVIEW using the SFE method was modified to use the MFE method without any hardware changes. The experimental results verified that the MFE method can be an ideal solution for large-scale dynamic testing of gyroscope chips and gyroscopes.

  7. Advanced bioanalytics for precision medicine.

    Science.gov (United States)

    Roda, Aldo; Michelini, Elisa; Caliceti, Cristiana; Guardigli, Massimo; Mirasoli, Mara; Simoni, Patrizia

    2018-01-01

    Precision medicine is a new paradigm that combines diagnostic, imaging, and analytical tools to produce accurate diagnoses and therapeutic interventions tailored to the individual patient. This approach stands in contrast to the traditional "one size fits all" concept, according to which researchers develop disease treatments and preventions for an "average" patient without considering individual differences. The "one size fits all" concept has led to many ineffective or inappropriate treatments, especially for pathologies such as Alzheimer's disease and cancer. Now, precision medicine is receiving massive funding in many countries, thanks to its social and economic potential in terms of improved disease prevention, diagnosis, and therapy. Bioanalytical chemistry is critical to precision medicine. This is because identifying an appropriate tailored therapy requires researchers to collect and analyze information on each patient's specific molecular biomarkers (e.g., proteins, nucleic acids, and metabolites). In other words, precision diagnostics is not possible without precise bioanalytical chemistry. This Trend article highlights some of the most recent advances, including massive analysis of multilayer omics, and new imaging technique applications suitable for implementing precision medicine. Graphical abstract Precision medicine combines bioanalytical chemistry, molecular diagnostics, and imaging tools for performing accurate diagnoses and selecting optimal therapies for each patient.

  8. A Road Map for Precision Medicine in the Epilepsies

    Science.gov (United States)

    2015-01-01

    Summary Technological advances have paved the way for accelerated genomic discovery and are bringing precision medicine clearly into view. Epilepsy research in particular is well-suited to serve as a model for the development and deployment of targeted therapeutics in precision medicine because of the rapidly expanding genetic knowledge base in epilepsy, the availability of good in vitro and in vivo model systems to efficiently study the biological consequences of genetic mutations, the ability to turn these models into effective drug screening platforms, and the establishment of collaborative research groups. Moving forward, it is critical that we strengthen these collaborations, particularly through integrated research platforms to provide robust analyses both for accurate personal genome analysis and gene and drug discovery. Similarly, the implementation of clinical trial networks will allow the expansion of patient sample populations with genetically defined epilepsy so that drug discovery can be translated into clinical practice. PMID:26416172

  9. Rapid microcantilever-thickness determination by optical interferometry

    International Nuclear Information System (INIS)

    Salmon, Andrew R; Capener, Matthew J; Elliott, Stephen R; Baumberg, Jeremy J

    2014-01-01

    Silicon microcantilevers are widely used in scanning-probe microscopy and in cantilever-sensing applications. However, the cantilever thickness is not well controlled in conventional lithography and, since it is also difficult to measure, it is the most important undefined factor in mechanical variability. An accurate method to measure this parameter is thus essential. We demonstrate the capability to measure microcantilever thicknesses rapidly (>1 Hz) and accurately (±2 nm) by optical interferometry. This is achieved with standard microscopy equipment and so can be implemented as a standard technique in both research and in batch control for commercial microfabrication. In addition, we show how spatial variations in the thickness of individual microcantilevers can be mapped, which has applications in the precise mechanical calibration of cantilevers for force spectroscopy. (paper)

  10. A robust statistical estimation (RoSE) algorithm jointly recovers the 3D location and intensity of single molecules accurately and precisely

    Science.gov (United States)

    Mazidi, Hesam; Nehorai, Arye; Lew, Matthew D.

    2018-02-01

    In single-molecule (SM) super-resolution microscopy, the complexity of a biological structure, high molecular density, and a low signal-to-background ratio (SBR) may lead to imaging artifacts without a robust localization algorithm. Moreover, engineered point spread functions (PSFs) for 3D imaging pose difficulties due to their intricate features. We develop a Robust Statistical Estimation algorithm, called RoSE, that enables joint estimation of the 3D location and photon counts of SMs accurately and precisely using various PSFs under conditions of high molecular density and low SBR.

  11. A novel low-cost mobile robot for rapid prototyping of precision farming applications

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Neerup, Mathias Mikkel; Larsen, Leon Bonde

    Experimental research in precision farming is a significant challenge due to the considerable resources required to perform field experiments. Simulating the field environment is a frequently used technique which is useful for functional software tests, but beyond that it is necessary to perform...... experiments. In this work we present a novel FrobitPro robot platform designed for rapid prototyping of FroboMind field robot applications. FrobitPro has a fundamental design similar to many current wheeled and tracked robots such as the Kongskilde Robotti, and the workflow of migrating from simulation...... as outdoor driving in semi-rugged terrain such as grass fields and bare soil. This paper presents the FrobitPro robot and describes two use cases in current research projects, namely the Grassbots project which focuses on harvesting of grass on lowland areas for biofuel production and the SAFE project...

  12. Precision grid and hand motion for accurate needle insertion in brachytherapy

    International Nuclear Information System (INIS)

    McGill, Carl S.; Schwartz, Jonathon A.; Moore, Jason Z.; McLaughlin, Patrick W.; Shih, Albert J.

    2011-01-01

    Purpose: In prostate brachytherapy, a grid is used to guide a needle tip toward a preplanned location within the tissue. During insertion, the needle deflects en route resulting in target misplacement. In this paper, 18-gauge needle insertion experiments into phantom were performed to test effects of three parameters, which include the clearance between the grid hole and needle, the thickness of the grid, and the needle insertion speed. Measurement apparatus that consisted of two datum surfaces and digital depth gauge was developed to quantify needle deflections. Methods: The gauge repeatability and reproducibility (GR and R) test was performed on the measurement apparatus, and it proved to be capable of measuring a 2 mm tolerance from the target. Replicated experiments were performed on a 2 3 factorial design (three parameters at two levels) and analysis included averages and standard deviation along with an analysis of variance (ANOVA) to find significant single and two-way interaction factors. Results: Results showed that grid with tight clearance hole and slow needle speed increased precision and accuracy of needle insertion. The tight grid was vital to enhance precision and accuracy of needle insertion for both slow and fast insertion speed; additionally, at slow speed the tight, thick grid improved needle precision and accuracy. Conclusions: In summary, the tight grid is important, regardless of speed. The grid design, which shows the capability to reduce the needle deflection in brachytherapy procedures, can potentially be implemented in the brachytherapy procedure.

  13. Precision Timing of PSR J0437-4715: An Accurate Pulsar Distance, a High Pulsar Mass, and a Limit on the Variation of Newton's Gravitational Constant

    Science.gov (United States)

    Verbiest, J. P. W.; Bailes, M.; van Straten, W.; Hobbs, G. B.; Edwards, R. T.; Manchester, R. N.; Bhat, N. D. R.; Sarkissian, J. M.; Jacoby, B. A.; Kulkarni, S. R.

    2008-05-01

    Analysis of 10 years of high-precision timing data on the millisecond pulsar PSR J0437-4715 has resulted in a model-independent kinematic distance based on an apparent orbital period derivative, dot Pb , determined at the 1.5% level of precision (Dk = 157.0 +/- 2.4 pc), making it one of the most accurate stellar distance estimates published to date. The discrepancy between this measurement and a previously published parallax distance estimate is attributed to errors in the DE200 solar system ephemerides. The precise measurement of dot Pb allows a limit on the variation of Newton's gravitational constant, |Ġ/G| <= 23 × 10-12 yr-1. We also constrain any anomalous acceleration along the line of sight to the pulsar to |a⊙/c| <= 1.5 × 10-18 s-1 at 95% confidence, and derive a pulsar mass, mpsr = 1.76 +/- 0.20 M⊙, one of the highest estimates so far obtained.

  14. Using MALDI-TOF mass spectrometry as a rapid and accurate diagnostic tool in infective endocarditis: a case report of a patient with mitral valve infective endocarditis caused by Abiotrophia defectiva

    DEFF Research Database (Denmark)

    Holler, Jon Gitz; Pedersen, Line; Calum, Henrik

    2011-01-01

    A case of infective endocarditis caused by Abiotrophia defectiva is presented. The use of MALDI-TOF mass spectrometry as a rapid and accurate diagnostic tool in infective endocarditis is discussed.......A case of infective endocarditis caused by Abiotrophia defectiva is presented. The use of MALDI-TOF mass spectrometry as a rapid and accurate diagnostic tool in infective endocarditis is discussed....

  15. Laser precision microfabrication

    CERN Document Server

    Sugioka, Koji; Pique, Alberto

    2010-01-01

    Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.

  16. Rapid Detection of Human Immunodeficiency Virus Types 1 and 2 by Use of an Improved Piezoelectric Biosensor

    Science.gov (United States)

    Severns, Virginia; Branch, Darren W.; Edwards, Thayne L.; Larson, Richard S.

    2013-01-01

    Disasters can create situations in which blood donations can save lives. However, in emergency situations and when resources are depleted, on-site blood donations require the rapid and accurate detection of blood-borne pathogens, including human immunodeficiency virus types 1 and 2 (HIV-1 and HIV-2). Techniques such as PCR and antibody capture by an enzyme-linked immunosorbent assay (ELISA) for HIV-1 and HIV-2 are precise but time-consuming and require sophisticated equipment that is not compatible with emergency point-of-care requirements. We describe here a prototype biosensor based on piezoelectric materials functionalized with specific antibodies against HIV-1 and HIV-2. We show the rapid and accurate detection of HIV-1 and HIV-2 in both simple and complex solutions, including human serum, and in the presence of a cross-confounding virus. We report detection limits of 12 50% tissue culture infective doses (TCID50s) for HIV-1 and 87 TCID50s for HIV-2. The accuracy, precision of measurements, and operation of the prototype biosensor compared favorably to those for nucleic acid amplification. We conclude that the biosensor has significant promise as a successful point-of-care diagnostic device for use in emergency field applications requiring rapid and reliable testing for blood-borne pathogens. PMID:23515541

  17. Rapid and accurate intraoperative pathological diagnosis by artificial intelligence with deep learning technology.

    Science.gov (United States)

    Zhang, Jing; Song, Yanlin; Xia, Fan; Zhu, Chenjing; Zhang, Yingying; Song, Wenpeng; Xu, Jianguo; Ma, Xuelei

    2017-09-01

    Frozen section is widely used for intraoperative pathological diagnosis (IOPD), which is essential for intraoperative decision making. However, frozen section suffers from some drawbacks, such as time consuming and high misdiagnosis rate. Recently, artificial intelligence (AI) with deep learning technology has shown bright future in medicine. We hypothesize that AI with deep learning technology could help IOPD, with a computer trained by a dataset of intraoperative lesion images. Evidences supporting our hypothesis included the successful use of AI with deep learning technology in diagnosing skin cancer, and the developed method of deep-learning algorithm. Large size of the training dataset is critical to increase the diagnostic accuracy. The performance of the trained machine could be tested by new images before clinical use. Real-time diagnosis, easy to use and potential high accuracy were the advantages of AI for IOPD. In sum, AI with deep learning technology is a promising method to help rapid and accurate IOPD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Precision Muonium Spectroscopy

    NARCIS (Netherlands)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 mu s. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In

  19. Rapid Classification and Identification of Multiple Microorganisms with Accurate Statistical Significance via High-Resolution Tandem Mass Spectrometry.

    Science.gov (United States)

    Alves, Gelio; Wang, Guanghui; Ogurtsov, Aleksey Y; Drake, Steven K; Gucek, Marjan; Sacks, David B; Yu, Yi-Kuo

    2018-06-05

    Rapid and accurate identification and classification of microorganisms is of paramount importance to public health and safety. With the advance of mass spectrometry (MS) technology, the speed of identification can be greatly improved. However, the increasing number of microbes sequenced is complicating correct microbial identification even in a simple sample due to the large number of candidates present. To properly untwine candidate microbes in samples containing one or more microbes, one needs to go beyond apparent morphology or simple "fingerprinting"; to correctly prioritize the candidate microbes, one needs to have accurate statistical significance in microbial identification. We meet these challenges by using peptide-centric representations of microbes to better separate them and by augmenting our earlier analysis method that yields accurate statistical significance. Here, we present an updated analysis workflow that uses tandem MS (MS/MS) spectra for microbial identification or classification. We have demonstrated, using 226 MS/MS publicly available data files (each containing from 2500 to nearly 100,000 MS/MS spectra) and 4000 additional MS/MS data files, that the updated workflow can correctly identify multiple microbes at the genus and often the species level for samples containing more than one microbe. We have also shown that the proposed workflow computes accurate statistical significances, i.e., E values for identified peptides and unified E values for identified microbes. Our updated analysis workflow MiCId, a freely available software for Microorganism Classification and Identification, is available for download at https://www.ncbi.nlm.nih.gov/CBBresearch/Yu/downloads.html . Graphical Abstract ᅟ.

  20. TSaT-MUSIC: a novel algorithm for rapid and accurate ultrasonic 3D localization

    Science.gov (United States)

    Mizutani, Kyohei; Ito, Toshio; Sugimoto, Masanori; Hashizume, Hiromichi

    2011-12-01

    We describe a fast and accurate indoor localization technique using the multiple signal classification (MUSIC) algorithm. The MUSIC algorithm is known as a high-resolution method for estimating directions of arrival (DOAs) or propagation delays. A critical problem in using the MUSIC algorithm for localization is its computational complexity. Therefore, we devised a novel algorithm called Time Space additional Temporal-MUSIC, which can rapidly and simultaneously identify DOAs and delays of mul-ticarrier ultrasonic waves from transmitters. Computer simulations have proved that the computation time of the proposed algorithm is almost constant in spite of increasing numbers of incoming waves and is faster than that of existing methods based on the MUSIC algorithm. The robustness of the proposed algorithm is discussed through simulations. Experiments in real environments showed that the standard deviation of position estimations in 3D space is less than 10 mm, which is satisfactory for indoor localization.

  1. Rapid evolution of ritual architecture in central Polynesia indicated by precise 230Th/U coral dating.

    Science.gov (United States)

    Sharp, Warren D; Kahn, Jennifer G; Polito, Christina M; Kirch, Patrick V

    2010-07-27

    In Polynesia, the complex Society Islands chiefdoms constructed elaborate temples (marae), some of which reached monumental proportions and were associated with human sacrifice in the 'Oro cult. We investigated the development of temples on Mo'orea Island by 230Th/U dating of corals used as architectural elements (facing veneers, cut-and-dressed blocks, and offerings). The three largest coastal marae (associated with the highest-ranked chiefly lineages) and 19 marae in the inland 'Opunohu Valley containing coral architectural elements were dated. Fifteen corals from the coastal temples meet geochemical criteria for accurate 230Th/U dating, yield reproducible ages for each marae, and have a mean uncertainty of 9 y (2sigma). Of 41 corals from wetter inland sites, 12 show some diagenesis and may yield unreliable ages; however, the majority (32) of inland dates are considered accurate. We also obtained six 14C dates on charcoal from four marae. The dates indicate that temple architecture on Mo'orea Island developed rapidly over a period of approximately 140 y (ca. AD 1620-1760), with the largest coastal temples constructed immediately before initial European contact (AD 1767). The result of a seriation of architectural features corresponds closely with this chronology. Acropora coral veneers were superceded by cut-and-dressed Porites coral blocks on altar platforms, followed by development of multitier stepped altar platforms and use of pecked basalt stones associated with the late 'Oro cult. This example demonstrates that elaboration of ritual architecture in complex societies may be surprisingly rapid.

  2. Clustered lot quality assurance sampling to assess immunisation coverage: increasing rapidity and maintaining precision.

    Science.gov (United States)

    Pezzoli, Lorenzo; Andrews, Nick; Ronveaux, Olivier

    2010-05-01

    Vaccination programmes targeting disease elimination aim to achieve very high coverage levels (e.g. 95%). We calculated the precision of different clustered lot quality assurance sampling (LQAS) designs in computer-simulated surveys to provide local health officers in the field with preset LQAS plans to simply and rapidly assess programmes with high coverage targets. We calculated sample size (N), decision value (d) and misclassification errors (alpha and beta) of several LQAS plans by running 10 000 simulations. We kept the upper coverage threshold (UT) at 90% or 95% and decreased the lower threshold (LT) progressively by 5%. We measured the proportion of simulations with d unvaccinated individuals if the coverage was LT% (pLT) to calculate alpha (1-pLT). We divided N in clusters (between 5 and 10) and recalculated the errors hypothesising that the coverage would vary in the clusters according to a binomial distribution with preset standard deviations of 0.05 and 0.1 from the mean lot coverage. We selected the plans fulfilling these criteria: alpha LQAS plans dividing the lot in five clusters with N = 50 (5 x 10) and d = 4 to evaluate programmes with 95% coverage target and d = 7 to evaluate programmes with 90% target. These plans will considerably increase the feasibility and the rapidity of conducting the LQAS in the field.

  3. Rapid detection of genetic modification for GMO monitoring in agriculture

    Directory of Open Access Journals (Sweden)

    Petrović Sofija

    2015-01-01

    Full Text Available Transgenic technology has expanded the ways of new genetic variability creation. Genetically modified organisms (GMOs are organisms which total genome is altered in a way that could not happen in nature. GM crops recorded a steady increase in its share in agricultural production. However, for the most part, GMO in agriculture has been limited to two cultivars - soy and corn, and the two genetic modifications, the total herbicide resistance and pest of the Lepidoptera genus. In order to monitor cultivation and trade of GMOs, tests of different precision are used, qualitatively and/or quantitatively determining the presence of genetic modification. Tests for the rapid determination of the presence of GM are suitable, since they can be implemented quickly and accurately, in terms of declared sensitivity, outside or in the laboratory. The example of the use of rapid tests demonstrates their value in use for rapid and efficient monitoring.

  4. Precision medicine for nurses: 101.

    Science.gov (United States)

    Lemoine, Colleen

    2014-05-01

    To introduce the key concepts and terms associated with precision medicine and support understanding of future developments in the field by providing an overview and history of precision medicine, related ethical considerations, and nursing implications. Current nursing, medical and basic science literature. Rapid progress in understanding the oncogenic drivers associated with cancer is leading to a shift toward precision medicine, where treatment is based on targeting specific genetic and epigenetic alterations associated with a particular cancer. Nurses will need to embrace the paradigm shift to precision medicine, expend the effort necessary to learn the essential terminology, concepts and principles, and work collaboratively with physician colleagues to best position our patients to maximize the potential that precision medicine can offer. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. An Integrative Approach to Accurate Vehicle Logo Detection

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2013-01-01

    required for many applications in intelligent transportation systems and automatic surveillance. The task is challenging considering the small target of logos and the wide range of variability in shape, color, and illumination. A fast and reliable vehicle logo detection approach is proposed following visual attention mechanism from the human vision. Two prelogo detection steps, that is, vehicle region detection and a small RoI segmentation, rapidly focalize a small logo target. An enhanced Adaboost algorithm, together with two types of features of Haar and HOG, is proposed to detect vehicles. An RoI that covers logos is segmented based on our prior knowledge about the logos’ position relative to license plates, which can be accurately localized from frontal vehicle images. A two-stage cascade classier proceeds with the segmented RoI, using a hybrid of Gentle Adaboost and Support Vector Machine (SVM, resulting in precise logo positioning. Extensive experiments were conducted to verify the efficiency of the proposed scheme.

  6. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  7. The Development of Precise Engineering Surveying Technology

    Directory of Open Access Journals (Sweden)

    LI Guangyun

    2017-10-01

    Full Text Available With the construction of big science projects in China, the precise engineering surveying technology developed rapidly in the 21th century. Firstly, the paper summarized up the current development situation for the precise engineering surveying instrument and theory. Then the three typical cases of the precise engineering surveying practice such as accelerator alignment, industry measurement and high-speed railway surveying technology are focused.

  8. Fully automated laboratory and field-portable goniometer used for performing accurate and precise multiangular reflectance measurements

    Science.gov (United States)

    Harms, Justin D.; Bachmann, Charles M.; Ambeau, Brittany L.; Faulring, Jason W.; Ruiz Torres, Andres J.; Badura, Gregory; Myers, Emily

    2017-10-01

    Field-portable goniometers are created for a wide variety of applications. Many of these applications require specific types of instruments and measurement schemes and must operate in challenging environments. Therefore, designs are based on the requirements that are specific to the application. We present a field-portable goniometer that was designed for measuring the hemispherical-conical reflectance factor (HCRF) of various soils and low-growing vegetation in austere coastal and desert environments and biconical reflectance factors in laboratory settings. Unlike some goniometers, this system features a requirement for "target-plane tracking" to ensure that measurements can be collected on sloped surfaces, without compromising angular accuracy. The system also features a second upward-looking spectrometer to measure the spatially dependent incoming illumination, an integrated software package to provide full automation, an automated leveling system to ensure a standard frame of reference, a design that minimizes the obscuration due to self-shading to measure the opposition effect, and the ability to record a digital elevation model of the target region. This fully automated and highly mobile system obtains accurate and precise measurements of HCRF in a wide variety of terrain and in less time than most other systems while not sacrificing consistency or repeatability in laboratory environments.

  9. Optimal Cluster Mill Pass Scheduling With an Accurate and Rapid New Strip Crown Model

    International Nuclear Information System (INIS)

    Malik, Arif S.; Grandhi, Ramana V.; Zipf, Mark E.

    2007-01-01

    Besides the requirement to roll coiled sheet at high levels of productivity, the optimal pass scheduling of cluster-type reversing cold mills presents the added challenge of assigning mill parameters that facilitate the best possible strip flatness. The pressures of intense global competition, and the requirements for increasingly thinner, higher quality specialty sheet products that are more difficult to roll, continue to force metal producers to commission innovative flatness-control technologies. This means that during the on-line computerized set-up of rolling mills, the mathematical model should not only determine the minimum total number of passes and maximum rolling speed, it should simultaneously optimize the pass-schedule so that desired flatness is assured, either by manual or automated means. In many cases today, however, on-line prediction of strip crown and corresponding flatness for the complex cluster-type rolling mills is typically addressed either by trial and error, by approximate deflection models for equivalent vertical roll-stacks, or by non-physical pattern recognition style models. The abundance of the aforementioned methods is largely due to the complexity of cluster-type mill configurations and the lack of deflection models with sufficient accuracy and speed for on-line use. Without adequate assignment of the pass-schedule set-up parameters, it may be difficult or impossible to achieve the required strip flatness. In this paper, we demonstrate optimization of cluster mill pass-schedules using a new accurate and rapid strip crown model. This pass-schedule optimization includes computations of the predicted strip thickness profile to validate mathematical constraints. In contrast to many of the existing methods for on-line prediction of strip crown and flatness on cluster mills, the demonstrated method requires minimal prior tuning and no extensive training with collected mill data. To rapidly and accurately solve the multi-contact problem

  10. A rapid and specific titrimetric method for the precise determination of plutonium using redox indicator

    International Nuclear Information System (INIS)

    Chitnis, R.T.; Dubey, S.C.

    1976-01-01

    A simple and rapid method for the determination of plutonium in plutonium nitrate solution and its application to the purex process solutions is discussed. The method involves the oxidation of plutonium to Pu(VI) with the help of argentic oxide followed by the destruction of the excess argentic oxide by means of sulphamic acid. The determination of plutonium is completed by adding ferrous ammonium sulphate solution which reduces Pu(VI) to Pu(IV) and titrating the excess ferrous with standard potassium dichromate solution using sodium diphenylamine sulphonate as the internal indicator. The effect of the various reagents add during the oxidation and reduction of plutonium, on the final titration has been investigated. The method works satisfactorily for the analysis of plutonium in the range of 0.5 to 5 mg. The precision of the method is found to be within 0.1%. (author)

  11. Thorium spectrophotometric analysis with high precision

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1983-06-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using disodium ethylenediaminetetraacetate (EDTA) solution and alizarin S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer program. (author)

  12. Accurate and Rapid Differentiation of Acinetobacter baumannii Strains by Raman Spectroscopy: a Comparative Study.

    Science.gov (United States)

    Ghebremedhin, Meron; Heitkamp, Rae; Yesupriya, Shubha; Clay, Bradford; Crane, Nicole J

    2017-08-01

    In recent years, matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has become the standard for routine bacterial species identification due to its rapidity and low costs for consumables compared to those of traditional DNA-based methods. However, it has been observed that strains of some bacterial species, such as Acinetobacter baumannii strains, cannot be reliably identified using mass spectrometry (MS). Raman spectroscopy is a rapid technique, as fast as MALDI-TOF, and has been shown to accurately identify bacterial strains and species. In this study, we compared hierarchical clustering results for MS, genomic, and antimicrobial susceptibility test data to hierarchical clustering results from Raman spectroscopic data for 31 A. baumannii clinical isolates labeled according to their pulsed-field gel electrophoresis data for strain differentiation. In addition to performing hierarchical cluster analysis (HCA), multiple chemometric methods of analysis, including principal-component analysis (PCA) and partial least-squares discriminant analysis (PLSDA), were performed on the MS and Raman spectral data, along with a variety of spectral preprocessing techniques for best discriminative results. Finally, simple HCA algorithms were performed on all of the data sets to explore the relationships between, and natural groupings of, the strains and to compare results for the four data sets. To obtain numerical comparison values of the clustering results, the external cluster evaluation criteria of the Rand index of the HCA dendrograms were calculated. With a Rand index value of 0.88, Raman spectroscopy outperformed the other techniques, including MS (with a Rand index value of 0.58). Copyright © 2017 Ghebremedhin et al.

  13. From rapid place learning to behavioral performance: a key role for the intermediate hippocampus.

    Directory of Open Access Journals (Sweden)

    Tobias Bast

    2009-04-01

    Full Text Available Rapid place encoding by hippocampal neurons, as reflected by place-related firing, has been intensely studied, whereas the substrates that translate hippocampal place codes into behavior have received little attention. A key point relevant to this translation is that hippocampal organization is characterized by functional-anatomical gradients along the septotemporal axis: Whereas the ability of hippocampal neurons to encode accurate place information declines from the septal to temporal end, hippocampal connectivity to prefrontal and subcortical sites that might relate such place information to behavioral-control processes shows an opposite gradient. We examined in rats the impact of selective lesions to relevant parts of the hippocampus on behavioral tests requiring place learning (watermaze procedures and on in vivo electrophysiological models of hippocampal encoding (long-term potentiation [LTP], place cells. We found that the intermediate hippocampus is necessary and largely sufficient for behavioral performance based on rapid place learning. In contrast, a residual septal pole of the hippocampus, although displaying intact electrophysiological indices of rapid information encoding (LTP, precise place-related firing, and rapid remapping, failed to sustain watermaze performance based on rapid place learning. These data highlight the important distinction between hippocampal encoding and the behavioral performance based on such encoding, and suggest that the intermediate hippocampus, where substrates of rapid accurate place encoding converge with links to behavioral control, is critical to translate rapid (one-trial place learning into navigational performance.

  14. Precise positioning method for multi-process connecting based on binocular vision

    Science.gov (United States)

    Liu, Wei; Ding, Lichao; Zhao, Kai; Li, Xiao; Wang, Ling; Jia, Zhenyuan

    2016-01-01

    With the rapid development of aviation and aerospace, the demand for metal coating parts such as antenna reflector, eddy-current sensor and signal transmitter, etc. is more and more urgent. Such parts with varied feature dimensions, complex three-dimensional structures, and high geometric accuracy are generally fabricated by the combination of different manufacturing technology. However, it is difficult to ensure the machining precision because of the connection error between different processing methods. Therefore, a precise positioning method is proposed based on binocular micro stereo vision in this paper. Firstly, a novel and efficient camera calibration method for stereoscopic microscope is presented to solve the problems of narrow view field, small depth of focus and too many nonlinear distortions. Secondly, the extraction algorithms for law curve and free curve are given, and the spatial position relationship between the micro vision system and the machining system is determined accurately. Thirdly, a precise positioning system based on micro stereovision is set up and then embedded in a CNC machining experiment platform. Finally, the verification experiment of the positioning accuracy is conducted and the experimental results indicated that the average errors of the proposed method in the X and Y directions are 2.250 μm and 1.777 μm, respectively.

  15. Precision muonium spectroscopy

    International Nuclear Information System (INIS)

    Jungmann, Klaus P.

    2016-01-01

    The muonium atom is the purely leptonic bound state of a positive muon and an electron. It has a lifetime of 2.2 µs. The absence of any known internal structure provides for precision experiments to test fundamental physics theories and to determine accurate values of fundamental constants. In particular ground state hyperfine structure transitions can be measured by microwave spectroscopy to deliver the muon magnetic moment. The frequency of the 1s–2s transition in the hydrogen-like atom can be determined with laser spectroscopy to obtain the muon mass. With such measurements fundamental physical interactions, in particular quantum electrodynamics, can also be tested at highest precision. The results are important input parameters for experiments on the muon magnetic anomaly. The simplicity of the atom enables further precise experiments, such as a search for muonium–antimuonium conversion for testing charged lepton number conservation and searches for possible antigravity of muons and dark matter. (author)

  16. The European Society for Medical Oncology (ESMO) Precision Medicine Glossary.

    Science.gov (United States)

    Yates, L R; Seoane, J; Le Tourneau, C; Siu, L L; Marais, R; Michiels, S; Soria, J C; Campbell, P; Normanno, N; Scarpa, A; Reis-Filho, J S; Rodon, J; Swanton, C; Andre, F

    2018-01-01

    Precision medicine is rapidly evolving within the field of oncology and has brought many new concepts and terminologies that are often poorly defined when first introduced, which may subsequently lead to miscommunication within the oncology community. The European Society for Medical Oncology (ESMO) recognises these challenges and is committed to support the adoption of precision medicine in oncology. To add clarity to the language used by oncologists and basic scientists within the context of precision medicine, the ESMO Translational Research and Personalised Medicine Working Group has developed a standardised glossary of relevant terms. Relevant terms for inclusion in the glossary were identified via an ESMO member survey conducted in Autumn 2016, and by the ESMO Translational Research and Personalised Medicine Working Group members. Each term was defined by experts in the field, discussed and, if necessary, modified by the Working Group before reaching consensus approval. A literature search was carried out to determine which of the terms, 'precision medicine' and 'personalised medicine', is most appropriate to describe this field. A total of 43 terms are included in the glossary, grouped into five main themes-(i) mechanisms of decision, (ii) characteristics of molecular alterations, (iii) tumour characteristics, (iv) clinical trials and statistics and (v) new research tools. The glossary classes 'precision medicine' or 'personalised medicine' as technically interchangeable but the term 'precision medicine' is favoured as it more accurately reflects the highly precise nature of new technologies that permit base pair resolution dissection of cancer genomes and is less likely to be misinterpreted. The ESMO Precision Medicine Glossary provides a resource to facilitate consistent communication in this field by clarifying and raising awareness of the language employed in cancer research and oncology practice. The glossary will be a dynamic entity, undergoing

  17. Development of improved enzyme-based and lateral flow immunoassays for rapid and accurate serodiagnosis of canine brucellosis.

    Science.gov (United States)

    Cortina, María E; Novak, Analía; Melli, Luciano J; Elena, Sebastián; Corbera, Natalia; Romero, Juan E; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2017-09-01

    Brucellosis is a widespread zoonotic disease caused by Brucella spp. Brucella canis is the etiological agent of canine brucellosis, a disease that can lead to sterility in bitches and dogs causing important economic losses in breeding kennels. Early and accurate diagnosis of canine brucellosis is central to control the disease and lower the risk of transmission to humans. Here, we develop and validate enzyme and lateral flow immunoassays for improved serodiagnosis of canine brucellosis using as antigen the B. canis rough lipopolysaccharide (rLPS). The method used to obtain the rLPS allowed us to produce more homogeneous batches of the antigen that facilitated the standardization of the assays. To validate the assays, 284 serum samples obtained from naturally infected dogs and healthy animals were analyzed. For the B. canis-iELISA and B. canis-LFIA the diagnostic sensitivity was of 98.6%, and the specificity 99.5% and 100%, respectively. We propose the implementation of the B. canis-LFIA as a screening test in combination with the highly accurate laboratory g-iELISA. The B. canis-LFIA is a rapid, accurate and easy to use test, characteristics that make it ideal for the serological surveillance of canine brucellosis in the field or veterinary laboratories. Finally, a blind study including 1040 serum samples obtained from urban dogs showed a prevalence higher than 5% highlighting the need of new diagnostic tools for a more effective control of the disease in dogs and therefore to reduce the risk of transmission of this zoonotic pathogen to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Accurate and precise determination of small quantity uranium by means of automatic potentiometric titration

    International Nuclear Information System (INIS)

    Liu Quanwei; Luo Zhongyan; Zhu Haiqiao; Wu Jizong

    2007-01-01

    For high radioactivity level of dissolved solution of spent fuel and the solution of uranium product, radioactive hazard must be considered and reduced as low as possible during accurate determination of uranium. In this work automatic potentiometric titration was applied and the sample only 10 mg of uranium contained was taken in order to reduce the harm of analyzer suffered from the radioactivity. RSD<0.06%, at the same time the result can be corrected for more reliable and accurate measurement. The determination method can effectively reduce the harm of analyzer suffered from the radioactivity, and meets the requirement of reliable accurate measurement of uranium. (authors)

  19. Lung Cancer Precision Medicine Trials

    Science.gov (United States)

    Patients with lung cancer are benefiting from the boom in targeted and immune-based therapies. With a series of precision medicine trials, NCI is keeping pace with the rapidly changing treatment landscape for lung cancer.

  20. Introduction to precise numerical methods

    CERN Document Server

    Aberth, Oliver

    2007-01-01

    Precise numerical analysis may be defined as the study of computer methods for solving mathematical problems either exactly or to prescribed accuracy. This book explains how precise numerical analysis is constructed. The book also provides exercises which illustrate points from the text and references for the methods presented. All disc-based content for this title is now available on the Web. · Clearer, simpler descriptions and explanations ofthe various numerical methods· Two new types of numerical problems; accurately solving partial differential equations with the included software and computing line integrals in the complex plane.

  1. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  2. Accurate Measurement of Pasting Temperature by the Rapid Visco-Analyser: a Case Study Using Rice Flour

    Directory of Open Access Journals (Sweden)

    Jin-song BAO

    2008-03-01

    Full Text Available Pasting properties are among the most important characteristics of starch, determining its applications in food processing and other industries. Pasting temperature derived from the Rapid Visco-analyser (RVA (Newport Scientific, in most cases, is overestimated by the Thermocline for Windows software program. Here, two methods facilitating accurate measurement of pasting temperature by RVA were described. One is to change parameter setting to ‘screen’ the true point where the pasting viscosity begins to increase, the other is to manually record the time (T1 when the pasting viscosity begins to increase and calculate the pasting temperature with the formula of (45/3.8×(T1–1+50 for rice flour. The latter method gave a manually determined pasting temperature which was significantly correlated with the gelatinization temperature measured by differential scanning calorimetry.

  3. Newborn Screening in the Era of Precision Medicine.

    Science.gov (United States)

    Yang, Lan; Chen, Jiajia; Shen, Bairong

    2017-01-01

    As newborn screening success stories gained general confirmation during the past 50 years, scientists quickly discovered diagnostic tests for a host of genetic disorders that could be treated at birth. Outstanding progress in sequencing technologies over the last two decades has made it possible to comprehensively profile newborn screening (NBS) and identify clinically relevant genomic alterations. With the rapid developments in whole-genome sequencing (WGS) and whole-exome sequencing (WES) recently, we can detect newborns at the genomic level and be able to direct the appropriate diagnosis to the different individuals at the appropriate time, which is also encompassed in the concept of precision medicine. Besides, we can develop novel interventions directed at the molecular characteristics of genetic diseases in newborns. The implementation of genomics in NBS programs would provide an effective premise for the identification of the majority of genetic aberrations and primarily help in accurate guidance in treatment and better prediction. However, there are some debate correlated with the widespread application of genome sequencing in NBS due to some major concerns such as clinical analysis, result interpretation, storage of sequencing data, and communication of clinically relevant mutations to pediatricians and parents, along with the ethical, legal, and social implications (so-called ELSI). This review is focused on these critical issues and concerns about the expanding role of genomics in NBS for precision medicine. If WGS or WES is to be incorporated into NBS practice, considerations about these challenges should be carefully regarded and tackled properly to adapt the requirement of genome sequencing in the era of precision medicine.

  4. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide.

    Science.gov (United States)

    Ross, Charles W; Simonsick, William J; Bogusky, Michael J; Celikay, Recep W; Guare, James P; Newton, Randall C

    2016-06-28

    Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI), sheath flow electrospray ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS) and high-field nuclear magnetic resonance (NMR) analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  5. Fourier Transform Mass Spectrometry and Nuclear Magnetic Resonance Analysis for the Rapid and Accurate Characterization of Hexacosanoylceramide

    Directory of Open Access Journals (Sweden)

    Charles W. Ross

    2016-06-01

    Full Text Available Ceramides are a central unit of all sphingolipids which have been identified as sites of biological recognition on cellular membranes mediating cell growth and differentiation. Several glycosphingolipids have been isolated, displaying immunomodulatory and anti-tumor activities. These molecules have generated considerable interest as potential vaccine adjuvants in humans. Accurate analyses of these and related sphingosine analogues are important for the characterization of structure, biological function, and metabolism. We report the complementary use of direct laser desorption ionization (DLDI, sheath flow electrospray ionization (ESI Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS and high-field nuclear magnetic resonance (NMR analysis for the rapid, accurate identification of hexacosanoylceramide and starting materials. DLDI does not require stringent sample preparation and yields representative ions. Sheath-flow ESI yields ions of the product and byproducts and was significantly better than monospray ESI due to improved compound solubility. Negative ion sheath flow ESI provided data of starting materials and products all in one acquisition as hexacosanoic acid does not ionize efficiently when ceramides are present. NMR provided characterization of these lipid molecules complementing the results obtained from MS analyses. NMR data was able to differentiate straight chain versus branched chain alkyl groups not easily obtained from mass spectrometry.

  6. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  7. Optimal pcr primers for rapid and accurate detection of Aspergillus flavus isolates.

    Science.gov (United States)

    Al-Shuhaib, Mohammed Baqur S; Albakri, Ali H; Alwan, Sabah H; Almandil, Noor B; AbdulAzeez, Sayed; Borgio, J Francis

    2018-03-01

    Aspergillus flavus is among the most devastating opportunistic pathogens of several food crops including rice, due to its high production of carcinogenic aflatoxins. The presence of these organisms in economically important rice strip farming is a serious food safety concern. Several polymerase chain reaction (PCR) primers have been designed to detect this species; however, a comparative assessment of their accuracy has not been conducted. This study aims to identify the optimal diagnostic PCR primers for the identification of A. flavus, among widely available primers. We isolated 122 A. flavus native isolates from randomly collected rice strips (N = 300). We identified 109 isolates to the genus level using universal fungal PCR primer pairs. Nine pairs of primers were examined for their PCR diagnostic specificity on the 109 isolates. FLA PCR was found to be the optimal PCR primer pair for specific identification of the native isolates, over aflP(1), aflM, aflA, aflD, aflP(3), aflP(2), and aflR. The PEP primer pair was found to be the most unsuitable for A. flavus identification. In conclusion, the present study indicates the powerful specificity of the FLA PCR primer over other commonly available diagnostic primers for accurate, rapid, and large-scale identification of A. flavus native isolates. This study provides the first simple, practical comparative guide to PCR-based screening of A. flavus infection in rice strips. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Rapid and accurate species tree estimation for phylogeographic investigations using replicated subsampling.

    Science.gov (United States)

    Hird, Sarah; Kubatko, Laura; Carstens, Bryan

    2010-11-01

    We describe a method for estimating species trees that relies on replicated subsampling of large data matrices. One application of this method is phylogeographic research, which has long depended on large datasets that sample intensively from the geographic range of the focal species; these datasets allow systematicists to identify cryptic diversity and understand how contemporary and historical landscape forces influence genetic diversity. However, analyzing any large dataset can be computationally difficult, particularly when newly developed methods for species tree estimation are used. Here we explore the use of replicated subsampling, a potential solution to the problem posed by large datasets, with both a simulation study and an empirical analysis. In the simulations, we sample different numbers of alleles and loci, estimate species trees using STEM, and compare the estimated to the actual species tree. Our results indicate that subsampling three alleles per species for eight loci nearly always results in an accurate species tree topology, even in cases where the species tree was characterized by extremely rapid divergence. Even more modest subsampling effort, for example one allele per species and two loci, was more likely than not (>50%) to identify the correct species tree topology, indicating that in nearly all cases, computing the majority-rule consensus tree from replicated subsampling provides a good estimate of topology. These results were supported by estimating the correct species tree topology and reasonable branch lengths for an empirical 10-locus great ape dataset. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Rapid, accurate, and direct determination of total lycopene content in tomato paste

    Science.gov (United States)

    Bicanic, D.; Anese, M.; Luterotti, S.; Dadarlat, D.; Gibkes, J.; Lubbers, M.

    2003-01-01

    Lycopene that imparts red color to the tomato fruit is the most potent antioxidant among carotenes, an important nutrient and also used as a color ingredient in many food formulations. Since cooked and processed foods derived from tomatoes were shown to provide optimal lycopene boost, products such as paste, puree, juice, etc. are nowadays gaining popularity as dietary sources. The analysis of lycopene in tomato paste (partially dehydrated product prepared by vacuum concentrating tomato juice) is carried out using either high pressure liquid chromatography (HPLC), spectrophotometry, or by evaluating the color. The instability of lycopene during processes of extraction, etc., handling, and disposal of organic solvents makes the preparation of a sample for the analysis a delicate task. Despite a recognized need for accurate and rapid assessment of lycopene in tomato products no such method is available at present. The study described here focuses on a direct determination of a total lycopene content in different tomato pastes by means of the laser optothermal window (LOW) method at 502 nm. The concentration of lycopene in tomato paste ranged between 25 and 150 mg per 100 g product; the results are in excellent agreement with those obtained by spectrophotometry. The time needed to complete LOW analysis is very short, so that decomposition of pigment and the formation of artifacts are minimized. Preliminary results indicate a good degree of reproducibility making the LOW method suitable for routine assays of lycopene content in tomato paste.

  10. Precision medicine for psychopharmacology: a general introduction.

    Science.gov (United States)

    Shin, Cheolmin; Han, Changsu; Pae, Chi-Un; Patkar, Ashwin A

    2016-07-01

    Precision medicine is an emerging medical model that can provide accurate diagnoses and tailored therapeutic strategies for patients based on data pertaining to genes, microbiomes, environment, family history and lifestyle. Here, we provide basic information about precision medicine and newly introduced concepts, such as the precision medicine ecosystem and big data processing, and omics technologies including pharmacogenomics, pharamacometabolomics, pharmacoproteomics, pharmacoepigenomics, connectomics and exposomics. The authors review the current state of omics in psychiatry and the future direction of psychopharmacology as it moves towards precision medicine. Expert commentary: Advances in precision medicine have been facilitated by achievements in multiple fields, including large-scale biological databases, powerful methods for characterizing patients (such as genomics, proteomics, metabolomics, diverse cellular assays, and even social networks and mobile health technologies), and computer-based tools for analyzing large amounts of data.

  11. A highly accurate positioning and orientation system based on the usage of four-cluster fibre optic gyros

    International Nuclear Information System (INIS)

    Zhang, Xiaoyue; Lin, Zhili; Zhang, Chunxi

    2013-01-01

    A highly accurate positioning and orientation technique based on four-cluster fibre optic gyros (FOGs) is presented. The four-cluster FOG inertial measurement unit (IMU) comprises three low-precision FOGs, one static high-precision FOG and three accelerometers. To realize high-precision positioning and orientation, the static alignment (north-seeking) before vehicle manoeuvre was divided into a low-precision self-alignment phase and a high-precision north-seeking (online calibration) phase. The high-precision FOG measurement information was introduced to obtain high-precision azimuth alignment (north-seeking) result and achieve online calibration of the low-precision three-cluster FOG. The results of semi-physical simulation were presented to validate the availability and utility of the highly accurate positioning and orientation technique based on the four-cluster FOGs. (paper)

  12. Stable, precise, and reproducible patterning of bicoid and hunchback molecules in the early Drosophila embryo.

    Directory of Open Access Journals (Sweden)

    Yurie Okabe-Oho

    2009-08-01

    Full Text Available Precise patterning of morphogen molecules and their accurate reading out are of key importance in embryonic development. Recent experiments have visualized distributions of proteins in developing embryos and shown that the gradient of concentration of Bicoid morphogen in Drosophila embryos is established rapidly after fertilization and remains stable through syncytial mitoses. This stable Bicoid gradient is read out in a precise way to distribute Hunchback with small fluctuations in each embryo and in a reproducible way, with small embryo-to-embryo fluctuation. The mechanisms of such stable, precise, and reproducible patterning through noisy cellular processes, however, still remain mysterious. To address these issues, here we develop the one- and three-dimensional stochastic models of the early Drosophila embryo. The simulated results show that the fluctuation in expression of the hunchback gene is dominated by the random arrival of Bicoid at the hunchback enhancer. Slow diffusion of Hunchback protein, however, averages out this intense fluctuation, leading to the precise patterning of distribution of Hunchback without loss of sharpness of the boundary of its distribution. The coordinated rates of diffusion and transport of input Bicoid and output Hunchback play decisive roles in suppressing fluctuations arising from the dynamical structure change in embryos and those arising from the random diffusion of molecules, and give rise to the stable, precise, and reproducible patterning of Bicoid and Hunchback distributions.

  13. Lateral Flow Rapid Test for Accurate and Early Diagnosis of Scrub Typhus: A Febrile Illness of Historically Military Importance in the Pacific Rim.

    Science.gov (United States)

    Chao, Chien-Chung; Zhangm, Zhiwen; Weissenberger, Giulia; Chen, Hua-Wei; Ching, Wei-Mei

    2017-03-01

    Scrub typhus (ST) is an infection caused by Orientia tsutsugamushi. Historically, ST was ranked as the second most important arthropod-borne medical problem only behind malaria during World War II and the Vietnam War. The disease occurs mainly in Southeast Asia and has been shown to emerge and reemerge in new areas, implying the increased risk for U.S. military and civilian personnel deployed to these regions. ST can effectively be treated by doxycycline provided the diagnosis is made early, before the development of severe complications. Scrub Typhus Detect is a lateral flow rapid test based on a mixture of recombinant 56-kDa antigens with broad reactivity. The performance of this prototype product was evaluated against indirect immunofluorescence assay, the serological gold standard. Using 249 prospectively collected samples from Thailand, the sensitivity and specificity for IgM was found to be 100% and 92%, respectively, suggesting a high potential of this product for clinical use. This product will provide a user friendly, rapid, and accurate diagnosis of ST for clinicians to provide timely and accurate treatments of deployed personnel. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  14. Adobe photoshop quantification (PSQ) rather than point-counting: A rapid and precise method for quantifying rock textural data and porosities

    Science.gov (United States)

    Zhang, Xuefeng; Liu, Bo; Wang, Jieqiong; Zhang, Zhe; Shi, Kaibo; Wu, Shuanglin

    2014-08-01

    Commonly used petrological quantification methods are visual estimation, counting, and image analyses. However, in this article, an Adobe Photoshop-based analyzing method (PSQ) is recommended for quantifying the rock textural data and porosities. Adobe Photoshop system provides versatile abilities in selecting an area of interest and the pixel number of a selection could be read and used to calculate its area percentage. Therefore, Adobe Photoshop could be used to rapidly quantify textural components, such as content of grains, cements, and porosities including total porosities and different genetic type porosities. This method was named as Adobe Photoshop Quantification (PSQ). The workflow of the PSQ method was introduced with the oolitic dolomite samples from the Triassic Feixianguan Formation, Northeastern Sichuan Basin, China, for example. And the method was tested by comparing with the Folk's and Shvetsov's "standard" diagrams. In both cases, there is a close agreement between the "standard" percentages and those determined by the PSQ method with really small counting errors and operator errors, small standard deviations and high confidence levels. The porosities quantified by PSQ were evaluated against those determined by the whole rock helium gas expansion method to test the specimen errors. Results have shown that the porosities quantified by the PSQ are well correlated to the porosities determined by the conventional helium gas expansion method. Generally small discrepancies (mostly ranging from -3% to 3%) are caused by microporosities which would cause systematic underestimation of 2% and/or by macroporosities causing underestimation or overestimation in different cases. Adobe Photoshop could be used to quantify rock textural components and porosities. This method has been tested to be precise and accurate. It is time saving compared with usual methods.

  15. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    Science.gov (United States)

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.

  16. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    KAUST Repository

    Pan, Bing

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost. © 2014 Elsevier Ltd.

  17. The rapid terrain visualization interferometric synthetic aperture radar sensor

    Science.gov (United States)

    Graham, Robert H.; Bickel, Douglas L.; Hensley, William H.

    2003-11-01

    The Rapid Terrain Visualization interferometric synthetic aperture radar was designed and built at Sandia National Laboratories as part of an Advanced Concept Technology Demonstration (ACTD) to "demonstrate the technologies and infrastructure to meet the Army requirement for rapid generation of digital topographic data to support emerging crisis or contingencies." This sensor is currently being operated by Sandia National Laboratories for the Joint Precision Strike Demonstration (JPSD) Project Office to provide highly accurate digital elevation models (DEMs) for military and civilian customers, both inside and outside of the United States. The sensor achieves better than DTED Level IV position accuracy in near real-time. The system is being flown on a deHavilland DHC-7 Army aircraft. This paper outlines some of the technologies used in the design of the system, discusses the performance, and will discuss operational issues. In addition, we will show results from recent flight tests, including high accuracy maps taken of the San Diego area.

  18. NALPS: a precisely dated European climate record 120–60 ka

    Directory of Open Access Journals (Sweden)

    R. Boch

    2011-11-01

    Full Text Available Accurate and precise chronologies are essential in understanding the rapid and recurrent climate variations of the Last Glacial – known as Dansgaard-Oeschger (D-O events – found in the Greenland ice cores and other climate archives. The existing chronological uncertainties during the Last Glacial, however, are still large. Radiometric age data and stable isotopic signals from speleothems are promising to improve the absolute chronology. We present a record of several precisely dated stalagmites from caves located at the northern rim of the Alps (NALPS, a region that favours comparison with the climate in Greenland. The record covers most of the interval from 120 to 60 ka at an average temporal resolution of 2 to 22 yr and 2σ-age uncertainties of ca. 200 to 500 yr. The rapid and large oxygen isotope shifts of 1 to 4.5‰ occurred within decades to centuries and strongly mimic the Greenland D-O pattern. Compared to the updated Greenland ice-core timescale (GICC05modelext the NALPS record confirms the timing of rapid warming and cooling transitions between 118 and 106 ka, but suggests younger ages for D-O events between 106 and 60 ka. As an exception, the timing of the rapid transitions into and out of the stadial following GI 22 is earlier in NALPS than in the Greenland ice-core timescale. In addition, there is a discrepancy in the duration of this stadial between the ice-core and the stalagmite chronology (ca. 2900 vs. 3650 yr. The short-lived D-O events 18 and 18.1 are not recorded in NALPS, provoking questions with regard to the nature and the regional expression of these events. NALPS resolves recurrent short-lived climate changes within the cold Greenland stadial and warm interstadial successions, i.e. abrupt warming events preceding GI 21 and 23 (precursor-type events and at the end of GI 21 and 25 (rebound-type events, as well as intermittent cooling events during GI 22 and 24. Such superimposed events have not yet been documented

  19. A Fluorescent Tile DNA Diagnocode System for In Situ Rapid and Selective Diagnosis of Cytosolic RNA Cancer Markers

    Science.gov (United States)

    Park, Kyung Soo; Shin, Seung Won; Jang, Min Su; Shin, Woojung; Yang, Kisuk; Min, Junhong; Cho, Seung-Woo; Oh, Byung-Keun; Bae, Jong Wook; Jung, Sunghwan; Choi, Jeong-Woo; Um, Soong Ho

    2015-01-01

    Accurate cancer diagnosis often requires extraction and purification of genetic materials from cells, and sophisticated instrumentations that follow. Otherwise in order to directly treat the diagnostic materials to cells, multiple steps to optimize dose concentration and treatment time are necessary due to diversity in cellular behaviors. These processes may offer high precision but hinder fast analysis of cancer, especially in clinical situations that need rapid detection and characterization of cancer. Here we present a novel fluorescent tile DNA nanostructure delivered to cancer cytosol by employing nanoparticle technology. Its structural anisotropicity offers easy manipulation for multifunctionalities, enabling the novel DNA nanostructure to detect intracellular cancer RNA markers with high specificity within 30 minutes post treatment, while the nanoparticle property bypasses the requirement of treatment optimization, effectively reducing the complexity of applying the system for cancer diagnosis. Altogether, the system offers a precise and rapid detection of cancer, suggesting the future use in the clinical fields. PMID:26678430

  20. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability; Experiences d'interferometrie atomique avec le lithium. Mesure de precision de la polarisabilite electrique

    Energy Technology Data Exchange (ETDEWEB)

    Miffre, A

    2005-06-15

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, {alpha} = (24.33 {+-} 0.16)*10{sup -30} m{sup 3}, improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  1. Five critical elements to ensure the precision medicine.

    Science.gov (United States)

    Chen, Chengshui; He, Mingyan; Zhu, Yichun; Shi, Lin; Wang, Xiangdong

    2015-06-01

    The precision medicine as a new emerging area and therapeutic strategy has occurred and was practiced in the individual and brought unexpected successes, and gained high attentions from professional and social aspects as a new path to improve the treatment and prognosis of patients. There will be a number of new components to appear or be discovered, of which clinical bioinformatics integrates clinical phenotypes and informatics with bioinformatics, computational science, mathematics, and systems biology. In addition to those tools, precision medicine calls more accurate and repeatable methodologies for the identification and validation of gene discovery. Precision medicine will bring more new therapeutic strategies, drug discovery and development, and gene-oriented treatment. There is an urgent need to identify and validate disease-specific, mechanism-based, or epigenetics-dependent biomarkers to monitor precision medicine, and develop "precision" regulations to guard the application of precision medicine.

  2. Rapid and Accurate Machine Learning Recognition of High Performing Metal Organic Frameworks for CO2 Capture.

    Science.gov (United States)

    Fernandez, Michael; Boyd, Peter G; Daff, Thomas D; Aghaji, Mohammad Zein; Woo, Tom K

    2014-09-04

    In this work, we have developed quantitative structure-property relationship (QSPR) models using advanced machine learning algorithms that can rapidly and accurately recognize high-performing metal organic framework (MOF) materials for CO2 capture. More specifically, QSPR classifiers have been developed that can, in a fraction of a section, identify candidate MOFs with enhanced CO2 adsorption capacity (>1 mmol/g at 0.15 bar and >4 mmol/g at 1 bar). The models were tested on a large set of 292 050 MOFs that were not part of the training set. The QSPR classifier could recover 945 of the top 1000 MOFs in the test set while flagging only 10% of the whole library for compute intensive screening. Thus, using the machine learning classifiers as part of a high-throughput screening protocol would result in an order of magnitude reduction in compute time and allow intractably large structure libraries and search spaces to be screened.

  3. High precision spectrophotometric analysis of thorium

    International Nuclear Information System (INIS)

    Palmieri, H.E.L.

    1984-01-01

    An accurate and precise determination of thorium is proposed. Precision of about 0,1% is required for the determination of macroquantities of thorium when processed. After an extensive literature search concerning this subject, spectrophotometric titration has been chosen, using dissodium ethylenediaminetetraacetate (EDTA) solution and alizarin-S as indicator. In order to obtain such a precision, an amount of 0,025 M EDTA solution precisely measured has been added and the titration was completed with less than 5 ml of 0,0025 M EDTA solution. It is usual to locate the end-point graphically, by plotting added titrant versus absorbance. The non-linear minimum square fit, using the Fletcher e Powell's minimization process and a computer programme. Besides the equivalence point, other parameters of titration were determined: the indicator concentration, the absorbance of the metal-indicator complex, and the stability constants of the metal-indicator and the metal-EDTA complexes. (Author) [pt

  4. Precision cryogenic temperature data acquisition system

    International Nuclear Information System (INIS)

    Farah, Y.; Sondericker, J.H.

    1985-01-01

    A Multiplexed Temperature Data Acquisition System with an overall precision of +-25 ppM has been designed using state-of-the-art electronics to accurately read temperature between 2.4 K and 600 K from pre-calibrated transducers such as germanium, silicon diode, thermistor or platinum temperature sensors

  5. High spatial precision nano-imaging of polarization-sensitive plasmonic particles

    Science.gov (United States)

    Liu, Yunbo; Wang, Yipei; Lee, Somin Eunice

    2018-02-01

    Precise polarimetric imaging of polarization-sensitive nanoparticles is essential for resolving their accurate spatial positions beyond the diffraction limit. However, conventional technologies currently suffer from beam deviation errors which cannot be corrected beyond the diffraction limit. To overcome this issue, we experimentally demonstrate a spatially stable nano-imaging system for polarization-sensitive nanoparticles. In this study, we show that by integrating a voltage-tunable imaging variable polarizer with optical microscopy, we are able to suppress beam deviation errors. We expect that this nano-imaging system should allow for acquisition of accurate positional and polarization information from individual nanoparticles in applications where real-time, high precision spatial information is required.

  6. How Accurate Are Our Processed ENDF Cross Sections?

    International Nuclear Information System (INIS)

    Cullen, Dermott E.

    2014-05-01

    Let me start by reassuring you that currently our nuclear data processing codes are very accurate in the calculations that they perform INSIDE COMNPUTERS. However, most of them drop the ball in what should be a trivial final step to output their results into the ENDF format. This is obviously a very important step, because without accurately outputting their results we would not be able to confidently use their results in our applications. This is indeed a very important step, but unfortunately it is one that is not given the attention it deserves; hence we come to the purpose of this paper. Here I document first the state of a number of nuclear data processing codes as of February 2012, when this comparison began, and then the current state, November 2013, of the same codes. I have delayed publishing results until now to give participants time to distribute updated codes and data. The codes compared include, in alphabetical order: AMPX, NJOY, PREPRO, and SAMMY/SAMRML. During this time we have seen considerable improvement in output results, and as a direct result of this study we now have four codes that produce high precision results, but this is still a long way from ensuring that all codes that handle nuclear data are maintaining the accuracy that we require today. In the first part of this report I consider the precision of our tabulated energies; here we see obvious flaws when less-precise output is used. In the second part I consider the precision of our cross sections; here we see more subtle flaws. The important point to stress is that once these flaws are recognized it is relatively easy to eliminate them and produce high precision energies and cross sections.

  7. Cardiovascular Precision Medicine in the Genomics Era

    Directory of Open Access Journals (Sweden)

    Alexandra M. Dainis, BS

    2018-04-01

    Full Text Available Summary: Precision medicine strives to delineate disease using multiple data sources—from genomics to digital health metrics—in order to be more precise and accurate in our diagnoses, definitions, and treatments of disease subtypes. By defining disease at a deeper level, we can treat patients based on an understanding of the molecular underpinnings of their presentations, rather than grouping patients into broad categories with one-size-fits-all treatments. In this review, the authors examine how precision medicine, specifically that surrounding genetic testing and genetic therapeutics, has begun to make strides in both common and rare cardiovascular diseases in the clinic and the laboratory, and how these advances are beginning to enable us to more effectively define risk, diagnose disease, and deliver therapeutics for each individual patient. Key Words: genome sequencing, genomics, precision medicine, targeted therapeutics

  8. Nanomaterials for Cancer Precision Medicine.

    Science.gov (United States)

    Wang, Yilong; Sun, Shuyang; Zhang, Zhiyuan; Shi, Donglu

    2018-04-01

    Medical science has recently advanced to the point where diagnosis and therapeutics can be carried out with high precision, even at the molecular level. A new field of "precision medicine" has consequently emerged with specific clinical implications and challenges that can be well-addressed by newly developed nanomaterials. Here, a nanoscience approach to precision medicine is provided, with a focus on cancer therapy, based on a new concept of "molecularly-defined cancers." "Next-generation sequencing" is introduced to identify the oncogene that is responsible for a class of cancers. This new approach is fundamentally different from all conventional cancer therapies that rely on diagnosis of the anatomic origins where the tumors are found. To treat cancers at molecular level, a recently developed "microRNA replacement therapy" is applied, utilizing nanocarriers, in order to regulate the driver oncogene, which is the core of cancer precision therapeutics. Furthermore, the outcome of the nanomediated oncogenic regulation has to be accurately assessed by the genetically characterized, patient-derived xenograft models. Cancer therapy in this fashion is a quintessential example of precision medicine, presenting many challenges to the materials communities with new issues in structural design, surface functionalization, gene/drug storage and delivery, cell targeting, and medical imaging. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Rapid measurement of human milk macronutrients in the neonatal intensive care unit: accuracy and precision of fourier transform mid-infrared spectroscopy.

    Science.gov (United States)

    Smilowitz, Jennifer T; Gho, Deborah S; Mirmiran, Majid; German, J Bruce; Underwood, Mark A

    2014-05-01

    Although it is well established that human milk varies widely in macronutrient content, it remains common for human milk fortification for premature infants to be based on historic mean values. As a result, those caring for premature infants often underestimate protein intake. Rapid precise measurement of human milk protein, fat, and lactose to allow individualized fortification has been proposed for decades but remains elusive due to technical challenges. This study aimed to evaluate the accuracy and precision of a Fourier transform (FT) mid-infrared (IR) spectroscope in the neonatal intensive care unit to measure human milk fat, total protein, lactose, and calculated energy compared with standard chemical analyses. One hundred sixteen breast milk samples across lactation stages from women who delivered at term (n = 69) and preterm (n = 5) were analyzed with the FT mid-IR spectroscope and with standard chemical methods. Ten of the samples were tested in replicate using the FT mid-IR spectroscope to determine repeatability. The agreement between the FT mid-IR spectroscope analysis and reference methods was high for protein and fat and moderate for lactose and energy. The intra-assay coefficients of variation for all outcomes were less than 3%. The FT mid-IR spectroscope demonstrated high accuracy in measurement of total protein and fat of preterm and term milk with high precision.

  10. RAPID AUTOMATED RADIOCHEMICAL ANALYZER FOR DETERMINATION OF TARGETED RADIONUCLIDES IN NUCLEAR PROCESS STREAMS

    International Nuclear Information System (INIS)

    O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Egorov, Oleg; Devol, Timothy A.

    2008-01-01

    Some industrial process-scale plants require the monitoring of specific radionuclides as an indication of the composition of their feed streams or as indicators of plant performance. In this process environment, radiochemical measurements must be fast, accurate, and reliable. Manual sampling, sample preparation, and analysis of process fluids are highly precise and accurate, but tend to be expensive and slow. Scientists at Pacific Northwest National Laboratory (PNNL) have assembled and characterized a fully automated prototype Process Monitor instrument which was originally designed to rapidly measure Tc-99 in the effluent streams of the Waste Treatment Plant at Hanford, WA. The system is capable of a variety of tasks: extraction of a precise volume of sample, sample digestion/analyte redox adjustment, column-based chemical separations, flow-through radiochemical detection and data analysis/reporting. The system is compact, its components are fluidically inter-linked, and analytical results can be immediately calculated and electronically reported. It is capable of performing a complete analytical cycle in less than 15 minutes. The system is highly modular and can be adapted to a variety of sample types and analytical requirements. It exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs

  11. Accurate, safe, and rapid method of intraoperative tumor identification for totally laparoscopic distal gastrectomy: injection of mixed fluid of sodium hyaluronate and patent blue.

    Science.gov (United States)

    Nakagawa, Masatoshi; Ehara, Kazuhisa; Ueno, Masaki; Tanaka, Tsuyoshi; Kaida, Sachiko; Udagawa, Harushi

    2014-04-01

    In totally laparoscopic distal gastrectomy, determining the resection line with safe proximal margins is often difficult, particularly for tumors located in a relatively upper area. This is because, in contrast to open surgery, identifying lesions by palpating or opening the stomach is essentially impossible. This study introduces a useful method of tumor identification that is accurate, safe, and rapid. On the operation day, after inducing general anesthesia, a mixture of sodium hyaluronate and patent blue is injected into the submucosal layer of the proximal margin. When resecting stomach, all marker spots should be on the resected side. In all cases, the proximal margin is examined histologically by using frozen sections during the operation. From October 2009 to September 2011, a prospective study that evaluated this method was performed. A total of 34 patients who underwent totally laparoscopic distal gastrectomy were enrolled in this study. Approximately 5 min was required to complete the procedure. Proximal margins were negative in all cases, and the mean ± standard deviation length of the proximal margin was 23.5 ± 12.8 mm. No side effects, such as allergy, were encountered. As a method of tumor identification for totally laparoscopic distal gastrectomy, this procedure appears accurate, safe, and rapid.

  12. A rapid method of accurate detection and differentiation of Newcastle disease virus pathotypes by demonstrating multiple bands in degenerate primer based nested RT-PCR.

    Science.gov (United States)

    Desingu, P A; Singh, S D; Dhama, K; Kumar, O R Vinodh; Singh, R; Singh, R K

    2015-02-01

    A rapid and accurate method of detection and differentiation of virulent and avirulent Newcastle disease virus (NDV) pathotypes was developed. The NDV detection was carried out for different domestic avian field isolates and pigeon paramyxo virus-1 (25 field isolates and 9 vaccine strains) by using APMV-I "fusion" (F) gene Class II specific external primer A and B (535bp), internal primer C and D (238bp) based reverses transcriptase PCR (RT-PCR). The internal degenerative reverse primer D is specific for F gene cleavage position of virulent strain of NDV. The nested RT-PCR products of avirulent strains showed two bands (535bp and 424bp) while virulent strains showed four bands (535bp, 424bp, 349bp and 238bp) on agar gel electrophoresis. This is the first report regarding development and use of degenerate primer based nested RT-PCR for accurate detection and differentiation of NDV pathotypes by demonstrating multiple PCR band patterns. Being a rapid, simple, and economical test, the developed method could serve as a valuable alternate diagnostic tool for characterizing NDV isolates and carrying out molecular epidemiological surveillance studies for this important pathogen of poultry. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Precise simultaneous determination of zirconium and hafnium in silicate rocks, meteorites and lunar samples. [Neutron reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, P A; Garg, A N; Ehmann, W D [Kentucky Univ., Lexington (USA). Dept. of Chemistry

    1977-01-01

    A precise, sensitive and rapid analytical technique has been developed for the simultaneous determination of Zr and Hf in natural silicate matrices. The technique is based on radiochemical neutron activation analysis and employs a rapid fusion dissolution of the sample and simultaneous precipitation of the Zr-Hf pair with p-hydroxybenzene arsenic acid in an acidic medium. The indicator radionuclides, /sup 95/Zr and /sup 181/Hf, are counted and the /sup 95/Zr activity is corrected for the contribution from U fission. The chemical yields of the radiochemical separation are based on Hf carrier. The yield is determined by reactivation of the processed samples and standards with a /sup 252/Cf isotopic neutron source and by counting the 18.6 sec half-life sup(179m)Hf. The RNAA procedure for Zr and Hf has been shown to be precise and accurate for natural silicate samples, based on replicate analyses of samples containing Zr in the range of 1 ..mu..g/g to over 600 ..mu..g/g. The procedure is relatively rapid with a total chemical processing time of approximately 3 hours. At least 4 samples are processed simultaneously. Ten additional elements (Fe, Cr, Co, Sc, Eu, La, Lu, Ce, Th and Tb) can be determined by direct Ge(Li) spectrometry (INAA) on the samples prior to dissolution for the RNAA determination of Zr and Hf. Corrections for the U fission contribution can be made on the basis of the known U content or from the INAA Th content, based on the relatively constant natural Th/U ratio.

  14. Accurate localization of intracavitary brachytherapy applicators from 3D CT imaging studies

    International Nuclear Information System (INIS)

    Lerma, F.A.; Williamson, J.F.

    2002-01-01

    Purpose: To present an accurate method to identify the positions and orientations of intracavitary (ICT) brachytherapy applicators imaged in 3D CT scans, in support of Monte Carlo photon-transport simulations, enabling accurate dose modeling in the presence of applicator shielding and interapplicator attenuation. Materials and methods: The method consists of finding the transformation that maximizes the coincidence between the known 3D shapes of each applicator component (colpostats and tandem) with the volume defined by contours of the corresponding surface on each CT slice. We use this technique to localize Fletcher-Suit CT-compatible applicators for three cervix cancer patients using post-implant CT examinations (3 mm slice thickness and separation). Dose distributions in 1-to-1 registration with the underlying CT anatomy are derived from 3D Monte Carlo photon-transport simulations incorporating each applicator's internal geometry (source encapsulation, high-density shields, and applicator body) oriented in relation to the dose matrix according to the measured localization transformations. The precision and accuracy of our localization method are assessed using CT scans, in which the positions and orientations of dense rods and spheres (in a precision-machined phantom) were measured at various orientations relative to the gantry. Results: Using this method, we register 3D Monte Carlo dose calculations directly onto post insertion patient CT studies. Using CT studies of a precisely machined phantom, the absolute accuracy of the method was found to be ±0.2 mm in plane, and ±0.3 mm in the axial direction while its precision was ±0.2 mm in plane, and ±0.2 mm axially. Conclusion: We have developed a novel, and accurate technique to localize intracavitary brachytherapy applicators in 3D CT imaging studies, which supports 3D dose planning involving detailed 3D Monte Carlo dose calculations, modeling source positions, shielding and interapplicator shielding

  15. Accurate Identification of Fatty Liver Disease in Data Warehouse Utilizing Natural Language Processing.

    Science.gov (United States)

    Redman, Joseph S; Natarajan, Yamini; Hou, Jason K; Wang, Jingqi; Hanif, Muzammil; Feng, Hua; Kramer, Jennifer R; Desiderio, Roxanne; Xu, Hua; El-Serag, Hashem B; Kanwal, Fasiha

    2017-10-01

    Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records. We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development. For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%. These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.

  16. Local high precision 3D measurement based on line laser measuring instrument

    Science.gov (United States)

    Zhang, Renwei; Liu, Wei; Lu, Yongkang; Zhang, Yang; Ma, Jianwei; Jia, Zhenyuan

    2018-03-01

    In order to realize the precision machining and assembly of the parts, the geometrical dimensions of the surface of the local assembly surfaces need to be strictly guaranteed. In this paper, a local high-precision three-dimensional measurement method based on line laser measuring instrument is proposed to achieve a high degree of accuracy of the three-dimensional reconstruction of the surface. Aiming at the problem of two-dimensional line laser measuring instrument which lacks one-dimensional high-precision information, a local three-dimensional profile measuring system based on an accurate single-axis controller is proposed. First of all, a three-dimensional data compensation method based on spatial multi-angle line laser measuring instrument is proposed to achieve the high-precision measurement of the default axis. Through the pretreatment of the 3D point cloud information, the measurement points can be restored accurately. Finally, the target spherical surface is needed to make local three-dimensional scanning measurements for accuracy verification. The experimental results show that this scheme can get the local three-dimensional information of the target quickly and accurately, and achieves the purpose of gaining the information and compensating the error for laser scanner information, and improves the local measurement accuracy.

  17. A Highly Accurate Approach for Aeroelastic System with Hysteresis Nonlinearity

    Directory of Open Access Journals (Sweden)

    C. C. Cui

    2017-01-01

    Full Text Available We propose an accurate approach, based on the precise integration method, to solve the aeroelastic system of an airfoil with a pitch hysteresis. A major procedure for achieving high precision is to design a predictor-corrector algorithm. This algorithm enables accurate determination of switching points resulting from the hysteresis. Numerical examples show that the results obtained by the presented method are in excellent agreement with exact solutions. In addition, the high accuracy can be maintained as the time step increases in a reasonable range. It is also found that the Runge-Kutta method may sometimes provide quite different and even fallacious results, though the step length is much less than that adopted in the presented method. With such high computational accuracy, the presented method could be applicable in dynamical systems with hysteresis nonlinearities.

  18. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins

    Energy Technology Data Exchange (ETDEWEB)

    Rasia, Rodolfo M. [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France); Lescop, Ewen [CNRS, Institut de Chimie des Substances Naturelles (France); Palatnik, Javier F. [Universidad Nacional de Rosario, Instituto de Biologia Molecular y Celular de Rosario, Facultad de Ciencias Bioquimicas y Farmaceuticas (Argentina); Boisbouvier, Jerome, E-mail: jerome.boisbouvier@ibs.fr; Brutscher, Bernhard, E-mail: Bernhard.brutscher@ibs.fr [Jean-Pierre Ebel CNRS/CEA/UJF, Institut de Biologie Structurale (France)

    2011-11-15

    It has been demonstrated that protein folds can be determined using appropriate computational protocols with NMR chemical shifts as the sole source of experimental restraints. While such approaches are very promising they still suffer from low convergence resulting in long computation times to achieve accurate results. Here we present a suite of time- and sensitivity optimized NMR experiments for rapid measurement of up to six RDCs per residue. Including such an RDC data set, measured in less than 24 h on a single aligned protein sample, greatly improves convergence of the Rosetta-NMR protocol, allowing for overnight fold calculation of small proteins. We demonstrate the performance of our fast fold calculation approach for ubiquitin as a test case, and for two RNA-binding domains of the plant protein HYL1. Structure calculations based on simulated RDC data highlight the importance of an accurate and precise set of several complementary RDCs as additional input restraints for high-quality de novo structure determination.

  19. Highly sensitive capillary electrophoresis-mass spectrometry for rapid screening and accurate quantitation of drugs of abuse in urine.

    Science.gov (United States)

    Kohler, Isabelle; Schappler, Julie; Rudaz, Serge

    2013-05-30

    The combination of capillary electrophoresis (CE) and mass spectrometry (MS) is particularly well adapted to bioanalysis due to its high separation efficiency, selectivity, and sensitivity; its short analytical time; and its low solvent and sample consumption. For clinical and forensic toxicology, a two-step analysis is usually performed: first, a screening step for compound identification, and second, confirmation and/or accurate quantitation in cases of presumed positive results. In this study, a fast and sensitive CE-MS workflow was developed for the screening and quantitation of drugs of abuse in urine samples. A CE with a time-of-flight MS (CE-TOF/MS) screening method was developed using a simple urine dilution and on-line sample preconcentration with pH-mediated stacking. The sample stacking allowed for a high loading capacity (20.5% of the capillary length), leading to limits of detection as low as 2 ng mL(-1) for drugs of abuse. Compound quantitation of positive samples was performed by CE-MS/MS with a triple quadrupole MS equipped with an adapted triple-tube sprayer and an electrospray ionization (ESI) source. The CE-ESI-MS/MS method was validated for two model compounds, cocaine (COC) and methadone (MTD), according to the Guidance of the Food and Drug Administration. The quantitative performance was evaluated for selectivity, response function, the lower limit of quantitation, trueness, precision, and accuracy. COC and MTD detection in urine samples was determined to be accurate over the range of 10-1000 ng mL(-1) and 21-1000 ng mL(-1), respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. When Is Network Lasso Accurate?

    Directory of Open Access Journals (Sweden)

    Alexander Jung

    2018-01-01

    Full Text Available The “least absolute shrinkage and selection operator” (Lasso method has been adapted recently for network-structured datasets. In particular, this network Lasso method allows to learn graph signals from a small number of noisy signal samples by using the total variation of a graph signal for regularization. While efficient and scalable implementations of the network Lasso are available, only little is known about the conditions on the underlying network structure which ensure network Lasso to be accurate. By leveraging concepts of compressed sensing, we address this gap and derive precise conditions on the underlying network topology and sampling set which guarantee the network Lasso for a particular loss function to deliver an accurate estimate of the entire underlying graph signal. We also quantify the error incurred by network Lasso in terms of two constants which reflect the connectivity of the sampled nodes.

  1. A new diagnostic tool for rapid and accurate detection of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Ali Nour-Neamatollahi

    2018-03-01

    Full Text Available Mycobacterium tuberculosis, acid fast bacilli from the family of Mycobacteriaceae, is the causative agent of most cases of tuberculosis. Tuberculosis, as a communicable disease, remains a serious public health threat, killing more than one million people globally every year. Primary diagnosis of tuberculosis bacilli (TB relies mainly on microscopic detection of acid fast bacilli (AFB, but the method suffers from low sensitivity and the results largely depend on the technician’s skill. New diagnostic tools are necessary to be introduced for rapid and accurate detection of the bacilli in sputum samples. We, in collaboration with Anda Biologicals, have developed a new platform, named as “Patho-tb”, for rapid detection of AFB with high sensitivity and with low dependence on human skills. Evaluation of Patho-tb test performance was done in two settings: (1 primary field study conducted using 38 sputa from high TB prevalence area of Iran (Zabol city near to the Afghanistan border, and (2 main study conducted using 476 sputa from Tehran, capital of Iran. Patho-tb was applied for processed sputum samples in parallel with routine diagnostic methods (including AFB microscopy, culture and PCR. All test results were compared to final clinical diagnostic state of an individual and diagnostic sensitivity (DSe, specificity, positive predictive value, negative predictive value and accuracy of each test results were calculated using standard formulations. Analytical sensitivity and specificity of the Patho-tb test were also determined. Calculated values for five above mentioned parameters are as follows: for field study: AFB (DSe: 29.6, DSp: 81.8, PPV: 80, NPV: 23.1, AC: 44.7, Patho-tb (DSe: 63, DSp: 72.7, PPV: 85, NPV: 44.4, AC: 65.8, and for main study: AFB (DSe: 86.1, DSp: 99.4, PPV: 98.5, NPV: 93.9, AC: 95.2, Patho-tb (DSe: 97.4, DSp: 92.9, PPV: 86.5, NPV: 98.7, AC: 94.3. Reproducibility of Patho-tb test results were near to 100% (Cohen’s kappa value

  2. Precise positional measurement system in transcranial magnetic stimulation

    International Nuclear Information System (INIS)

    Inoue, Tomonori; Mishima, Yukuo; Hiwaki, Osamu

    2006-01-01

    Transcranial magnetic stimulation (TMS) is a method for noninvasive stimulation of cerebral cortex, and it has contributed to clinical and basic researches of brain function. In order to estimate the accurate stimulating points of the cortex in TMS, precise measurement of the subject's head and the stimulating coil is necessary. In this study, we have developed the positioning TMS system with a three-dimensional (3-D) digitizer and a multi-articular system. We proposed a method for the accurate measurement of a subject's head and cortex, in which the location data of the subject's face surface captured by a 3-D digitizer were superimposed on the magnetic resonance imaging (MRI) data of the subject's face surface. Using this system, the precise estimation of the stimulated sites of the cortex in TMS was achieved. The validity of the system was verified by the experiment on the TMS of the motor cortex. (author)

  3. Final Progress Report: Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes Feasibility Study

    International Nuclear Information System (INIS)

    Rawool-Sullivan, Mohini; Bounds, John Alan; Brumby, Steven P.; Prasad, Lakshman; Sullivan, John P.

    2012-01-01

    This is the final report of the project titled, 'Isotope Identification Algorithm for Rapid and Accurate Determination of Radioisotopes,' PMIS project number LA10-HUMANID-PD03. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). It summarizes work performed over the FY10 time period. The goal of the work was to demonstrate principles of emulating a human analysis approach towards the data collected using radiation isotope identification devices (RIIDs). Human analysts begin analyzing a spectrum based on features in the spectrum - lines and shapes that are present in a given spectrum. The proposed work was to carry out a feasibility study that will pick out all gamma ray peaks and other features such as Compton edges, bremsstrahlung, presence/absence of shielding and presence of neutrons and escape peaks. Ultimately success of this feasibility study will allow us to collectively explain identified features and form a realistic scenario that produced a given spectrum in the future. We wanted to develop and demonstrate machine learning algorithms that will qualitatively enhance the automated identification capabilities of portable radiological sensors that are currently being used in the field.

  4. The Future of Precision Medicine in Oncology.

    Science.gov (United States)

    Millner, Lori M; Strotman, Lindsay N

    2016-09-01

    Precision medicine in oncology focuses on identifying which therapies are most effective for each patient based on genetic characterization of the cancer. Traditional chemotherapy is cytotoxic and destroys all cells that are rapidly dividing. The foundation of precision medicine is targeted therapies and selecting patients who will benefit most from these therapies. One of the newest aspects of precision medicine is liquid biopsy. A liquid biopsy includes analysis of circulating tumor cells, cell-free nucleic acid, or exosomes obtained from a peripheral blood draw. These can be studied individually or in combination and collected serially, providing real-time information as a patient's cancer changes. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. An inexpensive and portable microvolumeter for rapid evaluation of biological samples.

    Science.gov (United States)

    Douglass, John K; Wcislo, William T

    2010-08-01

    We describe an improved microvolumeter (MVM) for rapidly measuring volumes of small biological samples, including live zooplankton, embryos, and small animals and organs. Portability and low cost make this instrument suitable for widespread use, including at remote field sites. Beginning with Archimedes' principle, which states that immersing an arbitrarily shaped sample in a fluid-filled container displaces an equivalent volume, we identified procedures that maximize measurement accuracy and repeatability across a broad range of absolute volumes. Crucial steps include matching the overall configuration to the size of the sample, using reflected light to monitor fluid levels precisely, and accounting for evaporation during measurements. The resulting precision is at least 100 times higher than in previous displacement-based methods. Volumes are obtained much faster than by traditional histological or confocal methods and without shrinkage artifacts due to fixation or dehydration. Calibrations using volume standards confirmed accurate measurements of volumes as small as 0.06 microL. We validated the feasibility of evaluating soft-tissue samples by comparing volumes of freshly dissected ant brains measured with the MVM and by confocal reconstruction.

  6. Reliable low precision simulations in land surface models

    Science.gov (United States)

    Dawson, Andrew; Düben, Peter D.; MacLeod, David A.; Palmer, Tim N.

    2017-12-01

    Weather and climate models must continue to increase in both resolution and complexity in order that forecasts become more accurate and reliable. Moving to lower numerical precision may be an essential tool for coping with the demand for ever increasing model complexity in addition to increasing computing resources. However, there have been some concerns in the weather and climate modelling community over the suitability of lower precision for climate models, particularly for representing processes that change very slowly over long time-scales. These processes are difficult to represent using low precision due to time increments being systematically rounded to zero. Idealised simulations are used to demonstrate that a model of deep soil heat diffusion that fails when run in single precision can be modified to work correctly using low precision, by splitting up the model into a small higher precision part and a low precision part. This strategy retains the computational benefits of reduced precision whilst preserving accuracy. This same technique is also applied to a full complexity land surface model, resulting in rounding errors that are significantly smaller than initial condition and parameter uncertainties. Although lower precision will present some problems for the weather and climate modelling community, many of the problems can likely be overcome using a straightforward and physically motivated application of reduced precision.

  7. Precision Teaching, Frequency-Building, and Ballet Dancing

    Science.gov (United States)

    Lokke, Gunn E. H.; Lokke, Jon A.; Arntzen, Erick

    2008-01-01

    This article reports the effectiveness of a brief intervention aimed at achieving fluency in basic ballet moves in a 9-year-old Norwegian girl by use of frequency-building and Precision Teaching procedures. One nonfluent ballet move was pinpointed, and instructional and training procedures designed to increase the frequency of accurate responding…

  8. Constraints on extra dimensions from precision molecular spectroscopy

    NARCIS (Netherlands)

    Salumbides, E.J.; Schellekens, A.N.; Gato-Rivera, B.; Ubachs, W.M.G.

    2015-01-01

    Accurate investigations of quantum-level energies in molecular systems are shown to provide a testing ground to constrain the size of compactified extra dimensions. This is made possible by recent progress in precision metrology with ultrastable lasers on energy levels in neutral molecular hydrogen

  9. Soil Macronutrient Sensing for Precision Agriculture

    Science.gov (United States)

    Accurate measurements of soil macronutrients (i.e., nitrogen, phosphorus, and potassium) are needed for efficient agricultural production, including site-specific crop management (SSCM), where fertilizer nutrient application rates are adjusted spatially based on local requirements. Rapid, non-destru...

  10. Precision medicine for advanced prostate cancer.

    Science.gov (United States)

    Mullane, Stephanie A; Van Allen, Eliezer M

    2016-05-01

    Precision cancer medicine, the use of genomic profiling of patient tumors at the point-of-care to inform treatment decisions, is rapidly changing treatment strategies across cancer types. Precision medicine for advanced prostate cancer may identify new treatment strategies and change clinical practice. In this review, we discuss the potential and challenges of precision medicine in advanced prostate cancer. Although primary prostate cancers do not harbor highly recurrent targetable genomic alterations, recent reports on the genomics of metastatic castration-resistant prostate cancer has shown multiple targetable alterations in castration-resistant prostate cancer metastatic biopsies. Therapeutic implications include targeting prevalent DNA repair pathway alterations with PARP-1 inhibition in genomically defined subsets of patients, among other genomically stratified targets. In addition, multiple recent efforts have demonstrated the promise of liquid tumor profiling (e.g., profiling circulating tumor cells or cell-free tumor DNA) and highlighted the necessary steps to scale these approaches in prostate cancer. Although still in the initial phase of precision medicine for prostate cancer, there is extraordinary potential for clinical impact. Efforts to overcome current scientific and clinical barriers will enable widespread use of precision medicine approaches for advanced prostate cancer patients.

  11. Linear signal noise summer accurately determines and controls S/N ratio

    Science.gov (United States)

    Sundry, J. L.

    1966-01-01

    Linear signal noise summer precisely controls the relative power levels of signal and noise, and mixes them linearly in accurately known ratios. The S/N ratio accuracy and stability are greatly improved by this technique and are attained simultaneously.

  12. Weak gravitational lensing towards high-precision cosmology

    International Nuclear Information System (INIS)

    Berge, Joel

    2007-01-01

    This thesis aims at studying weak gravitational lensing as a tool for high-precision cosmology. We first present the development and validation of a precise and accurate tool for measuring gravitational shear, based on the shapelets formalism. We then use shapelets on real images for the first time, we analyze CFHTLS images, and combine them with XMM-LSS data. We measure the normalisation of the density fluctuations power spectrum σ 8 , and the one of the mass-temperature relation for galaxy clusters. The analysis of the Hubble space telescope COSMOS field confirms our σ 8 measurement and introduces tomography. Finally, aiming at optimizing future surveys, we compare the individual and combined merits of cluster counts and power spectrum tomography. Our results demonstrate that next generation surveys will allow weak lensing to yield its full potential in the high-precision cosmology era. (author) [fr

  13. Accuracy and precision of polyurethane dental arch models fabricated using a three-dimensional subtractive rapid prototyping method with an intraoral scanning technique.

    Science.gov (United States)

    Kim, Jae-Hong; Kim, Ki-Baek; Kim, Woong-Chul; Kim, Ji-Hwan; Kim, Hae-Young

    2014-03-01

    This study aimed to evaluate the accuracy and precision of polyurethane (PUT) dental arch models fabricated using a three-dimensional (3D) subtractive rapid prototyping (RP) method with an intraoral scanning technique by comparing linear measurements obtained from PUT models and conventional plaster models. Ten plaster models were duplicated using a selected standard master model and conventional impression, and 10 PUT models were duplicated using the 3D subtractive RP technique with an oral scanner. Six linear measurements were evaluated in terms of x, y, and z-axes using a non-contact white light scanner. Accuracy was assessed using mean differences between two measurements, and precision was examined using four quantitative methods and the Bland-Altman graphical method. Repeatability was evaluated in terms of intra-examiner variability, and reproducibility was assessed in terms of inter-examiner and inter-method variability. The mean difference between plaster models and PUT models ranged from 0.07 mm to 0.33 mm. Relative measurement errors ranged from 2.2% to 7.6% and intraclass correlation coefficients ranged from 0.93 to 0.96, when comparing plaster models and PUT models. The Bland-Altman plot showed good agreement. The accuracy and precision of PUT dental models for evaluating the performance of oral scanner and subtractive RP technology was acceptable. Because of the recent improvements in block material and computerized numeric control milling machines, the subtractive RP method may be a good choice for dental arch models.

  14. Advancing Precision Nuclear Medicine and Molecular Imaging for Lymphoma.

    Science.gov (United States)

    Wright, Chadwick L; Maly, Joseph J; Zhang, Jun; Knopp, Michael V

    2017-01-01

    PET with fluorodeoxyglucose F 18 ( 18 F FDG-PET) is a meaningful biomarker for the detection, targeted biopsy, and treatment of lymphoma. This article reviews the evolution of 18 F FDG-PET as a putative biomarker for lymphoma and addresses the current capabilities, challenges, and opportunities to enable precision medicine practices for lymphoma. Precision nuclear medicine is driven by new imaging technologies and methodologies to more accurately detect malignant disease. Although quantitative assessment of response is limited, such technologies will enable a more precise metabolic mapping with much higher definition image detail and thus may make it a robust and valid quantitative response assessment methodology. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. French Meteor Network for High Precision Orbits of Meteoroids

    Science.gov (United States)

    Atreya, P.; Vaubaillon, J.; Colas, F.; Bouley, S.; Gaillard, B.; Sauli, I.; Kwon, M. K.

    2011-01-01

    There is a lack of precise meteoroids orbit from video observations as most of the meteor stations use off-the-shelf CCD cameras. Few meteoroids orbit with precise semi-major axis are available using film photographic method. Precise orbits are necessary to compute the dust flux in the Earth s vicinity, and to estimate the ejection time of the meteoroids accurately by comparing them with the theoretical evolution model. We investigate the use of large CCD sensors to observe multi-station meteors and to compute precise orbit of these meteoroids. An ideal spatial and temporal resolution to get an accuracy to those similar of photographic plates are discussed. Various problems faced due to the use of large CCD, such as increasing the spatial and the temporal resolution at the same time and computational problems in finding the meteor position are illustrated.

  16. Accurate and precise 40Ar/39Ar dating by high-resolution, multi-collection, mass spectrometry

    DEFF Research Database (Denmark)

    Storey, Michael; Rivera, Tiffany; Flude, Stephanie

    New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU-Instruments......New generation, high resolution, multi-collector noble gas mass spectrometers equipped with ion-counting electron multipliers provide opportunities for improved accuracy and precision in 40Ar/39Ar dating. Here we report analytical protocols and age cross-calibration studies using a NU......-Instruments multi-collector Noblesse noble gas mass spectrometer configured with a faraday detector and three ion-counting electron multipliers. The instrument has the capability to measure several noble gas isotopes simultaneously and to change measurement configurations instantaneously by the use of QUAD lenses...... (zoom optics). The Noblesse offer several advantages over previous generation noble gas mass spectrometers and is particularly suited for single crystal 40Ar/39Ar dating because of: (i) improved source sensitivity (ii) ion-counting electron multipliers, which have much lower signal to noise ratios than...

  17. Maximizing precision and accuracy in quantitative autoradiographic determination of radiopharmaceutical distribution for dosimetry calculation

    International Nuclear Information System (INIS)

    Lear, J.L.; Mido, K.; Plotnick, J.; Muth, R.

    1986-01-01

    The authors developed operational equations which relate ranges of film darkening or optical density produced by exposures from autoradiograms to the ranges of radiopharmaceutical concentration contained in the autoradiograms. The equations were solved and used to define ranges of optical density which were optimal for precise determination of radiopharmaceutical concentration. The solutions indicated that in order to maximize precision in determination of tracer concentration, autoradiograms should be produced with images that are less dark than are typically considered pleasing to the eye. Based upon these observations, a solid state image analyzer was designed and developed for high spatial resolution, quantitative analysis of autoradiograms. The analyzer uses a linear array of charge-coupled devices (CCD's) which mechanically scans the autoradiograms. The images are digitalized into 512 x 512 or 1024 x 1024 pixels with 256 gray levels and directly mapped into memory. The system is therefore called a memory mapped, charge-coupled device scanner (MM-CCD). The images can be directly converted to represent tracer concentration or functional parameters and rapid region of interest analysis can be performed in single or multiple tracer studies. The performance of the system was compared to that of other commercially available image analyzers, rotating drum densitometers and video camera digitizers. Values of tracer concentration using the MM-CCD scanner were generally greater than twice as precise and accurate as from the other systems. 3 references, 4 figures, 3 tables

  18. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    Energy Technology Data Exchange (ETDEWEB)

    Herman, Christelle, E-mail: christelle.herman@ulb.ac.b [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium); Leyssens, Tom [Universite Catholique de Louvain, Institute of Condensed Matter and Nanosciences, 1 Place Louis Pasteur, 1348 Louvain-La-Neuve (Belgium); Vermylen, Valerie [UCB Pharma, 60 Allee de la Recherche, 1070 Braine l' Alleud (Belgium); Halloin, Veronique; Haut, Benoit [Universite Libre de Bruxelles, Transfers, Interfaces and Processes Department, Chemical Engineering Unit, 50 Avenue Franklin D-Roosevelt, CP 165/67, 1050 Bruxelles (Belgium)

    2011-05-15

    the second experimental method is a more accurate, precise, time- and effort-friendly method for the determination of T{sub tr}. The solid-solid transition temperature of the Etiracetam system, determined with the second method, using three different solvents, is found to be equal to 303.65 K {+-} 0.5 K.

  19. Towards an accurate and precise determination of the solid-solid transition temperature of enantiotropic systems

    International Nuclear Information System (INIS)

    Herman, Christelle; Leyssens, Tom; Vermylen, Valerie; Halloin, Veronique; Haut, Benoit

    2011-01-01

    while the second experimental method is a more accurate, precise, time- and effort-friendly method for the determination of T tr . The solid-solid transition temperature of the Etiracetam system, determined with the second method, using three different solvents, is found to be equal to 303.65 K ± 0.5 K.

  20. Precision medicine: In need of guidance and surveillance.

    Science.gov (United States)

    Lin, Jian-Zhen; Long, Jun-Yu; Wang, An-Qiang; Zheng, Ying; Zhao, Hai-Tao

    2017-07-28

    Precision medicine, currently a hotspot in mainstream medicine, has been strongly promoted in recent years. With rapid technological development, such as next-generation sequencing, and fierce competition in molecular targeted drug exploitation, precision medicine represents an advance in science and technology; it also fulfills needs in public health care. The clinical translation and application of precision medicine - especially in the prevention and treatment of tumors - is far from satisfactory; however, the aims of precision medicine deserve approval. Thus, this medical approach is currently in its infancy; it has promising prospects, but it needs to overcome numbers of problems and deficiencies. It is expected that in addition to conventional symptoms and signs, precision medicine will define disease in terms of the underlying molecular characteristics and other environmental susceptibility factors. Those expectations should be realized by constructing a novel data network, integrating clinical data from individual patients and personal genomic background with existing research on the molecular makeup of diseases. In addition, multi-omics analysis and multi-discipline collaboration will become crucial elements in precision medicine. Precision medicine deserves strong support, and its development demands directed momentum. We propose three kinds of impetus (research, application and collaboration impetus) for such directed momentum toward promoting precision medicine and accelerating its clinical translation and application.

  1. Anti-disturbance rapid vibration suppression of the flexible aerial refueling hose

    Science.gov (United States)

    Su, Zikang; Wang, Honglun; Li, Na

    2018-05-01

    As an extremely dangerous phenomenon in autonomous aerial refueling (AAR), the flexible refueling hose vibration caused by the receiver aircraft's excessive closure speed should be suppressed once it appears. This paper proposed a permanent magnet synchronous motor (PMSM) based refueling hose servo take-up system for the vibration suppression of the flexible refueling hose. A rapid back-stepping based anti-disturbance nonsingular fast terminal sliding mode (NFTSM) control scheme with a specially established finite-time convergence NFTSM observer is proposed for the PMSM based hose servo take-up system under uncertainties and disturbances. The unmeasured load torque and other disturbances in the PMSM system are reconstituted by the NFTSM observer and to be compensated during the controller design. Then, with the back-stepping technique, a rapid anti-disturbance NFTSM controller is proposed for the PMSM angular tracking to improve the tracking error convergence speed and tracking precision. The proposed vibration suppression scheme is then applied to PMSM based hose servo take-up system for the refueling hose vibration suppression in AAR. Simulation results show the proposed scheme can suppress the hose vibration rapidly and accurately even the system is exposed to strong uncertainties and probe position disturbances, it is more competitive in tracking accuracy, tracking error convergence speed and robustness.

  2. Sex differences in accuracy and precision when judging time to arrival: data from two Internet studies.

    Science.gov (United States)

    Sanders, Geoff; Sinclair, Kamila

    2011-12-01

    We report two Internet studies that investigated sex differences in the accuracy and precision of judging time to arrival. We used accuracy to mean the ability to match the actual time to arrival and precision to mean the consistency with which each participant made their judgments. Our task was presented as a computer game in which a toy UFO moved obliquely towards the participant through a virtual three-dimensional space on route to a docking station. The UFO disappeared before docking and participants pressed their space bar at the precise moment they thought the UFO would have docked. Study 1 showed it was possible to conduct quantitative studies of spatiotemporal judgments in virtual reality via the Internet and confirmed reports that men are more accurate because women underestimate, but found no difference in precision measured as intra-participant variation. Study 2 repeated Study 1 with five additional presentations of one condition to provide a better measure of precision. Again, men were more accurate than women but there were no sex differences in precision. However, within the coincidence-anticipation timing (CAT) literature, of those studies that report sex differences, a majority found that males are both more accurate and more precise than females. Noting that many CAT studies report no sex differences, we discuss appropriate interpretations of such null findings. While acknowledging that CAT performance may be influenced by experience we suggest that the sex difference may have originated among our ancestors with the evolutionary selection of men for hunting and women for gathering.

  3. Accurate isotope ratio mass spectrometry. Some problems and possibilities

    International Nuclear Information System (INIS)

    Bievre, P. de

    1978-01-01

    The review includes reference to 190 papers, mainly published during the last 10 years. It covers the following: important factors in accurate isotope ratio measurements (precision and accuracy of isotope ratio measurements -exemplified by determinations of 235 U/ 238 U and of other elements including 239 Pu/ 240 Pu; isotope fractionation -exemplified by curves for Rb, U); applications (atomic weights); the Oklo natural nuclear reactor (discovered by UF 6 mass spectrometry at Pierrelatte); nuclear and other constants; isotope ratio measurements in nuclear geology and isotope cosmology - accurate age determination; isotope ratio measurements on very small samples - archaeometry; isotope dilution; miscellaneous applications; and future prospects. (U.K.)

  4. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    KAUST Repository

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-01-01

    inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid

  5. Outlook for the Next Generation’s Precision Forestry in Finland

    Directory of Open Access Journals (Sweden)

    Markus Holopainen

    2014-07-01

    Full Text Available During the past decade in forest mapping and monitoring applications, the ability to acquire spatially accurate, 3D remote-sensing information by means of laser scanning, digital stereo imagery and radar imagery has been a major turning point. These 3D data sets that use single- or multi-temporal point clouds enable a wide range of applications when combined with other geoinformation and logging machine-measured data. New technologies enable precision forestry, which can be defined as a method to accurately determine characteristics of forests and treatments at stand, sub-stand or individual tree level. In precision forestry, even individual tree-level assessments can be used for simulation and optimization models of the forest management decision support system. At the moment, the forest industry in Finland is looking forward to next generation’s forest inventory techniques to improve the current wood procurement practices. Our vision is that in the future, the data solution for detailed forest management and wood procurement will be to use multi-source and -sensor information. In this communication, we review our recent findings and describe our future vision in precision forestry research in Finland.

  6. Precision measurement of electric organ discharge timing from freely moving weakly electric fish.

    Science.gov (United States)

    Jun, James J; Longtin, André; Maler, Leonard

    2012-04-01

    Physiological measurements from an unrestrained, untethered, and freely moving animal permit analyses of neural states correlated to naturalistic behaviors of interest. Precise and reliable remote measurements remain technically challenging due to animal movement, which perturbs the relative geometries between the animal and sensors. Pulse-type electric fish generate a train of discrete and stereotyped electric organ discharges (EOD) to sense their surroundings actively, and rapid modulation of the discharge rate occurs while free swimming in Gymnotus sp. The modulation of EOD rates is a useful indicator of the fish's central state such as resting, alertness, and learning associated with exploration. However, the EOD pulse waveforms remotely observed at a pair of dipole electrodes continuously vary as the fish swims relative to the electrodes, which biases the judgment of the actual pulse timing. To measure the EOD pulse timing more accurately, reliably, and noninvasively from a free-swimming fish, we propose a novel method based on the principles of waveform reshaping and spatial averaging. Our method is implemented using envelope extraction and multichannel summation, which is more precise and reliable compared with other widely used threshold- or peak-based methods according to the tests performed under various source-detector geometries. Using the same method, we constructed a real-time electronic pulse detector performing an additional online pulse discrimination routine to enhance further the detection reliability. Our stand-alone pulse detector performed with high temporal precision (<10 μs) and reliability (error <1 per 10(6) pulses) and permits longer recording duration by storing only event time stamps (4 bytes/pulse).

  7. Near-real-time regional troposphere models for the GNSS precise point positioning technique

    International Nuclear Information System (INIS)

    Hadas, T; Kaplon, J; Bosy, J; Sierny, J; Wilgan, K

    2013-01-01

    The GNSS precise point positioning (PPP) technique requires high quality product (orbits and clocks) application, since their error directly affects the quality of positioning. For real-time purposes it is possible to utilize ultra-rapid precise orbits and clocks which are disseminated through the Internet. In order to eliminate as many unknown parameters as possible, one may introduce external information on zenith troposphere delay (ZTD). It is desirable that the a priori model is accurate and reliable, especially for real-time application. One of the open problems in GNSS positioning is troposphere delay modelling on the basis of ground meteorological observations. Institute of Geodesy and Geoinformatics of Wroclaw University of Environmental and Life Sciences (IGG WUELS) has developed two independent regional troposphere models for the territory of Poland. The first one is estimated in near-real-time regime using GNSS data from a Polish ground-based augmentation system named ASG-EUPOS established by Polish Head Office of Geodesy and Cartography (GUGiK) in 2008. The second one is based on meteorological parameters (temperature, pressure and humidity) gathered from various meteorological networks operating over the area of Poland and surrounding countries. This paper describes the methodology of both model calculation and verification. It also presents results of applying various ZTD models into kinematic PPP in the post-processing mode using Bernese GPS Software. Positioning results were used to assess the quality of the developed models during changing weather conditions. Finally, the impact of model application to simulated real-time PPP on precision, accuracy and convergence time is discussed. (paper)

  8. The precise and accurate production of millimetric water droplets using a superhydrophobic generating apparatus

    Science.gov (United States)

    Wood, Michael J.; Aristizabal, Felipe; Coady, Matthew; Nielson, Kent; Ragogna, Paul J.; Kietzig, Anne-Marie

    2018-02-01

    The production of millimetric liquid droplets has importance in a wide range of applications both in the laboratory and industrially. As such, much effort has been put forth to devise methods to generate these droplets on command in a manner which results in high diameter accuracy and precision, well-defined trajectories followed by successive droplets and low oscillations in droplet shape throughout their descents. None of the currently employed methods of millimetric droplet generation described in the literature adequately addresses all of these desired droplet characteristics. The reported methods invariably involve the cohesive separation of the desired volume of liquid from the bulk supply in the same step that separates the single droplet from the solid generator. We have devised a droplet generation device which separates the desired volume of liquid within a tee-apparatus in a step prior to the generation of the droplet which has yielded both high accuracy and precision of the diameters of the final droplets produced. Further, we have engineered a generating tip with extreme antiwetting properties which has resulted in reduced adhesion forces between the liquid droplet and the solid tip. This has yielded the ability to produce droplets of low mass without necessitating different diameter generating tips or the addition of surfactants to the liquid, well-defined droplet trajectories, and low oscillations in droplet volume. The trajectories and oscillations of the droplets produced have been assessed and presented quantitatively in a manner that has been lacking in the current literature.

  9. Evaluating the performance of a low-cost GPS in precision agriculture applications

    DEFF Research Database (Denmark)

    Jensen, Kjeld; Larsen, Morten; Simonsen, Tom

    2012-01-01

    Field Robots are often equipped with a Real Time Kinematic (RTK) GPS to obtain precise positioning. In many precision agriculture applications, however, the robot operates in semi-structured environments like orchards and row crops, where local sensors such as computer vision and laser range...... scanners can produce accurate positioning relative to the crops. GPS is then primarily needed for robust inter-row navigation. This work evaluates a new low-cost GPS. Static tests were used to test the absolute accuracy. To test the GPS in a precision agriculture environment it was installed on a robot...

  10. Multi-sensor control for precise assembly of optical components

    Directory of Open Access Journals (Sweden)

    Ma Li

    2014-06-01

    Full Text Available In order to perform an optical assembly accurately, a multi-sensor control strategy is developed which includes an attitude measurement system, a vision system, a loss measurement system and a force sensor. A 3-DOF attitude measuring method using linear variable differential transformers (LVDT is designed to adjust the relation of position and attitude between the spherical mirror and the resonator. A micro vision feedback system is set up to extract the light beam and the diaphragm, which can achieve the coarse positioning of the spherical mirror in the optical assembly process. A rapid self-correlation method is presented to analyze the spectrum signal for the fine positioning. In order to prevent the damage of the optical components and realize sealing of the resonator, a hybrid force-position control is constructed to control the contact force of the optical components. The experimental results show that the proposed multi-sensor control strategy succeeds in accomplishing the precise assembly of the optical components, which consists of parallel adjustment, macro coarse adjustment, macro approach, micro fine adjustment, micro approach and optical contact. Therefore, the results validate the multi-sensor control strategy.

  11. Accuracy, precision, usability, and cost of portable silver test methods for ceramic filter factories.

    Science.gov (United States)

    Meade, Rhiana D; Murray, Anna L; Mittelman, Anjuliee M; Rayner, Justine; Lantagne, Daniele S

    2017-02-01

    Locally manufactured ceramic water filters are one effective household drinking water treatment technology. During manufacturing, silver nanoparticles or silver nitrate are applied to prevent microbiological growth within the filter and increase bacterial removal efficacy. Currently, there is no recommendation for manufacturers to test silver concentrations of application solutions or filtered water. We identified six commercially available silver test strips, kits, and meters, and evaluated them by: (1) measuring in quintuplicate six samples from 100 to 1,000 mg/L (application range) and six samples from 0.0 to 1.0 mg/L (effluent range) of silver nanoparticles and silver nitrate to determine accuracy and precision; (2) conducting volunteer testing to assess ease-of-use; and (3) comparing costs. We found no method accurately detected silver nanoparticles, and accuracy ranged from 4 to 91% measurement error for silver nitrate samples. Most methods were precise, but only one method could test both application and effluent concentration ranges of silver nitrate. Volunteers considered test strip methods easiest. The cost for 100 tests ranged from 36 to 1,600 USD. We found no currently available method accurately and precisely measured both silver types at reasonable cost and ease-of-use, thus these methods are not recommended to manufacturers. We recommend development of field-appropriate methods that accurately and precisely measure silver nanoparticle and silver nitrate concentrations.

  12. High-Precision Registration of Point Clouds Based on Sphere Feature Constraints

    Directory of Open Access Journals (Sweden)

    Junhui Huang

    2016-12-01

    Full Text Available Point cloud registration is a key process in multi-view 3D measurements. Its precision affects the measurement precision directly. However, in the case of the point clouds with non-overlapping areas or curvature invariant surface, it is difficult to achieve a high precision. A high precision registration method based on sphere feature constraint is presented to overcome the difficulty in the paper. Some known sphere features with constraints are used to construct virtual overlapping areas. The virtual overlapping areas provide more accurate corresponding point pairs and reduce the influence of noise. Then the transformation parameters between the registered point clouds are solved by an optimization method with weight function. In that case, the impact of large noise in point clouds can be reduced and a high precision registration is achieved. Simulation and experiments validate the proposed method.

  13. Precise Sequential DNA Ligation on A Solid Substrate: Solid-Based Rapid Sequential Ligation of Multiple DNA Molecules

    Science.gov (United States)

    Takita, Eiji; Kohda, Katsunori; Tomatsu, Hajime; Hanano, Shigeru; Moriya, Kanami; Hosouchi, Tsutomu; Sakurai, Nozomu; Suzuki, Hideyuki; Shinmyo, Atsuhiko; Shibata, Daisuke

    2013-01-01

    Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation. PMID:23897972

  14. Bit-Grooming: Shave Your Bits with Razor-sharp Precision

    Science.gov (United States)

    Zender, C. S.; Silver, J.

    2017-12-01

    Lossless compression can reduce climate data storage by 30-40%. Further reduction requires lossy compression that also reduces precision. Fortunately, geoscientific models and measurements generate false precision (scientifically meaningless data bits) that can be eliminated without sacrificing scientifically meaningful data. We introduce Bit Grooming, a lossy compression algorithm that removes the bloat due to false-precision, those bits and bytes beyond the meaningful precision of the data.Bit Grooming is statistically unbiased, applies to all floating point numbers, and is easy to use. Bit-Grooming reduces geoscience data storage requirements by 40-80%. We compared Bit Grooming to competitors Linear Packing, Layer Packing, and GRIB2/JPEG2000. The other compression methods have the edge in terms of compression, but Bit Grooming is the most accurate and certainly the most usable and portable.Bit Grooming provides flexible and well-balanced solutions to the trade-offs among compression, accuracy, and usability required by lossy compression. Geoscientists could reduce their long term storage costs, and show leadership in the elimination of false precision, by adopting Bit Grooming.

  15. GABA-Mediated Presynaptic Inhibition Is Required for Precision of Long-Term Memory

    Science.gov (United States)

    Cullen, Patrick K.; Dulka, Brooke N.; Ortiz, Samantha; Riccio, David C.; Jasnow, Aaron M.

    2014-01-01

    Though much attention has been given to the neural structures that underlie the long-term consolidation of contextual memories, little is known about the mechanisms responsible for the maintenance of memory precision. Here, we demonstrate a rapid time-dependent decline in memory precision in GABA [subscript B(1a)] receptor knockout mice. First, we…

  16. Magnetic Resonance Imaging: An accurate diagnostic tool in the precise localization of penile fracture

    Directory of Open Access Journals (Sweden)

    Mujeeb M Rahiman

    2013-01-01

    Full Text Available An 18-year-old male presented with history and clinical findings suggestive of penile fracture. An MRI demonstrated disruption of the tunica albuginea and corpora cavernosa on the left dorso-lateral aspect, mid-shaft of penis with adjacent hematoma, and subcutaneous edema. At surgery, imaging findings were found to be accurate, and the penis was successfully repaired with minimal postoperative morbidity.

  17. High precision optical spectroscopy and quantum state selected photodissociation of ultracold 88Sr2 molecules in an optical lattice

    Science.gov (United States)

    McDonald, Mickey

    2017-04-01

    Over the past several decades, rapid progress has been made toward the accurate characterization and control of atoms, epitomized by the ever-increasing accuracy and precision of optical atomic lattice clocks. Extending this progress to molecules will have exciting implications for chemistry, condensed matter physics, and precision tests of physics beyond the Standard Model. My thesis describes work performed over the past six years to establish the state of the art in manipulation and quantum control of ultracold molecules. We describe a thorough set of measurements characterizing the rovibrational structure of weakly bound 88Sr2 molecules from several different perspectives, including determinations of binding energies; linear, quadratic, and higher order Zeeman shifts; transition strengths between bound states; and lifetimes of narrow subradiant states. Finally, we discuss measurements of photofragment angular distributions produced by photodissociation of molecules in single quantum states, leading to an exploration of quantum-state-resolved ultracold chemistry. The images of exploding photofragments produced in these studies exhibit dramatic interference effects and strongly violate semiclassical predictions, instead requiring a fully quantum mechanical description.

  18. Accuracy and precision of oscillometric blood pressure in standing conscious horses

    DEFF Research Database (Denmark)

    Olsen, Emil; Pedersen, Tilde Louise Skovgaard; Robinson, Rebecca

    2016-01-01

    from a teaching and research herd. HYPOTHESIS/OBJECTIVE: To evaluate the accuracy and precision of systolic arterial pressure (SAP), diastolic arterial pressure (DAP), and mean arterial pressure (MAP) in conscious horses obtained with an oscillometric NIBP device when compared to invasively measured...... administration. Agreement analysis with replicate measures was utilized to calculate bias (accuracy) and standard deviation (SD) of bias (precision). RESULTS: A total of 252 pairs of invasive arterial BP and NIBP measurements were analyzed. Compared to the direct BP measures, the NIBP MAP had an accuracy of -4...... mm Hg and precision of 10 mm Hg. SAP had an accuracy of -8 mm Hg and a precision of 17 mm Hg and DAP had an accuracy of -7 mm Hg and a precision of 14 mm Hg. CONCLUSIONS AND CLINICAL RELEVANCE: MAP from the evaluated NIBP monitor is accurate and precise in the adult horse across a range of BP...

  19. Rapid assessment of rice seed availability for wildlife in harvested fields

    Science.gov (United States)

    Halstead, B.J.; Miller, M.R.; Casazza, Michael L.; Coates, P.S.; Farinha, M.A.; Benjamin, Gustafson K.; Yee, J.L.; Fleskes, J.P.

    2011-01-01

    Rice seed remaining in commercial fields after harvest (waste rice) is a critical food resource for wintering waterfowl in rice-growing regions of North America. Accurate and precise estimates of the seed mass density of waste rice are essential for planning waterfowl wintering habitat extents and management. In the Sacramento Valley of California, USA, the existing method for obtaining estimates of availability of waste rice in harvested fields produces relatively precise estimates, but the labor-, time-, and machineryintensive process is not practical for routine assessments needed to examine long-term trends in waste rice availability. We tested several experimental methods designed to rapidly derive estimates that would not be burdened with disadvantages of the existing method. We first conducted a simulation study of the efficiency of each method and then conducted field tests. For each approach, methods did not vary in root mean squared error, although some methods did exhibit bias for both simulations and field tests. Methods also varied substantially in the time to conduct each sample and in the number of samples required to detect a standard trend. Overall, modified line-intercept methods performed well for estimating the density of rice seeds. Waste rice in the straw, although not measured directly, can be accounted for by a positive relationship with density of rice on the ground. Rapid assessment of food availability is a useful tool to help waterfowl managers establish and implement wetland restoration and agricultural habitat-enhancement goals for wintering waterfowl. ?? 2011 The Wildlife Society.

  20. Fast and sensitive detection of indels induced by precise gene targeting

    DEFF Research Database (Denmark)

    Yang, Zhang; Steentoft, Catharina; Hauge, Camilla

    2015-01-01

    The nuclease-based gene editing tools are rapidly transforming capabilities for altering the genome of cells and organisms with great precision and in high throughput studies. A major limitation in application of precise gene editing lies in lack of sensitive and fast methods to detect...... and characterize the induced DNA changes. Precise gene editing induces double-stranded DNA breaks that are repaired by error-prone non-homologous end joining leading to introduction of insertions and deletions (indels) at the target site. These indels are often small and difficult and laborious to detect...

  1. Obtaining accurate amounts of mercury from mercury compounds via electrolytic methods

    Science.gov (United States)

    Grossman, M.W.; George, W.A.

    1987-07-07

    A process is described for obtaining pre-determined, accurate rate amounts of mercury. In one embodiment, predetermined, precise amounts of Hg are separated from HgO and plated onto a cathode wire. The method for doing this involves dissolving a precise amount of HgO which corresponds to a pre-determined amount of Hg desired in an electrolyte solution comprised of glacial acetic acid and H[sub 2]O. The mercuric ions are then electrolytically reduced and plated onto a cathode producing the required pre-determined quantity of Hg. In another embodiment, pre-determined, precise amounts of Hg are obtained from Hg[sub 2]Cl[sub 2]. The method for doing this involves dissolving a precise amount of Hg[sub 2]Cl[sub 2] in an electrolyte solution comprised of concentrated HCl and H[sub 2]O. The mercurous ions in solution are then electrolytically reduced and plated onto a cathode wire producing the required, pre-determined quantity of Hg. 1 fig.

  2. Precisely Tailored DNA Nanostructures and their Theranostic Applications.

    Science.gov (United States)

    Zhu, Bing; Wang, Lihua; Li, Jiang; Fan, Chunhai

    2017-12-01

    A critical challenge in nanotechnology is the limited precision and controllability of the structural parameters, which brings about concerns in uniformity, reproducibility and performance. Self-assembled DNA nanostructures, as a newly emerged type of nano-biomaterials, possess low-nanometer precision, excellent programmability and addressability. They can precisely arrange various molecules and materials to form spatially ordered complex, resulting in unambiguous physical or chemical properties. Because of these, DNA nanostructures have shown great promise in numerous biomedical theranostic applications. In this account, we briefly review the history and advances on construction of DNA nanoarchitectures and superstructures with accurate structural parameters. We focus on recent progress in exploiting these DNA nanostructures as platforms for quantitative biosensing, intracellular diagnosis, imaging, and smart drug delivery. We also discuss key challenges in practical applications. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Opportunities for the Cardiovascular Community in the Precision Medicine Initiative.

    Science.gov (United States)

    Shah, Svati H; Arnett, Donna; Houser, Steven R; Ginsburg, Geoffrey S; MacRae, Calum; Mital, Seema; Loscalzo, Joseph; Hall, Jennifer L

    2016-01-12

    The Precision Medicine Initiative recently announced by President Barack Obama seeks to move the field of precision medicine more rapidly into clinical care. Precision medicine revolves around the concept of integrating individual-level data including genomics, biomarkers, lifestyle and other environmental factors, wearable device physiological data, and information from electronic health records to ultimately provide better clinical care to individual patients. The Precision Medicine Initiative as currently structured will primarily fund efforts in cancer genomics with longer-term goals of advancing precision medicine to all areas of health, and will be supported through creation of a 1 million person cohort study across the United States. This focused effort on precision medicine provides scientists, clinicians, and patients within the cardiovascular community an opportunity to work together boldly to advance clinical care; the community needs to be aware and engaged in the process as it progresses. This article provides a framework for potential involvement of the cardiovascular community in the Precision Medicine Initiative, while highlighting significant challenges for its successful implementation. © 2016 American Heart Association, Inc.

  4. 27 CFR 30.23 - Use of precision hydrometers and thermometers.

    Science.gov (United States)

    2010-04-01

    ... hydrometers and thermometers. 30.23 Section 30.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO... Use of precision hydrometers and thermometers. Care should be exercised to obtain accurate hydrometer... entire quantity. The hydrometers should be kept clean and free of any oily substance. Immediately before...

  5. Problems, challenges and promises: perspectives on precision medicine.

    Science.gov (United States)

    Duffy, David J

    2016-05-01

    The 'precision medicine (systems medicine)' concept promises to achieve a shift to future healthcare systems with a more proactive and predictive approach to medicine, where the emphasis is on disease prevention rather than the treatment of symptoms. The individualization of treatment for each patient will be at the centre of this approach, with all of a patient's medical data being computationally integrated and accessible. Precision medicine is being rapidly embraced by biomedical researchers, pioneering clinicians and scientific funding programmes in both the European Union (EU) and USA. Precision medicine is a key component of both Horizon 2020 (the EU Framework Programme for Research and Innovation) and the White House's Precision Medicine Initiative. Precision medicine promises to revolutionize patient care and treatment decisions. However, the participants in precision medicine are faced with a considerable central challenge. Greater volumes of data from a wider variety of sources are being generated and analysed than ever before; yet, this heterogeneous information must be integrated and incorporated into personalized predictive models, the output of which must be intelligible to non-computationally trained clinicians. Drawing primarily from the field of 'oncology', this article will introduce key concepts and challenges of precision medicine and some of the approaches currently being implemented to overcome these challenges. Finally, this article also covers the criticisms of precision medicine overpromising on its potential to transform patient care. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  6. Robotic-Arm Assisted Total Knee Arthroplasty Demonstrated Greater Accuracy and Precision to Plan Compared with Manual Techniques.

    Science.gov (United States)

    Hampp, Emily L; Chughtai, Morad; Scholl, Laura Y; Sodhi, Nipun; Bhowmik-Stoker, Manoshi; Jacofsky, David J; Mont, Michael A

    2018-05-01

    This study determined if robotic-arm assisted total knee arthroplasty (RATKA) allows for more accurate and precise bone cuts and component position to plan compared with manual total knee arthroplasty (MTKA). Specifically, we assessed the following: (1) final bone cuts, (2) final component position, and (3) a potential learning curve for RATKA. On six cadaver specimens (12 knees), a MTKA and RATKA were performed on the left and right knees, respectively. Bone-cut and final-component positioning errors relative to preoperative plans were compared. Median errors and standard deviations (SDs) in the sagittal, coronal, and axial planes were compared. Median values of the absolute deviation from plan defined the accuracy to plan. SDs described the precision to plan. RATKA bone cuts were as or more accurate to plan based on nominal median values in 11 out of 12 measurements. RATKA bone cuts were more precise to plan in 8 out of 12 measurements ( p  ≤ 0.05). RATKA final component positions were as or more accurate to plan based on median values in five out of five measurements. RATKA final component positions were more precise to plan in four out of five measurements ( p  ≤ 0.05). Stacked error results from all cuts and implant positions for each specimen in procedural order showed that RATKA error was less than MTKA error. Although this study analyzed a small number of cadaver specimens, there were clear differences that separated these two groups. When compared with MTKA, RATKA demonstrated more accurate and precise bone cuts and implant positioning to plan. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  7. Precision Force Control for an Electro-Hydraulic Press Machine

    Directory of Open Access Journals (Sweden)

    Hong-Ming Chen

    2014-08-01

    Full Text Available This thesis is primarily intended to design a PC-based control system to control the force of an electro-hydraulic servo press system for implementing precision force control. The main feature is to develop a composite control by using the relief valve and the flow servo valve. Using feedback from a force sensor, a fuzzy controller was designed with LabVIEW software as the system control core for achieving a precision force control for the hydraulic cylinder on its travel and output. The weakness of hydraulic systems is that hydraulic oil is compressible and prone to leaking, and its characteristics can vary with oil temperature, thus making it difficult for a general linear controller to achieve accurate control. Therefore, a fuzzy controller was designed with LabVIEW along with a NI-PCI_6221 interface card and a load cell to control the servo valve flow and the relief valve to control the pressure source. The testing results indicate that accurate force control output of an electro-hydraulic servo press system can be obtained.

  8. Toward Precision Medicine: A Cancer Molecular Subtyping Nano-Strategy for RNA Biomarkers in Tumor and Urine.

    Science.gov (United States)

    Koo, Kevin M; Wee, Eugene J H; Mainwaring, Paul N; Wang, Yuling; Trau, Matt

    2016-12-01

    Cancer is a heterogeneous disease which manifests as different molecular subtypes due to the complex nature of tumor initiation, progression, and metastasis. The concept of precision medicine aims to exploit this cancer heterogeneity by incorporating diagnostic technology to characterize each cancer patient's molecular subtype for tailored treatments. To characterize cancer molecular subtypes accurately, a suite of multiplexed bioassays have currently been developed to detect multiple oncogenic biomarkers. Despite the reliability of current multiplexed detection techniques, novel strategies are still needed to resolve limitations such as long assay time, complex protocols, and difficulty in interpreting broad overlapping spectral peaks of conventional fluorescence readouts. Herein a rapid (80 min) multiplexed platform strategy for subtyping prostate cancer tumor and urine samples based on their RNA biomarker profiles is presented. This is achieved by combining rapid multiplexed isothermal reverse transcription-recombinase polymerase amplification (RT-RPA) of target RNA biomarkers with surface-enhanced Raman spectroscopy (SERS) nanotags for "one-pot" readout. This is the first translational application of a RT-RPA/SERS-based platform for multiplexed cancer biomarker detection to address a clinical need. With excellent sensitivity of 200 zmol (100 copies) and specificity, we believed that this platform methodology could be a useful tool for rapid multiplexed subtyping of cancers. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. SPOTTED STAR LIGHT CURVES WITH ENHANCED PRECISION

    International Nuclear Information System (INIS)

    Wilson, R. E.

    2012-01-01

    The nearly continuous timewise coverage of recent photometric surveys is free of the large gaps that compromise attempts to follow starspot growth and decay as well as motions, thereby giving incentive to improve computational precision for modeled spots. Due to the wide variety of star systems in the surveys, such improvement should apply to light/velocity curve models that accurately include all the main phenomena of close binaries and rotating single stars. The vector fractional area (VFA) algorithm that is introduced here represents surface elements by small sets of position vectors so as to allow accurate computation of circle-triangle overlap by spherical geometry. When computed by VFA, spots introduce essentially no noticeable scatter in light curves at the level of one part in 10,000. VFA has been put into the Wilson-Devinney light/velocity curve program and all logic and mathematics are given so as to facilitate entry into other such programs. Advantages of precise spot computation include improved statistics of spot motions and aging, reduced computation time (intrinsic precision relaxes needs for grid fineness), noise-free illustration of spot effects in figures, and help in guarding against false positives in exoplanet searches, where spots could approximately mimic transiting planets in unusual circumstances. A simple spot growth and decay template quantifies time profiles, and specifics of its utilization in differential corrections solutions are given. Computational strategies are discussed, the overall process is tested in simulations via solutions of synthetic light curve data, and essential simulation results are described. An efficient time smearing facility by Gaussian quadrature can deal with Kepler mission data that are in 30 minute time bins.

  10. Rapid Screening of Bovine Milk Oligosaccharides in a Whey Permeate Product and Domestic Animal Milks by Accurate Mass Database and Tandem Mass Spectral Library

    Science.gov (United States)

    Lee, Hyeyoung; Cuthbertson, Daniel J.; Otter, Don E.; Barile, Daniela

    2018-01-01

    A bovine milk oligosaccharide (BMO) library, prepared from cow colostrum, with 34 structures was generated and used to rapidly screen oligosaccharides in domestic animal milks and a whey permeate powder. The novel library was entered into a custom Personal Compound Database and Library (PCDL) and included accurate mass, retention time, and tandem mass spectra. Oligosaccharides in minute-sized samples were separated using nanoliquid chromatography (nanoLC) coupled to a high resolution and sensitive quadrupole-Time of Flight (Q-ToF) MS system. Using the PCDL, 18 oligosaccharides were found in a BMO-enriched product obtained from whey permeate processing. The usefulness of the analytical system and BMO library was further validated using milks from domestic sheep and buffaloes. Through BMO PCDL searching, 15 and 13 oligosaccharides in the BMO library were assigned in sheep and buffalo milks, respectively, thus demonstrating significant overlap between oligosaccharides in bovine (cow and buffalo) and ovine (sheep) milks. This method was shown to be an efficient, reliable, and rapid tool to identify oligosaccharide structures using automated spectral matching. PMID:27428379

  11. High current precision long pulse electron beam position monitor

    CERN Document Server

    Nelson, S D; Fessenden, T J; Holmes, C

    2000-01-01

    Precision high current long pulse electron beam position monitoring has typically experienced problems with high Q sensors, sensors damped to the point of lack of precision, or sensors that interact substantially with any beam halo thus obscuring the desired signal. As part of the effort to develop a multi-axis electron beam transport system using transverse electromagnetic stripline kicker technology, it is necessary to precisely determine the position and extent of long high energy beams for accurate beam position control (6 - 40 MeV, 1 - 4 kA, 2 μs beam pulse, sub millimeter beam position accuracy.) The kicker positioning system utilizes shot-to-shot adjustments for reduction of relatively slow (< 20 MHz) motion of the beam centroid. The electron beams passing through the diagnostic systems have the potential for large halo effects that tend to corrupt position measurements.

  12. Precise measurement and calculation of 238U neutron transmissions

    International Nuclear Information System (INIS)

    Olsen, D.K.; de Saussure, G.; Silver, E.G.; Perez, R.B.

    1975-01-01

    The total neutron cross section of 238 U has been measured above 0.5 eV in precise transmission experiments and results are compared with ENDF/B-IV. Emphasis has been on measuring transmissions through thick samples in order to obtain accurate total cross sections in the potential-resonance interference regions between resonances. 4 figures, 1 table

  13. Applications of an automated stem measurer for precision forestry

    Science.gov (United States)

    N. Clark

    2001-01-01

    Accurate stem measurements are required for the determination of many silvicultural prescriptions, i.e., what are we going to do with a stand of trees. This would only be amplified in a precision forestry context. Many methods have been proposed for optimal ways to evaluate stems for a variety of characteristics. These methods usually involve the acquisition of total...

  14. Improved precision and accuracy for microarrays using updated probe set definitions

    Directory of Open Access Journals (Sweden)

    Larsson Ola

    2007-02-01

    Full Text Available Abstract Background Microarrays enable high throughput detection of transcript expression levels. Different investigators have recently introduced updated probe set definitions to more accurately map probes to our current knowledge of genes and transcripts. Results We demonstrate that updated probe set definitions provide both better precision and accuracy in probe set estimates compared to the original Affymetrix definitions. We show that the improved precision mainly depends on the increased number of probes that are integrated into each probe set, but we also demonstrate an improvement when the same number of probes is used. Conclusion Updated probe set definitions does not only offer expression levels that are more accurately associated to genes and transcripts but also improvements in the estimated transcript expression levels. These results give support for the use of updated probe set definitions for analysis and meta-analysis of microarray data.

  15. Leveraging Two Kinect Sensors for Accurate Full-Body Motion Capture

    Directory of Open Access Journals (Sweden)

    Zhiquan Gao

    2015-09-01

    Full Text Available Accurate motion capture plays an important role in sports analysis, the medical field and virtual reality. Current methods for motion capture often suffer from occlusions, which limits the accuracy of their pose estimation. In this paper, we propose a complete system to measure the pose parameters of the human body accurately. Different from previous monocular depth camera systems, we leverage two Kinect sensors to acquire more information about human movements, which ensures that we can still get an accurate estimation even when significant occlusion occurs. Because human motion is temporally constant, we adopt a learning analysis to mine the temporal information across the posture variations. Using this information, we estimate human pose parameters accurately, regardless of rapid movement. Our experimental results show that our system can perform an accurate pose estimation of the human body with the constraint of information from the temporal domain.

  16. Development of salt-tolerance interface for an high performance liquid chromatography/inductively coupled plasma mass spectrometry system and its application to accurate quantification of DNA samples.

    Science.gov (United States)

    Takasaki, Yuka; Sakagawa, Shinnosuke; Inagaki, Kazumi; Fujii, Shin-Ichiro; Sabarudin, Akhmad; Umemura, Tomonari; Haraguchi, Hiroki

    2012-02-03

    Accurate quantification of DNA is highly important in various fields. Determination of phosphorus by ICP-MS is one of the most effective methods for accurate quantification of DNA due to the fixed stoichiometry of phosphate to this molecule. In this paper, a smart and reliable method for accurate quantification of DNA fragments and oligodeoxythymidilic acids by hyphenated HPLC/ICP-MS equipped with a highly efficient interface device is presented. The interface was constructed of a home-made capillary-attached micronebulizer and temperature-controllable cyclonic spray chamber (IsoMist). As a separation column for DNA samples, home-made methacrylate-based weak anion-exchange monolith was employed. Some parameters, which include composition of mobile phase, gradient program, inner and outer diameters of capillary, temperature of spray chamber etc., were optimized to find the best performance for separation and accurate quantification of DNA samples. The proposed system could achieve many advantages, such as total consumption for small amount sample analysis, salt-tolerance for hyphenated analysis, high accuracy and precision for quantitative analysis. Using this proposed system, the samples of 20 bp DNA ladder (20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 300, 400, 500 base pairs) and oligodeoxythymidilic acids (dT(12-18)) were rapidly separated and accurately quantified. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Accurate guitar tuning by cochlear implant musicians.

    Directory of Open Access Journals (Sweden)

    Thomas Lu

    Full Text Available Modern cochlear implant (CI users understand speech but find difficulty in music appreciation due to poor pitch perception. Still, some deaf musicians continue to perform with their CI. Here we show unexpected results that CI musicians can reliably tune a guitar by CI alone and, under controlled conditions, match simultaneously presented tones to <0.5 Hz. One subject had normal contralateral hearing and produced more accurate tuning with CI than his normal ear. To understand these counterintuitive findings, we presented tones sequentially and found that tuning error was larger at ∼ 30 Hz for both subjects. A third subject, a non-musician CI user with normal contralateral hearing, showed similar trends in performance between CI and normal hearing ears but with less precision. This difference, along with electric analysis, showed that accurate tuning was achieved by listening to beats rather than discriminating pitch, effectively turning a spectral task into a temporal discrimination task.

  18. Precision medicine and traditional chinese medicine of dialogue

    Directory of Open Access Journals (Sweden)

    Lou Xin

    2017-01-01

    Full Text Available The precision medicine is more precise individualized medicine, based on the patient’s genes or physiological to formulate the specific treatment plan, for the realization of individualized treatment of various diseases to provide valuable information.But with the progress of modern science and technology, modern medicine dependence on medical instruments are too serious, traditional ways are gradually forgotten.If the machine depends on the instrument test results too serious which don’t combined with the actual diagnosis, the cause of misdiagnosis, so we should pay attention to the overall analysis of diseases and systematic diagnosis and examination, use of the overall treatment concept traced back to find the cause of Traditional Chinese Medicine, finally decide to select a best treatment plan.We should use the dialectical attitude to look at the precise medical. Not blindly requirements according to the road of precision medicine of Traditional Chinese Medicine to go, to shine in himself field, form of self characteristic of Traditional Chinese Medicine.Can learn some of the advantages of accurate concept, the good and rejecting the bad, hope the Traditional Chinese Medicine in the modern environment more walk more far.

  19. Magnitude, precision, and realism of depth perception in stereoscopic vision.

    Science.gov (United States)

    Hibbard, Paul B; Haines, Alice E; Hornsey, Rebecca L

    2017-01-01

    Our perception of depth is substantially enhanced by the fact that we have binocular vision. This provides us with more precise and accurate estimates of depth and an improved qualitative appreciation of the three-dimensional (3D) shapes and positions of objects. We assessed the link between these quantitative and qualitative aspects of 3D vision. Specifically, we wished to determine whether the realism of apparent depth from binocular cues is associated with the magnitude or precision of perceived depth and the degree of binocular fusion. We presented participants with stereograms containing randomly positioned circles and measured how the magnitude, realism, and precision of depth perception varied with the size of the disparities presented. We found that as the size of the disparity increased, the magnitude of perceived depth increased, while the precision with which observers could make depth discrimination judgments decreased. Beyond an initial increase, depth realism decreased with increasing disparity magnitude. This decrease occurred well below the disparity limit required to ensure comfortable viewing.

  20. Precise determination of sodium in serum by simulated isotope dilution method of inductively coupled plasma mass spectrometry

    International Nuclear Information System (INIS)

    Yan Ying; Zhang Chuanbao; Zhao Haijian; Chen Wenxiang; Shen Ziyu; Wang Xiaoru; Chen Dengyun

    2007-01-01

    A new precise and accurate method for the determination of sodium in serum by inductively coupled plasma mass spectrometry (ICP-MS) was developed. Since 23 Na is the single isotope element, 27 Al is selected as simulated isotope of Na. Al is spiked into serum samples and Na standard solution. 23 Na/ 27 Al ratio in the Na standard solution is determined to assume the natural Na isotope ratio. The serums samples are digested by purified HNO 3 /H 2 O 2 and diluted to get about 0.6 μg·g -1 Al solutions, and the 23 Na/ 27 Al ratios of the serum samples are obtained to calculate the accurate Na concentrations basing on the isotope dilution method. When the simulated isotope dilution method of ICP-MS is applied and Al is selected as the simulated isotope of Na, the precise and accurate Na concentrations in the serums are determined. The inter-day precision of CV<0.13% for one same serum sample is obtained during 3 days 4 measurements. The spike recoveries are between 99.69% and 100.60% for 4 different serum samples and 3 days multi-measurements. The results of measuring standard reference materials of serum sodium are agree with the certified value. The relative difference between 3 days is 0.22%-0.65%, and the relative difference in one bottle is 0.15%-0.44%. The ICP-MS and Al simulated isotope dilution method is proved to be not only precise and accurate, but also quick and convenient for measuring Na in serum. It is promising to be a reference method for precise determination of Na in serum. Since Al is a low cost isotope dilution reagent, the method is possible to be widely applied for serum Na determination. (authors)

  1. Testing the precision optical calibration module for PINGU

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, Martin; Holzapfel, Kilian [TU Muenchen, Physik-Department, Excellence Cluster Universe, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    The Precision IceCube Next Generation Upgrade (PINGU) is primarily designed to determine the neutrino mass hierarchy. This measurement requires an accurate calibration of the detector in order to reduce systematic uncertainties. The Precision Optical Calibration Modules (POCAM) will be placed in the detector as a well calibrated artificial light source in the ice. The POCAM will be enclosed in a glass sphere identical to those used for the detector modules. To construct and simulate a prototype of the POCAM, every component needs to be analyzed by their optical characteristics and by the behavior in temperatures down to -50 C. Therefore a highly shielded an isolated environment has to be build up. We report the status of the testing environment and the hardware selected.

  2. Precision luminosity measurements at LHCb

    CERN Document Server

    Aaij, Roel; Adinolfi, Marco; Affolder, Anthony; Ajaltouni, Ziad; Akar, Simon; Albrecht, Johannes; Alessio, Federico; Alexander, Michael; Ali, Suvayu; Alkhazov, Georgy; Alvarez Cartelle, Paula; Alves Jr, Antonio Augusto; Amato, Sandra; Amerio, Silvia; Amhis, Yasmine; An, Liupan; Anderlini, Lucio; Anderson, Jonathan; Andreassen, Rolf; Andreotti, Mirco; Andrews, Jason; Appleby, Robert; Aquines Gutierrez, Osvaldo; Archilli, Flavio; Artamonov, Alexander; Artuso, Marina; Aslanides, Elie; Auriemma, Giulio; Baalouch, Marouen; Bachmann, Sebastian; Back, John; Badalov, Alexey; Baesso, Clarissa; Baldini, Wander; Barlow, Roger; Barschel, Colin; Barsuk, Sergey; Barter, William; Batozskaya, Varvara; Battista, Vincenzo; Bay, Aurelio; Beaucourt, Leo; Beddow, John; Bedeschi, Franco; Bediaga, Ignacio; Belogurov, Sergey; Belous, Konstantin; Belyaev, Ivan; Ben-Haim, Eli; Bencivenni, Giovanni; Benson, Sean; Benton, Jack; Berezhnoy, Alexander; Bernet, Roland; Bettler, Marc-Olivier; van Beuzekom, Martinus; Bien, Alexander; Bifani, Simone; Bird, Thomas; Bizzeti, Andrea; Bjørnstad, Pål Marius; Blake, Thomas; Blanc, Frédéric; Blouw, Johan; Blusk, Steven; Bocci, Valerio; Bondar, Alexander; Bondar, Nikolay; Bonivento, Walter; Borghi, Silvia; Borgia, Alessandra; Borsato, Martino; Bowcock, Themistocles; Bowen, Espen Eie; Bozzi, Concezio; Brambach, Tobias; Bressieux, Joël; Brett, David; Britsch, Markward; Britton, Thomas; Brodzicka, Jolanta; Brook, Nicholas; Brown, Henry; Bursche, Albert; Buytaert, Jan; Cadeddu, Sandro; Calabrese, Roberto; Calvi, Marta; Calvo Gomez, Miriam; Campana, Pierluigi; Campora Perez, Daniel; Carbone, Angelo; Carboni, Giovanni; Cardinale, Roberta; Cardini, Alessandro; Carson, Laurence; Carvalho Akiba, Kazuyoshi; Casse, Gianluigi; Cassina, Lorenzo; Castillo Garcia, Lucia; Cattaneo, Marco; Cauet, Christophe; Cenci, Riccardo; Charles, Matthew; Charpentier, Philippe; Chefdeville, Maximilien; Chen, Shanzhen; Cheung, Shu-Faye; Chiapolini, Nicola; Chrzaszcz, Marcin; Ciba, Krzystof; Cid Vidal, Xabier; Ciezarek, Gregory; Clarke, Peter; Clemencic, Marco; Cliff, Harry; Closier, Joel; Coco, Victor; Cogan, Julien; Cogneras, Eric; Cojocariu, Lucian; Collazuol, Gianmaria; Collins, Paula; Comerma-Montells, Albert; Contu, Andrea; Cook, Andrew; Coombes, Matthew; Coquereau, Samuel; Corti, Gloria; Corvo, Marco; Counts, Ian; Couturier, Benjamin; Cowan, Greig; Craik, Daniel Charles; Cruz Torres, Melissa Maria; Cunliffe, Samuel; Currie, Robert; D'Ambrosio, Carmelo; Dalseno, Jeremy; David, Pascal; David, Pieter; Davis, Adam; De Bruyn, Kristof; De Capua, Stefano; De Cian, Michel; De Miranda, Jussara; De Paula, Leandro; De Silva, Weeraddana; De Simone, Patrizia; Dean, Cameron Thomas; Decamp, Daniel; Deckenhoff, Mirko; Del Buono, Luigi; Déléage, Nicolas; Derkach, Denis; Deschamps, Olivier; Dettori, Francesco; Di Canto, Angelo; Dijkstra, Hans; Donleavy, Stephanie; Dordei, Francesca; Dorigo, Mirco; Dosil Suárez, Alvaro; Dossett, David; Dovbnya, Anatoliy; Dreimanis, Karlis; Dujany, Giulio; Dupertuis, Frederic; Durante, Paolo; Dzhelyadin, Rustem; Dziurda, Agnieszka; Dzyuba, Alexey; Easo, Sajan; Egede, Ulrik; Egorychev, Victor; Eidelman, Semen; Eisenhardt, Stephan; Eitschberger, Ulrich; Ekelhof, Robert; Eklund, Lars; El Rifai, Ibrahim; Elsasser, Christian; Ely, Scott; Esen, Sevda; Evans, Hannah Mary; Evans, Timothy; Falabella, Antonio; Färber, Christian; Farinelli, Chiara; Farley, Nathanael; Farry, Stephen; Fay, Robert; Ferguson, Dianne; Fernandez Albor, Victor; Ferreira Rodrigues, Fernando; Ferro-Luzzi, Massimiliano; Filippov, Sergey; Fiore, Marco; Fiorini, Massimiliano; Firlej, Miroslaw; Fitzpatrick, Conor; Fiutowski, Tomasz; Fol, Philip; Fontana, Marianna; Fontanelli, Flavio; Forty, Roger; Francisco, Oscar; Frank, Markus; Frei, Christoph; Frosini, Maddalena; Fu, Jinlin; Furfaro, Emiliano; Gallas Torreira, Abraham; Galli, Domenico; Gallorini, Stefano; Gambetta, Silvia; Gandelman, Miriam; Gandini, Paolo; Gao, Yuanning; García Pardiñas, Julián; Garofoli, Justin; Garra Tico, Jordi; Garrido, Lluis; Gascon, David; Gaspar, Clara; Gauld, Rhorry; Gavardi, Laura; Geraci, Angelo; Gersabeck, Evelina; Gersabeck, Marco; Gershon, Timothy; Ghez, Philippe; Gianelle, Alessio; Gianì, Sebastiana; Gibson, Valerie; Giubega, Lavinia-Helena; Gligorov, V.V.; Göbel, Carla; Golubkov, Dmitry; Golutvin, Andrey; Gomes, Alvaro; Gotti, Claudio; Grabalosa Gándara, Marc; Graciani Diaz, Ricardo; Granado Cardoso, Luis Alberto; Graugés, Eugeni; Graziani, Giacomo; Grecu, Alexandru; Greening, Edward; Gregson, Sam; Griffith, Peter; Grillo, Lucia; Grünberg, Oliver; Gui, Bin; Gushchin, Evgeny; Guz, Yury; Gys, Thierry; Hadjivasiliou, Christos; Haefeli, Guido; Haen, Christophe; Haines, Susan; Hall, Samuel; Hamilton, Brian; Hampson, Thomas; Han, Xiaoxue; Hansmann-Menzemer, Stephanie; Harnew, Neville; Harnew, Samuel; Harrison, Jonathan; He, Jibo; Head, Timothy; Heijne, Veerle; Hennessy, Karol; Henrard, Pierre; Henry, Louis; Hernando Morata, Jose Angel; van Herwijnen, Eric; Heß, Miriam; Hicheur, Adlène; Hill, Donal; Hoballah, Mostafa; Hombach, Christoph; Hulsbergen, Wouter; Hunt, Philip; Hussain, Nazim; Hutchcroft, David; Hynds, Daniel; Idzik, Marek; Ilten, Philip; Jacobsson, Richard; Jaeger, Andreas; Jalocha, Pawel; Jans, Eddy; Jaton, Pierre; Jawahery, Abolhassan; Jing, Fanfan; John, Malcolm; Johnson, Daniel; Jones, Christopher; Joram, Christian; Jost, Beat; Jurik, Nathan; Kandybei, Sergii; Kanso, Walaa; Karacson, Matthias; Karbach, Moritz; Karodia, Sarah; Kelsey, Matthew; Kenyon, Ian; Ketel, Tjeerd; Khanji, Basem; Khurewathanakul, Chitsanu; Klaver, Suzanne; Klimaszewski, Konrad; Kochebina, Olga; Kolpin, Michael; Komarov, Ilya; Koopman, Rose; Koppenburg, Patrick; Korolev, Mikhail; Kozlinskiy, Alexandr; Kravchuk, Leonid; Kreplin, Katharina; Kreps, Michal; Krocker, Georg; Krokovny, Pavel; Kruse, Florian; Kucewicz, Wojciech; Kucharczyk, Marcin; Kudryavtsev, Vasily; Kurek, Krzysztof; Kvaratskheliya, Tengiz; La Thi, Viet Nga; Lacarrere, Daniel; Lafferty, George; Lai, Adriano; Lambert, Dean; Lambert, Robert W; Lanfranchi, Gaia; Langenbruch, Christoph; Langhans, Benedikt; Latham, Thomas; Lazzeroni, Cristina; Le Gac, Renaud; van Leerdam, Jeroen; Lees, Jean-Pierre; Lefèvre, Regis; Leflat, Alexander; Lefrançois, Jacques; Leo, Sabato; Leroy, Olivier; Lesiak, Tadeusz; Leverington, Blake; Li, Yiming; Likhomanenko, Tatiana; Liles, Myfanwy; Lindner, Rolf; Linn, Christian; Lionetto, Federica; Liu, Bo; Lohn, Stefan; Longstaff, Iain; Lopes, Jose; Lopez-March, Neus; Lowdon, Peter; Lu, Haiting; Lucchesi, Donatella; Luo, Haofei; Lupato, Anna; Luppi, Eleonora; Lupton, Oliver; Machefert, Frederic; Machikhiliyan, Irina V; Maciuc, Florin; Maev, Oleg; Malde, Sneha; Malinin, Alexander; Manca, Giulia; Mancinelli, Giampiero; Mapelli, Alessandro; Maratas, Jan; Marchand, Jean François; Marconi, Umberto; Marin Benito, Carla; Marino, Pietro; Märki, Raphael; Marks, Jörg; Martellotti, Giuseppe; Martens, Aurelien; Martín Sánchez, Alexandra; Martinelli, Maurizio; Martinez Santos, Diego; Martinez Vidal, Fernando; Martins Tostes, Danielle; Massafferri, André; Matev, Rosen; Mathe, Zoltan; Matteuzzi, Clara; Maurin, Brice; Mazurov, Alexander; McCann, Michael; McCarthy, James; McNab, Andrew; McNulty, Ronan; McSkelly, Ben; Meadows, Brian; Meier, Frank; Meissner, Marco; Merk, Marcel; Milanes, Diego Alejandro; Minard, Marie-Noelle; Moggi, Niccolò; Molina Rodriguez, Josue; Monteil, Stephane; Morandin, Mauro; Morawski, Piotr; Mordà, Alessandro; Morello, Michael Joseph; Moron, Jakub; Morris, Adam Benjamin; Mountain, Raymond; Muheim, Franz; Müller, Katharina; Mussini, Manuel; Muster, Bastien; Naik, Paras; Nakada, Tatsuya; Nandakumar, Raja; Nasteva, Irina; Needham, Matthew; Neri, Nicola; Neubert, Sebastian; Neufeld, Niko; Neuner, Max; Nguyen, Anh Duc; Nguyen, Thi-Dung; Nguyen-Mau, Chung; Nicol, Michelle; Niess, Valentin; Niet, Ramon; Nikitin, Nikolay; Nikodem, Thomas; Novoselov, Alexey; O'Hanlon, Daniel Patrick; Oblakowska-Mucha, Agnieszka; Obraztsov, Vladimir; Oggero, Serena; Ogilvy, Stephen; Okhrimenko, Oleksandr; Oldeman, Rudolf; Onderwater, Gerco; Orlandea, Marius; Otalora Goicochea, Juan Martin; Owen, Patrick; Oyanguren, Maria Arantza; Pal, Bilas Kanti; Palano, Antimo; Palombo, Fernando; Palutan, Matteo; Panman, Jacob; Papanestis, Antonios; Pappagallo, Marco; Pappalardo, Luciano; Parkes, Christopher; Parkinson, Christopher John; Passaleva, Giovanni; Patel, Girish; Patel, Mitesh; Patrignani, Claudia; Pearce, Alex; Pellegrino, Antonio; Pepe Altarelli, Monica; Perazzini, Stefano; Perret, Pascal; Perrin-Terrin, Mathieu; Pescatore, Luca; Pesen, Erhan; Pessina, Gianluigi; Petridis, Konstantin; Petrolini, Alessandro; Picatoste Olloqui, Eduardo; Pietrzyk, Boleslaw; Pilař, Tomas; Pinci, Davide; Pistone, Alessandro; Playfer, Stephen; Plo Casasus, Maximo; Polci, Francesco; Poluektov, Anton; Polycarpo, Erica; Popov, Alexander; Popov, Dmitry; Popovici, Bogdan; Potterat, Cédric; Price, Eugenia; Price, Joseph David; Prisciandaro, Jessica; Pritchard, Adrian; Prouve, Claire; Pugatch, Valery; Puig Navarro, Albert; Punzi, Giovanni; Qian, Wenbin; Rachwal, Bartolomiej; Rademacker, Jonas; Rakotomiaramanana, Barinjaka; Rama, Matteo; Rangel, Murilo; Raniuk, Iurii; Rauschmayr, Nathalie; Raven, Gerhard; Redi, Federico; Reichert, Stefanie; Reid, Matthew; dos Reis, Alberto; Ricciardi, Stefania; Richards, Sophie; Rihl, Mariana; Rinnert, Kurt; Rives Molina, Vincente; Robbe, Patrick; Rodrigues, Ana Barbara; Rodrigues, Eduardo; Rodriguez Perez, Pablo; Roiser, Stefan; Romanovsky, Vladimir; Romero Vidal, Antonio; Rotondo, Marcello; Rouvinet, Julien; Ruf, Thomas; Ruiz, Hugo; Ruiz Valls, Pablo; Saborido Silva, Juan Jose; Sagidova, Naylya; Sail, Paul; Saitta, Biagio; Salustino Guimaraes, Valdir; Sanchez Mayordomo, Carlos; Sanmartin Sedes, Brais; Santacesaria, Roberta; Santamarina Rios, Cibran; Santovetti, Emanuele; Sarti, Alessio; Satriano, Celestina; Satta, Alessia; Saunders, Daniel Martin; Savrina, Darya; Schiller, Manuel; Schindler, Heinrich; Schlupp, Maximilian; Schmelling, Michael; Schmidt, Burkhard; Schneider, Olivier; Schopper, Andreas; Schubiger, Maxime; Schune, Marie Helene; Schwemmer, Rainer; Sciascia, Barbara; Sciubba, Adalberto; Semennikov, Alexander; Sepp, Indrek; Serra, Nicola; Serrano, Justine; Sestini, Lorenzo; Seyfert, Paul; Shapkin, Mikhail; Shapoval, Illya; Shcheglov, Yury; Shears, Tara; Shekhtman, Lev; Shevchenko, Vladimir; Shires, Alexander; Silva Coutinho, Rafael; Simi, Gabriele; Sirendi, Marek; Skidmore, Nicola; Skwarnicki, Tomasz; Smith, Anthony; Smith, Edmund; Smith, Eluned; Smith, Jackson; Smith, Mark; Snoek, Hella; Sokoloff, Michael; Soler, Paul; Soomro, Fatima; Souza, Daniel; Souza De Paula, Bruno; Spaan, Bernhard; Sparkes, Ailsa; Spradlin, Patrick; Sridharan, Srikanth; Stagni, Federico; Stahl, Marian; Stahl, Sascha; Steinkamp, Olaf; Stenyakin, Oleg; Stevenson, Scott; Stoica, Sabin; Stone, Sheldon; Storaci, Barbara; Stracka, Simone; Straticiuc, Mihai; Straumann, Ulrich; Stroili, Roberto; Subbiah, Vijay Kartik; Sun, Liang; Sutcliffe, William; Swientek, Krzysztof; Swientek, Stefan; Syropoulos, Vasileios; Szczekowski, Marek; Szczypka, Paul; Szumlak, Tomasz; T'Jampens, Stephane; Teklishyn, Maksym; Tellarini, Giulia; Teubert, Frederic; Thomas, Christopher; Thomas, Eric; van Tilburg, Jeroen; Tisserand, Vincent; Tobin, Mark; Tolk, Siim; Tomassetti, Luca; Tonelli, Diego; Topp-Joergensen, Stig; Torr, Nicholas; Tournefier, Edwige; Tourneur, Stephane; Tran, Minh Tâm; Tresch, Marco; Trisovic, Ana; Tsaregorodtsev, Andrei; Tsopelas, Panagiotis; Tuning, Niels; Ubeda Garcia, Mario; Ukleja, Artur; Ustyuzhanin, Andrey; Uwer, Ulrich; Vacca, Claudia; Vagnoni, Vincenzo; Valenti, Giovanni; Vallier, Alexis; Vazquez Gomez, Ricardo; Vazquez Regueiro, Pablo; Vázquez Sierra, Carlos; Vecchi, Stefania; Velthuis, Jaap; Veltri, Michele; Veneziano, Giovanni; Vesterinen, Mika; Viaud, Benoit; Vieira, Daniel; Vieites Diaz, Maria; Vilasis-Cardona, Xavier; Vollhardt, Achim; Volyanskyy, Dmytro; Voong, David; Vorobyev, Alexey; Vorobyev, Vitaly; Voß, Christian; de Vries, Jacco; Waldi, Roland; Wallace, Charlotte; Wallace, Ronan; Walsh, John; Wandernoth, Sebastian; Wang, Jianchun; Ward, David; Watson, Nigel; Websdale, David; Whitehead, Mark; Wicht, Jean; Wiedner, Dirk; Wilkinson, Guy; Williams, Matthew; Williams, Mike; Wilschut, Hans; Wilson, Fergus; Wimberley, Jack; Wishahi, Julian; Wislicki, Wojciech; Witek, Mariusz; Wormser, Guy; Wotton, Stephen; Wright, Simon; Wyllie, Kenneth; Xie, Yuehong; Xing, Zhou; Xu, Zhirui; Yang, Zhenwei; Yuan, Xuhao; Yushchenko, Oleg; Zangoli, Maria; Zavertyaev, Mikhail; Zhang, Liming; Zhang, Wen Chao; Zhang, Yanxi; Zhelezov, Alexey; Zhokhov, Anatoly; Zhong, Liang; Zvyagin, Alexander

    2014-12-05

    Measuring cross-sections at the LHC requires the luminosity to be determined accurately at each centre-of-mass energy $\\sqrt{s}$. In this paper results are reported from the luminosity calibrations carried out at the LHC interaction point 8 with the LHCb detector for $\\sqrt{s}$ = 2.76, 7 and 8 TeV (proton-proton collisions) and for $\\sqrt{s_{NN}}$ = 5 TeV (proton-lead collisions). Both the "van der Meer scan" and "beam-gas imaging" luminosity calibration methods were employed. It is observed that the beam density profile cannot always be described by a function that is factorizable in the two transverse coordinates. The introduction of a two-dimensional description of the beams improves significantly the consistency of the results. For proton-proton interactions at $\\sqrt{s}$ = 8 TeV a relative precision of the luminosity calibration of 1.47% is obtained using van der Meer scans and 1.43% using beam-gas imaging, resulting in a combined precision of 1.12%. Applying the calibration to the full data set determin...

  3. A primer on precision medicine informatics.

    Science.gov (United States)

    Sboner, Andrea; Elemento, Olivier

    2016-01-01

    In this review, we describe key components of a computational infrastructure for a precision medicine program that is based on clinical-grade genomic sequencing. Specific aspects covered in this review include software components and hardware infrastructure, reporting, integration into Electronic Health Records for routine clinical use and regulatory aspects. We emphasize informatics components related to reproducibility and reliability in genomic testing, regulatory compliance, traceability and documentation of processes, integration into clinical workflows, privacy requirements, prioritization and interpretation of results to report based on clinical needs, rapidly evolving knowledge base of genomic alterations and clinical treatments and return of results in a timely and predictable fashion. We also seek to differentiate between the use of precision medicine in germline and cancer. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  4. HistoStitcher© : An Interactive Program for Accurate and Rapid Reconstruction of Digitized Whole Histological Sections from Tissue Fragments

    Science.gov (United States)

    Chappelow, Jonathan; Tomaszewski, John E.; Feldman, Michael; Shih, Natalie; Madabhushi, Anant

    2011-01-01

    We present an interactive program called HistoStitcher© for accurate and rapid reassembly of histology fragments into a pseudo-whole digitized histological section. HistoStitcher© provides both an intuitive graphical interface to assist the operator in performing the stitch of adjacent histology fragments by selecting pairs of anatomical landmarks, and a set of computational routines for determining and applying an optimal linear transformation to generate the stitched image. Reconstruction of whole histological sections from images of slides containing smaller fragments is required in applications where preparation of whole sections of large tissue specimens is not feasible or efficient, and such whole mounts are required to facilitate (a) disease annotation and (b) image registration with radiological images. Unlike manual reassembly of image fragments in a general purpose image editing program (such as Photoshop), HistoStitcher© provides memory efficient operation on high resolution digitized histology images and a highly flexible stitching process capable of producing more accurate results in less time. Further, by parameterizing the series of transformations determined by the stitching process, the stitching parameters can be saved, loaded at a later time, refined, or reapplied to multi-resolution scans, or quickly transmitted to another site. In this paper, we describe in detail the design of HistoStitcher© and the mathematical routines used for calculating the optimal image transformation, and demonstrate its operation for stitching high resolution histology quadrants of a prostate specimen to form a digitally reassembled whole histology section, for 8 different patient studies. To evaluate stitching quality, a 6 point scoring scheme, which assesses the alignment and continuity of anatomical structures important for disease annotation, is employed by three independent expert pathologists. For 6 studies compared with this scheme, reconstructed sections

  5. Efficient and Accurate Computational Framework for Injector Design and Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — CFD codes used to simulate upper stage expander cycle engines are not adequately mature to support design efforts. Rapid and accurate simulations require more...

  6. Polarisation and precise calibration of the LEP beam energy

    CERN Document Server

    Koutchouk, Jean-Pierre

    2002-01-01

    We report in this article on two issues of precision accelerator physics, performed at the LEP collider, that challenged international collaborations. The first result is an increase of the polarisation degree from an almost vanishing natural level to 50%, opening the way to energy calibration by resonant depolarisation. The second result is a systematic and precise determination of the collider centre-of- mass energy correcting for subtle effects such as the azimuthal variation of the beam energy, the magnet temperature, the effects of parasitic earth currents and terrestrial tides. It resulted in an extremely accurate test of the standard model and set significant constraints on the top quark and Higgs masses. (16 refs).

  7. Precision manufacturing

    CERN Document Server

    Dornfeld, David

    2008-01-01

    Today there is a high demand for high-precision products. The manufacturing processes are now highly sophisticated and derive from a specialized genre called precision engineering. Precision Manufacturing provides an introduction to precision engineering and manufacturing with an emphasis on the design and performance of precision machines and machine tools, metrology, tooling elements, machine structures, sources of error, precision machining processes and precision process planning. As well as discussing the critical role precision machine design for manufacturing has had in technological developments over the last few hundred years. In addition, the influence of sustainable manufacturing requirements in precision processes is introduced. Drawing upon years of practical experience and using numerous examples and illustrative applications, David Dornfeld and Dae-Eun Lee cover precision manufacturing as it applies to: The importance of measurement and metrology in the context of Precision Manufacturing. Th...

  8. Ultrathin conformal devices for precise and continuous thermal characterization of human skin

    Science.gov (United States)

    Webb, R. Chad; Bonifas, Andrew P.; Behnaz, Alex; Zhang, Yihui; Yu, Ki Jun; Cheng, Huanyu; Shi, Mingxing; Bian, Zuguang; Liu, Zhuangjian; Kim, Yun-Soung; Yeo, Woon-Hong; Park, Jae Suk; Song, Jizhou; Li, Yuhang; Huang, Yonggang; Gorbach, Alexander M.; Rogers, John A.

    2013-10-01

    Precision thermometry of the skin can, together with other measurements, provide clinically relevant information about cardiovascular health, cognitive state, malignancy and many other important aspects of human physiology. Here, we introduce an ultrathin, compliant skin-like sensor/actuator technology that can pliably laminate onto the epidermis to provide continuous, accurate thermal characterizations that are unavailable with other methods. Examples include non-invasive spatial mapping of skin temperature with millikelvin precision, and simultaneous quantitative assessment of tissue thermal conductivity. Such devices can also be implemented in ways that reveal the time-dynamic influence of blood flow and perfusion on these properties. Experimental and theoretical studies establish the underlying principles of operation, and define engineering guidelines for device design. Evaluation of subtle variations in skin temperature associated with mental activity, physical stimulation and vasoconstriction/dilation along with accurate determination of skin hydration through measurements of thermal conductivity represent some important operational examples.

  9. Accuracy and precision of protein–ligand interaction kinetics determined from chemical shift titrations

    International Nuclear Information System (INIS)

    Markin, Craig J.; Spyracopoulos, Leo

    2012-01-01

    NMR-monitored chemical shift titrations for the study of weak protein–ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K D ) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K D value of a 1:1 protein–ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125–138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of 1 H– 15 N 2D HSQC NMR spectra acquired using precise protein–ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k off ). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k off ∼ 3,000 s −1 in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k off from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k off values over a wide range, from 100 to 15,000 s −1 . The validity of line shape analysis for k off values approaching intermediate exchange (∼100 s −1 ), may be facilitated by more accurate K D measurements from NMR

  10. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations.

    Science.gov (United States)

    Markin, Craig J; Spyracopoulos, Leo

    2012-12-01

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K ( D )) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K ( D ) value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of (1)H-(15)N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k ( off )). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k ( off ) ~ 3,000 s(-1) in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k ( off ) from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k ( off ) values over a wide range, from 100 to 15,000 s(-1). The validity of line shape analysis for k ( off ) values approaching intermediate exchange (~100 s(-1)), may be facilitated by more accurate K ( D ) measurements

  11. A Rapid, Accurate, and Efficient Method to Map Heavy Metal-Contaminated Soils of Abandoned Mine Sites Using Converted Portable XRF Data and GIS

    Directory of Open Access Journals (Sweden)

    Jangwon Suh

    2016-12-01

    Full Text Available The use of portable X-ray fluorescence (PXRF and inductively coupled plasma atomic emission spectrometry (ICP-AES increases the rapidity and accuracy of soil contamination mapping, respectively. In practice, it is often necessary to repeat the soil contamination assessment and mapping procedure several times during soil management within a limited budget. In this study, we have developed a rapid, inexpensive, and accurate soil contamination mapping method using a PXRF data and geostatistical spatial interpolation. To obtain a large quantity of high quality data for interpolation, in situ PXRF data analyzed at 40 points were transformed to converted PXRF data using the correlation between PXRF and ICP-AES data. The method was applied to an abandoned mine site in Korea to generate a soil contamination map for copper and was validated for investigation speed and prediction accuracy. As a result, regions that required soil remediation were identified. Our method significantly shortened the time required for mapping compared to the conventional mapping method and provided copper concentration estimates with high accuracy similar to those measured by ICP-AES. Therefore, our method is an effective way of mapping soil contamination if we consistently construct a database based on the correlation between PXRF and ICP-AES data.

  12. High Precision Fast Projective Synchronization for Chaotic Systems with Unknown Parameters

    Science.gov (United States)

    Nian, Fuzhong; Wang, Xingyuan; Lin, Da; Niu, Yujun

    2013-08-01

    A high precision fast projective synchronization method for chaotic systems with unknown parameters was proposed by introducing optimal matrix. Numerical simulations indicate that the precision be improved about three orders compared with other common methods under the same condition of software and hardware. Moreover, when average error is less than 10-3, the synchronization speed is 6500 times than common methods, the iteration needs only 4 times. The unknown parameters also were identified rapidly. The theoretical analysis and proof also were given.

  13. Rapid, Simple, and Sensitive Spectrofluorimetric Method for the Estimation of Ganciclovir in Bulk and Pharmaceutical Formulations

    Directory of Open Access Journals (Sweden)

    Garima Balwani

    2013-01-01

    Full Text Available A new, simple, rapid, sensitive, accurate, and affordable spectrofluorimetric method was developed and validated for the estimation of ganciclovir in bulk as well as in marketed formulations. The method was based on measuring the native fluorescence of ganciclovir in 0.2 M hydrochloric acid buffer of pH 1.2 at 374 nm after excitation at 257 nm. The calibration graph was found to be rectilinear in the concentration range of 0.25–2.00 μg mL−1. The limit of quantification and limit of detection were found to be 0.029 μg mL−1 and 0.010 μg mL−1, respectively. The method was fully validated for various parameters according to ICH guidelines. The results demonstrated that the procedure is accurate, precise, and reproducible (relative standard deviation <2% and can be successfully applied for the determination of ganciclovir in its commercial capsules with average percentage recovery of 101.31 ± 0.90.

  14. StatSTEM: An efficient approach for accurate and precise model-based quantification of atomic resolution electron microscopy images

    Energy Technology Data Exchange (ETDEWEB)

    De Backer, A.; Bos, K.H.W. van den [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium); Van den Broek, W. [AG Strukturforschung/Elektronenmikroskopie, Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin (Germany); Sijbers, J. [iMinds-Vision Lab, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk (Belgium); Van Aert, S., E-mail: sandra.vanaert@uantwerpen.be [Electron Microscopy for Materials Science (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp (Belgium)

    2016-12-15

    An efficient model-based estimation algorithm is introduced to quantify the atomic column positions and intensities from atomic resolution (scanning) transmission electron microscopy ((S)TEM) images. This algorithm uses the least squares estimator on image segments containing individual columns fully accounting for overlap between neighbouring columns, enabling the analysis of a large field of view. For this algorithm, the accuracy and precision with which measurements for the atomic column positions and scattering cross-sections from annular dark field (ADF) STEM images can be estimated, has been investigated. The highest attainable precision is reached even for low dose images. Furthermore, the advantages of the model-based approach taking into account overlap between neighbouring columns are highlighted. This is done for the estimation of the distance between two neighbouring columns as a function of their distance and for the estimation of the scattering cross-section which is compared to the integrated intensity from a Voronoi cell. To provide end-users this well-established quantification method, a user friendly program, StatSTEM, is developed which is freely available under a GNU public license. - Highlights: • An efficient model-based method for quantitative electron microscopy is introduced. • Images are modelled as a superposition of 2D Gaussian peaks. • Overlap between neighbouring columns is taken into account. • Structure parameters can be obtained with the highest precision and accuracy. • StatSTEM, auser friendly program (GNU public license) is developed.

  15. Calibration apparatus for precise barometers and vacuum gauges

    International Nuclear Information System (INIS)

    Woo, S.Y.; Choi, I.M.; Lee, Y.J.; Hong, S.S.; Chung, K.H.

    2004-01-01

    In order to calibrate highly accurate absolute pressure gauges, such as barometers and vacuum gauges, laser, or ultrasonic mercury manometers have been used. However, the complexity and cost of manometers have greatly reduced the use of this method in most calibration laboratories. As a substitute, a gas-operated pressure balance is used to calibrate precise gauges. In such cases, many commercially available pressure balances are unsuitable because the necessary exposure of the piston, cylinder, and masses to the atmosphere causes contamination problems and allows dust particles into the gap between the piston and cylinder. In this article, a weight-loading device is described that allows masses to be changed in situ without breaking the vacuum. This device makes it possible to add or remove weights easily during the calibration, thereby greatly reducing the time between observations. Using this device, we efficiently calibrated a precise quartz resonance barometer (Paroscientific, model 760-16B) over a pressure range of 940-1050 h Pa and a precise vacuum gauge (MKS, CDG 100 Torr) over a pressure range of 0-100 h Pa

  16. High precision locating control system based on VCM for Talbot lithography

    Science.gov (United States)

    Yao, Jingwei; Zhao, Lixin; Deng, Qian; Hu, Song

    2016-10-01

    Aiming at the high precision and efficiency requirements of Z-direction locating in Talbot lithography, a control system based on Voice Coil Motor (VCM) was designed. In this paper, we built a math model of VCM and its moving characteristic was analyzed. A double-closed loop control strategy including position loop and current loop were accomplished. The current loop was implemented by driver, in order to achieve the rapid follow of the system current. The position loop was completed by the digital signal processor (DSP) and the position feedback was achieved by high precision linear scales. Feed forward control and position feedback Proportion Integration Differentiation (PID) control were applied in order to compensate for dynamic lag and improve the response speed of the system. And the high precision and efficiency of the system were verified by simulation and experiments. The results demonstrated that the performance of Z-direction gantry was obviously improved, having high precision, quick responses, strong real-time and easily to expend for higher precision.

  17. Precision Landing and Hazard Avoidance Doman

    Science.gov (United States)

    Robertson, Edward A.; Carson, John M., III

    2016-01-01

    The Precision Landing and Hazard Avoidance (PL&HA) domain addresses the development, integration, testing, and spaceflight infusion of sensing, processing, and GN&C functions critical to the success and safety of future human and robotic exploration missions. PL&HA sensors also have applications to other mission events, such as rendezvous and docking. Autonomous PL&HA builds upon the core GN&C capabilities developed to enable soft, controlled landings on the Moon, Mars, and other solar system bodies. Through the addition of a Terrain Relative Navigation (TRN) function, precision landing within tens of meters of a map-based target is possible. The addition of a 3-D terrain mapping lidar sensor improves the probability of a safe landing via autonomous, real-time Hazard Detection and Avoidance (HDA). PL&HA significantly improves the probability of mission success and enhances access to sites of scientific interest located in challenging terrain. PL&HA can also utilize external navigation aids, such as navigation satellites and surface beacons. Advanced Lidar Sensors High precision ranging, velocimetry, and 3-D terrain mapping Terrain Relative Navigation (TRN) TRN compares onboard reconnaissance data with real-time terrain imaging data to update the S/C position estimate Hazard Detection and Avoidance (HDA) Generates a high-resolution, 3-D terrain map in real-time during the approach trajectory to identify safe landing targets Inertial Navigation During Terminal Descent High precision surface relative sensors enable accurate inertial navigation during terminal descent and a tightly controlled touchdown within meters of the selected safe landing target.

  18. Hyperspectral image analysis for rapid and accurate discrimination of bacterial infections: A benchmark study.

    Science.gov (United States)

    Arrigoni, Simone; Turra, Giovanni; Signoroni, Alberto

    2017-09-01

    With the rapid diffusion of Full Laboratory Automation systems, Clinical Microbiology is currently experiencing a new digital revolution. The ability to capture and process large amounts of visual data from microbiological specimen processing enables the definition of completely new objectives. These include the direct identification of pathogens growing on culturing plates, with expected improvements in rapid definition of the right treatment for patients affected by bacterial infections. In this framework, the synergies between light spectroscopy and image analysis, offered by hyperspectral imaging, are of prominent interest. This leads us to assess the feasibility of a reliable and rapid discrimination of pathogens through the classification of their spectral signatures extracted from hyperspectral image acquisitions of bacteria colonies growing on blood agar plates. We designed and implemented the whole data acquisition and processing pipeline and performed a comprehensive comparison among 40 combinations of different data preprocessing and classification techniques. High discrimination performance has been achieved also thanks to improved colony segmentation and spectral signature extraction. Experimental results reveal the high accuracy and suitability of the proposed approach, driving the selection of most suitable and scalable classification pipelines and stimulating clinical validations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Mechanism and experimental research on ultra-precision grinding of ferrite

    Science.gov (United States)

    Ban, Xinxing; Zhao, Huiying; Dong, Longchao; Zhu, Xueliang; Zhang, Chupeng; Gu, Yawen

    2017-02-01

    Ultra-precision grinding of ferrite is conducted to investigate the removal mechanism. Effect of the accuracy of machine tool key components on grinding surface quality is analyzed. The surface generation model of ferrite ultra-precision grinding machining is established. In order to reveal the surface formation mechanism of ferrite in the process of ultraprecision grinding, furthermore, the scientific and accurate of the calculation model are taken into account to verify the grinding surface roughness, which is proposed. Orthogonal experiment is designed using the high precision aerostatic turntable and aerostatic spindle for ferrite which is a typical hard brittle materials. Based on the experimental results, the influence factors and laws of ultra-precision grinding surface of ferrite are discussed through the analysis of the surface roughness. The results show that the quality of ferrite grinding surface is the optimal parameters, when the wheel speed of 20000r/mm, feed rate of 10mm/min, grinding depth of 0.005mm, and turntable rotary speed of 5r/min, the surface roughness Ra can up to 75nm.

  20. High precision NC lathe feeding system rigid-flexible coupling model reduction technology

    Science.gov (United States)

    Xuan, He; Hua, Qingsong; Cheng, Lianjun; Zhang, Hongxin; Zhao, Qinghai; Mao, Xinkai

    2017-08-01

    This paper proposes the use of dynamic substructure method of reduction of order to achieve effective reduction of feed system for high precision NC lathe feeding system rigid-flexible coupling model, namely the use of ADAMS to establish the rigid flexible coupling simulation model of high precision NC lathe, and then the vibration simulation of the period by using the FD 3D damper is very effective for feed system of bolt connection reduction of multi degree of freedom model. The vibration simulation calculation is more accurate, more quickly.

  1. Development of a nested-PCR assay for the rapid detection of Pilidiella granati in pomegranate fruit

    Science.gov (United States)

    Yang, Xue; Hameed, Uzma; Zhang, Ai-Fang; Zang, Hao-Yu; Gu, Chun-Yan; Chen, Yu; Xu, Yi-Liu

    2017-01-01

    Pilidiella granati, a causal agent of twig blight and crown rot of pomegranate, is an emerging threat that may cause severe risk to the pomegranate industry in the future. Development of a rapid assay for the timely and accurate detection of P. granati will be helpful in the active surveillance and management of the disease caused by this pathogen. In this study, a nested PCR method was established for the detection of P. granati. Comparative analysis of genetic diversity within 5.8S rDNA internal transcribed spacer (ITS) sequences of P. granati and 21 other selected fungal species was performed to design species-specific primers (S1 and S2). This primer pair successfully amplified a 450 bp product exclusively from the genomic DNA of P. granati. The developed method can detect 10 pg genomic DNA of the pathogen in about 6 h. This technique was successfully applied to detect the natural infection of P. granati in the pomegranate fruit. The designed protocol is rapid and precise with a high degree of sensitivity. PMID:28106107

  2. Improved precision and speed of thermal ionisation mass spectrometry with a multicollector

    International Nuclear Information System (INIS)

    Turner, P.J.; Cantle, J.E.; Haines, R.C.

    1984-01-01

    The analytical accuracy of uranium analysis is limited by fractionation occuring before and during the data acquisition period. With peak jumping methods, increasing the data measuring period beyond 15 to 20 minutes can result in a deteriorating, internal precision because the ratio being measured is changing significantly. In addition the operator often has the choice of taking poor data when the beam is unstable or decaying rapidly or waiting for beam stability and measuring a more fractionated ratio to higher precision. Either way measurement accuracy is reduced. Simultaneous measurement of the ion beams using a multicollector greatly eases these difficulties. Multicollector analysis offers the following advantages for uranium analysis: (1) greatly reduced analysis time; (2) improved internal errors duing data acquisition allowing: (a) smaller samples to be measured, (b) greater dynamic ratios to be measured before internal errors become comparable to the external errors; (3) short data acquisition time giving better results on rapidly fractionating samples; (4) great tolerance to unstable and rapidly decaying beams resulting in fewer ''unsatisfactory'' analyses. 4 figs

  3. [Precision nutrition in the era of precision medicine].

    Science.gov (United States)

    Chen, P Z; Wang, H

    2016-12-06

    Precision medicine has been increasingly incorporated into clinical practice and is enabling a new era for disease prevention and treatment. As an important constituent of precision medicine, precision nutrition has also been drawing more attention during physical examinations. The main aim of precision nutrition is to provide safe and efficient intervention methods for disease treatment and management, through fully considering the genetics, lifestyle (dietary, exercise and lifestyle choices), metabolic status, gut microbiota and physiological status (nutrient level and disease status) of individuals. Three major components should be considered in precision nutrition, including individual criteria for sufficient nutritional status, biomarker monitoring or techniques for nutrient detection and the applicable therapeutic or intervention methods. It was suggested that, in clinical practice, many inherited and chronic metabolic diseases might be prevented or managed through precision nutritional intervention. For generally healthy populations, because lifestyles, dietary factors, genetic factors and environmental exposures vary among individuals, precision nutrition is warranted to improve their physical activity and reduce disease risks. In summary, research and practice is leading toward precision nutrition becoming an integral constituent of clinical nutrition and disease prevention in the era of precision medicine.

  4. Rapid and accurate prediction and scoring of water molecules in protein binding sites.

    Directory of Open Access Journals (Sweden)

    Gregory A Ross

    Full Text Available Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.

  5. Laser precision microfabrication in Japan

    Science.gov (United States)

    Miyamoto, Isamu; Ooie, Toshihiko; Takeno, Shozui

    2000-11-01

    Electronic devices such as handy phones and micro computers have been rapidly expanding their market recent years due to their enhanced performance, down sizing and cost down. This has been realized by the innovation in the precision micro- fabrication technology of semiconductors and printed wiring circuit boards (PWB) where laser technologies such as lithography, drilling, trimming, welding and soldering play an important role. In phot lithography, for instance, KrF excimer lasers having a resolution of 0.18 micrometers has been used in production instead of mercury lamp. Laser drilling of PWB has been increased up to over 1000 holes per second, and approximately 800 laser drilling systems of PWB are expected to be delivered in the world market this year, and most of these laser processing systems are manufactured in Japan. Trend of laser micro-fabrication in Japanese industry is described along with recent topics of R&D, government supported project and future tasks of industrial laser precision micro-fabrication on the basis of the survey conducted by Japan laser Processing Society.

  6. Precision measurements with an electroweak boson in the final state with the ATLAS detector

    CERN Document Server

    Lang, Valerie Susanne; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma* bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements for W+, W- and Z/gamma* bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Also a new three dimensional cross-section measurement of Z boson vs. its invariant mass, the absolute dilepton rapidity, and the angular variable between the lepton and the quark in the Collins-Soper frame will be discussed. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. When also studying light and heavy quark iniated jet production in association with vector bosons, perturbative QCD prediction in a multi-scale environment can be tested. Once the QCD aspects of the vector boson production are understood, high precision measurements aiming at the tests of ...

  7. A three-dimensional image processing program for accurate, rapid, and semi-automated segmentation of neuronal somata with dense neurite outgrowth

    Science.gov (United States)

    Ross, James D.; Cullen, D. Kacy; Harris, James P.; LaPlaca, Michelle C.; DeWeerth, Stephen P.

    2015-01-01

    Three-dimensional (3-D) image analysis techniques provide a powerful means to rapidly and accurately assess complex morphological and functional interactions between neural cells. Current software-based identification methods of neural cells generally fall into two applications: (1) segmentation of cell nuclei in high-density constructs or (2) tracing of cell neurites in single cell investigations. We have developed novel methodologies to permit the systematic identification of populations of neuronal somata possessing rich morphological detail and dense neurite arborization throughout thick tissue or 3-D in vitro constructs. The image analysis incorporates several novel automated features for the discrimination of neurites and somata by initially classifying features in 2-D and merging these classifications into 3-D objects; the 3-D reconstructions automatically identify and adjust for over and under segmentation errors. Additionally, the platform provides for software-assisted error corrections to further minimize error. These features attain very accurate cell boundary identifications to handle a wide range of morphological complexities. We validated these tools using confocal z-stacks from thick 3-D neural constructs where neuronal somata had varying degrees of neurite arborization and complexity, achieving an accuracy of ≥95%. We demonstrated the robustness of these algorithms in a more complex arena through the automated segmentation of neural cells in ex vivo brain slices. These novel methods surpass previous techniques by improving the robustness and accuracy by: (1) the ability to process neurites and somata, (2) bidirectional segmentation correction, and (3) validation via software-assisted user input. This 3-D image analysis platform provides valuable tools for the unbiased analysis of neural tissue or tissue surrogates within a 3-D context, appropriate for the study of multi-dimensional cell-cell and cell-extracellular matrix interactions. PMID

  8. GPS Precision Timing at CERN

    CERN Document Server

    Beetham, C G

    1999-01-01

    For the past decade, the Global Positioning System (GPS) has been used to provide precise time, frequency and position co-ordinates world-wide. Recently, equipment has become available specialising in providing extremely accurate timing information, referenced to Universal Time Co-ordinates (UTC). This feature has been used at CERN to provide time of day information for systems that have been installed in the Proton Synchrotron (PS), Super Proton Synchrotron (SPS) and the Large Electron Positron (LEP) machines. The different systems are described as well as the planned developments, particularly with respect to optical transmission and the Inter-Range Instrumentation Group IRIG-B standard, for future use in the Large Hadron Collider (LHC).

  9. Laser-generated ultrasound for high-precision cutting of tissue-mimicking gels (Conference Presentation)

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Guo, L. Jay

    2017-03-01

    Laser-generated focused ultrasound has shown great promise in precisely treating cells and tissues by producing controlled micro-cavitation within the acoustic focal volume (30 MPa, negative pressure amplitude). By moving cavitation spots along pre-defined paths through a motorized stage, tissue-mimicking gels of different elastic moduli were cut into different shapes (rectangle, triangle, and circle), leaving behind the same shape of holes, whose sizes are less than 1 mm. The cut line width is estimated to be less than 50 um (corresponding to localized cavitation region), allowing for accurate cutting. This novel approach could open new possibility for in-vivo treatment of diseased tissues in a high-precision manner (i.e., high-precision invisible sonic scalpel).

  10. Laser-Induced Focused Ultrasound for Cavitation Treatment: Toward High-Precision Invisible Sonic Scalpel.

    Science.gov (United States)

    Lee, Taehwa; Luo, Wei; Li, Qiaochu; Demirci, Hakan; Guo, L Jay

    2017-10-01

    Beyond the implementation of the photoacoustic effect to photoacoustic imaging and laser ultrasonics, this study demonstrates a novel application of the photoacoustic effect for high-precision cavitation treatment of tissue using laser-induced focused ultrasound. The focused ultrasound is generated by pulsed optical excitation of an efficient photoacoustic film coated on a concave surface, and its amplitude is high enough to produce controllable microcavitation within the focal region (lateral focus <100 µm). Such microcavitation is used to cut or ablate soft tissue in a highly precise manner. This work demonstrates precise cutting of tissue-mimicking gels as well as accurate ablation of gels and animal eye tissues. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Precision intercomparison of beam current monitors at CEBAF

    International Nuclear Information System (INIS)

    Kazimi, R.; Dunham, B.; Krafft, G.A.; Legg, R.; Liang, C.; Sinclair, C.; Mamosser, J.

    1995-01-01

    The CEBAF accelerator delivers a CW electron beam at fundamental 1497 MHz, with average beam current up to 200 μA. Accurate, stable nonintercepting beam current monitors are required for: setup/control, monitoring of beam current and beam losses for machine protection and personnel safety, and providing beam current information to experimental users. Fundamental frequency stainless steel RF cavities have been chosen for these beam current monitors. This paper reports on precision intercomparison between two such RF cavities, an Unser monitor, and two Faraday cups, all located in the injector area. At the low beam energy in the injector, it is straightforward to verify the high efficiency of the Faraday cups, and the Unser monitor included a wire through it to permit an absolute calibration. The cavity intensity monitors have proven capable of stable, high precision monitoring of the beam current

  12. BLE-BASED ACCURATE INDOOR LOCATION TRACKING FOR HOME AND OFFICE

    OpenAIRE

    Joonghong Park; Jaehoon Kim; Sungwon Kang

    2015-01-01

    Nowadays the use of smart mobile devices and the accompanying needs for emerging services relying on indoor location-based services (LBS) for mobile devices are rapidly increasing. For more accurate location tracking using Bluetooth Low Energy (BLE), this paper proposes a novel trilateration-based algorithm and presents experimental results that demonstrate its effectiveness.

  13. Golden Jubilee photos: Precision is their motto

    CERN Multimedia

    2004-01-01

    At the beginning of the 1980s, CERN embarked on the enormous Large Electron-Positron Collider construction project. The excavation of the 27-kilometre LEP tunnel was a huge technical challenge. The tunnel-boring machines excavated the tunnel in 3.3 km octants and had to be operated with extraordinary precision to ensure that they reached their destination - the bottom of the next vertical shaft - precisely on target. The tunnel was excavated before high-performance instruments were developed for the construction of the Channel Tunnel. As no firms were willing to perform the surveying work, CERN's own surveyors, with experience from the SPS behind them, took up the challenge. At the surface, the surveyors established the world's most accurate geodetic network, performing measurements to an accuracy of 10-7, or 1mm per 10 km, using the Terrameter (see photo). The excavation of the tunnel was completed in 1988 and the finished tunnel's trajectory was found to diverge from the theoretical value specified by the...

  14. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Directory of Open Access Journals (Sweden)

    Wenwei Zuo

    2018-01-01

    Full Text Available Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS/Global Positioning System (GPS positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API of the original standard Global Navigation Satellite System (GNSS to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to

  15. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-01

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  16. A Police and Insurance Joint Management System Based on High Precision BDS/GPS Positioning.

    Science.gov (United States)

    Zuo, Wenwei; Guo, Chi; Liu, Jingnan; Peng, Xuan; Yang, Min

    2018-01-10

    Car ownership in China reached 194 million vehicles at the end of 2016. The traffic congestion index (TCI) exceeds 2.0 during rush hour in some cities. Inefficient processing for minor traffic accidents is considered to be one of the leading causes for road traffic jams. Meanwhile, the process after an accident is quite troublesome. The main reason is that it is almost always impossible to get the complete chain of evidence when the accident happens. Accordingly, a police and insurance joint management system is developed which is based on high precision BeiDou Navigation Satellite System (BDS)/Global Positioning System (GPS) positioning to process traffic accidents. First of all, an intelligent vehicle rearview mirror terminal is developed. The terminal applies a commonly used consumer electronic device with single frequency navigation. Based on the high precision BDS/GPS positioning algorithm, its accuracy can reach sub-meter level in the urban areas. More specifically, a kernel driver is built to realize the high precision positioning algorithm in an Android HAL layer. Thus the third-party application developers can call the general location Application Programming Interface (API) of the original standard Global Navigation Satellite System (GNSS) to get high precision positioning results. Therefore, the terminal can provide lane level positioning service for car users. Next, a remote traffic accident processing platform is built to provide big data analysis and management. According to the big data analysis of information collected by BDS high precision intelligent sense service, vehicle behaviors can be obtained. The platform can also automatically match and screen the data that uploads after an accident to achieve accurate reproduction of the scene. Thus, it helps traffic police and insurance personnel to complete remote responsibility identification and survey for the accident. Thirdly, a rapid processing flow is established in this article to meet the

  17. Accuracy and precision of protein-ligand interaction kinetics determined from chemical shift titrations

    Energy Technology Data Exchange (ETDEWEB)

    Markin, Craig J.; Spyracopoulos, Leo, E-mail: leo.spyracopoulos@ualberta.ca [University of Alberta, Department of Biochemistry (Canada)

    2012-12-15

    NMR-monitored chemical shift titrations for the study of weak protein-ligand interactions represent a rich source of information regarding thermodynamic parameters such as dissociation constants (K{sub D}) in the micro- to millimolar range, populations for the free and ligand-bound states, and the kinetics of interconversion between states, which are typically within the fast exchange regime on the NMR timescale. We recently developed two chemical shift titration methods wherein co-variation of the total protein and ligand concentrations gives increased precision for the K{sub D} value of a 1:1 protein-ligand interaction (Markin and Spyracopoulos in J Biomol NMR 53: 125-138, 2012). In this study, we demonstrate that classical line shape analysis applied to a single set of {sup 1}H-{sup 15}N 2D HSQC NMR spectra acquired using precise protein-ligand chemical shift titration methods we developed, produces accurate and precise kinetic parameters such as the off-rate (k{sub off}). For experimentally determined kinetics in the fast exchange regime on the NMR timescale, k{sub off} {approx} 3,000 s{sup -1} in this work, the accuracy of classical line shape analysis was determined to be better than 5 % by conducting quantum mechanical NMR simulations of the chemical shift titration methods with the magnetic resonance toolkit GAMMA. Using Monte Carlo simulations, the experimental precision for k{sub off} from line shape analysis of NMR spectra was determined to be 13 %, in agreement with the theoretical precision of 12 % from line shape analysis of the GAMMA simulations in the presence of noise and protein concentration errors. In addition, GAMMA simulations were employed to demonstrate that line shape analysis has the potential to provide reasonably accurate and precise k{sub off} values over a wide range, from 100 to 15,000 s{sup -1}. The validity of line shape analysis for k{sub off} values approaching intermediate exchange ({approx}100 s{sup -1}), may be facilitated by

  18. A rapid and accurate method for determining protein content in dairy products based on asynchronous-injection alternating merging zone flow-injection spectrophotometry.

    Science.gov (United States)

    Liang, Qin-Qin; Li, Yong-Sheng

    2013-12-01

    An accurate and rapid method and a system to determine protein content using asynchronous-injection alternating merging zone flow-injection spectrophotometry based on reaction between coomassie brilliant blue G250 (CBBG) and protein was established. Main merit of our approach is that it can avoid interferences of other nitric-compounds in samples, such as melamine and urea. Optimized conditions are as follows: Concentrations of CBBG, polyvinyl alcohol (PVA), NaCl and HCl are 150 mg/l, 30 mg/l, 0.1 mol/l and 1.0% (v/v), respectively; volumes of the sample and reagent are 150 μl and 30 μl, respectively; length of a reaction coil is 200 cm; total flow rate is 2.65 ml/min. The linear range of the method is 0.5-15 mg/l (BSA), its detection limit is 0.05 mg/l, relative standard deviation is less than 1.87% (n=11), and analytical speed is 60 samples per hour. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Accurate measurements of neutron activation cross sections

    International Nuclear Information System (INIS)

    Semkova, V.

    1999-01-01

    The applications of some recent achievements of neutron activation method on high intensity neutron sources are considered from the view point of associated errors of cross sections data for neutron induced reaction. The important corrections in -y-spectrometry insuring precise determination of the induced radioactivity, methods for accurate determination of the energy and flux density of neutrons, produced by different sources, and investigations of deuterium beam composition are considered as factors determining the precision of the experimental data. The influence of the ion beam composition on the mean energy of neutrons has been investigated by measurement of the energy of neutrons induced by different magnetically analysed deuterium ion groups. Zr/Nb method for experimental determination of the neutron energy in the 13-15 MeV energy range allows to measure energy of neutrons from D-T reaction with uncertainty of 50 keV. Flux density spectra from D(d,n) E d = 9.53 MeV and Be(d,n) E d = 9.72 MeV are measured by PHRS and foil activation method. Future applications of the activation method on NG-12 are discussed. (author)

  20. Accurate and precise determination of critical properties from Gibbs ensemble Monte Carlo simulations

    International Nuclear Information System (INIS)

    Dinpajooh, Mohammadhasan; Bai, Peng; Allan, Douglas A.; Siepmann, J. Ilja

    2015-01-01

    Since the seminal paper by Panagiotopoulos [Mol. Phys. 61, 813 (1997)], the Gibbs ensemble Monte Carlo (GEMC) method has been the most popular particle-based simulation approach for the computation of vapor–liquid phase equilibria. However, the validity of GEMC simulations in the near-critical region has been questioned because rigorous finite-size scaling approaches cannot be applied to simulations with fluctuating volume. Valleau [Mol. Simul. 29, 627 (2003)] has argued that GEMC simulations would lead to a spurious overestimation of the critical temperature. More recently, Patel et al. [J. Chem. Phys. 134, 024101 (2011)] opined that the use of analytical tail corrections would be problematic in the near-critical region. To address these issues, we perform extensive GEMC simulations for Lennard-Jones particles in the near-critical region varying the system size, the overall system density, and the cutoff distance. For a system with N = 5500 particles, potential truncation at 8σ and analytical tail corrections, an extrapolation of GEMC simulation data at temperatures in the range from 1.27 to 1.305 yields T c = 1.3128 ± 0.0016, ρ c = 0.316 ± 0.004, and p c = 0.1274 ± 0.0013 in excellent agreement with the thermodynamic limit determined by Potoff and Panagiotopoulos [J. Chem. Phys. 109, 10914 (1998)] using grand canonical Monte Carlo simulations and finite-size scaling. Critical properties estimated using GEMC simulations with different overall system densities (0.296 ≤ ρ t ≤ 0.336) agree to within the statistical uncertainties. For simulations with tail corrections, data obtained using r cut = 3.5σ yield T c and p c that are higher by 0.2% and 1.4% than simulations with r cut = 5 and 8σ but still with overlapping 95% confidence intervals. In contrast, GEMC simulations with a truncated and shifted potential show that r cut = 8σ is insufficient to obtain accurate results. Additional GEMC simulations for hard-core square-well particles with various

  1. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    International Nuclear Information System (INIS)

    Hoang, Ngoc-Tram D.; Nguyen, Duy-Anh P.; Hoang, Van-Hung; Le, Van-Hoang

    2016-01-01

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  2. Highly accurate analytical energy of a two-dimensional exciton in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Ngoc-Tram D. [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Nguyen, Duy-Anh P. [Department of Natural Science, Thu Dau Mot University, 6, Tran Van On Street, Thu Dau Mot City, Binh Duong Province (Viet Nam); Hoang, Van-Hung [Department of Physics, Ho Chi Minh City University of Pedagogy 280, An Duong Vuong Street, District 5, Ho Chi Minh City (Viet Nam); Le, Van-Hoang, E-mail: levanhoang@tdt.edu.vn [Atomic Molecular and Optical Physics Research Group, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, 19 Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City (Viet Nam)

    2016-08-15

    Explicit expressions are given for analytically describing the dependence of the energy of a two-dimensional exciton on magnetic field intensity. These expressions are highly accurate with the precision of up to three decimal places for the whole range of the magnetic field intensity. The results are shown for the ground state and some excited states; moreover, we have all formulae to obtain similar expressions of any excited state. Analysis of numerical results shows that the precision of three decimal places is maintained for the excited states with the principal quantum number of up to n=100.

  3. Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer

    CERN Document Server

    Guo Zhi Xiong; Komiya, A

    1999-01-01

    The technique of using a phase-shifting interferometer is applied to the study of diffusion in transparent liquid mixtures. A quick method is proposed for determining the diffusion coefficient from the measurements of the location of fringes on a grey level picture. The measurement time is very short (within 100 s) and a very small transient diffusion field can be observed and recorded accurately with a rate of 30 frames per second. The measurement can be completed using less than 0.12 cc of solutions. The influence of gravity on the measurement of the diffusion coefficient is eliminated in the present method. Results on NaCl-water diffusion systems are presented and compared with the reference data. (author)

  4. Application of high precision temperature control technology in infrared testing

    Science.gov (United States)

    Cao, Haiyuan; Cheng, Yong; Zhu, Mengzhen; Chu, Hua; Li, Wei

    2017-11-01

    In allusion to the demand of infrared system test, the principle of Infrared target simulator and the function of the temperature control are presented. The key technology of High precision temperature control is discussed, which include temperature gathering, PID control and power drive. The design scheme of temperature gathering is put forward. In order to reduce the measure error, discontinuously current and four-wire connection for the platinum thermal resistance are adopted. A 24-bits AD chip is used to improve the acquisition precision. Fuzzy PID controller is designed because of the large time constant and continuous disturbance of the environment temperature, which result in little overshoot, rapid response, high steady-state accuracy. Double power operational amplifiers are used to drive the TEC. Experiments show that the key performances such as temperature control precision and response speed meet the requirements.

  5. Automated Method for the Rapid and Precise Estimation of Adherent Cell Culture Characteristics from Phase Contrast Microscopy Images

    Science.gov (United States)

    Jaccard, Nicolas; Griffin, Lewis D; Keser, Ana; Macown, Rhys J; Super, Alexandre; Veraitch, Farlan S; Szita, Nicolas

    2014-01-01

    The quantitative determination of key adherent cell culture characteristics such as confluency, morphology, and cell density is necessary for the evaluation of experimental outcomes and to provide a suitable basis for the establishment of robust cell culture protocols. Automated processing of images acquired using phase contrast microscopy (PCM), an imaging modality widely used for the visual inspection of adherent cell cultures, could enable the non-invasive determination of these characteristics. We present an image-processing approach that accurately detects cellular objects in PCM images through a combination of local contrast thresholding and post hoc correction of halo artifacts. The method was thoroughly validated using a variety of cell lines, microscope models and imaging conditions, demonstrating consistently high segmentation performance in all cases and very short processing times (image). Based on the high segmentation performance, it was possible to precisely determine culture confluency, cell density, and the morphology of cellular objects, demonstrating the wide applicability of our algorithm for typical microscopy image processing pipelines. Furthermore, PCM image segmentation was used to facilitate the interpretation and analysis of fluorescence microscopy data, enabling the determination of temporal and spatial expression patterns of a fluorescent reporter. We created a software toolbox (PHANTAST) that bundles all the algorithms and provides an easy to use graphical user interface. Source-code for MATLAB and ImageJ is freely available under a permissive open-source license. Biotechnol. Bioeng. 2014;111: 504–517. © 2013 Wiley Periodicals, Inc. PMID:24037521

  6. Accurate wavelength prediction of photonic crystal resonant reflection and applications in refractive index measurement

    DEFF Research Database (Denmark)

    Hermannsson, Pétur Gordon; Vannahme, Christoph; Smith, Cameron L. C.

    2014-01-01

    and superstrate materials. The importance of accounting for material dispersion in order to obtain accurate simulation results is highlighted, and a method for doing so using an iterative approach is demonstrated. Furthermore, an application for the model is demonstrated, in which the material dispersion......In the past decade, photonic crystal resonant reflectors have been increasingly used as the basis for label-free biochemical assays in lab-on-a-chip applications. In both designing and interpreting experimental results, an accurate model describing the optical behavior of such structures...... is essential. Here, an analytical method for precisely predicting the absolute positions of resonantly reflected wavelengths is presented. The model is experimentally verified to be highly accurate using nanoreplicated, polymer-based photonic crystal grating reflectors with varying grating periods...

  7. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    International Nuclear Information System (INIS)

    Kaniu, M.I.; Angeyo, K.H.; Mwala, A.K.; Mangala, M.J.

    2012-01-01

    Highlights: ► Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. ► The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. ► This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace ‘bioavailable’ macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using 109 Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R 2 > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 μg g −1 for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors’ knowledge, this is the first time that an XRF method has demonstrated utility in trace analysis of macronutrients in soil or related matrices.

  8. Accuracy and precision of equine gait event detection during walking with limb and trunk mounted inertial sensors

    DEFF Research Database (Denmark)

    Olsen, Emil; Andersen, Pia Haubro; Pfau, Thilo

    2012-01-01

    The increased variations of temporal gait events when pathology is present are good candidate features for objective diagnostic tests. We hypothesised that the gait events hoof-on/off and stance can be detected accurately and precisely using features from trunk and distal limb-mounted Inertial....... Accuracy (bias) and precision (SD of bias) was calculated to compare force plate and IMU timings for gait events. Data were collected from seven horses. One hundred and twenty three (123) front limb steps were analysed; hoof-on was detected with a bias (SD) of -7 (23) ms, hoof-off with 0.7 (37) ms...... and front limb stance with -0.02 (37) ms. A total of 119 hind limb steps were analysed; hoof-on was found with a bias (SD) of -4 (25) ms, hoof-off with 6 (21) ms and hind limb stance with 0.2 (28) ms. IMUs mounted on the distal limbs and sacrum can detect gait events accurately and precisely....

  9. An Investigation into the Trueness and Precision of Copy Denture Templates Produced by Rapid Prototyping and Conventional Means.

    Science.gov (United States)

    Davda, K; Osnes, C; Dillon, S; Wu, J; Hyde, P; Keeling, A

    2017-12-01

    To assess the trueness and precision of copy denture templates produced using traditional methods and 3D printing. Six copies of a denture were made using: 1. Conventional technique with silicone putty in an impression tray (CT). 2. Conventional technique with no impression tray (CNT). 3. 3D scanning and printing (3D). Scan trueness and precision was investigated by scanning a denture six times and comparing five scans to the sixth. Then the scans of the six CT, CNT and 3D dentures were compared by aligning, in turn, the copies of each denture to the scanned original. Outcome measures were the mean surface-to-surface distance, standard deviation of that distance and the maximum distance. Student's unpaired t-tests with Bonferroni correction were used to analyse the results. The repeated scans of the original denture showed a scan trueness of 0.013mm (SD 0.002) and precision of 0.013mm (SD 0.002). Trueness: CT templates, 0.168mm (0.047), CNT templates 0.195mm (0.034) and 3D 0.103mm (0.021). Precision: CT templates 0.158mm (0.037), CNT 0.233mm (0.073), 3D 0.090mm (0.017). For each outcome measure the 3D templates demonstrated an improvement which was statistically significant (p⟨0.05). 3D printed copy denture templates reproduced the original with greater trueness and precision than conventional techniques. Copyright© 2017 Dennis Barber Ltd.

  10. A high performance, high precision, low cost rapid prototyping and manufacturing technology

    OpenAIRE

    Viacheslav R. Shulunov

    2014-01-01

    A novel roll powder sintering (RPS) technology is proposed for processing real plastic, ceramic, metal and other 3-D objects 1m³ (or more) in volume directly from a CAD model within several hours. The breakthrough advantages of the technology are compared to the dominant rapid prototyping and manufacturing (RP&M) processes that are currently on the market.

  11. The application of precision gas chromatography to the identification of types of hydrocarbons

    NARCIS (Netherlands)

    Cramers, C.A.; Rijks, J.A.; Pacakova, V.; Ribeiro de Andrade, I.

    1970-01-01

    It appears that under precisely controlled conditions retention indices of apolar substances on apolar stationary phases can be reproduced to 0.03 units. This permits the accurate measurement of the temperature coefficients of the K index for different classes of hydrocarbons. In this way classes of

  12. Automatic Compensation of Workpiece Positioning Tolerances for Precise Laser

    Directory of Open Access Journals (Sweden)

    N. C. Stache

    2008-01-01

    Full Text Available Precise laser welding plays a fundamental role in the production of high-tech goods, particularly in precision engineering. In this working field, precise adjustment and compensation of positioning tolerances of the parts to be welded with respect to the laser beam is of paramount importance. This procedure mostly requires tedious and error-prone manual adjustment, which additionally results in a sharp increase in production costs. We therefore developed a system which automates and thus accelerates this procedure significantly. To this end, the welding machine is equipped with a camera to acquire high resolution images of the parts to be welded. In addition, a software framework is developed which enables precise automatic position detection of these parts and adjusts the position of the welding contour correspondingly. As a result, the machine is rapidly prepared for welding, and it is much more flexible in adapting to unknown parts.This paper describes the entire concept of extending a conventional welding machine with means for image acquisition and position estimation. In addition to this description, the algorithms, the results of an evaluation of position estimation, and a final welding result are presented. 

  13. Rapid and precise measurement of serum branched-chain and aromatic amino acids by isotope dilution liquid chromatography tandem mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Ruiyue Yang

    Full Text Available BACKGROUND: Serum branched-chain and aromatic amino acids (BCAAs and AAAs have emerged as predictors for the future development of diabetes and may aid in diabetes risk assessment. However, the current methods for the analysis of such amino acids in biological samples are time consuming. METHODS: An isotope dilution liquid chromatography tandem mass spectrometry (ID-LC/MS/MS method for serum BCAAs and AAAs was developed. The serum was mixed with isotope-labeled BCAA and AAA internal standards and the amino acids were extracted with acetonitrile, followed by analysis using LC/MS/MS. The LC separation was performed on a reversed-phase C18 column, and the MS/MS detection was performed via the positive electronic spray ionization in multiple reaction monitoring mode. RESULTS: Specific analysis of the amino acids was achieved within 2 min. Intra-run and total CVs for the amino acids were less than 2% and 4%, respectively, and the analytical recoveries ranged from 99.6 to 103.6%. CONCLUSION: A rapid and precise method for the measurement of serum BCAAs and AAAs was developed and may serve as a quick tool for screening serum BCAAs and AAAs in studies assessing diabetes risk.

  14. Accuracy of complete-arch dental impressions: a new method of measuring trueness and precision.

    Science.gov (United States)

    Ender, Andreas; Mehl, Albert

    2013-02-01

    A new approach to both 3-dimensional (3D) trueness and precision is necessary to assess the accuracy of intraoral digital impressions and compare them to conventionally acquired impressions. The purpose of this in vitro study was to evaluate whether a new reference scanner is capable of measuring conventional and digital intraoral complete-arch impressions for 3D accuracy. A steel reference dentate model was fabricated and measured with a reference scanner (digital reference model). Conventional impressions were made from the reference model, poured with Type IV dental stone, scanned with the reference scanner, and exported as digital models. Additionally, digital impressions of the reference model were made and the digital models were exported. Precision was measured by superimposing the digital models within each group. Superimposing the digital models on the digital reference model assessed the trueness of each impression method. Statistical significance was assessed with an independent sample t test (α=.05). The reference scanner delivered high accuracy over the entire dental arch with a precision of 1.6 ±0.6 µm and a trueness of 5.3 ±1.1 µm. Conventional impressions showed significantly higher precision (12.5 ±2.5 µm) and trueness values (20.4 ±2.2 µm) with small deviations in the second molar region (PDigital impressions were significantly less accurate with a precision of 32.4 ±9.6 µm and a trueness of 58.6 ±15.8µm (Pdigital models were visible across the entire dental arch. The new reference scanner is capable of measuring the precision and trueness of both digital and conventional complete-arch impressions. The digital impression is less accurate and shows a different pattern of deviation than the conventional impression. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  15. PRECISION SPECTROPHOTOMETRY AT THE LEVEL OF 0.1%

    International Nuclear Information System (INIS)

    Yan Renbin

    2011-01-01

    Accurate relative spectrophotometry is critical for many science applications. Small wavelength-scale residuals in the flux calibration can significantly impact the measurements of weak emission and absorption features in the spectra. Using Sloan Digital Sky Survey data, we demonstrate that the average spectra of carefully selected red-sequence galaxies can be used as a spectroscopic standard to improve the relative spectrophotometry precision to 0.1% on small wavelength scales (from a few to hundreds of Angstroms). We achieve this precision by comparing stacked spectra across tiny redshift intervals. The redshift intervals must be small enough that any systematic stellar population evolution is minimized and is less than the spectrophotometric uncertainty. This purely empirical technique does not require any theoretical knowledge of true galaxy spectra. It can be applied to all large spectroscopic galaxy redshift surveys that sample a large number of galaxies in a uniform population.

  16. Applying green analytical chemistry for rapid analysis of drugs: Adding health to pharmaceutical industry

    Directory of Open Access Journals (Sweden)

    Nazrul Haq

    2017-02-01

    Full Text Available Green RP-HPLC method for a rapid analysis of olmesartan medoxomil (OLM in bulk drugs, self-microemulsifying drug delivery system (SMEDDS and marketed tablets was developed and validated in the present investigation. The chromatographic identification was achieved on Lichrosphere 250 × 4.0 mm RP C8 column having a 5 μm packing as a stationary phase using a combination of green solvents ethyl acetate:ethanol (50:50% v/v as a mobile phase, at a flow rate of 1.0 mL/min with UV detection at 250 nm. The proposed method was validated for linearity, selectivity, accuracy, precision, reproducibility, robustness, sensitivity and specificity. The utility of the proposed method was verified by an assay of OLM in SMEDDS and commercial tablets. The proposed method was found to be selective, precise, reproducible, accurate, robust, sensitive and specific. The amount of OLM in SMEDDS and commercial tablets was found to be 101.25% and 98.67% respectively. The proposed method successfully resolved OLM peak in the presence of its degradation products which indicated stability-indicating property of the proposed method. These results indicated that the proposed method can be successfully employed for a routine analysis of OLM in bulk drugs and commercial formulations.

  17. -Omic and Electronic Health Record Big Data Analytics for Precision Medicine.

    Science.gov (United States)

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D; Venugopalan, Janani; Hoffman, Ryan; Wang, May D

    2017-02-01

    Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of healthcare. In this paper, we present -omic and EHR data characteristics, associated challenges, and data analytics including data preprocessing, mining, and modeling. To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Big data analytics is able to address -omic and EHR data challenges for paradigm shift toward precision medicine. Big data analytics makes sense of -omic and EHR data to improve healthcare outcome. It has long lasting societal impact.

  18. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    International Nuclear Information System (INIS)

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-01

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented

  19. Fast and accurate edge orientation processing during object manipulation

    Science.gov (United States)

    Flanagan, J Randall; Johansson, Roland S

    2018-01-01

    Quickly and accurately extracting information about a touched object’s orientation is a critical aspect of dexterous object manipulation. However, the speed and acuity of tactile edge orientation processing with respect to the fingertips as reported in previous perceptual studies appear inadequate in these respects. Here we directly establish the tactile system’s capacity to process edge-orientation information during dexterous manipulation. Participants extracted tactile information about edge orientation very quickly, using it within 200 ms of first touching the object. Participants were also strikingly accurate. With edges spanning the entire fingertip, edge-orientation resolution was better than 3° in our object manipulation task, which is several times better than reported in previous perceptual studies. Performance remained impressive even with edges as short as 2 mm, consistent with our ability to precisely manipulate very small objects. Taken together, our results radically redefine the spatial processing capacity of the tactile system. PMID:29611804

  20. Simple and rapid method on High Performance Liquid Chromatography for simultaneous determination of benzylpenicillin potassium, streptomycin sulphate and related substances in Ascomicin – a veterinary use ointment

    Directory of Open Access Journals (Sweden)

    Neagu Maria

    2015-06-01

    Full Text Available A new simple, rapid, accurate and precise High – Performance Liquid Chromatography (HPLC method for determination of benzylpenicillin potassium and streptomycin sulphate in Ascomicin ointment was developed and validated. The method can be used for the detection and quantification of known and unknown impurities and degradation products in this pharmaceutical product during routine analysis and also for stability studies in view of its capability to separate degradation products. The method was validated for accuracy, precision, specificity, robustness and quantification limits according to ICH Guidelines. The estimation of benzylpenicillin potassium and streptomycin sulphate was done by Waters HPLC 2695. The chromatographic conditions comprised a reverse-phased C18 column (5 µm particle size, 250 mm×4.6 mm i.d. with a mobile phase consisting of a mixture of solution in water containing 0.025 M of sodium phosphate dibasic and 0.02 of sodium hexansulfonate adjusted to pH 6.0 with 22.5 g/lsolution of phosphoric acid and acetonitrile in gradient elution. The flow rate was 0.8 ml/min. Standard curves were linear over the concentration range of 5.00 µg/ml to 5.00 mg/ml for streptomycin sulphate and 3.26 µg/ml to 3.26 mg/ml for benzylpenicillin potassium. Statistical analyses proved the method was precise, reproducible, selective, specific and accurate for analysis of benzylpenicillin potassium, streptomycin sulphate and related substances.

  1. Accurate modeling of the hose instability in plasma wakefield accelerators

    Science.gov (United States)

    Mehrling, T. J.; Benedetti, C.; Schroeder, C. B.; Martinez de la Ossa, A.; Osterhoff, J.; Esarey, E.; Leemans, W. P.

    2018-05-01

    Hosing is a major challenge for the applicability of plasma wakefield accelerators and its modeling is therefore of fundamental importance to facilitate future stable and compact plasma-based particle accelerators. In this contribution, we present a new model for the evolution of the plasma centroid, which enables the accurate investigation of the hose instability in the nonlinear blowout regime. It paves the road for more precise and comprehensive studies of hosing, e.g., with drive and witness beams, which were not possible with previous models.

  2. Precise orbit determination and point positioning using GPS, Glonass, Galileo and BeiDou

    Directory of Open Access Journals (Sweden)

    Tegedor J.

    2014-04-01

    Full Text Available State of the art Precise Point Positioning (PPP is currently based on dual-frequency processing of GPS and Glonass navigation systems. The International GNSS Service (IGS is routinely providing the most accurate orbit and clock products for these constellations, allowing point positioning at centimeter-level accuracy. At the same time, the GNSS landscape is evolving rapidly, with the deployment of new constellations, such as Galileo and BeiDou. The BeiDou constellation currently consists of 14 operational satellites, and the 4 Galileo In-Orbit Validation (IOV satellites are transmitting initial Galileo signals. This paper focuses on the integration of Galileo and BeiDou in PPP, together with GPS and Glonass. Satellite orbits and clocks for all constellations are generated using a network adjustment with observation data collected by the IGS Multi-GNSS Experiment (MGEX, as well as from Fugro proprietary reference station network. The orbit processing strategy is described, and orbit accuracy for Galileo and BeiDou is assessed via orbit overlaps, for different arc lengths. Kinematic post-processed multi-GNSS positioning results are presented. The benefits of multiconstellation PPP are discussed in terms of enhanced availability and positioning accuracy.

  3. Method Development for Rapid Analysis of Natural Radioactive Nuclides Using Sector Field Inductively Coupled Plasma Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Lim, J.M.; Ji, Y.Y.; Lee, H.; Park, J.H.; Jang, M.; Chung, K.H.; Kang, M.J.; Choi, G.S. [Korea Atomic Energy Research Institute (Korea, Republic of)

    2014-07-01

    As an attempt to reduce the social costs and apprehension arising from radioactivity in the environment, an accurate and rapid assessment of radioactivity is highly desirable. Naturally occurring radioactive materials (NORM) are widely spread throughout the environment. The concern with radioactivity from these materials has therefore been growing for the last decade. In particular, radiation exposure in the industry when handling raw materials (e.g., coal mining and combustion, oil and gas production, metal mining and smelting, mineral sands (REE, Ti, Zr), fertilizer (phosphate), and building materials) has been brought to the public's attention. To decide the proper handling options, a rapid and accurate analytical method that can be used to evaluate the radioactivity of radionuclides (e.g., {sup 238}U, {sup 235}U, {sup 232}Th, {sup 226}Ra, and {sup 40}K) should be developed and validated. Direct measuring methods such as alpha spectrometry, a liquid scintillation counter (LSC), and mass-spectrometry are usually used for the measurement of radioactivity in NORM samples, and they encounter the most significant difficulties during pretreatment (e.g., purification, speciation, and dilution/enrichment). Since the pretreatment process consequently plays an important role in the measurement uncertainty, method development and validation should be performed. Furthermore, a-spectrometry has a major disadvantage of a long counting time, while it has a prominent measurement capability at a very low activity level of {sup 238}U, {sup 235}U, {sup 232}Th, and {sup 226}Ra. Contrary to the α-spectrometry method, a measurement technique using ICP-MS allow radioactivity in many samples to be measured in a short time period with a high degree of accuracy and precision. In this study, a method was developed for a rapid analysis of natural radioactive nuclides using ICP-MS. A sample digestion process was established using LiBO{sub 2} fusion and Fe co-precipitation. A magnetic

  4. Acquisition and reconstruction conditions in silico for accurate and precise magnetic resonance elastography

    Science.gov (United States)

    Yue, Jin Long; Tardieu, Marion; Julea, Felicia; Boucneau, Tanguy; Sinkus, Ralph; Pellot-Barakat, Claire; Maître, Xavier

    2017-11-01

    Magnetic resonance elastography (MRE) is a non invasive imaging modality, which holds the promise of absolute quantification of the mechanical properties of human tissues in vivo. MRE reconstruction with algebraic inversion of the Helmholtz equation upon the curl of the shear displacement field may theoretically be flawless. However, its performances are challenged by multiple experimental parameters, especially the frequency and the amplitude of the mechanical wave, the voxel size and the signal-to-noise ratio of the MRE acquisition. A point source excitation was simulated and realistic displacement fields were analytically computed to simulate MRE data sets in an isotropic, homogeneous, linearly-elastic, and half-space infinite medium. Acquisition and reconstruction methods were challenged and the joint influence of the aforementioned parameters was studied. For a given signal-to-noise ratio, the conditions on the number of voxels per wavelength were determined for optimizing voxel-wise accuracy and precision in MRE. It was shown that, once data are acquired, the reconstruction quality could even be improved by effective interpolation or decimation so data could eventually fulfill favorable conditions for mechanical characterization of the tissue. Finally, the overall outcome, which is usually computed from the three acquired motion-encoded directions, may further be improved by appropriate averaging strategies that are based on adapted curl of shear displacement field quality-weighting.

  5. Rapid measurement of macronutrients in breast milk: How reliable are infrared milk analyzers?✩

    Science.gov (United States)

    Fusch, Gerhard; Rochow, Niels; Choi, Arum; Fusch, Stephanie; Poeschl, Susanna; Ubah, Adelaide Obianuju; Lee, Sau-Young; Raja, Preeya; Fusch, Christoph

    2016-01-01

    SUMMARY Background & aims Significant biological variation in macronutrient content of breast milk is an important barrier that needs to be overcome to meet nutritional needs of preterm infants. To analyze macronutrient content, commercial infrared milk analyzers have been proposed as efficient and practical tools in terms of efficiency and practicality. Since milk analyzers were originally developed for the dairy industry, they must be validated using a significant number of human milk samples that represent the broad range of variation in macronutrient content in preterm and term milk. Aim of this study was to validate two milk analyzers for breast milk analysis with reference methods and to determine an effective sample pretreatment. Current evidence for the influence of (i) aliquoting, (ii) storage time and (iii) temperature, and (iv) vessel wall adsorption on stability and availability of macronutrients in frozen breast milk is reviewed. Methods Breast milk samples (n = 1188) were collected from 63 mothers of preterm and term infants. Milk analyzers: (A) Near-infrared milk analyzer (Unity SpectraStar, USA) and (B) Mid-infrared milk analyzer (Miris, Sweden) were compared to reference methods, e.g. ether extraction, elemental analysis, and UPLC-MS/MS for fat, protein, and lactose, respectively. Results For fat analysis, (A) measured precisely but not accurately (y = 0.55x + 1.25, r2 = 0.85), whereas (B) measured precisely and accurately (y = 0.93x + 0.18, r2 = 0.86). For protein analysis, (A) was precise but not accurate (y = 0.55x + 0.54, r2 = 0.67) while (B) was both precise and accurate (y = 0.78x + 0.05, r2 = 0.73). For lactose analysis, both devices (A) and (B) showed two distinct concentration levels and measured therefore neither accurately nor precisely (y = 0.02x + 5.69, r2 = 0.01 and y = −0.09x + 6.62, r2 = 0.02 respectively). Macronutrient levels were unchanged in two independent samples of stored breast milk (−20 °C measured with IR; −80

  6. Development of a high-speed real-time PCR system for rapid and precise nucleotide recognition

    Science.gov (United States)

    Terazono, Hideyuki; Takei, Hiroyuki; Hattori, Akihiro; Yasuda, Kenji

    2010-04-01

    Polymerase chain reaction (PCR) is a common method used to create copies of a specific target region of a DNA sequence and to produce large quantities of DNA. A few DNA molecules, which act as templates, are rapidly amplified by PCR into many billions of copies. PCR is a key technology in genome-based biological analysis, revolutionizing many life science fields such as medical diagnostics, food safety monitoring, and countermeasures against bioterrorism. Thus, many applications have been developed with the thermal cycling. For these PCR applications, one of the most important key factors is reduction in the data acquisition time. To reduce the acquisition time, it is necessary to decrease the temperature transition time between the high and low ends as much as possible. We have developed a novel rapid real-time PCR system based on rapid exchange of media maintained at different temperatures. This system consists of two thermal reservoirs and a reaction chamber for PCR observation. The temperature transition was achieved within 0.3 sec, and good thermal stability was achieved during thermal cycling with rapid exchange of circulating media. This system allows rigorous optimization of the temperatures required for each stage of the PCR processes. Resulting amplicons were confirmed by electrophoresis. Using the system, rapid DNA amplification was accomplished within 3.5 min, including initial heating and complete 50 PCR cycles. It clearly shows that the device could allow us faster temperature switching than the conventional conduction-based heating systems based on Peltier heating/cooling.

  7. Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease

    Science.gov (United States)

    Chuong, Kim H.; Mack, David R.; Stintzi, Alain

    2018-01-01

    Abstract Healthcare institutions face widespread challenges of delivering high-quality and cost-effective care, while keeping up with rapid advances in biomedical knowledge and technologies. Moreover, there is increased emphasis on developing personalized or precision medicine targeted to individuals or groups of patients who share a certain biomarker signature. Learning healthcare systems (LHS) have been proposed for integration of research and clinical practice to fill major knowledge gaps, improve care, reduce healthcare costs, and provide precision care. To date, much discussion in this context has focused on the potential of human genomic data, and not yet on human microbiome data. Rapid advances in human microbiome research suggest that profiling of, and interventions on, the human microbiome can provide substantial opportunity for improved diagnosis, therapeutics, risk management, and risk stratification. In this study, we discuss a potential role for microbiome science in LHSs. We first review the key elements of LHSs, and discuss possibilities of Big Data and patient engagement. We then consider potentials and challenges of integrating human microbiome research into clinical practice as part of an LHS. With rapid growth in human microbiome research, patient-specific microbial data will begin to contribute in important ways to precision medicine. Hence, we discuss how patient-specific microbial data can help guide therapeutic decisions and identify novel effective approaches for precision care of inflammatory bowel disease. To the best of our knowledge, this expert analysis makes an original contribution with new insights poised at the emerging intersection of LHSs, microbiome science, and postgenomics medicine. PMID:28282257

  8. Human Microbiome and Learning Healthcare Systems: Integrating Research and Precision Medicine for Inflammatory Bowel Disease.

    Science.gov (United States)

    Chuong, Kim H; Mack, David R; Stintzi, Alain; O'Doherty, Kieran C

    2018-02-01

    Healthcare institutions face widespread challenges of delivering high-quality and cost-effective care, while keeping up with rapid advances in biomedical knowledge and technologies. Moreover, there is increased emphasis on developing personalized or precision medicine targeted to individuals or groups of patients who share a certain biomarker signature. Learning healthcare systems (LHS) have been proposed for integration of research and clinical practice to fill major knowledge gaps, improve care, reduce healthcare costs, and provide precision care. To date, much discussion in this context has focused on the potential of human genomic data, and not yet on human microbiome data. Rapid advances in human microbiome research suggest that profiling of, and interventions on, the human microbiome can provide substantial opportunity for improved diagnosis, therapeutics, risk management, and risk stratification. In this study, we discuss a potential role for microbiome science in LHSs. We first review the key elements of LHSs, and discuss possibilities of Big Data and patient engagement. We then consider potentials and challenges of integrating human microbiome research into clinical practice as part of an LHS. With rapid growth in human microbiome research, patient-specific microbial data will begin to contribute in important ways to precision medicine. Hence, we discuss how patient-specific microbial data can help guide therapeutic decisions and identify novel effective approaches for precision care of inflammatory bowel disease. To the best of our knowledge, this expert analysis makes an original contribution with new insights poised at the emerging intersection of LHSs, microbiome science, and postgenomics medicine.

  9. Rapid deletion production in fungi via Agrobacterium mediated transformation of OSCAR deletion contructs.

    Science.gov (United States)

    Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene’s function in the living organism. In this protocol we describe the OSCAR method of precise and rapid deletion plasmid construction. OSCAR relies on t...

  10. Advanced methods and algorithm for high precision astronomical imaging

    International Nuclear Information System (INIS)

    Ngole-Mboula, Fred-Maurice

    2016-01-01

    One of the biggest challenges of modern cosmology is to gain a more precise knowledge of the dark energy and the dark matter nature. Fortunately, the dark matter can be traced directly through its gravitational effect on galaxies shapes. The European Spatial Agency Euclid mission will precisely provide data for such a purpose. A critical step is analyzing these data will be to accurately model the instrument Point Spread Function (PSF), which the focus of this thesis.We developed non parametric methods to reliably estimate the PSFs across an instrument field-of-view, based on unresolved stars images and accounting for noise, under sampling and PSFs spatial variability. At the core of these contributions, modern mathematical tools and concepts such as sparsity. An important extension of this work will be to account for the PSFs wavelength dependency. (author) [fr

  11. A novel sample preparation method using rapid nonheated saponification method for the determination of cholesterol in emulsified foods.

    Science.gov (United States)

    Jeong, In-Seek; Kwak, Byung-Man; Ahn, Jang-Hyuk; Leem, Donggil; Yoon, Taehyung; Yoon, Changyong; Jeong, Jayoung; Park, Jung-Min; Kim, Jin-Man

    2012-10-01

    In this study, nonheated saponification was employed as a novel, rapid, and easy sample preparation method for the determination of cholesterol in emulsified foods. Cholesterol content was analyzed using gas chromatography with a flame ionization detector (GC-FID). The cholesterol extraction method was optimized for maximum recovery from baby food and infant formula. Under these conditions, the optimum extraction solvent was 10 mL ethyl ether per 1 to 2 g sample, and the saponification solution was 0.2 mL KOH in methanol. The cholesterol content in the products was determined to be within the certified range of certified reference materials (CRMs), NIST SRM 1544 and SRM 1849. The results of the recovery test performed using spiked materials were in the range of 98.24% to 99.45% with an relative standard devitation (RSD) between 0.83% and 1.61%. This method could be used to reduce sample pretreatment time and is expected to provide an accurate determination of cholesterol in emulsified food matrices such as infant formula and baby food. A novel, rapid, and easy sample preparation method using nonheated saponification was developed for cholesterol detection in emulsified foods. Recovery tests of CRMs were satisfactory, and the recoveries of spiked materials were accurate and precise. This method was effective and decreased the time required for analysis by 5-fold compared to the official method. © 2012 Institute of Food Technologists®

  12. High-precision relative position and attitude measurement for on-orbit maintenance of spacecraft

    Science.gov (United States)

    Zhu, Bing; Chen, Feng; Li, Dongdong; Wang, Ying

    2018-02-01

    In order to realize long-term on-orbit running of satellites, space stations, etc spacecrafts, in addition to the long life design of devices, The life of the spacecraft can also be extended by the on-orbit servicing and maintenance. Therefore, it is necessary to keep precise and detailed maintenance of key components. In this paper, a high-precision relative position and attitude measurement method used in the maintenance of key components is given. This method mainly considers the design of the passive cooperative marker, light-emitting device and high resolution camera in the presence of spatial stray light and noise. By using a series of algorithms, such as background elimination, feature extraction, position and attitude calculation, and so on, the high precision relative pose parameters as the input to the control system between key operation parts and maintenance equipment are obtained. The simulation results show that the algorithm is accurate and effective, satisfying the requirements of the precision operation technique.

  13. Precision of anterior and posterior corneal curvature measurements taken with the Oculus Pentacam

    Directory of Open Access Journals (Sweden)

    Elizabeth Chetty

    2016-06-01

    Full Text Available In the era of rapid advances in technology, new ophthalmic instruments are constantly influencing health sciences and necessitating investigations of the accuracy and precision of the new technology. The Oculus Pentacam (70700 has been available for some time now and numerous studies have investigated the precision of some of the parameters that the Pentacam is capable of measuring. Unfortunately some of these studies fall short in confusing the meaning of accuracy and precision and in not being able to analyse the data correctly or completely. The aim of this study was to investigate the precision of the anterior and posterior corneal curvature measurements taken with the Oculus Pentacam (70700 holistically with sound multivariate statistical methods. Twenty successive Pentacam measurements were taken over three different measuring sessions on one subject. Keratometric data for both the anterior and posterior corneal surfaces were analysed using multivariate statistics to determine the precision of the Oculus Pentacam. This instrument was found to have good precision both clinically and statistically for anterior corneal measurements but only good clinical precision for the posterior corneal surface. Key words: Oculus Pentacam; keratometric variation; corneal curvature; multivariate statistics

  14. Advantages of utilizing DMD based rapid manufacturing systems in mass customization applications

    Science.gov (United States)

    El-Siblani, A.

    2010-02-01

    The Use of DMD based Rapid Manufacturing Systems has proven to be very advantageous in the production of highly accurate plastic based components for use in mass customization market such as hearing aids, and dental markets. The voxelization process currently afforded with the DLP technology eliminates any layering effect associated with all existing additive Rapid Manufacturing technologies. The smooth accurate surfaces produced in an additive process utilizing DLP technology, through the voxelization approach, allow for the production of custom finished products. The implementation of DLP technology in rapid prototyping and rapid manufacturing systems allow for the usage of highly viscous photopolymer based liquid and paste composites for rapid manufacturing that could not be used in any other additive process prior to implementation of DLP technology in RP and RM systems. It also allowed for the greater throughput in production without sacrificing quality and accuracy.

  15. Precise Truss Assembly Using Commodity Parts and Low Precision Welding

    Science.gov (United States)

    Komendera, Erik; Reishus, Dustin; Dorsey, John T.; Doggett, W. R.; Correll, Nikolaus

    2014-01-01

    Hardware and software design and system integration for an intelligent precision jigging robot (IPJR), which allows high precision assembly using commodity parts and low-precision bonding, is described. Preliminary 2D experiments that are motivated by the problem of assembling space telescope optical benches and very large manipulators on orbit using inexpensive, stock hardware and low-precision welding are also described. An IPJR is a robot that acts as the precise "jigging", holding parts of a local structure assembly site in place, while an external low precision assembly agent cuts and welds members. The prototype presented in this paper allows an assembly agent (for this prototype, a human using only low precision tools), to assemble a 2D truss made of wooden dowels to a precision on the order of millimeters over a span on the order of meters. The analysis of the assembly error and the results of building a square structure and a ring structure are discussed. Options for future work, to extend the IPJR paradigm to building in 3D structures at micron precision are also summarized.

  16. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  17. Rigorous high-precision enclosures of fixed points and their invariant manifolds

    Science.gov (United States)

    Wittig, Alexander N.

    The well established concept of Taylor Models is introduced, which offer highly accurate C0 enclosures of functional dependencies, combining high-order polynomial approximation of functions and rigorous estimates of the truncation error, performed using verified arithmetic. The focus of this work is on the application of Taylor Models in algorithms for strongly non-linear dynamical systems. A method is proposed to extend the existing implementation of Taylor Models in COSY INFINITY from double precision coefficients to arbitrary precision coefficients. Great care is taken to maintain the highest efficiency possible by adaptively adjusting the precision of higher order coefficients in the polynomial expansion. High precision operations are based on clever combinations of elementary floating point operations yielding exact values for round-off errors. An experimental high precision interval data type is developed and implemented. Algorithms for the verified computation of intrinsic functions based on the High Precision Interval datatype are developed and described in detail. The application of these operations in the implementation of High Precision Taylor Models is discussed. An application of Taylor Model methods to the verification of fixed points is presented by verifying the existence of a period 15 fixed point in a near standard Henon map. Verification is performed using different verified methods such as double precision Taylor Models, High Precision intervals and High Precision Taylor Models. Results and performance of each method are compared. An automated rigorous fixed point finder is implemented, allowing the fully automated search for all fixed points of a function within a given domain. It returns a list of verified enclosures of each fixed point, optionally verifying uniqueness within these enclosures. An application of the fixed point finder to the rigorous analysis of beam transfer maps in accelerator physics is presented. Previous work done by

  18. Performance of commercial platforms for rapid genotyping of polymorphisms affecting warfarin dose.

    Science.gov (United States)

    King, Cristi R; Porche-Sorbet, Rhonda M; Gage, Brian F; Ridker, Paul M; Renaud, Yannick; Phillips, Michael S; Eby, Charles

    2008-06-01

    Initiation of warfarin therapy is associated with bleeding owing to its narrow therapeutic window and unpredictable therapeutic dose. Pharmacogenetic-based dosing algorithms can improve accuracy of initial warfarin dosing but require rapid genotyping for cytochrome P-450 2C9 (CYP2C9) *2 and *3 single nucleotide polymorphisms (SNPs) and a vitamin K epoxide reductase (VKORC1) SNP. We evaluated 4 commercial systems: INFINITI analyzer (AutoGenomics, Carlsbad, CA), Invader assay (Third Wave Technologies, Madison, WI), Tag-It Mutation Detection assay (Luminex Molecular Diagnostics, formerly Tm Bioscience, Toronto, Canada), and Pyrosequencing (Biotage, Uppsala, Sweden). We genotyped 112 DNA samples and resolved any discrepancies with bidirectional sequencing. The INFINITI analyzer was 100% accurate for all SNPs and required 8 hours. Invader and Tag-It were 100% accurate for CYP2C9 SNPs, 99% accurate for VKORC1 -1639/3673 SNP, and required 3 hours and 8 hours, respectively. Pyrosequencing was 99% accurate for CYP2C9 *2, 100% accurate for CYP2C9 *3, and 100% accurate for VKORC1 and required 4 hours. Current commercial platforms provide accurate and rapid genotypes for pharmacogenetic dosing during initiation of warfarin therapy.

  19. Little-Higgs corrections to precision data after CERN LEP2

    International Nuclear Information System (INIS)

    Marandella, Guido; Schappacher, Christian; Strumia, Alessandro

    2005-01-01

    We reconsider little-Higgs corrections to precision data. In five models with global symmetries SU(5), SU(6), SO(9) corrections are (although not explicitly) of 'universal' type. We get simple expressions for the S-circumflex,T-circumflex,W,Y parameters, which summarize all effects. In all models W,Y≥0 and in almost all models S-circumflex>(W+Y)/2. Results differ from previous analyses, which are sometimes incomplete, sometimes incorrect, and because we add LEP2 ee→ff cross sections to the data set. Depending on the model, the constraint on f ranges between 2 and 20 TeV. We next study the simplest little-Higgs model (and propose a related model) which is not universal and affects precision data due to the presence of an extra Z ' vector. By restricting the data set to the most accurate leptonic data we show how corrections to precision data generated by a generic Z ' can be encoded in four effective S-circumflex,T-circumflex,W,Y parameters, giving their expressions

  20. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats.

    Science.gov (United States)

    Armour, John A L; Palla, Raquel; Zeeuwen, Patrick L J M; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies.

  1. The SPECIES and ORGANISMS Resources for Fast and Accurate Identification of Taxonomic Names in Text

    DEFF Research Database (Denmark)

    Pafilis, Evangelos; Pletscher-Frankild, Sune; Fanini, Lucia

    2013-01-01

    The exponential growth of the biomedical literature is making the need for efficient, accurate text-mining tools increasingly clear. The identification of named biological entities in text is a central and difficult task. We have developed an efficient algorithm and implementation of a dictionary......-based approach to named entity recognition, which we here use to identify names of species and other taxa in text. The tool, SPECIES, is more than an order of magnitude faster and as accurate as existing tools. The precision and recall was assessed both on an existing gold-standard corpus and on a new corpus...

  2. Accurate mass measurements on neutron-deficient krypton isotopes

    CERN Document Server

    Rodríguez, D.; Äystö, J.; Beck, D.; Blaum, K.; Bollen, G.; Herfurth, F.; Jokinen, A.; Kellerbauer, A.; Kluge, H.-J.; Kolhinen, V.S.; Oinonen, M.; Sauvan, E.; Schwarz, S.

    2006-01-01

    The masses of $^{72–78,80,82,86}$Kr were measured directly with the ISOLTRAP Penning trap mass spectrometer at ISOLDE/CERN. For all these nuclides, the measurements yielded mass uncertainties below 10 keV. The ISOLTRAP mass values for $^{72–75}$Kr being more precise than the previous results obtained by means of other techniques, and thus completely determine the new values in the Atomic-Mass Evaluation. Besides the interest of these masses for nuclear astrophysics, nuclear structure studies, and Standard Model tests, these results constitute a valuable and accurate input to improve mass models. In this paper, we present the mass measurements and discuss the mass evaluation for these Kr isotopes.

  3. Rapidity correlations test stochastic hydrodynamics

    International Nuclear Information System (INIS)

    Zin, C; Gavin, S; Moschelli, G

    2017-01-01

    We show that measurements of the rapidity dependence of transverse momentum correlations can be used to determine the characteristic time τ π that dictates the rate of isotropization of the stress energy tensor, as well as the shear viscosity ν = η/sT . We formulate methods for computing these correlations using second order dissipative hydrodynamics with noise. Current data are consistent with τ π /ν ∼ 10 but targeted measurements can improve this precision. (paper)

  4. Rapid Analysis of U isotopic ratios in Food Stuff samples using Fusion and ICP-MS measurement: For radiation monitoring program in the vicinity of nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jong Myoung; Park, Ji Young; Jung, Yoon Hee; Kim, Hyun Cheol; Kim, Won Young; Chung, Gun Ho; Kang, Mun Ja [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this study, a rapid digestion and separation method for U isotopes was developed in food stuff matrix such as cabbage and rice. As an attempt to reduce social costs and apprehension arising from the radioactivity in food, an accurate and rapid assessment of radioactivity is highly desirable. Hence, it is very important to develop a series of evaluation of rapid procedures for efficient radioactivity management in food. Contrary to the α-spectrometry method, a measurement technique using ICP-MS with an advanced sample introduction and mass counting system allows radioactivity in many samples to be measured with a short time period with a high degree of accuracy and precision. In order to satisfy the method detectable activity (MDA) for the regulation of radioactivity monitoring program the analysis of U isotopes always require the extremely large sample amount. These procedures make usually the food stuff sample to carbonize during dry ashing process. The ashed residues have been especially complicated into a liquid phase because of their carbonization. This process are very time consuming and not fully recovered target isotopes.

  5. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  6. Enhancement of precision and reduction of measuring points in tomographic reconstructions

    International Nuclear Information System (INIS)

    Lustfeld, H.; Hirschfeld, J.A.; Reissel, M.; Steffen, B.

    2011-01-01

    Accurate external measurements are required in tomographic problems to obtain a reasonable knowledge of the internal structures. Crucial is the distribution of the external measuring points. We suggest a procedure how to systematically optimize this distribution viz. to increase the precision (i.e. to shrink error bars) of the reconstruction by detecting the important and by eliminating the irrelevant measuring points. In a realistic numerical example we apply our scheme to magnetotomography of fuel cells. The result is striking: Starting from a smooth distribution of measuring points on a surface of a cuboid around the fuel cell, the number of measuring points can systematically be reduced by more than 90%. At the same time the precision increases by a factor of nearly 3.

  7. A gp41-based heteroduplex mobility assay provides rapid and accurate assessment of intrasubtype epidemiological linkage in HIV type 1 heterosexual transmission Pairs.

    Science.gov (United States)

    Manigart, Olivier; Boeras, Debrah I; Karita, Etienne; Hawkins, Paulina A; Vwalika, Cheswa; Makombe, Nathan; Mulenga, Joseph; Derdeyn, Cynthia A; Allen, Susan; Hunter, Eric

    2012-12-01

    A critical step in HIV-1 transmission studies is the rapid and accurate identification of epidemiologically linked transmission pairs. To date, this has been accomplished by comparison of polymerase chain reaction (PCR)-amplified nucleotide sequences from potential transmission pairs, which can be cost-prohibitive for use in resource-limited settings. Here we describe a rapid, cost-effective approach to determine transmission linkage based on the heteroduplex mobility assay (HMA), and validate this approach by comparison to nucleotide sequencing. A total of 102 HIV-1-infected Zambian and Rwandan couples, with known linkage, were analyzed by gp41-HMA. A 400-base pair fragment within the envelope gp41 region of the HIV proviral genome was PCR amplified and HMA was applied to both partners' amplicons separately (autologous) and as a mixture (heterologous). If the diversity between gp41 sequences was low (<5%), a homoduplex was observed upon gel electrophoresis and the transmission was characterized as having occurred between partners (linked). If a new heteroduplex formed, within the heterologous migration, the transmission was determined to be unlinked. Initial blind validation of gp-41 HMA demonstrated 90% concordance between HMA and sequencing with 100% concordance in the case of linked transmissions. Following validation, 25 newly infected partners in Kigali and 12 in Lusaka were evaluated prospectively using both HMA and nucleotide sequences. Concordant results were obtained in all but one case (97.3%). The gp41-HMA technique is a reliable and feasible tool to detect linked transmissions in the field. All identified unlinked results should be confirmed by sequence analyses.

  8. Precision Oncology: Between Vaguely Right and Precisely Wrong.

    Science.gov (United States)

    Brock, Amy; Huang, Sui

    2017-12-01

    Precision Oncology seeks to identify and target the mutation that drives a tumor. Despite its straightforward rationale, concerns about its effectiveness are mounting. What is the biological explanation for the "imprecision?" First, Precision Oncology relies on indiscriminate sequencing of genomes in biopsies that barely represent the heterogeneous mix of tumor cells. Second, findings that defy the orthodoxy of oncogenic "driver mutations" are now accumulating: the ubiquitous presence of oncogenic mutations in silent premalignancies or the dynamic switching without mutations between various cell phenotypes that promote progression. Most troublesome is the observation that cancer cells that survive treatment still will have suffered cytotoxic stress and thereby enter a stem cell-like state, the seeds for recurrence. The benefit of "precision targeting" of mutations is inherently limited by this counterproductive effect. These findings confirm that there is no precise linear causal relationship between tumor genotype and phenotype, a reminder of logician Carveth Read's caution that being vaguely right may be preferable to being precisely wrong. An open-minded embrace of the latest inconvenient findings indicating nongenetic and "imprecise" phenotype dynamics of tumors as summarized in this review will be paramount if Precision Oncology is ultimately to lead to clinical benefits. Cancer Res; 77(23); 6473-9. ©2017 AACR . ©2017 American Association for Cancer Research.

  9. Technological advances in precision medicine and drug development.

    Science.gov (United States)

    Maggi, Elaine; Patterson, Nicole E; Montagna, Cristina

    New technologies are rapidly becoming available to expand the arsenal of tools accessible for precision medicine and to support the development of new therapeutics. Advances in liquid biopsies, which analyze cells, DNA, RNA, proteins, or vesicles isolated from the blood, have gained particular interest for their uses in acquiring information reflecting the biology of tumors and metastatic tissues. Through advancements in DNA sequencing that have merged unprecedented accuracy with affordable cost, personalized treatments based on genetic variations are becoming a real possibility. Extraordinary progress has been achieved in the development of biological therapies aimed to even further advance personalized treatments. We provide a summary of current and future applications of blood based liquid biopsies and how new technologies are utilized for the development of biological therapeutic treatments. We discuss current and future sequencing methods with an emphasis on how technological advances will support the progress in the field of precision medicine.

  10. Advanced single tooth torquing plier with high precision: A clinical innovation

    Directory of Open Access Journals (Sweden)

    Jitendra Raghuwanshi

    2017-01-01

    Full Text Available Torque is the force which gives the operator control over the movements of roots of teeth in bilateral direction. There are various pliers available to apply torque in individual tooth, but none of the pliers are capable of measuring accurately the degrees of torque incorporated, so we have attempted to make a modified torquing plier to incorporate and measure the degrees of incorporated torque precisely.

  11. Precision and within- and between-day variation of bioimpedance parameters in children aged 2-14 years

    DEFF Research Database (Denmark)

    Andersen, Trine B; Jødal, Lars; Arveschoug, Anne

    2011-01-01

    BACKGROUND & AIMS: Bioimpedance spectroscopy (BIS) offers the possibility to perform rapid estimates of fluid distribution and body composition. Few studies, however, have addressed the precision and biological variation in a pediatric population. Our objectives were to evaluate precision.......4-14.9 years) had one series measured on day one (precision population). Forty-four children had a second series on day one (within-day sub-population). Thirty-two children had a series measured on the next day (between-day sub-population). Each measurement series consisted of three repeated measurements....... A linear mixed model was used for statistical analysis. RESULTS: The precision was 0.3-0.8% in children ≥6 years and 0.5-2.4% in children...

  12. Accurate predictions for the LHC made easy

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    The data recorded by the LHC experiments is of a very high quality. To get the most out of the data, precise theory predictions, including uncertainty estimates, are needed to reduce as much as possible theoretical bias in the experimental analyses. Recently, significant progress has been made in computing Next-to-Leading Order (NLO) computations, including matching to the parton shower, that allow for these accurate, hadron-level predictions. I shall discuss one of these efforts, the MadGraph5_aMC@NLO program, that aims at the complete automation of predictions at the NLO accuracy within the SM as well as New Physics theories. I’ll illustrate some of the theoretical ideas behind this program, show some selected applications to LHC physics, as well as describe the future plans.

  13. High-precision mass measurements for the rp-process at JYFLTRAP

    Directory of Open Access Journals (Sweden)

    Canete Laetitia

    2017-01-01

    Full Text Available The double Penning trap JYFLTRAP at the University of Jyväskylä has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp process. A precise mass measurement of 31Cl is essential to estimate the waiting point condition of 30S in the rp-process occurring in type I x-ray bursts (XRBs. The mass-excess of 31C1 measured at JYFLTRAP, -7034.7(3.4 keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy Sp determined from the new mass-excess value confirmed that 30S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52Co effects both 51Fe(p,γ52Co and 52Co(p,γ53Ni reactions. The mass-excess value measured, - 34 331.6(6.6 keV is 30 times more precise than the value given in AME2012. The Q values for the 51Fe(p,γ52Co and 52Co(p,γ53Ni reactions are now known with a high precision, 1418(11 keV and 2588(26 keV respectively. The results show that 52Co is more proton bound and 53Ni less proton bound than what was expected from the extrapolated value.

  14. Rapid Diagnosis of Bacterial Meningitis Using a Microarray

    Directory of Open Access Journals (Sweden)

    Ren-Jy Ben

    2008-06-01

    Conclusion: The microarray method provides a more accurate and rapid diagnostic tool for bacterial meningitis compared to traditional culture methods. Clinical application of this new technique may reduce the potential risk of delay in treatment.

  15. -Omic and Electronic Health Records Big Data Analytics for Precision Medicine

    Science.gov (United States)

    Wu, Po-Yen; Cheng, Chih-Wen; Kaddi, Chanchala D.; Venugopalan, Janani; Hoffman, Ryan; Wang, May D.

    2017-01-01

    Objective Rapid advances of high-throughput technologies and wide adoption of electronic health records (EHRs) have led to fast accumulation of -omic and EHR data. These voluminous complex data contain abundant information for precision medicine, and big data analytics can extract such knowledge to improve the quality of health care. Methods In this article, we present -omic and EHR data characteristics, associated challenges, and data analytics including data pre-processing, mining, and modeling. Results To demonstrate how big data analytics enables precision medicine, we provide two case studies, including identifying disease biomarkers from multi-omic data and incorporating -omic information into EHR. Conclusion Big data analytics is able to address –omic and EHR data challenges for paradigm shift towards precision medicine. Significance Big data analytics makes sense of –omic and EHR data to improve healthcare outcome. It has long lasting societal impact. PMID:27740470

  16. Precision diagnostics: moving towards protein biomarker signatures of clinical utility in cancer.

    Science.gov (United States)

    Borrebaeck, Carl A K

    2017-03-01

    Interest in precision diagnostics has been fuelled by the concept that early detection of cancer would benefit patients; that is, if detected early, more tumours should be resectable and treatment more efficacious. Serum contains massive amounts of potentially diagnostic information, and affinity proteomics has risen as an accurate approach to decipher this, to generate actionable information that should result in more precise and evidence-based options to manage cancer. To achieve this, we need to move from single to multiplex biomarkers, a so-called signature, that can provide significantly increased diagnostic accuracy. This Opinion article focuses on the progress being made in identifying protein biomarker signatures of clinical utility, using blood-based proteomics.

  17. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    International Nuclear Information System (INIS)

    Tanner, Carol E.

    2005-01-01

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  18. Precision Measurements of Atomic Lifetimes and Hyperfine Energies in Alkali Like Systems

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Carol E.

    2005-03-04

    Financial support of this research project has lead to advances in the study of atomic structure through precision measurements of atomic lifetimes, energy splittings, and transitions energies. The interpretation of data from many areas of physics and chemistry requires an accurate understanding of atomic structure. For example, scientists in the fields of astrophysics, geophysics, and plasma fusion depend on transition strengths to determine the relative abundances of elements. Assessing the operation of discharges and atomic resonance line filters also depends on accurate knowledge of transition strengths. Often relative transition strengths are measured precisely, but accurate atomic lifetimes are needed to obtain absolute values. Precision measurements of atomic lifetimes and energy splittings also provide fundamentally important atomic structure information. Lifetimes of allowed transitions depend most strongly on the electronic wave function far from the nucleus. Alternatively, hyperfine splittings give important information about the electronic wave function in the vicinity of the nucleus as well as the structure of the nucleus. Our main focus throughout this project has been the structure of atomic cesium because of its connection to the study of atomic parity nonconservation (PNC). The interpretation of atomic PNC experiments in terms of weak interaction coupling constants requires accurate knowledge of the electronic wave function near the nucleus as well as far from the nucleus. It is possible to address some of these needs theoretically with sophisticated many-electron atomic structure calculations. However, this program has been able to address these needs experimentally with a precision that surpasses current theoretical accuracy. Our measurements also play the important role of providing a means for testing the accuracy of many-electron calculations and guiding further theoretical development, Atomic systems such as cesium, with a single electron

  19. FASTSIM2: a second-order accurate frictional rolling contact algorithm

    Science.gov (United States)

    Vollebregt, E. A. H.; Wilders, P.

    2011-01-01

    In this paper we consider the frictional (tangential) steady rolling contact problem. We confine ourselves to the simplified theory, instead of using full elastostatic theory, in order to be able to compute results fast, as needed for on-line application in vehicle system dynamics simulation packages. The FASTSIM algorithm is the leading technology in this field and is employed in all dominant railway vehicle system dynamics packages (VSD) in the world. The main contribution of this paper is a new version "FASTSIM2" of the FASTSIM algorithm, which is second-order accurate. This is relevant for VSD, because with the new algorithm 16 times less grid points are required for sufficiently accurate computations of the contact forces. The approach is based on new insights in the characteristics of the rolling contact problem when using the simplified theory, and on taking precise care of the contact conditions in the numerical integration scheme employed.

  20. A comparison of U/Th and rapid-screen 14C dates from Line Island fossil corals

    Science.gov (United States)

    Grothe, Pamela R.; Cobb, Kim M.; Bush, Shari L.; Cheng, Hai; Santos, Guaciara M.; Southon, John R.; Lawrence Edwards, R.; Deocampo, Daniel M.; Sayani, Hussein R.

    2016-03-01

    Time-consuming and expensive radiometric dating techniques limit the number of dates available to construct absolute chronologies for high-resolution paleoclimate reconstructions. A recently developed rapid-screen 14C dating technique reduces sample preparation time and per sample costs by 90%, but its accuracy has not yet been tested on shallow-water corals. In this study, we test the rapid-screen 14C dating technique on shallow-water corals by comparing 44 rapid-screen 14C dates to both high-precision 14C dates and U/Th dates from mid- to late-Holocene fossil corals collected from the central tropical Pacific (2-4°N, 157-160°W). Our results show that 42 rapid-screen 14C and U/Th dates agree within uncertainties, confirming closed-system behavior and ensuring chronological accuracy. However, two samples that grew ˜6500 years ago have calibrated 14C ages ˜1000 years younger than the corresponding U/Th ages, consistent with diagenetic alteration as indicated by the presence of 15-23% calcite. Mass balance calculations confirm that the observed dating discrepancies are consistent with 14C addition and U removal, both of which occur during diagenetic calcite recrystallization. Under the assumption that aragonite-to-calcite replacement is linear through time, we estimate the samples' true ages using the measured 14C and U/Th dates and percent calcite values. Results illustrate that the rapid-screen 14C dates of Holocene-aged fossil corals are accurate for samples with less than 2% calcite. Application of this rapid-screen 14C method to the fossil coral rubble fields from Kiritimati Island reveal significant chronological clustering of fossil coral across the landscape, with older ages farther from the water's edge.

  1. High resolution melting analysis: a rapid and accurate method to detect CALR mutations.

    Directory of Open Access Journals (Sweden)

    Cristina Bilbao-Sieyro

    Full Text Available The recent discovery of CALR mutations in essential thrombocythemia (ET and primary myelofibrosis (PMF patients without JAK2/MPL mutations has emerged as a relevant finding for the molecular diagnosis of these myeloproliferative neoplasms (MPN. We tested the feasibility of high-resolution melting (HRM as a screening method for rapid detection of CALR mutations.CALR was studied in wild-type JAK2/MPL patients including 34 ET, 21 persistent thrombocytosis suggestive of MPN and 98 suspected secondary thrombocytosis. CALR mutation analysis was performed through HRM and Sanger sequencing. We compared clinical features of CALR-mutated versus 45 JAK2/MPL-mutated subjects in ET.Nineteen samples showed distinct HRM patterns from wild-type. Of them, 18 were mutations and one a polymorphism as confirmed by direct sequencing. CALR mutations were present in 44% of ET (15/34, 14% of persistent thrombocytosis suggestive of MPN (3/21 and none of the secondary thrombocytosis (0/98. Of the 18 mutants, 9 were 52 bp deletions, 8 were 5 bp insertions and other was a complex mutation with insertion/deletion. No mutations were found after sequencing analysis of 45 samples displaying wild-type HRM curves. HRM technique was reproducible, no false positive or negative were detected and the limit of detection was of 3%.This study establishes a sensitive, reliable and rapid HRM method to screen for the presence of CALR mutations.

  2. Imaging Optical Frequencies with 100 μ Hz Precision and 1.1 μ m Resolution

    Science.gov (United States)

    Marti, G. Edward; Hutson, Ross B.; Goban, Akihisa; Campbell, Sara L.; Poli, Nicola; Ye, Jun

    2018-03-01

    We implement imaging spectroscopy of the optical clock transition of lattice-trapped degenerate fermionic Sr in the Mott-insulating regime, combining micron spatial resolution with submillihertz spectral precision. We use these tools to demonstrate atomic coherence for up to 15 s on the clock transition and reach a record frequency precision of 2.5 ×10-19. We perform the most rapid evaluation of trapping light shifts and record a 150 mHz linewidth, the narrowest Rabi line shape observed on a coherent optical transition. The important emerging capability of combining high-resolution imaging and spectroscopy will improve the clock precision, and provide a path towards measuring many-body interactions and testing fundamental physics.

  3. The effect of sample/planchet geometry and temperature resolution on the reproducibility of glow curve shapes and precision of dose measurement in LiF-TLD-100 thermoluminescent dosimetry

    International Nuclear Information System (INIS)

    Sibony, D.; Horowitz, Y.; Oster, L.

    2014-01-01

    The effect of accurate positioning of TLD-100 samples in the center of the reader planchet on precision and kinetic parameters was investigated. Significant improvement in precision is obtained by careful positioning of the sample in the center of the planchet, by as much as 40%, 20% and 30% using different methods of glow curve analysis to estimate the intensity of the TL signal. - Highlights: • The effect of accurate positioning of TLD-100 samples on precision and kinetic parameters was investigated. • Significant improvement in precision was obtained. • Significant improvement in the calculation of the kinetic parameters of individual peaks was achieved. • The optimum protocol involves a depression matched to the size of the sample was developed

  4. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  5. Rapid Prototyping in Orthopaedic Surgery: A User's Guide

    Science.gov (United States)

    Frame, Mark; Huntley, James S.

    2012-01-01

    Rapid prototyping (RP) is applicable to orthopaedic problems involving three dimensions, particularly fractures, deformities, and reconstruction. In the past, RP has been hampered by cost and difficulties accessing the appropriate expertise. Here we outline the history of rapid prototyping and furthermore a process using open-source software to produce a high fidelity physical model from CT data. This greatly mitigates the expense associated with the technique, allowing surgeons to produce precise models for preoperative planning and procedure rehearsal. We describe the method with an illustrative case. PMID:22666160

  6. High-precision analog circuit technology for power supply integrated circuits; Dengen IC yo koseido anarogu kairo gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Nakamori, A.; Suzuki, T.; Mizoe, K. [Fuji Electric Corporate Research and Development,Ltd., Kanagawa (Japan)

    2000-08-10

    With the recent rapid spread of portable electronic appliances, specification requirements such as compact power supply and long operation with batteries have become severer. Power supply ICs (integrated circuits) are required to reduce power consumption in the circuit and perform high-precision control. To meet these requirements, Fuji Electric develops high-precision CMOS (complementary metal-oxide semiconductor) analog technology. This paper describes three analog circuit technologies of a voltage reference, an operational amplifier and a comparator as circuit components particularly important for the precision of power supply ICs. (author)

  7. A passion for precision - from the ultrafast to the ultraslow

    International Nuclear Information System (INIS)

    Haensch, T.W.

    2005-01-01

    Full text: Femtosecond laser optical frequency comb synthesizers have become the established tool for measuring the frequency of light with extreme precision. By permitting phase-coherent comparisons of optical and microwave frequencies, they can serve as the clockwork for ultraprecise optical atomic clocks. Applications to laser spectroscopy of atomic hydrogen permit stringent tests of basic laws of quantum physics. Such experiments can yield accurate values of fundamental constants, and they may reveal slow changes of fundamental constants with the evolution of the universe. Laser frequency comb techniques can also control the light phase of femtosecond laser pulses, thus advancing the frontier of ultrafast science from the femtosecond to the attosecond regime. High harmonic generation with intense femtosecond pulses may extend frequency comb techniques to the extreme ultraviolet and soft x-ray regime, conquering new territory for precision laser spectroscopy and fundamental measurements. (author)

  8. Can crop-climate models be accurate and precise? A case study for wheat production in Denmark

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel; Olesen, Jørgen E.; Porter, John Roy

    2015-01-01

    Crop models, used to make projections of climate change impacts, differ greatly in structural detail. Complexity of model structure has generic effects on uncertainty and error propagation in climate change impact assessments. We applied Bayesian calibration to three distinctly different empirical....... Yields predicted by the mechanistic model were generally more accurate than the empirical models for extrapolated conditions. This trend does not hold for all extrapolations; mechanistic and empirical models responded differently due to their sensitivities to distinct weather features. However, higher...... suitable for generic model ensembles for near-term agricultural impact assessments of climate change....

  9. An Accurate Transmitting Power Control Method in Wireless Communication Transceivers

    Science.gov (United States)

    Zhang, Naikang; Wen, Zhiping; Hou, Xunping; Bi, Bo

    2018-01-01

    Power control circuits are widely used in transceivers aiming at stabilizing the transmitted signal power to a specified value, thereby reducing power consumption and interference to other frequency bands. In order to overcome the shortcomings of traditional modes of power control, this paper proposes an accurate signal power detection method by multiplexing the receiver and realizes transmitting power control in the digital domain. The simulation results show that this novel digital power control approach has advantages of small delay, high precision and simplified design procedure. The proposed method is applicable to transceivers working at large frequency dynamic range, and has good engineering practicability.

  10. Principles of Precision Prevention Science for Improving Recruitment and Retention of Participants.

    Science.gov (United States)

    Supplee, Lauren H; Parekh, Jenita; Johnson, Makedah

    2018-03-12

    Precision medicine and precision public health focus on identifying and providing the right intervention to the right population at the right time. Expanding on the concept, precision prevention science could allow the field to examine prevention programs to identify ways to make them more efficient and effective at scale, including addressing issues related to engagement and retention of participants. Research to date on engagement and retention has often focused on demographics and risk factors. The current paper proposes using McCurdy and Daro (Family Relations, 50, 113-121, 2001) model that posits a complex mixture of individual, provider, program, and community-level factors synergistically affect enrollment, engagement, and retention. The paper concludes recommending the use of research-practice partnerships and innovative, rapid cycle methods to design and improve prevention programs related to participant engagement and retention at scale.

  11. Gene expression during blow fly development: improving the precision of age estimates in forensic entomology.

    Science.gov (United States)

    Tarone, Aaron M; Foran, David R

    2011-01-01

    Forensic entomologists use size and developmental stage to estimate blow fly age, and from those, a postmortem interval. Since such estimates are generally accurate but often lack precision, particularly in the older developmental stages, alternative aging methods would be advantageous. Presented here is a means of incorporating developmentally regulated gene expression levels into traditional stage and size data, with a goal of more precisely estimating developmental age of immature Lucilia sericata. Generalized additive models of development showed improved statistical support compared to models that did not include gene expression data, resulting in an increase in estimate precision, especially for postfeeding third instars and pupae. The models were then used to make blind estimates of development for 86 immature L. sericata raised on rat carcasses. Overall, inclusion of gene expression data resulted in increased precision in aging blow flies. © 2010 American Academy of Forensic Sciences.

  12. Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.

    Science.gov (United States)

    Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang S J; Zhang, Jianqiu Michelle

    2013-01-01

    In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.

  13. Magnetic resonance imaging for precise radiotherapy of small laboratory animals

    Energy Technology Data Exchange (ETDEWEB)

    Frenzel, Thorsten [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie; Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kaul, Michael Gerhard; Ernst, Thomas Michael; Salamon, Johannes [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Diagnostische und Interventionelle Radiologie; Jaeckel, Maria [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Klinik und Poliklinik fuer Strahlentherapie und Radioonkologie; Schumacher, Udo [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Inst. fuer Anatomie und Experimentelle Morphologie; Kruell, Andreas [Universitaetsklinikum Hamburg-Eppendorf, Hamburg (Germany). Bereich Strahlentherapie

    2017-05-01

    Radiotherapy of small laboratory animals (SLA) is often not as precisely applied as in humans. Here we describe the use of a dedicated SLA magnetic resonance imaging (MRI) scanner for precise tumor volumetry, radiotherapy treatment planning, and diagnostic imaging in order to make the experiments more accurate. Different human cancer cells were injected at the lower trunk of pfp/rag2 and SCID mice to allow for local tumor growth. Data from cross sectional MRI scans were transferred to a clinical treatment planning system (TPS) for humans. Manual palpation of the tumor size was compared with calculated tumor size of the TPS and with tumor weight at necropsy. As a feasibility study MRI based treatment plans were calculated for a clinical 6 MV linear accelerator using a micro multileaf collimator (μMLC). In addition, diagnostic MRI scans were used to investigate animals which did clinical poorly during the study. MRI is superior in precise tumor volume definition whereas manual palpation underestimates their size. Cross sectional MRI allow for treatment planning so that conformal irradiation of mice with a clinical linear accelerator using a μMLC is in principle feasible. Several internal pathologies were detected during the experiment using the dedicated scanner. MRI is a key technology for precise radiotherapy of SLA. The scanning protocols provided are suited for tumor volumetry, treatment planning, and diagnostic imaging.

  14. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion.

    Science.gov (United States)

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao; Lu, Jun-Ying; Zeng, Yan-Hong; Meng, Fan-Jie; Cao, Bin; Zi, Xue-Rong; Han, Shu-Ming; Zhang, Yu-Huan

    2013-09-01

    Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 × d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l × h × d): V = 0.56 × (l × h × d) + 39.44 (r = 0.92, P = 0.000). The 64-slice CT volume-rendering technique can

  15. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion

    International Nuclear Information System (INIS)

    Guo, Zhi-Jun; Lin, Qiang; Liu, Hai-Tao

    2013-01-01

    Background: Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. Purpose: To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. Material and Methods: The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. Results: After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 X d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l X h X d): V = 0.56 X (l X h X d) + 39.44 (r = 0.92, P = 0

  16. The preliminary exploration of 64-slice volume computed tomography in the accurate measurement of pleural effusion

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zhi-Jun [Dept. of Radiology, North China Petroleum Bureau General Hospital, Renqiu, Hebei (China)], e-mail: Gzj3@163.com; Lin, Qiang [Dept. of Oncology, North China Petroleum Bureau General Hospital, Renqiu, Hebei (China); Liu, Hai-Tao [Dept. of General Surgery, North China Petroleum Bureau General Hospital, Renqiu, Hebei (China)] [and others])

    2013-09-15

    Background: Using computed tomography (CT) to rapidly and accurately quantify pleural effusion volume benefits medical and scientific research. However, the precise volume of pleural effusions still involves many challenges and currently does not have a recognized accurate measuring. Purpose: To explore the feasibility of using 64-slice CT volume-rendering technology to accurately measure pleural fluid volume and to then analyze the correlation between the volume of the free pleural effusion and the different diameters of the pleural effusion. Material and Methods: The 64-slice CT volume-rendering technique was used to measure and analyze three parts. First, the fluid volume of a self-made thoracic model was measured and compared with the actual injected volume. Second, the pleural effusion volume was measured before and after pleural fluid drainage in 25 patients, and the volume reduction was compared with the actual volume of the liquid extract. Finally, the free pleural effusion volume was measured in 26 patients to analyze the correlation between it and the diameter of the effusion, which was then used to calculate the regression equation. Results: After using the 64-slice CT volume-rendering technique to measure the fluid volume of the self-made thoracic model, the results were compared with the actual injection volume. No significant differences were found, P = 0.836. For the 25 patients with drained pleural effusions, the comparison of the reduction volume with the actual volume of the liquid extract revealed no significant differences, P = 0.989. The following linear regression equation was used to compare the pleural effusion volume (V) (measured by the CT volume-rendering technique) with the pleural effusion greatest depth (d): V = 158.16 X d - 116.01 (r = 0.91, P = 0.000). The following linear regression was used to compare the volume with the product of the pleural effusion diameters (l X h X d): V = 0.56 X (l X h X d) + 39.44 (r = 0.92, P = 0

  17. Accurate current synchronization trigger mode for multi-framing gated camera on YANG accelerator

    International Nuclear Information System (INIS)

    Jiang Xiaoguo; Huang Xianbin; Li Chenggang; Yang Libing; Wang Yuan; Zhang Kaizhi; Ye Yi

    2007-01-01

    The current synchronization trigger mode is important for Z-pinch experiments carried out on the YANG accelerator. The technology can solve the problem of low synchronization precision. The inherent delay time between the load current waveform and the experimental phenomenon can be adopted to obtain the synchronization trigger time. The correlative time precision about ns level can be achieved in this way. The photoelectric isolator and optical fiber are used in the synchronization trigger system to eliminate the electro-magnetic interference and many accurate measurements on the YANG accelerator can be realized. The application of this trigger mode to the multi-framing gated camera synchronization trigger system has done the trick. The evolution course of Z-pinch imploding plasma has been recorded with 3 ns exposure time and 10 ns interframing time. (authors)

  18. Precision radiocarbon dating of a Late Holocene vegetation history

    International Nuclear Information System (INIS)

    Prior, C.A.; Chester, P.I.

    2001-01-01

    The purpose of this research is to precisely date vegetation changes associated with early human presence in the Hawkes Bay region. A sequence of AMS radiocarbon ages was obtained using a new technique developed at Rafter Radiocarbon Laboratory. A density separation method was used to concentrate pollen and spores extracted from unconsolidated lake sediments from a small-enclosed lake in coastal foothills of southern Hawkes Bay. Radiocarbon measurements were made on fractions of concentrated pollen, separated from associated organic debris. These ages directly date vegetation communities used to reconstruct the vegetation history of the region. This technique results in more accurate dating of Late Holocene vegetation changes interpreted from palynological analyses than techniques formerly used. Precision dating of palynological studies of New Zealand prehistory and history is necessary for correlation of vegetation changes to cultural changes because of the short time span of human occupation of New Zealand. (author). 35 refs., 3 figs., 1 tab

  19. A Monte Carlo Simulation Comparing the Statistical Precision of Two High-Stakes Teacher Evaluation Methods: A Value-Added Model and a Composite Measure

    Science.gov (United States)

    Spencer, Bryden

    2016-01-01

    Value-added models are a class of growth models used in education to assign responsibility for student growth to teachers or schools. For value-added models to be used fairly, sufficient statistical precision is necessary for accurate teacher classification. Previous research indicated precision below practical limits. An alternative approach has…

  20. Precision enhancement of pavement roughness localization with connected vehicles

    International Nuclear Information System (INIS)

    Bridgelall, R; Huang, Y; Zhang, Z; Deng, F

    2016-01-01

    Transportation agencies rely on the accurate localization and reporting of roadway anomalies that could pose serious hazards to the traveling public. However, the cost and technical limitations of present methods prevent their scaling to all roadways. Connected vehicles with on-board accelerometers and conventional geospatial position receivers offer an attractive alternative because of their potential to monitor all roadways in real-time. The conventional global positioning system is ubiquitous and essentially free to use but it produces impractically large position errors. This study evaluated the improvement in precision achievable by augmenting the conventional geo-fence system with a standard speed bump or an existing anomaly at a pre-determined position to establish a reference inertial marker. The speed sensor subsequently generates position tags for the remaining inertial samples by computing their path distances relative to the reference position. The error model and a case study using smartphones to emulate connected vehicles revealed that the precision in localization improves from tens of metres to sub-centimetre levels, and the accuracy of measuring localized roughness more than doubles. The research results demonstrate that transportation agencies will benefit from using the connected vehicle method to achieve precision and accuracy levels that are comparable to existing laser-based inertial profilers. (paper)

  1. Rapid and accurate processing method for amide proton exchange rate measurement in proteins

    International Nuclear Information System (INIS)

    Koskela, Harri; Heikkinen, Outi; Kilpelaeinen, Ilkka; Heikkinen, Sami

    2007-01-01

    Exchange between protein backbone amide hydrogen and water gives relevant information about solvent accessibility and protein secondary structure stability. NMR spectroscopy provides a convenient tool to study these dynamic processes with saturation transfer experiments. Processing of this type of NMR spectra has traditionally required peak integration followed by exponential fitting, which can be tedious with large data sets. We propose here a computer-aided method that applies inverse Laplace transform in the exchange rate measurement. With this approach, the determination of exchange rates can be automated, and reliable results can be acquired rapidly without a need for manual processing

  2. Direct rapid analysis of trace bioavailable soil macronutrients by chemometrics-assisted energy dispersive X-ray fluorescence and scattering spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Kaniu, M.I., E-mail: ikaniu@uonbi.ac.ke [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Angeyo, K.H. [Department of Physics, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mwala, A.K. [Department of Land Resource Management and Agricultural Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya); Mangala, M.J. [Institute of Nuclear Science and Technology, University of Nairobi, P.O. Box 30197-00100 Nairobi (Kenya)

    2012-06-04

    Highlights: Black-Right-Pointing-Pointer Chemometrics-assisted EDXRFS spectroscopy realizes direct, rapid and accurate analysis of trace bioavailable macronutrients in soils. Black-Right-Pointing-Pointer The method is minimally invasive, involves little sample preparation, short analysis times and is relatively insensitive to matrix effects. Black-Right-Pointing-Pointer This opens up the ability to rapidly characterize large number of samples/matrices with this method. - Abstract: Precision agriculture depends on the knowledge and management of soil quality (SQ), which calls for affordable, simple and rapid but accurate analysis of bioavailable soil nutrients. Conventional SQ analysis methods are tedious and expensive. We demonstrate the utility of a new chemometrics-assisted energy dispersive X-ray fluorescence and scattering (EDXRFS) spectroscopy method we have developed for direct rapid analysis of trace 'bioavailable' macronutrients (i.e. C, N, Na, Mg, P) in soils. The method exploits, in addition to X-ray fluorescence, the scatter peaks detected from soil pellets to develop a model for SQ analysis. Spectra were acquired from soil samples held in a Teflon holder analyzed using {sup 109}Cd isotope source EDXRF spectrometer for 200 s. Chemometric techniques namely principal component analysis (PCA), partial least squares (PLS) and artificial neural networks (ANNs) were utilized for pattern recognition based on fluorescence and Compton scatter peaks regions, and to develop multivariate quantitative calibration models based on Compton scatter peak respectively. SQ analyses were realized with high CMD (R{sup 2} > 0.9) and low SEP (0.01% for N and Na, 0.05% for C, 0.08% for Mg and 1.98 {mu}g g{sup -1} for P). Comparison of predicted macronutrients with reference standards using a one-way ANOVA test showed no statistical difference at 95% confidence level. To the best of the authors' knowledge, this is the first time that an XRF method has demonstrated

  3. 'Distorted structure modelling' - a more physical approach to Rapid Distortion Theory

    International Nuclear Information System (INIS)

    Savill, A.M.

    1979-11-01

    Rapid Distortion Theory is reviewed in the light of the modern mechanistic approach to turbulent motion. The apparent failure of current models, based on this theory, to predict stress intensity ratios accurately in distorted shear flows is attributed to their oversimplistic assumptions concerning the inherent turbulence structure of such flows. A more realistic picture of this structure and the manner in which it responds to distortion is presented in terms of interactions between the mean flow and three principal types of eddies. If Rapid Distortion Theory is modified to account for this it is shown that the stress intensity ratios can be accurately predicted in three test flows. It is concluded that a computational scheme based on Rapid Distortion Theory might ultimately be capable of predicting turbulence parameters in the highly complex geometries of reactor cooling systems. (author)

  4. Precise RFID localization in impaired environment through sparse signal recovery

    Science.gov (United States)

    Subedi, Saurav; Zhang, Yimin D.; Amin, Moeness G.

    2013-05-01

    Radio frequency identification (RFID) is a rapidly developing wireless communication technology for electronically identifying, locating, and tracking products, assets, and personnel. RFID has become one of the most important means to construct real-time locating systems (RTLS) that track and identify the location of objects in real time using simple, inexpensive tags and readers. The applicability and usefulness of RTLS techniques depend on their achievable accuracy. In particular, when multilateration-based localization techniques are exploited, the achievable accuracy primarily relies on the precision of the range estimates between a reader and the tags. Such range information can be obtained by using the received signal strength indicator (RSSI) and/or the phase difference of arrival (PDOA). In both cases, however, the accuracy is significantly compromised when the operation environment is impaired. In particular, multipath propagation significantly affects the measurement accuracy of both RSSI and phase information. In addition, because RFID systems are typically operated in short distances, RSSI and phase measurements are also coupled with the reader and tag antenna patterns, making accurate RFID localization very complicated and challenging. In this paper, we develop new methods to localize RFID tags or readers by exploiting sparse signal recovery techniques. The proposed method allows the channel environment and antenna patterns to be taken into account and be properly compensated at a low computational cost. As such, the proposed technique yields superior performance in challenging operation environments with the above-mentioned impairments.

  5. The effect of external dynamic loads on the lifetime of rolling element bearings: accurate measurement of the bearing behaviour

    International Nuclear Information System (INIS)

    Jacobs, W; Boonen, R; Sas, P; Moens, D

    2012-01-01

    Accurate prediction of the lifetime of rolling element bearings is a crucial step towards a reliable design of many rotating machines. Recent research emphasizes an important influence of external dynamic loads on the lifetime of bearings. However, most lifetime calculations of bearings are based on the classical ISO 281 standard, neglecting this influence. For bearings subjected to highly varying loads, this leads to inaccurate estimations of the lifetime, and therefore excessive safety factors during the design and unexpected failures during operation. This paper presents a novel test rig, developed to analyse the behaviour of rolling element bearings subjected to highly varying loads. Since bearings are very precise machine components, their motion can only be measured in an accurately controlled environment. Otherwise, noise from other components and external influences such as temperature variations will dominate the measurements. The test rig is optimised to perform accurate measurements of the bearing behaviour. Also, the test bearing is fitted in a modular structure, which guarantees precise mounting and allows testing different types and sizes of bearings. Finally, a fully controlled multi-axial static and dynamic load is imposed on the bearing, while its behaviour is monitored with capacitive proximity probes.

  6. Rapid and accurate identification of Streptococcus equi subspecies by MALDI-TOF MS

    DEFF Research Database (Denmark)

    Kudirkiene, Egle; Welker, Martin; Knudsen, Nanna Reumert

    2015-01-01

    phenotypic and sequence similarity between three subspecies their discrimination remains difficult. In this study, we aimed to design and validate a novel, Superspectra based, MALDI-TOF MS approach for reliable, rapid and cost-effective identification of SEE and SEZ, the most frequent S. equi subspecies.......3±7.5%). This result may be attributed to the highly clonal population structure of SEE, as opposed to the diversity of SEZ seen in horses. Importantly strains with atypical colony appearance both within SEE and SEZ did not affect correct identification of the strains by MALDI-TOF MS. Atypical colony variants...... are often associated with a higher persistence or virulence of S. equi, thus their correct identification using the current method strengthens its potential use in routine clinical diagnostics. In conclusion, reliable identification of S. equi subspecies was achieved by combining a MALDI-TOF MS method...

  7. Fast and Accurate Computation of Gauss--Legendre and Gauss--Jacobi Quadrature Nodes and Weights

    KAUST Repository

    Hale, Nicholas; Townsend, Alex

    2013-01-01

    An efficient algorithm for the accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton's root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100. © 2013 Society for Industrial and Applied Mathematics.

  8. Fast and Accurate Computation of Gauss--Legendre and Gauss--Jacobi Quadrature Nodes and Weights

    KAUST Repository

    Hale, Nicholas

    2013-03-06

    An efficient algorithm for the accurate computation of Gauss-Legendre and Gauss-Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton\\'s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100. © 2013 Society for Industrial and Applied Mathematics.

  9. Study of accurate volume measurement system for plutonium nitrate solution

    Energy Technology Data Exchange (ETDEWEB)

    Hosoma, T. [Power Reactor and Nuclear Fuel Development Corp., Tokai, Ibaraki (Japan). Tokai Works

    1998-12-01

    It is important for effective safeguarding of nuclear materials to establish a technique for accurate volume measurement of plutonium nitrate solution in accountancy tank. The volume of the solution can be estimated by two differential pressures between three dip-tubes, in which the air is purged by an compressor. One of the differential pressure corresponds to the density of the solution, and another corresponds to the surface level of the solution in the tank. The measurement of the differential pressure contains many uncertain errors, such as precision of pressure transducer, fluctuation of back-pressure, generation of bubbles at the front of the dip-tubes, non-uniformity of temperature and density of the solution, pressure drop in the dip-tube, and so on. The various excess pressures at the volume measurement are discussed and corrected by a reasonable method. High precision-differential pressure measurement system is developed with a quartz oscillation type transducer which converts a differential pressure to a digital signal. The developed system is used for inspection by the government and IAEA. (M. Suetake)

  10. A comparison of accuracy and precision of 5 gait-event detection algorithms from motion capture in horses during over ground walk

    DEFF Research Database (Denmark)

    Olsen, Emil; Boye, Jenny Katrine; Pfau, Thilo

    2012-01-01

    and use robust and validated algorithms. It is the objective of this study to compare accuracy (bias) and precision (SD) for five published human and equine motion capture foot-on/off and stance phase detection algorithms during walk. Six horses were walked over 8 seamlessly embedded force plates...... of mass generally provides the most accurate and precise results in walk....

  11. Accurate mass and velocity functions of dark matter haloes

    Science.gov (United States)

    Comparat, Johan; Prada, Francisco; Yepes, Gustavo; Klypin, Anatoly

    2017-08-01

    N-body cosmological simulations are an essential tool to understand the observed distribution of galaxies. We use the MultiDark simulation suite, run with the Planck cosmological parameters, to revisit the mass and velocity functions. At redshift z = 0, the simulations cover four orders of magnitude in halo mass from ˜1011M⊙ with 8783 874 distinct haloes and 532 533 subhaloes. The total volume used is ˜515 Gpc3, more than eight times larger than in previous studies. We measure and model the halo mass function, its covariance matrix w.r.t halo mass and the large-scale halo bias. With the formalism of the excursion-set mass function, we explicit the tight interconnection between the covariance matrix, bias and halo mass function. We obtain a very accurate (function. We also model the subhalo mass function and its relation to the distinct halo mass function. The set of models obtained provides a complete and precise framework for the description of haloes in the concordance Planck cosmology. Finally, we provide precise analytical fits of the Vmax maximum velocity function up to redshift z publicly available in the Skies and Universes data base.

  12. Accurate and precise measurement of oxygen isotopic fractions and diffusion profiles by selective attenuation of secondary ions (SASI).

    Science.gov (United States)

    Téllez, Helena; Druce, John; Hong, Jong-Eun; Ishihara, Tatsumi; Kilner, John A

    2015-03-03

    The accuracy and precision of isotopic analysis in Time-of-Flight secondary ion mass spectrometry (ToF-SIMS) relies on the appropriate reduction of the dead-time and detector saturation effects, especially when analyzing species with high ion yields or present in high concentrations. Conventional approaches to avoid these problems are based on Poisson dead-time correction and/or an overall decrease of the total secondary ion intensity by reducing the target current. This ultimately leads to poor detection limits for the minor isotopes and high uncertainties of the measured isotopic ratios. An alternative strategy consists of the attenuation of those specific secondary ions that saturate the detector, providing an effective extension of the linear dynamic range. In this work, the selective attenuation of secondary ion signals (SASI) approach is applied to the study of oxygen transport properties in electroceramic materials by isotopic labeling with stable (18)O tracer and ToF-SIMS depth profiling. The better analytical performance in terms of accuracy and precision allowed a more reliable determination of the oxygen surface exchange and diffusion coefficients while maintaining good mass resolution and limits of detection for other minor secondary ion species. This improvement is especially relevant to understand the ionic transport mechanisms and properties of solid materials, such as the parallel diffusion pathways (e.g., oxygen diffusion through bulk, grain boundary, or dislocations) in electroceramic materials with relevant applications in energy storage and conversion devices.

  13. Precise focusing and diagnosis technology for laser beams in ICF target chamber

    International Nuclear Information System (INIS)

    Zhu Qixiang

    1999-01-01

    The precise focusing and diagnosis experimental system for laser beams in ICF target chamber is introduced. The system is controlled by computer. In process of focusing a series data of displacement in axial direction and relative area of focus spots are acquired. According to the functional curvature the accurate position of focal plane is determined. The construction of the system is simple, the system is controlled conveniently and runs quickly

  14. Approaches for the accurate definition of geological time boundaries

    Science.gov (United States)

    Schaltegger, Urs; Baresel, Björn; Ovtcharova, Maria; Goudemand, Nicolas; Bucher, Hugo

    2015-04-01

    Which strategies lead to the most precise and accurate date of a given geological boundary? Geological units are usually defined by the occurrence of characteristic taxa and hence boundaries between these geological units correspond to dramatic faunal and/or floral turnovers and they are primarily defined using first or last occurrences of index species, or ideally by the separation interval between two consecutive, characteristic associations of fossil taxa. These boundaries need to be defined in a way that enables their worldwide recognition and correlation across different stratigraphic successions, using tools as different as bio-, magneto-, and chemo-stratigraphy, and astrochronology. Sedimentary sequences can be dated in numerical terms by applying high-precision chemical-abrasion, isotope-dilution, thermal-ionization mass spectrometry (CA-ID-TIMS) U-Pb age determination to zircon (ZrSiO4) in intercalated volcanic ashes. But, though volcanic activity is common in geological history, ashes are not necessarily close to the boundary we would like to date precisely and accurately. In addition, U-Pb zircon data sets may be very complex and difficult to interpret in terms of the age of ash deposition. To overcome these difficulties we use a multi-proxy approach we applied to the precise and accurate dating of the Permo-Triassic and Early-Middle Triassic boundaries in South China. a) Dense sampling of ashes across the critical time interval and a sufficiently large number of analysed zircons per ash sample can guarantee the recognition of all system complexities. Geochronological datasets from U-Pb dating of volcanic zircon may indeed combine effects of i) post-crystallization Pb loss from percolation of hydrothermal fluids (even using chemical abrasion), with ii) age dispersion from prolonged residence of earlier crystallized zircon in the magmatic system. As a result, U-Pb dates of individual zircons are both apparently younger and older than the depositional age

  15. How Accurately can we Calculate Thermal Systems?

    International Nuclear Information System (INIS)

    Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A

    2004-01-01

    I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K eff , for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors

  16. High Precision Measurement of the differential W and Z boson cross-sections

    CERN Document Server

    Gasnikova, Ksenia; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at a center-of-mass energies of 8TeV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of several systematic effects and allows therefore for a high precision comparison to the theory predictions.

  17. An accurate method of 131I dosimetry in the rat thyroid

    International Nuclear Information System (INIS)

    Lee, W.; Shleien, B.; Telles, N.C.; Chiacchierini, R.P.

    1979-01-01

    An accurate method of thyroid 131 I dosimetry was developed by imploying the dose formulation recommended by the Medical Internal Radiation Dose (MIRD) Committee. Six-week-old female Long-Evans rats were injected intraperitonealy with 0.5, 1.9, and 5.4 μCi of Na 131 I. The accumulated 131 I activities in the thyroid were precisely determined by integrating the 131 I activities per gram of the thyroid as functions of postinjection time. When the mean thyroid doses derived from this method are compared to those derived from the conventional method, the conventional method over-estimated the doses by 60 to 70%. Similarly, the conventional method yielded effective half-lives of 2.5 to 2.8 days; these estimates were found to be high by factors of 1.4 to 2.0. This finding implies that the biological elimination of iodide from the rat thyroid is much more rapid (up to 2.5 times) that once believed. Results from this study showed that the basic assumption in the conventional method of thyroid 131 I dosimetry in the rat, i.e., that the thyroid iodide retention function is a single exponential, is invalid. Results from this study also demonstrated that variations in animal body weight of 6 to 7-week-old animals and diurnal variation have no significant influence on the mean thyroid doses for a given injected activity of 131 I. However, as expected, variation in iodide content of the animal diets significantly altered the thyroid doses for a given 131 I injected activity

  18. Accurate, model-based tuning of synthetic gene expression using introns in S. cerevisiae.

    Directory of Open Access Journals (Sweden)

    Ido Yofe

    2014-06-01

    Full Text Available Introns are key regulators of eukaryotic gene expression and present a potentially powerful tool for the design of synthetic eukaryotic gene expression systems. However, intronic control over gene expression is governed by a multitude of complex, incompletely understood, regulatory mechanisms. Despite this lack of detailed mechanistic understanding, here we show how a relatively simple model enables accurate and predictable tuning of synthetic gene expression system in yeast using several predictive intron features such as transcript folding and sequence motifs. Using only natural Saccharomyces cerevisiae introns as regulators, we demonstrate fine and accurate control over gene expression spanning a 100 fold expression range. These results broaden the engineering toolbox of synthetic gene expression systems and provide a framework in which precise and robust tuning of gene expression is accomplished.

  19. Precision Nutrition for Targeting Lipid Metabolism in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Cristina Aguirre-Portolés

    2017-09-01

    Full Text Available Cancer is a multistage and multifactorial condition with genetic and environmental factors modulating tumorogenesis and disease progression. Nevertheless, cancer is preventable, as one third of cancer deaths could be avoided by modifying key risk factors. Nutrients can directly affect fundamental cellular processes and are considered among the most important risk factors in colorectal cancer (CRC. Red and processed meat, poultry consumption, fiber, and folate are the best-known diet components that interact with colorectal cancer susceptibility. In addition, the direct association of an unhealthy diet with obesity and dysbiosis opens new routes in the understanding of how daily diet nutrients could influence cancer prognosis. In the “omics” era, traditional nutrition has been naturally evolved to precision nutrition where technical developments have contributed to a more accurate discipline. In this sense, genomic and transcriptomic studies have been extensively used in precision nutrition approaches. However, the relation between CRC carcinogenesis and nutrition factors is more complex than originally expected. Together with classical diet-nutrition-related genes, nowadays, lipid-metabolism-related genes have acquired relevant interest in precision nutrition studies. Lipids regulate very diverse cellular processes from ATP synthesis and the activation of essential cell-signaling pathways to membrane organization and plasticity. Therefore, a wide range of tumorogenic steps can be influenced by lipid metabolism, both in primary tumours and distal metastasis. The extent to which genetic variants, together with the intake of specific dietary components, affect the risk of CRC is currently under investigation, and new therapeutic or preventive applications must be explored in CRC models. In this review, we will go in depth into the study of co-occurring events, which orchestrate CRC tumorogenesis and are essential for the evolution of precision

  20. Rapid identification and quantitative analysis of chemical constituents of Gentiana veitchiorum by UHPLC-PDA-QTOF-MS

    Directory of Open Access Journals (Sweden)

    Shan Li

    Full Text Available ABSTRACT Gentiana veitchiorum Hemsl., Gentianaceae, a traditional Tibetan medicine, was used for the treatment of liver jaundice with damp-heat pathogen, as well as for headache and chronic pharyngitis. A rapid ultra-performance liquid chromatography, photodiode array detector, quadrupole time-of-flight mass spectrometry method was developed for the fast and accurate identification and quantification of the chemical constituents of G. veitchiorum. In fact, eighteen compounds were detected and identified on the basis of their mass spectra, fragment characteristics and comparison with published data. Especially, the MS fragmentation pathways of iridoid glycosides and flavone C-glycosides were illustrated. Five compounds among them were quantified by UHPLC-PDA, including swertiamarin, gentiopicroside, sweroside, isoorientin, and isovitexin. The proposed method was then validated based on the analyses of linearity, accuracy, precision, and recovery. The overall recoveries for the five analytes ranged from 96.54% to 100.81%, with RSD from 1.05% to 1.82%. In addition, ten batches of G. veitchiorum from different areas were also analyzed. The developed method was rapid and reliable for both identification and quantification of the chemical constituents of G. veitchiorum, especially for simultaneous qualitative and quantitative analysis of iridoid glycosides and flavone C-glycosides.

  1. Rapid Prototyping of Electrically Small Spherical Wire Antennas

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.

    2014-01-01

    It is shown how modern rapid prototyping technologies can be applied for quick and inexpensive, but still accurate, fabrication of electrically small wire antennas. A well known folded spherical helix antenna and a novel spherical zigzag antenna have been fabricated and tested, exhibiting...

  2. Precision Medicine and PET/Computed Tomography in Melanoma.

    Science.gov (United States)

    Mena, Esther; Sanli, Yasemin; Marcus, Charles; Subramaniam, Rathan M

    2017-10-01

    Recent advances in genomic profiling and sequencing of melanoma have provided new insights into the development of the basis for molecular biology to more accurately subgroup patients with melanoma. The development of novel mutation-targeted and immunomodulation therapy as a major component of precision oncology has revolutionized the management and outcome of patients with metastatic melanoma. PET imaging plays an important role in noninvasively assessing the tumor biological behavior, to guide individualized treatment and assess response to therapy. This review summarizes the recent genomic discoveries in melanoma in the era of targeted therapy and their implications for functional PET imaging. Published by Elsevier Inc.

  3. Exploratory Movement Generates Higher-Order Information That Is Sufficient for Accurate Perception of Scaled Egocentric Distance

    Science.gov (United States)

    Mantel, Bruno; Stoffregen, Thomas A.; Campbell, Alain; Bardy, Benoît G.

    2015-01-01

    Body movement influences the structure of multiple forms of ambient energy, including optics and gravito-inertial force. Some researchers have argued that egocentric distance is derived from inferential integration of visual and non-visual stimulation. We suggest that accurate information about egocentric distance exists in perceptual stimulation as higher-order patterns that extend across optics and inertia. We formalize a pattern that specifies the egocentric distance of a stationary object across higher-order relations between optics and inertia. This higher-order parameter is created by self-generated movement of the perceiver in inertial space relative to the illuminated environment. For this reason, we placed minimal restrictions on the exploratory movements of our participants. We asked whether humans can detect and use the information available in this higher-order pattern. Participants judged whether a virtual object was within reach. We manipulated relations between body movement and the ambient structure of optics and inertia. Judgments were precise and accurate when the higher-order optical-inertial parameter was available. When only optic flow was available, judgments were poor. Our results reveal that participants perceived egocentric distance from the higher-order, optical-inertial consequences of their own exploratory activity. Analysis of participants’ movement trajectories revealed that self-selected movements were complex, and tended to optimize availability of the optical-inertial pattern that specifies egocentric distance. We argue that accurate information about egocentric distance exists in higher-order patterns of ambient energy, that self-generated movement can generate these higher-order patterns, and that these patterns can be detected and used to support perception of egocentric distance that is precise and accurate. PMID:25856410

  4. Atom interferometry experiments with lithium. Accurate measurement of the electric polarizability

    International Nuclear Information System (INIS)

    Miffre, A.

    2005-06-01

    Atom interferometers are very sensitive tools to make precise measurements of physical quantities. This study presents a measurement of the static electric polarizability of lithium by atom interferometry. Our result, α = (24.33 ± 0.16)*10 -30 m 3 , improves by a factor 3 the most accurate measurements of this quantity. This work describes the tuning and the operation of a Mach-Zehnder atom interferometer in detail. The two interfering arms are separated by the elastic diffraction of the atomic wave by a laser standing wave, almost resonant with the first resonance transition of lithium atom. A set of experimental techniques, often complicated to implement, is necessary to build the experimental set-up. After a detailed study of the atom source (a supersonic beam of lithium seeded in argon), we present our experimental atom signals which exhibit a very high fringe visibility, up to 84.5 % for first order diffraction. A wide variety of signals has been observed by diffraction of the bosonic isotope at higher diffraction orders and by diffraction of the fermionic less abundant isotope. The quality of these signals is then used to do very accurate phase measurements. A first experiment investigates how the atom interferometer signals are modified by a magnetic field gradient. An absolute measurement of lithium atom electric polarizability is then achieved by applying a static electric field on one of the two interfering arms, separated by only 90 micrometers. The construction of such a capacitor, its alignment in the experimental set-up and its operation are fully detailed.We obtain a very accurate phase measurement of the induced Lo Surdo - Stark phase shift (0.07 % precision). For this first measurement, the final uncertainty on the electric polarizability of lithium is only 0.66 %, and is dominated by the uncertainty on the atom beam mean velocity, so that a further reduction of the uncertainty can be expected. (author)

  5. Precise measurement of cat patellofemoral joint surface geometry with multistation digital photogrammetry.

    Science.gov (United States)

    Ronsky, J L; Boyd, S K; Lichti, D D; Chapman, M A; Salkauskas, K

    1999-04-01

    Three-dimensional joint models are important tools for investigating mechanisms related to normal and pathological joints. Often these models necessitate accurate three-dimensional joint surface geometric data so that reliable model results can be obtained; however, in models based on small joints, this is often problematic due to limitations of the present techniques. These limitations include insufficient measurement precision the requirement of contact for the measurement process, and lack of entire joint description. This study presents a new non-contact method for precise determination of entire joint surfaces using multistation digital photogrammetry (MDPG) and is demonstrated by determining the cartilage and subchondral bone surfaces of the cat patellofemoral (PF) joint. The digital camera-lens setup was precisely calibrated using 16 photographs arranged to achieve highly convergent geometry to estimate interior and distortion parameters of the camera-lens setup. Subsequently, six photographs of each joint surface were then acquired for surface measurement. The digital images were directly imported to a computer and newly introduced semi-automatic computer algorithms were used to precisely determine the image coordinates. Finally, a rigorous mathematical procedure named the bundle adjustment was used to determine the three-dimensional coordinates of the joint surfaces and to estimate the precision of the coordinates. These estimations were validated by comparing the MDPG measurements of a cylinder and plane to an analytical model. The joint surfaces were successfully measured using the MDPG method with mean precision estimates in the least favorable coordinate direction being 10.3 microns for subchondral bone and 17.9 microns for cartilage. The difference in measurement precision for bone and cartilage primarily reflects differences in the translucent properties of the surfaces.

  6. Precise image-guided irradiation of small animals: a flexible non-profit platform

    International Nuclear Information System (INIS)

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang; Rimarzig, Bernd; Sobiella, Manfred

    2016-01-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks. (paper)

  7. AMID: Accurate Magnetic Indoor Localization Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Namkyoung Lee

    2018-05-01

    Full Text Available Geomagnetic-based indoor positioning has drawn a great attention from academia and industry due to its advantage of being operable without infrastructure support and its reliable signal characteristics. However, it must overcome the problems of ambiguity that originate with the nature of geomagnetic data. Most studies manage this problem by incorporating particle filters along with inertial sensors. However, they cannot yield reliable positioning results because the inertial sensors in smartphones cannot precisely predict the movement of users. There have been attempts to recognize the magnetic sequence pattern, but these attempts are proven only in a one-dimensional space, because magnetic intensity fluctuates severely with even a slight change of locations. This paper proposes accurate magnetic indoor localization using deep learning (AMID, an indoor positioning system that recognizes magnetic sequence patterns using a deep neural network. Features are extracted from magnetic sequences, and then the deep neural network is used for classifying the sequences by patterns that are generated by nearby magnetic landmarks. Locations are estimated by detecting the landmarks. AMID manifested the proposed features and deep learning as an outstanding classifier, revealing the potential of accurate magnetic positioning with smartphone sensors alone. The landmark detection accuracy was over 80% in a two-dimensional environment.

  8. Precision Determination of Atmospheric Extinction at Optical and Near IR Wavelengths

    Energy Technology Data Exchange (ETDEWEB)

    Burke, David L.; /SLAC; Axelrod, T.; /Arizona U., Astron. Dept. - Steward Observ.; Blondin, Stephane; /European Southern Observ. /Marseille, CPPM; Claver, Chuck; /NOAO, Tucson; Ivezic, Zeljko; Jones, Lynne; /Washington U., Seattle, Astron. Dept.; Saha, Abhijit; /NOAO, Tucson; Smith, Allyn; /Austin Peay State U.; Smith, R.Chris; /Cerro-Tololo InterAmerican Obs.; Stubbs, Christopher W.; /Harvard-Smithsonian Ctr. Astrophys.

    2011-08-24

    The science goals for future ground-based all-sky surveys, such as the Dark Energy Survey, PanSTARRS, and the Large Synoptic Survey Telescope, require calibration of broadband photometry that is stable in time and uniform over the sky to precisions of a per cent or better, and absolute calibration of color measurements that are similarly accurate. This performance will need to be achieved with measurements made from multiple images taken over the course of many years, and these surveys will observe in less than ideal conditions. This paper describes a technique to implement a new strategy to directly measure variations of atmospheric transmittance at optical wavelengths and application of these measurements to calibration of ground-based observations. This strategy makes use of measurements of the spectra of a small catalog of bright 'probe' stars as they progress across the sky and back-light the atmosphere. The signatures of optical absorption by different atmospheric constituents are recognized in these spectra by their characteristic dependences on wavelength and airmass. State-of-the-art models of atmospheric radiation transport and modern codes are used to accurately compute atmospheric extinction over a wide range of observing conditions. We present results of an observing campaign that demonstrate that correction for extinction due to molecular constituents and aerosols can be done with precisions of a few millimagnitudes with this technique.

  9. Rapid Quantification of 25-Hydroxyvitamin D3 in Human Serum by Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    Science.gov (United States)

    Qi, Yulin; Müller, Miriam; Stokes, Caroline S.; Volmer, Dietrich A.

    2018-04-01

    LC-MS/MS is widely utilized today for quantification of vitamin D in biological fluids. Mass spectrometric assays for vitamin D require very careful method optimization for precise and interference-free, accurate analyses however. Here, we explore chemical derivatization and matrix-assisted laser desorption/ionization (MALDI) as a rapid alternative for quantitative measurement of 25-hydroxyvitamin D3 in human serum, and compare it to results from LC-MS/MS. The method implemented an automated imaging step of each MALDI spot, to locate areas of high intensity, avoid sweet spot phenomena, and thus improve precision. There was no statistically significant difference in vitamin D quantification between the MALDI-MS/MS and LC-MS/MS: mean ± standard deviation for MALDI-MS—29.4 ± 10.3 ng/mL—versus LC-MS/MS—30.3 ± 11.2 ng/mL (P = 0.128)—for the sum of the 25-hydroxyvitamin D epimers. The MALDI-based assay avoided time-consuming chromatographic separation steps and was thus much faster than the LC-MS/MS assay. It also consumed less sample, required no organic solvents, and was readily automated. In this proof-of-concept study, MALDI-MS readily demonstrated its potential for mass spectrometric quantification of vitamin D compounds in biological fluids.

  10. Development of rapid phenotypic system for the identification

    Indian Academy of Sciences (India)

    Rapid and accurate identification of bacterial pathogens is a fundamental goal of clinical microbiology. The diagnosis and surveillance of diseases is dependent, to a great extent, on laboratory services, which cannot function without effective reliable reagents and diagnostics. Despite the advancement in microbiology ...

  11. High precision ray tracing in cylindrically symmetric electrostatics

    Energy Technology Data Exchange (ETDEWEB)

    Edwards Jr, David, E-mail: dej122842@gmail.com

    2015-11-15

    Highlights: • High precision ray tracing is formulated using power series techniques. • Ray tracing is possible for fields generated by solution to laplace's equation. • Spatial and temporal orders of 4–10 are included. • Precisions in test geometries of hemispherical deflector analyzer of ∼10{sup −20} have been obtained. • This solution offers a considerable extension to the ray tracing accuracy over the current state of art. - Abstract: With the recent availability of a high order FDM solution to the curved boundary value problem, it is now possible to determine potentials in such geometries with considerably greater accuracy than had been available with the FDM method. In order for the algorithms used in the accurate potential calculations to be useful in ray tracing, an integration of those algorithms needs to be placed into the ray trace process itself. The object of this paper is to incorporate these algorithms into a solution of the equations of motion of the ray and, having done this, to demonstrate its efficacy. The algorithm incorporation has been accomplished by using power series techniques and the solution constructed has been tested by tracing the medial ray through concentric sphere geometries. The testing has indicated that precisions of ray calculations of 10{sup −20} are now possible. This solution offers a considerable extension to the ray tracing accuracy over the current state of art.

  12. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  13. High-Precision Mass Measurements of Exotic Nuclei with the Triple-Trap Mass Spectrometer Isoltrap

    CERN Multimedia

    Blaum, K; Zuber, K T; Stanja, J

    2002-01-01

    The masses of close to 200 short-lived nuclides have already been measured with the mass spectrometer ISOLTRAP with a relative precision between 1$\\times$10$^{-7}$ and 1$\\times$10^{-8}$. The installatin of a radio-frequency quadrupole trap increased the overall efficiency by two orders of magnitude which is at present about 1%. In a recent upgrade, we installed a carbon cluster laser ion source, which will allow us to use carbon clusters as mass references for absolute mass measurements. Due to these improvements and the high reliability of ISOLTRAP we are now able to perform accurate high-precision mass measurements all over the nuclear chart. We propose therefore mass measurements on light, medium and heavy nuclides on both sides of the valley of stability in the coming four years. ISOLTRAP is presently the only instrument capable of the high precision required for many of the proposed studies.

  14. Precision medicine in myasthenia graves: begin from the data precision

    Science.gov (United States)

    Hong, Yu; Xie, Yanchen; Hao, Hong-Jun; Sun, Ren-Cheng

    2016-01-01

    Myasthenia gravis (MG) is a prototypic autoimmune disease with overt clinical and immunological heterogeneity. The data of MG is far from individually precise now, partially due to the rarity and heterogeneity of this disease. In this review, we provide the basic insights of MG data precision, including onset age, presenting symptoms, generalization, thymus status, pathogenic autoantibodies, muscle involvement, severity and response to treatment based on references and our previous studies. Subgroups and quantitative traits of MG are discussed in the sense of data precision. The role of disease registries and scientific bases of precise analysis are also discussed to ensure better collection and analysis of MG data. PMID:27127759

  15. Development of a System for Rapid Detection of Contaminants in Water Supplies Using Magnetic Resonance and Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lowery, Thomas J; Neely, Lori; Chepin, James; Wellman, Parris; Toso, Ken; Murray, Paul; Audeh, Mark; Demas, Vasiliki; Palazzolo, Robert; Min, Michael; Phung, Nu; Blanco, Matt; Raphel, Jordan; O' Neil, Troy

    2010-09-14

    To keep the water supply safe and to ensure a swift and accurate response to a water supply contamination event, rapid and robust methods for microbial testing are necessary. Current technologies are complex, lengthy and costly and there is a need for rapid, reliable, and precise approaches that can readily address this fundamental security and safety issue. T2 Biosystems is focused on providing solutions to this problem by making breakthroughs in nanotechnology and biosensor techniques that address the current technical restrictions facing rapid, molecular analysis in complex samples. In order to apply the T2 Biosystems nucleic acid detection procedure to the analysis of nucleic acid targets in unprocessed water samples, Bacillus thuringeinsis was selected as a model organism and local river water was selected as the sample matrix. The initial assay reagent formulation was conceived with a manual magnetic resonance reader, was optimized using a high throughput system, and transferred back to the MR reader for potential field use. The final assay employing the designed and manufactured instruments was capable of detecting 10 CFU/mL of B. thuringiensis directly within the environmental water sample within 90 minutes. Further, discrimination of two closely related species of Bacilli was accomplished using the methods of this project; greater than 3-fold discrimination between B. cereus and B. thuringiensis at a concentrations spanning 10 CFU/mL to 10{sup 5} CFU/mL was observed.

  16. JINR rapid communications

    International Nuclear Information System (INIS)

    1997-01-01

    The present collection of rapid communications from JINR, Dubna, contains nine separate reports on effects arising from charged particles overcoming of the light velocity barrier, deformable templates for circle recognition, scintillation detectors for precise time measurements, atomic form factors and incoherent scattering functions of atoms and ions with the number of electrons N ≤ 10, experimental set-up ANOMALON for measurement of relativistic nuclear fragmentation cross sections, superconducting dipole magnet for ALICE dimuon arm spectrometer, analysis of transverse mass dependence of Bose-Einstein correlation radii using the DELPHI data, low-energy theorem in softly broken supersymmetry and study of the characteristics of particles in reactions π - , p, d, He, C + C with the total disintegration on carbon nucleus

  17. Novel serologic biomarkers provide accurate estimates of recent Plasmodium falciparum exposure for individuals and communities.

    Science.gov (United States)

    Helb, Danica A; Tetteh, Kevin K A; Felgner, Philip L; Skinner, Jeff; Hubbard, Alan; Arinaitwe, Emmanuel; Mayanja-Kizza, Harriet; Ssewanyana, Isaac; Kamya, Moses R; Beeson, James G; Tappero, Jordan; Smith, David L; Crompton, Peter D; Rosenthal, Philip J; Dorsey, Grant; Drakeley, Christopher J; Greenhouse, Bryan

    2015-08-11

    Tools to reliably measure Plasmodium falciparum (Pf) exposure in individuals and communities are needed to guide and evaluate malaria control interventions. Serologic assays can potentially produce precise exposure estimates at low cost; however, current approaches based on responses to a few characterized antigens are not designed to estimate exposure in individuals. Pf-specific antibody responses differ by antigen, suggesting that selection of antigens with defined kinetic profiles will improve estimates of Pf exposure. To identify novel serologic biomarkers of malaria exposure, we evaluated responses to 856 Pf antigens by protein microarray in 186 Ugandan children, for whom detailed Pf exposure data were available. Using data-adaptive statistical methods, we identified combinations of antibody responses that maximized information on an individual's recent exposure. Responses to three novel Pf antigens accurately classified whether an individual had been infected within the last 30, 90, or 365 d (cross-validated area under the curve = 0.86-0.93), whereas responses to six antigens accurately estimated an individual's malaria incidence in the prior year. Cross-validated incidence predictions for individuals in different communities provided accurate stratification of exposure between populations and suggest that precise estimates of community exposure can be obtained from sampling a small subset of that community. In addition, serologic incidence predictions from cross-sectional samples characterized heterogeneity within a community similarly to 1 y of continuous passive surveillance. Development of simple ELISA-based assays derived from the successful selection strategy outlined here offers the potential to generate rich epidemiologic surveillance data that will be widely accessible to malaria control programs.

  18. Precision Studies of Observables in $pp\\rightarrow W\\rightarrow l\

    CERN Document Server

    Alioli, S.; Bardin, D. Yu.; Barze, L.; Bernaciak, C.; Bondarenko, S.G.; Carloni Calame, C.; Chiesa, M.; Dittmaier, S.; Ferrera, G.; de Florian, D.; Grazzini, M.; Hoeche, S.; Huss, A.; Jadach, S.; Kalinovskaya, L.V.; Karlberg, A.; Krauss, F.; Li, Y.; Martinez, H.; Montagna, G.; Mueck, A.; Nason, P.; Nicrosini, O.; Petriello, F.; Piccinini, F.; Placzek, W.; Prestel, S.; Re, E.; Sapronov, A.A.; Schoenherr, M.; Schwinn, C.; Vicini, A.; Wackeroth, D.; Was, Z.; Zanderighi, G.

    2017-05-03

    This report was prepared in the context of the LPCC "Electroweak Precision Measurements at the LHC WG" and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes at hadron colliders, in particular at the CERN Large Hadron Collider (LHC). This work represents an important step towards the definition of an accurate simulation framework necessary for very high-precision measurements of electroweak (EW) observables such as the $W$ boson mass and the weak mixing angle. All the codes considered in this report share at least next-to-leading-order (NLO) accuracy in the prediction of the total cross sections in an expansion either in the strong or in the EW coupling constant. The NLO fixed-order predictions have been scrutinized at the technical level, using exactly the same inputs, setup and perturbative accuracy, in order to quantify the level of agreement of different implementations of the same calculation. A dedicated compar...

  19. Precision Distances with the Tip of the Red Giant Branch Method

    Science.gov (United States)

    Beaton, Rachael Lynn; Carnegie-Chicago Hubble Program Team

    2018-01-01

    The Carnegie-Chicago Hubble Program aims to construct a distance ladder that utilizes old stellar populations in the outskirts of galaxies to produce a high precision measurement of the Hubble Constant that is independent of Cepheids. The CCHP uses the tip of the red giant branch (TRGB) method, which is a statistical measurement technique that utilizes the termination of the red giant branch. Two innovations combine to make the TRGB a competitive route to the Hubble Constant (i) the large-scale measurement of trigonometric parallax by the Gaia mission and (ii) the development of both precise and accurate means of determining the TRGB in both nearby (~1 Mpc) and distant (~20 Mpc) galaxies. Here I will summarize our progress in developing these standardized techniques, focusing on both our edge-detection algorithm and our field selection strategy. Using these methods, the CCHP has determined equally precise (~2%) distances to galaxies in the Local Group (< 1 Mpc) and across the Local Volume (< 20 Mpc). The TRGB is, thus, an incredibly powerful and straightforward means to determine distances to galaxies of any Hubble Type and, thus, has enormous potential for putting any number of astrophyiscal phenomena on absolute units.

  20. Replication quality assessment and uncertainty evaluation of a polymer precision injection moulded component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    2017-01-01

    Precision injection moulding holds a central role in manufacturing as only replication process currently capable of accurately producing complex shaped polymer parts integrating micrometric features on a mass scale production. In this scenario, a study on the replication quality of a polymer...... injection moulded precision component for telecommunication applications is presented. The effects of the process parameters on the component dimensional variation have been investigated using a statistical approach. Replication fidelity of produced parts has been assessed using a focus variation microscope...... with sub-micrometric resolution. Measurement uncertainty has then been evaluated, according to the GUM considering contributions from different process settings combinations and mould geometries. The analysis showed that the injection moulding manufacturing process and the utilized measurement chain...

  1. Sensing Technologies for Precision Phenotyping in Vegetable Crops: Current Status and Future Challenges

    Directory of Open Access Journals (Sweden)

    Pasquale Tripodi

    2018-04-01

    Full Text Available Increasing the ability to investigate plant functions and structure through non-invasive methods with high accuracy has become a major target in plant breeding and precision agriculture. Emerging approaches in plant phenotyping play a key role in unraveling quantitative traits responsible for growth, production, quality, and resistance to various stresses. Beyond fully automatic phenotyping systems, several promising technologies can help accurately characterize a wide range of plant traits at affordable costs and with high-throughput. In this review, we revisit the principles of proximal and remote sensing, describing the application of non-invasive devices for precision phenotyping applied to the protected horticulture. Potentiality and constraints of big data management and integration with “omics” disciplines will also be discussed.

  2. High precision innovative micropump for artificial pancreas

    Science.gov (United States)

    Chappel, E.; Mefti, S.; Lettieri, G.-L.; Proennecke, S.; Conan, C.

    2014-03-01

    The concept of artificial pancreas, which comprises an insulin pump, a continuous glucose meter and a control algorithm, is a major step forward in managing patient with type 1 diabetes mellitus. The stability of the control algorithm is based on short-term precision micropump to deliver rapid-acting insulin and to specific integrated sensors able to monitor any failure leading to a loss of accuracy. Debiotech's MEMS micropump, based on the membrane pump principle, is made of a stack of 3 silicon wafers. The pumping chamber comprises a pillar check-valve at the inlet, a pumping membrane which is actuated against stop limiters by a piezo cantilever, an anti-free-flow outlet valve and a pressure sensor. The micropump inlet is tightly connected to the insulin reservoir while the outlet is in direct communication with the patient skin via a cannula. To meet the requirement of a pump dedicated to closed-loop application for diabetes care, in addition to the well-controlled displacement of the pumping membrane, the high precision of the micropump is based on specific actuation profiles that balance effect of pump elasticity in low-consumption push-pull mode.

  3. Precision machining commercialization

    International Nuclear Information System (INIS)

    1978-01-01

    To accelerate precision machining development so as to realize more of the potential savings within the next few years of known Department of Defense (DOD) part procurement, the Air Force Materials Laboratory (AFML) is sponsoring the Precision Machining Commercialization Project (PMC). PMC is part of the Tri-Service Precision Machine Tool Program of the DOD Manufacturing Technology Five-Year Plan. The technical resources supporting PMC are provided under sponsorship of the Department of Energy (DOE). The goal of PMC is to minimize precision machining development time and cost risk for interested vendors. PMC will do this by making available the high precision machining technology as developed in two DOE contractor facilities, the Lawrence Livermore Laboratory of the University of California and the Union Carbide Corporation, Nuclear Division, Y-12 Plant, at Oak Ridge, Tennessee

  4. Rapid characterizing of ferromagnetic materials using spin rectification

    International Nuclear Information System (INIS)

    Fan, Xiaolong; Wang, Wei; Wang, Yutian; Zhou, Hengan; Rao, Jinwei; Zhao, Xiaobing; Gao, Cunxu; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    Spin rectification is a powerful tool for dc electric detections of spin dynamics and electromagnetic waves. Technically, elaborately designed on-chip microwave devices are needed in order to realize that effect. In this letter, we propose a rapid characterizing approach based on spin rectification. By directly sending dynamic current into ferromagnetic films with stripe shape, resonant dc voltages can be detected along the longitudinal or transversal directions. As an example, Fe (010) films with precise crystalline structure and magnetic parameters were used to testify the reliability of such method. We investigated not only the dynamic parameters and the precise anisotropy constants of the Fe crystals but also the principle of spin rectification in this method

  5. System for Rapid, Precise Modulation of Intraocular Pressure, toward Minimally-Invasive In Vivo Measurement of Intracranial Pressure.

    Directory of Open Access Journals (Sweden)

    Max A Stockslager

    Full Text Available Pathologic changes in intracranial pressure (ICP are commonly observed in a variety of medical conditions, including traumatic brain injury, stroke, brain tumors, and glaucoma. However, current ICP measurement techniques are invasive, requiring a lumbar puncture or surgical insertion of a cannula into the cerebrospinal fluid (CSF-filled ventricles of the brain. A potential alternative approach to ICP measurement leverages the unique anatomy of the central retinal vein, which is exposed to both intraocular pressure (IOP and ICP as it travels inside the eye and through the optic nerve; manipulating IOP while observing changes in the natural pulsations of the central retinal vein could potentially provide an accurate, indirect measure of ICP. As a step toward implementing this technique, we describe the design, fabrication, and characterization of a system that is capable of manipulating IOP in vivo with <0.1 mmHg resolution and settling times less than 2 seconds. In vitro tests were carried out to characterize system performance. Then, as a proof of concept, we used the system to manipulate IOP in tree shrews (Tupaia belangeri while video of the retinal vessels was recorded and the caliber of a selected vein was quantified. Modulating IOP using our system elicited a rapid change in the appearance of the retinal vein of interest: IOP was lowered from 10 to 3 mmHg, and retinal vein caliber sharply increased as IOP decreased from 7 to 5 mmHg. Another important feature of this technology is its capability to measure ocular compliance and outflow facility in vivo, as demonstrated in tree shrews. Collectively, these proof-of-concept demonstrations support the utility of this system to manipulate IOP for a variety of useful applications in ocular biomechanics, and provide a framework for further study of the mechanisms of retinal venous pulsation.

  6. AN ACCURATE ORBITAL INTEGRATOR FOR THE RESTRICTED THREE-BODY PROBLEM AS A SPECIAL CASE OF THE DISCRETE-TIME GENERAL THREE-BODY PROBLEM

    International Nuclear Information System (INIS)

    Minesaki, Yukitaka

    2013-01-01

    For the restricted three-body problem, we propose an accurate orbital integration scheme that retains all conserved quantities of the two-body problem with two primaries and approximately preserves the Jacobi integral. The scheme is obtained by taking the limit as mass approaches zero in the discrete-time general three-body problem. For a long time interval, the proposed scheme precisely reproduces various periodic orbits that cannot be accurately computed by other generic integrators

  7. Precision electroweak heavy flavor results from LEP and SLC

    International Nuclear Information System (INIS)

    Brown, D.

    1993-11-01

    The traditional Electroweak measurements made at Z factories using undifferentiated hadronic and leptonic Z decays will soon be reaching their asymptotic limits in precision. Consequently, much attention has recently been focused on extracting electroweak parameters from hadronic decays differentiated through heavy flavor tagging. This paper gives an overview of the various techniques used at LEP and SLC to tag heavy flavors. The measurements of the forward backward asymmetries and the partial widths for Z→b anti b and Z→c anti c decays are briefly described. The most recent results for these are presented, and are interpreted within the framework of the Standard Model. The precision of the electroweak parameters extracted from these measurements is shown to be comparable to that from other techniques. Assembling all the LEP electroweak data, constraints on the top and Higgs masses are found. The heavy flavor results, and in particular the new, very accurate Z→b anti b partial width measurements, are shown to play a key role in these limits. (orig.)

  8. Precision Attitude Control for the BETTII Balloon-Borne Interferometer

    Science.gov (United States)

    Benford, Dominic J.; Fixsen, Dale J.; Rinehart. Stephen

    2012-01-01

    The Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII) is an 8-meter baseline far-infrared interferometer to fly on a high altitude balloon. Operating at wavelengths of 30-90 microns, BETTII will obtain spatial and spectral information on science targets at angular resolutions down to less than half an arcsecond, a capability unmatched by other far-infrared facilities. This requires attitude control at a level ofless than a tenth of an arcsecond, a great challenge for a lightweight balloon-borne system. We have designed a precision attitude determination system to provide gondola attitude knowledge at a level of 2 milliarcseconds at rates up to 100Hz, with accurate absolute attitude determination at the half arcsecond level at rates of up to 10Hz. A mUlti-stage control system involving rigid body motion and tip-tilt-piston correction provides precision pointing stability to the level required for the far-infrared instrument to perform its spatial/spectral interferometry in an open-loop control. We present key aspects of the design of the attitude determination and control and its development status.

  9. Skull reconstruction after resection of bone tumors in a single surgical time by the association of the techniques of rapid prototyping and surgical navigation.

    Science.gov (United States)

    Anchieta, M V M; Salles, F A; Cassaro, B D; Quaresma, M M; Santos, B F O

    2016-10-01

    Presentation of a new cranioplasty technique employing a combination of two technologies: rapid prototyping and surgical navigation. This technique allows the reconstruction of the skull cap after the resection of a bone tumor in a single surgical time. The neurosurgeon plans the craniotomy previously on the EximiusMed software, compatible with the Eximius Surgical Navigator, both from the company Artis Tecnologia (Brazil). The navigator imports the planning and guides the surgeon during the craniotomy. The simulation of the bone fault allows the virtual reconstruction of the skull cap and the production of a personalized modelling mold using the Magics-Materialise (Belgium)-software. The mold and a replica of the bone fault are made by rapid prototyping by the company Artis Tecnologia (Brazil) and shipped under sterile conditions to the surgical center. The PMMA prosthesis is produced during the surgical act with the help of a hand press. The total time necessary for the planning and production of the modelling mold is four days. The precision of the mold is submillimetric and accurately reproduces the virtual reconstruction of the prosthesis. The production of the prosthesis during surgery takes until twenty minutes depending on the type of PMMA used. The modelling mold avoids contraction and dissipates the heat generated by the material's exothermic reaction in the polymerization phase. The craniectomy is performed with precision over the drawing made with the help of the Eximius Surgical Navigator, according to the planned measurements. The replica of the bone fault serves to evaluate the adaptation of the prosthesis as a support for the perforations and the placement of screws and fixation plates, as per the surgeon's discretion. This technique allows the adequate oncologic treatment associated with a satisfactory aesthetic result, with precision, in a single surgical time, reducing time and costs.

  10. Pulsed Plasma with Synchronous Boundary Voltage for Rapid Atomic Layer Etching

    Energy Technology Data Exchange (ETDEWEB)

    Economou, Demetre J.; Donnelly, Vincent M.

    2014-05-13

    Atomic Layer ETching (ALET) of a solid with monolayer precision is a critical requirement for advancing nanoscience and nanotechnology. Current plasma etching techniques do not have the level of control or damage-free nature that is needed for patterning delicate sub-20 nm structures. In addition, conventional ALET, based on pulsed gases with long reactant adsorption and purging steps, is very slow. In this work, novel pulsed plasma methods with synchronous substrate and/or “boundary electrode” bias were developed for highly selective, rapid ALET. Pulsed plasma and tailored bias voltage waveforms provided controlled ion energy and narrow energy spread, which are critical for highly selective and damage-free etching. The broad goal of the project was to investigate the plasma science and engineering that will lead to rapid ALET with monolayer precision. A combined experimental-simulation study was employed to achieve this goal.

  11. Automatic and accurate reconstruction of distal humerus contours through B-Spline fitting based on control polygon deformation.

    Science.gov (United States)

    Mostafavi, Kamal; Tutunea-Fatan, O Remus; Bordatchev, Evgueni V; Johnson, James A

    2014-12-01

    The strong advent of computer-assisted technologies experienced by the modern orthopedic surgery prompts for the expansion of computationally efficient techniques to be built on the broad base of computer-aided engineering tools that are readily available. However, one of the common challenges faced during the current developmental phase continues to remain the lack of reliable frameworks to allow a fast and precise conversion of the anatomical information acquired through computer tomography to a format that is acceptable to computer-aided engineering software. To address this, this study proposes an integrated and automatic framework capable to extract and then postprocess the original imaging data to a common planar and closed B-Spline representation. The core of the developed platform relies on the approximation of the discrete computer tomography data by means of an original two-step B-Spline fitting technique based on successive deformations of the control polygon. In addition to its rapidity and robustness, the developed fitting technique was validated to produce accurate representations that do not deviate by more than 0.2 mm with respect to alternate representations of the bone geometry that were obtained through different-contact-based-data acquisition or data processing methods. © IMechE 2014.

  12. Atomic physics precise measurements and ultracold matter

    CERN Document Server

    Inguscio, Massimo

    2013-01-01

    Atomic Physics provides an expert guide to two spectacular new landscapes in physics: precision measurements, which have been revolutionized by the advent of the optical frequency comb, and atomic physics, which has been revolutionized by laser cooling. These advances are not incremental but transformative: they have generated a consilience between atomic and many-body physics, precipitated an explosion of scientific and technological applications, opened new areas of research, and attracted a brilliant generation of younger scientists. The research is advancing so rapidly, the barrage of applications is so dazzling, that students can be bewildered. For both students and experienced scientists, this book provides an invaluable description of basic principles, experimental methods, and scientific applications.

  13. The precision problem in conservation and restoration

    Science.gov (United States)

    Hiers, J. Kevin; Jackson, Stephen T.; Hobbs, Richard J.; Bernhardt, Emily S.; Valentine, Leonie E.

    2016-01-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world.

  14. CO2 Laser-Based Rapid Prototyping of Micropumps

    Directory of Open Access Journals (Sweden)

    Zachary Strike

    2018-05-01

    Full Text Available The fabrication of microdevices for fluidic control often requires the use of flexible diaphragms in a way that requires cleanroom equipment and compromises performance. We use a CO 2 laser to perform the standard ablative techniques of cutting and engraving materials, but we also apply a method that we call laser placement. This allows us to fabricate precisely-positioned and precisely-sized, isolated diaphragms. This in turn enables the rapid prototyping of integrated multilayer microfluidic devices to form complex structures without the need for manual positioning or cleanroom equipment. The fabrication process is also remarkably rapid and capable of being scaled to manufacturing levels of production. We explore the use of these devices to construct a compact system of peristaltic pumps that can form water in oil droplets without the use of the non-pulsatile pumping systems typically required. Many devices can be fabricated at a time on a sheet by sheet basis with a fabrication process that, to our knowledge, is the fastest reported to date for devices of this type (requiring only 3 h. Moreover, this system is unusually compact and self-contained.

  15. Why precision?

    Energy Technology Data Exchange (ETDEWEB)

    Bluemlein, Johannes

    2012-05-15

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  16. Why precision?

    International Nuclear Information System (INIS)

    Bluemlein, Johannes

    2012-05-01

    Precision measurements together with exact theoretical calculations have led to steady progress in fundamental physics. A brief survey is given on recent developments and current achievements in the field of perturbative precision calculations in the Standard Model of the Elementary Particles and their application in current high energy collider data analyses.

  17. An accurate optical design method for synchrotron radiation beamlines with wave-front aberration theory

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaojiang, E-mail: slsyxj@nus.edu.sg; Diao, Caozheng; Breese, Mark B. H. [Singapore Synchrotron Light Source, National University of Singapore, Singapore 117603 (Singapore)

    2016-07-27

    An aberration calculation method which was developed by Lu [1] can treat individual aberration term precisely. Spectral aberration is the linear sum of these aberration terms, and the aberrations of multi-element systems also can be calculated correctly when the stretching ratio, defined herein, is unity. Evaluation of focusing mirror-grating systems which are optimized according to Lu’s method, along with the Light Path Function (LPF) and the Spot Diagram method (SD) are discussed to confirm the advantage of Lu’s methodology. Lu’s aberration terms are derived from a precise wave-front treatment, whereas the terms of the power series expansion of the light path function do not yield an accurate sum of the aberrations. Moreover, Lu’s aberration terms can be individually optimized. This is not possible with the analytical spot diagram formulae.

  18. Avulsion research using flume experiments and highly accurate and temporal-rich SfM datasets

    Science.gov (United States)

    Javernick, L.; Bertoldi, W.; Vitti, A.

    2017-12-01

    SfM's ability to produce high-quality, large-scale digital elevation models (DEMs) of complicated and rapidly evolving systems has made it a valuable technique for low-budget researchers and practitioners. While SfM has provided valuable datasets that capture single-flood event DEMs, there is an increasing scientific need to capture higher temporal resolution datasets that can quantify the evolutionary processes instead of pre- and post-flood snapshots. However, flood events' dangerous field conditions and image matching challenges (e.g. wind, rain) prevent quality SfM-image acquisition. Conversely, flume experiments offer opportunities to document flood events, but achieving consistent and accurate DEMs to detect subtle changes in dry and inundated areas remains a challenge for SfM (e.g. parabolic error signatures).This research aimed at investigating the impact of naturally occurring and manipulated avulsions on braided river morphology and on the encroachment of floodplain vegetation, using laboratory experiments. This required DEMs with millimeter accuracy and precision and at a temporal resolution to capture the processes. SfM was chosen as it offered the most practical method. Through redundant local network design and a meticulous ground control point (GCP) survey with a Leica Total Station in red laser configuration (reported 2 mm accuracy), the SfM residual errors compared to separate ground truthing data produced mean errors of 1.5 mm (accuracy) and standard deviations of 1.4 mm (precision) without parabolic error signatures. Lighting conditions in the flume were limited to uniform, oblique, and filtered LED strips, which removed glint and thus improved bed elevation mean errors to 4 mm, but errors were further reduced by means of an open source software for refraction correction. The obtained datasets have provided the ability to quantify how small flood events with avulsion can have similar morphologic and vegetation impacts as large flood events

  19. Precision mechatronics based on high-precision measuring and positioning systems and machines

    Science.gov (United States)

    Jäger, Gerd; Manske, Eberhard; Hausotte, Tino; Mastylo, Rostyslav; Dorozhovets, Natalja; Hofmann, Norbert

    2007-06-01

    Precision mechatronics is defined in the paper as the science and engineering of a new generation of high precision systems and machines. Nanomeasuring and nanopositioning engineering represents important fields of precision mechatronics. The nanometrology is described as the today's limit of the precision engineering. The problem, how to design nanopositioning machines with uncertainties as small as possible will be discussed. The integration of several optical and tactile nanoprobes makes the 3D-nanopositioning machine suitable for various tasks, such as long range scanning probe microscopy, mask and wafer inspection, nanotribology, nanoindentation, free form surface measurement as well as measurement of microoptics, precision molds, microgears, ring gauges and small holes.

  20. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds

    International Nuclear Information System (INIS)

    Hockaday, L A; Kang, K H; Colangelo, N W; Cheung, P Y C; Duan, B; Wu, J; Bonassar, L J; Butcher, J T; Malone, E; Lipson, H; Girardi, L N; Chu, C C

    2012-01-01

    The aortic valve exhibits complex three-dimensional (3D) anatomy and heterogeneity essential for the long-term efficient biomechanical function. These are, however, challenging to mimic in de novo engineered living tissue valve strategies. We present a novel simultaneous 3D printing/photocrosslinking technique for rapidly engineering complex, heterogeneous aortic valve scaffolds. Native anatomic and axisymmetric aortic valve geometries (root wall and tri-leaflets) with 12–22 mm inner diameters (ID) were 3D printed with poly-ethylene glycol-diacrylate (PEG-DA) hydrogels (700 or 8000 MW) supplemented with alginate. 3D printing geometric accuracy was quantified and compared using Micro-CT. Porcine aortic valve interstitial cells (PAVIC) seeded scaffolds were cultured for up to 21 days. Results showed that blended PEG-DA scaffolds could achieve over tenfold range in elastic modulus (5.3±0.9 to 74.6±1.5 kPa). 3D printing times for valve conduits with mechanically contrasting hydrogels were optimized to 14 to 45 min, increasing linearly with conduit diameter. Larger printed valves had greater shape fidelity (93.3±2.6, 85.1±2.0 and 73.3±5.2% for 22, 17 and 12 mm ID porcine valves; 89.1±4.0, 84.1±5.6 and 66.6±5.2% for simplified valves). PAVIC seeded scaffolds maintained near 100% viability over 21 days. These results demonstrate that 3D hydrogel printing with controlled photocrosslinking can rapidly fabricate anatomical heterogeneous valve conduits that support cell engraftment. (paper)

  1. Rapid jetting status inspection and accurate droplet volume measurement for a piezo drop-on-demand inkjet print head using a scanning mirror for display applications

    Science.gov (United States)

    Shin, Dong-Youn; Kim, Minsung

    2017-02-01

    Despite the inherent fabrication simplicity of piezo drop-on-demand inkjet printing, the non-uniform deposition of colourants or electroluminescent organic materials leads to faulty display products, and hence, the importance of rapid jetting status inspection and accurate droplet volume measurement increases from a process perspective. In this work, various jetting status inspections and droplet volume measurement methods are reviewed by discussing their advantages and disadvantages, and then, the opportunities for the developed prototype with a scanning mirror are explored. This work demonstrates that jetting status inspection of 384 fictitious droplets can be performed within 17 s with maximum and minimum measurement accuracies of 0.2 ± 0.5 μ m for the fictitious droplets of 50 μ m in diameter and -1.2 ± 0.3 μ m for the fictitious droplets of 30 μ m in diameter, respectively. In addition to the new design of an inkjet monitoring instrument with a scanning mirror, two novel methods to accurately measure the droplet volume by amplifying a minute droplet volume difference and then converting to other physical properties are suggested and the droplet volume difference of ±0.3% is demonstrated to be discernible using numerical simulations, even with the low measurement accuracy of 1 μ m . When the fact is considered that the conventional vision-based method with a CCD camera requires the optical measurement accuracy less than 25 nm to measure the volume of an in-flight droplet in the nominal diameter of 50 μ m at the same volume measurement accuracy, the suggested method with the developed prototype offers a whole new opportunity to inkjet printing for display applications.

  2. Computational Calorimetry: High-Precision Calculation of Host–Guest Binding Thermodynamics

    Science.gov (United States)

    2015-01-01

    We present a strategy for carrying out high-precision calculations of binding free energy and binding enthalpy values from molecular dynamics simulations with explicit solvent. The approach is used to calculate the thermodynamic profiles for binding of nine small molecule guests to either the cucurbit[7]uril (CB7) or β-cyclodextrin (βCD) host. For these systems, calculations using commodity hardware can yield binding free energy and binding enthalpy values with a precision of ∼0.5 kcal/mol (95% CI) in a matter of days. Crucially, the self-consistency of the approach is established by calculating the binding enthalpy directly, via end point potential energy calculations, and indirectly, via the temperature dependence of the binding free energy, i.e., by the van’t Hoff equation. Excellent agreement between the direct and van’t Hoff methods is demonstrated for both host–guest systems and an ion-pair model system for which particularly well-converged results are attainable. Additionally, we find that hydrogen mass repartitioning allows marked acceleration of the calculations with no discernible cost in precision or accuracy. Finally, we provide guidance for accurately assessing numerical uncertainty of the results in settings where complex correlations in the time series can pose challenges to statistical analysis. The routine nature and high precision of these binding calculations opens the possibility of including measured binding thermodynamics as target data in force field optimization so that simulations may be used to reliably interpret experimental data and guide molecular design. PMID:26523125

  3. Qualitative and Quantitative Analysis of Andrographis paniculata by Rapid Resolution Liquid Chromatography/Time-of-Flight Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Jian-Fei Qin

    2013-09-01

    Full Text Available A rapid resolution liquid chromatography/time-of-flight tandem mass spectrometry (RRLC-TOF/MS method was developed for qualitative and quantitative analysis of the major chemical constituents in Andrographis paniculata. Fifteen compounds, including flavonoids and diterpenoid lactones, were unambiguously or tentatively identified in 10 min by comparing their retention times and accurate masses with standards or literature data. The characteristic fragmentation patterns of flavonoids and diterpenoid lactones were summarized, and the structures of the unknown compounds were predicted. Andrographolide, dehydroandrographolide and neoandrographolide were further quantified as marker substances. It was found that the calibration curves for all analytes showed good linearity (R2 > 0.9995 within the test ranges. The overall limits of detection (LODs and limits of quantification (LOQs were 0.02 μg/mL to 0.06 μg/mL and 0.06 μg/mL to 0.2 μg/mL, respectively. The relative standard deviations (RSDs for intra- and inter-day precisions were below 3.3% and 4.2%, respectively. The mean recovery rates ranged from 96.7% to 104.5% with the relative standard deviations (RSDs less than 2.72%. It is concluded that RRLC-TOF/MS is powerful and practical in qualitative and quantitative analysis of complex plant samples due to time savings, sensitivity, precision, accuracy and lowering solvent consumption.

  4. How accurately can 21cm tomography constrain cosmology?

    Science.gov (United States)

    Mao, Yi; Tegmark, Max; McQuinn, Matthew; Zaldarriaga, Matias; Zahn, Oliver

    2008-07-01

    There is growing interest in using 3-dimensional neutral hydrogen mapping with the redshifted 21 cm line as a cosmological probe. However, its utility depends on many assumptions. To aid experimental planning and design, we quantify how the precision with which cosmological parameters can be measured depends on a broad range of assumptions, focusing on the 21 cm signal from 6noise, to uncertainties in the reionization history, and to the level of contamination from astrophysical foregrounds. We derive simple analytic estimates for how various assumptions affect an experiment’s sensitivity, and we find that the modeling of reionization is the most important, followed by the array layout. We present an accurate yet robust method for measuring cosmological parameters that exploits the fact that the ionization power spectra are rather smooth functions that can be accurately fit by 7 phenomenological parameters. We find that for future experiments, marginalizing over these nuisance parameters may provide constraints almost as tight on the cosmology as if 21 cm tomography measured the matter power spectrum directly. A future square kilometer array optimized for 21 cm tomography could improve the sensitivity to spatial curvature and neutrino masses by up to 2 orders of magnitude, to ΔΩk≈0.0002 and Δmν≈0.007eV, and give a 4σ detection of the spectral index running predicted by the simplest inflation models.

  5. Micropropulsion Systems for Precision Controlled Space Flight

    DEFF Research Database (Denmark)

    Larsen, Jack

    . This project is thus concentrating on developing a method by which an entire, ecient, control system compensating for the disturbances from the space environment and thereby enabling precision formation flight can be realized. The space environment is initially studied and the knowledge gained is used......Space science is subject to a constantly increasing demand for larger coherence lengths or apertures of the space observation systems, which in turn translates into a demand for increased dimensions and subsequently cost and complexity of the systems. When this increasing demand reaches...... the pratical limitations of increasing the physical dimensions of the spacecrafts, the observation platforms will have to be distributed on more spacecrafts flying in very accurate formations. Consequently, the observation platform becomes much more sensitive to disturbances from the space environment...

  6. Technology in precision viticulture: a state of the art review

    Directory of Open Access Journals (Sweden)

    Matese A

    2015-05-01

    Full Text Available Alessandro Matese,1 Salvatore Filippo Di Gennaro1,2 1Institute of Biometeorology, National Research Council (IBIMET-CNR, Florence, Italy; 2Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy Abstract: Precision viticulture aims to maximize the oenological potential of vineyards. This is especially true in regions where the high quality standards of wine production justify the adoption of site-specific management practices to simultaneously increase both quality and yield. The introduction of new technologies for supporting vineyard management allows the efficiency and quality of production to be improved and, at the same time, reduces the environmental impact. The rapid evolution of information communication technologies and geographical science offers enormous potential for the development of optimized solutions for distributed information for precision viticulture. Recent technological developments have allowed useful tools to be elaborated that help in the monitoring and control of many aspects of vine growth. Precision viticulture thus seeks to exploit the widest range of available observations to describe the vineyard spatial variability with high resolution, and provide recommendations to improve management efficiency in terms of quality, production, and sustainability. This review presents a brief outline of state of the art of technologies in precision viticulture. It is divided in two sections, the first focusing on monitoring technologies such as geolocating and remote and proximal sensing; the second focuses on variable-rate technologies and the new agricultural robots. Keywords: remote sensing, proximal sensing, variable-rate technology, robot 

  7. High Precision Measurement of the differential vector boson cross-sections with the ATLAS detector

    CERN Document Server

    Armbruster, Aaron James; The ATLAS collaboration

    2017-01-01

    Measurements of the Drell-Yan production of W and Z/gamma bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at center-of-mass energies of 7. The measurements are performed for W+, W- and Z/gamma bosons integrated and as a function of the boson or lepton rapidity and the Z/gamma* mass. Unprecedented precision is reached and strong constraints on Parton Distribution functions, in particular the strange density are found. Z cross sections are also measured at center-of-mass energies of 8 eV and 13TeV, and cross-section ratios to the top-quark pair production have been derived. This ratio measurement leads to a cancellation of systematic effects and allows for a high precision comparison to the theory predictions. The cross section of single W events has also been measured precisely at center-of-mass energies of 8TeV and 13TeV and the W charge asymmetry has been determ...

  8. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    Science.gov (United States)

    Verschuuren, Marlies; De Vylder, Jonas; Catrysse, Hannes; Robijns, Joke; Philips, Wilfried; De Vos, Winnok H

    2017-01-01

    A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND), which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  9. A fast GNU method to draw accurate scientific illustrations for taxonomy

    Directory of Open Access Journals (Sweden)

    Giuseppe Montesanto

    2015-07-01

    Full Text Available Nowadays only digital figures are accepted by the most important journals of taxonomy. These may be produced by scanning conventional drawings, made with high precision technical ink-pens, which normally use capillary cartridge and various line widths. Digital drawing techniques that use vector graphics, have already been described in literature to support scientists in drawing figures and plates for scientific illustrations; these techniques use many different software and hardware devices. The present work gives step-by-step instructions on how to make accurate line drawings with a new procedure that uses bitmap graphics with the GNU Image Manipulation Program (GIMP. This method is noteworthy: it is very accurate, producing detailed lines at the highest resolution; the raster lines appear as realistic ink-made drawings; it is faster than the traditional way of making illustrations; everyone can use this simple technique; this method is completely free as it does not use expensive and licensed software and it can be used with different operating systems. The method has been developed drawing figures of terrestrial isopods and some examples are here given.

  10. Accurate Detection of Dysmorphic Nuclei Using Dynamic Programming and Supervised Classification.

    Directory of Open Access Journals (Sweden)

    Marlies Verschuuren

    Full Text Available A vast array of pathologies is typified by the presence of nuclei with an abnormal morphology. Dysmorphic nuclear phenotypes feature dramatic size changes or foldings, but also entail much subtler deviations such as nuclear protrusions called blebs. Due to their unpredictable size, shape and intensity, dysmorphic nuclei are often not accurately detected in standard image analysis routines. To enable accurate detection of dysmorphic nuclei in confocal and widefield fluorescence microscopy images, we have developed an automated segmentation algorithm, called Blebbed Nuclei Detector (BleND, which relies on two-pass thresholding for initial nuclear contour detection, and an optimal path finding algorithm, based on dynamic programming, for refining these contours. Using a robust error metric, we show that our method matches manual segmentation in terms of precision and outperforms state-of-the-art nuclear segmentation methods. Its high performance allowed for building and integrating a robust classifier that recognizes dysmorphic nuclei with an accuracy above 95%. The combined segmentation-classification routine is bound to facilitate nucleus-based diagnostics and enable real-time recognition of dysmorphic nuclei in intelligent microscopy workflows.

  11. Developing and implementing a high precision setup system

    Science.gov (United States)

    Peng, Lee-Cheng

    The demand for high-precision radiotherapy (HPRT) was first implemented in stereotactic radiosurgery using a rigid, invasive stereotactic head frame. Fractionated stereotactic radiotherapy (SRT) with a frameless device was developed along a growing interest in sophisticated treatment with a tight margin and high-dose gradient. This dissertation establishes the complete management for HPRT in the process of frameless SRT, including image-guided localization, immobilization, and dose evaluation. The most ideal and precise positioning system can allow for ease of relocation, real-time patient movement assessment, high accuracy, and no additional dose in daily use. A new image-guided stereotactic positioning system (IGSPS), the Align RT3C 3D surface camera system (ART, VisionRT), which combines 3D surface images and uses a real-time tracking technique, was developed to ensure accurate positioning at the first place. The uncertainties of current optical tracking system, which causes patient discomfort due to additional bite plates using the dental impression technique and external markers, are found. The accuracy and feasibility of ART is validated by comparisons with the optical tracking and cone-beam computed tomography (CBCT) systems. Additionally, an effective daily quality assurance (QA) program for the linear accelerator and multiple IGSPSs is the most important factor to ensure system performance in daily use. Currently, systematic errors from the phantom variety and long measurement time caused by switching phantoms were discovered. We investigated the use of a commercially available daily QA device to improve the efficiency and thoroughness. Reasonable action level has been established by considering dosimetric relevance and clinic flow. As for intricate treatments, the effect of dose deviation caused by setup errors remains uncertain on tumor coverage and toxicity on OARs. The lack of adequate dosimetric simulations based on the true treatment coordinates from

  12. Rapid Prototyping 3D Model in Treatment of Pediatric Hip Dysplasia: A Case Report.

    Science.gov (United States)

    Holt, Andrew M; Starosolski, Zbigniew; Kan, J Herman; Rosenfeld, Scott B

    2017-01-01

    Rapid prototyping is an emerging technology that integrates common medical imaging with specialized production mechanisms to create detailed anatomic replicas. 3D-printed models of musculoskeletal anatomy have already proven useful in orthopedics and their applications continue to expand. We present the case of a 10 year-old female with Down syndrome and left acetabular dysplasia and chronic hip instability who underwent periacetabular osteotomy. A rapid prototyping 3D model was created to better understand the anatomy, counsel the family about the problem and the surgical procedure, as well as guide surgical technique. The intricate detail and size match of the model with the patient's anatomy offered unparalleled, hands-on experience with the patient's anatomy pre-operatively and improved surgical precision. Our experience with rapid prototyping confirmed its ability to enhance orthopedic care by improving the surgeon's ability to understand complex anatomy. Additionally, we report a new application utilizing intraoperative fluoroscopic comparison of the model and patient to ensure surgical precision and minimize the risk of complications. This technique could be used in other challenging cases. The increasing availability of rapid prototyping welcomes further use in all areas of orthopedics.

  13. An accurate determination of the flux within a slab

    International Nuclear Information System (INIS)

    Ganapol, B.D.; Lapenta, G.

    1993-01-01

    During the past decade, several articles have been written concerning accurate solutions to the monoenergetic neutron transport equation in infinite and semi-infinite geometries. The numerical formulations found in these articles were based primarily on the extensive theoretical investigations performed by the open-quotes transport greatsclose quotes such as Chandrasekhar, Busbridge, Sobolev, and Ivanov, to name a few. The development of numerical solutions in infinite and semi-infinite geometries represents an example of how mathematical transport theory can be utilized to provide highly accurate and efficient numerical transport solutions. These solutions, or analytical benchmarks, are useful as open-quotes industry standards,close quotes which provide guidance to code developers and promote learning in the classroom. The high accuracy of these benchmarks is directly attributable to the rapid advancement of the state of computing and computational methods. Transport calculations that were beyond the capability of the open-quotes supercomputersclose quotes of just a few years ago are now possible at one's desk. In this paper, we again build upon the past to tackle the slab problem, which is of the next level of difficulty in comparison to infinite media problems. The formulation is based on the monoenergetic Green's function, which is the most fundamental transport solution. This method of solution requires a fast and accurate evaluation of the Green's function, which, with today's computational power, is now readily available

  14. Precise baseline determination for the TanDEM-X mission

    Science.gov (United States)

    Koenig, Rolf; Moon, Yongjin; Neumayer, Hans; Wermuth, Martin; Montenbruck, Oliver; Jäggi, Adrian

    The TanDEM-X mission will strive for generating a global precise Digital Elevation Model (DEM) by way of bi-static SAR in a close formation of the TerraSAR-X satellite, already launched on June 15, 2007, and the TanDEM-X satellite to be launched in May 2010. Both satellites carry the Tracking, Occultation and Ranging (TOR) payload supplied by the GFZ German Research Centre for Geosciences. The TOR consists of a high-precision dual-frequency GPS receiver, called Integrated GPS Occultation Receiver (IGOR), and a Laser retro-reflector (LRR) for precise orbit determination (POD) and atmospheric sounding. The IGOR is of vital importance for the TanDEM-X mission objectives as the millimeter level determination of the baseline or distance between the two spacecrafts is needed to derive meter level accurate DEMs. Within the TanDEM-X ground segment GFZ is responsible for the operational provision of precise baselines. For this GFZ uses two software chains, first its Earth Parameter and Orbit System (EPOS) software and second the BERNESE software, for backup purposes and quality control. In a concerted effort also the German Aerospace Center (DLR) generates precise baselines independently with a dedicated Kalman filter approach realized in its FRNS software. By the example of GRACE the generation of baselines with millimeter accuracy from on-board GPS data can be validated directly by way of comparing them to the intersatellite K-band range measurements. The K-band ranges are accurate down to the micrometer-level and therefore may be considered as truth. Both TanDEM-X baseline providers are able to generate GRACE baselines with sub-millimeter accuracy. By merging the independent baselines by GFZ and DLR, the accuracy can even be increased. The K-band validation however covers solely the along-track component as the K-band data measure just the distance between the two GRACE satellites. In addition they inhibit an un-known bias which must be modelled in the comparison, so the

  15. Reliability, precision, and gender differences in knee internal/external rotation proprioception measurements.

    Science.gov (United States)

    Nagai, Takashi; Sell, Timothy C; Abt, John P; Lephart, Scott M

    2012-11-01

    To develop and assess the reliability and precision of knee internal/external rotation (IR/ER) threshold to detect passive motion (TTDPM) and determine if gender differences exist. Test-retest for the reliability/precision and cross-sectional for gender comparisons. University neuromuscular and human performance research laboratory. Ten subjects for the reliability and precision aim. Twenty subjects (10 males and 10 females) for gender comparisons. All TTDPM tests were performed using a multi-mode dynamometer. Subjects performed TTDPM at two knee positions (near IR or ER end-range). Intraclass correlation coefficient (ICC (3,k)) and standard error of measurement (SEM) were used to evaluate the reliability and precision. Independent t-tests were used to compare genders. TTDPM toward IR and ER at two knee positions. Intrasession and intersession reliability and precision were good (ICC=0.68-0.86; SEM=0.22°-0.37°). Females had significantly diminished TTDPM toward IR at IR-test position (males: 0.77°±0.14°, females: 1.18°±0.46°, p=0.021) and TTDPM toward IR at the ER-test position (males: 0.87°±0.13°, females: 1.36°±0.58°, p=0.026). No other significant gender differences were found (p>0.05). The current IR/ER TTDPM methods are reliable and accurate for the test-retest or cross-section research design. Gender differences were found toward IR where the ACL acts as the secondary restraint. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Rapid mask prototyping for microfluidics.

    Science.gov (United States)

    Maisonneuve, B G C; Honegger, T; Cordeiro, J; Lecarme, O; Thiry, T; Fuard, D; Berton, K; Picard, E; Zelsmann, M; Peyrade, D

    2016-03-01

    With the rise of microfluidics for the past decade, there has come an ever more pressing need for a low-cost and rapid prototyping technology, especially for research and education purposes. In this article, we report a rapid prototyping process of chromed masks for various microfluidic applications. The process takes place out of a clean room, uses a commercially available video-projector, and can be completed in less than half an hour. We quantify the ranges of fields of view and of resolutions accessible through this video-projection system and report the fabrication of critical microfluidic components (junctions, straight channels, and curved channels). To exemplify the process, three common devices are produced using this method: a droplet generation device, a gradient generation device, and a neuro-engineering oriented device. The neuro-engineering oriented device is a compartmentalized microfluidic chip, and therefore, required the production and the precise alignment of two different masks.

  17. High channel count microphone array accurately and precisely localizes ultrasonic signals from freely-moving mice.

    Science.gov (United States)

    Warren, Megan R; Sangiamo, Daniel T; Neunuebel, Joshua P

    2018-03-01

    An integral component in the assessment of vocal behavior in groups of freely interacting animals is the ability to determine which animal is producing each vocal signal. This process is facilitated by using microphone arrays with multiple channels. Here, we made important refinements to a state-of-the-art microphone array based system used to localize vocal signals produced by freely interacting laboratory mice. Key changes to the system included increasing the number of microphones as well as refining the methodology for localizing and assigning vocal signals to individual mice. We systematically demonstrate that the improvements in the methodology for localizing mouse vocal signals led to an increase in the number of signals detected as well as the number of signals accurately assigned to an animal. These changes facilitated the acquisition of larger and more comprehensive data sets that better represent the vocal activity within an experiment. Furthermore, this system will allow more thorough analyses of the role that vocal signals play in social communication. We expect that such advances will broaden our understanding of social communication deficits in mouse models of neurological disorders. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Accurate and rapid modeling of iron-bleomycin-induced DNA damage using tethered duplex oligonucleotides and electrospray ionization ion trap mass spectrometric analysis.

    Science.gov (United States)

    Harsch, A; Marzilli, L A; Bunt, R C; Stubbe, J; Vouros, P

    2000-05-01

    Bleomycin B(2)(BLM) in the presence of iron [Fe(II)] and O(2)catalyzes single-stranded (ss) and double-stranded (ds) cleavage of DNA. Electrospray ionization ion trap mass spectrometry was used to monitor these cleavage processes. Two duplex oligonucleotides containing an ethylene oxide tether between both strands were used in this investigation, allowing facile monitoring of all ss and ds cleavage events. A sequence for site-specific binding and cleavage by Fe-BLM was incorporated into each analyte. One of these core sequences, GTAC, is a known hot-spot for ds cleavage, while the other sequence, GGCC, is a hot-spot for ss cleavage. Incubation of each oligo-nucleotide under anaerobic conditions with Fe(II)-BLM allowed detection of the non-covalent ternary Fe-BLM/oligonucleotide complex in the gas phase. Cleavage studies were then performed utilizing O(2)-activated Fe(II)-BLM. No work-up or separation steps were required and direct MS and MS/MS analyses of the crude reaction mixtures confirmed sequence-specific Fe-BLM-induced cleavage. Comparison of the cleavage patterns for both oligonucleotides revealed sequence-dependent preferences for ss and ds cleavages in accordance with previously established gel electrophoresis analysis of hairpin oligonucleotides. This novel methodology allowed direct, rapid and accurate determination of cleavage profiles of model duplex oligonucleotides after exposure to activated Fe-BLM.

  19. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    Science.gov (United States)

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  20. Precision measurements with W and Z/gamma* bosons with the ATLAS detector

    CERN Document Server

    Anulli, Fabio; The ATLAS collaboration

    2016-01-01

    The inclusive production of single W and $Z/\\gamma^{*}$ bosons are standard candles at hadron colliders. ATLAS has recently completed a set of very precise measurements of production cross-sections and lepton decay angular distributions integrated and differential in several variables at centre-of-mass energies of 7, 8, and 13 TeV. ATLAS has performed a measurement of the complete set of coefficients that describe the angular distributions of the decay leptons in Z events in fine bins of the Z transverse momentum and in several bins of Z rapidity. Furthermore a measurement of the dilepton transverse momentum spectrum as well as the related angular decorrelation variable $\\phi^{*}$ was performed in a wide range of dilepton masses from 12 to 150 GeV. Precise double-differential measurements of the Drell-Yan cross section in the region above the Z peak up to dilepton masses of 1500 GeV are presented as well. Finally, first precise measurements of integrated W and Z cross sections and cross section ratios at 13 T...

  1. Practical precision measurement

    International Nuclear Information System (INIS)

    Kwak, Ho Chan; Lee, Hui Jun

    1999-01-01

    This book introduces basic knowledge of precision measurement, measurement of length, precision measurement of minor diameter, measurement of angles, measurement of surface roughness, three dimensional measurement, measurement of locations and shapes, measurement of screw, gear testing, cutting tools testing, rolling bearing testing, and measurement of digitalisation. It covers height gauge, how to test surface roughness, measurement of plan and straightness, external and internal thread testing, gear tooth measurement, milling cutter, tab, rotation precision measurement, and optical transducer.

  2. Precise Point Positioning with Partial Ambiguity Fixing.

    Science.gov (United States)

    Li, Pan; Zhang, Xiaohong

    2015-06-10

    Reliable and rapid ambiguity resolution (AR) is the key to fast precise point positioning (PPP). We propose a modified partial ambiguity resolution (PAR) method, in which an elevation and standard deviation criterion are first used to remove the low-precision ambiguity estimates for AR. Subsequently the success rate and ratio-test are simultaneously used in an iterative process to increase the possibility of finding a subset of decorrelated ambiguities which can be fixed with high confidence. One can apply the proposed PAR method to try to achieve an ambiguity-fixed solution when full ambiguity resolution (FAR) fails. We validate this method using data from 450 stations during DOY 021 to 027, 2012. Results demonstrate the proposed PAR method can significantly shorten the time to first fix (TTFF) and increase the fixing rate. Compared with FAR, the average TTFF for PAR is reduced by 14.9% for static PPP and 15.1% for kinematic PPP. Besides, using the PAR method, the average fixing rate can be increased from 83.5% to 98.2% for static PPP, from 80.1% to 95.2% for kinematic PPP respectively. Kinematic PPP accuracy with PAR can also be significantly improved, compared to that with FAR, due to a higher fixing rate.

  3. The precise temporal calibration of dinosaur origins.

    Science.gov (United States)

    Marsicano, Claudia A; Irmis, Randall B; Mancuso, Adriana C; Mundil, Roland; Chemale, Farid

    2016-01-19

    Dinosaurs have been major components of ecosystems for over 200 million years. Although different macroevolutionary scenarios exist to explain the Triassic origin and subsequent rise to dominance of dinosaurs and their closest relatives (dinosauromorphs), all lack critical support from a precise biostratigraphically independent temporal framework. The absence of robust geochronologic age control for comparing alternative scenarios makes it impossible to determine if observed faunal differences vary across time, space, or a combination of both. To better constrain the origin of dinosaurs, we produced radioisotopic ages for the Argentinian Chañares Formation, which preserves a quintessential assemblage of dinosaurian precursors (early dinosauromorphs) just before the first dinosaurs. Our new high-precision chemical abrasion thermal ionization mass spectrometry (CA-TIMS) U-Pb zircon ages reveal that the assemblage is early Carnian (early Late Triassic), 5- to 10-Ma younger than previously thought. Combined with other geochronologic data from the same basin, we constrain the rate of dinosaur origins, demonstrating their relatively rapid origin in a less than 5-Ma interval, thus halving the temporal gap between assemblages containing only dinosaur precursors and those with early dinosaurs. After their origin, dinosaurs only gradually dominated mid- to high-latitude terrestrial ecosystems millions of years later, closer to the Triassic-Jurassic boundary.

  4. Budget impact and cost-effectiveness: can we afford precision medicine in oncology?

    Science.gov (United States)

    Doble, Brett

    2016-01-01

    Over the past decade there have been remarkable advancements in the understanding of the molecular underpinnings of malignancy. Methods of testing capable of elucidating patients' molecular profiles are now readily available and there is an increased desire to incorporate the information derived from such tests into treatment selection for cancer patients. This has led to more appropriate application of existing treatments as well as the development of a number of innovative and highly effective treatments or what is known collectively as precision medicine. The impact that precision medicine will have on health outcomes is uncertain, as are the costs it will incur. There is, therefore, a need to develop economic evidence and appropriate methods of evaluation to support its implementation to ensure the resources allocated to these approaches are affordable and offer value for money. The market for precision medicine in oncology continues to rapidly expand, placing an increased pressure on reimbursement decision-makers to consider the value and opportunity cost of funding such approaches to care. The benefits of molecular testing can be complex and difficult to evaluate given currently available economic methods, potentially causing a distorted appreciation of their value. Funding decisions of precision medicine will also have far-reaching implications, requiring the consideration of both patient and public perspectives in decision-making. Recommendations to improve the value proposition of precision medicine are, therefore, provided with the hopes of facilitating a better understanding of its impact on outcomes and the overall health budget.

  5. The description of a method for accurately estimating creatinine clearance in acute kidney injury.

    Science.gov (United States)

    Mellas, John

    2016-05-01

    Acute kidney injury (AKI) is a common and serious condition encountered in hospitalized patients. The severity of kidney injury is defined by the RIFLE, AKIN, and KDIGO criteria which attempt to establish the degree of renal impairment. The KDIGO guidelines state that the creatinine clearance should be measured whenever possible in AKI and that the serum creatinine concentration and creatinine clearance remain the best clinical indicators of renal function. Neither the RIFLE, AKIN, nor KDIGO criteria estimate actual creatinine clearance. Furthermore there are no accepted methods for accurately estimating creatinine clearance (K) in AKI. The present study describes a unique method for estimating K in AKI using urine creatinine excretion over an established time interval (E), an estimate of creatinine production over the same time interval (P), and the estimated static glomerular filtration rate (sGFR), at time zero, utilizing the CKD-EPI formula. Using these variables estimated creatinine clearance (Ke)=E/P * sGFR. The method was tested for validity using simulated patients where actual creatinine clearance (Ka) was compared to Ke in several patients, both male and female, and of various ages, body weights, and degrees of renal impairment. These measurements were made at several serum creatinine concentrations in an attempt to determine the accuracy of this method in the non-steady state. In addition E/P and Ke was calculated in hospitalized patients, with AKI, and seen in nephrology consultation by the author. In these patients the accuracy of the method was determined by looking at the following metrics; E/P>1, E/P1 and 0.907 (0.841, 0.973) for 0.95 ml/min accurately predicted the ability to terminate renal replacement therapy in AKI. Include the need to measure urine volume accurately. Furthermore the precision of the method requires accurate estimates of sGFR, while a reasonable measure of P is crucial to estimating Ke. The present study provides the

  6. Validation of Ion TorrentTM Inherited Disease Panel with the PGMTM Sequencing Platform for Rapid and Comprehensive Mutation Detection

    Directory of Open Access Journals (Sweden)

    Abeer E. Mustafa

    2018-05-01

    Full Text Available Quick and accurate molecular testing is necessary for the better management of many inherited diseases. Recent technological advances in various next generation sequencing (NGS platforms, such as target panel-based sequencing, has enabled comprehensive, quick, and precise interrogation of many genetic variations. As a result, these technologies have become a valuable tool for gene discovery and for clinical diagnostics. The AmpliSeq Inherited Disease Panel (IDP consists of 328 genes underlying more than 700 inherited diseases. Here, we aimed to assess the performance of the IDP as a sensitive and rapid comprehensive gene panel testing. A total of 88 patients with inherited diseases and causal mutations that were previously identified by Sanger sequencing were randomly selected for assessing the performance of the IDP. The IDP successfully detected 93.1% of the mutations in our validation cohort, achieving high overall gene coverage (98%. The sensitivity for detecting single nucleotide variants (SNVs and short Indels was 97.3% and 69.2%, respectively. IDP, when coupled with Ion Torrent Personal Genome Machine (PGM, delivers comprehensive and rapid sequencing for genes that are responsible for various inherited diseases. Our validation results suggest the suitability of this panel for use as a first-line screening test after applying the necessary clinical validation.

  7. Rapid detection of small oscillation faults via deterministic learning.

    Science.gov (United States)

    Wang, Cong; Chen, Tianrui

    2011-08-01

    Detection of small faults is one of the most important and challenging tasks in the area of fault diagnosis. In this paper, we present an approach for the rapid detection of small oscillation faults based on a recently proposed deterministic learning (DL) theory. The approach consists of two phases: the training phase and the test phase. In the training phase, the system dynamics underlying normal and fault oscillations are locally accurately approximated through DL. The obtained knowledge of system dynamics is stored in constant radial basis function (RBF) networks. In the diagnosis phase, rapid detection is implemented. Specially, a bank of estimators are constructed using the constant RBF neural networks to represent the training normal and fault modes. By comparing the set of estimators with the test monitored system, a set of residuals are generated, and the average L(1) norms of the residuals are taken as the measure of the differences between the dynamics of the monitored system and the dynamics of the training normal mode and oscillation faults. The occurrence of a test oscillation fault can be rapidly detected according to the smallest residual principle. A rigorous analysis of the performance of the detection scheme is also given. The novelty of the paper lies in that the modeling uncertainty and nonlinear fault functions are accurately approximated and then the knowledge is utilized to achieve rapid detection of small oscillation faults. Simulation studies are included to demonstrate the effectiveness of the approach.

  8. The Precision Problem in Conservation and Restoration.

    Science.gov (United States)

    Hiers, J Kevin; Jackson, Stephen T; Hobbs, Richard J; Bernhardt, Emily S; Valentine, Leonie E

    2016-11-01

    Within the varied contexts of environmental policy, conservation of imperilled species populations, and restoration of damaged habitats, an emphasis on idealized optimal conditions has led to increasingly specific targets for management. Overly-precise conservation targets can reduce habitat variability at multiple scales, with unintended consequences for future ecological resilience. We describe this dilemma in the context of endangered species management, stream restoration, and climate-change adaptation. Inappropriate application of conservation targets can be expensive, with marginal conservation benefit. Reduced habitat variability can limit options for managers trying to balance competing objectives with limited resources. Conservation policies should embrace habitat variability, expand decision-space appropriately, and support adaptation to local circumstances to increase ecological resilience in a rapidly changing world. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. An evaluation method of cross-type H-coil angle for accurate two-dimensional vector magnetic measurement

    International Nuclear Information System (INIS)

    Maeda, Yoshitaka; Todaka, Takashi; Shimoji, Hiroyasu; Enokizono, Masato; Sievert, Johanes

    2006-01-01

    Recently, two-dimensional vector magnetic measurement has become popular and many researchers concerned with this field have attracted to develop more accurate measuring systems and standard measurement systems. Because the two-dimensional vector magnetic property is the relationship between the magnetic flux density vector B and the magnetic field strength vector H , the most important parameter is those components. For the accurate measurement of the field strength vector, we have developed an evaluation apparatus, which consists of a standard solenoid coil and a high-precision turntable. Angle errors of a double H-coil (a cross-type H-coil), which is wound one after the other around a former, can be evaluated with this apparatus. The magnetic field strength is compensated with the measured angle error

  10. Separation of Platinum from Palladium and Iridium in Iron Meteorites and Accurate High-Precision Determination of Platinum Isotopes by Multi-Collector ICP-MS.

    Science.gov (United States)

    Hunt, Alison C; Ek, Mattias; Schönbächler, Maria

    2017-12-01

    This study presents a new measurement procedure for the isolation of Pt from iron meteorite samples. The method also allows for the separation of Pd from the same sample aliquot. The separation entails a two-stage anion-exchange procedure. In the first stage, Pt and Pd are separated from each other and from major matrix constituents including Fe and Ni. In the second stage, Ir is reduced with ascorbic acid and eluted from the column before Pt collection. Platinum yields for the total procedure were typically 50-70%. After purification, high-precision Pt isotope determinations were performed by multi-collector ICP-MS. The precision of the new method was assessed using the IIAB iron meteorite North Chile. Replicate analyses of multiple digestions of this material yielded an intermediate precision for the measurement results of 0.73 for ε 192 Pt, 0.15 for ε 194 Pt and 0.09 for ε 196 Pt (2 standard deviations). The NIST SRM 3140 Pt solution reference material was passed through the measurement procedure and yielded an isotopic composition that is identical to the unprocessed Pt reference material. This indicates that the new technique is unbiased within the limit of the estimated uncertainties. Data for three iron meteorites support that Pt isotope variations in these samples are due to exposure to galactic cosmic rays in space.

  11. Precise muon drift tube detectors for high background rate conditions

    CERN Document Server

    Engl, Albert; Dünnweber, Wolfgang

    The muon spectrometer of the ATLAS-experiment at the Large H adron Collider consists of drift tube chambers, which provide the precise m easurement of trajec- tories of traversing muons. In order to determine the moment um of the muons with high precision, the measurement of the position of the m uon in a single tube has to be more accurate than σ ≤ 100 m. The large cross section of proton-proton-collisions and th e high luminosity of the accelerator cause relevant background of neutrons and γ s in the muon spectrome- ter. During the next decade a luminosity upgrade [1] to 5 10 34 cm − 2 s − 1 is planned, which will increase the background counting rates consider ably. In this context this work deals with the further development of the existing drift chamber tech- nology to provide the required accuracy of the position meas urement under high background conditions. Two approaches of improving the dri ft tube chambers are described: • In regions of moderate background rates a faster and more lin ear ...

  12. Rapid climate change did not cause population collapse at the end of the European Bronze Age.

    Science.gov (United States)

    Armit, Ian; Swindles, Graeme T; Becker, Katharina; Plunkett, Gill; Blaauw, Maarten

    2014-12-02

    The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological (14)C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.

  13. Rapid-Sequence Serial Sexual Homicides.

    Science.gov (United States)

    Schlesinger, Louis B; Ramirez, Stephanie; Tusa, Brittany; Jarvis, John P; Erdberg, Philip

    2017-03-01

    Serial sexual murderers have been described as committing homicides in a methodical manner, taking substantial time between offenses to elude the authorities. The results of our study of the temporal patterns (i.e., the length of time between homicides) of a nonrandom national sample of 44 serial sexual murderers and their 201 victims indicate that this representation may not always be accurate. Although 25 offenders (56.8%) killed with longer than a 14-day period between homicides, a sizeable subgroup was identified: 19 offenders (43.2%) who committed homicides in rapid-sequence fashion, with fewer than 14 days between all or some of the murders. Six offenders (13.6%) killed all their victims in one rapid-sequence, spree-like episode, with homicides just days apart or sometimes two murders in the same day. Thirteen offenders (29.5%) killed in one or two rapid-sequence clusters (i.e., more than one murder within a 14-day period, as well as additional homicides with greater than 14 days between each). The purpose of our study was to describe this subgroup of rapid-sequence offenders who have not been identified until now. These findings argue for accelerated forensic assessments of dangerousness and public safety when a sexual murder is detected. Psychiatric disorders with rapidly occurring symptom patterns, or even atypical mania or mood dysregulation, may serve as exemplars for understanding this extraordinary group of offenders. © 2017 American Academy of Psychiatry and the Law.

  14. A precision measurement of sin2θw in neutrino nucleon scattering

    International Nuclear Information System (INIS)

    King, B.J.; Arroyo, C.G.; Bachmann, K.T.; Bazarko, A.O.; Bolton, T.; Foudas, C.; Lefmann, W.C.; Leung, W.C.; Mishra, S.R.; Oltman, E.; Quintas, P.Z.; Rabinowitz, S.A.; Sciulli, F.J.; Seligman, W.G.; Shaevitz, M.H.; Merritt, F.S.; Oreglia, M.J.; Schumm, B.A.; Bernstein, R.H.; Borcherding, F.; Fisk, H.E.; Lamm, M.J.; Marsh, W.; Merritt, K.W.B.; Schellman, H.M.; Yovanovitch, D.D.; Bodek, A.; Budd, H.S.; Barbaro, P. de; Sakumoto, W.K.; Kinnel, T.; Sandler, P.H.; Smith, W.H.

    1993-01-01

    A precise measurement of the weak mixing angle is reported from the ratio of the neutral current to charged current inclusive cross-sections in deep-inelastic neutrino-nucleon scattering. Using the on-shell definition, the value obtained is currently the most accurate determination of sin 2 θ w in a single experiment. The data were gathered at the CCFR neutrino detector in the Fermilab quadrupole-triplet wide-band neutrino beam, with neutrino energies up to 600 GeV. 2 figs., 1 tab., 14 refs

  15. Rapid determination of sugar level in snack products using infrared spectroscopy.

    Science.gov (United States)

    Wang, Ting; Rodriguez-Saona, Luis E

    2012-08-01

    Real-time spectroscopic methods can provide a valuable window into food manufacturing to permit optimization of production rate, quality and safety. There is a need for cutting edge sensor technology directed at improving efficiency, throughput and reliability of critical processes. The aim of the research was to evaluate the feasibility of infrared systems combined with chemometric analysis to develop rapid methods for determination of sugars in cereal products. Samples were ground and spectra were collected using a mid-infrared (MIR) spectrometer equipped with a triple-bounce ZnSe MIRacle attenuated total reflectance accessory or Fourier transform near infrared (NIR) system equipped with a diffuse reflection-integrating sphere. Sugar contents were determined using a reference HPLC method. Partial least squares regression (PLSR) was used to create cross-validated calibration models. The predictability of the models was evaluated on an independent set of samples and compared with reference techniques. MIR and NIR spectra showed characteristic absorption bands for sugars, and generated excellent PLSR models (sucrose: SEP 0.96). Multivariate models accurately and precisely predicted sugar level in snacks allowing for rapid analysis. This simple technique allows for reliable prediction of quality parameters, and automation enabling food manufacturers for early corrective actions that will ultimately save time and money while establishing a uniform quality. The U.S. snack food industry generates billions of dollars in revenue each year and vibrational spectroscopic methods combined with pattern recognition analysis could permit optimization of production rate, quality, and safety of many food products. This research showed that infrared spectroscopy is a powerful technique for near real-time (approximately 1 min) assessment of sugar content in various cereal products. © 2012 Institute of Food Technologists®

  16. Precision Diagnosis Of Melanoma And Other Skin Lesions From Digital Images.

    Science.gov (United States)

    Bhattacharya, Abhishek; Young, Albert; Wong, Andrew; Stalling, Simone; Wei, Maria; Hadley, Dexter

    2017-01-01

    Melanoma will affect an estimated 73,000 new cases this year and result in 9,000 deaths, yet precise diagnosis remains a serious problem. Without early detection and preventative care, melanoma can quickly spread to become fatal (Stage IV 5-year survival rate is 20-10%) from a once localized skin lesion (Stage IA 5- year survival rate is 97%). There is no biomarker for melanoma in clinical use, and the current diagnostic criteria for skin lesions remains subjective and imprecise. Accurate diagnosis of melanoma relies on a histopathologic gold standard; thus, aggressive excision of melanocytic skin lesions has been the mainstay of treatment. It is estimated that 36 biopsies are performed for every melanoma confirmed by pathology among excised lesions. There is significant morbidity in misdiagnosing melanoma such as progression of the disease for a false negative prediction vs the risks of unnecessary surgery for a false positive prediction. Every year, poor diagnostic precision adds an estimated $673 million in overall cost to manage the disease. Currently, manual dermatoscopic imaging is the standard of care in selecting atypical skin lesions for biopsy, and at best it achieves 90% sensitivity but only 59% specificity when performed by an expert dermatologist. Many computer vision (CV) algorithms perform better than dermatologists in classifying skin lesions although not significantly so in clinical practice. Meanwhile, open source deep learning (DL) techniques in CV have been gaining dominance since 2012 for image classification, and today DL can outperform humans in classifying millions of digital images with less than 5% error rates. Moreover, DL algorithms are readily run on commoditized hardware and have a strong online community of developers supporting their rapid adoption. In this work, we performed a successful pilot study to show proof of concept to DL skin pathology from images. However, DL algorithms must be trained on very large labelled datasets of

  17. Rapid world modelling for robotics

    International Nuclear Information System (INIS)

    Littile, C.Q.; Wilson, C.W.

    1996-01-01

    The ability to use an interactive world model, whether it is for robotics simulation or most other virtual graphical environments, relies on the users ability to create an accurate world model. Typically this is a tedious process, requiring many hours to create 3-D CAD models of the surfaces within a workspace. The goal of this ongoing project is to develop usable methods to rapidly build world models of real world workspaces. This brings structure to an unstructured environment and allows graphical based robotics control to be accomplished in a reasonable time frame when traditional CAD modelling is not enough. To accomplish this, 3D range sensors are deployed to capture surface data within the workspace. This data is then transformed into surface maps, or models. A 3D world model of the workspace is built quickly and accurately, without ever having to put people in the environment

  18. Molecular profiling of sarcomas: new vistas for precision medicine.

    Science.gov (United States)

    Al-Zaid, Tariq; Wang, Wei-Lien; Somaiah, Neeta; Lazar, Alexander J

    2017-08-01

    Sarcoma is a large and heterogeneous group of malignant mesenchymal neoplasms with significant histological overlap. Accurate diagnosis can be challenging yet important for selecting the appropriate treatment approach and prognosis. The currently torrid pace of new genomic discoveries aids our classification and diagnosis of sarcomas, understanding of pathogenesis, development of new medications, and identification of alterations that predict prognosis and response to therapy. Unfortunately, demonstrating effective targets for precision oncology has been elusive in most sarcoma types. The list of potential targets greatly outnumbers the list of available inhibitors at the present time. This review will discuss the role of molecular profiling in sarcomas in general with emphasis on selected entities with particular clinical relevance.

  19. Are rapid population estimates accurate? A field trial of two different assessment methods.

    Science.gov (United States)

    Grais, Rebecca F; Coulombier, Denis; Ampuero, Julia; Lucas, Marcelino E S; Barretto, Avertino T; Jacquier, Guy; Diaz, Francisco; Balandine, Serge; Mahoudeau, Claude; Brown, Vincent

    2006-09-01

    Emergencies resulting in large-scale displacement often lead to populations resettling in areas where basic health services and sanitation are unavailable. To plan relief-related activities quickly, rapid population size estimates are needed. The currently recommended Quadrat method estimates total population by extrapolating the average population size living in square blocks of known area to the total site surface. An alternative approach, the T-Square, provides a population estimate based on analysis of the spatial distribution of housing units taken throughout a site. We field tested both methods and validated the results against a census in Esturro Bairro, Beira, Mozambique. Compared to the census (population: 9,479), the T-Square yielded a better population estimate (9,523) than the Quadrat method (7,681; 95% confidence interval: 6,160-9,201), but was more difficult for field survey teams to implement. Although applicable only to similar sites, several general conclusions can be drawn for emergency planning.

  20. Clinical utility of RapidArc™ radiotherapy technology

    International Nuclear Information System (INIS)

    Infusino, Erminia

    2015-01-01

    RapidArc™ is a radiation technique that delivers highly conformal dose distributions through the complete rotation (360°) and speed variation of the linear accelerator gantry. This technique, called volumetric modulated arc therapy (VMAT), compared with conventional radiotherapy techniques, can achieve high-target volume coverage and sparing damage to normal tissues. RapidArc delivers precise dose distribution and conformity similar to or greater than intensity-modulated radiation therapy in a short time, generally a few minutes, to which image-guided radiation therapy is added. RapidArc has become a currently used technology in many centers, which use RapidArc technology to treat a large number of patients. Large and small hospitals use it to treat the most challenging cases, but more and more frequently for the most common cancers. The clinical use of RapidArc and VMAT technology is constantly growing. At present, a limited number of clinical data are published, mostly concerning planning and feasibility studies. Clinical outcome data are increasing for a few tumor sites, even if only a little. The purpose of this work is to discuss the current status of VMAT techniques in clinical use through a review of the published data of planning systems and clinical outcomes in several tumor sites. The study consisted of a systematic review based on analysis of manuscripts retrieved from the PubMed, BioMed Central, and Scopus databases by searching for the keywords “RapidArc”, “Volumetric modulated arc radiotherapy”, and “Intensity-modulated radiotherapy”

  1. Engineering the Mechanical Properties of Polymer Networks with Precise Doping of Primary Defects.

    Science.gov (United States)

    Chan, Doreen; Ding, Yichuan; Dauskardt, Reinhold H; Appel, Eric A

    2017-12-06

    Polymer networks are extensively utilized across numerous applications ranging from commodity superabsorbent polymers and coatings to high-performance microelectronics and biomaterials. For many applications, desirable properties are known; however, achieving them has been challenging. Additionally, the accurate prediction of elastic modulus has been a long-standing difficulty owing to the presence of loops. By tuning the prepolymer formulation through precise doping of monomers, specific primary network defects can be programmed into an elastomeric scaffold, without alteration of their resulting chemistry. The addition of these monomers that respond mechanically as primary defects is used both to understand their impact on the resulting mechanical properties of the materials and as a method to engineer the mechanical properties. Indeed, these materials exhibit identical bulk and surface chemistry, yet vastly different mechanical properties. Further, we have adapted the real elastic network theory (RENT) to the case of primary defects in the absence of loops, thus providing new insights into the mechanism for material strength and failure in polymer networks arising from primary network defects, and to accurately predict the elastic modulus of the polymer system. The versatility of the approach we describe and the fundamental knowledge gained from this study can lead to new advancements in the development of novel materials with precisely defined and predictable chemical, physical, and mechanical properties.

  2. PRECISE COSMIC RAYS MEASUREMENTS WITH PAMELA

    Directory of Open Access Journals (Sweden)

    A. Bruno

    2013-12-01

    Full Text Available The PAMELA experiment was launched on board the Resurs-DK1 satellite on June 15th 2006. The apparatus was designed to conduct precision studies of charged cosmic radiation over a wide energy range, from tens of MeV up to several hundred GeV, with unprecedented statistics. In five years of continuous data taking in space, PAMELA accurately measured the energy spectra of cosmic ray antiprotons and positrons, as well as protons, electrons and light nuclei, sometimes providing data in unexplored energetic regions. These important results have shed new light in several astrophysical fields like: an indirect search for Dark Matter, a search for cosmological antimatter (anti-Helium, and the validation of acceleration, transport and secondary production models of cosmic rays in the Galaxy. Some of the most important items of Solar and Magnetospheric physics were also investigated. Here we present the most recent results obtained by the PAMELA experiment.

  3. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Science.gov (United States)

    Van Erps, Jürgen; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-01

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  4. Deep Proton Writing for the rapid prototyping of polymer micro-components for optical interconnects and optofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Van Erps, Jürgen, E-mail: jurgen.van.erps@vub.ac.be; Vervaeke, Michael; Ottevaere, Heidi; Hermanne, Alex; Thienpont, Hugo

    2013-07-15

    The use of photonics in data communication and numerous other industrial applications brought plenty of prospects for innovation and opened up different unexplored market opportunities. This is a major driving force for the fabrication of micro-optical and micro-mechanical structures and their accurate alignment and integration into opto-mechanical modules and systems. To this end, we present Deep Proton Writing (DPW) as a powerful rapid prototyping technology for such micro-components. The DPW process consists of bombarding polymer samples (PMMA or SU-8) with swift protons, which results after chemical processing steps in high-quality micro-optical components. One of the strengths of the DPW micro-fabrication technology is the ability to fabricate monolithic building blocks that include micro-optical and mechanical functionalities which can be precisely integrated into more complex photonic systems. In this paper we comment on how we shifted from using 8.3 to 16.5 MeV protons for DPW and give some examples of micro-optical and micro-mechanical components recently fabricated through DPW, targeting applications in optical interconnections and in optofluidics.

  5. Physics of Eclipsing Binaries: Modelling in the new era of ultra-high precision photometry

    OpenAIRE

    Pavlovski, K.; Bloemen, S.; Degroote, P.; Conroy, K.; Hambleton, Kelly; Giammarco, J.M.; Pablo, H.; Prša, A.; Tkachenko, A.; Torres, G.

    2013-01-01

    Recent ultra-high precision observations of eclipsing binaries, especially data acquired by the Kepler satellite, have made accurate light curve modelling increasingly challenging but also more rewarding. In this contribution, we discuss low-amplitude signals in light curves that can now be used to derive physical information about eclipsing binaries but that were unaccessible before the Kepler era. A notable example is the detection of Doppler beaming, which leads to an increase in flux when...

  6. Application of Multimodality Imaging Fusion Technology in Diagnosis and Treatment of Malignant Tumors under the Precision Medicine Plan.

    Science.gov (United States)

    Wang, Shun-Yi; Chen, Xian-Xia; Li, Yi; Zhang, Yu-Ying

    2016-12-20

    The arrival of precision medicine plan brings new opportunities and challenges for patients undergoing precision diagnosis and treatment of malignant tumors. With the development of medical imaging, information on different modality imaging can be integrated and comprehensively analyzed by imaging fusion system. This review aimed to update the application of multimodality imaging fusion technology in the precise diagnosis and treatment of malignant tumors under the precision medicine plan. We introduced several multimodality imaging fusion technologies and their application to the diagnosis and treatment of malignant tumors in clinical practice. The data cited in this review were obtained mainly from the PubMed database from 1996 to 2016, using the keywords of "precision medicine", "fusion imaging", "multimodality", and "tumor diagnosis and treatment". Original articles, clinical practice, reviews, and other relevant literatures published in English were reviewed. Papers focusing on precision medicine, fusion imaging, multimodality, and tumor diagnosis and treatment were selected. Duplicated papers were excluded. Multimodality imaging fusion technology plays an important role in tumor diagnosis and treatment under the precision medicine plan, such as accurate location, qualitative diagnosis, tumor staging, treatment plan design, and real-time intraoperative monitoring. Multimodality imaging fusion systems could provide more imaging information of tumors from different dimensions and angles, thereby offing strong technical support for the implementation of precision oncology. Under the precision medicine plan, personalized treatment of tumors is a distinct possibility. We believe that multimodality imaging fusion technology will find an increasingly wide application in clinical practice.

  7. Rapid and low-invasive functional brain mapping by realtime visualization of high gamma activity for awake craniotomy.

    Science.gov (United States)

    Kamada, K; Ogawa, H; Kapeller, C; Prueckl, R; Guger, C

    2014-01-01

    For neurosurgery with an awake craniotomy, the critical issue is to set aside enough time to identify eloquent cortices by electrocortical stimulation (ECS). High gamma activity (HGA) ranging between 80 and 120 Hz on electrocorticogram (ECoG) is assumed to reflect localized cortical processing. In this report, we used realtime HGA mapping and functional magnetic resonance imaging (fMRI) for rapid and reliable identification of motor and language functions. Three patients with intra-axial tumors in their dominant hemisphere underwent preoperative fMRI and lesion resection with an awake craniotomy. All patients showed significant fMRI activation evoked by motor and language tasks. After the craniotomy, we recorded ECoG activity by placing subdural grids directly on the exposed brain surface. Each patient performed motor and language tasks and demonstrated realtime HGA dynamics in hand motor areas and parts of the inferior frontal gyrus. Sensitivity and specificity of HGA mapping were 100% compared to ECS mapping in the frontal lobe, which suggested HGA mapping precisely indicated eloquent cortices. The investigation times of HGA mapping was significantly shorter than that of ECS mapping. Specificities of the motor and language-fMRI, however, did not reach 85%. The results of HGA mapping was mostly consistent with those of ECS mapping, although fMRI tended to overestimate functional areas. This novel technique enables rapid and accurate functional mapping.

  8. Accurate control testing for clay liner permeability

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, R J

    1991-08-01

    Two series of centrifuge tests were carried out to evaluate the use of centrifuge modelling as a method of accurate control testing of clay liner permeability. The first series used a large 3 m radius geotechnical centrifuge and the second series a small 0.5 m radius machine built specifically for research on clay liners. Two permeability cells were fabricated in order to provide direct data comparisons between the two methods of permeability testing. In both cases, the centrifuge method proved to be effective and efficient, and was found to be free of both the technical difficulties and leakage risks normally associated with laboratory permeability testing of fine grained soils. Two materials were tested, a consolidated kaolin clay having an average permeability coefficient of 1.2{times}10{sup -9} m/s and a compacted illite clay having a permeability coefficient of 2.0{times}10{sup -11} m/s. Four additional tests were carried out to demonstrate that the 0.5 m radius centrifuge could be used for linear performance modelling to evaluate factors such as volumetric water content, compaction method and density, leachate compatibility and other construction effects on liner leakage. The main advantages of centrifuge testing of clay liners are rapid and accurate evaluation of hydraulic properties and realistic stress modelling for performance evaluations. 8 refs., 12 figs., 7 tabs.

  9. Gene-Diet Interaction and Precision Nutrition in Obesity

    Directory of Open Access Journals (Sweden)

    Yoriko Heianza

    2017-04-01

    Full Text Available The rapid rise of obesity during the past decades has coincided with a profound shift of our living environment, including unhealthy dietary patterns, a sedentary lifestyle, and physical inactivity. Genetic predisposition to obesity may have interacted with such an obesogenic environment in determining the obesity epidemic. Growing studies have found that changes in adiposity and metabolic response to low-calorie weight loss diets might be modified by genetic variants related to obesity, metabolic status and preference to nutrients. This review summarized data from recent studies of gene-diet interactions, and discussed integration of research of metabolomics and gut microbiome, as well as potential application of the findings in precision nutrition.

  10. Pico-coulomb charge measured at BELLA to percent-level precision using a Turbo-ICT

    International Nuclear Information System (INIS)

    Nakamura, K; Mittelberger, D E; Gonsalves, A J; Daniels, J; Mao, H-S; Leemans, W P; Stulle, F; Bergoz, J

    2016-01-01

    Precise diagnostics of picocoulomb level particle bunches produced by laser plasma accelerators (LPAs) can be a significant challenge. Without proper care, the small signals associated with such bunches can be dominated by a background generated by laser, target, laser–plasma interaction and particle induced radiation. In this paper, we report on first charge measurements using the newly developed Turbo-ICT for LPAs. We outline the Turbo-ICT working principle, which allows precise sub-picocoulomb measurements even in the presence of significant background signals. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT) and a scintillating screen (Lanex) was carried out at the Berkeley Lab Laser Accelerator. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT. (paper)

  11. Pico-coulomb charge measured at BELLA to percent-level precision using a Turbo-ICT

    Science.gov (United States)

    Nakamura, K.; Mittelberger, D. E.; Gonsalves, A. J.; Daniels, J.; Mao, H.-S.; Stulle, F.; Bergoz, J.; Leemans, W. P.

    2016-03-01

    Precise diagnostics of picocoulomb level particle bunches produced by laser plasma accelerators (LPAs) can be a significant challenge. Without proper care, the small signals associated with such bunches can be dominated by a background generated by laser, target, laser-plasma interaction and particle induced radiation. In this paper, we report on first charge measurements using the newly developed Turbo-ICT for LPAs. We outline the Turbo-ICT working principle, which allows precise sub-picocoulomb measurements even in the presence of significant background signals. A comparison of the Turbo-ICT, a conventional integrating current transformer (ICT) and a scintillating screen (Lanex) was carried out at the Berkeley Lab Laser Accelerator. Results show that the Turbo-ICT can measure sub-picocoulomb charge accurately and has significantly improved noise immunity compared to the ICT.

  12. A unified modeling and control design for precision transmission system with friction and backlash

    Directory of Open Access Journals (Sweden)

    Xiulan Bao

    2016-05-01

    Full Text Available The structural flexibility, nonlinear friction, and backlash are the major factors limiting the control performance of precision transmission systems. If uncompensated, these factors compromise the positioning and tracking accuracy of precision transmission systems and even cause limit cycles and oscillation. In this article, a framework for integrated design from dynamic modeling to controller design is proposed. A multi-state dynamic model is presented, which can unify the modeling for a multi-state, discontinuous system including the motor state, the motion state, the mechanical contact state, and the friction state. Then, a control design method related to the dynamic modeling using perturbation separation of the model parameters is presented. Using the proposed modeling method, a continuous dynamic model is established to include all different partition models. The model comprehensively describes the mechanical and electrical characteristics of the precision transmission system. A robust controller is designed using the proposed control method. Experimental results demonstrate that the proposed modeling method is accurate and the proposed control method significantly improves accuracy and robustness of the controller compared to traditional control methods.

  13. A rapid radiative transfer model for reflection of solar radiation

    Science.gov (United States)

    Xiang, X.; Smith, E. A.; Justus, C. G.

    1994-01-01

    A rapid analytical radiative transfer model for reflection of solar radiation in plane-parallel atmospheres is developed based on the Sobolev approach and the delta function transformation technique. A distinct advantage of this model over alternative two-stream solutions is that in addition to yielding the irradiance components, which turn out to be mathematically equivalent to the delta-Eddington approximation, the radiance field can also be expanded in a mathematically consistent fashion. Tests with the model against a more precise multistream discrete ordinate model over a wide range of input parameters demonstrate that the new approximate method typically produces average radiance differences of less than 5%, with worst average differences of approximately 10%-15%. By the same token, the computational speed of the new model is some tens to thousands times faster than that of the more precise model when its stream resolution is set to generate precise calculations.

  14. Rapid prenatal diagnosis of cytogenetic abnormalities by array CGH analysis

    Science.gov (United States)

    Array CGH analysis has been shown to be highly accurate for rapid detection of chromosomal aneuploidies and submicroscopic deletions or duplications on fetal DNA samples in a clinical prenatal diagnostic setting. The objective of this study is to present our "post-validation phase" experience with ...

  15. Accurate calibration of the velocity-dependent one-scale model for domain walls

    International Nuclear Information System (INIS)

    Leite, A.M.M.; Martins, C.J.A.P.; Shellard, E.P.S.

    2013-01-01

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048 3 , and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c w =0.34±0.16 and k w =0.98±0.07, which are of higher precision than (but in agreement with) earlier estimates.

  16. Accurate calibration of the velocity-dependent one-scale model for domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Leite, A.M.M., E-mail: up080322016@alunos.fc.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Ecole Polytechnique, 91128 Palaiseau Cedex (France); Martins, C.J.A.P., E-mail: Carlos.Martins@astro.up.pt [Centro de Astrofisica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Shellard, E.P.S., E-mail: E.P.S.Shellard@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-01-08

    We study the asymptotic scaling properties of standard domain wall networks in several cosmological epochs. We carry out the largest field theory simulations achieved to date, with simulation boxes of size 2048{sup 3}, and confirm that a scale-invariant evolution of the network is indeed the attractor solution. The simulations are also used to obtain an accurate calibration for the velocity-dependent one-scale model for domain walls: we numerically determine the two free model parameters to have the values c{sub w}=0.34{+-}0.16 and k{sub w}=0.98{+-}0.07, which are of higher precision than (but in agreement with) earlier estimates.

  17. Use of GMM and SCMS for Accurate Road Centerline Extraction from the Classified Image

    Directory of Open Access Journals (Sweden)

    Zelang Miao

    2015-01-01

    Full Text Available The extraction of road centerline from the classified image is a fundamental image analysis technology. Common problems encountered in road centerline extraction include low ability for coping with the general case, production of undesired objects, and inefficiency. To tackle these limitations, this paper presents a novel accurate centerline extraction method using Gaussian mixture model (GMM and subspace constraint mean shift (SCMS. The proposed method consists of three main steps. GMM is first used to partition the classified image into several clusters. The major axis of the ellipsoid of each cluster is extracted and deemed to be taken as the initial centerline. Finally, the initial result is adjusted using SCMS to produce precise road centerline. Both simulated and real datasets are used to validate the proposed method. Preliminary results demonstrate that the proposed method provides a comparatively robust solution for accurate centerline extraction from a classified image.

  18. Accuracy of 3D white light scanning of abutment teeth impressions: evaluation of trueness and precision.

    Science.gov (United States)

    Jeon, Jin-Hun; Kim, Hae-Young; Kim, Ji-Hwan; Kim, Woong-Chul

    2014-12-01

    This study aimed to evaluate the accuracy of digitizing dental impressions of abutment teeth using a white light scanner and to compare the findings among teeth types. To assess precision, impressions of the canine, premolar, and molar prepared to receive all-ceramic crowns were repeatedly scanned to obtain five sets of 3-D data (STL files). Point clouds were compared and error sizes were measured (n=10 per type). Next, to evaluate trueness, impressions of teeth were rotated by 10°-20° and scanned. The obtained data were compared with the first set of data for precision assessment, and the error sizes were measured (n=5 per type). The Kruskal-Wallis test was performed to evaluate precision and trueness among three teeth types, and post-hoc comparisons were performed using the Mann-Whitney U test with Bonferroni correction (α=.05). Precision discrepancies for the canine, premolar, and molar were 3.7 µm, 3.2 µm, and 7.3 µm, respectively, indicating the poorest precision for the molar (Pimpressions of abutment teeth using a white light scanner was assessed to be a highly accurate method and provided discrepancy values in a clinically acceptable range. Further study is needed to improve digitizing performance of white light scanning in axial wall.

  19. Accurate Determination of the Values of Fundamental Physical Constants: The Basis of the New "Quantum" SI Units

    Science.gov (United States)

    Karshenboim, S. G.

    2018-03-01

    The metric system appeared as the system of units designed for macroscopic (laboratory scale) measurements. The progress in accurate determination of the values of quantum constants (such as the Planck constant) in SI units shows that the capabilities in high-precision measurement of microscopic and macroscopic quantities in terms of the same units have increased substantially recently. At the same time, relative microscopic measurements (for example, the comparison of atomic transition frequencies or atomic masses) are often much more accurate than relative measurements of macroscopic quantities. This is the basis for the strategy to define units in microscopic phenomena and then use them on the laboratory scale, which plays a crucial role in practical methodological applications determined by everyday life and technologies. The international CODATA task group on fundamental constants regularly performs an overall analysis of the precision world data (the so-called Adjustment of the Fundamental Constants) and publishes their recommended values. The most recent evaluation was based on the data published by the end of 2014; here, we review the corresponding data and results. The accuracy in determination of the Boltzmann constant has increased, the consistency of the data on determination of the Planck constant has improved; it is these two dimensional constants that will be used in near future as the basis for the new definition of the kelvin and kilogram, respectively. The contradictions in determination of the Rydberg constant and the proton charge radius remain. The accuracy of determination of the fine structure constant and relative atomic weight of the electron has improved. Overall, we give a detailed review of the state of the art in precision determination of the values of fundamental constants. The mathematical procedure of the Adjustment, the new data and results are considered in detail. The limitations due to macroscopic properties of material

  20. Quantum Monte Carlo: Faster, More Reliable, And More Accurate

    Science.gov (United States)

    Anderson, Amos Gerald

    2010-06-01

    The Schrodinger Equation has been available for about 83 years, but today, we still strain to apply it accurately to molecules of interest. The difficulty is not theoretical in nature, but practical, since we're held back by lack of sufficient computing power. Consequently, effort is applied to find acceptable approximations to facilitate real time solutions. In the meantime, computer technology has begun rapidly advancing and changing the way we think about efficient algorithms. For those who can reorganize their formulas to take advantage of these changes and thereby lift some approximations, incredible new opportunities await. Over the last decade, we've seen the emergence of a new kind of computer processor, the graphics card. Designed to accelerate computer games by optimizing quantity instead of quality in processor, they have become of sufficient quality to be useful to some scientists. In this thesis, we explore the first known use of a graphics card to computational chemistry by rewriting our Quantum Monte Carlo software into the requisite "data parallel" formalism. We find that notwithstanding precision considerations, we are able to speed up our software by about a factor of 6. The success of a Quantum Monte Carlo calculation depends on more than just processing power. It also requires the scientist to carefully design the trial wavefunction used to guide simulated electrons. We have studied the use of Generalized Valence Bond wavefunctions to simply, and yet effectively, captured the essential static correlation in atoms and molecules. Furthermore, we have developed significantly improved two particle correlation functions, designed with both flexibility and simplicity considerations, representing an effective and reliable way to add the necessary dynamic correlation. Lastly, we present our method for stabilizing the statistical nature of the calculation, by manipulating configuration weights, thus facilitating efficient and robust calculations. Our

  1. Further Validation of a Rapid Screening Semiquantitative Thin-Layer Chromatographic Method for Marketed Antimalarial Medicines for Adoption in Malawi

    Directory of Open Access Journals (Sweden)

    Dorcas Osei-Safo

    2018-01-01

    Full Text Available A recently developed semiquantitative thin-layer chromatographic (SQ-TLC assay has been employed in postmarketing surveillance of antimalarial medicines used in Malawi prior to HPLC assay. Both methods gave analogous results in a significant majority of the samples, with a good correlation (r = 0.9012 for the active pharmaceutical ingredients of the dosage forms assayed. Artemether-containing medicines had the highest percentage (92.67% of samples with comparable results for both assays. The lowest percentage (66.67% was observed in artesunate-containing medicines. The SQ-TLC method was validated for specificity, accuracy, precision, linearity, and stability according to the International Conference on Harmonisation guidelines, with the results falling within acceptable limits. For specificity, retention factor values of the test samples and reference standards were comparable, while accuracy and precision of 91.1 ± 5.7% were obtained for all samples. The method was linear in the range 1.0–2.0 µg/spot with a correlation coefficient of r = 0.9783. Stability tests also fell within acceptable limits. In this study, we present the validation of the SQ-TLC method and propose its adoption as a rapid screening tool for field estimation of the quality of antimalarial and other essential medicines in Malawi and other parts of the developing world prior to a more accurate HPLC assay.

  2. Accurate van der Waals force field for gas adsorption in porous materials.

    Science.gov (United States)

    Sun, Lei; Yang, Li; Zhang, Ya-Dong; Shi, Qi; Lu, Rui-Feng; Deng, Wei-Qiao

    2017-09-05

    An accurate van der Waals force field (VDW FF) was derived from highly precise quantum mechanical (QM) calculations. Small molecular clusters were used to explore van der Waals interactions between gas molecules and porous materials. The parameters of the accurate van der Waals force field were determined by QM calculations. To validate the force field, the prediction results from the VDW FF were compared with standard FFs, such as UFF, Dreiding, Pcff, and Compass. The results from the VDW FF were in excellent agreement with the experimental measurements. This force field can be applied to the prediction of the gas density (H 2 , CO 2 , C 2 H 4 , CH 4 , N 2 , O 2 ) and adsorption performance inside porous materials, such as covalent organic frameworks (COFs), zeolites and metal organic frameworks (MOFs), consisting of H, B, N, C, O, S, Si, Al, Zn, Mg, Ni, and Co. This work provides a solid basis for studying gas adsorption in porous materials. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria.

    Science.gov (United States)

    Wegner, Katrin; Just, Sarah; Gau, Laura; Mueller, Henrike; Gérard, Philippe; Lepage, Patricia; Clavel, Thomas; Rohn, Sascha

    2017-02-01

    Bile acids are important signaling molecules that regulate cholesterol, glucose, and energy homoeostasis and have thus been implicated in the development of metabolic disorders. Their bioavailability is strongly modulated by the gut microbiota, which contributes to generation of complex individual-specific bile acid profiles. Hence, it is important to have accurate methods at hand for precise measurement of these important metabolites. Here, a rapid and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous identification and quantitation of primary and secondary bile acids as well as their taurine and glycine conjugates was developed and validated. Applicability of the method was demonstrated for mammalian tissues, biofluids, and cell culture media. The analytical approach mainly consists of a simple and rapid liquid-liquid extraction procedure in presence of deuterium-labeled internal standards. Baseline separation of all isobaric bile acid species was achieved and a linear correlation over a broad concentration range was observed. The method showed acceptable accuracy and precision on intra-day (1.42-11.07 %) and inter-day (2.11-12.71 %) analyses and achieved good recovery rates for representative analytes (83.7-107.1 %). As a proof of concept, the analytical method was applied to mouse tissues and biofluids, but especially to samples from in vitro fermentations with gut bacteria of the family Coriobacteriaceae. The developed method revealed that the species Eggerthella lenta and Collinsella aerofaciens possess bile salt hydrolase activity, and for the first time that the species Enterorhabdus mucosicola is able to deconjugate and dehydrogenate primary bile acids in vitro.

  4. An ultra-precision tool nanoindentation instrument for replication of single point diamond tool cutting edges

    Science.gov (United States)

    Cai, Yindi; Chen, Yuan-Liu; Xu, Malu; Shimizu, Yuki; Ito, So; Matsukuma, Hiraku; Gao, Wei

    2018-05-01

    Precision replication of the diamond tool cutting edge is required for non-destructive tool metrology. This paper presents an ultra-precision tool nanoindentation instrument designed and constructed for replication of the cutting edge of a single point diamond tool onto a selected soft metal workpiece by precisely indenting the tool cutting edge into the workpiece surface. The instrument has the ability to control the indentation depth with a nanometric resolution, enabling the replication of tool cutting edges with high precision. The motion of the diamond tool along the indentation direction is controlled by the piezoelectric actuator of a fast tool servo (FTS). An integrated capacitive sensor of the FTS is employed to detect the displacement of the diamond tool. The soft metal workpiece is attached to an aluminum cantilever whose deflection is monitored by another capacitive sensor, referred to as an outside capacitive sensor. The indentation force and depth can be accurately evaluated from the diamond tool displacement, the cantilever deflection and the cantilever spring constant. Experiments were carried out by replicating the cutting edge of a single point diamond tool with a nose radius of 2.0 mm on a copper workpiece surface. The profile of the replicated tool cutting edge was measured using an atomic force microscope (AFM). The effectiveness of the instrument in precision replication of diamond tool cutting edges is well-verified by the experimental results.

  5. Vessel calibration for accurate material accountancy at RRP

    International Nuclear Information System (INIS)

    Yanagisawa, Yuu; Ono, Sawako; Iwamoto, Tomonori

    2004-01-01

    RRP has a 800t·Upr capacity a year to re-process, where would be handled a large amount of nuclear materials as solution. A large scale plant like RRP will require accurate materials accountancy system, so that the vessel calibration with high-precision is very important as initial vessel calibration before operation. In order to obtain the calibration curve, it is needed well-known each the increment volume related with liquid height. Then we performed at least 2 or 3 times run with water for vessel calibration and careful evaluation for the calibration data should be needed. We performed vessel calibration overall 210 vessels, and the calibration of 81 vessels including IAT and OAT were held under presence of JSGO and IAEA inspectors taking into account importance on the material accountancy. This paper describes outline of the initial vessel calibration and calibration results based on back pressure measurement with dip tubes. (author)

  6. Ultra-accurate collaborative information filtering via directed user similarity

    Science.gov (United States)

    Guo, Q.; Song, W.-J.; Liu, J.-G.

    2014-07-01

    A key challenge of the collaborative filtering (CF) information filtering is how to obtain the reliable and accurate results with the help of peers' recommendation. Since the similarities from small-degree users to large-degree users would be larger than the ones in opposite direction, the large-degree users' selections are recommended extensively by the traditional second-order CF algorithms. By considering the users' similarity direction and the second-order correlations to depress the influence of mainstream preferences, we present the directed second-order CF (HDCF) algorithm specifically to address the challenge of accuracy and diversity of the CF algorithm. The numerical results for two benchmark data sets, MovieLens and Netflix, show that the accuracy of the new algorithm outperforms the state-of-the-art CF algorithms. Comparing with the CF algorithm based on random walks proposed by Liu et al. (Int. J. Mod. Phys. C, 20 (2009) 285) the average ranking score could reach 0.0767 and 0.0402, which is enhanced by 27.3% and 19.1% for MovieLens and Netflix, respectively. In addition, the diversity, precision and recall are also enhanced greatly. Without relying on any context-specific information, tuning the similarity direction of CF algorithms could obtain accurate and diverse recommendations. This work suggests that the user similarity direction is an important factor to improve the personalized recommendation performance.

  7. TerraSAR-X precise orbit determination with real-time GPS ephemerides

    Science.gov (United States)

    Wermuth, Martin; Hauschild, Andre; Montenbruck, Oliver; Kahle, Ralph

    TerraSAR-X is a German Synthetic Aperture Radar (SAR) satellite, which was launched in June 2007 from Baikonour. Its task is to acquire radar images of the Earth's surface. In order to locate the radar data takes precisely, the satellite is equipped with a high-quality dual-frequency GPS receiver -the Integrated Geodetic and Occultation Receiver (IGOR) provided by the GeoForschungsZentrum Potsdam (GFZ). Using GPS observations from the IGOR instrument in a reduced dynamic precise orbit determination (POD), the German Space Operations Center (DLR/GSOC) is computing rapid and science orbit products on a routine basis. The rapid orbit products arrive with a latency of about one hour after data reception with an accuracy of 10-20 cm. Science orbit products are computed with a latency of five days achieving an accuracy of about 5cm (3D-RMS). For active and future Earth observation missions, the availability of near real-time precise orbit information is becoming more and more important. Other applications of near real-time orbit products include the processing of GNSS radio occulation measurements for atmospheric sounding as well as altimeter measurements of ocean surface heights, which are nowadays employed in global weather and ocean circulation models with short latencies. For example after natural disasters it is necessary to evaluate the damage by satellite images as soon as possible. The latency and quality of POD results is mainly driven by the availability of precise GPS ephemerides. In order to have high-quality GPS ephemerides available at real-time, GSOC has developed the real-time clock estimation system RETICLE. The system receives NTRIP-data streams with GNSS observations from the global tracking network of IGS in real-time. Using the known station position, RETICLE estimates precise GPS satellite clock offsets and drifts based on the most recent available IGU predicted orbits. The clock offset estimates have an accuracy of better than 0.3 ns and are

  8. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  9. Determination of tributyl phosphate (TBP) by precision densimetry : TBP-varsol-HNO3 system

    International Nuclear Information System (INIS)

    Matsuda, H.T.; Araujo, B.F. de; Araujo, J.A. de

    1980-01-01

    A simple and rapid method for TBP direct determination is presented, based on precision densimetry, aiming to control solvent concentration in the TBP-Varsol system during the reprocessing of irradiated uranium. The method comprises the determination of the density of liquids or gases by electronic measurement of the variation in the frequency (f) or period (T = 1/f) of a glass oscillator containing the liquid or the gas. (C.L.B.) [pt

  10. High precision measurement of the differential $W$ and $Z$ boson production cross sections with the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00364294; The ATLAS collaboration

    2018-01-01

    Measurements of the Drell-Yan production of $W$ and $Z/\\gamma^*$ bosons at the LHC provide a benchmark of our understanding of perturbative QCD and probe the proton structure in a unique way. The ATLAS collaboration has performed new high precision measurements at centre-of-mass energies of $7$ TeV. The measurements are performed for $W^+$, $W^-$ and $Z/\\gamma^*$ bosons integrated and differentially as a function of the boson or lepton rapidity and the $Z/\\gamma^*$ mass. Unprecedented precision is reached and strong constraints on parton distribution functions, in particular the strange quark density, are derived.

  11. Rapid Active Power Control of Photovoltaic Systems for Grid Frequency Support

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Anderson; Shirazi, Mariko; Chakraborty, Sudipta; Muljadi, Eduard; Maksimovic, Dragan

    2017-01-01

    As deployment of power electronic coupled generation such as photovoltaic (PV) systems increases, grid operators have shown increasing interest in calling on inverter-coupled generation to help mitigate frequency contingency events by rapidly surging active power into the grid. When responding to contingency events, the faster the active power is provided, the more effective it may be for arresting the frequency event. This paper proposes a predictive PV inverter control method for very fast and accurate control of active power. This rapid active power control method will increase the effectiveness of various higher-level controls designed to mitigate grid frequency contingency events, including fast power-frequency droop, inertia emulation, and fast frequency response, without the need for energy storage. The rapid active power control method, coupled with a maximum power point estimation method, is implemented in a prototype PV inverter connected to a PV array. The prototype inverter's response to various frequency events is experimentally confirmed to be fast (beginning within 2 line cycles and completing within 4.5 line cycles of a severe test event) and accurate (below 2% steady-state error).

  12. Bacterial Cytological Profiling (BCP as a Rapid and Accurate Antimicrobial Susceptibility Testing Method for Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    D.T. Quach

    2016-02-01

    Full Text Available Successful treatment of bacterial infections requires the timely administration of appropriate antimicrobial therapy. The failure to initiate the correct therapy in a timely fashion results in poor clinical outcomes, longer hospital stays, and higher medical costs. Current approaches to antibiotic susceptibility testing of cultured pathogens have key limitations ranging from long run times to dependence on prior knowledge of genetic mechanisms of resistance. We have developed a rapid antimicrobial susceptibility assay for Staphylococcus aureus based on bacterial cytological profiling (BCP, which uses quantitative fluorescence microscopy to measure antibiotic induced changes in cellular architecture. BCP discriminated between methicillin-susceptible (MSSA and -resistant (MRSA clinical isolates of S. aureus (n = 71 within 1–2 h with 100% accuracy. Similarly, BCP correctly distinguished daptomycin susceptible (DS from daptomycin non-susceptible (DNS S. aureus strains (n = 20 within 30 min. Among MRSA isolates, BCP further identified two classes of strains that differ in their susceptibility to specific combinations of beta-lactam antibiotics. BCP provides a rapid and flexible alternative to gene-based susceptibility testing methods for S. aureus, and should be readily adaptable to different antibiotics and bacterial species as new mechanisms of resistance or multidrug-resistant pathogens evolve and appear in mainstream clinical practice.

  13. Rapid screening for targeted genetic variants via high-resolution melting curve analysis.

    Science.gov (United States)

    Chambliss, Allison B; Resnick, Molly; Petrides, Athena K; Clarke, William A; Marzinke, Mark A

    2017-03-01

    Current methods for the detection of single nucleotide polymorphisms (SNPs) associated with aberrant drug-metabolizing enzyme function are hindered by long turnaround times and specialized techniques and instrumentation. In this study, we describe the development and validation of a high-resolution melting (HRM) curve assay for the rapid screening of variant genotypes for targeted genetic polymorphisms in the cytochrome P450 enzymes CYP2C9, CYP2C19, and CYP3A5. Sequence-specific primers were custom-designed to flank nine SNPs within the genetic regions of aforementioned drug metabolizing enzymes. PCR amplification was performed followed by amplicon denaturation by precise temperature ramping in order to distinguish genotypes by melting temperature (Tm). A standardized software algorithm was used to assign amplicons as 'reference' or 'variant' as compared to duplicate reference sequence DNA controls for each SNP. Intra-assay (n=5) precision of Tms for all SNPs was ≤0.19%, while inter-assay (n=20) precision ranged from 0.04% to 0.21%. When compared to a reference method of Sanger sequencing, the HRM assay produced no false negative results, and overcall frequency ranged from 0% to 26%, depending on the SNP. Furthermore, HRM genotyping displayed accuracy over input DNA concentrations ranging from 10 to 200 ng/μL. The presented assay provides a rapid method for the screening for genetic variants in targeted CYP450 regions with a result of 'reference' or 'variant' available within 2 h from receipt of extracted DNA. The method can serve as a screening approach to rapidly identify individuals with variant sequences who should be further investigated by reflexed confirmatory testing for aberrant cytochrome P450 enzymatic activity. Rapid knowledge of variant status may aid in the avoidance of adverse clinical events by allowing for dosing of normal metabolizer patients immediately while identifying the need to wait for confirmatory testing in those patients who are

  14. [Precision and personalized medicine].

    Science.gov (United States)

    Sipka, Sándor

    2016-10-01

    The author describes the concept of "personalized medicine" and the newly introduced "precision medicine". "Precision medicine" applies the terms of "phenotype", "endotype" and "biomarker" in order to characterize more precisely the various diseases. Using "biomarkers" the homogeneous type of a disease (a "phenotype") can be divided into subgroups called "endotypes" requiring different forms of treatment and financing. The good results of "precision medicine" have become especially apparent in relation with allergic and autoimmune diseases. The application of this new way of thinking is going to be necessary in Hungary, too, in the near future for participants, controllers and financing boards of healthcare. Orv. Hetil., 2016, 157(44), 1739-1741.

  15. Geo-registration of Unprofessional and Weakly-related Image and Precision Evaluation

    Directory of Open Access Journals (Sweden)

    LIU Yingzhen

    2015-09-01

    Full Text Available The 3D geo-spatial model built by unprofessional and weakly-related image is a significant source of geo-spatial information. The unprofessional and weakly-related image cannot be useful geo-spatial information until be geo-registered with accurate geo-spatial orientation and location. In this paper, we present an automatic geo-registration using the coordination acquired by real-time GPS module. We calculate 2D and 3D spatial transformation parameters based on the spatial similarity between the image location in the geo-spatial coordination system and in the 3D reconstruction coordination system. Because of the poor precision of GPS information and especially the unstability of elevation measurement, we use RANSAC algorithm to get rid of outliers. In the experiment, we compare the geo-registered image positions to their differential GPS coordinates. The errors of translation, rotation and scaling are evaluated quantitively and the causes of bad result are analyzed. The experiment demonstrates that this geo-registration method can get a precise result with enough images.

  16. The newest precision measurement

    International Nuclear Information System (INIS)

    Lee, Jing Gu; Lee, Jong Dae

    1974-05-01

    This book introduces basic of precision measurement, measurement of length, limit gauge, measurement of angles, measurement of surface roughness, measurement of shapes and locations, measurement of outline, measurement of external and internal thread, gear testing, accuracy inspection of machine tools, three dimension coordinate measuring machine, digitalisation of precision measurement, automation of precision measurement, measurement of cutting tools, measurement using laser, and point of choosing length measuring instrument.

  17. ACADEMIC TRAINING: Probing nature with high precision; particle traps, laser spectroscopy and optical combs

    CERN Multimedia

    Françoise Benz

    2002-01-01

    17, 18, 19 June LECTURE SERIES from 11.00 to 12.00 hrs - Auditorium, bldg. 500 Probing nature with high precision; particle traps, laser spectroscopy and optical combs by G. GABRIELSE / Harvard University, USA Experiments with atomic energy scales probe nature and its symmetries with exquisite precision. Particle traps allow the manipulation of single charged particles for months at a time, allow the most accurate comparison of theory and experiment, and promise to allow better measurement of fundamental quantities like the fine structure constant. Ions and atoms can be probed with lasers that are phase locked to microwave frequency standards via optical combs, thus calibrating optical sources in terms of the official cesium second. A series of three lectures will illustrate what can be measured and discuss key techniques.  ACADEMIC TRAINING Françoise Benz Tel. 73127 francoise.benz@cern.ch

  18. Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres?

    Directory of Open Access Journals (Sweden)

    Magnussen Pascal

    2010-12-01

    Full Text Available Abstract Background Prompt, accurate diagnosis and treatment with artemisinin combination therapy remains vital to current malaria control. Blood film microscopy the current standard test for diagnosis of malaria has several limitations that necessitate field evaluation of alternative diagnostic methods especially in low income countries of sub-Saharan Africa where malaria is endemic. Methods The accuracy of axillary temperature, health centre (HC microscopy, expert microscopy and a HRP2-based rapid diagnostic test (Paracheck was compared in predicting malaria infection using polymerase chain reaction (PCR as the gold standard. Three hundred patients with a clinical suspicion of malaria based on fever and or history of fever from a low and high transmission setting in Uganda were consecutively enrolled and provided blood samples for all tests. Accuracy of each test was calculated overall with 95% confidence interval and then adjusted for age-groups and level of transmission intensity using a stratified analysis. The endpoints were: sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV. This study is registered with Clinicaltrials.gov, NCT00565071. Results Of the 300 patients, 88(29.3% had fever, 56(18.7% were positive by HC microscopy, 47(15.7% by expert microscopy, 110(36.7% by Paracheck and 89(29.7% by PCR. The overall sensitivity >90% was only shown by Paracheck 91.0% [95%CI: 83.1-96.0]. The sensitivity of expert microscopy was 46%, similar to HC microscopy. The superior sensitivity of Paracheck compared to microscopy was maintained when data was stratified for transmission intensity and age. The overall specificity rates were: Paracheck 86.3% [95%CI: 80.9-90.6], HC microscopy 93.4% [95%CI: 89.1-96.3] and expert microscopy 97.2% [95%CI: 93.9-98.9]. The NPV >90% was shown by Paracheck 95.8% [95%CI: 91.9-98.2]. The overall PPV was Conclusion The HRP2-based RDT has shown superior sensitivity compared to

  19. Precise determination of protein extinction coefficients under native and denaturing conditions using SV-AUC.

    Science.gov (United States)

    Hoffmann, Andreas; Grassl, Kerstin; Gommert, Janine; Schlesak, Christian; Bepperling, Alexander

    2018-04-17

    The accurate determination of protein concentration is an important though non-trivial task during the development of a biopharmaceutical. The fundamental prerequisite for this is the availability of an accurate extinction coefficient. Common approaches for the determination of an extinction coefficient for a given protein are either based on the theoretical prediction utilizing the amino acid sequence or the photometric determination combined with a measurement of absolute protein concentration. Here, we report on an improved SV-AUC based method utilizing an analytical ultracentrifuge equipped with absorbance and Rayleigh interference optics. Global fitting of datasets helped to overcome some of the obstacles encountered with the traditional method employing synthetic boundary cells. Careful calculation of dn/dc values taking glycosylation and solvent composition into account allowed the determination of the extinction coefficients of monoclonal antibodies and an Fc-fusion protein under native as well as under denaturing conditions. An intra-assay precision of 0.9% and an accuracy of 1.8% compared to the theoretical value was achieved for monoclonal antibodies. Due to the large number of data points of a single dataset, no meaningful difference between the ProteomeLab XL-I and the new Optima AUC platform could be observed. Thus, the AUC-based approach offers a precise, convenient and versatile alternative to conventional methods like total amino acid analysis (AAA).

  20. Evaluating measurements of carbon dioxide emissions using a precision source--A natural gas burner.

    Science.gov (United States)

    Bryant, Rodney; Bundy, Matthew; Zong, Ruowen

    2015-07-01

    A natural gas burner has been used as a precise and accurate source for generating large quantities of carbon dioxide (CO2) to evaluate emissions measurements at near-industrial scale. Two methods for determining carbon dioxide emissions from stationary sources are considered here: predicting emissions based on fuel consumption measurements-predicted emissions measurements, and direct measurement of emissions quantities in the flue gas-direct emissions measurements. Uncertainty for the predicted emissions measurement was estimated at less than 1%. Uncertainty estimates for the direct emissions measurement of carbon dioxide were on the order of ±4%. The relative difference between the direct emissions measurements and the predicted emissions measurements was within the range of the measurement uncertainty, therefore demonstrating good agreement. The study demonstrates how independent methods are used to validate source emissions measurements, while also demonstrating how a fire research facility can be used as a precision test-bed to evaluate and improve carbon dioxide emissions measurements from stationary sources. Fossil-fuel-consuming stationary sources such as electric power plants and industrial facilities account for more than half of the CO2 emissions in the United States. Therefore, accurate emissions measurements from these sources are critical for evaluating efforts to reduce greenhouse gas emissions. This study demonstrates how a surrogate for a stationary source, a fire research facility, can be used to evaluate the accuracy of measurements of CO2 emissions.

  1. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    International Nuclear Information System (INIS)

    Aldosary, Ghada; Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal; Devic, Slobodan

    2014-01-01

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT

  2. Poster — Thur Eve — 33: The Influence of a Modeled Treatment Couch on Dose Distributions During IMRT and RapidArc Treatment Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Aldosary, Ghada [Medical Physics Unit, Montreal General Hospital, McGill University, Montreal, Quebec (Canada); Nobah, Ahmad; Al-Zorkani, Faisal; Moftah, Belal [Biomedical Physics Department, King Faisal Specialist Hospital and Research Center, Riyadh (Saudi Arabia); Devic, Slobodan [Department of Radiation Oncology, Jewish General Hospital, McGill University, Montreal, Quebec (Canada)

    2014-08-15

    Treatment couches have been known to perturb dose delivery in patients. This effect is most pronounced in techniques such as IMRT and RapidArc. Although modern treatment planning systems (TPS) include data for a “default” treatment couch, actual couches are not manufactured identically. Thus, variations in their Hounsfield Unit (HU) values may exist. This study demonstrates a practical and simple method of acquiring reliable HU data for any treatment couch. We also investigate the effects of both the default and modeled treatment couches on absorbed dose. Experimental verifications show that by neglecting to incorporate the treatment couch in the TPS, dose differences of up to 9.5% and 7.3% were present for 4 MV and 10 MV photon beams, respectively. Furthermore, a clinical study based on a cohort of 20 RapidArc and IMRT (brain, pelvis and abdominal) cases is performed. 2D dose distributions show that without the couch in the planning phase, differences ≤ 4.6% and 5.9% for RapidArc and IMRT cases are present for the same cases that the default couch was added to. Additionally, in comparison to the default couch, employing the modeled couch in the calculation process influences dose distributions by ≤ 2.7% and 8% for RapidArc and IMRT cases, respectively. This result was found to be site specific; where an accurate couch proves to be preferable for IMRT brain plans. As such, adding the couch during dose calculation decreases dose calculation errors, and a precisely modeled treatment couch offers higher dose delivery accuracy for brain treatment using IMRT.

  3. Precise predictions for V + jets dark matter backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Lindert, J.M.; Glover, N.; Morgan, T.A. [University of Durham, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Pozzorini, S.; Gehrmann, T.; Schoenherr, M. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Boughezal, R. [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Campbell, J.M. [Fermilab, Batavia, IL (United States); Denner, A. [Universitaet Wuerzburg, Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Dittmaier, S.; Maierhoefer, P. [Albert-Ludwigs-Universitaet Freiburg, Physikalisches Institut, Freiburg (Germany); Gehrmann-De Ridder, A. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Institute for Theoretical Physics, ETH, Zurich (Switzerland); Huss, A. [Institute for Theoretical Physics, ETH, Zurich (Switzerland); Kallweit, S.; Mangano, M.L.; Salam, G.P. [CERN, Theoretical Physics Department, Geneva (Switzerland); Mueck, A. [RWTH Aachen University, Institut fuer Theoretische Teilchenphysik und Kosmologie, Aachen (Germany); Petriello, F. [Argonne National Laboratory, High Energy Physics Division, Argonne, IL (United States); Northwestern University, Department of Physics and Astronomy, Evanston, IL (United States); Williams, C. [University at Buffalo, The State University of New York, Department of Physics, Buffalo (United States)

    2017-12-15

    High-energy jets recoiling against missing transverse energy (MET) are powerful probes of dark matter at the LHC. Searches based on large MET signatures require a precise control of the Z(ν anti ν) + jet background in the signal region. This can be achieved by taking accurate data in control regions dominated by Z(l{sup +}l{sup -}) + jet, W(lν) + jet and γ + jet production, and extrapolating to the Z(ν anti ν) + jet background by means of precise theoretical predictions. In this context, recent advances in perturbative calculations open the door to significant sensitivity improvements in dark matter searches. In this spirit, we present a combination of state-of-the-art calculations for all relevant V + jets processes, including throughout NNLO QCD corrections and NLO electroweak corrections supplemented by Sudakov logarithms at two loops. Predictions at parton level are provided together with detailed recommendations for their usage in experimental analyses based on the reweighting of Monte Carlo samples. Particular attention is devoted to the estimate of theoretical uncertainties in the framework of dark matter searches, where subtle aspects such as correlations across different V + jet processes play a key role. The anticipated theoretical uncertainty in the Z(ν anti ν) + jet background is at the few percent level up to the TeV range. (orig.)

  4. Rapid Quantitative Determination of Squalene in Shark Liver Oils by Raman and IR Spectroscopy.

    Science.gov (United States)

    Hall, David W; Marshall, Susan N; Gordon, Keith C; Killeen, Daniel P

    2016-01-01

    Squalene is sourced predominantly from shark liver oils and to a lesser extent from plants such as olives. It is used for the production of surfactants, dyes, sunscreen, and cosmetics. The economic value of shark liver oil is directly related to the squalene content, which in turn is highly variable and species-dependent. Presented here is a validated gas chromatography-mass spectrometry analysis method for the quantitation of squalene in shark liver oils, with an accuracy of 99.0 %, precision of 0.23 % (standard deviation), and linearity of >0.999. The method has been used to measure the squalene concentration of 16 commercial shark liver oils. These reference squalene concentrations were related to infrared (IR) and Raman spectra of the same oils using partial least squares regression. The resultant models were suitable for the rapid quantitation of squalene in shark liver oils, with cross-validation r (2) values of >0.98 and root mean square errors of validation of ≤4.3 % w/w. Independent test set validation of these models found mean absolute deviations of the 4.9 and 1.0 % w/w for the IR and Raman models, respectively. Both techniques were more accurate than results obtained by an industrial refractive index analysis method, which is used for rapid, cheap quantitation of squalene in shark liver oils. In particular, the Raman partial least squares regression was suited to quantitative squalene analysis. The intense and highly characteristic Raman bands of squalene made quantitative analysis possible irrespective of the lipid matrix.

  5. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman [HEP Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Bingham, Derek; Bergner, Steven [Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC (Canada); Lawrence, Earl [CCS-6, CCS Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Higdon, David [Social and Decision Analytics Laboratory, Virginia Bioinformatics Institute, Virginia Tech, Arlington, VA 22203 (United States); Pope, Adrian; Finkel, Hal [ALCF Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2016-04-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy.

  6. THE MIRA–TITAN UNIVERSE: PRECISION PREDICTIONS FOR DARK ENERGY SURVEYS

    International Nuclear Information System (INIS)

    Heitmann, Katrin; Habib, Salman; Biswas, Rahul; Frontiere, Nicholas; Bhattacharya, Suman; Bingham, Derek; Bergner, Steven; Lawrence, Earl; Higdon, David; Pope, Adrian; Finkel, Hal

    2016-01-01

    Large-scale simulations of cosmic structure formation play an important role in interpreting cosmological observations at high precision. The simulations must cover a parameter range beyond the standard six cosmological parameters and need to be run at high mass and force resolution. A key simulation-based task is the generation of accurate theoretical predictions for observables using a finite number of simulation runs, via the method of emulation. Using a new sampling technique, we explore an eight-dimensional parameter space including massive neutrinos and a variable equation of state of dark energy. We construct trial emulators using two surrogate models (the linear power spectrum and an approximate halo mass function). The new sampling method allows us to build precision emulators from just 26 cosmological models and to systematically increase the emulator accuracy by adding new sets of simulations in a prescribed way. Emulator fidelity can now be continuously improved as new observational data sets become available and higher accuracy is required. Finally, using one ΛCDM cosmology as an example, we study the demands imposed on a simulation campaign to achieve the required statistics and accuracy when building emulators for investigations of dark energy

  7. CHEOPS: a space telescope for ultra-high precision photometry of exoplanet transits

    Science.gov (United States)

    Cessa, V.; Beck, T.; Benz, W.; Broeg, C.; Ehrenreich, D.; Fortier, A.; Peter, G.; Magrin, D.; Pagano, I.; Plesseria, J.-Y.; Steller, M.; Szoke, J.; Thomas, N.; Ragazzoni, R.; Wildi, F.

    2017-11-01

    The CHaracterising ExOPlanet Satellite (CHEOPS) is a joint ESA-Switzerland space mission dedicated to search for exoplanet transits by means of ultra-high precision photometry whose launch readiness is expected end 2017. The CHEOPS instrument will be the first space telescope dedicated to search for transits on bright stars already known to host planets. By being able to point at nearly any location on the sky, it will provide the unique capability of determining accurate radii for a subset of those planets for which the mass has already been estimated from ground-based spectroscopic surveys. CHEOPS will also provide precision radii for new planets discovered by the next generation ground-based transits surveys (Neptune-size and smaller). The main science goals of the CHEOPS mission will be to study the structure of exoplanets with radii typically ranging from 1 to 6 Earth radii orbiting bright stars. With an accurate knowledge of masses and radii for an unprecedented sample of planets, CHEOPS will set new constraints on the structure and hence on the formation and evolution of planets in this mass range. To reach its goals CHEOPS will measure photometric signals with a precision of 20 ppm in 6 hours of integration time for a 9th magnitude star. This corresponds to a signal to noise of 5 for a transit of an Earth-sized planet orbiting a solar-sized star (0.9 solar radii). This precision will be achieved by using a single frame-transfer backside illuminated CCD detector cool down at 233K and stabilized within {10 mK . The CHEOPS optical design is based on a Ritchey-Chretien style telescope with 300 mm effective aperture diameter, which provides a defocussed image of the target star while minimizing straylight using a dedicated field stop and baffle system. As CHEOPS will be in a LEO orbit, straylight suppression is a key point to allow the observation of faint stars. The telescope will be the only payload on a spacecraft platform providing pointing stability of

  8. Application of Smart Infrastructure Systems approach to precision medicine

    Directory of Open Access Journals (Sweden)

    Diddahally R. Govindaraju

    2015-12-01

    Full Text Available All biological variation is hierarchically organized dynamic network system of genomic components, organelles, cells, tissues, organs, individuals, families, populations and metapopulations. Individuals are axial in this hierarchy, as they represent antecedent, attendant and anticipated aspects of health, disease, evolution and medical care. Humans show individual specific genetic and clinical features such as complexity, cooperation, resilience, robustness, vulnerability, self-organization, latent and emergent behavior during their development, growth and senescence. Accurate collection, measurement, organization and analyses of individual specific data, embedded at all stratified levels of biological, demographic and cultural diversity – the big data – is necessary to make informed decisions on health, disease and longevity; which is a central theme of precision medicine initiative (PMI. This initiative also calls for the development of novel analytical approaches to handle complex multidimensional data. Here we suggest the application of Smart Infrastructure Systems (SIS approach to accomplish some of the goals set forth by the PMI on the premise that biological systems and the SIS share many common features. The latter has been successfully employed in managing complex networks of non-linear adaptive controls, commonly encountered in smart engineering systems. We highlight their concordance and discuss the utility of the SIS approach in precision medicine programs.

  9. Precise Comparisons of Bottom-Pressure and Altimetric Ocean Tides

    Science.gov (United States)

    Ray, Richard D.

    2013-01-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets : the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free corenutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  10. Precise comparisons of bottom-pressure and altimetric ocean tides

    Science.gov (United States)

    Ray, R. D.

    2013-09-01

    A new set of pelagic tide determinations is constructed from seafloor pressure measurements obtained at 151 sites in the deep ocean. To maximize precision of estimated tides, only stations with long time series are used; median time series length is 567 days. Geographical coverage is considerably improved by use of the international tsunami network, but coverage in the Indian Ocean and South Pacific is still weak. As a tool for assessing global ocean tide models, the data set is considerably more reliable than older data sets: the root-mean-square difference with a recent altimetric tide model is approximately 5 mm for the M2 constituent. Precision is sufficiently high to allow secondary effects in altimetric and bottom-pressure tide differences to be studied. The atmospheric tide in bottom pressure is clearly detected at the S1, S2, and T2 frequencies. The altimetric tide model is improved if satellite altimetry is corrected for crustal loading by the atmospheric tide. Models of the solid body tide can also be constrained. The free core-nutation effect in the K1 Love number is easily detected, but the overall estimates are not as accurate as a recent determination with very long baseline interferometry.

  11. Precision Stellar and Planetary Astrophysics with TESS and Gaia

    Science.gov (United States)

    Stevens, Daniel J.; KELT Collaboration

    2018-01-01

    There is an ever-present need for precise and accurate stellar parameters, particularly for low-mass stars. For example, some fraction of measured M dwarf radii are inflated and have effective temperatures that are suppressed relative to predictions from models, but the physical cause of these effects is still uncertain. This is exacerbated by the fact that only a handful of M dwarfs -- all from double-lined eclipsing binaries (EBs) -- have both masses and radii measured to 3% or better. In the Gaia era, we can now measure model-independent masses and radii for single-lined EBs, thus expanding the sample of stars with precisely measured parameters by at least an order of magnitude, in principle. I will illustrate how one can combine Gaia parallaxes and broad-band stellar fluxes with the eclipse and radial velocity data to provide model-independent masses and radii. I will present our expected achievable constraints on the masses and radii of single-lined EBs. I will discuss both our current effort to turn several dozens of single-lined EBs discovered by the KELT and HATNet surveys into a catalog of exquisitely characterized stars and exoplanets as well as the prospects for achieving similar science for a much larger number of systems with TESS.

  12. Metabolomics enables precision medicine: "A White Paper, Community Perspective".

    Science.gov (United States)

    Beger, Richard D; Dunn, Warwick; Schmidt, Michael A; Gross, Steven S; Kirwan, Jennifer A; Cascante, Marta; Brennan, Lorraine; Wishart, David S; Oresic, Matej; Hankemeier, Thomas; Broadhurst, David I; Lane, Andrew N; Suhre, Karsten; Kastenmüller, Gabi; Sumner, Susan J; Thiele, Ines; Fiehn, Oliver; Kaddurah-Daouk, Rima

    Metabolomics is the comprehensive study of the metabolome, the repertoire of biochemicals (or small molecules) present in cells, tissues, and body fluids. The study of metabolism at the global or "-omics" level is a rapidly growing field that has the potential to have a profound impact upon medical practice. At the center of metabolomics, is the concept that a person's metabolic state provides a close representation of that individual's overall health status. This metabolic state reflects what has been encoded by the genome, and modified by diet, environmental factors, and the gut microbiome. The metabolic profile provides a quantifiable readout of biochemical state from normal physiology to diverse pathophysiologies in a manner that is often not obvious from gene expression analyses. Today, clinicians capture only a very small part of the information contained in the metabolome, as they routinely measure only a narrow set of blood chemistry analytes to assess health and disease states. Examples include measuring glucose to monitor diabetes, measuring cholesterol and high density lipoprotein/low density lipoprotein ratio to assess cardiovascular health, BUN and creatinine for renal disorders, and measuring a panel of metabolites to diagnose potential inborn errors of metabolism in neonates. We anticipate that the narrow range of chemical analyses in current use by the medical community today will be replaced in the future by analyses that reveal a far more comprehensive metabolic signature. This signature is expected to describe global biochemical aberrations that reflect patterns of variance in states of wellness, more accurately describe specific diseases and their progression, and greatly aid in differential diagnosis. Such future metabolic signatures will: (1) provide predictive, prognostic, diagnostic, and surrogate markers of diverse disease states; (2) inform on underlying molecular mechanisms of diseases; (3) allow for sub-classification of diseases, and

  13. Rapid and accurate diagnosis of acute cholecystitis with /sup 99m/Tc-HIDA cholescintigraphy

    International Nuclear Information System (INIS)

    Weissmann, H.S.; Frank, M.S.; Bernstein, L.H.; Freeman, L.M.

    1979-01-01

    Technetium-99m dimethyl acetanilide iminodiacetic acid (HIDA) cholescintigraphy was performed on 90 patients with suspected acute cholecytitis. Visualization of the gallbladder established patency of the cystic duct and excluded the diagnosis of acute cholecystitis in 50 of 52 patients. Nonvisualization of the gallbladder with visualization of the common bile duct was diagnostic of acute cholecystitis in 38 patients, all subsequently proven at surgery. The observed accuracy of this procedure is 98% and specificity is 100%. The false negative rate is 5% and false positive rate is zero. Technetium-99m-HILDA has many advantages which make it the procedure of choice in evaluating a patient for suspected acute cholecystitis. It is a rapid, simple, safe examination which provides functional as well as anatomic information about the hepatobiliary system in individuals with a serum bilirubin level up to 8 mg/100 ml

  14. Determination of tributyl phosphate (TBP) by precision densimetry : TBP-varsol-HNO/sub 3/ system

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, H T; Araujo, B.F. de; Araujo, J.A. de [Instituto de Pesquisas Energeticas e Nucleares, Sao Paulo (Brazil). Centro de Engenharia Quimica

    1980-01-01

    A simple and rapid method for TBP direct determination is presented, based on precision densimetry, aiming to control solvent concentration in the TBP-Varsol system during the reprocessing of irradiated uranium. The method comprises the determination of the density of liquids or gases by electronic measurement of the variation in the frequency (f) or period (T = 1/f) of a glass oscillator containing the liquid or the gas.

  15. Guide to precision calculations in Dyson close-quote s hierarchical scalar field theory

    International Nuclear Information System (INIS)

    Godina, J.J.; Meurice, Y.; Oktay, M.B.; Niermann, S.

    1998-01-01

    The goal of this article is to provide a practical method to calculate, in a scalar theory, accurate numerical values of the renormalized quantities which could be used to test any kind of approximate calculation. We use finite truncations of the Fourier transform of the recursion formula for Dyson close-quote s hierarchical model in the symmetric phase to perform high-precision calculations of the unsubtracted Green close-quote s functions at zero momentum in dimension 3, 4, and 5. We use the well-known correspondence between statistical mechanics and field theory in which the large cutoff limit is obtained by letting β reach a critical value β c (with up to 16 significant digits in our actual calculations). We show that the round-off errors on the magnetic susceptibility grow like (β c -β) -1 near criticality. We show that the systematic errors (finite truncations and volume) can be controlled with an exponential precision and reduced to a level lower than the numerical errors. We justify the use of the truncation for calculations of the high-temperature expansion. We calculate the dimensionless renormalized coupling constant corresponding to the 4-point function and show that when β→β c , this quantity tends to a fixed value which can be determined accurately when D=3 (hyperscaling holds), and goes to zero like [Ln(β c -β)] -1 when D=4. copyright 1998 The American Physical Society

  16. How Precisely can we Determine the $\\piNN$ Coupling Constant from the Isovector GMO Sum Rule?

    CERN Document Server

    Loiseau, B; Thomas, A W

    1999-01-01

    The isovector GMO sum rule for zero energy forward pion-nucleon scattering iscritically studied to obtain the charged pion-nucleon coupling constant usingthe precise negatively charged pion-proton and pion-deuteron scattering lengthsdeduced recently from pionic atom experiments. This direct determination leadsto a pseudoscalar charged pion-nucleon coupling constant of 14.23 +- 0.09(statistic) +- 0.17 (systematic). We obtain also accurate values for thepion-nucleon scattering lengths.

  17. Production of zinc oxide nanowires power with precisely defined morphology

    Science.gov (United States)

    Mičová, Júlia; Remeš, Zdeněk; Chan, Yu-Ying

    2017-12-01

    The interest about zinc oxide is increasing thanks to its unique chemical and physical properties. Our attention has focused on preparation powder of 1D nanostructures of ZnO nanowires with precisely defined morphology include characterization size (length and diameter) and shape controlled in the scanning electron microscopy (SEM). We have compared results of SEM with dynamic light scattering (DLS) technique. We have found out that SEM method gives more accurate results. We have proposed transformation process from ZnO nanowires on substrates to ZnO nanowires powder by ultrasound peeling to colloid followed by lyophilization. This method of the mass production of the ZnO nanowires powder has some advantages: simplicity, cost effective, large-scale and environment friendly.

  18. Precise digital integration in wide time range: theory and realization

    International Nuclear Information System (INIS)

    Batrakov, A.M.; Pavlenko, A.V.

    2017-01-01

    The digital integration method based on using high-speed precision analog-to-digital converters (ADC) has become widely used over the recent years. The paper analyzes the limitations of this method that are caused by the signal properties, ADC sampling rate and noise spectral density of the ADC signal path. This analysis allowed creating digital integrators with accurate synchronization and achieving an integration error of less than 10 −5 in the time range from microseconds to tens of seconds. The structure of the integrator is described and its basic parameters are presented. The possibilities of different ADC chips in terms of their applicability to digital integrators are discussed. A comparison with other integrating devices is presented.

  19. Assessing the performance of commercial Agisoft PhotoScan software to deliver reliable data for accurate3D modelling

    Directory of Open Access Journals (Sweden)

    Jebur Ahmed

    2018-01-01

    Full Text Available 3D models delivered from digital photogrammetric techniques have massively increased and developed to meet the requirements of many applications. The reliability of these models is basically dependent on the data processing cycle and the adopted tool solution in addition to data quality. Agisoft PhotoScan is a professional image-based 3D modelling software, which seeks to create orderly, precise n 3D content from fixed images. It works with arbitrary images those qualified in both controlled and uncontrolled conditions. Following the recommendations of many users all around the globe, Agisoft PhotoScan, has become an important source to generate precise 3D data for different applications. How reliable is this data for accurate 3D modelling applications is the current question that needs an answer. Therefore; in this paper, the performance of the Agisoft PhotoScan software was assessed and analyzed to show the potential of the software for accurate 3D modelling applications. To investigate this, a study was carried out in the University of Baghdad / Al-Jaderia campus using data collected from airborne metric camera with 457m flying height. The Agisoft results show potential according to the research objective and the dataset quality following statistical and validation shape analysis.

  20. An accurate and precise representation of drug ingredients.

    Science.gov (United States)

    Hanna, Josh; Bian, Jiang; Hogan, William R

    2016-01-01

    In previous work, we built the Drug Ontology (DrOn) to support comparative effectiveness research use cases. Here, we have updated our representation of ingredients to include both active ingredients (and their strengths) and excipients. Our update had three primary lines of work: 1) analysing and extracting excipients, 2) analysing and extracting strength information for active ingredients, and 3) representing the binding of active ingredients to cytochrome P450 isoenzymes as substrates and inhibitors of those enzymes. To properly differentiate between excipients and active ingredients, we conducted an ontological analysis of the roles that various ingredients, including excipients, have in drug products. We used the value specification model of the Ontology for Biomedical Investigations to represent strengths of active ingredients and then analyzed RxNorm to extract excipient and strength information and modeled them according to the results of our analysis. We also analyzed and defined dispositions of molecules used in aggregate as active ingredients to bind cytochrome P450 isoenzymes. Our analysis of excipients led to 17 new classes representing the various roles that excipients can bear. We then extracted excipients from RxNorm and added them to DrOn for branded drugs. We found excipients for 5,743 branded drugs, covering ~27% of the 21,191 branded drugs in DrOn. Our analysis of active ingredients resulted in another new class, active ingredient role. We also extracted strengths for all types of tablets, capsules, and caplets, resulting in strengths for 5,782 drug forms, covering ~41% of the 14,035 total drug forms and accounting for ~97 % of the 5,970 tablets, capsules, and caplets in DrOn. We represented binding-as-substrate and binding-as-inhibitor dispositions to two cytochrome P450 (CYP) isoenzymes (CYP2C19 and CYP2D6) and linked these dispositions to 65 compounds. It is now possible to query DrOn automatically for all drug products that contain active ingredients whose molecular grains inhibit or are metabolized by a particular CYP isoenzyme. DrOn is open source and is available at http://purl.obolibrary.org/obo/dron.owl.

  1. [Application of rapid PCR to authenticate medicinal snakes].

    Science.gov (United States)

    Chen, Kang; Jiang, Chao; Yuan, Yuan; Huang, Lu-Qi; Li, Man

    2014-10-01

    To obtained an accurate, rapid and efficient method for authenticate medicinal snakes listed in Chinese Pharmacopoeia (Zaocysd humnades, Bungarus multicinctus, Agkistrodon acutus), a rapid PCR method for authenticate snakes and its adulterants was established based on the classic molecular authentication methods. DNA was extracted by alkaline lysis and the specific primers were amplified by two-steps PCR amplification method. The denatured and annealing temperature and cycle numbers were optimized. When 100 x SYBR Green I was added in the PCR product, strong green fluorescence was visualized under 365 nm UV whereas adulterants without. The whole process can complete in 30-45 minutes. The established method provides the technical support for authentication of the snakes on field.

  2. Screening of 439 Pesticide Residues in Fruits and Vegetables by Gas Chromatography-Quadrupole-Time-of-Flight Mass Spectrometry Based on TOF Accurate Mass Database and Q-TOF Spectrum Library.

    Science.gov (United States)

    Li, Jian-Xun; Li, Xiao-Ying; Chang, Qiao-Ying; Li, Yan; Jin, Ling-He; Pang, Guo-Fang; Fan, Chun-Lin

    2018-05-03

    Because of its unique characteristics of accurate mass full-spectrum acquisition, high resolution, and fast acquisition rates, GC-quadrupole-time-of-flight MS (GC-Q-TOF/MS) has become a powerful tool for pesticide residue analysis. In this study, a TOF accurate mass database and Q-TOF spectrum library of 439 pesticides were established, and the parameters of the TOF database were optimized. Through solid-phase extraction (SPE), whereby pesticides are extracted from fruit and vegetable substrates by using 40 mL 1% acetic acid in acetonitrile (v/v), purified by the Carbon/NH₂ SPE cartridge, and finally detected by GC-Q-TOF/MS, the rapid analysis of 439 pesticides in fruits and vegetables can be achieved. The methodology verification results show that more than 70 and 91% of pesticides, spiked in fruits and vegetables with concentrations of 10 and 100 μg/kg, respectively, saw recoveries that conform to the European Commission's criterion of between 70 and 120% with RSD ≤20%. Eighty-one percent of pesticides have screening detection limits lower than 10 μg/kg, which makes this a reliable analysis technology for the monitoring of pesticide residues in fruits and vegetables. This technology was further validated for its characteristics of high precision, high speed, and high throughput through successful detection of 9817 samples during 2013-2015.

  3. Precision Medicine in Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Yan Liu

    2017-02-01

    Full Text Available Since President Obama announced the Precision Medicine Initiative in the United States, more and more attention has been paid to precision medicine. However, clinicians have already used it to treat conditions such as cancer. Many cardiovascular diseases have a familial presentation, and genetic variants are associated with the prevention, diagnosis, and treatment of cardiovascular diseases, which are the basis for providing precise care to patients with cardiovascular diseases. Large-scale cohorts and multiomics are critical components of precision medicine. Here we summarize the application of precision medicine to cardiovascular diseases based on cohort and omic studies, and hope to elicit discussion about future health care.

  4. Discrimination of Dynamic Tactile Contact by Temporally Precise Event Sensing in Spiking Neuromorphic Networks.

    Science.gov (United States)

    Lee, Wang Wei; Kukreja, Sunil L; Thakor, Nitish V

    2017-01-01

    This paper presents a neuromorphic tactile encoding methodology that utilizes a temporally precise event-based representation of sensory signals. We introduce a novel concept where touch signals are characterized as patterns of millisecond precise binary events to denote pressure changes. This approach is amenable to a sparse signal representation and enables the extraction of relevant features from thousands of sensing elements with sub-millisecond temporal precision. We also proposed measures adopted from computational neuroscience to study the information content within the spiking representations of artificial tactile signals. Implemented on a state-of-the-art 4096 element tactile sensor array with 5.2 kHz sampling frequency, we demonstrate the classification of transient impact events while utilizing 20 times less communication bandwidth compared to frame based representations. Spiking sensor responses to a large library of contact conditions were also synthesized using finite element simulations, illustrating an 8-fold improvement in information content and a 4-fold reduction in classification latency when millisecond-precise temporal structures are available. Our research represents a significant advance, demonstrating that a neuromorphic spatiotemporal representation of touch is well suited to rapid identification of critical contact events, making it suitable for dynamic tactile sensing in robotic and prosthetic applications.

  5. Using beta-binomial regression for high-precision differential methylation analysis in multifactor whole-genome bisulfite sequencing experiments

    Science.gov (United States)

    2014-01-01

    Background Whole-genome bisulfite sequencing currently provides the highest-precision view of the epigenome, with quantitative information about populations of cells down to single nucleotide resolution. Several studies have demonstrated the value of this precision: meaningful features that correlate strongly with biological functions can be found associated with only a few CpG sites. Understanding the role of DNA methylation, and more broadly the role of DNA accessibility, requires that methylation differences between populations of cells are identified with extreme precision and in complex experimental designs. Results In this work we investigated the use of beta-binomial regression as a general approach for modeling whole-genome bisulfite data to identify differentially methylated sites and genomic intervals. Conclusions The regression-based analysis can handle medium- and large-scale experiments where it becomes critical to accurately model variation in methylation levels between replicates and account for influence of various experimental factors like cell types or batch effects. PMID:24962134

  6. Motor imagery training improves precision of an upper limb movement in patients with hemiparesis.

    Science.gov (United States)

    Grabherr, Luzia; Jola, Corinne; Berra, Gilberto; Theiler, Robert; Mast, Fred W

    2015-01-01

    In healthy participants, beneficial effects of motor imagery training on movement execution have been shown for precision, strength, and speed. In the clinical context, it is still debated whether motor imagery provides an effective rehabilitation technique in patients with motor deficits. To compare the effectiveness of two different types of movement training: motor imagery vs. motor execution. Twenty-five patients with hemiparesis were assigned to one of two training groups: the imagery or the execution-training group. Both groups completed a baseline test before they received six training sessions, each of which was followed by a test session. Using a novel and precisely quantifiable test, we assessed how accurately patients performed an upper limb movement. Both training groups improved performance over the six test sessions but the improvement was significantly larger in the imagery group. That is, the imagery group was able to perform more precise movements than the execution group after the sixth training session while there was no difference at the beginning of the training. The results provide evidence for the benefit of motor imagery training in patients with hemiparesis and thus suggest the integration of cognitive training in conventional physiotherapy practice.

  7. Drag-Free Motion Control of Satellite for High-Precision Gravity Field Mapping

    DEFF Research Database (Denmark)

    Ziegler, Bent Lindvig; Blanke, Mogens

    2002-01-01

    High precision mapping of the geoid and the Earth's gravity field are of importance to a wide range of ongoing studies in areas like ocean circulation, solid Earth physics and ice sheet dynamics. Using a satellite in orbit around the Earth gives the opportunity to map the Earth's gravity field in 3...... will compromise measurement accuracy, unless they are accurately compensated by on-board thrusters. The paper concerns the design of a control system to performing such delicate drag compensation. A six degrees-of-freedom model for the satellite is developed with the model including dynamics of the satellite...

  8. Toward the use of precision medicine for the treatment of head and neck squamous cell carcinoma.

    Science.gov (United States)

    Gong, Wang; Xiao, Yandi; Wei, Zihao; Yuan, Yao; Qiu, Min; Sun, Chongkui; Zeng, Xin; Liang, Xinhua; Feng, Mingye; Chen, Qianming

    2017-01-10

    Precision medicine is a new strategy that aims at preventing and treating human diseases by focusing on individual variations in people's genes, environment and lifestyle. Precision medicine has been used for cancer diagnosis and treatment and shows evident clinical efficacy. Rapid developments in molecular biology, genetics and sequencing technologies, as well as computational technology, has enabled the establishment of "big data", such as the Human Genome Project, which provides a basis for precision medicine. Head and neck squamous cell carcinoma (HNSCC) is an aggressive cancer with a high incidence rate and low survival rate. Current therapies are often aggressive and carry considerable side effects. Much research now indicates that precision medicine can be used for HNSCC and may achieve improved results. From this perspective, we present an overview of the current status, potential strategies, and challenges of precision medicine in HNSCC. We focus on targeted therapy based on cell the surface signaling receptors epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) and human epidermal growth factor receptor-2 (HER2), and on the PI3K/AKT/mTOR, JAK/STAT3 and RAS/RAF/MEK/ERK cellular signaling pathways. Gene therapy for the treatment of HNSCC is also discussed.

  9. Incremental heating of Bishop Tuff sanidine reveals preeruptive radiogenic Ar and rapid remobilization from cold storage

    Science.gov (United States)

    Andersen, Nathan L.; Jicha, Brian R.; Singer, Brad S.; Hildreth, Wes

    2017-11-01

    Accurate and precise ages of large silicic eruptions are critical to calibrating the geologic timescale and gauging the tempo of changes in climate, biologic evolution, and magmatic processes throughout Earth history. The conventional approach to dating these eruptive products using the 40Ar/39Ar method is to fuse dozens of individual feldspar crystals. However, dispersion of fusion dates is common and interpretation is complicated by increasingly precise data obtained via multicollector mass spectrometry. Incremental heating of 49 individual Bishop Tuff (BT) sanidine crystals produces 40Ar/39Ar dates with reduced dispersion, yet we find a 16-ky range of plateau dates that is not attributable to excess Ar. We interpret this dispersion to reflect cooling of the magma reservoir margins below ˜475 °C, accumulation of radiogenic Ar, and rapid preeruption remobilization. Accordingly, these data elucidate the recycling of subsolidus material into voluminous rhyolite magma reservoirs and the effect of preeruptive magmatic processes on the 40Ar/39Ar system. The youngest sanidine dates, likely the most representative of the BT eruption age, yield a weighted mean of 764.8 ± 0.3/0.6 ka (2σ analytical/full uncertainty) indicating eruption only ˜7 ky following the Matuyama‑Brunhes magnetic polarity reversal. Single-crystal incremental heating provides leverage with which to interpret complex populations of 40Ar/39Ar sanidine and U-Pb zircon dates and a substantially improved capability to resolve the timing and causal relationship of events in the geologic record.

  10. Method to make accurate concentration and isotopic measurements for small gas samples

    Science.gov (United States)

    Palmer, M. R.; Wahl, E.; Cunningham, K. L.

    2013-12-01

    Carbon isotopic ratio measurements of CO2 and CH4 provide valuable insight into carbon cycle processes. However, many of these studies, like soil gas, soil flux, and water head space experiments, provide very small gas sample volumes, too small for direct measurement by current constant-flow Cavity Ring-Down (CRDS) isotopic analyzers. Previously, we addressed this issue by developing a sample introduction module which enabled the isotopic ratio measurement of 40ml samples or smaller. However, the system, called the Small Sample Isotope Module (SSIM), does dilute the sample during the delivery with inert carrier gas which causes a ~5% reduction in concentration. The isotopic ratio measurements are not affected by this small dilution, but researchers are naturally interested accurate concentration measurements. We present the accuracy and precision of a new method of using this delivery module which we call 'double injection.' Two portions of the 40ml of the sample (20ml each) are introduced to the analyzer, the first injection of which flushes out the diluting gas and the second injection is measured. The accuracy of this new method is demonstrated by comparing the concentration and isotopic ratio measurements for a gas sampled directly and that same gas measured through the SSIM. The data show that the CO2 concentration measurements were the same within instrument precision. The isotopic ratio precision (1σ) of repeated measurements was 0.16 permil for CO2 and 1.15 permil for CH4 at ambient concentrations. This new method provides a significant enhancement in the information provided by small samples.

  11. Rapid Magnetic Nanobiosensor for the detection of Serratia marcescen

    Science.gov (United States)

    Aljabali, Alaa A. A.; Hussein, Emad; Aljumaili, Omar; Zoubi, Mazhar Al; Altrad, Bahaa; Albatayneh, Khaled; Al-razaq, Mutaz A. Abd

    2018-02-01

    The development of rapid, sensitive, accurate and reliable bacterial detection methods are of keen interest to ensure food safety and hospital security. Therefore, the development of a fast, specific, low-cost and trusted methods is in high demand. Magnetic nanoparticles with their unique material properties have been utilized as a tool for pathogen detection. Here, we present a novel iron oxide nanoparticles labeled with specific targeting antibodies to improve specificity and extend the use of nanoparticles as nanosensors. The results indicated that antibody labeled iron oxide platform that binds specifically to Serriata marcescenst in a straightforward method is very specific and sensitive. The system is capable of rapid and specific detection of various clinically relevant bacterial species, with sensitivity down to single bacteria. The generic platform could be used to identify pathogens for a variety of applications rapidly.

  12. Accurate Detection of Methicillin-Resistant Staphylococcus aureus in Mixtures by Use of Single-Bacterium Duplex Droplet Digital PCR.

    Science.gov (United States)

    Luo, Jun; Li, Junhua; Yang, Hang; Yu, Junping; Wei, Hongping

    2017-10-01

    Accurate and rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is needed to screen MRSA carriers and improve treatment. The current widely used duplex PCR methods are not able to differentiate MRSA from coexisting methicillin-susceptible S. aureus (MSSA) or other methicillin-resistant staphylococci. In this study, we aimed to develop a direct method for accurate and rapid detection of MRSA in clinical samples from open environments, such as nasal swabs. The new molecular assay is based on detecting the cooccurrence of nuc and mecA markers in a single bacterial cell by utilizing droplet digital PCR (ddPCR) with the chimeric lysin ClyH for cell lysis. The method consists of (i) dispersion of an intact single bacterium into nanoliter droplets, (ii) temperature-controlled release of genomic DNA (gDNA) by ClyH at 37°C, and (iii) amplification and detection of the markers ( nuc and mecA ) using standard TaqMan chemistries with ddPCR. Results were analyzed based on MRSA index ratios used for indicating the presence of the duplex-positive markers in droplets. The method was able to achieve an absolute limit of detection (LOD) of 2,900 CFU/ml for MRSA in nasal swabs spiked with excess amounts of Escherichia coli , MSSA, and other mecA -positive bacteria within 4 h. Initial testing of 104 nasal swabs showed that the method had 100% agreement with the standard culture method, while the normal duplex qPCR method had only about 87.5% agreement. The single-bacterium duplex ddPCR assay is rapid and powerful for more accurate detection of MRSA directly from clinical specimens. Copyright © 2017 American Society for Microbiology.

  13. Tools for Accurate and Efficient Analysis of Complex Evolutionary Mechanisms in Microbial Genomes. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Nakhleh, Luay

    2014-03-12

    I proposed to develop computationally efficient tools for accurate detection and reconstruction of microbes' complex evolutionary mechanisms, thus enabling rapid and accurate annotation, analysis and understanding of their genomes. To achieve this goal, I proposed to address three aspects. (1) Mathematical modeling. A major challenge facing the accurate detection of HGT is that of distinguishing between these two events on the one hand and other events that have similar "effects." I proposed to develop a novel mathematical approach for distinguishing among these events. Further, I proposed to develop a set of novel optimization criteria for the evolutionary analysis of microbial genomes in the presence of these complex evolutionary events. (2) Algorithm design. In this aspect of the project, I proposed to develop an array of e cient and accurate algorithms for analyzing microbial genomes based on the formulated optimization criteria. Further, I proposed to test the viability of the criteria and the accuracy of the algorithms in an experimental setting using both synthetic as well as biological data. (3) Software development. I proposed the nal outcome to be a suite of software tools which implements the mathematical models as well as the algorithms developed.

  14. Precise determination of lattice phase shifts and mixing angles

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Bing-Nan, E-mail: b.lu@fz-juelich.de [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lähde, Timo A. [Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); Lee, Dean [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Meißner, Ulf-G. [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA – High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-09-10

    We introduce a general and accurate method for determining lattice phase shifts and mixing angles, which is applicable to arbitrary, non-cubic lattices. Our method combines angular momentum projection, spherical wall boundaries and an adjustable auxiliary potential. This allows us to construct radial lattice wave functions and to determine phase shifts at arbitrary energies. For coupled partial waves, we use a complex-valued auxiliary potential that breaks time-reversal invariance. We benchmark our method using a system of two spin-1/2 particles interacting through a finite-range potential with a strong tensor component. We are able to extract phase shifts and mixing angles for all angular momenta and energies, with precision greater than that of extant methods. We discuss a wide range of applications from nuclear lattice simulations to optical lattice experiments.

  15. Precision Airdrop (Largage de precision)

    Science.gov (United States)

    2005-12-01

    NAVIGATION TO A PRECISION AIRDROP OVERVIEW RTO-AG-300-V24 2 - 9 the point from various compass headings. As the tests are conducted, the resultant...rate. This approach avoids including a magnetic compass for the heading reference, which has difficulties due to local changes in the magnetic field...Scientifica della Difesa ROYAUME-UNI Via XX Settembre 123 Dstl Knowledge Services ESPAGNE 00187 Roma Information Centre, Building 247 SDG TECEN / DGAM

  16. Precision genome editing

    DEFF Research Database (Denmark)

    Steentoft, Catharina; Bennett, Eric P; Schjoldager, Katrine Ter-Borch Gram

    2014-01-01

    Precise and stable gene editing in mammalian cell lines has until recently been hampered by the lack of efficient targeting methods. While different gene silencing strategies have had tremendous impact on many biological fields, they have generally not been applied with wide success in the field...... of glycobiology, primarily due to their low efficiencies, with resultant failure to impose substantial phenotypic consequences upon the final glycosylation products. Here, we review novel nuclease-based precision genome editing techniques enabling efficient and stable gene editing, including gene disruption...... by introducing single or double-stranded breaks at a defined genomic sequence. We here compare and contrast the different techniques and summarize their current applications, highlighting cases from the field of glycobiology as well as pointing to future opportunities. The emerging potential of precision gene...

  17. A high-precision sampling scheme to assess persistence and transport characteristics of micropollutants in rivers.

    Science.gov (United States)

    Schwientek, Marc; Guillet, Gaëlle; Rügner, Hermann; Kuch, Bertram; Grathwohl, Peter

    2016-01-01

    Increasing numbers of organic micropollutants are emitted into rivers via municipal wastewaters. Due to their persistence many pollutants pass wastewater treatment plants without substantial removal. Transport and fate of pollutants in receiving waters and export to downstream ecosystems is not well understood. In particular, a better knowledge of processes governing their environmental behavior is needed. Although a lot of data are available concerning the ubiquitous presence of micropollutants in rivers, accurate data on transport and removal rates are lacking. In this paper, a mass balance approach is presented, which is based on the Lagrangian sampling scheme, but extended to account for precise transport velocities and mixing along river stretches. The calculated mass balances allow accurate quantification of pollutants' reactivity along river segments. This is demonstrated for representative members of important groups of micropollutants, e.g. pharmaceuticals, musk fragrances, flame retardants, and pesticides. A model-aided analysis of the measured data series gives insight into the temporal dynamics of removal processes. The occurrence of different removal mechanisms such as photooxidation, microbial degradation, and volatilization is discussed. The results demonstrate, that removal processes are highly variable in time and space and this has to be considered for future studies. The high precision sampling scheme presented could be a powerful tool for quantifying removal processes under different boundary conditions and in river segments with contrasting properties. Copyright © 2015. Published by Elsevier B.V.

  18. Accurate Energy Consumption Modeling of IEEE 802.15.4e TSCH Using Dual-BandOpenMote Hardware.

    Science.gov (United States)

    Daneels, Glenn; Municio, Esteban; Van de Velde, Bruno; Ergeerts, Glenn; Weyn, Maarten; Latré, Steven; Famaey, Jeroen

    2018-02-02

    The Time-Slotted Channel Hopping (TSCH) mode of the IEEE 802.15.4e amendment aims to improve reliability and energy efficiency in industrial and other challenging Internet-of-Things (IoT) environments. This paper presents an accurate and up-to-date energy consumption model for devices using this IEEE 802.15.4e TSCH mode. The model identifies all network-related CPU and radio state changes, thus providing a precise representation of the device behavior and an accurate prediction of its energy consumption. Moreover, energy measurements were performed with a dual-band OpenMote device, running the OpenWSN firmware. This allows the model to be used for devices using 2.4 GHz, as well as 868 MHz. Using these measurements, several network simulations were conducted to observe the TSCH energy consumption effects in end-to-end communication for both frequency bands. Experimental verification of the model shows that it accurately models the consumption for all possible packet sizes and that the calculated consumption on average differs less than 3% from the measured consumption. This deviation includes measurement inaccuracies and the variations of the guard time. As such, the proposed model is very suitable for accurate energy consumption modeling of TSCH networks.

  19. GeoNet's `Felt Rapid': Collecting What Is Needed, When You Need It, No More, No Less. Rapid, Volumous Data For Response Versus Detailed, Precise Data For Research

    Science.gov (United States)

    Little, C. L.; McBride, S.; Balfour, N.

    2016-12-01

    New Zealand's geohazard monitoring agency, GeoNet, recently implemented `Felt Rapid': earthquake felt reporting that is quick and simple. GeoNet locates 20,000 earthquakes each year with hundreds of those reported as being felt. Starting in the late 1800s, the New Zealand public has become adept at completing felt reports but feedback since the Canterbury Earthquake Sequence suggested that traditional felt reporting was not meeting researchers' or the public's needs. GeoNet required something rapid, adaptable and robust. The solution was Felt Rapid, a mobile app and website where respondents simply pick from 6 cartoon images - representing Modified Mercalli Intensity (MMI) 3-8 - that best aligned to what they felt. For the last decade, felt reporting has been conducted via the GeoNet website, with additional targeted surveys after damaging earthquakes. The vast majority of the submitted felt reports were for earthquakes too small to cause damage, as these are by far the most frequent. Reports from small events are of little interest to researchers who are only concerned with damaging, MMI6 and above. However, we found that when damaging earthquakes did occur, such as Christchurch's M6.3, they were only sparsely reported (3,776 reports). Understandably, sitting at a computer and completing a lengthy online form wasn't a priority for people after a devastating earthquake. With Felt Rapid, reporting has to be completed within an hour of an earthquake, the use of GeoNet's automatically compiled felt reporting maps had evolved; their main purpose is immediate assessment of an earthquake's impact on populations, and is used by Civil Defence agencies. Reports are immediately displayed on an interactive map via the website and mobile app. With over 250,000 users this provides rapid and robust information regarding the experienced shaking. When a damaging earthquake occurs and researchers want to collect important and rare damaging felt reports, a separate in-depth survey

  20. Precise calibration of few-cycle laser pulses with atomic hydrogen

    Science.gov (United States)

    Wallace, W. C.; Kielpinski, D.; Litvinyuk, I. V.; Sang, R. T.

    2017-12-01

    Interaction of atoms and molecules with strong electric fields is a fundamental process in many fields of research, particularly in the emerging field of attosecond science. Therefore, understanding the physics underpinning those interactions is of significant interest to the scientific community. One crucial step in this understanding is accurate knowledge of the few-cycle laser field driving the process. Atomic hydrogen (H), the simplest of all atomic species, plays a key role in benchmarking strong-field processes. Its wide-spread use as a testbed for theoretical calculations allows the comparison of approximate theoretical models against nearly-perfect numerical solutions of the three-dimensional time-dependent Schrödinger equation. Until recently, relatively little experimental data in atomic H was available for comparison to these models, and was due mostly due to the difficulty in the construction and use of atomic H sources. Here, we review our most recent experimental results from atomic H interaction with few-cycle laser pulses and how they have been used to calibrate important laser pulse parameters such as peak intensity and the carrier-envelope phase (CEP). Quantitative agreement between experimental data and theoretical predictions for atomic H has been obtained at the 10% uncertainty level, allowing for accurate laser calibration intensity at the 1% level. Using this calibration in atomic H, both accurate CEP data and an intensity calibration standard have been obtained Ar, Kr, and Xe; such gases are in common use for strong-field experiments. This calibration standard can be used by any laboratory using few-cycle pulses in the 1014 W cm-2 intensity regime centered at 800 nm wavelength to accurately calibrate their peak laser intensity to within few-percent precision.

  1. Rapid analysis of ethanol and water in commercial products using ionic liquid capillary gas chromatography with thermal conductivity detection and/or barrier discharge ionization detection.

    Science.gov (United States)

    Weatherly, Choyce A; Woods, Ross M; Armstrong, Daniel W

    2014-02-26

    Analysis of ethanol and water in consumer products is important in a variety of processes and often is mandated by regulating agencies. A method for the simultaneous quantitation of ethanol and water that is simple, accurate, precise, rapid, and cost-effective is demonstrated. This approach requires no internal standard for the quantitation of both ethanol and water at any/all levels in commercial products. Ionic liquid based gas chromatography (GC) capillary columns are used to obtain a fast analysis with high selectivity and resolution of water and ethanol. Typical run times are just over 3 min. Examination of the response range of water and ethanol with GC, thermal conductivity detection (TCD), and barrier ionization detection (BID) is performed. Quantitation of both ethanol and water in consumer products is accomplished with both TCD and BID GC detectors using a nonlinear calibration. Validation of method accuracy is accomplished by using standard reference materials.

  2. An investigation of the potential of rapid prototyping technology for image‐guided surgery

    Science.gov (United States)

    Rajon, Didier A.; Bova, Frank J.; Bhasin, R. Rick; Friedman, William A.

    2006-01-01

    Image‐guided surgery can be broken down into two broad categories: frame‐based guidance and frameless guidance. In order to reduce both the invasive nature of stereotactic guidance and the cost in equipment and time, we have developed a new guidance technique based on rapid prototyping (RP) technology. This new system first builds a computer model of the patient anatomy and then fabricates a physical reference frame that provides a precise and unique fit to the patient anatomy. This frame incorporates a means of guiding the surgeon along a preplanned surgical trajectory. This process involves (1) obtaining a high‐resolution CT or MR scan, (2) building a computer model of the region of interest, (3) developing a surgical plan and physical guide, (4) designing a frame with a unique fit to the patient's anatomy with a physical linkage to the surgical guide, and (5) fabricating the frame using an RP unit. Software was developed to support these processes. To test the accuracy of this process, we first scanned and reproduced a plastic phantom fabricated to validate the system's ability to build an accurate virtual model. A target on the phantom was then identified, a surgical approach planned, a surgical guide designed, and the accuracy and precision of guiding a probe to that target were determined. Steps 1 through 5 were also evaluated using a head phantom. The results show that the RP technology can replicate an object from CT scans with submillimeter resolution. The fabricated reference frames, when positioned on the surface of the phantom and used to guide a surgical probe, can position the probe tip with an accuracy of 1.7 mm at the probe tip. These results demonstrate that the RP technology can be used for the fabrication of customized positioning frames for use in image‐guided surgery. PACS number: 87.57.Gg PMID:17533357

  3. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling.

    Science.gov (United States)

    Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M

    2016-08-01

    Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. Copyright © 2016. Published by Elsevier Ltd.

  4. Precision Cosmology

    Science.gov (United States)

    Jones, Bernard J. T.

    2017-04-01

    Preface; Notation and conventions; Part I. 100 Years of Cosmology: 1. Emerging cosmology; 2. The cosmic expansion; 3. The cosmic microwave background; 4. Recent cosmology; Part II. Newtonian Cosmology: 5. Newtonian cosmology; 6. Dark energy cosmological models; 7. The early universe; 8. The inhomogeneous universe; 9. The inflationary universe; Part III. Relativistic Cosmology: 10. Minkowski space; 11. The energy momentum tensor; 12. General relativity; 13. Space-time geometry and calculus; 14. The Einstein field equations; 15. Solutions of the Einstein equations; 16. The Robertson-Walker solution; 17. Congruences, curvature and Raychaudhuri; 18. Observing and measuring the universe; Part IV. The Physics of Matter and Radiation: 19. Physics of the CMB radiation; 20. Recombination of the primeval plasma; 21. CMB polarisation; 22. CMB anisotropy; Part V. Precision Tools for Precision Cosmology: 23. Likelihood; 24. Frequentist hypothesis testing; 25. Statistical inference: Bayesian; 26. CMB data processing; 27. Parametrising the universe; 28. Precision cosmology; 29. Epilogue; Appendix A. SI, CGS and Planck units; Appendix B. Magnitudes and distances; Appendix C. Representing vectors and tensors; Appendix D. The electromagnetic field; Appendix E. Statistical distributions; Appendix F. Functions on a sphere; Appendix G. Acknowledgements; References; Index.

  5. Atomic spectroscopy and highly accurate measurement: determination of fundamental constants; Spectroscopie atomique et mesures de grande precision: determination de constantes fonfamentales

    Energy Technology Data Exchange (ETDEWEB)

    Schwob, C

    2006-12-15

    This document reviews the theoretical and experimental achievements of the author concerning highly accurate atomic spectroscopy applied for the determination of fundamental constants. A pure optical frequency measurement of the 2S-12D 2-photon transitions in atomic hydrogen and deuterium has been performed. The experimental setting-up is described as well as the data analysis. Optimized values for the Rydberg constant and Lamb shifts have been deduced (R = 109737.31568516 (84) cm{sup -1}). An experiment devoted to the determination of the fine structure constant with an aimed relative uncertainty of 10{sup -9} began in 1999. This experiment is based on the fact that Bloch oscillations in a frequency chirped optical lattice are a powerful tool to transfer coherently many photon momenta to the atoms. We have used this method to measure accurately the ratio h/m(Rb). The measured value of the fine structure constant is {alpha}{sub -1} = 137.03599884 (91) with a relative uncertainty of 6.7*10{sup -9}. The future and perspectives of this experiment are presented. This document presented before an academic board will allow his author to manage research work and particularly to tutor thesis students. (A.C.)

  6. The rapid identification for the unaware radioactive material

    International Nuclear Information System (INIS)

    Jin Yuren; Cheng Zhiwei; Xu Hui; Wang Jiang; Han Xiaoyuan; Long Bin

    2010-01-01

    The unaware radioactive material(URM) appeared in the society may induce serious deterministic effect, even result in havoc and instability of the society. The rapid and accurate identification for URM is the premise for its reasonable treatment. In this paper, an identification procedure for URM was developed and which was successfully implemented in the identification of an URM. The In-situ HPGe gamma spectrometry etc was employed for the rapid preliminary identification, and the laboratory HPGe gamma spectrometry and ICP-MS as well as the density measurement were used for its final identification. One unaware radioactive material was assayed, and the results indicate that it is a kind of high pure depleted uranium metal with the 235 U/ 238 U atomic ratio of 0.454%. (authors)

  7. A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers

    Science.gov (United States)

    Sliski, David H.; Blake, Cullen H.; Halverson, Samuel

    2017-12-01

    We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.

  8. Ultra-rapid microwave variable pressure-induced histoprocessing : Description of a new tissue processor

    NARCIS (Netherlands)

    Visinoni, F; Milios, J; Leong, ASY; Boon, ME; Kok, LP; Malcangi, F

    We describe a new method of ultra-rapid histoprocessing that reduces the processing times for needle and endoscopic biopsies to 30 min and that of other surgical biopsy tissue blocks of up to 4 mm thick to 120 min. The MicroMED U R M Histoprocessor, which combines microwave irradiation with precise

  9. Accurate joint space quantification in knee osteoarthritis: a digital x-ray tomosynthesis phantom study

    Science.gov (United States)

    Sewell, Tanzania S.; Piacsek, Kelly L.; Heckel, Beth A.; Sabol, John M.

    2011-03-01

    The current imaging standard for diagnosis and monitoring of knee osteoarthritis (OA) is projection radiography. However radiographs may be insensitive to markers of early disease such as osteophytes and joint space narrowing (JSN). Relative to standard radiography, digital X-ray tomosynthesis (DTS) may provide improved visualization of the markers of knee OA without the interference of superimposed anatomy. DTS utilizes a series of low-dose projection images over an arc of +/-20 degrees to reconstruct tomographic images parallel to the detector. We propose that DTS can increase accuracy and precision in JSN quantification. The geometric accuracy of DTS was characterized by quantifying joint space width (JSW) as a function of knee flexion and position using physical and anthropomorphic phantoms. Using a commercially available digital X-ray system, projection and DTS images were acquired for a Lucite rod phantom with known gaps at various source-object-distances, and angles of flexion. Gap width, representative of JSW, was measured using a validated algorithm. Over an object-to-detector-distance range of 5-21cm, a 3.0mm gap width was reproducibly measured in the DTS images, independent of magnification. A simulated 0.50mm (+/-0.13) JSN was quantified accurately (95% CI 0.44-0.56mm) in the DTS images. Angling the rods to represent knee flexion, the minimum gap could be precisely determined from the DTS images and was independent of flexion angle. JSN quantification using DTS was insensitive to distance from patient barrier and flexion angle. Potential exists for the optimization of DTS for accurate radiographic quantification of knee OA independent of patient positioning.

  10. Accuracy, precision, and economic efficiency for three methods of thrips (Thysanoptera: Thripidae) population density assessment.

    Science.gov (United States)

    Sutherland, Andrew M; Parrella, Michael P

    2011-08-01

    Western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major horticultural pest and an important vector of plant viruses in many parts of the world. Methods for assessing thrips population density for pest management decision support are often inaccurate or imprecise due to thrips' positive thigmotaxis, small size, and naturally aggregated populations. Two established methods, flower tapping and an alcohol wash, were compared with a novel method, plant desiccation coupled with passive trapping, using accuracy, precision and economic efficiency as comparative variables. Observed accuracy was statistically similar and low (37.8-53.6%) for all three methods. Flower tapping was the least expensive method, in terms of person-hours, whereas the alcohol wash method was the most expensive. Precision, expressed by relative variation, depended on location within the greenhouse, location on greenhouse benches, and the sampling week, but it was generally highest for the flower tapping and desiccation methods. Economic efficiency, expressed by relative net precision, was highest for the flower tapping method and lowest for the alcohol wash method. Advantages and disadvantages are discussed for all three methods used. If relative density assessment methods such as these can all be assumed to accurately estimate a constant proportion of absolute density, then high precision becomes the methodological goal in terms of measuring insect population density, decision making for pest management, and pesticide efficacy assessments.

  11. High-precision soft x-ray polarimeter at Diamond Light Source.

    Science.gov (United States)

    Wang, H; Dhesi, S S; Maccherozzi, F; Cavill, S; Shepherd, E; Yuan, F; Deshmukh, R; Scott, S; van der Laan, G; Sawhney, K J S

    2011-12-01

    The development and performance of a high-precision polarimeter for the polarization analysis in the soft x-ray region is presented. This versatile, high-vacuum compatible instrument is supported on a hexapod to simplify the alignment with a resolution less than 5 μrad, and can be moved with its own independent control system easily between different beamlines and synchrotron facilities. The polarimeter can also be used for the characterization of reflection and transmission properties of optical elements. A W/B(4)C multilayer phase retarder was used to characterize the polarization state up to 1200 eV. A fast and accurate alignment procedure was developed, and complete polarization analysis of the APPLE II undulator at 712 eV has been performed.

  12. Soil chemical sensor and precision agricultural chemical delivery system and method

    Science.gov (United States)

    Colburn, Jr., John W.

    1991-01-01

    A real time soil chemical sensor and precision agricultural chemical delivery system includes a plurality of ground-engaging tools in association with individual soil sensors which measure soil chemical levels. The system includes the addition of a solvent which rapidly saturates the soil/tool interface to form a conductive solution of chemicals leached from the soil. A multivalent electrode, positioned within a multivalent frame of the ground-engaging tool, applies a voltage or impresses a current between the electrode and the tool frame. A real-time soil chemical sensor and controller senses the electrochemical reaction resulting from the application of the voltage or current to the leachate, measures it by resistivity methods, and compares it against pre-set resistivity levels for substances leached by the solvent. Still greater precision is obtained by calibrating for the secondary current impressed through solvent-less soil. The appropriate concentration is then found and the servo-controlled delivery system applies the appropriate amount of fertilizer or agricultural chemicals substantially in the location from which the soil measurement was taken.

  13. Procedures of grasp92 code to calculate accurate Dirac-Coulomb energy for the ground sate of helium atom

    International Nuclear Information System (INIS)

    Utsumi, Takayuki; Sasaki, Akira

    2000-02-01

    The procedures of grasp92 code to calculate accurate (relative error nearly equal 10 -7 ) eigenvalue for the ground sate of helium atom of the Dirac-Coulomb Hamiltonian are presented. The grasp92 code, based on the multi-configuration Dirac-Fock method, is widely used to calculate the atomic properties. However, the main part of the accurate calculations, extended optimal level calculation (EOL), suffer frequently numerical instabilities due to the lack of the confident procedures. The purpose of this report is to illustrate the guideline for stable EOL calculations by calculating the most fundamental atomic system, i.e. the ground sate of helium atom ls 2 1 S 2 . This procedure could be extended for the high-precise eigenfunction calculation of more complex atomic systems, for example highly ionized atoms and high-Z atoms. (author)

  14. Learning-based computing techniques in geoid modeling for precise height transformation

    Science.gov (United States)

    Erol, B.; Erol, S.

    2013-03-01

    Precise determination of local geoid is of particular importance for establishing height control in geodetic GNSS applications, since the classical leveling technique is too laborious. A geoid model can be accurately obtained employing properly distributed benchmarks having GNSS and leveling observations using an appropriate computing algorithm. Besides the classical multivariable polynomial regression equations (MPRE), this study attempts an evaluation of learning based computing algorithms: artificial neural networks (ANNs), adaptive network-based fuzzy inference system (ANFIS) and especially the wavelet neural networks (WNNs) approach in geoid surface approximation. These algorithms were developed parallel to advances in computer technologies and recently have been used for solving complex nonlinear problems of many applications. However, they are rather new in dealing with precise modeling problem of the Earth gravity field. In the scope of the study, these methods were applied to Istanbul GPS Triangulation Network data. The performances of the methods were assessed considering the validation results of the geoid models at the observation points. In conclusion the ANFIS and WNN revealed higher prediction accuracies compared to ANN and MPRE methods. Beside the prediction capabilities, these methods were also compared and discussed from the practical point of view in conclusions.

  15. High precision tools for slepton pair production processes at hadron colliders

    International Nuclear Information System (INIS)

    Thier, Stephan Christoph

    2015-01-01

    In this thesis, we develop high precision tools for the simulation of slepton pair production processes at hadron colliders and apply them to phenomenological studies at the LHC. Our approach is based on the POWHEG method for the matching of next-to-leading order results in perturbation theory to parton showers. We calculate matrix elements for slepton pair production and for the production of a slepton pair in association with a jet perturbatively at next-to-leading order in supersymmetric quantum chromodynamics. Both processes are subsequently implemented in the POWHEG BOX, a publicly available software tool that contains general parts of the POWHEG matching scheme. We investigate phenomenological consequences of our calculations in several setups that respect experimental exclusion limits for supersymmetric particles and provide precise predictions for slepton signatures at the LHC. The inclusion of QCD emissions in the partonic matrix elements allows for an accurate description of hard jets. Interfacing our codes to the multi-purpose Monte-Carlo event generator PYTHIA, we simulate parton showers and slepton decays in fully exclusive events. Advanced kinematical variables and specific search strategies are examined as means for slepton discovery in experimentally challenging setups.

  16. Aspects of precision and accuracy in neutron activation analysis

    International Nuclear Information System (INIS)

    Heydorn, K.

    1980-03-01

    Analytical results without systematic errors and with accurately known random errors are normally distributed around their true values. Such results may be produced by means of neutron activation analysis both with and without radiochemical separation. When all sources of random variation are known a priori, their effect may be combined with the Poisson statistics characteristic of the counting process, and the standard deviation of a single analytical result may be estimated. The various steps of a complete neutron activation analytical procedure are therefore studied in detail with respect to determining their contribution to the overall variability of the final result. Verification of the estimated standard deviation is carried out by demonstrating the absence of significant unknown random errors through analysing, in replicate, samples covering the range of concentrations and matrices anticipated in actual use. Agreement between the estimated and the observed variability of replicate results is then tested by a simple statistic T based on the chi-square distribution. It is found that results from neutron activation analysis on biological samples can be brought into statistical control. In routine application of methods in statistical control the same statistical test may be used for quality control when some of the actual samples are analysed in duplicate. This analysis of precision serves to detect unknown or unexpected sources of variation of the analytical results, and both random and systematic errors have been discovered in practical trace element investigations in different areas of research. Particularly, at the ultratrace level of concentration where there are few or no standard reference materials for ascertaining the accuracy of results, the proposed quality control based on the analysis of precision combined with neutron activation analysis with radiochemical separation, with an a priori precision independent of the level of concentration, becomes a

  17. Research on a high-precision calibration method for tunable lasers

    Science.gov (United States)

    Xiang, Na; Li, Zhengying; Gui, Xin; Wang, Fan; Hou, Yarong; Wang, Honghai

    2018-03-01

    Tunable lasers are widely used in the field of optical fiber sensing, but nonlinear tuning exists even for zero external disturbance and limits the accuracy of the demodulation. In this paper, a high-precision calibration method for tunable lasers is proposed. A comb filter is introduced and the real-time output wavelength and scanning rate of the laser are calibrated by linear fitting several time-frequency reference points obtained from it, while the beat signal generated by the auxiliary interferometer is interpolated and frequency multiplied to find more accurate zero crossing points, with these points being used as wavelength counters to resample the comb signal to correct the nonlinear effect, which ensures that the time-frequency reference points of the comb filter are linear. A stability experiment and a strain sensing experiment verify the calibration precision of this method. The experimental result shows that the stability and wavelength resolution of the FBG demodulation can reach 0.088 pm and 0.030 pm, respectively, using a tunable laser calibrated by the proposed method. We have also compared the demodulation accuracy in the presence or absence of the comb filter, with the result showing that the introduction of the comb filter results to a 15-fold wavelength resolution enhancement.

  18. Rapid and Automated Determination of Plutonium and Neptunium in Environmental Samples

    DEFF Research Database (Denmark)

    Qiao, Jixin

    This thesis presents improved analytical methods for rapid and automated determination of plutonium and neptunium in environmental samples using sequential injection (SI) based chromatography and inductively coupled plasma mass spectrometry (ICP-MS). The progress of methodology development...... and optimization for rapid determination of plutonium in environmental samples using SIextraction chromatography prior to inductively coupled plasma mass spectrometry (Paper III); (3) Development of an SI-chromatographic method for simultaneous determination of plutonium and neptunium in environmental samples...... for rapid and simultaneous determination of plutonium and neptunium within an SI system (Paper VI). The results demonstrate that the developed methods in this study are reliable and efficient for accurate assays of trace levels of plutonium and neptunium as demanded in different situations including...

  19. Maintenance of drug metabolism and transport functions in human precision-cut liver slices during prolonged incubation for 5 days

    NARCIS (Netherlands)

    Starokozhko, Viktoriia; Vatakuti, Suresh; Schievink, Bauke; Merema, Marjolijn T.; Asplund, Annika; Synnergren, Jane; Aspegren, Anders; Groothuis, Geny M. M.

    Human precision-cut liver slices (hPCLS) are a valuable ex vivo model that can be used in acute toxicity studies. However, a rapid decline in metabolic enzyme activity limits their use in studies that require a prolonged xenobiotic exposure. The aim of the study was to extend the viability and

  20. [Role and management of cancer clinical database in the application of gastric cancer precision medicine].

    Science.gov (United States)

    Li, Yuanfang; Zhou, Zhiwei

    2016-02-01

    Precision medicine is a new medical concept and medical model, which is based on personalized medicine, rapid progress of genome sequencing technology and cross application of biological information and big data science. Precision medicine improves the diagnosis and treatment of gastric cancer to provide more convenience through more profound analyses of characteristics, pathogenesis and other core issues in gastric cancer. Cancer clinical database is important to promote the development of precision medicine. Therefore, it is necessary to pay close attention to the construction and management of the database. The clinical database of Sun Yat-sen University Cancer Center is composed of medical record database, blood specimen bank, tissue bank and medical imaging database. In order to ensure the good quality of the database, the design and management of the database should follow the strict standard operation procedure(SOP) model. Data sharing is an important way to improve medical research in the era of medical big data. The construction and management of clinical database must also be strengthened and innovated.