WorldWideScience

Sample records for rapid plant growth

  1. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    Science.gov (United States)

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  2. Rapid Growth and Apparent Total Nitrogen Increases in Rice and Corn Plants following Applications of Triacontanol.

    Science.gov (United States)

    Knowles, N R; Ries, S K

    1981-12-01

    Triacontanol (TRIA) increased fresh and dry weight and total reducible nitrogen (total N) of rice (Oryza sativa L.) seedlings within 40 minutes. Increases in total N in the supernatants from homogenates of corn (Zea mays L.) and rice leaves treated with TRIA for one minute before grinding occurred within 30 and 80 minutes, respectively. The source for the increase was investigated utilizing atmospheric substitution and enrichment and depletion studies with (15)N. The increase in total N in seedlings was shown to be independent of method of N analysis and the presence of nitrate in the plants. Automated Kjeldahl determinations showing apparent increases in N composition due to TRIA were shown to be correlated with hand Kjeldahl, elemental analysis, and chemiluminescent analysis in three independent laboratories. TRIA did not alter the nitrate uptake or endogenous levels of nitrate in corn and rice seedlings. Enrichment experiments revealed that the total N increases in rice seedlings, in vivo, and in supernatants of corn leaf homogenates, in vitro, are not due to atmospheric N(2). TRIA increased the soluble N pools of the plants, specifically the free amino acid and soluble protein fractions. No differences in depletion or enrichment of (15)N incorporated into soluble and insoluble N fractions of rice seedlings could be detected on an atom per cent (15)N basis. The apparent short-term total N increases cannot be explained by current knowledge of major N assimilation pathways. TRIA may stimulate a change in the chemical composition of the seedlings, resulting in interference with standard methods of N analysis.

  3. China urges rapid growth

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, S.

    1993-02-03

    This time last year China's paramount leader, Deng Xiaoping, launched the country on another bout of fast-paced economic growth and restructuring. After three years of riding out political and economic clampdown, foreign chemical companies were jerked awake by major changes in China's chemical industry. As the state becomes less involved with managing the economy, unleashing 12% gross national product growth, closer involvement with domestic factories has become attractive and essential. MCI officials say government funds will now be channeled toward clearing energy and transport bottlenecks, and chemical enterprises will be given more chance to turn a profit. They will be allowed to issue shares, seek foreign investment partners themselves, and bypass trading companies like China National Import-Export Corp. (Sinochem), the former state monopoly. Foreign analysts question whether China's finances and oil resources can support expansion. Even if they can, Cai estimates that ethylene imports will remain around the present level of 1 million tons. To further guarantee chemical supplies, China has invested in urea and polypropylene plants in the US and polystyrene plant in Hong Kong.

  4. Problems of rapid growth.

    Science.gov (United States)

    Kim, T D

    1980-01-01

    South Korea's export-oriented development strategy has achieved a remarkable growth record, but it has also brought 2 different problems: 1) since the country's exports accounted for about 1% of total world export volume, the 1st world has become fearful about Korea's aggressive export drive; and 2) the fact that exports account for over 30% of its total gross national product (GNP) exposes the vulnerability of South Korea's economy itself. South Korea continues to be a poor nation, although it is rated as 1 of the most rapidly growing middle income economies. A World Bank 1978 report shows Korea to be 28th of 58 middle income countries in terms of per capita GNP in 1976. Of 11 newly industrializing countries (NIC), 5 in the European continent are more advanced than the others. A recent emphasis on the basic human needs approach has tended to downgrade the concept of GNP. Korea has only an abundant labor force and is without any natural resources. Consequently, Korea utilized an export-oriented development strategy. Oil requirements are met with imports, and almost all raw materials to be processed into exportable products must be imported. To pay import bills Korea must export and earn foreign exchange. It must be emphasized that foreign trade must always be 2-way traffic. In order to export more to middle income countries like Korea, the countries of the 1st world need to ease their protectionist measures against imports from developing countries.

  5. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    IAS Admin

    Crop parameters. Rhizobium leguminosarum. Direct growth promotion of canola and lettuce. Pseudomonas putida. Early developments of canola seedlings, growth stimulation of tomato plant. Azospirillum brasilense andA. irakense. Growth of wheat and maize plants. P. flurescens. Growth of pearl millet, increase in growth, ...

  6. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  7. Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4+ T cell activation.

    Science.gov (United States)

    Ahmed, Asma; Mukherjee, Sambuddho; Deobagkar, Mukta; Naik, Tanushree; Nandi, Dipankar

    2010-11-01

    The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H(2)O(2). In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca(2+) concentrations [Ca(2+)](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNFα and IFNγ by CD4(+) T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca(2+) ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  9. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Science.gov (United States)

    Malizia, Agustina; Easdale, Tomás A; Grau, H Ricardo

    2013-01-01

    Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1) y(-1)) and basal area by 6% (0.13 m(2) ha(-1) y(-1)). Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis) into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species), rainfall or temperature increase (no increase in evergreen or deciduous species, respectively). However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  10. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Directory of Open Access Journals (Sweden)

    Agustina Malizia

    Full Text Available Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1 y(-1 and basal area by 6% (0.13 m(2 ha(-1 y(-1. Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species, rainfall or temperature increase (no increase in evergreen or deciduous species, respectively. However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  11. Plant Growth Analysis

    OpenAIRE

    長嶋, 寿江

    2009-01-01

    Because photosynthetic products are used to produce new assimilating organs, plant growth is influenced by biomass allocation as well as photosynthetic rate of individual leaves. A traditional method for analysising plant growth, including the experimental design and measurement methods, is outlined.

  12. Plant growth and cultivation.

    Science.gov (United States)

    Podar, Dorina

    2013-01-01

    There is a variety of methods used for growing plants indoor for laboratory research. In most cases plant research requires germination and growth of plants. Often, people have adapted plant cultivation protocols to the conditions and materials at hand in their own laboratory and growth facilities. Here I will provide a guide for growing some of the most frequently used plant species for research, i.e., Arabidopsis thaliana, barley (Hordeum vulgare) and rice (Oryza sativa). However, the methods presented can be used for other plant species as well, especially if they are related to the above-mentioned species. The presented methods include growing plants in soil, hydroponics, and in vitro on plates. This guide is intended as a starting point for those who are just beginning to work on any of the above-mentioned plant species. Methods presented are to be taken as suggestive and modification can be made according to the conditions existing in the host laboratory.

  13. Plant Growth Promoting Rhizobacteria

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 18; Issue 3. Plant Growth Promoting Rhizobacteria - Potential Microbes for Sustainable Agriculture. Jay Shankar Singh. General Article Volume 18 Issue 3 March 2013 pp 275-281 ...

  14. Plant growth promoting rhizobacterium

    Science.gov (United States)

    Doktycz, Mitchel John; Pelletier, Dale A.; Schadt, Christopher Warren; Tuskan, Gerald A.; Weston, David

    2015-08-11

    The present invention is directed to the Pseudomonas fluorescens strain GM30 deposited under ATCC Accession No. PTA-13340, compositions containing the GM30 strain, and methods of using the GM30 strain to enhance plant growth and/or enhance plant resistance to pathogens.

  15. Microgravity Plant Growth Demonstration

    Science.gov (United States)

    2000-01-01

    Two visitors watch a TV monitor showing plant growth inside a growth chamber designed for operation aboard the Space Shuttle as part of NASA's Space Product Development program. The exhibit, featuring work by the Wisconsin Center for Space Automation and Robotics, was at AirVenture 2000 sponsored by the Experimental Aircraft Association in Oshkosh, WI.

  16. Rapid Growth and Apparent Total Nitrogen Increases in Rice and Corn Plants following Applications of Triacontanol 1

    Science.gov (United States)

    Knowles, N. Richard; Ries, Stanley K.

    1981-01-01

    Triacontanol (TRIA) increased fresh and dry weight and total reducible nitrogen (total N) of rice (Oryza sativa L.) seedlings within 40 minutes. Increases in total N in the supernatants from homogenates of corn (Zea mays L.) and rice leaves treated with TRIA for one minute before grinding occurred within 30 and 80 minutes, respectively. The source for the increase was investigated utilizing atmospheric substitution and enrichment and depletion studies with 15N. The increase in total N in seedlings was shown to be independent of method of N analysis and the presence of nitrate in the plants. Automated Kjeldahl determinations showing apparent increases in N composition due to TRIA were shown to be correlated with hand Kjeldahl, elemental analysis, and chemiluminescent analysis in three independent laboratories. TRIA did not alter the nitrate uptake or endogenous levels of nitrate in corn and rice seedlings. Enrichment experiments revealed that the total N increases in rice seedlings, in vivo, and in supernatants of corn leaf homogenates, in vitro, are not due to atmospheric N2. TRIA increased the soluble N pools of the plants, specifically the free amino acid and soluble protein fractions. No differences in depletion or enrichment of 15N incorporated into soluble and insoluble N fractions of rice seedlings could be detected on an atom per cent 15N basis. The apparent short-term total N increases cannot be explained by current knowledge of major N assimilation pathways. TRIA may stimulate a change in the chemical composition of the seedlings, resulting in interference with standard methods of N analysis. PMID:16662092

  17. Plant Growth Facility (PGF)

    Science.gov (United States)

    1998-01-01

    In a microgravity environment aboard the Space Shuttle Columbia Life and Microgravity Mission STS-78, compression wood formation and hence altered lignin deposition and cell wall structure, was induced upon mechanically bending the stems of the woody gymnosperms, Douglas fir (Pseudotsuga menziesii) and loblolly pine (Pinus taeda). Although there was significant degradation of many of the plant specimens in space-flight due to unusually high temperatures experienced during the mission, it seems evident that gravity had little or no effect on compression wood formation upon bending even in microgravity. Instead, it apparently results from alterations in the stress gradient experienced by the plant itself during bending under these conditions. This preliminary study now sets the stage for long-term plant growth experiments to determine whether compression wood formation can be induced in microgravity during phototropic-guided realignment of growing woody plant specimens, in the absence of any externally provided stress and strain.

  18. Students' Ideas about Plants and Plant Growth

    Science.gov (United States)

    Barman, Charles R.; Stein, Mary; McNair, Shannan; Barman, Natalie S.

    2006-01-01

    Because the National Science Education Standards (1996) outline specific things K-8 students should know about plants, and previous data indicated that elementary students had difficulty understanding some major ideas about plants and plant growth, the authors of this article thought it appropriate to initiate an investigation to determine the…

  19. Chemical Control of Plant Growth.

    Science.gov (United States)

    Agricultural Research Center (USDA), Beltsville, MD.

    Seven experiments are presented in this Science Study Aid to help students investigate the control of plant growth with chemicals. Plant growth regulators, weed control, and chemical pruning are the topics studied in the experiments which are based on investigations that have been and are being conducted at the U. S. Agricultural Research Center,…

  20. Phytochrome, plant growth and flowering

    Energy Technology Data Exchange (ETDEWEB)

    King, R.W.; Bagnall, D.J. [CSIRO, Canberra (Australia)

    1994-12-31

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. As shown for chrysanthemum, with FR depletion plants grown in sunlight are small, more branched and darker green. We examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  1. Phytochrome, plant growth and flowering

    Science.gov (United States)

    King, R. W.; Bagnall, D. J.

    1994-01-01

    Attempts to use artificially lit cabinets to grow plants identical to those growing in sunlight have provided compelling evidence of the importance of light quality for plant growth. Changing the balance of red (R) to far-red (FR) radiation, but with a fixed photosynthetic input can shift the phytochrome photoequilibrium in a plant and generate large differences in plant growth. With FR enrichment the plants elongate, and may produce more leaf area and dry matter. Similar morphogenic responses are also obtained when light quality is altered only briefly (15-30 min) at the end-of-the-day. Conversely, for plants grown in natural conditions the response of plant form to selective spectral filtering has again shown that red and far-red wavebands are important as found by Kasperbauer and coworkers. Also, where photosynthetic photon flux densities (PPFD) of sunlight have been held constant, the removal of far-red alone alters plant growth. With FR depletion plants grown in sunlight are small, more branched and darker green. Here we examine the implications for plant growth and flowering when the far-red composition of incident radiation in plant growth chambers is manipulated.

  2. Bean Plants: A Growth Experience

    Science.gov (United States)

    West, Donna

    2004-01-01

    Teaching plant growth to seventh-grade life science students has been interesting for the author because she grew up in a rural area and always had to help in the garden. She made many assumptions about what her rural and suburban students knew. One year she decided to have them grow plants to observe the roots, stems, leaves, flowers, and fruit…

  3. A Simple Plant Growth Analysis.

    Science.gov (United States)

    Oxlade, E.

    1985-01-01

    Describes the analysis of dandelion peduncle growth based on peduncle length, epidermal cell dimensions, and fresh/dry mass. Methods are simple and require no special apparatus or materials. Suggests that limited practical work in this area may contribute to students' lack of knowledge on plant growth. (Author/DH)

  4. Rapid plant regeneration of chrysanthemum ( Chrysanthemum ...

    African Journals Online (AJOL)

    Shoot multiplication of chrysanthemum was achieved from shoot tip explant, using MS media supplemented with different concentrations and combinations of plant growth regulators. Different parameters including shoot initiation percentage, average number of shoots per explant, length of shoots (cm), number of leaves per ...

  5. Rapid plant regeneration of chrysanthemum (Chrysanthemum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... Shoot multiplication of chrysanthemum was achieved from shoot tip explant, using MS media supplemented with different concentrations and combinations of plant growth regulators. Different parameters including shoot initiation percentage, average number of shoots per explant, length of shoots (cm) ...

  6. Cytokinins as key regulators in plant-microbe-insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. Plants are known to rapidly respond to pathogen and herbivore attack

  7. Plant perceptions of plant growth-promoting Pseudomonas.

    OpenAIRE

    Preston, Gail M

    2004-01-01

    Plant-associated Pseudomonas live as saprophytes and parasites on plant surfaces and inside plant tissues. Many plant-associated Pseudomonas promote plant growth by suppressing pathogenic micro-organisms, synthesizing growth-stimulating plant hormones and promoting increased plant disease resistance. Others inhibit plant growth and cause disease symptoms ranging from rot and necrosis through to developmental dystrophies such as galls. It is not easy to draw a clear distinction between pathoge...

  8. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    Science.gov (United States)

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress.

  9. Bioassay of Plant Growth Regulator Activity on Aquatic Plants

    Science.gov (United States)

    1990-07-01

    I COPY AQUATIC PLANT CONTROL RESEARCH PROGRAM .q TECHNICAL REPORT A-90-7 >AD-A226 125 BIOASSAY OF PLANT GROWTH REGULATOR ACTIVITY ON AQUATIC PLANTS... Plant Growth Regulator Activity on Aquatic Plants 12. PERSONAL AUTHOR(S) Lembi, Carole A.; Netherland, Michael D. 13a. TYPE OF REPORT 13b. TIME COVERED 14...OF THIS PAGE 18. SUBJECT TERMS (Continued). Aquatic plants Hydrilla Bensulfuron methyl Paclobutrazol Bioassay Plant growth regulator Eurasian

  10. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie

    2015-08-27

    © 2015 Taylor & Francis Group, LLC. Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and longterm plant stress responses.

  11. Plant growth-promoting bacterial endophytes.

    Science.gov (United States)

    Santoyo, Gustavo; Moreno-Hagelsieb, Gabriel; Orozco-Mosqueda, Ma del Carmen; Glick, Bernard R

    2016-02-01

    Bacterial endophytes ubiquitously colonize the internal tissues of plants, being found in nearly every plant worldwide. Some endophytes are able to promote the growth of plants. For those strains the mechanisms of plant growth-promotion known to be employed by bacterial endophytes are similar to the mechanisms used by rhizospheric bacteria, e.g., the acquisition of resources needed for plant growth and modulation of plant growth and development. Similar to rhizospheric plant growth-promoting bacteria, endophytic plant growth-promoting bacteria can act to facilitate plant growth in agriculture, horticulture and silviculture as well as in strategies for environmental cleanup (i.e., phytoremediation). Genome comparisons between bacterial endophytes and the genomes of rhizospheric plant growth-promoting bacteria are starting to unveil potential genetic factors involved in an endophytic lifestyle, which should facilitate a better understanding of the functioning of bacterial endophytes. Copyright © 2015 Elsevier GmbH. All rights reserved.

  12. Dynamics of Seedling Growth Acclimation towards Altered Light Conditions Can Be Quantified via GROWSCREEN: A Setup and Procedure Designed for Rapid Optical Phenotyping of Different Plant Species

    National Research Council Canada - National Science Library

    Achim Walter; Hanno Scharr; Frank Gilmer; Rainer Zierer; Kerstin A. Nagel; Michaela Ernst; Anika Wiese; Olivia Virnich; Maja M. Christ; Beate Uhlig; Sybille Jünger; Uli Schurr

    2007-01-01

    Using a novel setup, we assessed how fast growth of Nicotiana tabacum seedlings responds to alterations in the light regime and investigated whether starch-free mutants of Arabidopsis thaliana show...

  13. Plant responses to plant growth-promoting rhizobacteria

    OpenAIRE

    van Loon, L. C.

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Several rhizobacterial strains have been shown to act as plant growth-promoting bacteria through both stimulation of growth and induced systemic resistance (ISR), but it is not clear in how far both ...

  14. Effect of plant-growth-promoting rhizobacteria inoculation on plant ...

    African Journals Online (AJOL)

    Effect of plant-growth-promoting rhizobacteria inoculation on plant growth, productivity and economics of Basmati rice. ... Egyptian Journal of Biology ... Abstract. A field experiment was conducted in a wet season (Kharif) to study the effects of plant growth-promoting rhizobacteria(PGPR) inoculation on agronomic traits and ...

  15. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  16. Plant growth promotion and Penicillium citrinum

    Directory of Open Access Journals (Sweden)

    Choo Yeon-Sik

    2008-12-01

    Full Text Available Abstract Background Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L. A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. Results We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900 through phylogenetic analysis of 18S rDNA sequence. Conclusion Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting

  17. Water-Conserving Plant-Growth System

    Science.gov (United States)

    Dreschel, Thomas W.; Brown, Christopher S.

    1993-01-01

    Report presents further information about plant-growth apparatus described in "Tubular Membrane Plant-Growth Unit" (KSC-11375). Apparatus provides nutrient solution to roots of seedlings without flooding. Conserves water by helping to prevent evaporation from plant bed. Solution supplied only as utilized by seedlings. Device developed for supporting plant growth in space, also has applications for growing plants with minimum of water, such as in arid environments.

  18. Soil conditions and plant growth'

    Science.gov (United States)

    Passioura, J. B.

    2002-02-01

    Plants can respond to soil conditions in ways that can not readily be explained in terms of the ability of the roots to take up water and nutrients. Roots may sense difficult conditions in the soil and thence send inhibitory signals to the shoots which harden the plants against the consequences of a deteriorating or restrictive environment, especially if the plants' water supply is at risk. Generally, this behaviour can be interpreted as feedforward responses to the soil becoming too dry or too hard, or to the available soil volume being very small as with bonsai plants, or to roots' becoming infected with pathogens. However, soil that is too soft or in which the roots are forced to grow in very large pores can also induce large conservative responses, the significance of which is unclear. The inhibitory signals may affect stomatal conductance, cell expansion, cell division and the rate of leaf appearance. Their nature is still under debate, and the debate is becoming increasingly complex, which probably signifies that a network of hormonal and other responses is involved in attuning the growth and development of a plant to its environment.

  19. Multiple gingival pregnancy tumors with rapid growth

    Directory of Open Access Journals (Sweden)

    Wei-Lian Sun

    2014-09-01

    Full Text Available Pregnancy gingivitis is an acute form of gingivitis that affects pregnant women, with a prevalence of 30%, possibly ranging up to 100%. Sometimes, pregnancy gingivitis shows a tendency toward a localized hyperplasia called gingival pyogenic granuloma. Pregnancy tumor is a benign gingival hyperplasia with the gingiva as the most commonly involved site, but rarely it involves almost the entire gingiva. A 22-year-old woman was referred to our clinic with a chief complaint of gingival swelling that had lasted for 2 days. The lesions progressed rapidly and extensively, and almost all the gingiva was involved a week later. Generalized erythema, edema, hyperplasia, a hemorrhagic tendency, and several typical hemangiomatous masses were noted. Pregnancy was denied by the patient at the first and second visits, but was confirmed 2 weeks after the primary visit. The patient was given oral hygiene instructions. She recovered well, and the mass gradually regressed and had disappeared completely at the end of 12 weeks of pregnancy, without recurrence. The gingival lesions were finally diagnosed as multiple gingival pregnancy tumors. The patient delivered a healthy infant. An extensive and rapid growth of gingival pregnancy tumors during the early first month of pregnancy is a rare occurrence that is not familiar to dentists, gynecologists, and obstetricians. Those practitioners engaged in oral medicine and periodontology, primary care obstetrics, and gynecology should be aware of such gingival lesions to avoid misdiagnosis and overtreatment.

  20. LED Systems Target Plant Growth

    Science.gov (United States)

    2010-01-01

    To help develop technologies for growing edible biomass (food crops) in space, Kennedy Space Center partnered with Orbital Technologies Corporation (ORBITEC), of Madison, Wisconsin, through the Small Business Innovation Research (SBIR) program. One result of this research was the High Efficiency Lighting with Integrated Adaptive Control (HELIAC) system, components of which have been incorporated into a variety of agricultural greenhouse and consumer aquarium lighting features. The new lighting systems can be adapted to a specific plant species during a specific growth stage, allowing maximum efficiency in light absorption by all available photosynthetic tissues.

  1. Plant responses to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Loon, L.C. van

    2007-01-01

    Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant.

  2. Priming corn seeds with plant growth regulator

    OpenAIRE

    Pallaoro,Dryelle Sifuentes; Avelino,Anne Caroline Dallabrida; Camili,Elisangela Clarete; Guimarães,Sebastião Carneiro; MARIA CRISTINA DE FIGUEIREDO E ALBUQUERQUE

    2016-01-01

    Abstract This study aimed to evaluate the plant growth regulator application, in different doses, on priming, with and without water restriction, in corn seeds. Evaluations were carried out in two periods (0 to 30 days of storage), with treatments consisting of seeds primed in water (0.0 MPa) and polyethylene glycol 6000 solution (-0.4 MPa), with or without plant growth regulator added in different doses, plus a control group. The amount of plant growth regulator was standardized by the gibbe...

  3. Modelling the growth of parasitic plants

    National Research Council Canada - National Science Library

    Yann Hautier; Andy Hector; Eva Vojtech; Drew Purves; Lindsay A. Turnbull

    2010-01-01

    ...% compared with unparasitized controls. We present and test a simple model of the host-parasite interaction in which parasite growth rate is a function of host growth rate that offers a new explanation for why hemiparasitic plants reduce...

  4. Ethylene production throughout growth and development of plants

    Science.gov (United States)

    Wheeler, Raymond M.; Peterson, Barbara V.; Stutte, Gary W.

    2004-01-01

    Ethylene production by 10 or 20 m2 stands of wheat, soybean, lettuce, potato, and tomato was monitored throughout growth and development in an atmospherically closed plant chamber. Chamber ethylene levels varied among species and rose during periods of canopy expansion and rapid growth for all species. Following this, ethylene levels either declined during seed fill and maturation for wheat and soybean, or remained relatively constant for potato and tomato (during flowering and early fruit development). Lettuce plants were harvested during rapid growth and peak ethylene production. Chamber ethylene levels increased rapidly during tomato ripening, reaching concentrations about 10 times that measured during vegetative growth. The highest ethylene production rates during vegetative growth ranged from 1.6 to 2.5 nmol m-2 d-1 during rapid growth of lettuce and wheat stands, or about 0.3 to 0.5 nmol g-1 fresh weight per hour. Estimates of stand ethylene production during tomato ripening showed that rates reached 43 nmol m-2 d-1 in one study and 93 nmol m-2 d-1 in a second study with higher lighting, or about 50x that of the rate during vegetative growth of tomato. In a related test with potato, the photoperiod was extended from 12 to 24 hours (continuous light) at 58 days after planting (to increase tuber yield), but this change in the environment caused a sharp increase in ethylene production from the basal rate of 0.4 to 6.2 nmol m-2 d-1. Following this, the photoperiod was changed back to 12 h at 61 days and ethylene levels decreased. The results suggest three separate categories of ethylene production were observed with whole stands of plants: 1) production during rapid vegetative growth, 2) production during climacteric fruit ripening, and 3) production from environmental stress.

  5. Plant Growth-Promoting Microorganisms for Environmental Sustainability.

    Science.gov (United States)

    Abhilash, P C; Dubey, Rama Kant; Tripathi, Vishal; Gupta, Vijai K; Singh, Harikesh B

    2016-11-01

    Agrochemicals used to meet the needs of a rapidly growing human population can deteriorate the quality of ecosystems and are not affordable to farmers in low-resource environments. Here, we propose the use of plant growth-promoting microorganisms (PGPMs) as a tool for sustainable food production without compromising ecosystems services. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Functional approach to high-throughput plant growth analysis

    Science.gov (United States)

    2013-01-01

    Method Taking advantage of the current rapid development in imaging systems and computer vision algorithms, we present HPGA, a high-throughput phenotyping platform for plant growth modeling and functional analysis, which produces better understanding of energy distribution in regards of the balance between growth and defense. HPGA has two components, PAE (Plant Area Estimation) and GMA (Growth Modeling and Analysis). In PAE, by taking the complex leaf overlap problem into consideration, the area of every plant is measured from top-view images in four steps. Given the abundant measurements obtained with PAE, in the second module GMA, a nonlinear growth model is applied to generate growth curves, followed by functional data analysis. Results Experimental results on model plant Arabidopsis thaliana show that, compared to an existing approach, HPGA reduces the error rate of measuring plant area by half. The application of HPGA on the cfq mutant plants under fluctuating light reveals the correlation between low photosynthetic rates and small plant area (compared to wild type), which raises a hypothesis that knocking out cfq changes the sensitivity of the energy distribution under fluctuating light conditions to repress leaf growth. Availability HPGA is available at http://www.msu.edu/~jinchen/HPGA. PMID:24565437

  7. Spiral Growth in Plants: Models and Simulations

    Science.gov (United States)

    Allen, Bradford D.

    2004-01-01

    The analysis and simulation of spiral growth in plants integrates algebra and trigonometry in a botanical setting. When the ideas presented here are used in a mathematics classroom/computer lab, students can better understand how basic assumptions about plant growth lead to the golden ratio and how the use of circular functions leads to accurate…

  8. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    2010-01-01

    This paper analyzes the effect of foreign acquisition on survival and employment growth of targets using data on Swedish manufacturing plants.We separate targeted plants into those within Swedish MNEs, Swedish exporting non-MNEs, and purely domestic firms. The results, controlling for possible...... acquisitions. We find robust positive employment growth effects only for exporters and only if the takeover is vertical....

  9. Modelling asymmetric growth in crowded plant communities

    DEFF Research Database (Denmark)

    Damgaard, Christian

    2010-01-01

    A class of models that may be used to quantify the effect of size-asymmetric competition in crowded plant communities by estimating a community specific degree of size-asymmetric growth for each species in the community is suggested. The model consists of two parts: an individual size......-asymmetric growth part, where growth is assumed to be proportional to a power function of the size of the individual, and a term that reduces the relative growth rate as a decreasing function of the individual plant size and the competitive interactions from other plants in the neighbourhood....

  10. Jasmonate action in plant growth and development.

    Science.gov (United States)

    Huang, Huang; Liu, Bei; Liu, Liangyu; Song, Susheng

    2017-03-01

    Phytohormones, including jasmonates (JAs), gibberellin, ethylene, abscisic acid, and auxin, integrate endogenous developmental cues with environmental signals to regulate plant growth, development, and defense. JAs are well- recognized lipid-derived stress hormones that regulate plant adaptations to biotic stresses, including herbivore attack and pathogen infection, as well as abiotic stresses, including wounding, ozone, and ultraviolet radiation. An increasing number of studies have shown that JAs also have functions in a remarkable number of plant developmental events, including primary root growth, reproductive development, and leaf senescence. Since the 1980s, details of the JA biosynthesis pathway, signaling pathway, and crosstalk during plant growth and development have been elucidated. Here, we summarize recent advances and give an updated overview of JA action and crosstalk in plant growth and development. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  11. Plant photomorphogenesis and canopy growth

    Energy Technology Data Exchange (ETDEWEB)

    Ballare, C.L.; Scopel, A.L. [Universidad de Buenos Aires (Argentina)

    1994-12-31

    An important motivation for studying photomorphogenesis is to understand the relationships among plant photophysiology in canopies, canopy productivity, and agronomic yield. This understanding is essential to optimize lighting systems used for plant farming in controlled environments (CE) and for the design of genetically engineered crop strains with altered photoresponses. This article provides an overview of some basic principles of plant photomorphogenesis in canopies and discusses their implications for (1) scaling up information on plant photophysiology from individual plants in CE to whole canopies in the field, and (2), designing lighting conditions to increase plant productivity in CE used for agronomic purposes [e.g. space farming in CE Life-Support-Systems]. We concentrate on the visible ({lambda} between 400 and 700 nm) and far red (FR; {lambda} > 700 nm) spectral regions, since the ultraviolet (UV; 280 to 400 nm) is covered by other authors in this volume.

  12. Cytokinins as key regulators in plant–microbe–insect interactions: connecting plant growth and defence

    NARCIS (Netherlands)

    Giron, D.; Frago, E.; Glevarec, G.; Pieterse, C.M.J.; Dicke, M.

    2013-01-01

    1. Plant hormones play important roles in regulating plant growth and defence by mediating developmental processes and signalling networks involved in plant responses to a wide range of parasitic and mutualistic biotic interactions. 2. Plants are known to rapidly respond to pathogen and herbivore

  13. Rapid identification of the medicinal plant Taraxacum formosanum ...

    African Journals Online (AJOL)

    Rapid identification of the medicinal plant Taraxacum formosanum and distinguishing of this plant from its adulterants by ribosomal DNA internal transcribed spacer (ITS) based DNA barcode. YC Chiang, WT Chang, MD Chen, GH Lai, HJ Chen, J Chao, MK Lin, YS Chang, YM Chou, MS Lee, MS Lee ...

  14. Rhizosphere of rice plants harbor bacteria with multiple plant growth ...

    African Journals Online (AJOL)

    Jane

    2011-08-08

    Aug 8, 2011 ... Abbreviations: PGP, Plant growth promoting; IAA, indole-3- acetic acid; ARDRA, amplified ribosomal DNA restriction analysis; DGGE, denaturating gradient gel electrophresis; FISH, fluorescence in situ hybridization; SSCP, single strand conformation polymorphism. Pseudomonas, Azospirillum, Azotobacter ...

  15. Nitric Acid and Benomyl Stimulate Rapid Height Growth of Longleaf Pine

    Science.gov (United States)

    A.G. Kais; R.C. Hare; J.P. Barnett

    1984-01-01

    Rapid height growth of longleaf pine seedlings, important to production of uniform, even-aged stands, can be promoted by controlling brown-spot needle blight and weed competition, and by increasing soil fertility. Root systems of container-grown longleaf pine seedlings were dip-treated in either benomyl/clay mix (10 percent a.i. benomyl) or clay control and planted...

  16. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  17. Sealed Plant-Growth Chamber For Clinostat

    Science.gov (United States)

    Brown, Christopher S.; Dreschel, Thomas W.

    1993-01-01

    Laboratory chamber for growing plants used to measure photosynthesis and respiration in simulated microgravity. Holds plant specimens while rotated on clinostat, see article, "Clinostat Delivers Power To Plant-Growth Cabinets" (KSC-11537). Provides way of comparing gas-exchange rates of plants rotated horizontally on clinostat with those of stationary or vertically rotated plants. Gas extracted for analysis without stopping clinostat. Chamber includes potlike base and cylindrical cover, both made of transparent acrylic pipe. Gasket forms seal between cover and bottom plate of base. Cover bolted to pot baseplate, which in turn bolted to clinostat.

  18. Effect of microgravity on plant growth

    Science.gov (United States)

    Lewis, Norman G.

    1994-01-01

    The overall goal of this research is to determine the effect of microgravity proper on plant growth (metabolism and cell wall formation). In addressing this goal, the work conducted during this grant period was divided into three components: analyses of various plant tissues previously grown in space aboard MIR Space Station; analyses of wheat tissues grown on Shuttle flight STS-51; and Phenylpropanoid metabolism and plant cell wall synthesis (earth-based investigations).

  19. A continuous growth model for plant tissue

    Science.gov (United States)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2016-12-01

    Morphogenesis in plants and animals involves large irreversible deformations. In plants, the response of the cell wall material to internal and external forces is determined by its mechanical properties. An appropriate model for plant tissue growth must include key features such as anisotropic and heterogeneous elasticity and cell dependent evaluation of mechanical variables such as turgor pressure, stress and strain. In addition, a growth model needs to cope with cell divisions as a necessary part of the growth process. Here we develop such a growth model, which is capable of employing not only mechanical signals but also morphogen signals for regulating growth. The model is based on a continuous equation for updating the resting configuration of the tissue. Simultaneously, material properties can be updated at a different time scale. We test the stability of our model by measuring convergence of growth results for a tissue under the same mechanical and material conditions but with different spatial discretization. The model is able to maintain a strain field in the tissue during re-meshing, which is of particular importance for modeling cell division. We confirm the accuracy of our estimations in two and three-dimensional simulations, and show that residual stresses are less prominent if strain or stress is included as input signal to growth. The approach results in a model implementation that can be used to compare different growth hypotheses, while keeping residual stresses and other mechanical variables updated and available for feeding back to the growth and material properties.

  20. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    Science.gov (United States)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  1. Foreign acquisition, plant survival, and employment growth

    DEFF Research Database (Denmark)

    Bandick, Roger; Görg, Holger

    This paper analyses the effect of foreign acquisition on survival probability and employment growth of target plant using data on Swedish manufacturing plants during the period 1993-2002.  An improvement over previous studies is that we take into account firm level heterogeneity by separating...... the lifetime of the acquired plants only if the plant was an exporter.  The effect differs depending on whether the acquisition is horizontal or vertical.  We also find robust positive employment growth effects only for exporters, and only if the takeover is vertical, not horizontal....... the targeted plants into those within Swedish MNEs, Swedish exporting non-MNEs, and purely domestic firms before foreign takeover. The results, controlling for possible endogeneity of the acquisition dummy using an IV and propensity score matching approach suggest that acquisition by foreign owners increases...

  2. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2016-09-06

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  3. Transgenic plants with enhanced growth characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2018-01-09

    The invention relates to transgenic plants exhibiting dramatically enhanced growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, more efficient nitrogen utilization, increased tolerance to high salt conditions, and increased biomass yields. In one embodiment, transgenic plants engineered to over-express both glutamine phenylpyruvate transaminase (GPT) and glutamine synthetase (GS) are provided. The GPT+GS double-transgenic plants of the invention consistently exhibit enhanced growth characteristics, with T0 generation lines showing an increase in biomass over wild type counterparts of between 50% and 300%. Generations that result from sexual crosses and/or selfing typically perform even better, with some of the double-transgenic plants achieving an astounding four-fold biomass increase over wild type plants.

  4. Plant growth strategies are remodeled by spaceflight.

    Science.gov (United States)

    Paul, Anna-Lisa; Amalfitano, Claire E; Ferl, Robert J

    2012-12-07

    Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length) was uniformly smaller than comparably aged Ground Control plants in both cultivars. Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS - suggesting that other tropisms (such as for oxygen and temperature) do not

  5. Plant growth modelling and applications: the increasing importance of plant architecture in growth models.

    Science.gov (United States)

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-05-01

    Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional-structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06: This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13-17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic processes have

  6. Plant Growth Modelling and Applications: The Increasing Importance of Plant Architecture in Growth Models

    Science.gov (United States)

    Fourcaud, Thierry; Zhang, Xiaopeng; Stokes, Alexia; Lambers, Hans; Körner, Christian

    2008-01-01

    Background Modelling plant growth allows us to test hypotheses and carry out virtual experiments concerning plant growth processes that could otherwise take years in field conditions. The visualization of growth simulations allows us to see directly and vividly the outcome of a given model and provides us with an instructive tool useful for agronomists and foresters, as well as for teaching. Functional–structural (FS) plant growth models are nowadays particularly important for integrating biological processes with environmental conditions in 3-D virtual plants, and provide the basis for more advanced research in plant sciences. Scope In this viewpoint paper, we ask the following questions. Are we modelling the correct processes that drive plant growth, and is growth driven mostly by sink or source activity? In current models, is the importance of soil resources (nutrients, water, temperature and their interaction with meristematic activity) considered adequately? Do classic models account for architectural adjustment as well as integrating the fundamental principles of development? Whilst answering these questions with the available data in the literature, we put forward the opinion that plant architecture and sink activity must be pushed to the centre of plant growth models. In natural conditions, sinks will more often drive growth than source activity, because sink activity is often controlled by finite soil resources or developmental constraints. PMA06 This viewpoint paper also serves as an introduction to this Special Issue devoted to plant growth modelling, which includes new research covering areas stretching from cell growth to biomechanics. All papers were presented at the Second International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA06), held in Beijing, China, from 13–17 November, 2006. Although a large number of papers are devoted to FS models of agricultural and forest crop species, physiological and genetic

  7. Complementarity among plant growth promoting traits in rhizospheric bacterial communities promotes plant growth

    OpenAIRE

    Mangal Singh; Ashutosh Awasthi; Sumit K. Soni; Rakshapal Singh; Rajesh K. Verma; Alok Kalra

    2015-01-01

    An assessment of roles of rhizospheric microbial diversity in plant growth is helpful in understanding plant-microbe interactions. Using random combinations of rhizospheric bacterial species at different richness levels, we analysed the contribution of species richness, compositions, interactions and identity on soil microbial respiration and plant biomass. We showed that bacterial inoculation in plant rhizosphere enhanced microbial respiration and plant biomass with complementary relationshi...

  8. Plant growth promoting rhizobia: challenges and opportunities.

    Science.gov (United States)

    Gopalakrishnan, Subramaniam; Sathya, Arumugam; Vijayabharathi, Rajendran; Varshney, Rajeev Kumar; Gowda, C L Laxmipathi; Krishnamurthy, Lakshmanan

    2015-08-01

    Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.

  9. Effects of engineered nanomaterials on plants growth: an overview.

    Science.gov (United States)

    Aslani, Farzad; Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan; Baghdadi, Ali

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.

  10. Effects of Engineered Nanomaterials on Plants Growth: An Overview

    Science.gov (United States)

    Bagheri, Samira; Muhd Julkapli, Nurhidayatullaili; Juraimi, Abdul Shukor; Hashemi, Farahnaz Sadat Golestan

    2014-01-01

    Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level. PMID:25202734

  11. Sphagnum growth in floating cultures: Effect of planting design

    Directory of Open Access Journals (Sweden)

    Y. Hoshi

    2017-11-01

    Full Text Available To establish rapid and stable Sphagnum growth, capitulum culture of a selected strain of S. palustre was carried out using a floating culture method. Four planting treatments were tested at mountain and urban sites in Kumamoto Prefecture on Kyushu Island, south-west Japan. Capitula were planted in colonies of different sizes on 30 cm square floating rafts, but with strict control of the number (75–77 of capitula per raft. The initial cover of live green Sphagnum ranged from 15 to 20 %. Growth of the colonies was followed throughout the growing season (April to November of 2008. After three months, green coverage rates reached 40–50 % in all planting treatments. At the end of the growing season, the highest Sphagnum cover (almost 90 % at the urban site was recorded in the planting treatment with eleven re-introduced colonies of seven capitula (‘11×7cap’, while the highest capitulum number and biomass (dry weight gain occurred in the ‘4×19cap’ planting treatment. Average stem elongation ranged from 5 cm to 7 cm in the ‘77×1cap’ and ‘4×19cap’planting treatments, respectively, indicating that the larger sized colony grew longer stems. However, contrary to expectation, the ‘4×19cap’planting treatment - which had the largest colony size - did not deliver the highest number of newly formed side shoots.

  12. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    Science.gov (United States)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (∆ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ∆ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ∆ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ∆ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  13. Microsensor Technologies for Plant Growth System Monitoring

    Science.gov (United States)

    Kim, Chang-Soo

    2004-01-01

    This document covered the following: a) demonstration of feasibility of microsensor for tube and particulate growth systems; b) Dissolved oxygen; c)Wetness; d) Flexible microfluidic substrate with microfluidic channels and microsensor arrays; e)Dynamic root zone control/monitoring in microgravity; f)Rapid prototyping of phytoremediation; and g) A new tool for root physiology and pathology.

  14. Rapid Population Growth and its Implication for Malawi

    African Journals Online (AJOL)

    Worldwide concern has recently focused on the negative aspects of rapid population growth for the' future as regards natural and non-renewable re- sources, energy and the environment. A United. Nations sponsored international conference on. "Environment and Development" was held in Brazil. inJune 1992 to focus ...

  15. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    The present study was conducted to investigate the effects of different concentrations and combinations of growth regulators on callus induction and plant regeneration of potato (Solanum tuberosum L.) cultivar Diamant. The tuber segments were used as explants and cultured on Murashige and Skoog (MS) medium ...

  16. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... combinations of growth regulators on callus induction and plant regeneration of potato (Solanum tuberosum L.) cultivar Diamant. ... cultivated food crop exceeded only by wheat, rice and maize in world production for .... callus, callus texture, callus color and degree of callus formation were recorded in callus ...

  17. Fast Plants for Finer Science--An Introduction to the Biology of Rapid-Cycling Brassica Campestris (rapa) L.

    Science.gov (United States)

    Tomkins, Stephen P.; Williams, Paul H.

    1990-01-01

    Rapid-cycling brassicas can be used in the classroom to teach concepts such as plant growth, tropisms, floral reproduction, pollination, embryonic development, and plant genetics. Directions on how to obtain them for classroom use and how they may be grown are included. Practical physiology and genetics exercises are listed. (KR)

  18. Plants survive rapid decompression: Implications for bioregenerative life support

    Science.gov (United States)

    Wheeler, R. M.; Wehkamp, C. A.; Stasiak, M. A.; Dixon, M. A.; Rygalov, V. Y.

    2011-05-01

    Radish (Raphanus sativus), lettuce (Latuca sativa), and wheat (Triticum aestivum) plants were grown at either 98 kPa (ambient) or 33 kPa atmospheric pressure with constant 21 kPa oxygen and 0.12 kPa carbon dioxide in atmospherically closed pressure chambers. All plants were grown rockwool using recirculating hydroponics with a complete nutrient solution. At 20 days after planting, chamber pressures were pumped down as rapidly as possible, reaching 5 kPa after about 5 min and ˜1.5 kPa after about 10 min. The plants were held at 1.5 kPa for 30 min and then pressures were restored to their original settings. Temperature (22 °C) and humidity (65% RH) controls were engaged throughout the depressurization, although temperatures dropped to near 16 °C for a brief period. CO2 and O2 were not detectable at the low pressure, suggesting that most of the 1.5 kPa atmosphere consisted of water vapor. Following re-pressurization, plants were grown for another 7 days at the original pressures and then harvested. The lettuce, radish, and wheat plants showed no visible effects from the rapid decompression, and there were no differences in fresh or dry mass when compared to control plants maintained continuously at 33 or 98 kPa. But radish storage root fresh mass and lettuce head fresh and dry masses were less at 33 kPa compared to 98 kPa for both the controls and decompression treatment. The results suggest that plants are extremely resilient to rapid decompression, provided they do not freeze (from evaporative cooling) or desiccate. The water of the hydroponic system was below the boiling pressure during these tests and this may have protected the plants by preventing pressures from dropping below 1.5 kPa and maintaining humidity near 1.5 kPa. Further testing is needed to determine how long plants can withstand such low pressure, but the results suggest there are at least 30 min to respond to catastrophic pressure losses in a plant production chamber that might be used for life

  19. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Thus, consecutive studies should focus on field studies on those strains due to their potentially high importance for the phosphorus nutrition of crops in this area and in this context for the improvement of the sustainability of crop production in the country. Keywords: Plant growth promoting rhizobacteria (PGPR), indole acetic ...

  20. Isolation of phytohormones producing plant growth promoting ...

    African Journals Online (AJOL)

    ... (ABA) in the culture media. Inoculation of strains on soybean seedlings treated with or without 20 dS/m NaCl resulted in better growth and higher proline contents than control plants. The strains isolated from weeds of Khewra salt range particularly Rkh3 appears more promising for potential biofertilizers in saline fields.

  1. Plant growth responses to polypropylene--biocontainers

    Science.gov (United States)

    The influence of bio-fillers incorporated into polypropylene (PP) on the growth of plants was evaluated. Biocontainers were created by injection molding of PP with 25-40% by weight of Osage orange tree, Paulownia tree, coffee tree wood or dried distillers grain and 5% by weight of maleated polypropy...

  2. Potential effects of plant growth promoting rhizobacteria ...

    African Journals Online (AJOL)

    Damping off caused by Sclerotium rolfsii on cowpea results in yield losses with serious socioeconomic implication. Induction of defense responses by plant growth promoting rhizobacteria (PGPR) is largely associated with the production of defense enzyme phenyl ammonia lyase (PAL) and oxidative enzymes like ...

  3. Plant growth promoting rhizobacteria (PGPR and their effect on maize

    Directory of Open Access Journals (Sweden)

    Mrkovački Nastasija

    2011-01-01

    Full Text Available Free-living soil bacteria beneficial to plant growth are usually referred to as plant growth promoting rhizobacteria (PGPR, capable of promoting plant growth by colonizing the plant root. Application of PGPR to increase the yield is limited by variability among the results obtained in the laboratory, in greenhouse and field. Rhizobacteria that promote plant growth (PGPR participate in interactions with plants (rice, wheat, maize, sugarcane, sugar beet, cotton and significantly increase their vegetative growth and yield. Apart from Azotobacter and Azospirillum, PGPR also include Acetobacter, Azoarcus and several species of Enterobacteriaceae (Klebsiella, Enterobacter, Citrobacter, and Pseudomonas. PGPR represent an alternative to plant growth enhancement chemicals.

  4. A simple and rapid method for determining transgenic cotton plants.

    Science.gov (United States)

    Zhang, Baohong; Wang, Hongmei; Liu, Fang; Wang, Qinglian

    2013-01-01

    Determining transgenic events is a critical step for obtaining transgenic plants as well as the later stage of application. Traditional methods, such as Northern blotting and qRT-PCR, for determining transgenic events either require radioactively labeled substrates, expensive instruments, or long-time commitments, which result in lab and time-consuming as well as expensive costs. These methods also require destroying the transgenic events. In this chapter, we present a simple and rapid method for determining transgenic cotton plants in both laboratory and field conditions. This method is based on the sensitivity of transgenic and non-transgenic plants to a specific chemical, such as antibiotics or herbicides. This method will facilitate the screening of transgenic events, save time, reduce cost, and speed up the application of transgenic technology on cotton breeding and production. More important, this is a nondestructive bioassay method; the transgenic plants can be transferred into greenhouse or field for the later study after the detection process.

  5. Rapid, Long-Distance Electrical and Calcium Signaling in Plants.

    Science.gov (United States)

    Choi, Won-Gyu; Hilleary, Richard; Swanson, Sarah J; Kim, Su-Hwa; Gilroy, Simon

    2016-04-29

    Plants integrate activities throughout their bodies using long-range signaling systems in which stimuli sensed by just a few cells are translated into mobile signals that can influence the activities in distant tissues. Such signaling can travel at speeds well in excess of millimeters per second and can trigger responses as diverse as changes in transcription and translation levels, posttranslational regulation, alterations in metabolite levels, and even wholesale reprogramming of development. In addition to the use of mobile small molecules and hormones, electrical signals have long been known to propagate throughout the plant. This electrical signaling network has now been linked to waves of Ca(2+) and reactive oxygen species that traverse the plant and trigger systemic responses. Analysis of cell type specificity in signal propagation has revealed the movement of systemic signals through specific cell types, suggesting that a rapid signaling network may be hardwired into the architecture of the plant.

  6. Plant growth strategies are remodeled by spaceflight

    Directory of Open Access Journals (Sweden)

    Paul Anna-Lisa

    2012-12-01

    Full Text Available Abstract Background Arabidopsis plants were grown on the International Space Station within specialized hardware that combined a plant growth habitat with a camera system that can capture images at regular intervals of growth. The Imaging hardware delivers telemetric data from the ISS, specifically images received in real-time from experiments on orbit, providing science without sample return. Comparable Ground Controls were grown in a sister unit that is maintained in the Orbital Environment Simulator at Kennedy Space Center. One of many types of biological data that can be analyzed in this fashion is root morphology. Arabidopsis seeds were geminated on orbit on nutrient gel Petri plates in a configuration that encouraged growth along the surface of the gel. Photos were taken every six hours for the 15 days of the experiment. Results In the absence of gravity, but the presence of directional light, spaceflight roots remained strongly negatively phototropic and grew in the opposite direction of the shoot growth; however, cultivars WS and Col-0 displayed two distinct, marked differences in their growth patterns. First, cultivar WS skewed strongly to the right on orbit, while cultivar Col-0 grew with little deviation away from the light source. Second, the Spaceflight environment also impacted the rate of growth in Arabidopsis. The size of the Flight plants (as measured by primary root and hypocotyl length was uniformly smaller than comparably aged Ground Control plants in both cultivars. Conclusions Skewing and waving, thought to be gravity dependent phenomena, occur in spaceflight plants. In the presence of an orienting light source, phenotypic trends in skewing are gravity independent, and the general patterns of directional root growth typified by a given genotype in unit gravity are recapitulated on orbit, although overall growth patterns on orbit are less uniform. Skewing appears independent of axial orientation on the ISS – suggesting

  7. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Science.gov (United States)

    Bell, Colin; Mancini, Lauren M.; Lee, Melanie N.; Conant, Richard T.; Wallenstein, Matthew D.

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity. PMID:27326379

  8. Phosphorus mobilizing consortium Mammoth P(™) enhances plant growth.

    Science.gov (United States)

    Baas, Peter; Bell, Colin; Mancini, Lauren M; Lee, Melanie N; Conant, Richard T; Wallenstein, Matthew D

    2016-01-01

    Phosphorus (P) is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound-P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth P(TM), could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth P(TM) increased productivity up to twofold compared to the fertilizer treatments without the Mammoth P(TM) inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth P(TM) by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth P(TM) to enhance plant growth and crop productivity.

  9. Phosphorus mobilizing consortium Mammoth P™ enhances plant growth

    Directory of Open Access Journals (Sweden)

    Peter Baas

    2016-06-01

    Full Text Available Phosphorus (P is a critical nutrient used to maximize plant growth and yield. Current agriculture management practices commonly experience low plant P use efficiency due to natural chemical sorption and transformations when P fertilizer is applied to soils. A perplexing challenge facing agriculture production is finding sustainable solutions to deliver P more efficiently to plants. Using prescribed applications of specific soil microbial assemblages to mobilize soil bound—P to improve crop nutrient uptake and productivity has rarely been employed. We investigated whether inoculation of soils with a bacterial consortium developed to mobilize soil P, named Mammoth PTM, could increase plant productivity. In turf, herbs, and fruits, the combination of conventional inorganic fertilizer combined with Mammoth PTM increased productivity up to twofold compared to the fertilizer treatments without the Mammoth PTM inoculant. Jalapeño plants were found to bloom more rapidly when treated with either Mammoth P. In wheat trials, we found that Mammoth PTM by itself was able to deliver yields equivalent to those achieved with conventional inorganic fertilizer applications and improved productivity more than another biostimulant product. Results from this study indicate the substantial potential of Mammoth PTM to enhance plant growth and crop productivity.

  10. Economic Growth of a Rapidly Developing Economy: Theoretical Formulation

    Directory of Open Access Journals (Sweden)

    Oleg Sergeyevich Sukharev

    2016-06-01

    Full Text Available The subject matter of the article is the description of economic growth. Modern economy is characterized by a high rate of changes. These changes are the limiting parameters of modern development, which requires a modification of the basic models of growth, the substantiation of the expediency and necessity of a rapid development strategy. In a simple mathematical form, the statement of the problem of economic growth in the “green economy” is examined, in which the costs of environmental measures are not considered a priori as hampering economic development (as it is common for a number of modern neoclassical and neo-Keynesian growth models. The methodological basis of the article are the econometric approach and modelling method. The article has a theoretical character. The main hypothesis supposes that the rapid development strategy cannot make an adequate development strategy under certain conditions, but may be acceptable in other its specific conditions. In this sense, the important growth conditions are the availability of resources, the effectiveness of institutions and the current economic structure, the technological effectiveness of economy, as well as the conditions of technological development (“green economy” and the path of such development. In the article, on the theoretical level of analysis, the substantiation of the adequacy of the rapid development strategy for an economic system is given, whose goal is to achieve the standard of living of the countryleader. Based on the assumptions introduced, the period for which the rapid development strategy might be implemented and the economic lag of the country might be reduced from the country-leader is determined. The conditions that ensure the impact of innovations on the rate of economic development are summarized. The introduced range of dependencies and relations can be useful for the elaboration of the theory of innovation development and for the formation of a new

  11. The vascular plants: open system of growth.

    Science.gov (United States)

    Basile, Alice; Fambrini, Marco; Pugliesi, Claudio

    2017-03-01

    What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs

  12. Non-invasive plant growth measurements for detection of blue-light dose response of stem elongation in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    Quantitative and qualitative imaging of plant growth and development in response to environmental factors under greenhouse conditions visualises plant performance on-site and may increase our knowledge of how rapid plants change their growth pattern in relation to environmental stimuli. In the pr...

  13. Methods for Rapid Screening in Woody Plant Herbicide Development

    Directory of Open Access Journals (Sweden)

    William Stanley

    2014-07-01

    Full Text Available Methods for woody plant herbicide screening were assayed with the goal of reducing resources and time required to conduct preliminary screenings for new products. Rapid screening methods tested included greenhouse seedling screening, germinal screening, and seed screening. Triclopyr and eight experimental herbicides from Dow AgroSciences (DAS 313, 402, 534, 548, 602, 729, 779, and 896 were tested on black locust, loblolly pine, red maple, sweetgum, and water oak. Screening results detected differences in herbicide and species in all experiments in much less time (days to weeks than traditional field screenings and consumed significantly less resources (<500 mg acid equivalent per herbicide per screening. Using regression analysis, various rapid screening methods were linked into a system capable of rapidly and inexpensively assessing herbicide efficacy and spectrum of activity. Implementation of such a system could streamline early-stage herbicide development leading to field trials, potentially freeing resources for use in development of beneficial new herbicide products.

  14. Population priorities: the challenge of continued rapid population growth.

    Science.gov (United States)

    Turner, Adair

    2009-10-27

    Rapid population growth continues in the least developed countries. The revisionist case that rapid population could be overcome by technology, that population density was advantageous, that capital shallowing is not a vital concern and that empirical investigations had not proved a correlation between high population growth and low per capita income was both empirically and theoretically flawed. In the modern world, population density does not play the role it did in nineteenth-century Europe and rates of growth in some of today's least developed nations are four times than those in nineteenth-century Europe, and without major accumulation of capital per capita, no major economy has or is likely to make the low- to middle-income transition. Though not sufficient, capital accumulation for growth is absolutely essential to economic growth. While there are good reasons for objecting to the enforced nature of the Chinese one-child policy, we should not underestimate the positive impact which that policy has almost certainly had and will have over the next several decades on Chinese economic performance. And a valid reticence about telling developing countries that they must contain fertility should not lead us to underestimate the severely adverse impact of high fertility rates on the economic performance and prospects of many countries in Africa and the Middle East.

  15. Bacterial ammonia causes significant plant growth inhibition.

    Directory of Open Access Journals (Sweden)

    Teresa Weise

    Full Text Available Many and complex plant-bacteria inter-relationships are found in the rhizosphere, since plants release a variety of photosynthetic exudates from their roots and rhizobacteria produce multifaceted specialized compounds including rich mixtures of volatiles, e.g., the bouquet of Serratia odorifera 4Rx13 is composed of up to 100 volatile organic and inorganic compounds. Here we show that when growing on peptone-rich nutrient medium S. odorifera 4Rx13 and six other rhizobacteria emit high levels of ammonia, which during co-cultivation in compartmented Petri dishes caused alkalization of the neighboring plant medium and subsequently reduced the growth of A. thaliana. It is argued that in nature high-protein resource degradations (carcasses, whey, manure and compost are also accompanied by bacterial ammonia emission which alters the pH of the rhizosphere and thereby influences organismal diversity and plant-microbe interactions. Consequently, bacterial ammonia emission may be more relevant for plant colonization and growth development than previously thought.

  16. Plant Growth Absorption Spectrum Mimicking Light Sources

    Directory of Open Access Journals (Sweden)

    Jwo-Huei Jou

    2015-08-01

    Full Text Available Plant factories have attracted increasing attention because they can produce fresh fruits and vegetables free from pesticides in all weather. However, the emission spectra from current light sources significantly mismatch the spectra absorbed by plants. We demonstrate a concept of using multiple broad-band as well as narrow-band solid-state lighting technologies to design plant-growth light sources. Take an organic light-emitting diode (OLED, for example; the resulting light source shows an 84% resemblance with the photosynthetic action spectrum as a twin-peak blue dye and a diffused mono-peak red dye are employed. This OLED can also show a greater than 90% resemblance as an additional deeper red emitter is added. For a typical LED, the resemblance can be improved to 91% if two additional blue and red LEDs are incorporated. The approach may facilitate either an ideal use of the energy applied for plant growth and/or the design of better light sources for growing different plants.

  17. 22-Oxocholestanes as plant growth promoters.

    Science.gov (United States)

    Zeferino-Diaz, Reyna; Hilario-Martinez, J Ciciolil; Rodriguez-Acosta, Maricela; Sandoval-Ramirez, Jesus; Fernandez-Herrera, Maria A

    2015-06-01

    The spirostanic steroidal side-chain of diosgenin and hecogenin was modified to produce 22-oxocholestane derivatives. This type of side-chain was obtained in good yields through a straightforward four-step pathway. These compounds show potent brassinosteroid-like growth promoting activity evaluated via the rice lamina joint inclination bioassay. This is the first report of steroidal skeletons bearing the 22-oxocholestane side-chain and preserving the basic structure (A-D rings) from their corresponding parent compounds acting as plant growth promoters. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Klebsiella pneumoniae inoculants for enhancing plant growth

    Science.gov (United States)

    Triplett, Eric W [Middleton, WI; Kaeppler, Shawn M [Oregon, WI; Chelius, Marisa K [Greeley, CO

    2008-07-01

    A biological inoculant for enhancing the growth of plants is disclosed. The inoculant includes the bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101, Pantoea agglomerans P102, Klebsiella pneumoniae 342, Klebsiella pneumoniae zmvsy, Herbaspirillum seropedicae Z152, Gluconacetobacter diazotrophicus PA15, with or without a carrier. The inoculant also includes strains of the bacterium Pantoea agglomerans and K. pneumoniae which are able to enhance the growth of cereal grasses. Also disclosed are the novel bacterial strains Herbaspirillum seropedicae 2A, Pantoea agglomerans P101 and P102, and Klebsiella pneumoniae 342 and zmvsy.

  19. Regional Rapid Growth in Cities and Urbanization in Thailand

    Directory of Open Access Journals (Sweden)

    Thanadorn Phuttharak

    2014-01-01

    Full Text Available This article aims to investigate the driving forces affecting regional rapid growth in Thailand, along with its impact, to understand the dynamics of urbanization and how it affects cities. The study selected UdonThani Province, Thailand, as a case study. This study collected data from academic and semi-academic documents, semi-structured interviews, participatory and non-participatory observations, and group discussion. The informants were residents within municipalities, government, and private officers related to city development, and NGOs. The results found that the driving forces affecting regional rapid growth in UdonThani province include: 1 historic events from World War II to the Cold War; 2 events during the Vietnam War; 3 Capitalist policies; and 4 the establishment of the ASEAN Economic Community (AEC. The study also found impacts of regional rapid growth in UdonThani province including 1 land use change; 2 economic and societal change; 3 road and traffic problems; and 4 waste disposal problems.

  20. Low dose radiation and plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Jae; Lee, Hae Youn; Park, Hong Sook

    2001-03-01

    Ionizing radiation includes cosmic radiation, earth radiation, radionuclides for the medical purpose and nuclear industry, fallout radiation. From the experimental results of various radiation effects on seeds or seedlings, it was found that germination rate, development, respiration rate, reproduction and blooming were accelerated compared with the control. In mammal, hormesis phenomenon manifested itself in increased disease resistance, lifespan, and decreased rate of tumor incidence. In plants, it was shown that germination, sprouting, growth, development, blooming and resistance to disease were accelerated.

  1. Plant growth promoting rhizobia: challenges and opportunities

    OpenAIRE

    Gopalakrishnan, Subramaniam; Sathya, Arumugam; Vijayabharathi, Rajendran; Varshney, Rajeev Kumar; Gowda, C. L. Laxmipathi; Krishnamurthy, Lakshmanan

    2014-01-01

    Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agricu...

  2. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration.

    Science.gov (United States)

    de Vries, Jorad; Evers, Jochem B; Poelman, Erik H

    2017-04-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate and balance growth and defence, the complex dynamics in plant-plant competition and plant-herbivore interactions needs to be considered. Induced growth-defence responses affect plant competition and herbivore colonisation in space and time, which has consequences for the adaptive value of these responses. Assessing these complex interactions strongly benefits from advanced modelling tools that can model multitrophic interactions in space and time. Such an exercise will allow a critical re-evaluation why and how plants integrate defence and competition for light. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. The growth and form of plant shoots

    Science.gov (United States)

    Chelakkot, Raghunath; Mahadevan, L.

    2015-03-01

    Growing plant stems and shoots exhibit a variety of shapes that embody growth in response to various stimuli. We provide a quantitative biophysical theory for these shapes by accounting for the inherent observed passive and active effects: (i) the passive elastic deflection of the shoot due to its own weight, and (ii) the active controllable growth response of the shoot in response to its orientation relative to gravity, and (iii) proprioception, the shoot's growth response to its own observable shape, which is itself determined by its elasticity and weight. A morphospace diagram in terms of two dimensionless parameters representing a scaled local active gravitropic sensitivity, and a scaled passive elastic sag shows how a variety of observed transient and steady morphologies with effective positive, negative and even oscillatory gravitropic behaviors arise in a sentient growing filament naturally, without the need for ad-hoc complex spatio-temporal control strategies.

  4. [Review on application of plant growth retardants in medicinal plants cultivation].

    Science.gov (United States)

    Zhai, Yu-Yao; Guo, Bao-Lin; Cheng, Ming

    2013-09-01

    Plant growth retardants are widely used in cultivation of medicinal plant, but there is still lack of scientific guidance. In order to guide the use of plant growth retardants in medicinal plant cultivation efficiently and reasonably, this paper reviewed the mechanism, function characteristic, plant and soil residue of plant growth retardants, such as chlorocholine chloride, mepiquat chloride, paclobutrazol, unicnazle and succinic acid, and summarized the application of plant growth retardants in medicinal plants cultivation in recent years, with focus on the effect of growth and yield of the officinal organs and secondary metabolites.

  5. Selecting and Using Plant Growth Regulators on Floricultural Crops

    OpenAIRE

    Latimer, Joyce G.; Whipker, Brian

    2013-01-01

    Explains the factors to consider when selecting and using plant growth regulators, chemicals designed to affect plant growth and/or development, in order to achieve best results on floricultural crops and includes an appendix listing plant growth regulators by crop type.

  6. Using Plant Growth Regulators on Containerized Herbaceous Perennials

    OpenAIRE

    Latimer, Joyce G.; Scoggins, Holly Lynne, 1962-

    2012-01-01

    Explains the factors to consider when selecting and using plant growth regulators, chemicals designed to affect plant growth and/or development, in order to achieve best results on herbaceous perennials grown in containers and includes an appendix listing plant growth regulators by crop type.

  7. Rapid Control Prototyping Plataform for Didactic Plant Motor DC

    Directory of Open Access Journals (Sweden)

    Cristian Bazán-Orobio

    2013-06-01

    Full Text Available In this paper a design, implementation and validation of a Rapid Control Prototype platform for a plant based on a DC motor is proposed. This low-cost prototype provides of an electronic card (with a motor DC and sensors manipulated by PC with free software tools using Linux, Scilab / Scicos and RTAI-Lab. This RCP System allows developing speed -position control trainings by using different types of PID industrial controllers with anti – wind up and bump less transfer schemes. We develop a speed control application structured in four steps: identification, controller design, simulation and real time control, where there are pedagogical advantages of a platform that not only allows simulation but also real-time control of a plant.

  8. Rapid evolution of manifold CRISPR systems for plant genome editing

    Directory of Open Access Journals (Sweden)

    Yiping Qi

    2016-11-01

    Full Text Available Advanced CRISPR-Cas9 based technologies first validated in mammalian cell systems are quickly being adapted for use in plants. These new technologies increase CRISPR-Cas9’s utility and effectiveness by diversifying cellular capabilities through expression construct system evolution and enzyme orthogonality, as well as enhanced efficiency through delivery and expression mechanisms. Here, we review the current state of advanced CRISPR-Cas9 and Cpf1 capabilities in plants and cover the rapid evolution of these tools from first generation inducers of double strand breaks for basic genetic manipulations to second and third generation multiplexed systems with myriad functionalities, capabilities and specialized applications. We offer perspective on how to utilize these tools for currently untested research endeavors and analyze strengths and weaknesses of novel CRISPR systems in plants. Advanced CRISPR functionalities and delivery options demonstrated in plants are primarily reviewed but new technologies just coming to the forefront of CRISPR development, or those on the horizon, are briefly discussed. Topics covered are focused on the expansion of expression and delivery capabilities for CRISPR-Cas9 components and broadening targeting range through orthogonal Cas9 and Cpf1 proteins.

  9. Agriculture on Mars: Soils for Plant Growth

    Science.gov (United States)

    Ming, D. W.

    2016-01-01

    Robotic rovers and landers have enabled the mineralogical, chemical, and physical characterization of loose, unconsolidated materials on the surface of Mars. Planetary scientists refer to the regolith material as "soil." NASA is currently planning to send humans to Mars in the mid 2030s. Early missions may rely on the use of onsite resources to enable exploration and self-sufficient outposts on Mars. The martian "soil" and surface environment contain all essential plant growth elements. The study of martian surface materials and how they might react as agricultural soils opens a new frontier for researchers in the soil science community. Other potential applications for surface "soils" include (i) sources for extraction of essential plant-growth nutrients, (ii) sources of O2, H2, CO2, and H2O, (iii) substrates for microbial populations in the degradation of wastes, and (iv) shielding materials surrounding outpost structures to protect humans, plants, and microorganisms from radiation. There are many challenges that will have to be addressed by soil scientists prior to human exploration over the next two decades.

  10. Redox control of plant growth and development.

    Science.gov (United States)

    Kocsy, Gábor; Tari, Irma; Vanková, Radomíra; Zechmann, Bernd; Gulyás, Zsolt; Poór, Péter; Galiba, Gábor

    2013-10-01

    Redox changes determined by genetic and environmental factors display well-organized interactions in the control of plant growth and development. Diurnal and seasonal changes in the environmental conditions are important for the normal course of these physiological processes and, similarly to their mild irregular alterations, for stress adaptation. However, fast or large-scale environmental changes may lead to damage or death of sensitive plants. The spatial and temporal redox changes influence growth and development due to the reprogramming of metabolism. In this process reactive oxygen and nitrogen species and antioxidants are involved as components of signalling networks. The control of growth, development and flowering by reactive oxygen and nitrogen species and antioxidants in interaction with hormones at organ, tissue, cellular and subcellular level will be discussed in the present review. Unsolved problems of the field, among others the need for identification of new components and interactions in the redox regulatory network at various organization levels using systems biology approaches will be also indicated. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  11. Plant Growth Under Light Emitting Diode Irradiation.

    Science.gov (United States)

    Tennessen, Daniel John

    Plant growth under light emitting diodes (LEDs) was investigated to determine if LEDs would be useful to provide radiant energy for two plant processes, photosynthesis and photomorphogenesis. Photosynthesis of tomato (Lycopersicon esculentum L.) and Kudzu (Pueraria lobata (Willd) Ohwi.) was measured using photons from LEDs to answer the following: (1) Are leaves able to use red LED light for photosynthesis? and (2) Is the efficiency of photosynthesis in pulsed light equal to that of continuous light? In 175 Pa CO _2, or in response to changes in CO _2,tomato (Lycopersicon esculentum Mill.) and transformed tobacco and tomato (expressing oat phytochrome-A) was assessed by growing plants under red LED lamps in an attempt to answer the following: (1) What is the developmental response of non-transformed and transformed tobacco to red LED light? and (2) Can tomato plants that grow tall and spindly in red LED light be made to grow short by increasing the amount of phytochrome-A? The short phenotype of transformed tobacco was not evident when plants were grown in LED light. Addition of photons of far-red or blue light to red light resulted in short transformed tobacco. Tomato plants grew three times as tall and lacked leaf development in LED versus white light, but transformed tomato remained short and produced fruit under LED light. I have determined that the LED photons are useful for photosynthesis and that the photon efficiency of photosynthesis is the same in pulsed as in continuous light. From responses of tobacco, I concluded that the P_{ rm r} form of phytochrome-A and the phytochrome cycling rate mediate responses. In tomato, increased amounts of Phytochrome-A prevented stem elongation and caused chlorophyll accumulation in LED light.

  12. Influence of plant maturity, shoot reproduction and sex on vegetative growth in the dioecious plant Urtica dioica.

    Science.gov (United States)

    Oñate, Marta; Munné-Bosch, Sergi

    2009-10-01

    Stinging nettle (Urtica dioica) is a herbaceous, dioecious perennial that is widely distributed around the world, reproduces both sexually and asexually, and is characterized by rapid growth. This work was aimed at evaluating the effects of plant maturity, shoot reproduction and sex on the growth of leaves and shoots. Growth rates of apical shoots, together with foliar levels of phytohormones (cytokinins, auxins, absicisic acid, jasmonic acid and salicylic acid) and other indicators of leaf physiology (water contents, photosynthetic pigments, alpha-tocopherol and F(v)/F(m) ratios) were measured in juvenile and mature plants, with a distinction made between reproductive and non-reproductive shoots in both males and females. Vegetative growth rates were not only evaluated in field-grown plants, but also in cuttings obtained from these plants. All measurements were performed during an active vegetative growth phase in autumn, a few months after mature plants reproduced during spring and summer. Vegetative growth rates in mature plants were drastically reduced compared with juvenile ones (48 % and 78 % for number of leaves and leaf biomass produced per day, respectively), which was associated with a loss of photosynthetic pigments (up to 24 % and 48 % for chlorophylls and carotenoids, respectively) and increases of alpha-tocopherol (up to 2.7-fold), while endogenous levels of phytohormones did not differ between mature and juvenile plants. Reductions in vegetative growth were particularly evident in reproductive shoots of mature plants, and occurred similarly in both males and females. It is concluded that (a) plant maturity reduces vegetative growth in U. dioica, (b) effects of plant maturity are evident both in reproductive and non-reproductive shoots, but particularly in the former, and (c) these changes occur similarly in both male and female plants.

  13. Fungal phytopathogens encode functional homologues of plant rapid alkalinization factor (RALF) peptides.

    Science.gov (United States)

    Thynne, Elisha; Saur, Isabel M L; Simbaqueba, Jaime; Ogilvie, Huw A; Gonzalez-Cendales, Yvonne; Mead, Oliver; Taranto, Adam; Catanzariti, Ann-Maree; McDonald, Megan C; Schwessinger, Benjamin; Jones, David A; Rathjen, John P; Solomon, Peter S

    2017-08-01

    In this article, we describe the presence of genes encoding close homologues of an endogenous plant peptide, rapid alkalinization factor (RALF), within the genomes of 26 species of phytopathogenic fungi. Members of the RALF family are key growth factors in plants, and the sequence of the RALF active region is well conserved between plant and fungal proteins. RALF1-like sequences were observed in most cases; however, RALF27-like sequences were present in the Sphaerulina musiva and Septoria populicola genomes. These two species are pathogens of poplar and, interestingly, the closest relative to their respective RALF genes is a poplar RALF27-like sequence. RALF peptides control cellular expansion during plant development, but were originally defined on the basis of their ability to induce rapid alkalinization in tobacco cell cultures. To test whether the fungal RALF peptides were biologically active in plants, we synthesized RALF peptides corresponding to those encoded by two sequenced genomes of the tomato pathogen Fusarium oxysporum f. sp. lycopersici. One of these peptides inhibited the growth of tomato seedlings and elicited responses in tomato and Nicotiana benthamiana typical of endogenous plant RALF peptides (reactive oxygen species burst, induced alkalinization and mitogen-activated protein kinase activation). Gene expression analysis confirmed that a RALF-encoding gene in F. oxysporum f. sp. lycopersici was expressed during infection on tomato. However, a subsequent reverse genetics approach revealed that the RALF peptide was not required by F. oxysporum f. sp. lycopersici for infection on tomato roots. This study has demonstrated the presence of functionally active RALF peptides encoded within phytopathogens that harbour an as yet undetermined role in plant-pathogen interactions. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  14. Plant growth conditions alter phytolith carbon

    Directory of Open Access Journals (Sweden)

    Kimberley L Gallagher

    2015-09-01

    Full Text Available Many plants, including grasses and some important human food sources, accumulate and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a glass wastebasket. Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  15. Plant growth conditions alter phytolith carbon.

    Science.gov (United States)

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  16. Polygenic Risk, Rapid Childhood Growth, and the Development of Obesity

    Science.gov (United States)

    Belsky, Daniel W.; Moffitt, Terrie E.; Houts, Renate; Bennett, Gary G.; Biddle, Andrea K.; Blumenthal, James A.; Evans, James P.; Harrington, HonaLee; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Caspi, Avshalom

    2012-01-01

    Objective To test how genomic loci identified in genome-wide association studies influence the development of obesity. Design A 38-year prospective longitudinal study of a representative birth cohort. Setting The Dunedin Multidisciplinary Health and Development Study, Dunedin, New Zealand. Participants One thousand thirty-seven male and female study members. Main Exposures We assessed genetic risk with a multilocus genetic risk score. The genetic risk score was composed of single-nucleotide polymorphisms identified in genome-wide association studies of obesity-related phenotypes. We assessed family history from parent body mass index data collected when study members were 11 years of age. Main Outcome Measures Body mass index growth curves, developmental phenotypes of obesity, and adult obesity outcomes were defined from anthropometric assessments at birth and at 12 subsequent in-person interviews through 38 years of age. Results Individuals with higher genetic risk scores were more likely to be chronically obese in adulthood. Genetic risk first manifested as rapid growth during early childhood. Genetic risk was unrelated to birth weight. After birth, children at higher genetic risk gained weight more rapidly and reached adiposity rebound earlier and at a higher body mass index. In turn, these developmental phenotypes predicted adult obesity, mediating about half the genetic effect on adult obesity risk. Genetic associations with growth and obesity risk were independent of family history, indicating that the genetic risk score could provide novel information to clinicians. Conclusions Genetic variation linked with obesity risk operates, in part, through accelerating growth in the early childhood years after birth. Etiological research and prevention strategies should target early childhood to address the obesity epidemic. PMID:22665028

  17. Plant growth regulators to manipulate oat stands

    Directory of Open Access Journals (Sweden)

    A. RAJALA

    2008-12-01

    Full Text Available Plant growth regulators (PGRs are exogenously applied chemicals that alter plant metabolism, cell division, cell enlargement, growth and development by regulating plant hormones or other biological signals. For example, some PGRs regulate stem elongation by inhibiting biosynthesis of gibberellins or through releasing ethylene. PGR effects are widely studied and reported on barley (Hordeum vulgare L. and wheat (Triticum aestivum L., whereas there are only a few reports addressing oat (Avena sativa L.. This is likely to be a result of smaller acreage and lower intensity of oat management and production and hence a reduced need for stem shortening by PGRs. However, this is not the case for all cereal producing regions and there exists a need to understand the potential application of PGRs to oat production. This paper represents a review of the potential of PGRs to regulate stem elongation and other biological traits governing plant stand structure and yield components, with special emphasis on oat and its responses to PGRs. Yield improvement requires more heads per unit land area, more grains per head or heavier grains. Of these yield-determining parameters, the number of head bearing tillers and grain numbers per head, compared with grain weight, are more likely to be improved by PGR application. In the absence of lodging, PGR may reduce grain yield due to potential reduction in mean grain weight and/or grain number. Cultivation systems aiming at extensive yields with intensive use of inputs likely benefit from PGR applications more often compared with low or moderate input cultivation, for which cost effectiveness of PGRs is not frequently reached.;

  18. Modified AFLP technique for rapid genetic characterization in plants.

    Science.gov (United States)

    Ranamukhaarachchi, D G; Kane, M E; Guy, C L; Li, Q B

    2000-10-01

    The standard amplified fragment-length polymorphism (AFLP) technique was modified to develop a convenient and reliable technique for rapid genetic characterization of plants. Modifications included (i) using one restriction enzyme, one adapter molecule and primer, (ii) incorporating formamide to generate more intense and uniform bands and (iii) using agarose gel electrophoresis. Sea oats (Uniola paniculata L.), pickerel-weed (Pontederia cordata L.), Bermudagrass (Cynodon dactylon L.) and Penstemon heterophyllus Lindl. were used to determine the ability to generate adequate resolution power with both self- and cross-pollinated plant species including cultivars, ecotypes and individuals within populations. Reproducibility of bands was higher in all the AFLP experiments compared to random amplified polymorphic DNA (RAPD). Formamide with or without bovine serum albumin improved band intensities compared to dimethyl sulfoxide and the standard reaction mixture with no organic solvents. Comparison between RAPD and modified AFLP using sea-oats population samples proved that modified AFLP exhibits (i) a low number of faint bands with increased specificity of amplified bands, (ii) a significantly higher number of polymorphic loci per primer, (iii) less primer screening time, (iv) easy scoring associated with fewer faint bands and (v) greatly enhanced reproducibility. The technique described here can be applied with a high degree of accuracy for plant genetic characterization.

  19. Mechanical forces in plant growth and development

    Science.gov (United States)

    Fisher, D. D.; Cyr, R. J.

    2000-01-01

    Plant cells perceive forces that arise from the environment and from the biophysics of plant growth. These forces provide meaningful cues that can affect the development of the plant. Seedlings of Arabidopsis thaliana were used to examine the cytoplasmic tensile character of cells that have been implicated in the gravitropic response. Laser-trapping technology revealed that the starch-containing statoliths of the central columella cells in root caps are held loosely within the cytoplasm. In contrast, the peripheral cells have starch granules that are relatively resistant to movement. The role of the actin cytoskeleton in affecting the tensile character of these cells is discussed. To explore the role that biophysical forces might play in generating developmental cues, we have developed an experimental model system in which protoplasts, embedded in a synthetic agarose matrix, are subjected to stretching or compression. We have found that protoplasts subjected to these forces from five minutes to two hours will subsequently elongate either at right angles or parallel to the tensive or compressive force vector. Moreover, the cortical microtubules are found to be organized either at right angles or parallel to the tensive or compressive force vector. We discuss these results in terms of an interplay of information between the extracellular matrix and the underlying cytoskeleton.

  20. Computer simulation of rapid crystal growth under microgravity

    Science.gov (United States)

    Hisada, Yasuhiro; Saito, Osami; Mitachi, Koshi; Nishinaga, Tatau

    We are planning to grow a Ge single crystal under microgravity by the TR-IA rocket in 1992. The furnace temperature should be controlled so as to finish the crystal growth in a quite short time interval (about 6 min). This study deals with the computer simulation of rapid crystal growth in space to find the proper conditions for the experiment. The crystal growth process is influenced by various physical phenomena such as heat conduction, natural and Marangoni convections, phase change, and radiation from the furnace. In this study, a 2D simulation with axial symmetry is carried out, taking into account the radiation field with a specific temperature distribution of the furnace wall. The simulation program consists of four modules. The first module is applied for the calculation of the parabolic partial differential equation by using the control volume method. The second one evaluates implicitly the phase change by the enthalpy method. The third one is for computing the heat flux from surface by radiation. The last one is for calculating with the Monte Carlo method the view factors which are necessary to obtain the heat flux.

  1. Ammonia And Ethylene Optrodes For Research On Plant Growth

    Science.gov (United States)

    Zhou, Quan; Tabacco, Mary Beth

    1995-01-01

    Fiber-optic sensors developed for use in measuring concentrations of ammonia and ethylene near plants during experiments on growth of plants in enclosed environments. Developmental fiber-optic sensors satisfy need to measure concentrations as low as few parts per billion (ppb) and expected to contribute to research on roles of ethylene and ammonia in growth of plants.

  2. Effect of plant growth promoting rhizobacteria on root morphology of ...

    African Journals Online (AJOL)

    Rooting characteristics significantly affect the water-use patterns and acquirement of nutrient for any plant species. Plant growth promoting rhizobacteria improve the plant growth by a variety of ways like the production of phytohormones, nitrogen fixation, phosphate solubilization and improvement in root morphology etc, ...

  3. Efficiency of plant growth-promoting rhizobacteria (PGPR) for the ...

    African Journals Online (AJOL)

    Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that colonize plant roots and enhance plant growth by a wide variety of mechanisms. The use of PGPR is steadily increasing in agriculture and offers an attractive way to replace chemical fertilizers, pesticides, and supplements. Here, we have isolated and ...

  4. Ligand Receptor-Mediated Regulation of Growth in Plants.

    Science.gov (United States)

    Haruta, Miyoshi; Sussman, Michael R

    2017-01-01

    Growth and development of multicellular organisms are coordinately regulated by various signaling pathways involving the communication of inter- and intracellular components. To form the appropriate body patterns, cellular growth and development are modulated by either stimulating or inhibiting these pathways. Hormones and second messengers help to mediate the initiation and/or interaction of the various signaling pathways in all complex multicellular eukaryotes. In plants, hormones include small organic molecules, as well as larger peptides and small proteins, which, as in animals, act as ligands and interact with receptor proteins to trigger rapid biochemical changes and induce the intracellular transcriptional and long-term physiological responses. During the past two decades, the availability of genetic and genomic resources in the model plant species, Arabidopsis thaliana, has greatly helped in the discovery of plant hormone receptors and the components of signal transduction pathways and mechanisms used by these immobile but highly complex organisms. Recently, it has been shown that two of the most important plant hormones, auxin and abscisic acid (ABA), act through signaling pathways that have not yet been recognized in animals. For example, auxins stimulate cell elongation by bringing negatively acting transcriptional repressor proteins to the proteasome to be degraded, thus unleashing the gene expression program required for increasing cell size. The "dormancy" inducing hormone, ABA, binds to soluble receptor proteins and inhibits a specific class of protein phosphatases (PP2C), which activates phosphorylation signaling leading to transcriptional changes needed for the desiccation of the seeds prior to entering dormancy. While these two hormone receptors have no known animal counterparts, there are also many similarities between animal and plant signaling pathways. For example, in plants, the largest single gene family in the genome is the protein kinase

  5. Effect of plant growth promoting rhizobacteria on root morphology of ...

    African Journals Online (AJOL)

    Jane

    2011-10-03

    Oct 3, 2011 ... investigation was carried out to determine the comparative effect of plant growth promoting ... was observed in treatment receiving inoculation with A. vinelandii and supplemented with half dose of ... Key words: Root area, safflower, plant growth promoting rhizobacteria (PGPR), root growth, chemical.

  6. Rapid divergence of ecotypes of an invasive plant

    Science.gov (United States)

    Ray, Avik; Ray, Rajasri

    2014-01-01

    Invasive species demonstrate rapid evolution within a very short period of time allowing one to understand the underlying mechanism(s). Lantana camara, a highly invasive plant of the tropics and subtropics, has expanded its range and successfully established itself almost throughout India. In order to uncover the processes governing the invasion dynamics, 218 individuals from various locations across India were characterized with six microsatellites. By integrating genetic data with niche modelling, we examined the effect of drift and environmental selection on genetic divergence. We found multiple genetic clusters that were non-randomly distributed across space. Spatial autocorrelation revealed a strong fine-scale structure, i.e. isolation by distance. In addition, we obtained evidence of inhibitory effects of selection on gene flow, i.e. isolation by environmental distance. Perhaps, local adaptation in response to selection is offsetting gene flow and causing the populations to diverge. Niche models suggested that temperature and precipitation play a major role in the observed spatial distribution of this plant. Based on a non-random distribution of clusters, unequal gene flow among them and different bioclimatic niche requirements, we concluded that the emergence of ecotypes represented by two genetic clusters is underway. They may be locally adapted to specific climatic conditions, and perhaps at the very early stages of ecological divergence. PMID:25165061

  7. Rapid black hole growth under anisotropic radiation feedback

    Science.gov (United States)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Omukai, Kazuyuki

    2017-07-01

    Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102-105 M⊙) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10° below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become high-redshift supermassive BHs.

  8. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective

    Directory of Open Access Journals (Sweden)

    Munees Ahemad

    2014-01-01

    Full Text Available Plant growth promoting rhizobacteria are the soil bacteria inhabiting around/on the root surface and are directly or indirectly involved in promoting plant growth and development via production and secretion of various regulatory chemicals in the vicinity of rhizosphere. Generally, plant growth promoting rhizobacteria facilitate the plant growth directly by either assisting in resource acquisition (nitrogen, phosphorus and essential minerals or modulating plant hormone levels, or indirectly by decreasing the inhibitory effects of various pathogens on plant growth and development in the forms of biocontrol agents. Various studies have documented the increased health and productivity of different plant species by the application of plant growth promoting rhizobacteria under both normal and stressed conditions. The plant-beneficial rhizobacteria may decrease the global dependence on hazardous agricultural chemicals which destabilize the agro-ecosystems. This review accentuates the perception of the rhizosphere and plant growth promoting rhizobacteria under the current perspectives. Further, explicit outlooks on the different mechanisms of rhizobacteria mediated plant growth promotion have been described in detail with the recent development and research. Finally, the latest paradigms of applicability of these beneficial rhizobacteria in different agro-ecosystems have been presented comprehensively under both normal and stress conditions to highlight the recent trends with the aim to develop future insights.

  9. Plant Growth Research for Food Production: Development and Testing of Expandable Tuber Growth Module

    Science.gov (United States)

    Cordova, Brennan A.

    2017-01-01

    Controlled and reliable growth of a variety of vegetable crops is an important capability for manned deep space exploration systems for providing nutritional supplementation and psychological benefits to crew members. Because current systems have been limited to leafy vegetables that require minimal root space, a major goal for these systems is to increase their ability to grow new types of crops, including tuber plants and root vegetables that require a large root space. An expandable root zone module and housing was developed to integrate this capability into the Vegetable Production System (Veggie). The expandable module uses a waterproof, gas-permeable bag with a structure that allows for root space to increase vertically throughout the growth cycle to accommodate for expanding tuber growth, while minimizing the required media mass. Daikon radishes were chosen as an ideal tuber crop for their subterraneous tuber size and rapid growth cycle, and investigations were done to study expanding superabsorbent hydrogels as a potential growth media. These studies showed improved water retention, but restricted oxygen availability to roots with pure gel media. It was determined that these hydrogels could be integrated in lower proportions into standard soil to achieve media expansion and water retention desired. Using the constructed module prototype and ideal gel and soil media mixture, daikon radishes are being grown in the system to test the capability and success of the system through a full growth cycle.

  10. Martian Soil Plant Growth Experiment: The Effects of Adding Nitrogen, Bacteria, and Fungi to Enhance Plant Growth

    Science.gov (United States)

    Kliman, D. M.; Cooper, J. B.; Anderson, R. C.

    2000-01-01

    Plant growth is enhanced by the presence of symbiotic soil microbes. In order to better understand how plants might prosper on Mars, we set up an experiment to test whether symbiotic microbes function to enhance plant growth in a Martian soil simulant.

  11. Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation.

    Science.gov (United States)

    Rouhani, Parvaneh; Taghavinia, Nima; Rouhani, Shohre

    2010-06-01

    A rapid, environmental friendly and low-cost method to prepare hydroxyapatite nanoparticles is proposed. In this method, hydroxyapatite is produced in a sonicated pseudo-body solution. The sonication time was found effective in the formation of the crystalline phase of nanoparticles. In our experimental condition, 15 min sonication resulted in the most pure hydroxyapatite phase. Also it was shown that growth temperature is a crucial factor and hydroxyapatite crystallizes only at 37 degrees C. The particles formed by sonication were generally smaller and more spherical than those obtained without sonication. Sonication increased the hydroxyapatite crystal growth rate up to 5.5 times compared to non-sonication condition. The comparison between the specific surface area of hydroxyapatite nanoparticles obtained by sonication and without sonication demonstrated that sonication increased the specific surface area from 63 m(2)/g to 107 m(2)/g and decreased the size of nanoparticles from 30 nm to 18 nm. Analysis on the pore structure demonstrated that the fractal structures obtained with and without sonication were considerably different. (c) 2010 Elsevier B.V. All rights reserved.

  12. Demonstrating the Effects of Light Quality on Plant Growth.

    Science.gov (United States)

    Whitesell, J. H.; Garcia, Maria

    1977-01-01

    Describes a lab demonstration that illustrates the effect of different colors or wavelengths of visible light on plant growth and development. This demonstration is appropriate for use in college biology, botany, or plant physiology courses. (HM)

  13. Diversity and Plant Growth Promoting Properties of Rhizobacteria ...

    African Journals Online (AJOL)

    Diversity and Plant. Delelegn woyessa and Fassil Assefa. ORIGINAL ARTICLE. Diversity and Plant Growth Promoting Properties of. Rhizobacteria Isolated from tef (Eragrostis tef). Delelegn ... morphological, physiological and biochemical tests and identified to species level .... initiated to assess PGPR characteristics.

  14. Growth of Planted Slash Pine Under Several Thinning Regimes

    Science.gov (United States)

    W.F. Mann; Hans G. Enghardt

    1972-01-01

    Three intensities of thinning, each started at 10, 13, and 16 years, were applied to slash pine planted on a highly productive, cutover site in central Louisiana. Over a 9-year period, early and heavy thinnings increased diameter growth but reduced volume growth. The longer initial thinnings were deferred, the slower was the response in diameter growth. Growth on...

  15. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; Werf, van der W.; Zhang, S.; Spiertz, J.H.J.; Li, Z.

    2014-01-01

    Modern cotton cultivation requires high plant densities and compact plants. Here we study planting density and growth regulator effects on plant structure and production of cotton when the cotton is grown in a relay intercrop with wheat, a cultivation system that is widespread in China. Field

  16. Novel small molecule modulators of plant growth and development identified by high-content screening with plant pollen.

    Science.gov (United States)

    Chuprov-Netochin, Roman; Neskorodov, Yaroslav; Marusich, Elena; Mishutkina, Yana; Volynchuk, Polina; Leonov, Sergey; Skryabin, Konstantin; Ivashenko, Andrey; Palme, Klaus; Touraev, Alisher

    2016-09-06

    Small synthetic molecules provide valuable tools to agricultural biotechnology to circumvent the need for genetic engineering and provide unique benefits to modulate plant growth and development. We developed a method to explore molecular mechanisms of plant growth by high-throughput phenotypic screening of haploid populations of pollen cells. These cells rapidly germinate to develop pollen tubes. Compounds acting as growth inhibitors or stimulators of pollen tube growth are identified in a screen lasting not longer than 8 h high-lighting the potential broad applicability of this assay to prioritize chemicals for future mechanism focused investigations in plants. We identified 65 chemical compounds that influenced pollen development. We demonstrated the usefulness of the identified compounds as promotors or inhibitors of tobacco and Arabidopsis thaliana seed growth. When 7 days old seedlings were grown in the presence of these chemicals twenty two of these compounds caused a reduction in Arabidopsis root length in the range from 4.76 to 49.20 % when compared to controls grown in the absence of the chemicals. Two of the chemicals sharing structural homology with thiazolidines stimulated root growth and increased root length by 129.23 and 119.09 %, respectively. The pollen tube growth stimulating compound (S-02) belongs to benzazepin-type chemicals and increased Arabidopsis root length by 126.24 %. In this study we demonstrate the usefulness of plant pollen tube based assay for screening small chemical compound libraries for new biologically active compounds. The pollen tubes represent an ultra-rapid screening tool with which even large compound libraries can be analyzed in very short time intervals. The broadly applicable high-throughput protocol is suitable for automated phenotypic screening of germinating pollen resulting in combination with seed germination assays in identification of plant growth inhibitors and stimulators.

  17. Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status.

    Science.gov (United States)

    Romero-Aranda, Mercedes R; Jurado, Oliva; Cuartero, Jesús

    2006-07-01

    In order to investigate the role of Si in alleviating the deleterious effects of salinity on tomato plant growth, the tomato cultivar Moneymaker was grown with 0 or 80mM NaCl combined with 0 and 2.5mM Si. Plant growth parameters, salt accumulation in plant tissues and plant water relations were analysed. Si treatment did not alter salt input into the plant or salt distribution between plant organs. There were non-significant differences in plant water uptake, but plant water content in salinised plants supplied with Si was 40% higher than in salinised plants that were not supplied with Si. Plants treated with NaCl alone showed a reduction in plant dry weight and total plant leaf area of 55% and 58%, respectively, while the reduction in plants treated with NaCl plus Si was only 31% and 22%, respectively. Leaf turgor potential and net photosynthesis rates were 42% and 20% higher in salinised plants supplied with Si than in salinised plants that were not supplied with Si. Water use efficiency calculated from instantaneous gas exchange parameters and as the ratio between plant dry matter and plant water uptake were, respectively, 17% and 16% higher in salinised plants supplied with Si. It can be concluded that Si improves the water storage within plant tissues, which allows a higher growth rate that, in turn, contributes to salt dilution into the plant, mitigating salt toxicity effects.

  18. New plant-growth medium for increased power output of the Plant-Microbial Fuel Cell

    NARCIS (Netherlands)

    Helder, M.; Strik, D.P.B.T.B.; Hamelers, H.V.M.; Kuijken, R.C.P.; Buisman, C.J.N.

    2012-01-01

    In a Plant-Microbial Fuel Cell anode-conditions must be created that are favorable for plant growth and electricity production. One of the major aspects in this is the composition of the plant-growth medium. Hoagland medium has been used until now, with added phosphate buffer to reduce potential

  19. Artificial Life of Soybean Plant Growth Modeling Using Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Atris Suyantohadi

    2010-03-01

    Full Text Available The natural process on plant growth system has a complex system and it has could be developed on characteristic studied using intelligent approaches conducting with artificial life system. The approaches on examining the natural process on soybean (Glycine Max L.Merr plant growth have been analyzed and synthesized in these research through modeling using Artificial Neural Network (ANN and Lindenmayer System (L-System methods. Research aimed to design and to visualize plant growth modeling on the soybean varieties which these could help for studying botany of plant based on fertilizer compositions on plant growth with Nitrogen (N, Phosphor (P and Potassium (K. The soybean plant growth has been analyzed based on the treatments of plant fertilizer compositions in the experimental research to develop plant growth modeling. By using N, P, K fertilizer compositions, its capable result on the highest production 2.074 tons/hectares. Using these models, the simulation on artificial life for describing identification and visualization on the characteristic of soybean plant growth could be demonstrated and applied.

  20. Nutrient leaching when soil is part of plant growth media

    Science.gov (United States)

    Soils can serve as sorbents for phosphorus (P) within plant growth media, negating the need for artificial sorbents. The purpose of this study was to compare soils with different properties, as part of plant growth media, for their effect on nutrient levels in effluent. Four soils were mixed with sa...

  1. Exogenous application of plant growth regulators increased the total ...

    African Journals Online (AJOL)

    The effects of plant growth regulators (PGRs) were studied on growth, total flavonoid, gibberellins (GA) and salicylic acid (SA) contents of Taraxacum officinale (dandelion), a widely used medicinal plant in Korea. All the four PGRs used; gibberellic acid (GA3), kinetin (Kn), salicylic acid (SA) and ethephon (2- ...

  2. Influence of plant growth regulators on indirect shoot organogenesis ...

    African Journals Online (AJOL)

    admin

    2013-10-17

    Oct 17, 2013 ... Influence of plant growth regulators on indirect regeneration and secondary metabolite production in. Aconitum violaceum Jacq. was evaluated. Among the different plant growth regulators studied, 2.5 µM. 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.25 µM kinetin (Kn) promoted the highest frequency of.

  3. Prospecting cyanobacterial formulations as plant-growth-promoting ...

    African Journals Online (AJOL)

    Cyanobacteria represent environment-friendly inputs that can lead to savings of nitrogenous fertilisers, in addition to improving plant growth and soil fertility. The present investigation aimed to evaluate the potential of cyanobacteria inoculants as nutrient-management and plant-growth-promoting options for maize hybrids, ...

  4. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  5. Diversity and Plant Growth Promoting Proerties of Rhizobacteria ...

    African Journals Online (AJOL)

    The purpose of this study was to evaluate and assess the plant growth promoting characteristics and diversity of major tef rhizosphere isolates from central Ethiopia. A total of 162 bacteria were isolated from rhizosphere of tef [Eragrostis tef (Zucc.) Trotter] and characterized. While screening using some plant growth ...

  6. Growth temperature and plant age influence on nutritional quality of ...

    African Journals Online (AJOL)

    As a leafy vegetable, Amaranthus can be harvested at different stages of plant growth, ranging from young seedlings to the late juvenile stage, but data on the changes in leaf nutritional value with plant age are scanty. The objective of this study was to determine the effect of growth temperature on Amaranthus leaf yield and ...

  7. Plant growth-promotion by Streptomyces spp. in sorghum ( Sorghum ...

    African Journals Online (AJOL)

    The gene expression profiles revealed up-regulation of β-1,3-glucanase, indole acetic acid (IAA) and siderophore genes. Based on the present findings, the seven selected Streptomyces strains could be employed to enhance plant growth and yield in sorghum. Keywords: Gene expression, plant growth-promotion, scanning ...

  8. Plant growth-promoting bacteria as inoculants in agricultural soils

    Directory of Open Access Journals (Sweden)

    Rocheli de Souza

    2015-01-01

    Full Text Available AbstractPlant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.

  9. Growth and yield of strawberry plants fertilized with nitrogen and phosphorus

    OpenAIRE

    Medeiros,Reinaldo F.; Pereira,Walter E.; Rodrigues,Rummenigge de M.; Nascimento,Ronaldo do; Suassuna,Janivan F.; Dantas,Tony A. G.

    2015-01-01

    ABSTRACTStrawberry (Fragaria x ananassa) is a crop that has rapid growth and is highly influenced by fertilization. Due to its development speed, the plant needs to absorb sufficient macronutrients in order to meet its demand. The objective of this research was to evaluate growth and yield of strawberry under different doses of nitrogen (N), phosphorus (P) and potassium (K) fertilization. The treatments, using Box's central composite design, were distributed in randomized blocks with four rep...

  10. Piriformospora indica enhances plant growth by transferring phosphate.

    Science.gov (United States)

    Kumar, Manoj; Yadav, Vikas; Kumar, Hemant; Sharma, Ruby; Singh, Archana; Tuteja, Narendra; Johri, Atul Kumar

    2011-05-01

    Piriformospora indica is an endophytic fungus that colonized monocot as well as dicot. P. indica has been termed as plant probiotic because of its plant growth promoting activity and its role in enhancement of the tolerance of the host plants against abiotic and biotic stresses. In our recent study, we have characterized a high affinity phosphate transporter (PiPT) and by using RNAi approach, we have demonstrated the involvement of PiPT in P transfer to the host plant. When knockdown strains of PiPT-P. indica was colonized with the host plant, it resulted in the impaired growth of the host plants. Here we have analyzed and discussed whether the growth promoting activity of P. indica is its intrinsic property or it is dependent on P availability. Our data explain the correlation between the availability of P and growth-promoting activity of P. indica.

  11. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production.

    Science.gov (United States)

    Pérez-Montaño, F; Alías-Villegas, C; Bellogín, R A; del Cerro, P; Espuny, M R; Jiménez-Guerrero, I; López-Baena, F J; Ollero, F J; Cubo, T

    2014-01-01

    Plant growth-promoting rhizobacteria (PGPR) are free-living bacteria which actively colonize plant roots, exerting beneficial effects on plant development. The PGPR may (i) promote the plant growth either by using their own metabolism (solubilizing phosphates, producing hormones or fixing nitrogen) or directly affecting the plant metabolism (increasing the uptake of water and minerals), enhancing root development, increasing the enzymatic activity of the plant or "helping" other beneficial microorganisms to enhance their action on the plants; (ii) or may promote the plant growth by suppressing plant pathogens. These abilities are of great agriculture importance in terms of improving soil fertility and crop yield, thus reducing the negative impact of chemical fertilizers on the environment. The progress in the last decade in using PGPR in a variety of plants (maize, rice, wheat, soybean and bean) along with their mechanism of action are summarized and discussed here. Copyright © 2013 Elsevier GmbH. All rights reserved.

  12. Symbiotic regulation of plant growth, development and reproduction

    OpenAIRE

    Rodriguez, Russell J; Freeman, D Carl; McArthur, E Durant; Kim, Yong Ok; Redman, Regina S

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentat...

  13. Role of plant growth regulators in preservation of Pyrus germplasm ...

    African Journals Online (AJOL)

    Administrator

    2011-10-19

    Oct 19, 2011 ... vitro plant germplasm. Proc. Intl. Plant Propag. Soc., pp. 199-205. Kovalchuk I, Lyudvikova Y, Volgina M, Reed BM (2009). Medium, container and genotype all influence in vitro apple germplasm. Plant. Cell Tiss. Org. Cult. 96: 127-136. Moriguchi T (1995). Cryopreservations and minimum growth storage of.

  14. Control of the actin cytoskeleton in plant cell growth

    NARCIS (Netherlands)

    Hussey, P.J.; Ketelaar, M.J.; Deeks, M.J.

    2006-01-01

    Plant cells grow through increases in volume and cell wall surface area. The mature morphology of a plant cell is a product of the differential rates of expansion between neighboring zones of the cell wall during this process. Filamentous actin arrays are associated with plant cell growth, and the

  15. Piriformospora indica, a Cultivable Plant-Growth-Promoting Root Endophyte

    OpenAIRE

    Varma, Ajit; Savita Verma; Sudha; Sahay, Nirmal; Bütehorn, Britta; Franken, Philipp

    1999-01-01

    Piriformospora indica (Hymenomycetes, Basidiomycota) is a newly described cultivable endophyte that colonizes roots. Inoculation with the fungus and application of fungal culture filtrate promotes plant growth and biomass production. Due to its ease of culture, this fungus provides a model organism for the study of beneficial plant-microbe interactions and a new tool for improving plant production systems.

  16. Biochar's Effect on Plant Growth and Soil Nutrient Loss

    OpenAIRE

    Crutchfield, Elizabeth Floy

    2016-01-01

    Recent years have shown an increased interest in biochar, a high carbon compound made from pyrolyzed biomass. Biochar is a carbon negative product that has been suggested as a soil amendment. Studies have shown disagreement on the effect of biochar on plant growth and on anion leaching from biochar amended soils. Three experiments were conducted to investigate biochar’s effect on plant growth and on nitrogen and phosphorus leaching. Chapter one focuses on biochar’s effect on root growth. ...

  17. Effect of plant-biostimulant on cassava initial growth

    OpenAIRE

    João Emílio de Souza Magalhães; Evander Alves Ferreira; Maxwel Coura Oliveira; Gustavo Antonio Mendes Pereira; Daniel Valadão Silva; José Barbosa dos Santos

    2016-01-01

    ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cul...

  18. Screening of rhizobacteria containing plant growth promoting (PGPR)

    African Journals Online (AJOL)

    Thus, this study suggests the use of these isolates as inoculant biofertilizers which might be beneficial for pigeon pea cultivation as they enhanced the growth and other growth parameters. Keywords: Indole acetic acid (IAA), plant growth promoting rhizobacteria (PGPR), phosphorus solubilization, enzyme productions, seed ...

  19. Magnetic fields: how is plant growth and development impacted?

    Science.gov (United States)

    da Silva, Jaime A Teixeira; Dobránszki, Judit

    2016-03-01

    This review provides detailed insight on the effects of magnetic fields on germination, growth, development, and yield of plants focusing on ex vitro growth and development and discussing the possible physiological and biochemical responses. The MFs considered in this review range from the nanoTesla (nT) to geomagnetic levels, up to very strong MFs greater than 15 Tesla (T) and also super-weak MFs (near 0 T). The theoretical bases of the action of MFs on plant growth, which are complex, are not discussed here and thus far, there is limited mathematical background about the action of MFs on plant growth. MFs can positively influence the morphogenesis of several plants which allows them to be used in practical situations. MFs have thus far been shown to modify seed germination and affect seedling growth and development in a wide range of plants, including field, fodder, and industrial crops; cereals and pseudo-cereals; grasses; herbs and medicinal plants; horticultural crops (vegetables, fruits, ornamentals); trees; and model crops. This is important since MFs may constitute a non-residual and non-toxic stimulus. In addition to presenting and summarizing the effects of MFs on plant growth and development, we also provide possible physiological and biochemical explanations for these responses including stress-related responses of plants, explanations based on dia-, para-, and ferromagnetism, oriented movements of substances, and cellular and molecular changes.

  20. Plant growth and resistance promoted by Streptomyces spp. in tomato.

    Science.gov (United States)

    Dias, Maila P; Bastos, Matheus S; Xavier, Vanessa B; Cassel, Eduardo; Astarita, Leandro V; Santarém, Eliane R

    2017-09-01

    Plant Growth Promoting Rhizobacteria (PGPR) represent an alternative to improve plant growth and yield as well as to act as agents of biocontrol. This study characterized isolates of Streptomyces spp. (Stm) as PGPR, determined the antagonism of these isolates against Pectobacterium carotovorum subsp. brasiliensis (Pcb), evaluated the ability of Stm on promoting growth and modulating the defense-related metabolism of tomato plants, and the potential of Stm isolates on reducing soft rot disease in this species. The VOC profile of Stm was also verified. Promotion of plant growth was assessed indirectly through VOC emission and by direct interaction with Stm isolates in the roots. Evaluation of soft rot disease was performed in vitro on plants treated with Stm and challenged with Pcb. Enzymes related to plant defense were then analyzed in plants treated with three selected isolates of Stm, and PM1 was chosen for further Pcb-challenging experiment. Streptomyces spp. isolates displayed characteristics of PGPR. PM3 was the isolate with efficient antagonism against Pcb by dual-culture. Most of the isolates promoted growth of root and shoot of tomato plants by VOC, and PM5 was the isolate that most promoted growth by direct interaction with Stm. Soft rot disease and mortality of plants were significantly reduced when plants were treated with StmPM1. Modulation of secondary metabolism was observed with Stm treatment, and fast response of polyphenoloxidases was detected in plants pretreated with StmPM1 and challenged with Pcb. Peroxidase was significantly activated three days after infection with Pcb in plants pretreated with StmPM1. Results suggest that Streptomyces sp. PM1 and PM5 have the potential to act as PGPR. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Plant growth regulators enhance gold uptake in Brassica juncea.

    Science.gov (United States)

    Kulkarni, Manoj G; Stirk, Wendy A; Southway, Colin; Papenfus, Heino B; Swart, Pierre A; Lux, Alexander; Vaculík, Marek; Martinka, Michal; Van Staden, Johannes

    2013-01-01

    The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.

  2. Plant Growth-Promoting Rhizobacteria Stimulate Vegetative Growth and Asexual Reproduction of Kalanchoe daigremontiana

    Directory of Open Access Journals (Sweden)

    Yong-Soon Park

    2015-09-01

    Full Text Available Certain bacterial species associate with plant roots in soil. The plant growth-promoting rhizobacteria (PGPR stimulate plant growth and yield in greenhouse and field. Here, we examined whether application of known bacilli PGPR strains stimulated growth and asexual reproduction in the succulent plant Kalanchoe daigremontiana. Four PGPR strains B. amyloliquefaciens IN937a, B. cereus BS107, B. pumilus INR7, and B. subtilis GB03 were applied to young plantlets by soil-drenching, and plant growth and development was monitored for three months. Aerial growth was significantly stimulated in PGPR-inoculated plants, which was observed as increases in plant height, shoot weight, and stem width. The stimulated growth influenced plant development by increasing the total number of leaves per plant. Treatment with bacilli also increased the total root biomass compared with that of control plants, and led to a 2-fold increase in asexual reproduction and plantlet formation on the leaf. Collectively, our results firstly demonstrate that Bacillus spp. promote vegetative development of K. daigremontiana, and the enhanced growth stimulates asexual reproduction and plantlet formation.

  3. Volatile organic compounds emitted byTrichodermaspecies mediate plant growth.

    Science.gov (United States)

    Lee, Samantha; Yap, Melanie; Behringer, Gregory; Hung, Richard; Bennett, Joan W

    2016-01-01

    Many Trichoderma species are applied as biofungicides and biofertilizers to agricultural soils to enhance crop growth. These filamentous fungi have the ability to reduce plant diseases and promote plant growth and productivity through overlapping modes of action including induced systemic resistance, antibiosis, enhanced nutrient efficiency, and myco-parasitism. Trichoderma species are prolific producers of many small metabolites with antifungal, antibacterial, and anticancer properties. Volatile metabolites of Trichoderma also have the ability to induce resistance to plant pathogens leading to improved plant health. In this study, Arabidopsis plants were exposed to mixtures of volatile organic compounds (VOCs) emitted by growing cultures of Trichoderma from 20 strains, representing 11 different Trichoderma species. We identified nine Trichoderma strains that produced plant growth promoting VOCs. Exposure to mixtures of VOCs emitted by these strains increased plant biomass (37.1-41.6 %) and chlorophyll content (82.5-89.3 %). Trichoderma volatile-mediated changes in plant growth were strain- and species-specific. VOCs emitted by T . pseudokoningii (CBS 130756) were associated with the greatest Arabidopsis growth promotion. One strain, T. atroviride (CBS 01-209), in our screen decreased growth (50.5 %) and chlorophyll production (13.1 %). Similarly, tomatoes exposed to VOCs from T. viride (BBA 70239) showed a significant increase in plant biomass (>99 %), larger plant size, and significant development of lateral roots. We also observed that the tomato plant growths were dependent on the duration of the volatile exposure. A GC-MS analysis of VOCs from Trichoderma strains identified more than 141 unique compounds including several unknown sesquiterpenes, diterpenes, and tetraterpenes. Plants grown in the presence of fungal VOCs emitted by different species and strains of Trichoderma exhibited a range of effects. This study demonstrates that the blend of volatiles

  4. DNA Methylation Causes Predominant Maternal Controls of Plant Embryo Growth

    OpenAIRE

    Jonathan FitzGerald; Ming Luo; Abed Chaudhury; Frédéric Berger

    2008-01-01

    The parental conflict hypothesis predicts that the mother inhibits embryo growth counteracting growth enhancement by the father. In plants the DNA methyltransferase MET1 is a central regulator of parentally imprinted genes that affect seed growth. However the relation between the role of MET1 in imprinting and its control of seed size has remained unclear. Here we combine cytological, genetic and statistical analyses to study the effect of MET1 on seed growth. We show that the loss of MET1 du...

  5. Plant growth and architectural modelling and its applications

    Science.gov (United States)

    Guo, Yan; Fourcaud, Thierry; Jaeger, Marc; Zhang, Xiaopeng; Li, Baoguo

    2011-01-01

    Over the last decade, a growing number of scientists around the world have invested in research on plant growth and architectural modelling and applications (often abbreviated to plant modelling and applications, PMA). By combining physical and biological processes, spatially explicit models have shown their ability to help in understanding plant–environment interactions. This Special Issue on plant growth modelling presents new information within this topic, which are summarized in this preface. Research results for a variety of plant species growing in the field, in greenhouses and in natural environments are presented. Various models and simulation platforms are developed in this field of research, opening new features to a wider community of researchers and end users. New modelling technologies relating to the structure and function of plant shoots and root systems are explored from the cellular to the whole-plant and plant-community levels. PMID:21638797

  6. Plant growth promotion by Pseudomonas fluorescens

    NARCIS (Netherlands)

    Cheng, X.

    2016-01-01

    Pseudomonas fluorescens is a Gram-negative rod shaped bacterium that has a versatile metabolism and is widely spread in soil and water. P. fluorescens strain SBW25 (Pf.SBW25) is a well-known model strain to study bacterial evolution, plant colonization and biocontrol of plant diseases. It produces

  7. Tubular Membrane Plant-Growth Unit

    Science.gov (United States)

    Dreschel, Thomas W.

    1992-01-01

    Hydroponic system controls nutrient solution for growing crops in space. Pump draws nutrient solution along inside of tubular membrane in pipe from reservoir, maintaining negative pressure in pipe. Roots of plants in slot extract nutrient through membrane within pipe. Crop plants such as wheat, rice, lettuce, tomatoes, soybeans, and beans grown successfully with system.

  8. Chemical Growth Regulators for Guayule Plants

    Science.gov (United States)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  9. Expert System Control of Plant Growth in an Enclosed Space

    Science.gov (United States)

    May, George; Lanoue, Mark; Bathel, Matthew; Ryan, Robert E.

    2008-01-01

    The Expert System is an enclosed, controlled environment for growing plants, which incorporates a computerized, knowledge-based software program that is designed to capture the knowledge, experience, and problem-solving skills of one or more human experts in a particular discipline. The Expert System is trained to analyze crop/plant status, to monitor the condition of the plants and the environment, and to adjust operational parameters to optimize the plant-growth process. This system is intended to provide a way to remotely control plant growth with little or no human intervention. More specifically, the term control implies an autonomous method for detecting plant states such as health (biomass) or stress and then for recommending and implementing cultivation and/or remediation to optimize plant growth and to minimize consumption of energy and nutrients. Because of difficulties associated with delivering energy and nutrients remotely, a key feature of this Expert System is its ability to minimize this effort and to achieve optimum growth while taking into account the diverse range of environmental considerations that exist in an enclosed environment. The plant-growth environment for the Expert System could be made from a variety of structures, including a greenhouse, an underground cavern, or another enclosed chamber. Imaging equipment positioned within or around the chamber provides spatially distributed crop/plant-growth information. Sensors mounted in the chamber provide data and information pertaining to environmental conditions that could affect plant development. Lamps in the growth environment structure supply illumination, and other additional equipment in the chamber supplies essential nutrients and chemicals.

  10. Rapid identification of the medicinal plant Taraxacum formosanum ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... College J. 8: 35-46. Xue CY, Li DZ, Lu JM, Yang JB, Liu JQ (2006). Molecular authentication of the traditional Tibetan medical plant Swertia mussotii. Planta Med. 72: 721-726. Yuan CC (2001). Textual research of material medica Taraxacum mongolicum and varietal identification. Chinese Wild Plant Res.

  11. A plant growth form dataset for the New World.

    Science.gov (United States)

    Engemann, K; Sandel, B; Boyle, B; Enquist, B J; Jørgensen, P M; Kattge, J; McGill, B J; Morueta-Holme, N; Peet, R K; Spencer, N J; Violle, C; Wiser, S K; Svenning, J-C

    2016-11-01

    This dataset provides growth form classifications for 67,413 vascular plant species from North, Central, and South America. The data used to determine growth form were compiled from five major integrated sources and two original publications: the Botanical Information and Ecology Network (BIEN), the Plant Trait Database (TRY), the SALVIAS database, the USDA PLANTS database, Missouri Botanical Garden's Tropicos database, Wright (2010), and Boyle (1996). We defined nine plant growth forms based on woodiness (woody or non-woody), shoot structure (self-supporting or not self-supporting), and root traits (rooted in soil, not rooted in soil, parasitic or aquatic): Epiphyte, Liana, Vine, Herb, Shrub, Tree, Parasite, or Aquatic. Species with multiple growth form classifications were assigned the growth form classification agreed upon by the majority (>2/3) of sources. Species with ambiguous or otherwise not interpretable growth form assignments were excluded from the final dataset but are made available with the original data. Comparisons with independent estimates of species richness for the Western hemisphere suggest that our final dataset includes the majority of New World vascular plant species. Coverage is likely more complete for temperate than for tropical species. In addition, aquatic species are likely under-represented. Nonetheless, this dataset represents the largest compilation of plant growth forms published to date, and should contribute to new insights across a broad range of research in systematics, ecology, biogeography, conservation, and global change science. © 2016 by the Ecological Society of America.

  12. Coupling plant growth and waste recycling systems in a controlled life support system (CELSS)

    Science.gov (United States)

    Garland, Jay L.

    1992-01-01

    The development of bioregenerative systems as part of the Controlled Ecological Life Support System (CELSS) program depends, in large part, on the ability to recycle inorganic nutrients, contained in waste material, into plant growth systems. One significant waste (resource) stream is inedible plant material. This research compared wheat growth in hydroponic solutions based on inorganic salts (modified Hoagland's) with solutions based on the soluble fraction of inedible wheat biomass (leachate). Recycled nutrients in leachate solutions provided the majority of mineral nutrients for plant growth, although additions of inorganic nutrients to leachate solutions were necessary. Results indicate that plant growth and waste recyling systems can be effectively coupled within CELSS based on equivalent wheat yield in leachate and Hoagland solutions, and the rapid mineralization of waste organic material in the hydroponic systems. Selective enrichment for microbial communities able to mineralize organic material within the leachate was necessary to prevent accumulation of dissolved organic matter in leachate-based solutions. Extensive analysis of microbial abundance, growth, and activity in the hydroponic systems indicated that addition of soluble organic material from plants does not cause excessive microbial growth or 'biofouling', and helped define the microbially-mediated flux of carbon in hydroponic solutions.

  13. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Directory of Open Access Journals (Sweden)

    Dalia Molina-Romero

    Full Text Available Plant growth-promoting rhizobacteria (PGPR increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440 and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02 strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  14. Compatible bacterial mixture, tolerant to desiccation, improves maize plant growth.

    Science.gov (United States)

    Molina-Romero, Dalia; Baez, Antonino; Quintero-Hernández, Verónica; Castañeda-Lucio, Miguel; Fuentes-Ramírez, Luis Ernesto; Bustillos-Cristales, María Del Rocío; Rodríguez-Andrade, Osvaldo; Morales-García, Yolanda Elizabeth; Munive, Antonio; Muñoz-Rojas, Jesús

    2017-01-01

    Plant growth-promoting rhizobacteria (PGPR) increase plant growth and crop productivity. The inoculation of plants with a bacterial mixture (consortium) apparently provides greater benefits to plant growth than inoculation with a single bacterial strain. In the present work, a bacterial consortium was formulated containing four compatible and desiccation-tolerant strains with potential as PGPR. The formulation had one moderately (Pseudomonas putida KT2440) and three highly desiccation-tolerant (Sphingomonas sp. OF178, Azospirillum brasilense Sp7 and Acinetobacter sp. EMM02) strains. The four bacterial strains were able to adhere to seeds and colonize the rhizosphere of plants when applied in both mono-inoculation and multi-inoculation treatments, showing that they can also coexist without antagonistic effects in association with plants. The effects of the bacterial consortium on the growth of blue maize were evaluated. Seeds inoculated with either individual bacterial strains or the bacterial consortium were subjected to two experimental conditions before sowing: normal hydration or desiccation. In general, inoculation with the bacterial consortium increased the shoot and root dry weight, plant height and plant diameter compared to the non-inoculated control or mono-inoculation treatments. The bacterial consortium formulated in this work had greater benefits for blue maize plants even when the inoculated seeds underwent desiccation stress before germination, making this formulation attractive for future field applications.

  15. Plant growth-promoting rhizobacteria and root system functioning

    Science.gov (United States)

    Vacheron, Jordan; Desbrosses, Guilhem; Bouffaud, Marie-Lara; Touraine, Bruno; Moënne-Loccoz, Yvan; Muller, Daniel; Legendre, Laurent; Wisniewski-Dyé, Florence; Prigent-Combaret, Claire

    2013-01-01

    The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, plant growth-promoting rhizobacteria (PGPR) colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity, and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture. PMID:24062756

  16. Plant growth-promoting rhizobacteria and root system functioning

    Directory of Open Access Journals (Sweden)

    Jordan eVacheron

    2013-09-01

    Full Text Available The rhizosphere supports the development and activity of a huge and diversified microbial community, including microorganisms capable to promote plant growth. Among the latter, Plant Growth-Promoting Rhizobacteria (PGPR colonize roots of monocots and dicots, and enhance plant growth by direct and indirect mechanisms. Modification of root system architecture by PGPR implicates the production of phytohormones and other signals that lead, mostly, to enhanced lateral root branching and development of root hairs. PGPR also modify root functioning, improve plant nutrition and influence the physiology of the whole plant. Recent results provided first clues as to how PGPR signals could trigger these plant responses. Whether local and/or systemic, the plant molecular pathways involved remain often unknown. From an ecological point of view, it emerged that PGPR form coherent functional groups, whose rhizosphere ecology is influenced by a myriad of abiotic and biotic factors in natural and agricultural soils, and these factors can in turn modulate PGPR effects on roots. In this paper, we address novel knowledge and gaps on PGPR modes of action and signals, and highlight recent progress on the links between plant morphological and physiological effects induced by PGPR. We also show the importance of taking into account the size, diversity and gene expression patterns of PGPR assemblages in the rhizosphere to better understand their impact on plant growth and functioning. Integrating mechanistic and ecological knowledge on PGPR populations in soil will be a prerequisite to develop novel management strategies for sustainable agriculture.

  17. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health.

    Science.gov (United States)

    Köberl, Martina; Schmidt, Ruth; Ramadan, Elshahat M; Bauer, Rudolf; Berg, Gabriele

    2013-12-20

    Past medicinal plant research primarily focused on bioactive phytochemicals, however, the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is (i) to introduce novel insights into the plant microbiome with a focus on medicinal plants, (ii) to provide details about plant- and microbe-derived ingredients of medicinal plants, and (iii) to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L., and Solanum distichum Schumach. and Thonn.) cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants' flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  18. Experiments with Corn To Demonstrate Plant Growth and Development.

    Science.gov (United States)

    Haldeman, Janice H.; Gray, Margarit S.

    2000-01-01

    Explores using corn seeds to demonstrate plant growth and development. This experiment allows students to formulate hypotheses, observe and record information, and practice mathematics. Presents background information, materials, procedures, and observations. (SAH)

  19. Quantification of growth benefit of carnivorous plants from prey

    Czech Academy of Sciences Publication Activity Database

    Adamec, Lubomír

    2017-01-01

    Roč. 46, č. 3 (2017), s. 1-7 ISSN 0190-9215 Institutional support: RVO:67985939 Keywords : mineral cost and benefit * stimulation of roots * growth stimulation Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany

  20. An engineering analysis of a closed cycle plant growth module

    Science.gov (United States)

    Stickford, G. H., Jr.; Jakob, F. E.; Landstrom, D. K.

    1986-01-01

    The SOLGEM model is a numerical engineering model which solves the flow and energy balance equations for the air flowing through a growing environment, assuming quasi-steady state conditions within the system. SOLGEM provides a dynamic simulation of the controlled environment system in that the temperature and flow conditions of the growing environment are estimated on an hourly basis in response to the weather data and the plant growth parameters. The flow energy balance considers the incident solar flux; incoming air temperature, humidity, and flow rate; heat exchange with the roof and floor; and heat and moisture exchange with the plants. A plant transpiration subroutine was developed based plant growth research facility, intended for the study of bioregenerative life support theories. The results of a performance analysis of the plant growth module are given. The estimated energy requirements of the module components and the total energy are given.

  1. Straw gasification biochar increases plant available water capacity and plant growth in coarse sandy soil

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant available water capacity (AWC) and plant growth in diverse soil types needs further reserach. A pot experiment with spring barley...... of plant biomass under both water regimes, most likely due to reduced mechanical impedance to root growth. No positive effects on plant growth were achieved by addition of WGB. Our results suggest that SGB has a great global potential to increase crop productivity on coarser soil types changing...

  2. Isolation of phytohormones producing plant growth promoting ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    , phytohormones production, proline contents. ... increase water use efficiency, fresh and dry weight of plants (Mayak et al., 2004) .... NARC-1) were surface sterilized with 95% ethanol for 2 min and then with 10% chlorex for.

  3. Plant Growth Models Using Artificial Neural Networks

    Science.gov (United States)

    Bubenheim, David

    1997-01-01

    In this paper, we descrive our motivation and approach to devloping models and the neural network architecture. Initial use of the artificial neural network for modeling the single plant process of transpiration is presented.

  4. PLANT-MICROBIAL INTERACTIONS IN THE RHIZOSPHERE – STRATEGIES FOR PLANT GROWTH-PROMOTION

    Directory of Open Access Journals (Sweden)

    Marius Stefan

    2012-03-01

    Full Text Available Plant growth-promoting rhizobacteria (PGPR are a group of bacteria that can actively colonize plant rootsand enhance plant growth using different mechanisms: production of plant growth regulators like indoleacetic acid,gibberellic acid, cytokinins and ethylene(Zahir et al., 2003, providing the host plant with fixed nitrogen, solubilizationof soil phosphorus, enhance Fe uptake, biocontrol, reducing the concentration of heavy metals. PGPR are perfectcandidates to be used as biofertilizers – eco-friendly alternative to common applied chemical fertilizer in today’sagriculture. The most important benefit of PGPR usage is related to the reduction of environmental pollution in conditionof increasing crop yield. This review presents the main mechanisms involved in PGPR promotion of plant growth.

  5. Multinationals as stabilizers? Economic crisis and plant employment growth

    OpenAIRE

    Álvarez Espinoza, Roberto; Görg, Holger

    2007-01-01

    This paper examines the link between multinational enterprises and employment growth at the plant-level. We investigate in detail the comparative response of multinationals and domestic firms to an economic crisis, using the empirical setting of a well defined case of economic slowdown in Chile as a natural experiment. In our empirical analysis we find that employment growth in manufacturing plants has been drastically reduced during the economic crisis. More importantly, we do not find evide...

  6. [Protective properties of avermectine complex and plant growth regulators].

    Science.gov (United States)

    Iamborko, N A; Pindrus, A A

    2009-01-01

    Antimutagen properties of avermectine complex of Avercom synthesized by Streptomyces avermitilis UCM Ac-2161, and growth regulators of plants (GRP) of bioagrostim-extra, ivin and emistim-C have been revealed in experiments with test-cultures of Salmonella typhimurium TA 100, TA 98. Avercom and plant growth regulators neutralize by toxication 27-48% and mutagen action of pesticides on soil microbial associations by 19.0-30.0%.

  7. Mycorrhizae Applications in Horticultural Production on Plant growth

    OpenAIRE

    Ortas, Ibrahim

    2009-01-01

    Mycorrhizae Applications in Horticultural Production on Plant growth and Nutrient Uptake Under Field Conditions Ibrahim ORTAS Department of Soil Science, University of Çukurova, Faculty of Agriculture, Adana, Turkey Mycorrhiza application in horticultural production in East Mediterranean region was tested under field conditions for several years. At field conditions, effect of several mycorrhizal species inoculation on seedling survive and plant growth along has be...

  8. Magnetic field effects on plant growth, development and evolution

    Directory of Open Access Journals (Sweden)

    Massimo E. Maffei

    2014-09-01

    Full Text Available The geomagnetic field (GMF is a natural component of our environment. Plants, which are known to sense different wavelengths of light, respond to gravity, react to touch and electrical signaling, cannot escape the effect of GMF. While phototropism, gravitropism, and tigmotropism have been thoroughly studied, the impact of GMF on plant growth and development is not well understood. This review describes the effects of altering MF conditions on plants by considering plant responses to MF values either lower or higher than those of the GMF. The possible role of GMF on plant evolution and the nature of the magnetoreceptor is also discussed.

  9. All about Plant Structure & Growth. Plant Life for Children[TM]. Schlessinger Science Library. [Videotape].

    Science.gov (United States)

    2000

    How does a tiny seed sprout and grow into a towering tree? Join the kids from M.A.P.L.E as they learn about some of the incredible transformations that a plant goes through during its lifetime. In All About Plant Structure & Growth, uncover the secrets of roots, stems and leaves - structures that are vital to a plant's role as an energy…

  10. The microbiome of medicinal plants: diversity and importance for plant growth, quality and health

    Directory of Open Access Journals (Sweden)

    Martina eKöberl

    2013-12-01

    Full Text Available Past medicinal plant research primarily focused on bioactive phytochemicals, however the focus is currently shifting due to the recognition that a significant number of phytotherapeutic compounds are actually produced by associated microbes or through interaction with their host. Medicinal plants provide an enormous bioresource of potential use in modern medicine and agriculture, yet their microbiome is largely unknown. The objective of this review is i to introduce novel insights into the plant microbiome with a focus on medicinal plants, ii to provide details about plant- and microbe-derived ingredients of medicinal plants, and iii to discuss possibilities for plant growth promotion and plant protection for commercial cultivation of medicinal plants. In addition, we also present a case study performed both to analyse the microbiome of three medicinal plants (Matricaria chamomilla L., Calendula officinalis L. and Solanum distichum Schumach. and Thonn. cultivated on organically managed Egyptian desert farm and to develop biological control strategies. The soil microbiome of the desert ecosystem was comprised of a high abundance of Gram-positive bacteria of prime importance for pathogen suppression under arid soil conditions. For all three plants, we observed a clearly plant-specific selection of the microbes as well as highly specific diazotrophic communities that overall identify plant species as important drivers in structural and functional diversity. Lastly, native Bacillus spec. div. strains were able to promote plant growth and elevate the plants’ flavonoid production. These results underline the numerous links between the plant-associated microbiome and the plant metabolome.

  11. Plant growth promoting rhizobacteria: Beneficial effects for healthy ...

    African Journals Online (AJOL)

    Tuoyo Aghomotsegin

    2016-07-06

    Jul 6, 2016 ... Actinorhizal plants (Gray and Smith, 2005). Several studies showed ... compounds. But at their death and after decomposition, ..... (Kang et al., 2009). The mechanisms used by cytokinins and gibberellins synthesized by rhizobacteria to promote plant growth are still not well understood. The assumptions ...

  12. Plant growth promoting potential of endophytic bacteria isolated ...

    African Journals Online (AJOL)

    Endophytic microorganisms are able to promote plant growth through various mechanisms, such as production of plant hormones and antimicrobial substances, as well as to provide the soil with nutrients, for instance, inorganic phosphate. This study aimed to evaluate the potential of endophytic bacteria isolated from ...

  13. Effect of plant growth regulators (PGRs) on micropropagation of a ...

    African Journals Online (AJOL)

    A complete micropropagation protocol was developed by applying different plant growth regulators (PGRs) of a vulnerable and high value aromatic medicinal plant, Hedychium spicatum. Three cytokinins, 6-benzyladenine (BA), kinetin (KN) and thidiazuron (TDZ) were used and among these, the lower concentration of TDZ ...

  14. Effect of plant growth hormones and abiotic stresses on germination ...

    African Journals Online (AJOL)

    Phosphatases are widely found in plants having intracellular and extracellular activities. Phosphatases are believed to be important for phosphorous scavenging and remobilization in plants, but its role in adaptation to abiotic stresses and growth hormones at germination level has not been critically evaluated. To address ...

  15. The effect of plant growth regulators, cultivars and substrate ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-05

    Oct 5, 2009 ... Then DAS-ELISA test was conducted and the effects of different level of 2 growth regulators either singly or in ... Key words: Potato, plant growth regulators, single node culture, substrate combination, minituber. INTRODUCTION .... temperature, 16 h light (3000 - 4000 Lux) and 8 h darkness period. Meristem ...

  16. Laboratory study on influence of plant growth promoting ...

    African Journals Online (AJOL)

    The influence of rhizobacteria on the growth and tolerance of Zea mays (maize) in a petroleum hydrocarbon (crude oil) impacted medium was investigated. This study evaluated the effect of inoculating maize seeds with plant growth promoting rhizobacterial strains in a crude oil impacted medium. The rhizobacterial strains ...

  17. deaminase from plant growth promoting rhizobacteria in Striga

    African Journals Online (AJOL)

    Experiments were conducted in pots to determine the growth effect of different rhizobacteria on maize under Striga hermonthica infestation. Three bacteria were selected based on their plant growth promoting effects. Whole bacterial cells of the rhizobacteria were used to amplify 1-amino-cyclopropane-1-carboxylic acid ...

  18. Fertilization and spacing effects on growth of planted ponderosa pine.

    Science.gov (United States)

    P.H. Cochran; R.P. Newman; James W. Barrett

    1991-01-01

    Fertilizer placed in the planting hole increased height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) early in the life of the plantation. Later broadcast applications of fertilizer may have had little effect on growth. Wider spacings produced larger trees but less volume per acre than narrower spacings after average tree height...

  19. Soil compaction and initial height growth of planted ponderosa pine.

    Science.gov (United States)

    P. H. Cochran; Terry. Brock

    1985-01-01

    Early height growth of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) seedlings planted in clearcuts in central Oregon was negatively correlated with increasing soil bulk density. Change in bulk density accounted for less than half the total variation in height growth. Although many other factors affect the development of seedlings, compaction...

  20. Functions of ABC transporters in plant growth and development.

    Science.gov (United States)

    Do, Thanh Ha Thi; Martinoia, Enrico; Lee, Youngsook

    2017-08-27

    ABC transporters are essential for plant development, playing roles in processes such as gametogenesis, seed development, seed germination, organ formation, and secondary growth. ABC transporters are directly energized by ATP and can transport complex organic materials against concentration gradients; thus, they are uniquely suited to provide the complex building blocks required for the development of specialized plant cells. We review recent progress in our understanding of the contribution ABC transporters make to the growth and development of plants, including their roles in protective layer formation and in transporting phytohormones. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Material and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2015-09-15

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  2. Materials and methods to increase plant growth and yield

    Science.gov (United States)

    Kirst, Matias

    2017-05-16

    The present invention relates to materials and methods for modulating growth rates, yield, and/or resistance to drought conditions in plants. In one embodiment, a method of the invention comprises increasing expression of an hc1 gene (or a homolog thereof that provides for substantially the same activity), or increasing expression or activity of the protein encoded by an hc1 gene thereof, in a plant, wherein expression of the hc1 gene or expression or activity of the protein encoded by an hc1 gene results in increased growth rate, yield, and/or drought resistance in the plant.

  3. Plant growth control by light spectrum

    NARCIS (Netherlands)

    Ieperen, van W.

    2016-01-01

    Plants are sessile organisms that have to cope with their environment as it is exposed to them in nature. To do so, they developed systems to sense environmental signals and to integrate these with endogenous developmental programs. As a result, they are well equipped to survive and flourish in

  4. The role of microbial signals in plant growth and development.

    Science.gov (United States)

    Ortíz-Castro, Randy; Contreras-Cornejo, Hexon Angel; Macías-Rodríguez, Lourdes; López-Bucio, José

    2009-08-01

    Plant growth and development involves a tight coordination of the spatial and temporal organization of cell division, cell expansion and cell differentiation. Orchestration of these events requires the exchange of signaling molecules between the root and shoot, which can be affected by both biotic and abiotic factors. The interactions that occur between plants and their associated microorganisms have long been of interest, as knowledge of these processes could lead to the development of novel agricultural applications. Plants produce a wide range of organic compounds including sugars, organic acids and vitamins, which can be used as nutrients or signals by microbial populations. On the other hand, microorganisms release phytohormones, small molecules or volatile compounds, which may act directly or indirectly to activate plant immunity or regulate plant growth and morphogenesis. In this review, we focus on recent developments in the identification of signals from free-living bacteria and fungi that interact with plants in a beneficial way. Evidence has accumulated indicating that classic plant signals such as auxins and cytokinins can be produced by microorganisms to efficiently colonize the root and modulate root system architecture. Other classes of signals, including N-acyl-L-homoserine lactones, which are used by bacteria for cell-to-cell communication, can be perceived by plants to modulate gene expression, metabolism and growth. Finally, we discuss the role played by volatile organic compounds released by certain plant growth-promoting rhizobacteria in plant immunity and developmental processes. The picture that emerges is one in which plants and microbes communicate themselves through transkingdom signaling systems involving classic and novel signals.

  5. Dechlorination of chloroacetanilide herbicides by plant growth regulator sodium bisulfite.

    Science.gov (United States)

    Bian, Haitao; Chen, Jingwen; Cai, Xiyun; Liu, Ping; Wang, Ying; Huang, Liping; Qiao, Xianliang; Hao, Ce

    2009-08-01

    Chloroacetanilide herbicides are frequently detected in groundwater and surface waters, and pose high risks to aquatic biota. In this study, sodium bisulfite (NaHSO(3)), a plant growth regulator used in China, was used to remove three chloroacetanilide herbicides including alachlor, acetochlor and S-metolachlor. These herbicides were rapidly dechlorinated by NaHSO(3) in neutral conditions. The dechlorination was accelerated with increasing pH, temperature and NaHSO(3) concentrations. Kinetic analysis and mass spectrum identification revealed that the reaction followed S(N)2 nucleophilic substitution, in which the chlorine was replaced by the reactive specie sulfite. Alachlor and its isomer acetochlor had similar reaction rates, whereas they were more readily transformed than S-metolachlor that had larger steric hindrance and weaker electrophilicity. The transformation products were chloroacetanilide ethane sulfonic acids (ESAs), which were also encountered as major metabolites of these herbicides in natural environment via common metabolic pathways and were less toxic to green algae compared to the parent herbicides. These results indicate that NaHSO(3) can accelerate transformation of chloroacetanilide herbicides to the less toxic transformation products by nucleophilic substitution and dechlorination in aquatic environment. NaHSO(3) can be potentially used for the removal of chloroacetanilide herbicides from wastewater effluent, spill sites and accidental discharge.

  6. Design and construction of an inexpensive homemade plant growth chamber.

    Science.gov (United States)

    Katagiri, Fumiaki; Canelon-Suarez, Dario; Griffin, Kelsey; Petersen, John; Meyer, Rachel K; Siegle, Megan; Mase, Keisuke

    2015-01-01

    Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W) x 1.8 m (D) x 2 m (H), providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant growth chamber

  7. Design and construction of an inexpensive homemade plant growth chamber.

    Directory of Open Access Journals (Sweden)

    Fumiaki Katagiri

    Full Text Available Plant growth chambers produce controlled environments, which are crucial in making reproducible observations in experimental plant biology research. Commercial plant growth chambers can provide precise controls of environmental parameters, such as temperature, humidity, and light cycle, and the capability via complex programming to regulate these environmental parameters. But they are expensive. The high cost of maintaining a controlled growth environment is often a limiting factor when determining experiment size and feasibility. To overcome the limitation of commercial growth chambers, we designed and constructed an inexpensive plant growth chamber with consumer products for a material cost of $2,300. For a comparable growth space, a commercial plant growth chamber could cost $40,000 or more. Our plant growth chamber had outside dimensions of 1.5 m (W x 1.8 m (D x 2 m (H, providing a total growth area of 4.5 m2 with 40-cm high clearance. The dimensions of the growth area and height can be flexibly changed. Fluorescent lights with large reflectors provided a relatively spatially uniform photosynthetically active radiation intensity of 140-250 μmoles/m2/sec. A portable air conditioner provided an ample cooling capacity, and a cooling water mister acted as a powerful humidifier. Temperature, relative humidity, and light cycle inside the chamber were controlled via a z-wave home automation system, which allowed the environmental parameters to be monitored and programmed through the internet. In our setting, the temperature was tightly controlled: 22.2°C±0.8°C. The one-hour average relative humidity was maintained at 75%±7% with short spikes up to ±15%. Using the interaction between Arabidopsis and one of its bacterial pathogens as a test experimental system, we demonstrate that experimental results produced in our chamber were highly comparable to those obtained in a commercial growth chamber. In summary, our design of an inexpensive plant

  8. Long term effects on petrochemical activated sludge on plants and soil. Plant growth and metal absorption

    Energy Technology Data Exchange (ETDEWEB)

    Tedesco, M.J.; Gianello, C. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Solos; Ribas, P.I.F.; Carvalho, E.B. [CORSAN-SITEL, Triunfo, RS (Brazil). Polo Petroquimico do Sul. Dept. de Operacao e Manutencao

    1993-12-31

    An experiment to study the effects of several application rates of excess activated sludge on plants, soil and leached water was started in 1985. Sludge was applied for six years and increased plant growth due to its nitrogen and phosphorous contribution, even though the decomposition rate in soil is low. Plant zinc, cadmium and nickel content increased with sludge application, while liming decreased the amounts of these metals taken up by plants. 9 refs., 8 tabs.

  9. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  10. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates

    Science.gov (United States)

    Oteino, Nicholas; Lally, Richard D.; Kiwanuka, Samuel; Lloyd, Andrew; Ryan, David; Germaine, Kieran J.; Dowling, David N.

    2015-01-01

    The use of plant growth promoting bacterial inoculants as live microbial biofertilizers provides a promising alternative to chemical fertilizers and pesticides. Inorganic phosphate solubilization is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilize the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilization. The study presented here describes the ability of endophytic bacteria to produce gluconic acid (GA), solubilize insoluble phosphate, and stimulate the growth of Pisum sativum L. plants. This study also describes the genetic systems within three of these endophyte strains thought to be responsible for their effective phosphate solubilizing abilities. The results showed that many of the endophytic strains produced GA (14–169 mM) and have moderate to high phosphate solubilization capacities (~400–1300 mg L−1). When inoculated into P. sativum L. plants grown in soil under soluble phosphate limiting conditions, the endophytes that produced medium-high levels of GA displayed beneficial plant growth promotion effects. PMID:26257721

  11. Plant Growth Promotion Induced by Phosphate Solubilizing Endophytic Pseudomonas Isolates

    Directory of Open Access Journals (Sweden)

    Nicholas eOtieno

    2015-07-01

    Full Text Available The use of plant growth promoting bacterial inoculants as live microbial biofertilisers provides a promising alternative to chemical fertilisers and pesticides. Inorganic phosphate solubilisation is one of the major mechanisms of plant growth promotion by plant associated bacteria. This involves bacteria releasing organic acids into the soil which solubilise the phosphate complexes converting them into ortho-phosphate which is available for plant up-take and utilisation. The study presented here describes the ability of endophytic bacterial isolates to produce gluconic acid, solubilise insoluble phosphate and stimulate the growth of Pea plants (Pisum sativum. This study also describes the genetic systems within three of these endophyte isolates thought to be responsible for their effective phosphate solubilising abilities. The results showed that many of the endophytic isolates produced gluconic acid (14-169 mM and have moderate to high phosphate solubilisation capacities (~ 400-1300 mg L-1. When inoculated to Pea plants grown in sand/soil under soluble phosphate limiting conditions, the endophyte isolates that produced medium to high levels of gluconic acid also displayed enhanced plant growth promotion effects.

  12. Rapid identification of the medicinal plant Taraxacum formosanum ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... Original identification of medicinal plants is essential for quality control. In this study, the internal transcribed spacer 2 (ITS2) nuclear ribosomal DNA served as a DNA barcode and was amplified by allele-specific PCR. This approach was exploited to differentiate Taraxacum formosanum from five.

  13. of Effect of different organic materials on plant growth

    Directory of Open Access Journals (Sweden)

    mehrnosh eskandari

    2009-06-01

    Full Text Available Using organic matter, such as, peat and vermicompost as soil amendment, increases aeration, water infiltration, water holding capacity and nutrients of soil . A greenhouse experiment was performed to study the effect of organic materials on plant growth characteristics, total biomass and grain weight of chickpea with four treatments; 1 Soil + 3% peat (PS, 2 Sterile soil + 3% peat (SPS, 3 Soil + vermicompost (1:6 (VCS, 4 control (C in a completely randomized design with four replications. The results showed that the maximum germination percentage, number of branch and number of pod per plant were observed in SPS treatment due to the avoidance of harmful microbial impacts. Plant height in this treatment reduced, whereas, no significant differences in total dry matter per plant and dry weight of chickpea per plant were observed compared to control. Plant growth consist of plant height, number of branch and number of pod per plant in vermicompost and soil + peat treatment reduced in the early stages probably because of plant - microbes interaction effects. Application of vermicompost increased fresh and dry weight, pod dry weight and single grain weight, probably due to more plant nutrient availability in this treatment when compared with other treatments.

  14. Communication and The Challenges of Rapid Population Growth in ...

    African Journals Online (AJOL)

    These factors include religious beliefs, customs and traditions, among others. The discourse also examined the various communication types in Africa and their appropriateness in educating Africans and their governments on the need to control high rate of population growth. Ironically, medical facilities available in African ...

  15. Rapid acceleration of plant speciation during the Anthropocene.

    Science.gov (United States)

    Thomas, Chris D

    2015-08-01

    Speciation rates need to be considered when estimating human impacts on the numbers of species on Earth, given that past mass extinctions have been followed by the accelerated origination of new taxa. Here, I suggest that the Anthropocene is already exhibiting a greatly accelerated plant speciation rate due to agriculture, horticulture, and the human-mediated transport of species, followed by hybridisation. For example, more new plant species have come into existence in Europe over the past three centuries than have been documented as becoming extinct over the same period, even though most new hybrid-origin species are likely to remain undetected. Current speciation rates are unusually high and they could be higher than during or after previous mass extinctions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Activated carbon decreases invasive plant growth by mediating plant-microbe interactions.

    Science.gov (United States)

    Nolan, Nicole E; Kulmatiski, Andrew; Beard, Karen H; Norton, Jeanette M

    2014-11-10

    There is growing appreciation for the idea that plant-soil interactions (e.g. allelopathy and plant-microbe feedbacks) may explain the success of some non-native plants. Where this is the case, native plant restoration may require management tools that change plant-soil interactions. Activated carbon (AC) is one such potential tool. Previous research has shown the potential for high concentrations of AC to restore native plant growth to areas dominated by non-natives on a small scale (1 m × 1 m plots). Here we (i) test the efficacy of different AC concentrations at a larger scale (15 m × 15 m plots), (ii) measure microbial responses to AC treatment and (iii) use a greenhouse experiment to identify the primary mechanism, allelopathy versus microbial changes, through which AC impacts native and non-native plant growth. Three years after large-scale applications, AC treatments decreased non-native plant cover and increased the ratio of native to non-native species cover, particularly at concentrations >400 g m(-2). Activated carbon similarly decreased non-native plant growth in the greenhouse. This effect, however, was only observed in live soils, suggesting that AC effects were microbially mediated and not caused by direct allelopathy. Bacterial community analysis of field soils indicated that AC increased the relative abundance of an unidentified bacterium and an Actinomycetales and decreased the relative abundance of a Flavobacterium, suggesting that these organisms may play a role in AC effects on plant growth. Results support the idea that manipulations of plant-microbe interactions may provide novel and effective ways of directing plant growth and community development (e.g. native plant restoration). Published by Oxford University Press on behalf of the Annals of Botany Company.

  17. Analysing growth and development of plants jointly using developmental growth stages.

    Science.gov (United States)

    Dambreville, Anaëlle; Lauri, Pierre-Éric; Normand, Frédéric; Guédon, Yann

    2015-01-01

    Plant growth, the increase of organ dimensions over time, and development, the change in plant structure, are often studied as two separate processes. However, there is structural and functional evidence that these two processes are strongly related. The aim of this study was to investigate the co-ordination between growth and development using mango trees, which have well-defined developmental stages. Developmental stages, determined in an expert way, and organ sizes, determined from objective measurements, were collected during the vegetative growth and flowering phases of two cultivars of mango, Mangifera indica. For a given cultivar and growth unit type (either vegetative or flowering), a multistage model based on absolute growth rate sequences deduced from the measurements was first built, and then growth stages deduced from the model were compared with developmental stages. Strong matches were obtained between growth stages and developmental stages, leading to a consistent definition of integrative developmental growth stages. The growth stages highlighted growth asynchronisms between two topologically connected organs, namely the vegetative axis and its leaves. Integrative developmental growth stages emphasize that developmental stages are closely related to organ growth rates. The results are discussed in terms of the possible physiological processes underlying these stages, including plant hydraulics, biomechanics and carbohydrate partitioning. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Root foraging influences plant growth responses to earthworm foraging.

    Directory of Open Access Journals (Sweden)

    Erin K Cameron

    Full Text Available Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L. impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  19. Root foraging influences plant growth responses to earthworm foraging.

    Science.gov (United States)

    Cameron, Erin K; Cahill, James F; Bayne, Erin M

    2014-01-01

    Interactions among the foraging behaviours of co-occurring animal species can impact population and community dynamics; the consequences of interactions between plant and animal foraging behaviours have received less attention. In North American forests, invasions by European earthworms have led to substantial changes in plant community composition. Changes in leaf litter have been identified as a critical indirect mechanism driving earthworm impacts on plants. However, there has been limited examination of the direct effects of earthworm burrowing on plant growth. Here we show a novel second pathway exists, whereby earthworms (Lumbricus terrestris L.) impact plant root foraging. In a mini-rhizotron experiment, roots occurred more frequently in burrows and soil cracks than in the soil matrix. The roots of Achillea millefolium L. preferentially occupied earthworm burrows, where nutrient availability was presumably higher than in cracks due to earthworm excreta. In contrast, the roots of Campanula rotundifolia L. were less likely to occur in burrows. This shift in root behaviour was associated with a 30% decline in the overall biomass of C. rotundifolia when earthworms were present. Our results indicate earthworm impacts on plant foraging can occur indirectly via physical and chemical changes to the soil and directly via root consumption or abrasion and thus may be one factor influencing plant growth and community change following earthworm invasion. More generally, this work demonstrates the potential for interactions to occur between the foraging behaviours of plants and soil animals and emphasizes the importance of integrating behavioural understanding in foraging studies involving plants.

  20. A rare large right atrial myxoma with rapid growth rate.

    Science.gov (United States)

    Kelly, Shawn C; Steffen, Kelly; Stys, Adam T

    2014-10-01

    Atrial myxomas are the most common benign intracavitary cardiac neoplasms. They most frequently occur in the left atrium. Right atrial tumors are rare, comprising 20 percent of myxomas achieving an incidence of 0.02 percent. Due to their rarity, right atrial tumor development and associated clinical symptoms has not been well described. The classical clinical triad for the presentation of left atrial myxomas--heart failure, embolic events, and constitutional symptoms--may not be applicable to right sided tumors. Also, natural development of myxoma is not well described, as surgical resection is the common practice. Previously ascribed growth rates of myxomas refer mostly to left atrial ones, as right atrial tumors are rare. We present a case of right atrial myxoma with growth rates exceeding those previously described.

  1. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    Science.gov (United States)

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  2. Biotechnological application and taxonomical distribution of plant growth promoting actinobacteria.

    Science.gov (United States)

    Hamedi, Javad; Mohammadipanah, Fatemeh

    2015-02-01

    Plant growth promoting (PGP) bacteria are involved in various interactions known to affect plant fitness and soil quality, thereby increasing the productivity of agriculture and stability of soil. Although the potential of actinobacteria in antibiotic production is well-investigated, their capacity to enhance plant growth is not fully surveyed. Due to the following justifications, PGP actinobacteria (PGPA) can be considered as a more promising taxonomical group of PGP bacteria: (1) high numbers of actinobacteria per gram of soil and their filamentous nature, (2) genome dedicated to the secondary metabolite production (~5 to 10 %) is distinctively more than that of other bacteria and (3) number of plant growth promoter genera reported from actinobacteria is 1.3 times higher than that of other bacteria. Mechanisms by which PGPA contribute to the plant growth by association are: (a) enhancing nutrients availability, (b) regulation of plant metabolism, (c) decreasing environmental stress, (d) control of phytopathogens and (e) improvement of soil texture. Taxonomical and chemical diversity of PGPA and their biotechnological application along with their associated challenges are summarized in this paper.

  3. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize plant extracts

    Science.gov (United States)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. For phytochem...

  4. Collision-induced fragmentation accurate mass spectrometric analysis methods to rapidly characterize phytochemicals in plant extracts

    Science.gov (United States)

    The rapid advances in analytical chromatography equipment have made the reliable and reproducible measurement of a wide range of plant chemical components possible. Full chemical characterization of a given plant material is possible with the new mass spectrometers currently available. New methods a...

  5. GENETIC RELATIONSHIP BETWEEN PLANT GROWTH, SHOOT ...

    African Journals Online (AJOL)

    AISA

    Le tissu vasculaire de l'épi de maïs (Zea mays L.) transporte les nutriments utilisés dans le rendement des grains. Pour connaître l'héritabilité du développement de l'épi et de la plante, des études ont été conduites au champ pour estimer les aptitudes à la combinaison des parents qui diffèrent par la taille des graines, de.

  6. Biomécanique de mouvements rapides chez les plantes

    OpenAIRE

    Llorens, Coraline

    2014-01-01

    In this PhD work, we focus on the biomechanics of two motions among the fastest in plant kingdom. The first part is a theoretical study of the motion leading to a prey capture by the bladderwort’s traps, elastic millimeter-sized bladders closed by a flexible door. A dynamical model, based on mechanical, elastic and hydrodynamic ingredients, links the pressure difference between the trap and its surroundings with the door position by the means of two coupled ordinary differential equations. Th...

  7. Rapid growth of a Eurasian haplotype of Phragmites australis in a restored brackish marsh in Louisiana, USA

    Science.gov (United States)

    Howard, R.J.; Travis, S.E.; Sikes, B.A.

    2008-01-01

    While numerous studies have documented patterns of invasion by non-indigenous plant species, few have considered the invasive properties of non-native genotypes of native species. Characteristics associated with specific genotypes, such as tolerance to disturbance, may mistakenly be applied to an entire species in the absence of genetic information, which consequently may affect management decisions. We report here on the incidence and growth of an introduced lineage of Phragmites australis in the Gulf of Mexico coastal zone of Louisiana. P. australis was collected from nine separate locations for inclusion in a series of growth experiments. Chloroplast DNA analysis indicated that specimens collected from four locations in the Mississippi River Delta represented the introduced Eurasian haplotype; the remainder represented the gulf coast haplotype. Three distinct genotypes, or clones, were identified within each haplotype via analysis using amplified fragment length polymorphisms, which also revealed reduced genetic diversity of the gulf coast clones compared to the Eurasian clones. Clones of each haplotype were planted along with three other native macrophytes at similar densities in a restored brackish marsh and monitored for growth. After 14 months, the Eurasian haplotype had spread vegetatively to cover about 82% of the experimental plots, more than four times the coverage (18%) of the gulf coast haplotype. Thus, the use of P. australis plantings for wetland restoration should consider the genetic lineage of plants used since our results indicate the potential of the Eurasian haplotype to grow rapidly at newly restored sites. This rapid growth may limit the establishment of more slowly growing native species. ?? 2007 Springer Science+Business Media B.V.

  8. Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants.

    Science.gov (United States)

    Chakravarty, Disha; Erande, Manisha B; Late, Dattatray J

    2015-10-01

    We report investigations on the use of graphene quantum dots for growth enhancement in coriander (Coriandrum sativam L.) and garlic (Allium sativum) plants. The as-received seeds of coriander and garlic were treated with 0.2 mg mL(-1) of graphene quantum dots for 3 h before planting. Graphene quantum dots enhanced the growth rate in coriander and garlic plants, including leaves, roots, shoots, flowers and fruits, when the seeds were treated with graphene quantum dots. Our investigations open up the opportunity to use graphene quantum dots as plant growth regulators that can be used in a variety of other food plants for high yield. © 2015 Society of Chemical Industry.

  9. NLR-parser: rapid annotation of plant NLR complements.

    Science.gov (United States)

    Steuernagel, Burkhard; Jupe, Florian; Witek, Kamil; Jones, Jonathan D G; Wulff, Brande B H

    2015-05-15

    The repetitive nature of plant disease resistance genes encoding for nucleotide-binding leucine-rich repeat (NLR) proteins hampers their prediction with standard gene annotation software. Motif alignment and search tool (MAST) has previously been reported as a tool to support annotation of NLR-encoding genes. However, the decision if a motif combination represents an NLR protein was entirely manual. The NLR-parser pipeline is designed to use the MAST output from six-frame translated amino acid sequences and filters for predefined biologically curated motif compositions. Input reads can be derived from, for example, raw long-read sequencing data or contigs and scaffolds coming from plant genome projects. The output is a tab-separated file with information on start and frame of the first NLR specific motif, whether the identified sequence is a TNL or CNL, potentially full or fragmented. In addition, the output of the NB-ARC domain sequence can directly be used for phylogenetic analyses. In comparison to other prediction software, the highly complex NB-ARC domain is described in detail using several individual motifs. © The Author 2015. Published by Oxford University Press.

  10. Rapid growth of left atrial myxoma after radiofrequency ablation.

    Science.gov (United States)

    Rubio Alvarez, José; Martinez de Alegria, Anxo; Sierra Quiroga, Juan; Adrio Nazar, Belen; Rubio Taboada, Carola; Martinez Comendador, José Manuel

    2013-01-01

    Atrial myxoma is the most common benign tumor of the heart, but its appearance after radiofrequency ablation is very rare. We report a case in which an asymptomatic, rapidly growing cardiac myxoma arose in the left atrium after radiofrequency ablation. Two months after the procedure, cardiovascular magnetic resonance, performed to evaluate the right ventricular anatomy, revealed a 10 × 10-mm mass (assumed to be a thrombus) attached to the patient's left atrial septum. Three months later, transthoracic echocardiography revealed a larger mass, and the patient was diagnosed with myxoma. Two days later, a 20 × 20-mm myxoma weighing 37 g was excised. To our knowledge, the appearance of an atrial myxoma after radiofrequency ablation has been reported only once before. Whether tumor development is related to such ablation or is merely a coincidence is uncertain, but myxomas have developed after other instances of cardiac trauma.

  11. [A hydroponic cultivation system for rapid high-yield transient protein expression in Nicotiana plants under laboratory conditions].

    Science.gov (United States)

    Mo, Qianzhen; Mai, Rongjia; Yang, Zhixiao; Chen, Minfang; Yang, Tiezhao; Lai, Huafang; Yang, Peiliang; Chen, Qiang; Zhou, Xiaohong

    2012-06-01

    To develop a hydroponic Nicotiana cultivation system for rapid and high-yield transient expression of recombinant proteins under laboratory conditions. To establish the hydroponic cultivation system, several parameters were examined to define the optimal conditions for the expression of recombinant proteins in plants. We used the green fluorescent protein (GFP) and the geminiviral plant transient expression vector as the model protein/expression vector. We examined the impact of Nicotiana species, the density and time of Agrobacterium infiltration, and the post-infiltration growth period on the accumulation of GFP. The expression levels of GFP in Nicotiana leaves were then examined by Western blotting and ELISA. Our data indicated that a hydroponic Nicotiana cultivation system with a light intensity of 9000 LX/layer, a light cycle of 16 h day/8 h night, a temperature regime of 28 degrees celsius; day/21 degrees celsius; night, and a relative humidity of 80% could support the optimal plant growth and protein expression. After agroinfiltration with pBYGFPDsRed.R/LBA4404, high levels of GFP expression were observed in both N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants cultured with this hydroponic cultivation system. An optimal GFP expression was achieved in both Nicotiana species leaves 4 days after infiltration by Agrobacterium with an OD(600) of 0.8. At a given time point, the average biomass of N. tobaccum (cv. Yuyan No.5) was significantly higher than that of N. benthamiana. The leaves from 6-week-old N. benthamiana plants and 5-week-old N. tobaccum (cv. Yuyan No.5) plants could be the optimal material for agroinfiltration. We have established a hydroponic cultivation system that allows robust growth of N. benthamiana and N. tobaccum (cv. Yuyan No.5) plants and the optimal GFP expression in the artificial climate box.

  12. Antagonistic Compounds Producing Plant Growth Promoting Rhizobacteria: A Tool for Management of Plant Disease

    OpenAIRE

    Himanshu Singh; Vishakha Jaiswal; Siddhi Singh; S. P. Tiwari; Bharti Singh; Deepmala Katiyar

    2017-01-01

    Agriculture is facing struggle to meet the various confront of reducing plant diseases for an increasing world population food security. Great quantities of synthetic fertilizers and pesticides are required for high productivity which can damage ecosystem structures and functions, including the soil microbial community which plays an important role in agriculture sustainability. Soil is an excellent niche of growth of much plant growth promoting rhizobacteria. PGPR are naturally occurring soi...

  13. Effects of lead on plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Fiussello, N.; Molinari, M.T.

    1973-01-01

    The poisonousness of lead nitrate to seedlings of several plant species has been tested in Petri dishes, with 10/sup -1/, 10/sup -2/, 10/sup -3/, 10/sup -4/ M conc. Distilled water and KNO/sub 3/ solutions 2 X 10/sup -1/, 2 X 10/sup -2/, 2 X 10/sup -3/, 2 X 10/sup -4/ M were employed as controls. The tested species show a decreasing sensitivity: Capsicum annum > Beta vulgaris > Phalaris canariensis > Vicia sativa > Helianthus annuus > Oryza sativa > Triticum vulgare Avena sativa > Pisum sativum. Avena sativa shows a diminution of 34% in ww, 23% in dw, 26% in chlorophyll content in comparison with the controls after 21 days 10/sup -4/ M lead nitrate. The chlorophyll content, referred to dry weight, is related to lead concentration. Since the early stages of chlorophyll biosynthesis are similar, if not identical, with those for Haemoglobin, lead could interfere as it does in haemoglobin synthesis.

  14. Assessing the Potential of Low-Cost 3D Cameras for the Rapid Measurement of Plant Woody Structure

    Directory of Open Access Journals (Sweden)

    Charles Nock

    2013-11-01

    Full Text Available Detailed 3D plant architectural data have numerous applications in plant science, but many existing approaches for 3D data collection are time-consuming and/or require costly equipment. Recently, there has been rapid growth in the availability of low-cost, 3D cameras and related open source software applications. 3D cameras may provide measurements of key components of plant architecture such as stem diameters and lengths, however, few tests of 3D cameras for the measurement of plant architecture have been conducted. Here, we measured Salix branch segments ranging from 2–13 mm in diameter with an Asus Xtion camera to quantify the limits and accuracy of branch diameter measurement with a 3D camera. By scanning at a variety of distances we also quantified the effect of scanning distance. In addition, we also test the sensitivity of the program KinFu for continuous 3D object scanning and modeling as well as other similar software to accurately record stem diameters and capture plant form (<3 m in height. Given its ability to accurately capture the diameter of branches >6 mm, Asus Xtion may provide a novel method for the collection of 3D data on the branching architecture of woody plants. Improvements in camera measurement accuracy and available software are likely to further improve the utility of 3D cameras for plant sciences in the future.

  15. Surfaces Self-Assembly and Rapid Growth of Amyloid Fibrils

    Science.gov (United States)

    Lin, Yichih; Petersson, E. James; Fakhraai, Zahra

    2014-03-01

    The mechanism of surface-mediated fibrillization has been considered as a key issue in understanding the origins of the neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. In vitro, amyloid proteins fold through nucleation-elongation process. There is a critical concentration for early nucleating stage. However, some studies indicate that surfaces can modulate the fibril's formation under physiological conditions, even when the concentration is much lower than the critical concentration. Here, we use a label-free procedure to monitor the growth of fibrils across many length scales. We show that near a surface, the fibrillization process appears to bypass the nucleation step and fibrils grow through a self-assembly mechanism instead. We control and measure the pre-fibrillar morphology at different stages of this process on various surfaces. The interplay between the surface concentration and diffusion constant can help identify the detailed mechanisms of surface-mediated fibril growth, which remains largely unexplored. Our works provide a new insight in designing new probes and therapies. Supported by the National Institute On Aging of the National Institutes of Health under Award Number P30AG010124.

  16. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  17. Symbiotic regulation of plant growth, development and reproduction.

    Science.gov (United States)

    Rodriguez, Russell J; Freeman, D Carl; McArthur, E Durant; Kim, Yong Ok; Redman, Regina S

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation.

  18. Light-Mediated Hormonal Regulation of Plant Growth and Development.

    Science.gov (United States)

    de Wit, Mieke; Galvão, Vinicius Costa; Fankhauser, Christian

    2016-04-29

    Light is crucial for plant life, and perception of the light environment dictates plant growth, morphology, and developmental changes. Such adjustments in growth and development in response to light conditions are often established through changes in hormone levels and signaling. This review discusses examples of light-regulated processes throughout a plant's life cycle for which it is known how light signals lead to hormonal regulation. Light acts as an important developmental switch in germination, photomorphogenesis, and transition to flowering, and light cues are essential to ensure light capture through architectural changes during phototropism and the shade avoidance response. In describing well-established links between light perception and hormonal changes, we aim to give insight into the mechanisms that enable plants to thrive in variable light environments.

  19. Responses of some Nigerian vegetables of plant growth regulator treatments.

    Science.gov (United States)

    Kadiri, M; Mukhtar, F; Agboola, D A

    1997-03-01

    The effects of single and combined growth regulator treatments of indole-3-acetic acid (IAA), gibberellic acid (GA3) and coconut milk on plant height, yield, chlorophyll and vitamin contents of Abelmoschus esculetus L and Solanum gilo L were investigated. The single growth regulator treatments consisted of 50mg/L, 100 mg/L of IAA and GA3 and 10%, 15% of coconut milk. In case of combined growth regulator treatments, the treatments were 100mg/L IAA + 100mg/L GA3, 100mg/L IAA + 15% coconut milk and 100mg/L GA3 + 15% coconut milk. Control vegetable plants were sprayed with water. Single treatments of 100mg/L IAA,100mg/L GA3. 10% and 15% coconut milk resulted in significantly increased plant height, chlorophyll contents and yield of A. esculentus, H. sabdariffa and S. gilo while only combined treatments of 100mg/L IAA + 10% coconut milk and 100mg/L GA3 + 15% coconut milk had such an effect on A. esculentus and S. gilo but not on H. sabdariffa. Moreover, singletreatments of 100mg/L GA3 and 15% coconut milk caused significantly higher vitamins A, B6 and C contents of treated plants whereas the combined treatments produced such an effect on only vitamin C contents of treated plants. Growth regulator treatments of 100mg/L GA3 and 15% coconut milk were consistently the best out of the entire growth regulator treatments tried with the treated plants having the greatest plant height, yield, chlorophyll and vitamin C contents.

  20. Designing Extraterrestrial Plant Growth Habitats with Low Pressure Atmospheres

    Science.gov (United States)

    Corey, Kenneth A.

    2002-01-01

    In-situ resource utilization, provision of human life support requirements by bioregenerative methods, and engineering constraints for construction and deployment of plant growth structures on the surface of Mars all suggest the need for plant growth studies at hypobaric pressures. Past work demonstrated that plants will likely tolerate and grow at pressures at or below 10 kPa. Based upon this premise, concepts are developed for the design of reduced pressure atmospheres in lightweight, inflatable structures for plant growth systems on Mars with the goals of maximizing design simplicity and the use of local resources. A modular pod design is proposed as it could be integrated with large-scale production systems. Atmospheric modification of pod clusters would be based upon a pulse and scrub system using mass flow methods for atmospheric transport. A specific modification and control scenario is developed for a lettuce pod to illustrate the dynamics of carbon dioxide and oxygen exchange within a pod. Considerations of minimal atmospheric crop requirements will aid in the development of engineering designs and strategies for extraterrestrial plant growth structures that employ rarefied atmospheres.

  1. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture.

    Science.gov (United States)

    Bhattacharyya, P N; Jha, D K

    2012-04-01

    Plant growth-promoting rhizobacteria (PGPR) are the rhizosphere bacteria that can enhance plant growth by a wide variety of mechanisms like phosphate solubilization, siderophore production, biological nitrogen fixation, rhizosphere engineering, production of 1-Aminocyclopropane-1-carboxylate deaminase (ACC), quorum sensing (QS) signal interference and inhibition of biofilm formation, phytohormone production, exhibiting antifungal activity, production of volatile organic compounds (VOCs), induction of systemic resistance, promoting beneficial plant-microbe symbioses, interference with pathogen toxin production etc. The potentiality of PGPR in agriculture is steadily increased as it offers an attractive way to replace the use of chemical fertilizers, pesticides and other supplements. Growth promoting substances are likely to be produced in large quantities by these rhizosphere microorganisms that influence indirectly on the overall morphology of the plants. Recent progress in our understanding on the diversity of PGPR in the rhizosphere along with their colonization ability and mechanism of action should facilitate their application as a reliable component in the management of sustainable agricultural system. The progress to date in using the rhizosphere bacteria in a variety of applications related to agricultural improvement along with their mechanism of action with special reference to plant growth-promoting traits are summarized and discussed in this review.

  2. Plant Growth-Promoting Bacteria: Mechanisms and Applications

    Directory of Open Access Journals (Sweden)

    Bernard R. Glick

    2012-01-01

    Full Text Available The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

  3. Use of lunar regolith as a substrate for plant growth

    Science.gov (United States)

    Ming, D. W.; Henninger, D. L.

    1994-01-01

    Regenerative Life Support Systems (RLSS) will be required to regenerate air, water, and wastes, and to produce food for human consumption during long-duration missions to the Moon and Mars. It may be possible to supplement some of the materials needed for a lunar RLSS from resources on the Moon. Natural materials at the lunar surface may be used for a variety of lunar RLSS needs, including (1) soils or solid-support substrates for plant growth, (2) sources for extraction of essential, plant-growth nutrients, (3) substrates for microbial populations in the degradation of wastes, (4) sources of O2 and H2, which may be used to manufacture water, (5) feed stock materials for the synthesis of useful minerals (e.g., molecular sieves), and (6) shielding materials surrounding the outpost structure to protect humans, plants, and microorganisms from harmful radiation. Use of indigenous lunar regolith as a terrestrial-like soil for plant growth could offer a solid support substrate, buffering capacity, nutrient source/storage/retention capabilities, and should be relatively easy to maintain. The lunar regolith could, with a suitable microbial population, play a role in waste renovation; much like terrestrial waste application directly on soils. Issues associated with potentially toxic elements, pH, nutrient availability, air and fluid movement parameters, and cation exchange capacity of lunar regolith need to be addressed before lunar materials can be used effectively as soils for plant growth.

  4. The Mars Plant Growth Experiment and Implications for Planetary Protection

    Science.gov (United States)

    Smith, Heather

    Plants are the ultimate and necessary solution for O2 production at a human base on Mars. Currently it is unknown if seeds can germinate on the Martian surface. The Mars Plant growth experiment (MPX) is a proposal for the first step in the development of a plant- based O2 production system by demonstrating plant germination and growth on the Martian surface. There is currently no planetary protection policy in place that covers plants on the Martian surface. We describe a planetary protection plan in compliance with NASA and COSPAR policy for a closed plant growth chamber on a Mars rover. We divide the plant growth chamber into two categories for planetary protection, the Outside: the outside of the chamber exposed to the Martian environment, and the Inside: the inside of the chamber which is sealed off from Mars atmosphere and contains the plant seeds and ancillary components for seed growth. We will treat outside surfaces of the chamber as other outside surfaces on the rover, wiped with a mixture of isopropyl alcohol and water as per Category IVb planetary protection requirements. All internal components of the MPX except the seeds and camera (including the water system, the plant growth stage and interior surface walls) will be sterilized by autoclave and subjected to sterilizing dry heat at a temperature of 125°C at an absolute humidity corresponding to a relative humidity of less than 25 percent referenced to the standard conditions of 0°C and 760 torr pressure. The seeds and internal compartments of the MPX in contact with the growth media will be assembled and tested to be free of viable microbes. MPX, once assembled, cannot survive Dry Heat Microbial Reduction. The camera with the radiation and CO2 sensors will be sealed in their own container and vented through HEPA filters. The seeds will be vernalized (microbe free) as per current Space Station methods described by Paul et al. 2001. Documentation of the lack of viable microbes on representative seeds

  5. Mechanical stress regulation of plant growth and development

    Science.gov (United States)

    Mitchell, C. A.; Myers, P. N.

    1995-01-01

    The authors introduce the chapter with a discussion of lessons from nature, agriculture, and landscapes; terms and definitions; and an historical perspective of mechanical stress regulation of plant growth and development. Topics include developmental responses to mechanical stress; mechanical stress-environment interactions; metabolic, productivity, and compositional changes; hormonal involvement; mechanoperception and early transduction mechanisms; applications in agriculture; and research implications. The discussion of hormonal involvement in mechanical stress physiology includes ethylene, auxin, gibberellins, and other phytohormones. The discussion of applications in agriculture examines windbreaks, nursery practices, height control and conditioning, and enhancement of growth and productivity. Implications for research are related to handling plant materials, space biology, and future research needs.

  6. Use of Hydrogen Peroxide to Disinfect Hydroponic Plant Growth Systems

    Science.gov (United States)

    Barta, Daniel J.; Henderson, Keith

    2000-01-01

    Hydrogen peroxide was studied as an alternative to conventional bleach and rinsing methods to disinfect hydroponic plant growth systems. A concentration of 0.5% hydrogen peroxide was found to be effective. Residual hydrogen peroxide can be removed from the system by repeated rinsing or by flowing the solution through a platinum on aluminum catalyst. Microbial populations were reduced to near zero immediately after treatment but returned to pre-disinfection levels 2 days after treatment. Treating nutrient solution with hydrogen peroxide and planting directly into trays being watered with the nutrient solution without replenishment, was found to be detrimental to lettuce germination and growth.

  7. Information Integration and Communication in Plant Growth Regulation.

    Science.gov (United States)

    Chaiwanon, Juthamas; Wang, Wenfei; Zhu, Jia-Ying; Oh, Eunkyoo; Wang, Zhi-Yong

    2016-03-10

    Plants are equipped with the capacity to respond to a large number of diverse signals, both internal ones and those emanating from the environment, that are critical to their survival and adaption as sessile organisms. These signals need to be integrated through highly structured intracellular networks to ensure coherent cellular responses, and in addition, spatiotemporal actions of hormones and peptides both orchestrate local cell differentiation and coordinate growth and physiology over long distances. Further, signal interactions and signaling outputs vary significantly with developmental context. This review discusses our current understanding of the integrated intracellular and intercellular signaling networks that control plant growth. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Time interval between cover crop termination and planting influences corn seedling disease, plant growth, and yield

    Science.gov (United States)

    Experiments were established in controlled and field environment to evaluate the effect of time intervals between cereal rye cover crop termination and corn planting on corn seedling disease, corn growth, and grain yield in 2014 and 2015. Rye termination dates ranged from 25 days before planting (DB...

  9. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Prieur, Daniel

    2010-01-01

    and peptone. The optimum temperature for growth was 60 °C, while minimum and maximum temperatures were 40 and 75 °C. The pH response was alkalitolerant with optimum pH at 7.4 and 8.5 depending on the growth medium. The distinct feature of rapid proliferation and endospore formation may allow the novel...

  10. Third international congress of plant molecular biology: Molecular biology of plant growth and development

    Energy Technology Data Exchange (ETDEWEB)

    Hallick, R.B. [ed.

    1995-02-01

    The Congress was held October 6-11, 1991 in Tucson with approximately 3000 scientists attending and over 300 oral presentations and 1800 posters. Plant molecular biology is one of the most rapidly developing areas of the biological sciences. Recent advances in the ability to isolate genes, to study their expression, and to create transgenic plants have had a major impact on our understanding of the many fundamental plant processes. In addition, new approaches have been created to improve plants for agricultural purposes. This is a book of presentation and posters from the conference.

  11. Trace gases generated in closed plant cultivation systems and their effects on plant growth.

    Science.gov (United States)

    Tani, A; Kiyota, M; Aiga, I

    1995-12-01

    Interactions between plants and trace gases, especially ethylene, were investigated from two different viewpoints; ethylene is toxic for plant growth, whereas the ethylene release rate of plants can be utilized as a plant growth indicator. When lettuce plants and shiitake mushroom mycelium were cultivated in closed chambers, ethylene concentration increased with time. Ethylene was released both from lettuce plant and from shiitake mushroom mycelium. Dioctyl phthalate (DOP) and Dibutyl phthalate (DBP) were detected, and these concentrations reached 3.7 ngL-1 for DOP and 2.4 ngL-1 for DBP 4 days after closing. Organic solvents such as xylene and toluene and organic siloxane were detected with GCMS. Visible injury was observed in lettuce plants cultivated in the chambers and it seemed to result from trace contaminants such as DOP, DBP, organic solvents, dimethylsiloxane polymer, and ethylene. In order to obtain basic data of ethylene evolution from plants, ethylene concentration in a closed chamber in which the plants were cultivated under a controlled environment (25 degrees C air temperature, 60-70% relative humidity, 250-300 micromoles m-2 s-1 photosynthetic photon flux density (PPFD)) was measured. Lettuce (Lactuca sativa L. cv. Okayama) released ethylene more than Brassica rapa var. pervidis, Brassica campestris var. communis, and Brassica campestris var. narinosa. Ethylene release rate of intact lettuce plant was highly correlated with plant growth parameters such as dry weight, leaf area and photosynthetic rate. Ethylene release rates of intact lettuce plant were affected by cultivation conditions such as ambient CO2 concentration, light intensity and light/dark period. Increase in ambient ethylene level influenced lettuce growth even at the concentration of 0.1 microliter L-1. The level of ethylene inhibited leaf expansion and slightly accelerated chlorophyll degradation. It did not affect photosynthesis and transpiration, and also little affected dry matter

  12. Multiple effects of Bacillus amyloliquefaciens volatile compounds: plant growth promotion and growth inhibition of phytopathogens.

    Science.gov (United States)

    Asari, Shashidar; Matzén, Staffan; Petersen, Mikael Agerlin; Bejai, Sarosh; Meijer, Johan

    2016-06-01

    Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. Growth Chambers on the International Space Station for Large Plants

    Science.gov (United States)

    Massa, Gioia D.; Wheeler, Raymond M.; Morrow, Robert C.; Levine, Howard G.

    2016-01-01

    The International Space Station (ISS) now has platforms for conducting research on horticultural plant species under LED (Light Emitting Diodes) lighting, and those capabilities continue to expand. The Veggie vegetable production system was deployed to the ISS as an applied research platform for food production in space. Veggie is capable of growing a wide array of horticultural crops. It was designed for low power usage, low launch mass and stowage volume, and minimal crew time requirements. The Veggie flight hardware consists of a light cap containing red (630 nanometers), blue, (455 nanometers) and green (530 nanometers) LEDs. Interfacing with the light cap is an extendable bellowsbaseplate for enclosing the plant canopy. A second large plant growth chamber, the Advanced Plant Habitat (APH), is will fly to the ISS in 2017. APH will be a fully controllable environment for high-quality plant physiological research. APH will control light (quality, level, and timing), temperature, CO2, relative humidity, and irrigation, while scrubbing any cabin or plant-derived ethylene and other volatile organic compounds. Additional capabilities include sensing of leaf temperature and root zone moisture, root zone temperature, and oxygen concentration. The light cap will have red (630 nm), blue (450 nm), green (525 nm), far red (730 nm) and broad spectrum white LEDs (4100K). There will be several internal cameras (visible and IR) to monitor and record plant growth and operations. Veggie and APH are available for research proposals.

  14. Leaf and life history traits predict plant growth in a green roof ecosystem.

    Directory of Open Access Journals (Sweden)

    Jeremy Lundholm

    Full Text Available Green roof ecosystems are constructed to provide services such as stormwater retention and urban temperature reductions. Green roofs with shallow growing media represent stressful conditions for plant survival, thus plants that survive and grow are important for maximizing economic and ecological benefits. While field trials are essential for selecting appropriate green roof plants, we wanted to determine whether plant leaf traits could predict changes in abundance (growth to provide a more general framework for plant selection. We quantified leaf traits and derived life-history traits (Grime's C-S-R strategies for 13 species used in a four-year green roof experiment involving five plant life forms. Changes in canopy density in monocultures and mixtures containing one to five life forms were determined and related to plant traits using multiple regression. We expected traits related to stress-tolerance would characterize the species that best grew in this relatively harsh setting. While all species survived to the end of the experiment, canopy species diversity in mixture treatments was usually much lower than originally planted. Most species grew slower in mixture compared to monoculture, suggesting that interspecific competition reduced canopy diversity. Species dominant in mixture treatments tended to be fast-growing ruderals and included both native and non-native species. Specific leaf area was a consistently strong predictor of final biomass and the change in abundance in both monoculture and mixture treatments. Some species in contrasting life-form groups showed compensatory dynamics, suggesting that life-form mixtures can maximize resilience of cover and biomass in the face of environmental fluctuations. This study confirms that plant traits can be used to predict growth performance in green roof ecosystems. While rapid canopy growth is desirable for green roofs, maintenance of species diversity may require engineering of conditions that

  15. Effects of the plant growth regulator, chlormequat, on mammalian fertility.

    Science.gov (United States)

    Sørensen, Martin T; Danielsen, Viggo

    2006-02-01

    This paper summarizes the consequences of exposure to chlormequat, a plant growth regulator, on reproduction in mammals. Plant growth regulators are chemicals used to manipulate plant growth, flowering and fruit yield. In grain crops, plant growth regulators are applied to promote sturdier growth and reduce the risk of lodging. Chlormequat is the most common plant growth regulator. Maximum residue limits of chlormequat in food products are 10 mg/kg in oat and pear, 3 mg/kg in wheat and rye, and 0.5 mg/kg in milk. In Denmark, results from experiments with pigs in the late 1980s showed sows that display impaired reproduction, mainly impaired oestrus, when fed grain from crop treated with chlormequat. Subsequently, the advisory body to the Danish pig industry recommended limiting the use of grain (maximum 30% of diet energy) from crop treated with chlormequat given to breeding stock due to the risk of reproduction problems. More recently, experiments have been conducted to evaluate the influence of chlormequat-treated wheat crop on reproductive function in male and female mice. These experiments showed that epididymal spermatozoa from mice on feed or water containing chlormequat had compromised fertilizing competence in vitro, while reproduction in female mice was not compromised. The estimated intake of chlormequat in the pig (0.0023 mg/kg bw/day) and the mouse (0.024 mg/kg bw/day) experiments was below the acceptable daily intake of 0.05 mg/kg bw/day. Reports from the industry do not show any effects at these low levels.

  16. Response of graywater recycling systems based on hydroponic plant growth to three classes of surfactants

    Science.gov (United States)

    Garland, J. L.; Levine, L. H.; Yorio, N. C.; Hummerick, M. E.

    2004-01-01

    Anionic (sodium laureth sulfate, SLES), amphoteric (cocamidopropyl betaine, CAPB) and nonionic (alcohol polyethoxylate, AE) surfactants were added to separate nutrient film technique (NFT) hydroponic systems containing dwarf wheat (Triticum aestivum cv. USU Apogee) in a series of 21 day trials. Surfactant was added either in a (1). temporally dynamic mode (1-3 g surfactant m(-2) growing area d(-1)) as effected by automatic addition of a 300 ppm surfactant solution to meet plant water demand, or (2). continuous mode (2 g surfactant m(-2) growing area d(-1)) as effected by slow addition (10 mLh(-1)) of a 2000 ppm surfactant solution beginning at 4d after planting. SLES showed rapid primary degradation in both experiments, with no accumulation 24 h after initial addition. CAPB and AE were degraded less rapidly, with 30-50% remaining 24 h after initial addition, but CAPB and AE levels were below detection limit for the remainder of the study. No reductions in vegetative growth of wheat were observed in response to SLES, but biomass was reduced 20-25% with CAPB and AE. Microbial communities associated with both the plant roots and wetted hardware surfaces actively degraded the surfactants, as determined by monitoring surfactant levels following pulse additions at day 20 (with plants) and day 21 (after plant removal). In order to test whether the biofilm communities could ameliorate phytotoxicity by providing a microbial community acclimated for CAPB and AE decay, the continuous exposure systems were planted with wheat seeds after crop removal at day 21. Acclimation resulted in faster primary degradation (>90% within 24h) and reduced phytotoxicity. Overall, the studies indicate that relatively small areas (3-5m(2)) of hydroponic plant systems can process per capita production of mixed surfactants (5-10 g x person(-1)d(-1)) with minimal effects on plant growth.

  17. Plant Lesions Promote the Rapid Multiplication of Escherichia coli O157:H7 on Postharvest Lettuce▿

    OpenAIRE

    Brandl, M. T.

    2008-01-01

    Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, th...

  18. Growth stimulation of dwarf peas (Pisum sativum L.) through homeopathic potencies of plant growth substances.

    Science.gov (United States)

    Baumgartner, S; Thurneysen, A; Heusser, P

    2004-10-01

    Efficacy of higher homeopathic potencies is controversial. Universally accepted specific detection assays for homeopathic dilutions do not exist. Basic research has to develop a spectrum of standardized tools to investigate the mode of action and nature of homeopathic potencies. Can the shoot growth reaction of dwarf peas (gibberellin- deficient mutants) be regarded as evidence of treatment with homeopathic potencies of plant growth substances? Pea seed (Pisum sativum L. cv. Fruher Zwerg) is immersed for 24 hours in homeopathic potency or control solutions for soaking. Plants germinate and grow in a standard cultivation substrate under controlled environmental conditions. Shoot length is measured 14 days after planting. A screening of homeopathic potencies (12x-30x) of four different plant growth substances revealed biological activity of certain potency levels of gibberellin and kinetin (p Growth stimulation through gibberellin 17x (5 x 10(-18 M)) was assessed in six independent replications; results confirmed those of the screening (p effect of gibberellin 17x seemed to weaken during the course of the experiments. The results back the hypothesis that homeopathic potencies of plant growth substances affect pea shoot growth. Dwarf peas might thus be an interesting system model for studying the action of homeopathic potencies. Further work is required to identify all boundary conditions modulating the reactivity of this system.

  19. Individualism in plant populations: using stochastic differential equations to model individual neighbourhood-dependent plant growth.

    Science.gov (United States)

    Lv, Qiming; Schneider, Manuel K; Pitchford, Jonathan W

    2008-08-01

    We study individual plant growth and size hierarchy formation in an experimental population of Arabidopsis thaliana, within an integrated analysis that explicitly accounts for size-dependent growth, size- and space-dependent competition, and environmental stochasticity. It is shown that a Gompertz-type stochastic differential equation (SDE) model, involving asymmetric competition kernels and a stochastic term which decreases with the logarithm of plant weight, efficiently describes individual plant growth, competition, and variability in the studied population. The model is evaluated within a Bayesian framework and compared to its deterministic counterpart, and to several simplified stochastic models, using distributional validation. We show that stochasticity is an important determinant of size hierarchy and that SDE models outperform the deterministic model if and only if structural components of competition (asymmetry; size- and space-dependence) are accounted for. Implications of these results are discussed in the context of plant ecology and in more general modelling situations.

  20. The effect of plant growth regulators, cultivars and substrate ...

    African Journals Online (AJOL)

    The effect of plant growth regulators, cultivars and substrate combination on production of virus free potato minitubers. ... In this study virus free plantlets of 4 potato cultivars of Agria, Marfona, Sante and Burren were achieved with meristem culture method. ... A mixture of peat moss and sand in the ratio of 1:1 was proved to ...

  1. Influence of genotype and plant growth regulator on somatic ...

    African Journals Online (AJOL)

    USER

    2010-06-28

    Jun 28, 2010 ... Two genotypes of Brassica napus species (Talayeh and RGS003) and the explants segment (hypocotyls and cotyledon) were tested for their potential to produce somatic embryos in in vitro condition. The effect of genotype, different explants and also different concentrations of plant growth regulators.

  2. Diversity and Plant Growth Promoting Properties of Rhizobacteria ...

    African Journals Online (AJOL)

    characteristics of plant growth promoting rhizobacteria (PGPR) and hence selected for further study. The sixty six isolates were further ... microorganisms as inoculum to boost production of the crop could be one of the potential ... vesicular arbuscular mycorrhizal (VAM) fungi (Glomus fasiculatum) on mineral content of tef.

  3. Effect of plant growth regulators, explants type and efficient plantlet ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... nodal segment and shoot tip) and different concentrations of plant growth regulators. Callus formation and shoot differentiation ... Key words: Naringi crenulata, callus, regeneration, leaf explants, peroxidase, total soluble protein. INTRODUCTION ... primary health care (Mousumi et al., 2007). The success.

  4. Influence of genotype and plant growth regulator on somatic ...

    African Journals Online (AJOL)

    Two genotypes of Brassica napus species (Talayeh and RGS003) and the explants segment (hypocotyls and cotyledon) were tested for their potential to produce somatic embryos in in vitro condition. The effect of genotype, different explants and also different concentrations of plant growth regulators (PGRs) including: ...

  5. Effects of plant growth regulators and photoperiod on in vitro ...

    African Journals Online (AJOL)

    In vitro microtuber production of potato (Solanum tuberosum L.) cvs. Sante and Savalan were studied on solid Murashige and Skoog (MS) basal medium applying different plant growth regulators 2,4-dichlorophenoxyacetic acid and benzylamino purine (2,4-D and BAP) and photoperiods. Cultures were exposed to 16, 8 and ...

  6. Sugarcane straw removal effects on plant growth and stalk yield

    Science.gov (United States)

    There is growing interest in sugarcane straw removal from the field to use as raw material for bioenergy production. In contrast, sugarcane straw removal may have negative implications for many soil ecosystem services and subsequent plant growth. A two-year experiment was conducted at Bom Retiro and...

  7. [Suicide with a supposedly safe plant growth regulator].

    Science.gov (United States)

    Freislederer, A; Besserer, K; Mallach, H J

    1989-01-01

    The suicide of a young man with the plant growth regulator Cycocel (chlorocholine chloride and choline chloride) is reported. Morphological and toxicological findings are presented. According to the manufacturers this product is harmless. So far cautionary labelling is not required. A discussion is given on whether such active substances should be subject to stricter controls.

  8. Influence of temperature, light and plant growth regulators on ...

    African Journals Online (AJOL)

    Effects of temperature, light and different concentrations of plant growth regulators on germination of Piper nigrum L. seeds was studied under controlled environmental conditions. Black pepper seeds were placed in. Petri dishes with filtration papers and the germination and radical development followed during eighteen ...

  9. Climate change effects on plant growth, crop yield and livestock

    NARCIS (Netherlands)

    Rötter, R.P.; Geijn, van de S.C.

    1999-01-01

    A review is given of the state of knowledge in the field of assessing climate change impacts on agricultural crops and livestock. Starting from the basic processes controlling plant growth and development, the possible impacts and interactions of climatic and other biophysical variables in different

  10. Influence of plant growth regulators on axillary shoot multiplication ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-12-17

    Dec 17, 2008 ... multiplication and iron source on growth of. Scrophularia takesimensis Nakai - a rare endemic medicinal plant. Iyyakkannu Sivanesan1, Seung Jae Hwang1 and Byoung Ryong Jeong1,2*. 1Department of Horticulture, Division of Applied Life Science (BK21 Program), Graduate School, Gyeongsang ...

  11. Changes in micronutrients, dry weight and plant growth of soybean ...

    African Journals Online (AJOL)

    Micronutrient contents (Fe, Mn, Cu and Zn) of leaves, stems and roots were also analyzed. Salinity stress negatively affected soybean cultivars and the extent of effects varied depending on the salt tolerance of the cultivars. Generally, salinity reduced the plant growth and dry weights. Fe, Mn, Cu and Zn concentrations were ...

  12. Phenotypic diversity and plant growth promoting characteristics of ...

    African Journals Online (AJOL)

    Phenotypic diversity and plant growth promoting characteristics of Mesorhizobium species isolated from chickpea ( Cicer arietinum L.) growing areas of Ethiopia. ... diversity in their different C and N-sources utilization pattern and tolerance to salinity, high temperatures, acid and alkaline pH, heavy metals and antibiotics.

  13. Effect Of Cowpea Planting Density On Growth, Yield And ...

    African Journals Online (AJOL)

    Field trials were conducted at the research farm of the National Root Crops Research Institute (NRCRI), Umudike (07° 33΄ E, 05° 29΄ N) in 2004/2005 and 2005/2006 cropping seasons to determine the effect of cowpea planting density on growth, yield and productivity of component crops in cowpea/cassava intercropping ...

  14. Response of barley plants to foliar application of growth regulators ...

    African Journals Online (AJOL)

    ... 40 and 60 days of sowing, on growth, yield as well as some physiological and chemical composition parameters of barley plants. A complete randomized block design experiment in factorial arrangement with four replicates was carried out at the farm of the National Research Centre, Shalakan, Kalubia, Egypt, during two ...

  15. Plant growth promoting rhizobacteria: Beneficial effects for healthy ...

    African Journals Online (AJOL)

    It is unanimously admitted that the chemical fertilizers and pesticides used in modern agriculture create a real environmental and public health problems. One of the promising solutions to substitute these agrochemicals products is the use of bio-resources, including plant growth promoting rhizobacteria (PGPR). The PGPR ...

  16. Short-Chain Chitin Oligomers: Promoters of Plant Growth.

    Science.gov (United States)

    Winkler, Alexander J; Dominguez-Nuñez, Jose Alfonso; Aranaz, Inmaculada; Poza-Carrión, César; Ramonell, Katrina; Somerville, Shauna; Berrocal-Lobo, Marta

    2017-02-15

    Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer) induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL) enriched to 92% with dimers (2mer), trimers (3mer) and tetramers (4mer) was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%), radicle length (25%) and total carbon and nitrogen content (6% and 8%, respectively). Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  17. Short-Chain Chitin Oligomers: Promoters of Plant Growth

    Directory of Open Access Journals (Sweden)

    Alexander J. Winkler

    2017-02-01

    Full Text Available Chitin is the second most abundant biopolymer in nature after cellulose, and it forms an integral part of insect exoskeletons, crustacean shells, krill and the cell walls of fungal spores, where it is present as a high-molecular-weight molecule. In this study, we showed that a chitin oligosaccharide of lower molecular weight (tetramer induced genes in Arabidopsis that are principally related to vegetative growth, development and carbon and nitrogen metabolism. Based on plant responses to this chitin tetramer, a low-molecular-weight chitin mix (CHL enriched to 92% with dimers (2mer, trimers (3mer and tetramers (4mer was produced for potential use in biotechnological processes. Compared with untreated plants, CHL-treated plants had increased in vitro fresh weight (10%, radicle length (25% and total carbon and nitrogen content (6% and 8%, respectively. Our data show that low-molecular-weight forms of chitin might play a role in nature as bio-stimulators of plant growth, and they are also a known direct source of carbon and nitrogen for soil biomass. The biochemical properties of the CHL mix might make it useful as a non-contaminating bio-stimulant of plant growth and a soil restorer for greenhouses and fields.

  18. [Influence of plant growth regulater on yield and quality of Salvia miltiorrhiza].

    Science.gov (United States)

    Li, Xian-En; Zhang, Xiao-Yang

    2014-06-01

    The study is aimed to investigate the effect of plant growth regulators on yield and quality of the Salvia miltiorrhiza. The plant growth regulators was spraying on Salvia plants in July or August in field experiment, then the yield, ingredient content and the antioxidant activity were determined. The results showed that plant growth regulator 'Zhuanggenling' could increase the yield of Salvia with root-planting by 38.45%. Plant growth regulator 'Duoxiaozuo' could increase the yield of Salvia with seedling planting by 14.19%. Both plant growth regulator significantly reduced the antioxidant activity of Salvia in vitro, but they had no significant effect on active ingredient contents.

  19. Increased nutritional quality of plants for long-duration spaceflight missions through choice of plant variety and manipulation of growth conditions

    Science.gov (United States)

    Cohu, Christopher M.; Lombardi, Elizabeth; Adams, William W.; Demmig-Adams, Barbara

    2014-02-01

    Low levels of radiation during spaceflight increase the incidence of eye damage and consumption of certain carotenoids (especially zeaxanthin), via a whole-food-based diet (rather than from supplements), is recommended to protect human vision against radiation damage. Availability of fresh leafy produce has, furthermore, been identified as desirable for morale during long spaceflight missions. We report that only trace amounts of zeaxanthin are retained post-harvest in leaves grown under conditions conducive to rapid plant growth. We show that growth of plants under cool temperatures and very high light can trigger a greater retention of zeaxanthin, while, however, simultaneously retarding plant growth. We here introduce a novel growth condition—low growth light supplemented with several short daily light pulses of higher intensity—that also triggers zeaxanthin retention, but without causing any growth retardation. Moreover, two plant varieties with different hardiness exhibited a different propensity for zeaxanthin retention. These findings demonstrate that growth light environment and plant variety can be exploited to simultaneously optimize nutritional quality (with respect to zeaxanthin and two other carotenoids important for human vision, lutein and β-carotene) as well as biomass production of leafy greens suitable as bioregenerative systems for long-duration manned spaceflight missions.

  20. Influence of Plant Growth Regulators (PGRs and Planting Method on Growth and Yield in Oil Pumpkin (Cucurbita pepo var. styriaca

    Directory of Open Access Journals (Sweden)

    Shirzad SURE

    2012-05-01

    Full Text Available The effect of plant growth regulators IBA (indole butyric acid, GA3 (gibberellin and ethylene (as ethephon in two methods of planting was investigated (each method was considered as a separate experiment on morphological characters and yield of medicinal pumpkin. The experiments were carried out in a factorial trial based on completely randomized block design, with four replicates. The treatments were combined with priming and spraying with the above PGRs. The first seed priming with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm, and when seedling developed to 4 leaf stage sprayed there with control (water, IBA 100 ppm, GA3 25 ppm and ethephon 200 ppm for three times. In both planting methods, there were all of these treatments. The result showed that PGRs and planting method had significant effects on vegetative, flowering and yield characteristics including: leaf area %DM plant, number of male and female flowers per plant, number of fruit/plant, fruits fresh weight, seeds length and width, number of seed per fruit, seed yield, % seeds oil and oil yield. Hence spraying with GA3 25 ppm in four leaf stage at trellis method could be a suitable treatment for enhancing growth and yield of medicinal pumpkin.

  1. Plant growth promoters and methods of using them

    KAUST Repository

    Al-Babili, Salim

    2017-01-05

    New plant growth regulators, including compounds and compositions, and methods of use including for promoting root growth. The compounds are carotenoid oxidation products, and a preferred example is 3-OH--β-apo-13-Carotenone. A method comprising promoting the growth of at least one plant with use of an effective amount of at least one composition comprising an effective amount of at least one compound which is represented by A-B-C, wherein B is a bivalent polyene moiety, A is a monovalent moiety linked to B by a six-membered carbon ring, wherein the ring has at least one substituent linked to the ring by an oxygen atom, and C is a monovalent moiety linked to B by a carbonyl group. Synergistic effects can be used with combinations of compounds.

  2. Characterization of Minnesota lunar simulant for plant growth

    Science.gov (United States)

    Oglesby, James P.; Lindsay, Willard L.; Sadeh, Willy Z.

    1993-01-01

    Processing of lunar regolith into a plant growth medium is crucial in the development of a regenerative life support system for a lunar base. Plants, which are the core of such a system, produce food and oxygen for humans and, at the same time, consume carbon dioxide. Because of the scarcity of lunar regolith, simulants must be used to infer its properties and to develop procedures for weathering and chemical analyses. The Minnesota Lunar Simulant (MLS) has been identified to date as the best available simulant for lunar regolith. Results of the dissolution studies reveal that appropriately fertilized MLS can be a suitable medium for plant growth. The techniques used in conducting these studies can be extended to investigate the suitability of actual lunar regolith as a plant growth medium. Dissolution experiments were conducted using the MLS to determine its nutritional and toxicity characteristics for plant growth and to develop weathering and chemical analysis techniques. Two weathering regimes, one with water and one with dilute organic acids simulating the root rhizosphere microenvironment, were investigated. Elemental concentrations were measured using inductively-coupled-plasma (ICP) emission spectrometry and ion chromatography (IC). The geochemical speciation model, MINTEQA2, was used to determine the major solution species and the minerals controlling them. Acidification was found to be a useful method for increasing cation concentrations to meaningful levels. Initial results indicate that MLS weathers to give neutral to slightly basic solutions which contain acceptable amounts of the essential elements required for plant nutrition (i.e., potassium, calcium, magnesium, sulfur, zinc, sodium, silicon, manganese, copper, chlorine, boron, molybdenum, and cobalt). Elements that need to be supplemented include carbon, nitrogen, and perhaps phosphorus and iron. Trace metals in solution were present at nontoxic levels.

  3. Growth and Development of Four Oaks Through Age 10 Planted at Five Spacings in a Minor Stream Bottom

    Science.gov (United States)

    Harvey E. Kennedy; Roger M. Krinard; Bryce E. Schlaegel

    1987-01-01

    The growth and development of four species of oak, planted at five spacings in a minor stream bottom in southeast Arkansas, illustrate differences among ,species and by spacing. Spacing and species affected all tree size and biomass variables except survival. Water oak developed most rapidly, while swamp chestnut oak developed most slowly. Ten year results show that...

  4. Growth and yield of strawberry plants fertilized with nitrogen and phosphorus

    Directory of Open Access Journals (Sweden)

    Reinaldo F. Medeiros

    2015-09-01

    Full Text Available ABSTRACTStrawberry (Fragaria x ananassa is a crop that has rapid growth and is highly influenced by fertilization. Due to its development speed, the plant needs to absorb sufficient macronutrients in order to meet its demand. The objective of this research was to evaluate growth and yield of strawberry under different doses of nitrogen (N, phosphorus (P and potassium (K fertilization. The treatments, using Box's central composite design, were distributed in randomized blocks with four replicates and consisted of five N doses (0.16, 0.37, 0.88, 1.4 and 1.6 g plant-1 and five P doses (0.3, 0.58, 1.2, 1.8 and 2.1 g plant-1, in the presence (1.67 g plant-1 and absence of K. Seedlings of the cultivar 'Oso Grande' were cultivated in 10-L pots. The analysed variables were: plant height, fresh fruit mass, number of leaves, number of fruits, total soluble solids and titratable acidity. The fertilization with N and P increased the values for most of the studied variables. At the highest doses of N and P, K stimulated plant yield.

  5. Getting the ecology into interactions between plants and the plant growth-promoting bacterium Pseudomonas fluorescens.

    Science.gov (United States)

    Hol, W H Gera; Bezemer, T Martijn; Biere, Arjen

    2013-01-01

    Plant growth-promoting rhizobacteria (PGPR) are increasingly appreciated for their contributions to primary productivity through promotion of growth and triggering of induced systemic resistance in plants. Here we focus on the beneficial effects of one particular species of PGPR (Pseudomonas fluorescens) on plants through induced plant defense. This model organism has provided much understanding of the underlying molecular mechanisms of PGPR-induced plant defense. However, this knowledge can only be appreciated at full value once we know to what extent these mechanisms also occur under more realistic, species-diverse conditions as are occurring in the plant rhizosphere. To provide the necessary ecological context, we review the literature to compare the effect of P. fluorescens on induced plant defense when it is present as a single species or in combination with other soil dwelling species. Specifically, we discuss combinations with other plant mutualists (bacterial or fungal), plant pathogens (bacterial or fungal), bacterivores (nematode or protozoa), and decomposers. Synergistic interactions between P. fluorescens and other plant mutualists are much more commonly reported than antagonistic interactions. Recent developments have enabled screenings of P. fluorescens genomes for defense traits and this could help with selection of strains with likely positive interactions on biocontrol. However, studies that examine the effects of multiple herbivores, pathogens, or herbivores and pathogens together on the effectiveness of PGPR to induce plant defenses are underrepresented and we are not aware of any study that has examined interactions between P. fluorescens and bacterivores or decomposers. As co-occurring soil organisms can enhance but also reduce the effectiveness of PGPR, a better understanding of the biotic factors modulating P. fluorescens-plant interactions will improve the effectiveness of introducing P. fluorescens to enhance plant production and defense.

  6. Evaluation of antimicrobial activity of selected plant extracts by rapid XTT colorimetry and bacterial enumeration.

    Science.gov (United States)

    Al-Bakri, Amal G; Afifi, Fatma U

    2007-01-01

    The aim of this study was to screen and evaluate the antimicrobial activity of indigenous Jordanian plant extracts, dissolved in dimethylsulfoxide, using the rapid XTT assay and viable count methods. XTT rapid assay was used for the initial screening of antimicrobial activity for the plant extracts. Antimicrobial activity of potentially active plant extracts was further assessed using the "viable plate count" method. Four degrees of antimicrobial activity (high, moderate, weak and inactive) against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, respectively, were recorded. The plant extracts of Hypericum triquetrifolium, Ballota undulata, Ruta chalepensis, Ononis natrix, Paronychia argentea and Marrubium vulgare had shown promising antimicrobial activity. This study showed that while both XTT and viable count methods are comparable when estimating the overall antimicrobial activity of experimental substances, there is no strong linear correlation between the two methods.

  7. Peat soil composition as indicator of plants growth environment

    Science.gov (United States)

    Noormets, M.; Tonutare, T.; Kauer, K.; Szajdak, L.; Kolli, R.

    2009-04-01

    Exhausted milled peat areas have been left behind as a result of decades-lasting intensive peat production in Estonia and Europe. According to different data there in Estonia is 10 000 - 15 000 ha of exhausted milled peat areas that should be vegetated. Restoration using Sphagnum species is most advantageous, as it creates ecological conditions closest to the natural succession towards a natural bog area. It is also thought that the large scale translocation of vegetation from intact bogs, as used in some Canadian restoration trials, is not applicable in most of European sites due to limited availability of suitable donor areas. Another possibility to reduce the CO2 emission in these areas is their use for cultivation of species that requires minimum agrotechnical measures exploitation. It is found by experiments that it is possible to establish on Vaccinium species for revegetation of exhausted milled peat areas. Several physiological activity of the plant is regulated by the number of phytohormones. These substances in low quantities move within the plant from a site of production to a site of action. Phytohormone, indole-3-acetic acid (IAA) is formed in soils from tryptophane by enzymatic conversion. This compound seems to play an important function in nature as result to its influence in regulation of plant growth and development. A principal feature of IAA is its ability to affect growth, development and health of plants. This compound activates root morphology and metabolic changes in the host plant. The physiological impact of this substance is involved in cell elongation, apical dominance, root initiation, parthenocarpy, abscission, callus formation and the respiration. The investigation areas are located in the county of Tartu (58˚ 22' N, 26˚ 43' E), in the southern part of Estonia. The soil of the experimental fields belongs according to the WRB soil classification, to the soils subgroups of Fibri-Dystric Histosols. The investigation areas were

  8. Experiments on Growth and Variation of Spaceship Loaded Plant Seeds

    Energy Technology Data Exchange (ETDEWEB)

    Kang, S. Y.; Lee, G. J.; Kim, D. S.; Kim, J. B.

    2008-08-15

    This educational experiment was designed (1)to obtain the basic information on the effects of the space environments on plant growth and mutagenesis, (2)to evaluate plant germination and seedling growth under the effect of microgravity and light conditions and (3)to improve a child's scientific mind through the real-time observations of a seedling growth for two plants conducted both in space and on earth. This project was implemented?as one of the missions in the Korean Astronaut Program. Seeds of eleven plant species (rice, soybean, rape, radish, hot pepper, perilla, arabidopsis, orchids, dandelion, hibiscus, cosmos) was vacuum-sealed in aluminium bags. Those seeds was loaded in the 'Progress' spaceship in Feb. 2008, traveled in the 'Progress', placed in the Russian Sector-International Space Station (RS-ISS), and then was brought by the Korean astronaut from the RS-ISS, and handed over to us at Korea Atomic Energy Research Institute(KAERI). The germination rate, plant growth and mutation type/frequency of the returned plants are under testing in the lab and field in KAERI now. The first Korean astronaut, Dr. So-Yeon Yi, who had returned to earth on April 19, 2008 after successfully completing her scientific mission for 12 days in Space, performed the experiment of plant germination and seedling growth in the International Space Station (ISS), and a similarly designed experiment kit was distributed to conduct the experiment by student and adult volunteers in Korea at the same time. The experiment was to observe the effects of microgravity and light on a seedling growth for soybean and radish. We designed a growth kit that was an all-in-one package consisting of seeds (12 seeds in each chamber) and rock wool as a growing medium filled in four polycarbonate growing chambers in a light proof textile bag or carton paper. The bottom of the chamber was filled with a tightly-fitted rock wool which can hold water and provide moisture during a

  9. 15. international conference on plant growth substances: Program -- Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    Since the 14th Conference in Amsterdam in 1991, progress in plant hormone research and developmental plant biology has been truly astonishing. The five ``classical`` plant hormones, auxin, gibberellin, cytokinin, ethylene, and abscisic acid, have been joined by a number of new signal molecules, e.g., systemin, jasmonic acid, salicylic acid, whose biosynthesis and functions are being understood in ever greater detail. Molecular genetics has opened new vistas in an understanding of transduction pathways that regulate developmental processes in response to hormonal and environmental signals. The program of the 15th Conference includes accounts of this progress and brings together scientists whose work focuses on physiological, biochemical, and chemical aspects of plant growth regulation. This volume contains the abstracts of papers presented at this conference.

  10. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Science.gov (United States)

    Stoks, Robby; De Block, Marjan

    2011-02-24

    Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  11. Rapid and reliable extraction of genomic DNA from various wild-type and transgenic plants

    Directory of Open Access Journals (Sweden)

    Yang Moon-Sik

    2004-09-01

    Full Text Available Abstract Background DNA extraction methods for PCR-quality DNA from calluses and plants are not time efficient, since they require that the tissues be ground in liquid nitrogen, followed by precipitation of the DNA pellet in ethanol, washing and drying the pellet, etc. The need for a rapid and simple procedure is urgent, especially when hundreds of samples need to be analyzed. Here, we describe a simple and efficient method of isolating high-quality genomic DNA for PCR amplification and enzyme digestion from calluses, various wild-type and transgenic plants. Results We developed new rapid and reliable genomic DNA extraction method. With our developed method, plant genomic DNA extraction could be performed within 30 min. The method was as follows. Plant tissue was homogenized with salt DNA extraction buffer using hand-operated homogenizer and extracted by phenol:chloroform:isoamyl alcohol (25:24:1. After centrifugation, the supernatant was directly used for DNA template for PCR, resulting in successful amplification for RAPD from various sources of plants and specific foreign genes from transgenic plants. After precipitating the supernatant, the DNA was completely digested by restriction enzymes. Conclusion This DNA extraction procedure promises simplicity, speed, and efficiency, both in terms of time and the amount of plant sample required. In addition, this method does not require expensive facilities for plant genomic DNA extraction.

  12. Effect of Media Culture on Growth and Sucker Pandanus Plant

    Directory of Open Access Journals (Sweden)

    ali salehi sardoei

    2017-02-01

    Full Text Available Introduction: One factor that is of great importance to the cultivation of flowers and ornamental plants, is the media. Planting plants in containers as an important component of the nursery technology has grown. Compared with farm volume, growth media used for each plant greatly reduce plant growth that largely influence by the physical and chemical properties of growth media used. Therefore, good management of potted plants bed will cause the plants have good quality. A good growth media with optimal physical and biological properties, relatively inexpensive, stable and style enough to work should be available. The Burgers showed that composted green waste can be used as substrates for soilless cultivation and improve the water-holding capacity of soil. The garden has a range of materials including hardwood and softwood bark, leaves, soil, waste, sewage sludge and coconut (cocopeat that has been used as a seed bed. According to the economic issues and increasing moisture storage, palm peat substrates are primary material that can be prepared as a good growth medium for the producing's presented level Country. Peat moss is not applicable to all plants because of high cost and poor absorption characteristics like low pH and low water holding capacity . This study was conducted to investigate the possibility of replacing peat moss palm waste and the effect of it on growth characteristics were studied. Materials and Methods: The experimental design was completely randomized design with four replications of eight treatments. The compressed unit (block was supplied and commercial cocopeat was used because of reducing the cost of transportation. Before applying this material, the amount of water was added for opening up and voluminous and become it completely uniform.. In treatments containing sand + perlite, these four types volume ratio of 1:1 and mixed with sand + perlite were used. First, wooden cuttings of pandanus in a bed of sand rooted in the

  13. Improvements in plant growth rate using underwater discharge

    Science.gov (United States)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  14. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis.

    Science.gov (United States)

    Dafoe, Nicole J; Huffaker, Alisa; Vaughan, Martha M; Duehl, Adrian J; Teal, Peter E; Schmelz, Eric A

    2011-09-01

    Plants damaged by insect herbivory often respond by inducing a suite of defenses that can negatively affect an insect's growth and fecundity. Ostrinia nubilalis (European corn borer, ECB) is one of the most devastating insect pests of maize, and in the current study, we examined the early biochemical changes that occur in maize stems in response to ECB herbivory and how these rapidly induced defenses influence the growth of ECB. We measured the quantities of known maize defense compounds, benzoxazinoids and the kauralexin class of diterpenoid phytoalexins. ECB herbivory resulted in decreased levels of the benzoxazinoid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (DIMBOA-Glc), and a corresponding increase in 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc). Total quantities of benzoxazinoids and kauralexins were increased as early as 24 h after the initiation of ECB feeding. The plant hormones, jasmonic acid (JA) and ethylene (ET), and the transcripts encoding their key biosynthetic enzymes also accumulated in response to ECB herbivory, consistent with a role in defense regulation. The combined pharmacological application of JA and the ET precursor, 1-aminocyclopropane-1-carboxylic acid to stem internode tissue likewise resulted in changes in benzoxazinoids similar to that observed with ECB damage. Despite the fact that maize actively mounts a defense response to ECB stem feeding, no differences in percent weight gain were observed between ECB larvae that fed upon non-wounded control tissues compared to tissues obtained from plants previously subjected to 24 h ECB stem herbivory. These rapid defense responses in maize stems do not appear to negatively impact ECB growth, thus suggesting that ECB have adapted to these induced biochemical changes.

  15. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  16. [Effects of plant growth regulator uniconazole on plant morphology and biomass allocation of Salvia miltiorrhiza].

    Science.gov (United States)

    Gao, Shu-rui; Zhao, Zhi-gang; Hou, Jun-ling; Wang, Wen-quan; Song, Yan; Yan, Bin-bin; Jin, Yan-qing

    2015-05-01

    In this study, we use pot experiment to evaluate the effect of plant growth regulator on plant morphology and biomass allocation of Salvia miltiorrhiza. Different concentrations of uniconazole were supplied to S. miltioohiza by means of foliar spray. Height, breadth and stem diameter were measured dynamically, the biomass of leaf, stem, flower and fruit, root biomass and biomass ratio were also examined at the harvest time. Owing to the treatment, plant morphology showed significant changes, the height had been greatly reduced and the breadth decreased largely. Meanwhile, the biomass allocation changed too. The biomass ratio of leaf and stem had been notably reduced while the biomass ratio of root had been increased remarkably. It appears that foliar application of uniconazole during vigorous growth period in S. miltioohiza has dramatic effect on dwarfing plant and improving resistant to lodging. This measure could also be applied to condensed cultivation of S. miltioohiza to increase production.

  17. Plant Growth Biophysics: the Basis for Growth Asymmetry Induced by Gravity

    Science.gov (United States)

    Cosgrove, D.

    1985-01-01

    The identification and quantification of the physical properties altered by gravity when plant stems grow upward was studied. Growth of the stem in vertical and horizontal positions was recorded by time lapse photography. A computer program that uses a cubic spline fitting algorithm was used to calculate the growth rate and curvature of the stem as a function of time. Plant stems were tested to ascertain whether cell osmotic pressure was altered by gravity. A technique for measuring the yielding properties of the cell wall was developed.

  18. The rapid analysis of fungal growth in the presence of inhibitory effects

    OpenAIRE

    Williams, Tyson

    2011-01-01

    For fungal contamination of foodstuffs, there are no fast, reliable, automated techniques to examine growth, nor have any predictive models been developed to describe the growth in the same way as for bacteria. Traditional plating methods can take 3 to 7 days to get adequate results depending on the fungal species utilised and well over a month for challenge testing, an unacceptable delay especially for the food industry. In this study two rapid analysis techniques were investi...

  19. Demonstrated rapid growth of a corpus callosum cavernous angioma within a short period of time.

    Science.gov (United States)

    Ozer, E; Yücesoy, K; Kalemci, O

    2005-12-01

    Cavernous angiomas are uncommon central nervous system vascular malformations. They occur in the corpus callosum very rarely. In this study we report a case of corpus callosum cavernous angioma which demonstrated rapid growth within a short period of time. Corpus callosum cavernous angiomas have distinct features regarding growth and should be treated more carefully by giving more importance to surgical removal rather than a conservative approach.

  20. Increasing plant growth by modulating omega-amidase expression in plants

    Science.gov (United States)

    Unkefer, Pat J.; Anderson, Penelope S.; Knight, Thomas J.

    2015-06-30

    The present disclosure relates to compositions and methods for increasing the leaf-to-root ratio of the signal metabolite 2-oxoglutaramate and related proline molecules in plants by modulating levels of .omega.-amidase to increase nitrogen use efficiency, resulting in enhanced growth, faster growth rates, greater seed and fruit/pod yields, earlier and more productive flowering, increased tolerance to high salt conditions, and increased biomass yields.

  1. Study of creep cavity growth for power plant lifetime assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wu Rui; Sandstroem, Rolf

    2001-01-01

    This report aims to the sub project lifetime assessment by creep (livslaengdspredikteringar vid kryp), which is involved in the project package strength in high temperature power plant, KME 708. The physical creep damage includes mainly cavities and their development. Wu and Sandstroem have observed that cavity size increases linearly with increasing creep strain in a 12%Cr steel. Sandstroem has showed that, based on the relations between the nucleation and growth of creep cavities with creep strain, the physical creep damage can be modelled as a function of creep strain. In the present paper the growth of creep cavity radius R in relation to time t and strain {epsilon} in low alloy and 12%Cr steels as well as a Type 347 steel has been studied. The results exhibit that the power law cavity radius with creep time (R-t) and with creep strain (R-{epsilon}) relations are found for these materials at various testing conditions. The power law R-t and R-{epsilon} relations are in most cases dependent and independent on testing conditions, respectively. The empirical power law R-{epsilon} relations give a description of cavity evolution, which can be used for lifetime assessment. Experimental data have also been compared to the estimations by the classical models for cavity growth, including the power law growth due to Hancock, the diffusion growth due to Speight and Harris, the constrained diffusion growths due to Dyson and due to Rice and the enhanced diffusion growth due to Beere. It appears that the constraint diffusion growth models give a reasonable estimation of R-{epsilon} relation in many cases. The diffusion growth model is only applicable for limited cases where the power over t in R-t relation takes about 1/3. The power law and the enhanced diffusion models are found in most cases to overestimate the cavity growth.

  2. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.

    Science.gov (United States)

    Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan

    2017-11-10

    Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min(-1) for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Plant development in space: Observations on root formation and growth

    Science.gov (United States)

    Levine, H. G.; Kann, R. P.; Krikorian, Abraham D.

    1990-01-01

    Root growth in space is discussed and observations on root production from plants flown as part of the Chromex project that were defined as to their origin, stage of development and physiological status, are presented. Roots were generated from fully differentiated, aseptically maintained individuals of Haplopappus gracilis (Compositae) under spaceflight conditions. Results are compared for tissue culture generated plantlets and comparably sized seedling clone individuals, both of which had their roots trimmed on Earth before they were loaded into NASA's plant growth unit and subjected to a 5 day shuttle flight (STS-29). Asepsis was maintained throughout the experiment. Overall root production was 40 to 50 percent greater under spaceflight conditions than during ground control tests. However, root formation slowed down towards the end of the flight. This decrease in new roots did not occur in the ground controls that sought to simulate flight except for microgravity.

  4. Effects of different plant growth regulators on blueberry fruit quality

    Science.gov (United States)

    Zhang, X. C.; Zhu, Y. Q.; Wang, Y. N.; Luo, C.; Wang, X.

    2017-08-01

    In order to understand the effects of different plant growth regulators (PGRs) on blueberry fruit growth, various concentrations of Abscisic acid (ABA), Methyl jasmonate (MJ), Brassinolide (BR), Melatonin (MT) were sprayed on blueberry cv. ‘Brigita’ fruits. The results showed that all the PGRs put into effect on improving the quality of blueberry fruit. Comparing with the control plants no PGR spraying,300 mg/L of MT treatment promoted effectively accumulation of the soluble sugar. ABA 20mg/L treatment in-creased effectively accumulation of anthocyanin, and significantly decreased titratable acid content. The treatment of MJ 10mg/L improved significantly the soluble solid content. The effect of the four PGRs treatments on appearance did not show obvious difference.

  5. Melatonin: plant growth regulator and/or biostimulator during stress?

    Science.gov (United States)

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2014-12-01

    Melatonin regulates the growth of roots, shoots, and explants, to activate seed germination and rhizogenesis and to delay induced leaf senescence. The antioxidant properties of melatonin would seem to explain, at least partially, its ability to fortify plants subjected to abiotic stress. In this Review we examine recent data on the gene-regulation capacity of melatonin that point to many interesting features, such as the upregulation of anti-stress genes and recent aspects of the auxin-independent effects of melatonin as a plant growth regulator. This, together with the recent data on endogenous melatonin biosynthesis induction by environmental factors, makes melatonin an interesting candidate for use as a natural biostimulating treatment for field crops. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Growth and photosynthetic responses of wheat plants grown in space

    Science.gov (United States)

    Tripathy, B. C.; Brown, C. S.; Levine, H. G.; Krikorian, A. D.

    1996-01-01

    Growth and photosynthesis of wheat (Triticum aestivum L. cv Super Dwarf) plants grown onboard the space shuttle Discovery for 10 d were examined. Compared to ground control plants, the shoot fresh weight of space-grown seedlings decreased by 25%. Postflight measurements of the O2 evolution/photosynthetic photon flux density response curves of leaf samples revealed that the CO2-saturated photosynthetic rate at saturating light intensities in space-grown plants declined 25% relative to the rate in ground control plants. The relative quantum yield of CO2-saturated photosynthetic O2 evolution measured at limiting light intensities was not significantly affected. In space-grown plants, the light compensation point of the leaves increased by 33%, which likely was due to an increase (27%) in leaf dark-respiration rates. Related experiments with thylakoids isolated from space-grown plants showed that the light-saturated photosynthetic electron transport rate from H2O through photosystems II and I was reduced by 28%. These results demonstrate that photosynthetic functions are affected by the microgravity environment.

  7. Dynamic Plant-Plant-Herbivore Interactions Govern Plant Growth-Defence Integration

    NARCIS (Netherlands)

    Vries, de Jorad; Evers, Jochem B.; Poelman, Erik H.

    2017-01-01

    Plants downregulate their defences against insect herbivores upon impending competition for light. This has long been considered a resource trade-off, but recent advances in plant physiology and ecology suggest this mechanism is more complex. Here we propose that to understand why plants regulate

  8. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    Science.gov (United States)

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  9. The plant economics spectrum is structured by leaf habits and growth forms across subtropical species.

    Science.gov (United States)

    Zhao, Yan-Tao; Ali, Arshad; Yan, En-Rong

    2017-02-01

    The plant economics spectrum that integrates the combination of leaf and wood syndromes provides a useful framework for the examination of species strategies at the whole-plant level. However, it remains unclear how species that differ in leaf habits and growth forms are integrated within the plant economics spectrum in subtropical forests. We measured five leaf and six wood traits across 58 subtropical plant species, which represented two leaf habits (evergreen vs deciduous) and two growth forms (tree vs shrub) in eastern China. Principal component analysis (PCA) was employed separately to construct the leaf (LES), wood (WES) and whole-plant (WPES) economics spectra. Leaf and wood traits are highly intra- and intercorrelated, thus defining not only the LES and WES, but also a WPES. Multi-trait variations in PCAs revealed that the traits which were representative of the acquisitive strategy, i.e., cheap tissue investment and rapid returns on that investment, were clustered at one end, while traits that represented the conservative strategy, i.e., expensive tissue investment and slower returns, were clustered at other end in each of the axes of the leaf and wood syndromes (PC1-axis) and the plant height strategy (PC2-axis). The local WPES, LES and WES were tightly correlated with each other. Evergreens shaped the conservative side, while deciduous species structured the acquisitive side of the WPES and LES. With respect to plant height strategies, trees formulated the acquisitive side and shrub species made up the conservative side of the WPES, LES and WES. In conclusion, our results suggested that the LES and WES were coordinated to a WPES for subtropical species. The finding of this local spectrum of plant form and function would be beneficial for modeling nutrient fluxes and species compositions in the changing climate, but also for understanding species strategies in an evolutionary context. © The Author 2016. Published by Oxford University Press. All rights

  10. Water stress amelioration and plant growth promotion in wheat plants by osmotic stress tolerant bacteria.

    Science.gov (United States)

    Chakraborty, U; Chakraborty, B N; Chakraborty, A P; Dey, P L

    2013-05-01

    Soil microorganisms with potential for alleviation of abiotic stresses in combination with plant growth promotion would be extremely useful tools in sustainable agriculture. To this end, the present study was initiated where forty-five salt tolerant bacterial isolates with ability to grow in high salt medium were obtained from the rhizosphere of Triticum aestivum and Imperata cylindrica. These bacteria were tested for plant-growth-promoting rhizobacteria traits in vitro such as phosphate solubilization, siderophore, ACC deaminase and IAA production. Of the forty-five isolates, W10 from wheat rhizosphere and IP8 from blady grass rhizosphere, which tested positive in all the tests were identified by morpholological, biochemical and 16SrDNA sequencing as Bacillus safensis and Ochrobactrum pseudogregnonense respectively and selected for in vivo studies. Both the bacteria could promote growth in six varieties of wheat tested in terms of increase in root and shoot biomass, height of plants, yield, as well as increase in chlorophyll content. Besides, the wheat plants could withstand water stress more efficiently in presence of the bacteria as indicated by delay in appearance of wilting symptoms increases in relative water content of treated water stressed plants in comparison to untreated stressed ones, and elevated antioxidant responses. Enhanced antioxidant responses were evident as elevated activities of enzymes such as catalase, peroxidase, ascorbate peroxidase, superoxide dismutase and glutathione reductase as well as increased accumulation of antioxidants such as carotenoids and ascorbate. Results clearly indicate that the ability of wheat plants to withstand water stress is enhanced by application of these bacteria which also function as plant growth promoting rhizobacteria.

  11. A hydroponic method for plant growth in microgravity

    Science.gov (United States)

    Wright, B. D.

    1985-01-01

    A hydroponic apparatus under development for long-term microgravity plant growth is described. The capillary effect root environment system (CERES) is designed to keep separate the nutrient and air flows, although both must be simultaneously available to the roots. Water at a pressure slightly under air pressure is allowed to seep into a plastic depression covered by a plastic screen and a porous membrane. A root in the air on the membrane outer surface draws the moisture through it. The laboratory model has a wire-based 1.241 mm mesh polyethylene screen and a filter membrane with 0.45 micron pores, small enough to prohibit root hair penetration. The design eliminates the need to seal-off the plant environment. Problems still needing attention include scaling up of the CERES size, controlling biofouling of the membrane, and extending the applications to plants without fibrous root systems.

  12. Key Gaps for Enabling Plant Growth in Future Missions

    Science.gov (United States)

    Anderson, Molly S.; Barta, Daniel; Douglas, Grace; Fritsche, Ralph; Massa, Gioia; Wheeler, Ray; Quincy, Charles; Romeyn, Matthew; Motil, Brian; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented both in media and in serious concept studies. The complexity of controlled environment agriculture and of plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. The criticality of the research, and the ideal solution, will vary depending on the mission and type of system implementation being considered.

  13. Diversity of plant growth-promoting bacteria associated with sugarcane.

    Science.gov (United States)

    Antunes, J E L; Lyra, M C C P; Ollero, F J; Freitas, A D S; Oliveira, L M S; Araújo, A S F; Figueiredo, M V B

    2017-05-10

    The sugarcane (Saccharum spp) presents economic importance, mainly for tropical regions, being an important Brazilian commodity. However, this crop is strongly dependent on fertilizers, mainly nitrogen (N). This study assessed the plant growth-promoting bacteria (PGPB) associated with sugarcane that could be used as a potential inoculant to the crop. We evaluated the genetic diversity of PGPB in the plant tissue of sugarcane varieties (RB 867515, RB 1011, and RB 92579). The primer BOX-A1R was used to differentiate the similar isolated and further sequencing 16S rRNA ribosomal gene. The 16S rRNA gene showed the presence of seven different genera distributed into four groups, the genus Bacillus, followed by Paenibacillus (20%), Burkholderia (14%), Herbaspirillum (6%), Pseudomonas (6%), Methylobacterium (6%), and Brevibacillus (3%). The molecular characterization of endophytic isolates from sugarcane revealed a diversity of bacteria colonizing this plant, with a possible biotechnological potential to be used as inoculant and biofertilizers.

  14. Early Growth of Improved Acacia mangium at Different Planting Densities

    Directory of Open Access Journals (Sweden)

    Arif Nirsatmanto

    2016-08-01

    Full Text Available Integrating tree improvement into silvicultural practices is essential in forest plantation. Concerning this fact, Acacia mangium spacing trial planted using genetically improved seed was established in West Java. This study was aimed to evaluate the impact of ages and planting density on early growth of improved seed A. mangium in the spacing trial. Improved seed from 2 seed orchards (SSO-5 and SSO-20 and a control of unimproved seed from seed stand (SS-7 were tested together in spacing 3 × 3 m and 2 × 2 m. Height, diameter, stem volume, and stand volume were observed at 3 ages. The results showed that improved seed consistently outperformed to unimproved seed. Ages were highly significant for all traits, but the significant difference varied among traits and seed sources for planting density and the interactions. High density performed better growth than low density at first year, and they were varied in subsequent ages depending on traits and seed sources. Improved seed from less intensity selection orchard was less tolerance to high density than that from high intensity selection orchard, but the tolerance was reversed in low density. Improved seed A. mangium from different level of genetic selection has responded differently in behavior to the changes of planting density.

  15. Key Gaps for Enabling Plant Growth in Future Missions

    Science.gov (United States)

    Anderson, Molly; Motil, Brian; Barta, Dan; Fritsche, Ralph; Massa, Gioia; Quincy, Charlie; Romeyn, Matthew; Wheeler, Ray; Hanford, Anthony

    2017-01-01

    Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space Administration (NASA). It also begins to identify solutions to the simpler questions identified by the group based on work initiated in 2017. Growing plants to provide food or psychological benefits to crewmembers is a common vision for the future of human spaceflight, often represented in media and in serious concept studies. The complexity of controlled environment agriculture, and plant growth in microgravity have and continue to be the subject of dedicated scientific research. However, actually implementing these systems in a way that will be cost effective, efficient, and sustainable for future space missions is a complex, multi-disciplinary problem. Key questions exist in many areas: human medical research in nutrition and psychology, horticulture, plant physiology and microbiology, multi-phase microgravity fluid physics, hardware design and technology development, and system design, operations and mission planning. This paper describes key knowledge gaps identified by a multi-disciplinary working group within the National Aeronautics and Space

  16. Governing Rapid Growth in Asia: State-led Development in Historical Perspective

    NARCIS (Netherlands)

    T-W. Ngo (Tak-Wing)

    2009-01-01

    textabstractRapid growth in Asia has often been explained in terms of effective policies pursued by a “developmental state”. In particular, countries in East Asia are said to be characterized by the presence of a strong state with technocratic capacity and social embeddedness. This inaugural address

  17. A comparison of test statistics for the recovery of rapid growth-based enumeration tests

    NARCIS (Netherlands)

    van den Heuvel, Edwin R.; IJzerman-Boon, Pieta C.

    This paper considers five test statistics for comparing the recovery of a rapid growth-based enumeration test with respect to the compendial microbiological method using a specific nonserial dilution experiment. The finite sample distributions of these test statistics are unknown, because they are

  18. Social Disruption and Rapid Community Growth: An Explication of the "Boom-Town" Hypotheses.

    Science.gov (United States)

    Thompson, James G.; And Others

    Recent case studies of social effects of rapid community growth associated with energy development in the western states have relied primarily on qualitative data with limited use of agency records, population surveys, and other secondary sources. While providing the first essential step in the orderly development of a scientific approach to…

  19. Functional analysis of six drought-inducible promoters in transgenic rice plants throughout all stages of plant growth.

    Science.gov (United States)

    Yi, Nari; Kim, Youn Shic; Jeong, Min-Ho; Oh, Se-Jun; Jeong, Jin Seo; Park, Su-Hyun; Jung, Harin; Choi, Yang Do; Kim, Ju-Kon

    2010-08-01

    There are few efficient promoters for use with stress-inducible gene expression in plants, and in particular for monocotyledonous crops. Here, we report the identification of six genes, Rab21, Wsi18, Lea3, Uge1, Dip1, and R1G1B that were induced by drought stress in rice microarray experiments. Gene promoters were linked to the gfp reporter and their activities were analyzed in transgenic rice plants throughout all stages of plant growth, from dry seeds to vegetative tissues to flowers, both before and after drought treatments. In fold induction levels, Rab21 and Wsi18 promoters ranged from 65- and 36-fold in leaves to 1,355- and 492-fold in flowers, respectively, whereas Lea3 and Uge1 were higher in leaves, but lower in roots and flowers, as compared with Rab21 and Wsi18. Dip1 and R1G1B promoters had higher basal levels of activity under normal growth conditions in all tissues, resulting in smaller fold-induction levels than those of the others. In drought treatment time course, activities of Dip1 and R1G1B promoters rapidly increased, peaked at 2 h, and remained constant until 8 h, while that of Lea3 slowly yet steadily increased until 8 h. Interestingly, Rab21 activity increased rapidly and steadily in response to drought stress until expression peaked at 8 h. Thus, we have isolated and characterized six rice promoters that are all distinct in fold induction, tissue specificity, and induction kinetics under drought conditions, providing a variety of drought-inducible promoters for crop biotechnology.

  20. Promotion of plant growth by Pseudomonas fluorescens strain SS101 via novel volatile organic compounds

    NARCIS (Netherlands)

    Park, Yong-Soon; Dutta, Swarnalee; Ann, Mina; Raaijmakers, Jos M.; Park, Kyungseok

    2015-01-01

    Abstract Volatile organic compounds (VOCs) from plant growth-promoting rhizobacteria (PGPR) play key roles in modulating plant growth and induced systemic resistance (ISR) to pathogens. Despite their significance, the physiological functions of the specific VOCs produced by Pseudomonas fluorescens

  1. Stripping Away the Soil : Plant Growth Promoting Microbiology Opportunities in Aquaponics

    NARCIS (Netherlands)

    Bartelme, Ryan P; Oyserman, Ben O; Blom, Jesse E; Sepulveda-Villet, Osvaldo J; Newton, Ryan J

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and

  2. Evaluating and optimizing horticultural regimes in space plant growth facilities

    Science.gov (United States)

    Berkovich, Y. A.; Chetirkin, P. V.; Wheeler, R. M.; Sager, J. C.

    2004-01-01

    In designing innovative space plant growth facilities (SPGF) for long duration space flight, various limitations must be addressed including onboard resources: volume, energy consumption, heat transfer and crew labor expenditure. The required accuracy in evaluating on board resources by using the equivalent mass methodology and applying it to the design of such facilities is not precise. This is due to the uncertainty of the structure and not completely understanding the properties of all associated hardware, including the technology in these systems. We present a simple criteria of optimization for horticultural regimes in SPGF: Qmax = max [M x (EBI)2/(V x E x T], where M is the crop harvest in terms of total dry biomass in the plant growth system; EBI is the edible biomass index (harvest index), V is volume occupied by the crop; E is the crop light energy supply during growth; T is the crop growth duration. The criterion reflects directly on the consumption of onboard resources for crop production. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Loblolly pine seedling growth after inoculation with plant growth-promoting rhizobacteria and ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Estes, B.L.; Enebak, S.A.; Chappelka, A.H. [Auburn Univ., Auburn, AL (United States). School of Forestry and Wildlife Sciences

    2004-07-01

    The conifer tree species with the greatest economic importance in south eastern United States plantations is Loblolly pine. Plantations require intensive fertilization, pesticide application, and irrigation. In these cases growth-promoting rhizobacteria are useful in pest control. While it was once thought that ozone in the troposphere was limited to urban areas, it is now known that it is transported far from its place of origin. Ozone is known to impact plant growth negatively. There have been no previous studies on whether growth-promoting rhizobacteria can decrease the negative effects of ozone. In this study seedlings of Loblolly pine were inoculated with either Bacillus subtilis (Ehrenberg) Cohn or Paenibacillus macerans (Schardinger) Ash. These were exposed to controlled amounts of ozone for 8-12 weeks. All plants showed decreased biomass and increased foliar damage compared to plants that were not exposed to ozone. B. subtilis inoculated plants showed less foliar damage than un-inoculated ones and root dimensions were increased. The use of growth-promoting rhizobacteria is not ready for large-scale commercial application in forestry, but this demonstration of the possible beneficial effects on ozone exposure warrants further investigation. 44 refs., 3 tabs., 2 figs.

  4. Influence of growth regulators on plant growth, yield, and skin color of specialty potatoes

    Science.gov (United States)

    2,4-D has been used since the 1950’s to enhance color in red-skinned potatoes, but there is little research on the potential use of other plant growth regulators to improve tuber skin color in the wide range of specialty potatoes now available on the market. Field trials conducted at Parma, ID in 20...

  5. Isolation of plant growth promoting rhizobacteria of guava plants (Psidium guajava

    Directory of Open Access Journals (Sweden)

    Blanca Estela Gómez Luna

    2012-09-01

    Full Text Available Guava production for 2008 in the state of Guanajuato was 177 ha in area planted and the same number of area harvested, production in 1,130.80 Ton. In traditional farming practices have made excessive use of mineral fertilizers, which, if it is true, ensure a good production are expensive and come to cause imbalances in agroecosystems by contamination of soil, water, and food. In this work we evaluated the effect of Bacillus subtilis strains as plant growth promoter rhizobacteria in guava plants under greenhouse conditions. We used three strains were inoculated potted plant with guava. We measured the height, number of branches and leaves. Guava orchards of 2 then display of soil were taken for the isolation andcharacterization of rhizobacteria. Selective medium was used with 1 - carboxylic acid, -1 - aminocyclopropane and selecting bacteria with ACC desaminase activity. For the isolates were determined antibiotic resistance, confrontation with fungal pathogens, plant growth tests in vitro and BIOLOG metabolic profiles. We found 30 isolates with ACC activities, 7 have the effect of biological control and 5 had effect on root development in vitro. The use of growth promotingrhizobacteria are an excellent alternative for improving the production of guavas, growing very little is known of themicroflora associated with the rhizosphere and the ecological role they have in the ground.

  6. Plant hydraulic traits govern forest water use and growth

    Science.gov (United States)

    Matheny, Ashley; Bohrer, Gil; Fiorella, Rich; Mirfenderesgi, Golnazalsadat

    2016-04-01

    Biophysical controls at the leaf, stem, and root levels govern plant water acquisition and use. Suites of sometimes co-varying traits afford plants the ability to manage water stress at each of these three levels. We studied the contrasting hydraulic strategies of red oaks (Q. rubra) and red maples (A. rubrum) in northern Michigan, USA. These two species differ in stomatal regulation strategy and xylem architecture, and are thought to root at different depths. Water use was monitored through sap flux, stem water storage, and leaf water potential measurements. Depth of water acquisition was determined on the basis of stable oxygen and hydrogen isotopes from xylem water samples taken from both species. Fifteen years of bole growth records were used to compare the influence of the trees' opposing hydraulic strategies on carbon acquisition and growth. During non-limiting soil moisture conditions, transpiration from red maples typically exceeded that of red oak. However, during a 20% soil dry down, transpiration from red maples decreased by more than 80%, while transpiration from red oaks only fell by 31%. Stem water storage in red maple also declined sharply, while storage in red oaks remained nearly constant. The more consistent isotopic compositions of xylem water samples indicated that oaks can draw upon a steady, deep supply of water which red maples cannot access. Additionally, red maple bole growth correlated strongly with mean annual soil moisture, while red oak bole growth did not. These results indicate that the deeper rooting strategy of red oaks allowed the species to continue transpiration and carbon uptake during periods of intense soil water limitation, when the shallow-rooted red maples ceased transpiration. The ability to root deeply could provide an additional buffer against drought-induced mortality, which may permit some anisohydric species, like red oak, to survive hydrologic conditions that would be expected to favor survival of more isohydric

  7. Chromium (VI) induced changes in growth and root plasma membrane redox activities in pea plants.

    Science.gov (United States)

    Pandey, Vivek; Dixit, Vivek; Shyam, Radhey

    2009-03-01

    The effect of chromium (Cr) on growth as well as root plasma membrane redox reactions and superoxide radical production was studied in pea (Pisum sativum L. cv. Azad) plants exposed for 7 days to 20 and 200 microM Cr (VI), respectively, supplied as potassium dichromate. The growth of pea plants declined significantly at 200 microM Cr, as indicated by reduced leaf area and biomass. Relative to the control plants (no Cr exposure), the Cr content of roots increased significantly, both at 20 and 200 microM Cr. Following exposure to 200 microM Cr, there was a significant increase in root lipid peroxidation and hydrogen peroxide (H(2)O(2)) content, while both the Fv/Fm ratio and chlorophyll content were reduced. Exposure to Cr increased NADPH-dependent superoxide production in pea root plasma membrane vesicles, with the effect being more significant at 200 microM Cr than at 20 microM Cr. Treatment with Cr rapidly increased the activities of NADPH oxidase: relative to the controls, plants exposed to 20 microM Cr showed approximately a 67% increase in activity while there was a threefold increase in those plants exposed to 200 microM Cr. NADH-ferricyanide oxido-reductase activity was found to be inhibited by 16 and 51% at 20 and 200 microM Cr, respectively. The results of this study suggest that exposure to excess Cr damages pea root plasma membrane structure and function, resulting in decreased photosynthesis and poor plant growth.

  8. Complete genome analysis of Serratia marcescens RSC-14: A plant growth-promoting bacterium that alleviates cadmium stress in host plants.

    Science.gov (United States)

    Khan, Abdur Rahim; Park, Gun-Seok; Asaf, Sajjad; Hong, Sung-Jun; Jung, Byung Kwon; Shin, Jae-Ho

    2017-01-01

    Serratia marcescens RSC-14 is a Gram-negative bacterium that was previously isolated from the surface-sterilized roots of the Cd-hyperaccumulator Solanum nigrum. The strain stimulates plant growth and alleviates Cd stress in host plants. To investigate the genetic basis for these traits, the complete genome of RSC-14 was obtained by single-molecule real-time sequencing. The genome of S. marcescens RSC-14 comprised a 5.12-Mbp-long circular chromosome containing 4,593 predicted protein-coding genes, 22 rRNA genes, 88 tRNA genes, and 41 pseudogenes. It contained genes with potential functions in plant growth promotion, including genes involved in indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis, and phosphate solubilization. Moreover, annotation using NCBI and Rapid Annotation using Subsystem Technology identified several genes that encode antioxidant enzymes as well as genes involved in antioxidant production, supporting the observed resistance towards heavy metals, such as Cd. The presence of IAA pathway-related genes and oxidative stress-responsive enzyme genes may explain the plant growth-promoting potential and Cd tolerance, respectively. This is the first report of a complete genome sequence of Cd-tolerant S. marcescens and its plant growth promotion pathway. The whole-genome analysis of this strain clarified the genetic basis underlying its phenotypic and biochemical characteristics, underpinning the beneficial interactions between RSC-14 and plants.

  9. Role of turgor pressure and solute transport in plant cell growth: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cosgrove, D.J.

    1987-10-15

    Plant cell expansion requires coordinationion of three distinct processes: wall relaxation and synthesis, water uptake, and solute uptake. Wall relaxation reduces cell turgor pressure and thereby generates the reduced water for water potential needed uptake. Our studies with pea (Pisum sativum L.) and soybean (Glycine max Merr.) seedlings have shown that water uptake is rapid and is not a major control point for growth. Our current focus is on the processes of wall relaxation and solute transport, and how they are influenced by water stress. One major goal of this project is to examine in detail the dependence of wall yielding on turgor pressure. This is being done by detailed measurements of wall relaxation in living cells, using a computer-assisted pressure microprobe and the new pressure-block technique. Our pressure-block results indicate that wall relaxation is more dynamic than expected. Rapid changes in wall yielding appear to compensate for minor fluctuations in cell turgor pressure, thus maintaining stable growth rates. A second major goal of this project is to determine the interrelationship between cell expansion and solute transport into expanding cells. We will selectively block either cell expansion or solute transport, and measure the effect of such blockage on the unblocked process. A third goal is to examine the basis for reduced cell expansion when plants are water stressed. Our results indicate that growth is retarded in part because of reduced turgor pressure, and in part because of reduced cell wall relaxation. The alteration in wall relaxation will be examined by in-vivo relaxation methods. Thus studies will provide insight into the basic cellular and physical processes controlling plant growth, and how they are perturbed by water stress. 8 refs., 1 fig.

  10. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Directory of Open Access Journals (Sweden)

    Robby Stoks

    Full Text Available BACKGROUND: Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. METHODOLOGY/PRINCIPAL FINDING: Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. CONCLUSIONS/SIGNIFICANCE: WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  11. Plant growth modeling at the JSC variable pressure growth chamber - An application of experimental design

    Science.gov (United States)

    Miller, Adam M.; Edeen, Marybeth; Sirko, Robert J.

    1992-01-01

    This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.

  12. Effects of Seed Weights on Plant Growth and Mineral Nutrition of Wheat and Bean Plants

    Directory of Open Access Journals (Sweden)

    İbrahim ERDAL

    2017-08-01

    Full Text Available This study was aimed to investigate the effects of different seed weights on plant growth, mineral nutrition and nutrient uptake of wheat and been plants. Also relations among seed weights and examined parameters were examined. For this purposes, 3 groups of wheat grains having 3.35, 4.05 and 4.98 g 100 seeds-1 and 4 groups of been grains having 30.02, 45.18, 54.01 and 58.6 g 100 seeds-1 were selected. Experiment was set up under greenhouse condition and left for growing during 2 months. After the experimental period, plants were harvested and analyzed for mineral analysis. According to the results it was seen that dry weights of both plants increased with the seed weights. For wheat plants, increasing of seed weights led to increase of plant Fe, Zn and Mn concentrations. Also K, Ca, Mg, Fe, Zn and Mn uptake of plant from the soil increased with increase of 100 seed weights. Similarly, N, Ca, Mg and concentrations of bean and nutrient uptake (K, Ca, Mg, Fe, Cu, Zn and Mn from the pot increased with the seeds weights. For both plants, while there were not any correlations among seeds weights and seed nutrient concentrations generally, there were some significant correlations among the seeds weights and dry weights, leaf nutrient concentrations and nutrient uptake.

  13. Minimising toxicity of cadmium in plants--role of plant growth regulators.

    Science.gov (United States)

    Asgher, Mohd; Khan, M Iqbal R; Anjum, Naser A; Khan, Nafees A

    2015-03-01

    A range of man-made activities promote the enrichment of world-wide agricultural soils with a myriad of chemical pollutants including cadmium (Cd). Owing to its significant toxic consequences in plants, Cd has been one of extensively studied metals. However, sustainable strategies for minimising Cd impacts in plants have been little explored. Plant growth regulators (PGRs) are known for their role in the regulation of numerous developmental processes. Among major PGRs, plant hormones (such as auxins, gibberellins, cytokinins, abscisic acid, jasmonic acid, ethylene and salicylic acid), nitric oxide (a gaseous signalling molecule), brassinosteroids (steroidal phytohormones) and polyamines (group of phytohormone-like aliphatic amine natural compounds with aliphatic nitrogen structure) have gained attention by agronomist and physiologist as a sustainable media to induce tolerance in abiotic-stressed plants. Considering recent literature, this paper: (a) overviews Cd status in soil and its toxicity in plants, (b) introduces major PGRs and overviews their signalling in Cd-exposed plants, (c) appraises mechanisms potentially involved in PGR-mediated enhanced plant tolerance to Cd and (d) highlights key aspects so far unexplored in the subject area.

  14. EFFICIENCY OF PLANT GROWTH PROMOTING RHIZOBACTERIA (PGPR IN SUGARCANE

    Directory of Open Access Journals (Sweden)

    Antonio Morgado González

    2015-10-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR are an alternative for promoting sugarcane (Saccharum spp. development. Growth promotion was evaluated in sugarcane vitroplants inoculated separately with twenty-four strains of seven different bacterial species. Total indole synthesis and phosphate solubilization activity were determined in each strain. The experimental unit was one 5 L pot filled with a sterile mixture of farm soil-agrolite and one plant. The experimental design was completely random. Inoculation consisted of 1.0 mL of bacterial suspension (1 × 107 CFU. Plant height, stem diameter, number of shoots, leaf area and dry matter of shoot and root were determined every two weeks. The Ochrobactrum anthropi strains N208 and IMP311 and Pseudomonas luteola IMPCA244 had the highest production of total indoles (116.69, 115.70 and 117.34 µg mL-1, respectively. The Stenotrophomonas maltophilia strains CA158 and 79 exhibited the highest values of phosphate solubilization (222.43 and 216.38 µg mL-1, respectively. In general, plant height increased 27.75%, stem diameter 30.75%, number of tillers 38.5%, leaf area 49%, aerial dry matter 59.75% and root dry matter 59.5%. P. luteola, P. f luorescens, O. anthropi and S. maltophilia exhibited the highest values of the leaf area index, net assimilation, and relative and absolute growth rates. P. luteola IMPCA244, O. anthropi IMP311, Aeromonas salmonicida N264, Burkholderia cepacia N172, P. f luorescens N50 and S. maltophilia 79 promoted the highest values in different response variables throughout the study. Before using these strains as sugarcane biofertilizer, additional studies are required.

  15. Preferential Promotion of Lycopersicon esculentum (Tomato) Growth by Plant Growth Promoting Bacteria Associated with Tomato.

    Science.gov (United States)

    Vaikuntapu, Papa Rao; Dutta, Swarnalee; Samudrala, Ram Babu; Rao, Vukanti R V N; Kalam, Sadaf; Podile, Appa Rao

    2014-12-01

    A total of 74 morphologically distinct bacterial colonies were selected during isolation of bacteria from different parts of tomato plant (rhizoplane, phylloplane and rhizosphere) as well as nearby bulk soil. The isolates were screened for plant growth promoting (PGP) traits such as production of indole acetic acid, siderophore, chitinase and hydrogen cyanide as well as phosphate solubilization. Seven isolates viz., NR4, NR6, RP3, PP1, RS4, RP6 and NR1 that exhibited multiple PGP traits were identified, based on morphological, biochemical and 16S rRNA gene sequence analysis, as species that belonged to four genera Aeromonas, Pseudomonas, Bacillus and Enterobacter. All the seven isolates were positive for 1-aminocyclopropane-1-carboxylate deaminase. Isolate NR6 was antagonistic to Fusarium solani and Fusarium moniliforme, and both PP1 and RP6 isolates were antagonistic to F. moniliforme. Except RP6, all isolates adhered significantly to glass surface suggestive of biofilm formation. Seed bacterization of tomato, groundnut, sorghum and chickpea with the seven bacterial isolates resulted in varied growth response in laboratory assay on half strength Murashige and Skoog medium. Most of the tomato isolates positively influenced tomato growth. The growth response was either neutral or negative with groundnut, sorghum and chickpea. Overall, the results suggested that bacteria with PGP traits do not positively influence the growth of all plants, and certain PGP bacteria may exhibit host-specificity. Among the isolates that positively influenced growth of tomato (NR1, RP3, PP1, RS4 and RP6) only RS4 was isolated from tomato rhizosphere. Therefore, the best PGP bacteria can also be isolated from zones other than rhizosphere or rhizoplane of a plant.

  16. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages

    NARCIS (Netherlands)

    Hardoim, P.R.; Hardoim, C.C.P.; Overbeek, van L.S.; Elsas, van J.D.

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However,

  17. Dynamics of seed-borne rice endophytes on early plant growth stages

    NARCIS (Netherlands)

    Hardoim, Pablo R.; Hardoim, Cristiane C. P.; van Overbeek, Leonard S.; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However,

  18. Capping hazardous red mud using acidic soil with an embedded layer of zeolite for plant growth.

    Science.gov (United States)

    Ma, Yingqun; Si, Chunhua; Lin, Chuxia

    2014-01-01

    A nearly three-year microcosm experiment was conducted to test the effectiveness of capping red mud using acidic soil with an embedded layer of zeolite in sustaining the growth of a grass species. This 'sandwich-structured' design allowed self-sustaining growth of the plants under rain-fed conditions no matter whether the underlying red mud was neutralized or not. During the initial stage, the plants grew better when the red mud was not neutralized with MgCl2 probably due to pH rise in the root zone. Neutralization of red mud led to salinization and pH decrease in the root zone. However, the difference in plant growth performance between these scenarios became less remarkable over time due to gradual improvement of soil conditions in the neutralized scenarios. Continuous leaching of soluble salts and alkali by rainwater extended the root zone to the red mud layer. As a result of vegetative production, soil organic matter rapidly accumulated. This, combined with increase in pH and decrease in salinity, markedly facilitated microbial activities and consequently improved the supply of nutrients. This study provides abasis for field-scale experimental design that will have implications for effectively establishing vegetative cover in red mud disposal sites to control dust hazards.

  19. An invasive plant alters phenotypic selection on the vegetative growth of a native congener.

    Science.gov (United States)

    Beans, Carolyn M; Roach, Deborah A

    2015-02-01

    The ecological consequences of plant competition have frequently been tested, but the evolutionary outcomes of these interactions have gone largely unexplored. The study of species invasions can make an important contribution to this field of research by allowing us to watch ecological and evolutionary processes unfold as a novel species is integrated into a plant community. We explored the ecological and evolutionary impact of an invasive jewelweed, Impatiens glandulifera, on a closely related native congener, I. capensis and asked: (1) Does the presence of the invasive jewelweed alter the fitness of native jewelweed populations? (2) Does the invasive jewelweed affect the vegetative growth of the native congener? and (3) Does the invasive jewelweed alter phenotypic selection on the vegetative traits of the native congener? We used a greenhouse competition experiment, an invasive species removal field experiment, and a survey of natural populations. We show that when the invasive jewelweed is present, phenotypic selection favors native jewelweed individuals investing less in rapid upward growth and more in branching and fruiting potential through the production of nodes. This research demonstrates that invasive plants have the potential to greatly alter natural selection on native competitors. Studies investigating altered selection in invaded communities can reveal the potential evolutionary impact of invasive competitors, while deepening our understanding of the more general role of competition in driving plant evolution and permitting species coexistence. © 2015 Botanical Society of America, Inc.

  20. Light and Plants. A Series of Experiments Demonstrating Light Effects on Seed Germination, Plant Growth, and Plant Development.

    Science.gov (United States)

    Downs, R. J.; And Others

    A brief summary of the effects of light on plant germination, growth and development, including photoperiodism and pigment formation, introduces 18 experiments and demonstrations which illustrate aspects of these effects. Detailed procedures for each exercise are given, the expected results outlined, and possible sources of difficulty discussed.…

  1. Phosphate solubilization as a microbial strategy for promoting plant growth

    Directory of Open Access Journals (Sweden)

    Mayra Eleonora Beltrán Pineda

    2014-01-01

    Full Text Available Because of the constant application of chemical inputs in Agroecosystem, the cost of crop production and environmental quality of soil and water have been affected. Microorganisms carry out most biogeochemical cycles; therefore, their role is essential for agro ecosystem balance. One such functional group is the phosphate solubilizing microorganisms, which are recognized plant growth promoters. These microbial populations perform an important activity, since in many soils there are large reserves of insoluble phosphorus, as a result of fixing much of the phosphorus fertilizer applied, which cannot be assimilated by the plant. The phosphate solubilizing microorganisms use different solubilization mechanisms such as the production of organic acids, which solubilize theses insoluble phosphates in the rhizosphere region. Soluble phosphates are absorbed by the plant, which enhances their growth and productivity. By using these phosphate reserves in soils, application of chemical fertilizers is decreased, on the one hand, can again be fixed by ions Ca, Al or Fe making them insoluble and, by the other hand, increase the costs of crop production. Microbial populations have been widely studied in different types of ecosystems, both natural and Agroecosystem. Thanks to its effectiveness, in laboratory and field studies, the phosphate solubilizing phenotype is of great interest to microbial ecologists who have begun to establish the molecular basis of the traitr.

  2. Mechanisms of action of plant growth promoting bacteria.

    Science.gov (United States)

    Olanrewaju, Oluwaseyi Samuel; Glick, Bernard R; Babalola, Olubukola Oluranti

    2017-10-06

    The idea of eliminating the use of fertilizers which are sometimes environmentally unsafe is slowly becoming a reality because of the emergence of microorganisms that can serve the same purpose or even do better. Depletion of soil nutrients through leaching into the waterways and causing contamination are some of the negative effects of these chemical fertilizers that prompted the need for suitable alternatives. This brings us to the idea of using microbes that can be developed for use as biological fertilizers (biofertilizers). They are environmentally friendly as they are natural living organisms. They increase crop yield and production and, in addition, in developing countries, they are less expensive compared to chemical fertilizers. These biofertilizers are typically called plant growth-promoting bacteria (PGPB). In addition to PGPB, some fungi have also been demonstrated to promote plant growth. Apart from improving crop yields, some biofertilizers also control various plant pathogens. The objective of worldwide sustainable agriculture is much more likely to be achieved through the widespread use of biofertilizers rather than chemically synthesized fertilizers. However, to realize this objective it is essential that the many mechanisms employed by PGPB first be thoroughly understood thereby allowing workers to fully harness the potentials of these microbes. The present state of our knowledge regarding the fundamental mechanisms employed by PGPB is discussed herein.

  3. Characterization of Plant Growth under Single-Wavelength Laser Light Using the Model Plant Arabidopsis Thaliana

    KAUST Repository

    Ooi, Amanda

    2016-12-01

    Indoor horticulture offers a promising solution for sustainable food production and is becoming increasingly widespread. However, it incurs high energy and cost due to the use of artificial lighting such as high-pressure sodium lamps, fluorescent light or increasingly, the light-emitting diodes (LEDs). The energy efficiency and light quality of currently available lighting is suboptimal, therefore less than ideal for sustainable and cost-effective large-scale plant production. Here, we demonstrate the use of high-powered single-wavelength lasers for indoor horticulture. Lasers are highly energy-efficient and can be remotely guided to the site of plant growth, thus reducing on-site heat accumulation. Besides, laser beams can be tailored to match the absorption profiles of different plants. We have developed a prototype laser growth chamber and demonstrate that laser-grown plants can complete a full growth cycle from seed to seed with phenotypes resembling those of plants grown under LEDs. Importantly, the plants have lower expression of proteins diagnostic for light and radiation stress. The phenotypical, biochemical and proteomic data show that the singlewavelength laser light is suitable for plant growth and therefore, potentially able to unlock the advantages of this next generation lighting technology for highly energy-efficient horticulture. Furthermore, stomatal movement partly determines the plant productivity and stress management. Abscisic acid (ABA) induces stomatal closure by promoting net K+-efflux from guard cells through outwardrectifying K+ (K+ out) channels to regulate plant water homeostasis. Here, we show that the Arabidopsis thaliana guard cell outward-rectifying K+ (ATGORK) channel is a direct target for ABA in the regulation of stomatal aperture and hence gas exchange and transpiration. Addition of (±)-ABA, but not the biologically inactive (−)-isomer, increases K+ out channel activity in Vicia faba guard cell protoplast. A similar ABA

  4. Loop-mediated Isothermal Amplification Assay to Rapidly Detect Wheat Streak Mosaic Virus in Quarantined Plants

    Directory of Open Access Journals (Sweden)

    Siwon Lee

    2015-12-01

    Full Text Available We developed a loop-mediated isothermal amplification (LAMP method to rapidly diagnose Wheat streak mosaic virus (WSMV during quarantine inspections of imported wheat, corn, oats, and millet. The LAMP method was developed as a plant quarantine inspection method for the first time, and its simplicity, quickness, specificity and sensitivity were verified compared to current reverse transcription-polymerase chain reaction (RT-PCR and nested PCR quarantine methods. We were able to quickly screen for WSMV at quarantine sites with many test samples; thus, this method is expected to contribute to plant quarantine inspections.

  5. Effect of crop development on biogenic emissions from plant populations grown in closed plant growth chambers

    Science.gov (United States)

    Batten, J. H.; Stutte, G. W.; Wheeler, R. M.

    1995-01-01

    The Biomass Production Chamber at John F. Kennedy Space Center is a closed plant growth chamber facility that can be used to monitor the level of biogenic emissions from large populations of plants throughout their entire growth cycle. The head space atmosphere of a 26-day-old lettuce (Lactuca sativa cv. Waldmann's Green) stand was repeatedly sampled and emissions identified and quantified using GC-mass spectrometry. Concentrations of dimethyl sulphide, carbon disulphide, alpha-pinene, furan and 2-methylfuran were not significantly different throughout the day; whereas, isoprene showed significant differences in concentration between samples collected in light and dark periods. Volatile organic compounds from the atmosphere of wheat (Triticum aestivum cv. Yecora Rojo) were analysed and quantified from planting to maturity. Volatile plant-derived compounds included 1-butanol, 2-ethyl-1-hexanol, nonanal, benzaldehyde, tetramethylurea, tetramethylthiourea, 2-methylfuran and 3-methylfuran. Concentrations of volatiles were determined during seedling establishment, vegetative growth, anthesis, grain fill and senescence and found to vary depending on the developmental stage. Atmospheric concentrations of benzaldehyde and nonanal were highest during anthesis, 2-methylfuran and 3-methylfuran concentrations were greatest during grain fill, and the concentration of the tetramethylurea peaked during senescence.

  6. Two bacterial entophytes eliciting both plant growth promotion and plant defense on pepper (Capsicum annuum L.).

    Science.gov (United States)

    Kang, Seung Hoon; Cho, Hyun-Soo; Cheong, Hoon; Ryu, Choong-Min; Kim, Jihyun F; Park, Seung-Hwan

    2007-01-01

    Plant growth-promoting rhizobacteria (PGPR) have the potential to be used as microbial inoculants to reduce disease incidence and severity and to increase crop yield. Some of the PGPR have been reported to be able to enter plant tissues and establish endophytic populations. Here, we demonstrated an approach to screen bacterial endophytes that have the capacity to promote the growth of pepper seedlings and protect pepper plants against a bacterial pathogen. Initially, out of 150 bacterial isolates collected from healthy stems of peppers cultivated in the Chungcheong and Gyeongsang provinces of Korea, 23 putative endophytic isolates that were considered to be predominating and representative of each pepper sample were selected. By phenotypic characterization and partial 16S rDNA sequence analysis, the isolates were identified as species of Ochrobacterium, Pantoea, Pseudomonas, Sphingomonas, Janthinobacterium, Ralstonia, Arthrobacter, Clavibacter, Sporosarcina, Acidovorax, and Brevundimonas. Among them, two isolates, PS4 and PS27, were selected because they showed consistent colonizing capacity in pepper stems at the levels of 10(6)-10(7) CFU/g tissue, and were found to be most closely related to Pseudomonas rhodesiae and Pantoea ananatis, respectively, by additional analyses of their entire 16S rDNA sequences. Drenching application of the two strains on the pepper seedlings promoted significant growth of peppers, enhancing their root fresh weight by 73.9% and 41.5%, respectively. The two strains also elicited induced systemic resistance of plants against Xanthomonas axonopodis pv. vesicatoria.

  7. The Effect of Plant Growth Promoting Bacteria on Transplants Growth and Lettuce Yield in Organic Production

    Directory of Open Access Journals (Sweden)

    Szczech Magdalena

    2016-12-01

    Full Text Available Application of beneficial bacterial strain B125 (Enterobacter sp. and strain PZ9 (Bacillus sp. in lettuce transplants production significantly enhanced seed germination and plant biomass. The best effect was obtained when the mixture of B125 and PZ9 was used. Combined application of these bacteria significantly increased transplants biomass, which was about 45% higher than that in the control. However, after planting these transplants in organic field, generally, there were no differences in yield and nutrient content in plants treated and not treated with the bacteria, except for nitrogen and vitamin C. The lettuce grown from transplants treated with bacterial mixture B125 + PZ9 contained significantly higher nitrogen than plants from other treatments. Opposite to nitrogen, bacterial applications decreased the amount of vitamin C. The growth and organic lettuce composition was affected by planting time. The yield was higher in spring, but the concentration of nutrients in these plants was lower than that in plants harvested in autumn. Climatic and light conditions in the late season were the reasons for increased dry matter content, minerals, phenolic compounds, and vitamin C, as well as high concentration of nitrates.

  8. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion

    Directory of Open Access Journals (Sweden)

    M. Kaleem eABBASI

    2015-03-01

    Full Text Available AbstractThe present study was conducted to characterize the native plant growth promoting bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK, Pakistan. Nine bacterial isolates were purified, screened in vitro for plant growth promoting (PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.. Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK–3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these PGPR strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76% and root N contents (up to 32% was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.

  9. Isolation and characterization of plant growth-promoting rhizobacteria from wheat rhizosphere and their effect on plant growth promotion.

    Science.gov (United States)

    Majeed, Afshan; Abbasi, M Kaleem; Hameed, Sohail; Imran, Asma; Rahim, Nasir

    2015-01-01

    The present study was conducted to characterize the native plant growth promoting (PGP) bacteria from wheat rhizosphere and root-endosphere in the Himalayan region of Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. Nine bacterial isolates were purified, screened in vitro for PGP characteristics and evaluated for their beneficial effects on the early growth of wheat (Triticum aestivum L.). Among nine bacterial isolates, seven were able to produce indole-3- acetic acid in tryptophan-supplemented medium; seven were nitrogen fixer, and four were able to solubilize inorganic phosphate in vitro. Four different morphotypes were genotypically identified based on IGS-RFLP fingerprinting and representative of each morphotype was identified by 16S rRNA gene sequencing analysis except Gram-positive putative Bacillus sp. Based on 16S rRNA gene sequence analysis, bacterial isolates AJK-3 and AJK-9 showing multiple PGP-traits were identified as Stenotrophomonas spp. while AJK-7 showed equal homologies to Acetobacter pasteurianus and Stenotrophomonas specie. Plant inoculation studies indicated that these Plant growth-promoting rhizobacteria (PGPR) strains provided a significant increase in shoot and root length, and shoot and root biomass. A significant increase in shoot N contents (up to 76%) and root N contents (up to 32%) was observed over the un-inoculated control. The study indicates the potential of these PGPR for inoculums production or biofertilizers for enhancing growth and nutrient content of wheat and other crops under field conditions. The study is the first report of wheat associated bacterial diversity in the Himalayan region of Rawalakot, AJK.

  10. Plant Growth and Development in the ASTROCULTURE(trademark) Space-Based Growth Unit-Ground Based Experiments

    Science.gov (United States)

    Bula, R. J.

    1997-01-01

    The ASTROCULTURE(trademark) plant growth unit flown as part on the STS-63 mission in February 1995, represented the first time plants were flown in microgravity in a enclosed controlled environment plant growth facility. In addition to control of the major environmental parameters, nutrients were provided to the plants with the ZEOPONICS system developed by NASA Johnson Space Center scientists. Two plant species were included in this space experiment, dwarf wheat (Triticum aestivum) and a unique mustard called "Wisconsin Fast Plants" (Brassica rapa). Extensive post-flight analyses have been performed on the plant material and it has been concluded that plant growth and development was normal during the period the plants were in the microgravity environment of space. However, adequate plant growth and development control data were not available for direct comparisons of plant responses to the microgravity environment with those of plants grown at 1 g. Such data would allow for a more complete interpretation of the extent that microgravity affects plant growth and development.

  11. Measurements of crystal growth kinetics at extreme deviations from equilibrium. [Rapid solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, M.J.

    1993-05-07

    We have measured solute trapping of Sn in Al over a wide enough range of velocities to make a quantitative test of theory. The Continuous Growth Model of Aziz is the only one-parameter model that fits the data. We have also measured the diffusive speed - the growth rate at which interfacial partitioning is in mid-transition between equilibrium partitioning and complete solute trapping - for several solutes in A1. We have found an inverse correlation between the equilibrium partition coefficient and the diffusive speed. Taken together, these results give us heretofore unprecedented predictive capability in modeling rapid solidification processing. We have also examined theoretically short-range diffusion-limited growth, characteristic of incomplete solute trapping, and interface-limited growth, characteristic of complete solute trapping, in alloy solidification and have shown that the two regimes fall naturally out of a single unified theory of solidification.

  12. Weijia Zhou Inspects the Advanced Astroculture plant growth unit

    Science.gov (United States)

    2003-01-01

    Dr. Weijia Zhou, director of the Wisconsin Center for Space Automation and Robotics at the University of Wisconsin-Madison, inspects the Advanced Astroculture(tm) plant growth unit before its first flight last spring. Coating technology is used inside the miniature plant greenhouse to remove ethylene, a chemical produced by plant leaves that can cause plants to mature too quickly. This same coating technology is used in a new anthrax-killing device. The Space Station experiment is managed by the Space Product Development Program at NASA's Marshall Space Flight Center in Huntsville, Ala. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  13. Pochonia chlamydosporia promotes the growth of tomato and lettuce plants

    Directory of Open Access Journals (Sweden)

    Rosangela Dallemole-Giaretta

    2015-10-01

    Full Text Available The fungus Pochonia chlamydosporia is one of the most studied biological agents used to control plant-parasitic nematodes. This study found that the isolates Pc-3, Pc-10 and Pc-19 of this fungus promote the growth of tomato and lettuce seedlings. The isolate Pc-19 colonized the rhizoplane of tomato seedlings in only 15 days and produced a large quantity of chlamydospores. This isolate was able to use cellulose as a carbon source, in addition to glucose and sucrose. Scanning electron microscopy (SEM revealed that hyphae of the P. chlamydosporia isolate Pc-10 penetrated the epidermal cells of the tomato roots. These three P. chlamydosporia isolates promote the growth of tomato and lettuce.

  14. Competition in artifical plant growth media by Trichoderma spp

    DEFF Research Database (Denmark)

    Sarocco, Sabrina; Lübeck, Mette; Vannacci, Giovanni

    150 isolates according to their growth rate, were evaluated as potential biocontrol agents against the soil-borne plant pathogen Rhizoctonia solani on radish in vivo in a natural peat based growth medium usually employed in commercial production. Two different temporal antagonist-pathogen soil...... of the reason why more biocontrol agents are reaching the market place. A comparative evaluation of life strategies of both the pathogen and its antagonists is required to predict the fate of a biopesticide in agricultural systems.The objectives of this work have been: 1) to screen a collection of Trichoderma...... isolates in a natural pot mix in order to select potential fungal antagonists to be employed in the biocontrol of Rhizoctonia solani damping-off of radish, and 2) to verify the hypothesis that competition for a food base plays a role in reducing pathogen activity. Fifteen Trichoderma spp., selected among...

  15. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  16. The practical influence of rapid mixing on coagulation in a full-scale water treatment plant.

    Science.gov (United States)

    Allerdings, Demitri; Förster, Gerrit; Vasyukova, Ekaterina; Uhl, Wolfgang

    2015-01-01

    This study focuses on the effect of rapid mixing on the coagulation efficiency in a full-scale drinking-water treatment plant and discusses the mechanisms involved in the floc-formation process. The results refer to three periods of operation of the waterworks when no mechanical mixing was provided in the tanks for coagulant dosing due to mechanical failure of the rapid mixers. Although a certain deterioration of the subsequent flocculation process was observed, as assessed using the data for suspended solids, turbidity, and chemical oxygen demand, the overall water treatment performance was not affected. This suggests an insignificant role for intense rapid mixing in sweep flocculation during full-scale water treatment and reveals the potential to reduce the required energy costs for mechanical mixers.

  17. Advanced phenotyping and phenotype data analysis for the plant growth and development study

    Directory of Open Access Journals (Sweden)

    Md. Matiur eRahaman

    2015-08-01

    Full Text Available Due to increase in the consumption of food, feed, fuel and to ensure global food security for rapidly growing human population, there is need to breed high yielding crops that can adapt to future climate. To solve these global issues, novel approaches are required to provide quantitative phenotypes to elucidate the genetic basis of agriculturally import traits and to screen germplasm with super performance in function under resource-limited environment. At present, plant phenomics has offered and integrated suite technologies for understanding the complete set of phenotypes of plants, towards the progression of the full characteristics of plants with whole sequenced genomes. In this aspect, high-throughput phenotyping platforms have been developed that enables to capture extensive and intensive phenotype data from non-destructive imaging over time. These developments advance our view on plant growth and performance with responses to the changing climate and environment. In this paper, we present a brief review on currently developed high-throughput plant phenotyping infrastructures based on imaging techniques and corresponding principles for phenotype data analysis.

  18. Quantitative digital imaging of banana growth suppression by plant parasitic nematodes.

    Directory of Open Access Journals (Sweden)

    Hugh Roderick

    Full Text Available A digital camera fitted with a hemispherical lens was used to generate canopy leaf area index (LAI values for a banana (Musa spp. field trial with the aim of establishing a method for monitoring stresses on tall crop plants. The trial in Uganda consisted of two cultivars susceptible to nematodes, a plantain, Gonja manjaya and an East African Highland banana, Mbwazirume, plus a nematode resistant dessert banana, Yangambi km5. A comparative approach included adding a mixed population of Radopholus similis, Helicotylenchus multicinctus and Meloidogyne spp. to the soil around half the plants of each cultivar prior to field planting. Measurements of LAI were made fortnightly from 106 days post-planting over two successive cropping cycles. The highest mean LAI during the first cycle for Gonja manjaya was suppressed to 74.8±3.5% by the addition of nematodes, while for Mbwazirume the values were reduced to 71.1±1.9%. During the second cycle these values were 69.2±2.2% and 72.2±2.7%, respectively. Reductions in LAI values were validated as due to the biotic stress by assessing nematode numbers in roots and the necrosis they caused at each of two harvests and the relationship is described. Yield losses, including a component due to toppled plants, were 35.3% and 55.3% for Gonja manjaya and 31.4% and 55.8% for Mbwazirume, at first and second harvests respectively. Yangambi km5 showed no decrease in LAI and yield in the presence of nematodes at both harvests. LAI estimated by hemispherical photography provided a rapid basis for detecting biotic growth checks by nematodes on bananas, and demonstrated the potential of the approach for studies of growth checks to other tall crop plants caused by biotic or abiotic stresses.

  19. Quantitative digital imaging of banana growth suppression by plant parasitic nematodes.

    Science.gov (United States)

    Roderick, Hugh; Mbiru, Elvis; Coyne, Danny; Tripathi, Leena; Atkinson, Howard J

    2012-01-01

    A digital camera fitted with a hemispherical lens was used to generate canopy leaf area index (LAI) values for a banana (Musa spp.) field trial with the aim of establishing a method for monitoring stresses on tall crop plants. The trial in Uganda consisted of two cultivars susceptible to nematodes, a plantain, Gonja manjaya and an East African Highland banana, Mbwazirume, plus a nematode resistant dessert banana, Yangambi km5. A comparative approach included adding a mixed population of Radopholus similis, Helicotylenchus multicinctus and Meloidogyne spp. to the soil around half the plants of each cultivar prior to field planting. Measurements of LAI were made fortnightly from 106 days post-planting over two successive cropping cycles. The highest mean LAI during the first cycle for Gonja manjaya was suppressed to 74.8±3.5% by the addition of nematodes, while for Mbwazirume the values were reduced to 71.1±1.9%. During the second cycle these values were 69.2±2.2% and 72.2±2.7%, respectively. Reductions in LAI values were validated as due to the biotic stress by assessing nematode numbers in roots and the necrosis they caused at each of two harvests and the relationship is described. Yield losses, including a component due to toppled plants, were 35.3% and 55.3% for Gonja manjaya and 31.4% and 55.8% for Mbwazirume, at first and second harvests respectively. Yangambi km5 showed no decrease in LAI and yield in the presence of nematodes at both harvests. LAI estimated by hemispherical photography provided a rapid basis for detecting biotic growth checks by nematodes on bananas, and demonstrated the potential of the approach for studies of growth checks to other tall crop plants caused by biotic or abiotic stresses.

  20. Mechanosensitive control of plant growth: Bearing the load, sensing, transducing and responding

    Directory of Open Access Journals (Sweden)

    Bruno eMoulia

    2015-02-01

    Full Text Available As land plants grow and develop, they encounter complex mechanical challenges, especially from winds and turgor pressure. Mechanosensitive control over growth and morphogenesis is an adaptive trait, reducing the risks of breakage or explosion. This control has been mostly studied through experiments with artificial mechanical loads, often focusing on cellular or molecular mechanotransduction pathway. However some important aspects of mechanosensing are often neglected. i What are the mechanical characteristics of different loads and how are loads distributed within different organs? ii What is the relevant mechanical stimulus in the cell? Is it stress, strain, or energy? iii How do mechanosensing cells signal to meristematic cells? Without answers to these questions we cannot make progress analyzing the mechanobiological effects of plant size, plant shape, tissue distribution and stiffness, or the magnitude of stimuli. This situation is rapidly changing however, as systems mechanobiology is being developed, using specific biomechanical and/or mechanobiological models. These models are instrumental in comparing loads and responses between experiments and make it possible to quantitatively test biological hypotheses describing the mechanotransduction networks. This review is designed for a general plant science audience and aims to help biologists master the models they need for mechanobiological studies. Analysis and modeling is broken down into four steps looking at how the structure bears the load, how the distributed load is sensed, how the mechanical signal is transduced, and then how the plant responds through growth. Throughout, two examples of adaptive responses are used to illustrate this approach: the thigmorphogenetic syndrome of plant shoots bending and the mechanosensitive control of shoot apical meristem morphogenesis. Overall this should provide a generic understanding of systems mechanobiology at work.

  1. Application of photoremovable protecting group for controlled release of plant growth regulators by sunlight.

    Science.gov (United States)

    Atta, Sanghamitra; Ikbal, Mohammed; Kumar, Ashutosh; Pradeep Singh, N D

    2012-06-04

    We report a novel technique for controlled release of plant growth regulators (PGRs) by sunlight using photoremovable protecting group (PRPG) as a delivery device. In the present work, carboxyl-containing PGRs of the auxin group [indoleacetic acid (IAA) and naphthoxyacetic acid (NOAA)] were chemically caged using PRPGs of coumarin derivatives. Photophysical studies showed that caged PGRs exhibited good fluorescence properties. Irradiation of caged PGRs by sunlight in both aqueous ethanol and soil media resulted in controlled release of PGRs. The results of the bioactivity experiments indicated that caged PGRs showed better enhancement in the root and shoot length growth of Cicer arietinum compared to PGRs after 10days of sunlight exposure. Our results indicated that use of PRPG as a delivery device for controlled release of PGRs by sunlight in soil holds great interest for field application since it can overcome the rapid loss of PGRs in environmental conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Self-Assembled Biosensors on a Solid Interface for Rapid Detection and Growth Monitoring of Bacteria

    CERN Document Server

    Kinnunen, Paivo; Craig, Elizabeth; Brahmasandra, Sundu; McNaughton, Brandon H

    2012-01-01

    Developing rapid methods for pathogen detection and growth monitoring at low cell and analyte concentrations is an important goal, which numerous technologies are working towards solving. Rapid biosensors have already made a dramatic impact on improving patient outcomes and with continued development, these technologies may also help limit the emergence of antimicrobial resistance and reduce the ever expanding risk of foodborne illnesses. One technology that is being developed with these goals in mind is asynchronous magnetic bead rotation (AMBR) biosensors. Self-assembled AMBR biosensors have been demonstrated at water/air and water/oil interfaces, and here, for the first time, we report on self-assembled AMBR biosensors used at a solid interface. The solid interface configuration was used to measure the growth of Escherichia coli with two distinct phenomena at low cell concentrations: firstly, the AMBR rotational period decreased and secondly, the rotational period increased after several division times. Ta...

  3. A simple electrochemical method for the rapid estimation of antioxidant potentials of some selected medicinal plants.

    Science.gov (United States)

    Amidi, Salimeh; Mojab, Faraz; Bayandori Moghaddam, Abdolmajid; Tabib, Kimia; Kobarfard, Farzad

    2012-01-01

    Clinical and Epidemiological studies have shown that a diet rich in fruits and vegetables is associated with a decreased risk of cardiovascular diseases, cancers and other related disorders. These beneficial health effects have been attributed in part to the presence of antioxidants in dietary plants. Therefore screening for antioxidant properties of plant extracts has been one of the interests of scientists in this field. Different screening methods have been reported for the evaluation of antioxidant properties of plant extracts in the literature. In the present research a rapid screening method has been introduced based on cyclic voltammetry for antioxidant screening of some selected medicinal plant extracts. CYCLIC VOLTAMMETRY OF METHANOLIC EXTRACTS OF SEVEN MEDICINAL PLANTS: Buxus hyrcana, Rumex crispus, Achillea millefolium, Zataria multiflora, Ginkgo biloba, Lippia citriodora and Heptaptera anisoptera was carried out at different scan rates. Based on the interpretation of voltammograms, Rumex crispus, Achillea millefolium and Ginkgo biloba showed higher antioxidant capability than the others while Lippia citriodora contained the highest amount of antioxidants. Cyclic voltammetry is expected to be a simple method for screening antioxidants and estimating the antioxidant activity of foods and medicinal plants.

  4. Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast

    OpenAIRE

    Guzman-Ayala, Marcela; Sachs, Michael; Koh, Fong Ming; Onodera, Courtney; Bulut-Karslioglu, Aydan; Lin, Chih-Jen; Wong, Priscilla; Nitta, Rachel; Song, Jun S.; Ramalho-Santos, Miguel

    2015-01-01

    The pluripotent mammalian epiblast undergoes unusually fast cell proliferation. This rapid growth is expected to generate a high transcriptional demand, but the underlying mechanisms remain unknown. We show here that the chromatin remodeler Chd1 is required for transcriptional output and development of the mouse epiblast. Chd1−/− embryos exhibit proliferation defects and increased apoptosis, are smaller than controls by E5.5 and fail to grow, to become patterned or to gastrulate. Removal of p...

  5. Rapid growth and childhood obesity are strongly associated with lysoPC(14:0).

    Science.gov (United States)

    Rzehak, Peter; Hellmuth, Christian; Uhl, Olaf; Kirchberg, Franca F; Peissner, Wolfgang; Harder, Ulrike; Grote, Veit; Weber, Martina; Xhonneux, Annick; Langhendries, Jean-Paul; Ferre, Natalia; Closa-Monasterolo, Ricardo; Verduci, Elvira; Riva, Enrica; Socha, Piotr; Gruszfeld, Dariusz; Koletzko, Berthold

    2014-01-01

    Despite the growing interest in the early-origins-of-later-disease hypothesis, little is known about the metabolic underpinnings linking infant weight gain and childhood obesity. To discover biomarkers reflective of weight change in the first 6 months and overweight/obesity at age 6 years via a targeted metabolomics approach. This analysis comprised 726 infants from a European multicenter randomized trial (Childhood Obesity Programme, CHOP) for whom plasma blood samples at age 6 months and anthropometric data up to the age of 6 years were available. 'Rapid growth' was defined as a positive difference in weight within the first 6 months of life standardized to WHO growth standards. Weight change was regressed on each of 168 metabolites (acylcarnitines, lysophosphatidylcholines, sphingomyelins, and amino acids). Metabolites significant after Bonferroni's correction were tested as predictors of later overweight/obesity. Among the overall 19 significant metabolites, 4 were associated with rapid growth and 15 were associated with a less-than-ideal weight change. After adjusting for feeding group, only the lysophosphatidylcholine LPCaC14:0 remained significantly associated with rapid weight gain (β = 0.18). Only LPCaC14:0 at age 6 months was predictive of overweight/obesity at age 6 years (OR 1.33; 95% CI 1.04-1.69). LPCa14:0 is strongly related to rapid growth in infancy and childhood overweight/obesity. This suggests that LPCaC14:0 levels may represent a metabolically programmed effect of infant weight gain on the later obesity risk. However, these results require confirmation by independent cohorts. © 2014 S. Karger AG, Basel.

  6. Screening plant growth promoting rhizobacteria for improving seed germination, seedling growth and yield of maize.

    Science.gov (United States)

    Nezarat, S; Gholami, A

    2009-01-01

    The effect of Plant Growth-Promoting Rhizobacteria (PGPR) on seed germination, seedling growth and yield of field grown maize were evaluated in three experiments. In these experiments six bacterial strains include P. putida strain R-168, P. fluorescens strain R-93, P. fluorescens DSM 50090, P. putida DSM291, A. lipoferum DSM 1691 and A. brasilense DSM 1690 were used. Results of first study showed seed inoculation significantly enhanced seed germination and seedling vigour of maize. In second experiment, leaf and shoot dry weight and also leaf surface area significantly were increased by bacterial inoculation in both sterile and non-sterile soil. The results showed that inoculation with bacterial treatments had a more stimulating effect on growth and development of plants in nonsterile than sterile soil. In the third experiment, Inoculation of maize seeds with all bacterial strains significantly increased plant height, 100 seed weight, number of seed per ear and leaf area. The results also showed significant increase in ear and shoot dry weight of maize.

  7. Implementation of Autonomous Control Technology for Plant Growth Chambers

    Science.gov (United States)

    Costello, Thomas A.; Sager, John C.; Krumins, Valdis; Wheeler, Raymond M.

    2002-01-01

    The Kennedy Space Center has significant infrastructure for research using controlled environment plant growth chambers. Such research supports development of bioregenerative life support technology for long-term space missions. Most of the existing chambers in Hangar L and Little L will be moved to the new Space Experiment Research and Processing Laboratory (SERPL) in the summer of 2003. The impending move has created an opportunity to update the control system technologies to allow for greater flexibility, less labor for set-up and maintenance, better diagnostics, better reliability and easier data retrieval. Part of these improvements can be realized using hardware which communicates through an ethernet connection to a central computer for supervisory control but can be operated independently of the computer during routine run-time. Both the hardware and software functionality of an envisioned system were tested on a prototype plant growth chamber (CEC-4) in Hangar L. Based upon these tests, recommendations for hardware and software selection and system design for implementation in SERPL are included.

  8. Plant growth in amended molybdenum mine waste rock.

    Science.gov (United States)

    Burney, Owen T; Redente, Edward F; Lambert, Charles E

    2017-04-01

    This greenhouse study examined the use of organic and inorganic soil amendments in waste rock material from the former Questa Molybdenum Mine in northern New Mexico to promote beneficial soil properties. Waste rock material was amended with 11 soil amendment treatments that included municipal composted biosolids, Biosol®, inorganic fertilizer, and two controls (pure waste rock and sand). Elymus trachycaulus and Robinia neomexicana growth performance and plant chemistry were assessed across all treatments over a period of 99 and 141 days, respectively. Even though waste rock material had more than 200 times the molybdenum concentration of native soils, adverse effects were not observed for either species. The two main limiting factors in this study were soil nutritional status and soil water retention. The biosolid amendment was found to provide the greatest buffer against these limiting factors due to significant increases in both nutrition and soil water retention. As a result, both species responded with the highest levels of biomass production and the least amount of required water demands. Use of organic amendments such as biosolids, even though short lived in the soil, may provide plants the necessary growth stimulus to become more resilient to the harsh conditions found on many mine reclamation sites.

  9. The Breadboard Project - A functioning CELSS plant growth system

    Science.gov (United States)

    Knott, W. M.

    1992-01-01

    The primary objective of the Breadboard Project for the next 3-4 years is to develop, integrate and operate a Controlled Ecological Life Support System (CELSS) at a one-person scale. The focus of this project over the past two years has been the development of the plant growth facility, the first module of the CELSS. The other major modules, food preparation, biomass processing, and resource recovery, have been researched at the laboratory scale during the past two years and facilities are currently under construction to scale-up these modules to an operational state. This paper will outline the design requirements for the Biomass Production Chamber (BPC), the plant growth facility for the project, and the control and monitoring subsystems which operate the chamber and will present results from both engineering and biological tests of the facility. Three production evaluations of wheat, conducted in the BPC during the past year, will be described and the data generated from these tests discussed.

  10. Bacterial strains from floodplain soils perform different plant-growth promoting processes and enhance cowpea growth

    Directory of Open Access Journals (Sweden)

    Elaine Martins da Costa

    2016-08-01

    Full Text Available ABSTRACT Certain nodulating nitrogen-fixing bacteria in legumes and other nodule endophytes perform different plant-growth promoting processes. The objective of this study was to evaluate 26 bacterial strains isolated from cowpea nodules grown in floodplain soils in the Brazilian savannas, regarding performance of plant-growth promoting processes and ability to enhance cowpea growth. We also identified these strains by 16S rRNA sequencing. The following processes were evaluated: free-living biological nitrogen fixation (BNF, solubilization of calcium, aluminum and iron phosphates and production of indole-3-acetic acid (IAA. The abilities to nodulate and promote cowpea growth were evaluated in Leonard jars. Partial sequencing of the 16S rRNA gene identified 60 % of the strains as belonging to genus Paenibacillus. The following four genera were also identified: Bacillus, Bradyrhizobium, Enterobacter and Pseudomonas. None of the strains fixed N2 free-living. Among the strains, 80 % solubilized Ca phosphate and one solubilized Al phosphate and none solubilized Fe phosphate. The highest IAA concentrations (52.37, 51.52 and 51.00 μg mL−1 were obtained in the 79 medium with tryptophan by Enterobacter strains UFPI B5-7A, UFPI B5-4 and UFPI B5-6, respectively. Only eight strains nodulated cowpea, however, all increased production of total dry matter. The fact that the strains evaluated perform different biological processes to promote plant growth indicates that these strains have potential use in agricultural crops to increase production and environmental sustainability.

  11. Regulatory and functional interactions of plant growth regulators and plant glutathione S-transferases (GSTs).

    Science.gov (United States)

    Moons, Ann

    2005-01-01

    Plant glutathioneS-transferases (GSTs) are a heterogeneous superfamily of multifunctional proteins, grouped into six classes. The tau (GSTU) and phi (GSTF) class GSTs are the most represented ones and are plant-specific, whereas the smaller theta (GSTT) and zeta (GSTZ) classes are also found in animals. The lambda GSTs (GSTL) and the dehydroascorbate reductases (DHARs) are more distantly related. Plant GSTs perform a variety of pivotal catalytic and non-enzymatic functions in normal plant development and plant stress responses, roles that are only emerging. Catalytic functions include glutathione (GSH)-conjugation in the metabolic detoxification of herbicides and natural products. GSTs can also catalyze GSH-dependent peroxidase reactions that scavenge toxic organic hydroperoxides and protect from oxidative damage. GSTs can furthermore catalyze GSH-dependent isomerizations in endogenous metabolism, exhibit GSH-dependent thioltransferase safeguarding protein function from oxidative damage and DHAR activity functioning in redox homeostasis. Plant GSTs can also function as ligandins or binding proteins for phytohormones (i.e., auxins and cytokinins) or anthocyanins, thereby facilitating their distribution and transport. Finally, GSTs are also indirectly involved in the regulation of apoptosis and possibly also in stress signaling. Plant GST genes exhibit a diversity of expression patterns during biotic and abiotic stresses. Stress-induced plant growth regulators (i.e., jasmonic acid [JA], salicylic acid [SA], ethylene [ETH], and nitric oxide [NO] differentially activate GST gene expression. It is becoming increasingly evident that unique combinations of multiple, often interactive signaling pathways from various phytohormones and reactive oxygen species or antioxidants render the distinct transcriptional activation patterns of individual GSTs during stress. Underestimated post-transcriptional regulations of individual GSTs are becoming increasingly evident and roles

  12. Effect of vanadium on plant growth and its accumulation in plant tissues

    Directory of Open Access Journals (Sweden)

    Narumol Vachirapatama

    2011-06-01

    Full Text Available Hydroponic experiments were conducted to investigate vanadium uptake by Chinese green mustard and tomato plantsand its effect on their growth. Twenty-eight (Chinese green mustard and 79 days (tomato after germination, the plants wereexposed for a further seven days to a solution containing six different concentrations of ammonium metavanadate (0-80 mg/lNH4VO3. The vanadium accumulated in the plant tissues were determined by ion-interaction high performance liquid chromatography,with confirmation by magnetic sector ICP-MS.The results indicated that nutrient solution containing more than 40 mg/l NH4VO3 affected plant growth for bothChinese green mustard and tomato plant. Chinese green mustard grown in the solution containing NH4VO3 at the concentrationsof 40 and 80 mg/l had stem length, number of leaves, dry weight of leaf, stem and root significantly lower than those ofplants grown in the solution containing 0-20 mg/l NH4VO3. Tomato plants were observed to wilt after four days in contactwith the nutrient solutions containing 40 and 80 mg/l NH4VO3. As the vanadium concentrations increased, a resultantdecrease in the stem length, root fresh weight, and fruit fresh weight were noted. The accumulation of vanadium was higher inthe root compared with leaf, stem, or fruit. Measured levels of vanadium, from a nutrient solution containing 40 mg/l NH4VO3,were 328, 340, and 9.66x103 g/g in the leaf, stem and root for Chinese green mustard, and 4.04 and 4.01x103 g/g in the fruitand roots for tomato plants, respectively.

  13. Effects of perchlorate on growth of four wetland plants and its accumulation in plant tissues.

    Science.gov (United States)

    He, Hongzhi; Gao, Haishuo; Chen, Guikui; Li, Huashou; Lin, Hai; Shu, Zhenzhen

    2013-10-01

    Perchlorate contamination in water is of concern because of uncertainties about toxicity and health effects, impact on ecosystems, and possible indirect exposure pathways to humans. Therefore, it is very important to investigate the ecotoxicology of perchlorate and to screen plant species for phytoremediation. Effects of perchlorate (20, 200, and 500 mg/L) on the growth of four wetland plants (Eichhornia crassipes, Acorus calamus L., Thalia dealbata, and Canna indica) as well as its accumulation in different plant tissues were investigated through water culture experiments. Twenty milligrams per liter of perchlorate had no significant effects on height, root length, aboveground part weight, root weight, and oxidizing power of roots of four plants, except A. calamus, and increasing concentrations of perchlorate showed that out of the four wetland plants, only A. calamus had a significant (pplants showed significant decline contrasted to control groups, except the root length of E. crassipes and C. indica. The order of inhibition rates of perchlorate on root length, aboveground part weight and root weight, and oxidizing power of roots was: A. calamus > C. indica > T. dealbata > E. crassipes and on chlorophyll content in the leaf it was: A. calamus > T. dealbata > C. indica > E. crassipes. The higher the concentration of perchlorate used, the higher the amount of perchlorate accumulation in plants. Perchlorate accumulation in aboveground tissues was much higher than that in underground tissues and leaf was the main tissue for perchlorate accumulation. The order of perchlorate accumulation content and the bioconcentration factor in leaf of four plants was: E. crassipes > C. indica > T. dealbata > A. calamus. Therefore, E. crassipes might be an ideal plant with high tolerance ability and accumulation ability for constructing wetland to remediate high levels of perchlorate polluted water.

  14. Influence of Plant Growth Retardants on Quality of Codonopsis Radix

    Directory of Open Access Journals (Sweden)

    Yinyin Liao

    2017-10-01

    Full Text Available Plant growth retardant (PGR refers to organics that can inhibit the cell division of plant stem tip sub-apical meristem cells or primordial meristem cell. They are widely used in the cultivation of rhizomatous functional plants; such as Codonopsis Radix, that is a famous Chinese traditional herb. However, it is still unclear whether PGR affects the medicinal quality of C. Radix. In the present study, amino acid analyses, targeted and non-targeted analyses by ultra-performance liquid chromatography combined with time-of-flight mass spectrometry (UPLC-TOF-MS and gas chromatography-MS were used to analyze and compare the composition of untreated C. Radix and C. Radix treated with PGR. The contents of two key bioactive compounds, lobetyolin and atractylenolide III, were not affected by PGR treatment. The amounts of polysaccharides and some internal volatiles were significantly decreased by PGR treatment; while the free amino acids content was generally increased. Fifteen metabolites whose abundance were affected by PGR treatment were identified by UPLC-TOF-MS. Five of the up-regulated compounds have been reported to show immune activity, which might contribute to the healing efficacy (“buqi” of C. Radix. The results of this study showed that treatment of C. Radix with PGR during cultivation has economic benefits and affected some main bioactive compounds in C. Radix.

  15. Proteomic analysis of the promotive effect of plant-derived smoke on plant growth of chickpea.

    Science.gov (United States)

    Rehman, Ali; Rehman, Shafiq Ur; Khatoon, Amana; Qasim, Muhammad; Itoh, Takafumi; Iwasaki, Yukimoto; Wang, Xin; Sunohara, Yukari; Matsumoto, Hiroshi; Komatsu, Setsuko

    2018-03-30

    Plant-derived smoke plays a key role in seed germination and plant growth. To investigate the effect of plant-derived smoke on chickpea, a gel-free/label-free proteomic technique was used. Germination percentage, root/shoot length, and fresh biomass were increased in chickpea treated with 2000 ppm plant-derived smoke within 6 days. On treatment with 2000 ppm plant-derived smoke for 6 days, the abundance of 90 proteins including glycolysis-related proteins significantly changed in chickpea root. Proteins related to signaling and transport were increased; however, protein metabolism, cell, and cell wall were decreased. The sucrose synthase for starch degradation was increased and total soluble sugar was induced. The proteins for nitrate pathway were increased and nitrate content was improved. On the other hand, although secondary metabolism related proteins were decreased, flavonoid contents were increased. Based on proteomic and immuno-blot analyses, proteins related to redox homeostasis were decreased and increased in root and shoot, respectively. Furthermore, fructose‑bisphosphate aldolase was increased; while, phosphotransferase and phosphoglycero mutase were decreased in glycolysis. In addition, phosphoglyceraldehyde‑3‑phosphate dehydrogenase and glutamine synthetase related genes were up-regulated. These results suggest that plant-derived smoke improves early stage of growth in chickpea with the balance of many cascades such as glycolysis, redox homeostasis, and secondary metabolism. The current study examined the effects of plant-derived smoke on root of chickpea seedlings using a gel-free/label-free proteomic technique. Based on functional categorization of results from proteomics, proteins related to glycolysis, signaling, transport, protein metabolism, cell wall, and cell were predominantly changed in chickpea. The proteins related to carbohydrate and nitrate pathways were increased, while, those of secondary metabolism were decreased

  16. Growth of Ni2Si by rapid thermal annealing: Kinetics and moving species

    Science.gov (United States)

    Ma, E.; Lim, B. S.; Nicolet, M.-A.; Natan, M.

    1987-10-01

    The growth kinetics is characterized and the moving species is identified for the formation of Ni2Si by Rapid Thermal Annealing (RTA) of sequentially deposited Si and Ni films on a Si substrate. The interfacial Ni2Si layer grows as the square root of time, indicating that the suicide growth process is diffusion-limited. The activation energy is 1.25±0.2 eV in the RTA temperature range of 350 450° C. The results extend those of conventional steady-state furnace annealing quite fittingly, and a common activation energy of 1.3±0.2 eV is deduced from 225° to 450° C. The marker experiment shows that Ni is the dominant moving species during Ni2Si formation by RTA, as is the case for furnace annealing. It is concluded that the two annealing techniques induce the same growth mechanisms in Ni2Si formation.

  17. Protocol: a rapid and economical procedure for purification of plasmid or plant DNA with diverse applications in plant biology

    Directory of Open Access Journals (Sweden)

    Li Li

    2010-01-01

    Full Text Available Abstract Research in plant molecular biology involves DNA purification on a daily basis. Although different commercial kits enable convenient extraction of high-quality DNA from E. coli cells, PCR and agarose gel samples as well as plant tissues, each kit is designed for a particular type of DNA extraction work, and the cost of purchasing these kits over a long run can be considerable. Furthermore, a simple method for the isolation of binary plasmid from Agrobacterium tumefaciens cells with satisfactory yield is lacking. Here we describe an easy protocol using homemade silicon dioxide matrix and seven simple solutions for DNA extraction from E. coli and A. tumefaciens cells, PCR and restriction digests, agarose gel slices, and plant tissues. Compared with the commercial kits, this protocol allows rapid DNA purification from diverse sources with comparable yield and purity at negligible cost. Following this protocol, we have demonstrated: (1 DNA fragments as small as a MYC-epitope tag coding sequence can be successfully recovered from an agarose gel slice; (2 Miniprep DNA from E. coli can be eluted with as little as 5 μl water, leading to high DNA concentrations (>1 μg/μl for efficient biolistic bombardment of Arabidopsis seedlings, polyethylene glycol (PEG-mediated Arabidopsis protoplast transfection and maize protoplast electroporation; (3 Binary plasmid DNA prepared from A. tumefaciens is suitable for verification by restriction analysis without the need for large scale propagation; (4 High-quality genomic DNA is readily isolated from several plant species including Arabidopsis, tobacco and maize. Thus, the silicon dioxide matrix-based DNA purification protocol offers an easy, efficient and economical way to extract DNA for various purposes in plant research.

  18. Rapid thermal chemical vapor deposition growth of nanometer-thin SiC on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steckl, A.J.; Li, J.P. (Univ. of Cincinnati, OH (United States))

    1992-08-28

    Rapid thermal chemical vapor deposition growth of [beta]-SiC ultrathin films on Si (100) was achieved using the carbonization reaction of the silicon substrate with C[sub 3]H[sub 8] gas. Growth rates of 0.5-2 nm s[sup -1] have been achieved at 1100-1300degC using C[sub 3]H[sub 8] flow rates of 7-9 standard cm[sup 3] min[sup -1]. X-ray and electron diffraction indicate single-crystal growth. Therefore nanometer-scale SiC films can be grown by controlling the reaction time to a few seconds. The activation energy at atmospheric pressure is 3.12 eV. The growth rate was found to decrease significantly at higher C[sub 3]H[sub 8] flow rates, leading to films of constant thickness beyond a certain critical reaction time. Using this regime of self-limiting growth, SiC films of 3-5 nm have been grown with relatively little sensitivity to the growth time. (orig.).

  19. Effect of metal tolerant plant growth promoting bacteria on growth and metal accumulation in Zea mays plants grown in fly ash amended soil.

    Science.gov (United States)

    Kumar, Kalpna V; Patra, D D

    2013-01-01

    The present study was undertaken to examine the effect of the application of fly ash (FA) into Garden soil (GS), with and without inoculation of plant growth promoting bacteria (PGPB), on the growth and metal uptake by Zea mays plants. Three FA tolerant PGPB strains, Pseudomonas sp. PS5, PS14, and Bacillus sp. BC29 were isolated from FA contaminated soils and assessed for their plant growth promoting features on the Z. mays plants. All three strains were also examined for their ability to solubilize phosphate and to produce Indole Acetic Acid (IAA), siderophores, and hydrogencynide acid (HCN) production. Although inoculation of all strains significantly enhanced the growth of plants at both the concentration of FA but maximum growth was observed in plants inoculated with BC29 and PS14 at low level (25%) of FA concentration. The experimental results explored the plant growth promoting features of selected strains which not only enhanced growth and biomass of plants but also protected them from toxicity of FA.

  20. The biotoxicity of hydroxyapatite nanoparticles to the plant growth.

    Science.gov (United States)

    Jiang, Hao; Liu, Jin-Ku; Wang, Jian-Dong; Lu, Yi; Zhang, Min; Yang, Xiao-Hong; Hong, Dan-Jing

    2014-04-15

    In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca(2+) concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. A “Do-It-Yourself” phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants

    Directory of Open Access Journals (Sweden)

    Andrei Dobrescu

    2017-11-01

    Full Text Available Abstract Background Improvements in high-throughput phenotyping technologies are rapidly expanding the scope and capacity of plant biology studies to measure growth traits. Nevertheless, the costs of commercial phenotyping equipment and infrastructure remain prohibitively expensive for wide-scale uptake, while academic solutions can require significant local expertise. Here we present a low-cost methodology for plant biologists to build their own phenotyping system for quantifying growth rates and phenotypic characteristics of Arabidopsis thaliana rosettes throughout the diel cycle. Results We constructed an image capture system consisting of a near infra-red (NIR, 940 nm LED panel with a mounted Raspberry Pi NoIR camera and developed a MatLab-based software module (iDIEL Plant to characterise rosette expansion. Our software was able to accurately segment and characterise multiple rosettes within an image, regardless of plant arrangement or genotype, and batch process image sets. To further validate our system, wild-type Arabidopsis plants (Col-0 and two mutant lines with reduced Rubisco contents, pale leaves and slow growth phenotypes (1a3b and 1a2b were grown on a single plant tray. Plants were imaged from 9 to 24 days after germination every 20 min throughout the 24 h light–dark growth cycle (i.e. the diel cycle. The resulting dataset provided a dynamic and uninterrupted characterisation of differences in rosette growth and expansion rates over time for the three lines tested. Conclusion Our methodology offers a straightforward solution for setting up automated, scalable and low-cost phenotyping facilities in a wide range of lab environments that could greatly increase the processing power and scalability of Arabidopsis soil growth experiments.

  2. A "Do-It-Yourself" phenotyping system: measuring growth and morphology throughout the diel cycle in rosette shaped plants.

    Science.gov (United States)

    Dobrescu, Andrei; Scorza, Livia C T; Tsaftaris, Sotirios A; McCormick, Alistair J

    2017-01-01

    Improvements in high-throughput phenotyping technologies are rapidly expanding the scope and capacity of plant biology studies to measure growth traits. Nevertheless, the costs of commercial phenotyping equipment and infrastructure remain prohibitively expensive for wide-scale uptake, while academic solutions can require significant local expertise. Here we present a low-cost methodology for plant biologists to build their own phenotyping system for quantifying growth rates and phenotypic characteristics of Arabidopsis thaliana rosettes throughout the diel cycle. We constructed an image capture system consisting of a near infra-red (NIR, 940 nm) LED panel with a mounted Raspberry Pi NoIR camera and developed a MatLab-based software module (iDIEL Plant) to characterise rosette expansion. Our software was able to accurately segment and characterise multiple rosettes within an image, regardless of plant arrangement or genotype, and batch process image sets. To further validate our system, wild-type Arabidopsis plants (Col-0) and two mutant lines with reduced Rubisco contents, pale leaves and slow growth phenotypes (1a3b and 1a2b) were grown on a single plant tray. Plants were imaged from 9 to 24 days after germination every 20 min throughout the 24 h light-dark growth cycle (i.e. the diel cycle). The resulting dataset provided a dynamic and uninterrupted characterisation of differences in rosette growth and expansion rates over time for the three lines tested. Our methodology offers a straightforward solution for setting up automated, scalable and low-cost phenotyping facilities in a wide range of lab environments that could greatly increase the processing power and scalability of Arabidopsis soil growth experiments.

  3. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    Science.gov (United States)

    Takano, T.; Inada, K.; Takanashi, J.

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space station. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12-hr-dark may be needed for plant growth.

  4. Trickle water and feeding system in plant culture and light-dark cycle effects on plant growth

    Science.gov (United States)

    Takano, T.; Inada, K.; Takanashi, J.

    1987-01-01

    Rockwool, as an inert medium covered or bagged with polyethylene film, can be effectively used for plant culture in space stations. The most important machine is the pump adjusting the dripping rate in the feeding system. Hydro-aeroponics may be adaptable to a space laboratory. The shortening of the light-dark cycles inhibits plant growth and induces an abnormal morphogenesis. A photoperiod of 12 hr dark may be needed for plant growth.

  5. Maize yield and quality in response to plant density and application of a novel plant growth regulator

    NARCIS (Netherlands)

    Zhang, Q.; Zhang, L.; Evers, J.B.; Werf, van der W.; Zhang, W.; Duan, L.

    2014-01-01

    Farmers in China have gradually increased plant density in maize to achieve higher yields, but this has increased risk of lodging due to taller and weaker stems at higher plant densities. Plant growth regulators can be used to reduce lodging risk. In this study, for the first time, the performance

  6. Phytohormone profiles induced by Trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants

    NARCIS (Netherlands)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A.; van Wees, Saskia C M|info:eu-repo/dai/nl/185445373

    2014-01-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the

  7. Dredged Illinois River Sediments: Plant Growth and Metal Uptake

    Science.gov (United States)

    Darmody, R.G.; Marlin, J.C.; Talbott, J.; Green, R.A.; Brewer, E.F.; Stohr, C.

    2004-01-01

    Sedimentation of the Illinois River in central Illinois has greatly diminished the utility and ecological value of the Peoria Lakes reach of the river. Consequently, a large dredging project has been proposed to improve its wildlife habitat and recreation potential, but disposal of the dredged sediment presents a challenge. Land placement is an attractive option. Previous work in Illinois has demonstrated that sediments are potentially capable of supporting agronomic crops due to their high natural fertility and water holding capacity. However, Illinois River sediments have elevated levels of heavy metals, which may be important if they are used as garden or agricultural soil. A greenhouse experiment was conducted to determine if these sediments could serve as a plant growth medium. A secondary objective was to determine if plants grown on sediments accumulated significant heavy metal concentrations. Our results indicated that lettuce (Lactuca sativa L.), barley (Hordeum vulgare L.), radish (Raphanus sativus L.), tomato (Lycopersicon lycopersicum L.), and snap bean (Phaseolus vulagaris L. var. humillis) grown in sediment and a reference topsoil did not show significant or consistent differences in germination or yields. In addition, there was not a consistent statistically significant difference in metal content among tomatoes grown in sediments, topsoil, or grown locally in gardens. In the other plants grown on sediments, while Cd and Cu in all cases and As in lettuce and snap bean were elevated, levels were below those considered excessive. Results indicate that properly managed, these relatively uncontaminated calcareous sediments can make productive soils and that metal uptake of plants grown in these sediments is generally not a concern.

  8. Increased plant growth and copper uptake of host and non-host plants by metal-resistant and plant growth-promoting endophytic bacteria.

    Science.gov (United States)

    Sun, Leni; Wang, Xiaohan; Li, Ya

    2016-01-01

    The effects of inoculation with two metal-resistant and plant growth-promoting endophytic bacteria (Burkholderia sp. GL12 and Bacillus megaterium JL35) were evaluated on the plant growth and Cu uptake in their host Elsholtzia splendens and non-host Brassica napus plants grown in natural Cu-contaminated soil. The two strains showed a high level of ACC deaminase activities. In pot experiments, inoculation with strain GL12 significantly increased root and above-ground tissue dry weights of both plants, consequently increasing the total Cu uptake of E. splendens and Brassica napus by 132% and 48.2% respectively. Inoculation with strain JL35 was found to significantly increase not only the biomass of B. napus, consequently increasing the total Cu uptake of B. napus by 31.3%, but Cu concentration of E. splendens for above-ground tissues by 318% and roots by 69.7%, consequently increasing the total Cu uptake of E. splendens by 223%. The two strains could colonize the rhizosphere soils and root interiors of both plants. Notably, strain JL35 could colonize the shoot tissues and significantly increase the translocation factors and bioaccumulation factors of E. splendens. These results suggested that Burkholderia sp. GL12 and B. megaterium JL35 were valuable bacterial resource which had the potential in improving the efficiency of Cu phytoextraction by E. splendens and B. napus in a natural Cu-contaminated soil.

  9. Selenium promotes sulfur accumulation and plant growth in wheat (Triticum aestivum)

    Science.gov (United States)

    Selenium (Se) is an essential micronutrient for animals and humans and a target for biofortification in crops. Sulfur (S) is a crucial nutrient for plant growth. To gain better understanding of Se and S nutrition and interaction in plants, the effects of Se dosages and forms on plant growth as well ...

  10. The growth response of plants to elevated CO2 under non-optimal environmental conditions

    NARCIS (Netherlands)

    Poorter, H.; Pérez-Soba, M.

    2001-01-01

    Under benign environmental conditions, plant growth is generally stimulated by elevated atmospheric CO2 concentrations. When environmental conditions become sub- or supra-optimal for growth, changes in the biomass enhancement ratio (BER; total plant biomass at elevated CO2 divided by plant biomass

  11. Biochar treatment resulted in a combined effect on soybean growth promotion and a shift in plant growth promoting rhizobacteria

    Directory of Open Access Journals (Sweden)

    Dilfuza eEgamberdieva

    2016-02-01

    Full Text Available The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC, wood biochar (WBC, and hydrochar (HTC were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2% showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits.Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.

  12. Biochar Treatment Resulted in a Combined Effect on Soybean Growth Promotion and a Shift in Plant Growth Promoting Rhizobacteria.

    Science.gov (United States)

    Egamberdieva, Dilfuza; Wirth, Stephan; Behrendt, Undine; Abd Allah, Elsayed F; Berg, Gabriele

    2016-01-01

    The application of biochar to soil is considered to have the potential for long-term soil carbon sequestration, as well as for improving plant growth and suppressing soil pathogens. In our study we evaluated the effect of biochar on the plant growth of soybeans, as well as on the community composition of root-associated bacteria with plant growth promoting traits. Two types of biochar, namely, maize biochar (MBC), wood biochar (WBC), and hydrochar (HTC) were used for pot experiments to monitor plant growth. Soybean plants grown in soil amended with HTC char (2%) showed the best performance and were collected for isolation and further characterization of root-associated bacteria for multiple plant growth promoting traits. Only HTC char amendment resulted in a statistically significant increase in the root and shoot dry weight of soybeans. Interestingly, rhizosphere isolates from HTC char amended soil showed higher diversity than the rhizosphere isolates from the control soil. In addition, a higher proportion of isolates from HTC char amended soil compared with control soil was found to express plant growth promoting properties and showed antagonistic activity against one or more phytopathogenic fungi. Our study provided evidence that improved plant growth by biochar incorporation into soil results from the combination of a direct effect that is dependent on the type of char and a microbiome shift in root-associated beneficial bacteria.

  13. Plant growth-promoting activities for bacterial and fungal endophytes isolated from medicinal plant of Teucrium polium L.

    Directory of Open Access Journals (Sweden)

    Saad El-Din Hassan

    2017-11-01

    Full Text Available Bacterial and fungal endophytes are widespread inhabitants inside plant tissues and have been shown to assist plant growth and health. However, little is known about plant growth-promoting endophytes (PGPE of medicinal plants. Therefore, the aims of this study were to identify bacterial and fungal endophytes of Teucrium polium and to characterize plant growth-promoting (PGP properties of these endophytes. Seven bacterial endophytes were isolated and identified as Bacillus cereus and Bacillus subtilis, where five endophytic fungi were obtained and assigned to Penicillium chrysogenum and Penicillium crustosum. The isolated endophytes differentially produced indole acetic acid (IAA and ammonia, and in addition to their enzymatic and antimicrobial activities, they exhibited variable capacity for phosphate solubilization. In order to investigate the effect of endophytes on plant growth, four representative endophytes and their consortiums were selected concerning to their potential ability to promote plant growth. The results indicated that microbial endophytes isolated from medicinal plants possessing a vital role to improve plant growth and could be used as inoculants to establish a sustainable crop production system.

  14. Understanding and engineering beneficial plant-microbe interactions: plant growth promotion in energy crops.

    Science.gov (United States)

    Farrar, Kerrie; Bryant, David; Cope-Selby, Naomi

    2014-12-01

    Plant production systems globally must be optimized to produce stable high yields from limited land under changing and variable climates. Demands for food, animal feed, and feedstocks for bioenergy and biorefining applications, are increasing with population growth, urbanization and affluence. Low-input, sustainable, alternatives to petrochemical-derived fertilizers and pesticides are required to reduce input costs and maintain or increase yields, with potential biological solutions having an important role to play. In contrast to crops that have been bred for food, many bioenergy crops are largely undomesticated, and so there is an opportunity to harness beneficial plant-microbe relationships which may have been inadvertently lost through intensive crop breeding. Plant-microbe interactions span a wide range of relationships in which one or both of the organisms may have a beneficial, neutral or negative effect on the other partner. A relatively small number of beneficial plant-microbe interactions are well understood and already exploited; however, others remain understudied and represent an untapped reservoir for optimizing plant production. There may be near-term applications for bacterial strains as microbial biopesticides and biofertilizers to increase biomass yield from energy crops grown on land unsuitable for food production. Longer term aims involve the design of synthetic genetic circuits within and between the host and microbes to optimize plant production. A highly exciting prospect is that endosymbionts comprise a unique resource of reduced complexity microbial genomes with adaptive traits of great interest for a wide variety of applications. © 2014 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Natural genetic variation in Arabidopsis for responsiveness to plant growth-promoting rhizobacteria

    NARCIS (Netherlands)

    Wintermans, P.C.A.; Bakker, P.A.H.M.; Pieterse, C.M.J.

    2016-01-01

    The plant growth-promoting rhizobacterium (PGPR) Pseudomonas simiae WCS417r stimulates lateral root formation and increases shoot growth in Arabidopsis thaliana (Arabidopsis). These plant growth-stimulating effects are partly caused by volatile organic compounds (VOCs) produced by the bacterium.

  16. Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture.

    Science.gov (United States)

    Berg, Gabriele

    2009-08-01

    Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant-microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant-microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.

  17. A Protocol for Rapid, Measurable Plant Tissue Culture Using Stem Disc Meristem Micropropagation of Garlic ("Allium Sativum L.")

    Science.gov (United States)

    Peat, Gerry; Jones, Meriel

    2012-01-01

    Plant tissue culture is becoming an important technique for the mass propagation of plants. Problems with existing techniques, such as slow growth and contamination, have restricted the practical work in plant tissue culture carried out in schools. The new protocol using garlic meristematic stem discs explained in this article addresses many of…

  18. A method of variable spacing for controlled plant growth systems in spaceflight and terrestrial agriculture applications

    Science.gov (United States)

    Knox, J.

    1986-01-01

    A higher plant growth system for Controlled Ecological Life Support System (CELSS) applications is described. The system permits independent movement of individual plants during growth. Enclosed within variable geometry growth chambers, the system allocates only the volume required by the growing plants. This variable spacing system maintains isolation between root and shoot environments, providing individual control for optimal growth. The advantages of the system for hydroponic and aeroponic growth chambers are discussed. Two applications are presented: (1) the growth of soybeans in a space station common module, and (2) in a terrestrial city greenhouse.

  19. Phytohormone profiles induced by trichoderma isolates correspond with their biocontrol and plant growth-promoting activity on melon plants.

    Science.gov (United States)

    Martínez-Medina, Ainhoa; Del Mar Alguacil, Maria; Pascual, Jose A; Van Wees, Saskia C M

    2014-07-01

    The application of Trichoderma strains with biocontrol and plant growth-promoting capacities to plant substrates can help reduce the input of chemical pesticides and fertilizers in agriculture. Some Trichoderma isolates can directly affect plant pathogens, but they also are known to influence the phytohormonal network of their host plant, thus leading to an improvement of plant growth and stress tolerance. In this study, we tested whether alterations in the phytohormone signature induced by different Trichoderma isolates correspond with their ability for biocontrol and growth promotion. Four Trichoderma isolates were collected from agricultural soils and were identified as the species Trichoderma harzianum (two isolates), Trichoderma ghanense, and Trichoderma hamatum. Their antagonistic activity against the plant pathogen Fusarium oxysporum f. sp. melonis was tested in vitro, and their plant growth-promoting and biocontrol activity against Fusarium wilt on melon plants was examined in vivo, and compared to that of the commercial strain T. harzianum T-22. Several growth- and defense-related phytohormones were analyzed in the shoots of plants that were root-colonized by the different Trichoderma isolates. An increase in auxin and a decrease in cytokinins and abscisic acid content were induced by the isolates that promoted the plant growth. Principal component analysis (PCA) was used to evaluate the relationship between the plant phenotypic and hormonal variables. PCA pointed to a strong association of auxin induction with plant growth stimulation by Trichoderma. Furthermore, the disease-protectant ability of the Trichoderma strains against F. oxysporum infection seems to be more related to their induced alterations in the content of the hormones abscisic acid, ethylene, and the cytokinin trans-zeatin riboside than to the in vitro antagonism activity against F. oxysporum.

  20. Modes of Action and Functions of ERECTA-family Receptor-like Kinases in Plant Organ Growth and Development

    Energy Technology Data Exchange (ETDEWEB)

    TORII, Keiko U.

    2012-05-01

    Higher plants constitute the central resource for renewable lignocellulose biomass that can supplement for the world's depleting stores of fossil fuels. As such, understanding the molecular and genetic mechanisms of plant organ growth will provide key knowledge and genetic resources that enables manipulation of plant biomass feedstock for better growth and productivity. The goal of this proposal is to understand how cell proliferation and growth are coordinated during aboveground organ morphogenesis, and how cell-cell signaling mediated by a family of receptor kinases coordinates plant organogenesis. The well-established model plant Arabidopsis thaliana is used for our research to facilitate rapid progress. Specifically, we focus on how ERECTA-family leucine-rich repeat receptor kinases (LRR-RLKs) interact in a synergistic manner to promote organogenesis and pattern formation in Arabidopsis. This project was highly successful, resulted in fourteen publications including nine peer-reviewed original research articles. One provisional US patent has been filed through this DOE funding. We have addressed the critical roles for a family of receptor kinases in coordinating proliferation and differentiation of plants, and we successfully elucidated the downstream targets of this signaling pathway in specifying stomatal patterning.

  1. New insights from coral growth band studies in an era of rapid environmental change

    Science.gov (United States)

    Lough, Janice M.; Cooper, Timothy F.

    2011-10-01

    The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.

  2. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  3. Transient growth from the continuous spectrum of a high-speed rapidly-swirling jet

    Science.gov (United States)

    Samanta, Arnab; Muthiah, Gopalsamy

    2017-11-01

    We investigate the possibility for short-time transient growths involving the helical modes of a rapidly-swirling, high-speed jet that has undergone a sub-critical transition via an axisymmetric vortex breakdown. The base flow is extracted from the time-averaged measurements, consisting of the recirculation bubble and its wake. A pseudospectrum analysis complements a local normal-mode based stability analysis in identifying the continuous spectrum, which is further split into a potential and freestream spectrum, where the non-orthogonality between the former type and the existing discrete stable modes is shown to be the main origin of strong transient growths in such flows. As the swirling flow develops post the bubble collapse, this potential mode spectrum widens, increasing the importance of transient growth inside the wake region. The local transient gains calculated at the wake confirms this, where strong growths far outstrips the exponential modal growth at shorter times, especially at the higher helical orders and smaller streamwise wavenumbers. These short-time transients are likely to be a necessary first-step toward the formation of a wavemaker region at the wake of such flows, leading to their eventual spiral breakdown.

  4. Is rapid growth in Internet usage environmentally sustainable for Australia? An empirical investigation.

    Science.gov (United States)

    Salahuddin, Mohammad; Alam, Khorshed; Ozturk, Ilhan

    2016-03-01

    This study estimates the short- and long-run effects of Internet usage and economic growth on carbon dioxide (CO2) emissions using annual time series macro data for Australia for the period 1985-2012. Autoregressive distributive lag (ARDL) bounds and Gregory-Hansen structural break cointegration tests are applied. ARDL estimates indicate no significant long-run relationship between Internet usage and CO2 emissions, which implies that the rapid growth in Internet usage is still not an environmental threat for Australia. The study further indicates that higher level of economic growth is associated with lower level of CO2 emissions; however, Internet usage and economic growth have no significant short-run relationship with CO2 emissions. Financial development has both short-run and long-run significant positive association with CO2 emissions. The findings offer support in favor of energy efficiency gains and a reduction in energy intensity in Australia. However, impulse response and variance decomposition analysis suggest that Internet usage, economic growth and financial development will continue to impact CO2 emissions in the future, and as such, this study recommends that in addition to the existing measures to combat CO2 emissions, Australia needs to exploit the potential of the Internet not only to reduce its own carbon footprint but also to utilize information and communication technology (ICT)-enabled emissions abatement potential to reduce emissions in various other sectors across the economy, such as, power, renewable energy especially in solar and wind energy, agriculture, transport and service.

  5. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants

    Science.gov (United States)

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J.; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-01-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin’s function in soybeans and other crops. PMID:25297548

  6. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants.

    Science.gov (United States)

    Wei, Wei; Li, Qing-Tian; Chu, Ya-Nan; Reiter, Russel J; Yu, Xiao-Min; Zhu, Dan-Hua; Zhang, Wan-Ke; Ma, Biao; Lin, Qing; Zhang, Jin-Song; Chen, Shou-Yi

    2015-02-01

    Melatonin is a well-known agent that plays multiple roles in animals. Its possible function in plants is less clear. In the present study, we tested the effect of melatonin (N-acetyl-5-methoxytryptamine) on soybean growth and development. Coating seeds with melatonin significantly promoted soybean growth as judged from leaf size and plant height. This enhancement was also observed in soybean production and their fatty acid content. Melatonin increased pod number and seed number, but not 100-seed weight. Melatonin also improved soybean tolerance to salt and drought stresses. Transcriptome analysis revealed that salt stress inhibited expressions of genes related to binding, oxidoreductase activity/process, and secondary metabolic processes. Melatonin up-regulated expressions of the genes inhibited by salt stress, and hence alleviated the inhibitory effects of salt stress on gene expressions. Further detailed analysis of the affected pathways documents that melatonin probably achieved its promotional roles in soybean through enhancement of genes involved in cell division, photosynthesis, carbohydrate metabolism, fatty acid biosynthesis, and ascorbate metabolism. Our results demonstrate that melatonin has significant potential for improvement of soybean growth and seed production. Further study should uncover more about the molecular mechanisms of melatonin's function in soybeans and other crops. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. The effects of solar radiation on plant growth

    Science.gov (United States)

    Agard, Joslyn

    1995-01-01

    This phase of this continuing project was completed in April, 1994, using Dahlgren #855 hybrid sunflower seeds and Park Seeds #0950 non-hybrid sunflower seeds in both the control groups and the tests groups. The control groups (1, 2, 3, 4, 5, and 6) were grown under normal, un-radiated, conditions. The tests groups (1a, 2a, 3a, 4a, 5a, and 6a) were grown onboard the Space Shuttle Discovery on the STS-60 flight in February 1994. All data from this experiment (both control and test groups) will be taken and recorded in a data log and compared against each other to determine the radiation effects of solar radiation on plant germination and growth.

  8. On the structure of calonyctin A, a plant growth regulator.

    Science.gov (United States)

    Fang, Y; Chai, W; Chen, S; He, Y; Zhao, L; Peng, J; Huang, H; Xin, B

    1993-07-19

    The plant growth regulator calonyctin A, isolated from the dried leaves of Calonyction aculeatum L. House (Yue-Guang-Hua), was separated into two pure components by high performance liquid chromatography. By use of mass spectrometry based on various ionization techniques, one- and two-dimensional NMR spectroscopy, IR spectrometry, and chemical methods the molecular structures of the two homologous glycosides were determined. Each molecule contains two hydroxy fatty acid residues and four 6-deoxyhexose units. The fatty acids are 3-hydroxy-2-methylbutanoic acid and 11-hydroxytetradecanoic acid or 11-hydroxyhexadecanoic acid. The 6-deoxyhexose residues (three of quinovose and one of rhamnose) comprise a tetrasaccharide having the following structure: [formula: see text] The long-chain hydroxy acid is linked glycosidically through its O-11 to Qui D and esterified to O-2 of Qui C, forming a macrocyclic lactone. The 3-hydroxy-2-methylbutanoic acid is ester-linked to O-3 of Qui C.

  9. Chromium Resistant Bacteria: Impact on Plant Growth in Soil Microcosm

    Directory of Open Access Journals (Sweden)

    Sayel Hanane

    2014-07-01

    Full Text Available Three chromium resistant bacterial strains, Pseudomonas fluorescens PF28, Enterobacter amnigenus EA31 and Enterococcus gallinarum S34 isolated from tannery waste contaminated soil were used in this study. All strains could resist a high concentration of K2Cr2O7 that is up to 300 mg/L. The effect of these strains on clover plants (Trifolium campestre in the presence of two chromium salts CrCl3 and K2Cr2O7 was studied in soil microcosm. Application of chromium salts adversely affected seed germination, root and shoot length. Bacterial inoculation improved the growth parameters under chromate stress when compared with non inoculated respective controls. There was observed more than 50% reduction of Cr(VI in inoculated soil microcosms, as compared to the uninoculated soil under the same conditions. The results obtained in this study are significant for the bioremediation of chromate pollution.

  10. Endosulfan Degradation by Selected Strains of Plant Growth Promoting Rhizobacteria.

    Science.gov (United States)

    Rani, Rupa; Kumar, Vipin

    2017-07-01

    Sixty endosulfan tolerant bacterial strains were isolated from pesticide stressed agricultural soils. Five most tolerant strains were tested for plant growth promoting (PGP) activities and endosulfan degradation under different optimizing conditions in broth and soil. The strains PRB101 and PRB77 were the most efficient in terms of endosulfan degradation and PGP activities and showed solubilization indexes of 3.3 and 3.1 mm, indole acetic acid production of 71 and 68 μg mL-1, siderophore zones of 13 mm each at the recommended dosage, respectively. Hydrogen cyanide and ammonia production remained unaffected in the presence of endosulfan. PRB101 and PRB77 strains were able to degrade 74% and 70% of endosulfan in broth and 67% and 63% in soil, respectively. Based on 16S rDNA analysis, the strains PRB101 and PRB77 exhibited 99% homology with Bacillus sp. KF984414 and Bacillus sp. LN849696, respectively.

  11. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    Directory of Open Access Journals (Sweden)

    Meldau Stefan

    2012-11-01

    Full Text Available Abstract Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs, salicylic acid (SA-induced protein kinase (SIPK and wound-induced protein kinase (WIPK are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK and WIPK (irWIPK benefits the growth and fitness of plants competiting with wild type (WT plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3 levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels

  12. MAPK-dependent JA and SA signalling in Nicotiana attenuata affects plant growth and fitness during competition with conspecifics

    Science.gov (United States)

    2012-01-01

    Background Induced defense responses to herbivores are generally believed to have evolved as cost-saving strategies that defer the fitness costs of defense metabolism until these defenses are needed. The fitness costs of jasmonate (JA)-mediated defenses have been well documented. Those of the early signaling units mediating induced resistance to herbivores have yet to be examined. Early signaling components that mediate herbivore-induced defense responses in Nicotiana attenuata, have been well characterized and here we examine their growth and fitness costs during competition with conspecifics. Two mitogen-activated protein kinases (MAPKs), salicylic acid (SA)-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK) are rapidly activated after perception of herbivory and both kinases regulate herbivory-induced JA levels and JA-mediated defense metabolite accumulations. Since JA-induced defenses result in resource-based trade-offs that compromise plant productivity, we evaluated if silencing SIPK (irSIPK) and WIPK (irWIPK) benefits the growth and fitness of plants competiting with wild type (WT) plants, as has been shown for plants silenced in JA-signaling by the reduction of Lipoxygenase 3 (LOX3) levels. Results As expected, irWIPK and LOX3-silenced plants out-performed their competing WT plants. Surprisingly, irSIPK plants, which have the largest reductions in JA signaling, did not. Phytohormone profiling of leaves revealed that irSIPK plants accumulated higher levels of SA compared to WT. To test the hypothesis that these high levels of SA, and their presumed associated fitness costs of pathogen associated defenses in irSIPK plants had nullified the JA-deficiency-mediated growth benefits in these plants, we genetically reduced SA levels in irSIPK plants. Reducing SA levels partially recovered the biomass and fitness deficits of irSIPK plants. We also evaluated whether the increased fitness of plants with reduced SA or JA levels resulted from

  13. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain.

    Science.gov (United States)

    Fleisch, Abby F; Rifas-Shiman, Sheryl L; Koutrakis, Petros; Schwartz, Joel D; Kloog, Itai; Melly, Steven; Coull, Brent A; Zanobetti, Antonella; Gillman, Matthew W; Gold, Diane R; Oken, Emily

    2015-01-01

    Prenatal air pollution exposure inhibits fetal growth, but implications for postnatal growth are unknown. We assessed weights and lengths of US infants in the Project Viva cohort at birth and 6 months. We estimated 3rd-trimester residential air pollution exposures using spatiotemporal models. We estimated neighborhood traffic density and roadway proximity at birth address using geographic information systems. We performed linear and logistic regression adjusted for sociodemographic variables, fetal growth, and gestational age at birth. Mean birth weight-for-gestational age z-score (fetal growth) was 0.17 (standard deviation [SD] = 0.97; n = 2,114), 0- to 6-month weight-for-length gain was 0.23 z-units (SD = 1.11; n = 689), and 17% had weight-for-length ≥95th percentile at 6 months of age. Infants exposed to the highest (vs. lowest) quartile of neighborhood traffic density had lower fetal growth (-0.13 units [95% confidence interval (CI) = -0.25 to -0.01]), more rapid 0- to 6-month weight-for-length gain (0.25 units [95% CI = 0.01 to 0.49]), and higher odds of weight-for-length ≥95th percentile at 6 months (1.84 [95% CI = 1.11 to 3.05]). Neighborhood traffic density was additionally associated with an infant being in both the lowest quartile of fetal growth and the highest quartile of 0- to 6-month weight-for-length gain (Q4 vs. Q1, odds ratio = 3.01 [95% CI = 1.08 to 8.44]). Roadway proximity and 3rd-trimester black carbon exposure were similarly associated with growth outcomes. For 3rd-trimester particulate matter (PM2.5), effect estimates were in the same direction, but smaller and imprecise. Infants exposed to higher traffic-related pollution in early life may exhibit more rapid postnatal weight gain in addition to reduced fetal growth.

  14. Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure.

    Science.gov (United States)

    McElhiney, J; Lawton, L A; Leifert, C

    2001-09-01

    The cyanobacterial toxins microcystins are known to affect a number of processes in plant tissues, and their presence in water used for irrigation may have considerable impact on the growth and development of crop plants. In this study, two plant bioassays were employed to investigate the phytotoxic effects of microcystins. A plant tissue culture assay revealed that the growth and chlorophyll content of Solanum tuberosum L. cultures was inhibited at microcystin-LR concentrations of 0.005 and 0.05 microg x cm(-3), respectively. A previously developed bioassay was also employed to determine the effects of three commonly occurring microcystin variants on the growth of Synapis alba L. seedlings. Microcystins-LR, -RR, and -LF inhibited the growth of seedlings, with GI50 values of 1.9, 1.6 and 7.7 microg x ml(-1), respectively. The growth of Phaseolus vulgaris was also examined in the presence of microcystin-LR. The toxin was found to have little effect on growth for up to 18 days, but impaired the development of the roots of exposed plants, causing them to take up approximately 30% less growth medium than those grown in the absence of toxin. Microcystin was also detected in the tissues of exposed plants using a commercially available ELISA kit, suggesting that the uptake of these toxins by edible plants may have significant implications for human health.

  15. Rapid Growth of Dermatofibrosarcoma Protuberans Associated with Bilateral Adrenalectomy for Cushing’s Syndrome

    Directory of Open Access Journals (Sweden)

    Sadanori Furudate

    2011-05-01

    Full Text Available We describe a 50-year-old Japanese patient with dermatofibrosarcoma protuberans (DFSP rapidly growing after bilateral adrenalectomy for Cushing’s syndrome that reduced the serum level of cortisol from 17.1 to 0.8 mg/dl. It is known that glucocorticoids decrease the transcriptions of the COL1A1 gene and the PDGFB gene, which is under the direct control of the COL1A1 gene in most DFSP. Therefore, the hypersecretion of glucocorticoids in Cushing’s syndrome might suppress the development of DFSP. To the best of our knowledge, this is the first case of rapid growth of DFSP that may be associated with bilateral adrenalectomy for Cushing’s syndrome.

  16. From the low past to the high future: Plant growth across CO2 levels

    Science.gov (United States)

    Temme, Andries; Cornwell, Will; Cornelissen, Hans; Aerts, Rien

    2014-05-01

    In today's atmosphere fossil fuel emissions and land use change since the industrial revolution have increased atmospheric CO2 concentration from 280 ppm to nearly 400 ppm, a value not experienced by plants for over 10 million years. In contrast, over the same period atmospheric CO2 levels have been much lower than preindustrial levels. Plants' recent evolutionary history has thus been under carbon starvation while over the next 90 years atmospheric CO2 is expected to rise to a bountiful ~800 ppm. Plants' response to this rapid increase is likely influenced by their long evolution in low CO2, but this has been hardly studied at all. Very little is known about how plant traits drove carbon cycling in the past and how these relationships may shift going from past to future CO2.In a climate chamber experiment we germinated and grew seedlings of 30 species (C3, C4, woody, herbaceous) at past low CO2 (150ppm), ambient CO2, and future high CO2(750ppm). Our aim was to understand how plant traits are affected by CO2 and if and why winners and losers in terms of growth performance shift going from past to future CO2 concentrations. Results show a great effect of low and high CO2 on specific leaf area, biomass and allocation shifts above and belowground but mixed results in patterns between species and plant types. Ongoing work focuses on leaf level chemistry and photosynthesis and the interaction between CO2 and drought stress with promising initial results.

  17. [Screening and identification of plant growth-promoting rhizobacteria].

    Science.gov (United States)

    Kang, Yijun; Cheng, Jie; Mei, Lijuan; Yin, Shixue

    2010-07-01

    The interaction between plant growth promoting rhizobacteria (PGPR) and plants can be unstable, PGPR with PGP activities may be well adapted to particular soil environment. Based on this, we isolated and identified PGPRs from different rhizosphere soils according to their multiple mechanisms. Preliminary screening of PGPRs under the premises of PGPR may having the abilities of N2-fixing, phosphate and potassium solubilization, and resistance against six common pathogenic fungi as well as rhizosphere colonization. After that, multiple PGP activities were detected in vitro. Finally, PGPRs were classified and identified by combining physiological and biochemical tests and 16S rRNA gene sequence analysis. Fourteen strains having various mechanisms of PGP activities such as NH3, IAA, HCN, siderophore, antibiotics production, phosphate and potassium solubilization, and N2-fixing were isolated from different rhizosphere soils in Yangzhou and Yancheng, Jiangsu province. These 14 isolates could be identified as Pseudomonas (7 isolates), Paenibacillus (3 isolates), Bacillus (2 isolates), Burkholderia (1 isolate) and Erwinia (1 isolate). Isolates with multiple PGP activities can also be rhizospheric competent, able to survive and colonize in the rhizosphere, providing promising isolates for PGPRs combination to resolve the challenges in field application of PGPR.

  18. Rhizobacteria of Populus euphratica Promoting Plant Growth Against Heavy Metals.

    Science.gov (United States)

    Zhu, Donglin; Ouyang, Liming; Xu, Zhaohui; Zhang, Lili

    2015-01-01

    The heavy metal-resistant bacteria from rhizospheric soils of wild Populus euphratica forest growing in arid and saline area of northwestern China were investigated by cultivation-dependent methods. After screening on medium sparked with zinc, copper, nickel and lead, 146 bacteria strains with different morphology were isolated and most of them were found to be resistant to at least two kinds of heavy metals. Significant increase in fresh weight and leaf surface area of Arabidopsis thaliana seedlings under metal stress were noticed after inoculated with strains especially those having multiple-resistance to heavy metals such as Phyllobacterium sp. strain C65. Investigation on relationship between auxin production and exogenous zinc concentration revealed that Phyllobacterium sp. strain C65 produced auxin, and production decreased as the concentration of zinc in medium increased. For wheat seedlings treated with zinc of 2 mM, zinc contents in roots of inoculated plants decreased by 27% (P < 0.05) compared to the uninoculated control. Meanwhile, zinc accumulation in the above-ground tissues increased by 22% (P < 0.05). The translocation of zinc from root to above-ground tissues induced by Phyllobacterium sp. strain C65 helped host plants extract zinc from contaminated environments more efficiently thus alleviated the growth inhibition caused by heavy metals.

  19. Plant extracts used as growth promoters in broilers

    Directory of Open Access Journals (Sweden)

    MSR Barreto

    2008-06-01

    Full Text Available Two experiments were carried out to assess the efficacy of plant extracts as alternatives for antimicrobial growth promoters in broiler diets. The performance experiment included 1,200 male broilers raised from 1 to 42 days of age. The metabolism experiment used 96 male broilers in the grower phase housed in metabolic cages for total excreta collection. At the end of the metabolism experiment, 24 birds were sacrificed to assess organ morphometrics. In both experiments, the following treatments were applied: control diet (CD; CD + 10 ppm avilamycin; CD + 1000 ppm oregano extract; CD + 1000 ppm clove extract; CD + 1000 ppm cinnamon extract; and CD + 1000 ppm red pepper extract. The microencapsulated extracts contained 20% of essential oil. No significant differences (P>0.05 in the studied performance parameters were observed among treatments. The dietary supplementation of the extracts did not influence (P>0.05 nitrogen-corrected apparent metabolizable energy values. In general, organ morphometrics was not affected by the experimental treatments, but birds fed the control diet had higher liver relative weight (P<0.05 as compared to those fed the diet containing red pepper extract, which presented the lowest liver relative weight. These results showed that there was no effect of the tested plant extracts on live performance or in organ morphometrics.

  20. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs

    NARCIS (Netherlands)

    Denance, N.; Sanchez Vallet, A.; Goffner, D.; Molina, A.

    2013-01-01

    Plant growth and response to environmental cues are largely governed by phytohormones. The plant hormones ethylene, jasmonic acid, and salicylic acid (SA) play a central role in the regulation of plant immune responses. In addition, other plant hormones, such as auxins, abscisic acid (ABA),

  1. Utilization of {gamma}-irradiation technique on plant mutation breeding and plant growth regulation in Tokyo Metropolitan Isotope Research Center

    Energy Technology Data Exchange (ETDEWEB)

    Suda, Hirokatsu [Tokyo Metropolitan Isotope Research Center (Japan)

    1997-03-01

    During about 30-years, we have developed {gamma}-irradiation technique and breeding back pruning method for the study of mutation breeding of ornamental plants. As a result, we have made a wide variety of new mutant lines in chrysanthemum, narcissus, begonia rex, begonia iron cross, winter daphne, zelkova, sweet-scented oleander, abelia, kobus, and have obtained 7 plant patents. By the use of {gamma}-irradiation to plant mutation breeding, we often observed that plants irradiated by low dose of {gamma}-rays showed superior or inferior growth than the of non-irradiated plants. Now, we established the irradiation conditions of {gamma}-rays for mutation breeding and growth of regulation in narcissus, tulip, Enkianthus perulatus Schneid., komatsuna, moyashi, african violet. In most cases, irradiation dose rate is suggested to be a more important factor to induce plant growth regulators than irradiation dose. (author)

  2. Antiphase light and temperature cycles disrupt rhythmic plant growth : the Arabidopsis jetlag

    NARCIS (Netherlands)

    Bours, R.M.E.H.

    2014-01-01

      Light and temperature are important determinants of plant growth and development. Plant elongation is stimulated by positively increasing differences between day and night temperature (+DIF, phased cycles). In contrast, a negative temperature difference (-DIF, antiphased cycles) reduces

  3. Achieving desired plant growth regulator levels in liquid plant tissue culture media that include activated carbon.

    Science.gov (United States)

    Van Winkle, Stephen C; Pullman, Gerald S

    2005-06-01

    This paper is part of a series considering the impact of activated carbon (AC) on the composition of plant tissue culture media. Using liquid culture media for initiation of Norway spruce embryogenic tissue and eight different ACs, we present a method for achieving target plant growth regulator (PGR) levels in AC-containing medium based on sorption isotherms for individual PGRs. Linear relationships were found between PGR adsorption and specific BET (Brunauer, Emmett, Teller theory) surface area and specific total pore volume of AC. When using a new AC, this linear relationship allows one to achieve multiple PGR levels similar to historic levels through adjustment of the mass of AC based on its relative BET surface area or relative total pore volume. Target levels of PGRs and an initiation success similar to that in medium without AC were achieved with several different AC types when AC mass was adjusted on the basis of pore volume.

  4. Using cellzilla for plant growth simulations at the cellular level.

    Science.gov (United States)

    Shapiro, Bruce E; Meyerowitz, Elliot M; Mjolsness, Eric

    2013-01-01

    Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Cellerator arrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; all interactions are input as reactions and are automatically translated to the appropriate differential equations using a computer algebra system. Cells are represented by a polygonal mesh of well-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactions utilizing diffusion, transport, and action at a distance, as well as amongst themselves within a cell. The mesh data structure consists of vertices, edges (vertex pairs), and cells (and optional intercellular wall compartments) as ordered collections of edges. Simulations may be either static, in which cell constituents change with time but cell size and shape remain fixed; or dynamic, where cells can also grow. Growth is controlled by Hookean springs associated with each mesh edge and an outward pointing pressure force. Spring rest length grows at a rate proportional to the extension beyond equilibrium. Cell division occurs when a specified constituent (or cell mass) passes a (random, normally distributed) threshold. The orientation of new cell walls is determined either by Errera's rule, or by a potential model that weighs contributions due to equalizing daughter areas, minimizing wall length, alignment perpendicular to cell extension, and alignment perpendicular to actual growth direction.

  5. Using Cellzilla for Plant Growth Simulations at the Cellular Level

    Directory of Open Access Journals (Sweden)

    Bruce E. Shapiro

    2013-10-01

    Full Text Available Cellzilla is a two-dimensional tissue simulation platform for plant modeling utilizing Celleratorarrows. Cellerator describes biochemical interactions with a simplified arrow-based notation; allinteractions are input as reactions and are automatically translated to the appropriate differentialequations using a computer algebra system. Cells are represented by a polygonal mesh ofwell-mixed compartments. Cell constituents can interact intercellularly via Cellerator reactionsutilizing diffusion, transport, and action at a distance, as well as amongst themselves withina cell. The mesh data structure consists of vertices, edges (vertex pairs, and cells (andoptional intercellular wall compartments as ordered collections of edges. Simulations may beeither static, in which cell constituents change with time but cell size and shape remain fixed;or dynamic, where cells can also grow. Growth is controlled by Hookean springs associatedwith each mesh edge and an outward pointing pressure force. Spring rest length grows at arate proportional to the extension beyond equilibrium. Cell division occurs when a specifiedconstituent (or cell mass passes a (random, normally distributed threshold. The orientationof new cell walls is determined either by Errera’s rule, or by a potential model that weighscontributions due to equalizing daughter areas, minimizing wall length, alignment perpendicularto cell extension, and alignment perpendicular to actual growth direction.

  6. Computational insight into the chemical space of plant growth regulators.

    Science.gov (United States)

    Bushkov, Nikolay A; Veselov, Mark S; Chuprov-Netochin, Roman N; Marusich, Elena I; Majouga, Alexander G; Volynchuk, Polina B; Shumilina, Daria V; Leonov, Sergey V; Ivanenkov, Yan A

    2016-02-01

    An enormous technological progress has resulted in an explosive growth in the amount of biological and chemical data that is typically multivariate and tangled in structure. Therefore, several computational approaches have mainly focused on dimensionality reduction and convenient representation of high-dimensional datasets to elucidate the relationships between the observed activity (or effect) and calculated parameters commonly expressed in terms of molecular descriptors. We have collected the experimental data available in patent and scientific publications as well as specific databases for various agrochemicals. The resulting dataset was then thoroughly analyzed using Kohonen-based self-organizing technique. The overall aim of the presented study is to investigate whether the developed in silico model can be applied to predict the agrochemical activity of small molecule compounds and, at the same time, to offer further insights into the distinctive features of different agrochemical categories. The preliminary external validation with several plant growth regulators demonstrated a relatively high prediction power (67%) of the constructed model. This study is, actually, the first example of a large-scale modeling in the field of agrochemistry. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. The biotoxicity of hydroxyapatite nanoparticles to the plant growth

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hao [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Liu, Jin-Ku, E-mail: jkliu@ecust.edu.cn [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Wang, Jian-Dong; Lu, Yi; Zhang, Min [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China); Yang, Xiao-Hong, E-mail: yxh6110@yeah.net [Department of Chemistry, Chizhou University, Chizhou 247000 (China); Hong, Dan-Jing [Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai 200237 (China)

    2014-04-01

    Highlights: • Mung bean sprouts were first used as the experimental model to research the cytotoxicity of the HAP nanomaterials. • The biotoxicity depends on the concentration and particle size of HAP nanomaterials. • The biotoxicity mechanism of HAP nanomaterials was discussed. - Abstract: In the present study, hydroxyapatite (HAP) nanoparticles of different particle sizes with high crystallinity and similiar structure were prepared by hydrothermal method. The crystal structure and particle size were characterized by X-ray diffraction pattern (XRD), transmission electron microscopy (TEM) and Fourier transform infrared (FT-IR) spectroscopy. Mung bean sprouts were first used as experimental models. Instead of by MTT assay, the cytoxicity of HAP nanoparticles were proved and evaluated by measuring the hypocotyle length of mung bean sprouts in the culture media. The result showed that the inhibition effect to the growth of mung bean sprouts enhanced when HAP nanoparticles existed. Culture media of HAP nanoparticles with different concentrations and particle sizes was prepared to investigate the level of inhibition effect to the growth of mung bean sprouts. The result found that hypocotyl length of mung bean sprouts were the shortest cultured in 5 mg/mL culture media in which the HAP nanoparticles were prepared by hydrothermal method for 24 h. It was concluded the inhibition effect depended on the amount of intracellular HAP nanoparticles. The nanostructure and Ca{sup 2+} concentration were considered as the main factors to cause cell apoptosis which was the reason of inhibition. The study provided a preliminary perspective about biotoxicity of HAP nanomaterials to the plant growth.

  8. Determining Optimal Degree of Soil Compaction for Balancing Mechanical Stability and Plant Growth Capacity

    National Research Council Canada - National Science Library

    Goldsmith, Wendi

    2001-01-01

    .... Agronomists, on the other hand, recommend minimal soil compaction because compacted soils are widely understood to impede the growth and development of crops, forests, and native plant communities...

  9. To study the effect of plant growth-promoting rhizobacteria on tomato ...

    African Journals Online (AJOL)

    To study the effect of plant growth-promoting rhizobacteria on tomato bacterial wilt and growth, two PGPR combinations T1 and T2 were prepared based on the resistance relationship of Bacillus mucilaginosus BX-1, Bacillus su.

  10. Effects of Liquid Organic Fertilizers on Plant Growth and Rhizosphere Soil Characteristics of Chrysanthemum

    National Research Council Canada - National Science Library

    Rongting Ji; Gangqiang Dong; Weiming Shi; Ju Min

    2017-01-01

    .... To promote the productivity of chrysanthemum, five sources of liquid organic fertilizers (L1-L5), as well as a chemical fertilizer, were applied at an early stage of the growth cycle to investigate their effects on plant growth...

  11. The impact of rapid economic growth and globalization on zinc nutrition in South Korea.

    Science.gov (United States)

    Kwun, In-Sook; Do, Mi-Sook; Chung, Hae-Rang; Kim, Yang Ha; Beattie, John H

    2009-08-01

    Zn deficiency may be widespread in Asian countries such as South Korea. However, dietary habits have changed in response to rapid economic growth and globalization. Zn nutrition in South Koreans has therefore been assessed during a period (1969-1998) of unprecedented economic growth. Cross-sectional food consumption data from the Korean National Nutrition Survey Reports (KNNSR) of South Korea at four separate time points (1969, 1978, 1988 and 1998) were used to calculate Zn, Ca and phytate intakes using various food composition tables, databases and literature values. Nutrient values in local foods were cited from their analysed values. Average Zn intake was 5.8, 4.8 and 5.3 mg/d for 1969, 1978 and 1988 respectively, increasing to 7.3 mg/d in 1998 (73 % of the Korean Dietary Reference Intake). The phytate:Zn molar ratio decreased from 21 to 8 during the study period. Dietary Zn depletion due to marked decreases in cereal consumption, particularly barley which has a low Zn bioavailability, was counterbalanced by marked increases in the consumption of meat and fish, which are also Zn-rich foods. Reduced phytate consumption coincident with increased Zn intake suggests that Zn bioavailability also improved, particularly by 1998. Although total Zn intake was not greatly affected over the initial period of economic growth in South Korea (1969-1988), Zn contributions from different food sources changed markedly and both Zn intake and potential bioavailability were improved by 1998. The study may have implications for Zn nutrition in other Asian countries currently experiencing rapid economic growth.

  12. Automated electrical impedance technique for rapid enumeration of fecal coliforms in effluents from sewage treatment plants.

    Science.gov (United States)

    Silverman, M P; Munoz, E F

    1979-01-01

    Fecal coliforms growing in a selective lactose-based broth medium at 44.5 degrees C generate a change in the electrical impedance of the culture relative to a sterile control when populations reach 10(6) to 10(7) per ml. The ratio of these changes was measured automatically, and the data were processed by computer. A linear relation was found between the log10 of the number of fecal coliforms in an inoculum and the time required for an electrical impedance ratio signal to be detected. Pure culture inocula consisting of 100 fecal coliforms in log phase or stationary phase were detected in 6.5 and 7.7 h, respectively. Standard curves of log10 fecal coliforms in wastewater inocula versus detection time, based on samples collected at a sewage treatment plant over a 4-month period, were found to vary from one another with time. Nevertheless, detection times were rapid and ranged from 5.8 to 7.9 h for 200 fecal coliforms to 8.7 to 11.4 h for 1 fecal coliform. Variations in detection times for a given number of fecal coliforms were also found among sewage treatment plants. A strategy is proposed which takes these variations into account and allows for rapid, automated enumeration of fecal coliforms in wastewater by the electrical impedance ratio technique. PMID:378128

  13. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    Science.gov (United States)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  14. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L.

    Directory of Open Access Journals (Sweden)

    Neyser De La Torre-Ruiz

    Full Text Available ABSTRACT The effect of plant growth-promoting bacteria inoculation on plant growth and the sugar content in Agave americana was assessed. The bacterial strains ACO-34A, ACO-40, and ACO-140, isolated from the A. americana rhizosphere, were selected for this study to evaluate their phenotypic and genotypic characteristics. The three bacterial strains were evaluated via plant inoculation assays, and Azospirillum brasilense Cd served as a control strain. Phylogenetic analysis based on the 16S rRNA gene showed that strains ACO-34A, ACO-40 and ACO-140 were Rhizobium daejeonense, Acinetobacter calcoaceticus and Pseudomonas mosselii, respectively. All of the strains were able to synthesize indole-3-acetic acid (IAA, solubilize phosphate, and had nitrogenase activity. Inoculation using the plant growth-promoting bacteria strains had a significant effect (p < 0.05 on plant growth and the sugar content of A. americana, showing that these native plant growth-promoting bacteria are a practical, simple, and efficient alternative to promote the growth of agave plants with proper biological characteristics for agroindustrial and biotechnological use and to increase the sugar content in this agave species.

  15. Rapid in vivo analysis of synthetic promoters for plant pathogen phytosensing

    Directory of Open Access Journals (Sweden)

    Liu Wusheng

    2011-11-01

    Full Text Available Abstract Background We aimed to engineer transgenic plants for the purpose of early detection of plant pathogen infection, which was accomplished by employing synthetic pathogen inducible promoters fused to reporter genes for altered phenotypes in response to the pathogen infection. Toward this end, a number of synthetic promoters consisting of inducible regulatory elements fused to a red fluorescent protein (RFP reporter were constructed for use in phytosensing. Results For rapid analysis, an Agrobacterium-mediated transient expression assay was evaluated, then utilized to assess the inducibility of each synthetic promoter construct in vivo. Tobacco (Nicotiana tabacum cv. Xanthi leaves were infiltrated with Agrobacterium harboring the individual synthetic promoter-reporter constructs. The infiltrated tobacco leaves were re-infiltrated with biotic (bacterial pathogens or abiotic (plant defense signal molecules salicylic acid, ethylene and methyl jasmonate agents 24 and 48 hours after initial agroinfiltration, followed by RFP measurements at relevant time points after treatment. These analyses indicated that the synthetic promoter constructs were capable of conferring the inducibility of the RFP reporter in response to appropriate phytohormones and bacterial pathogens, accordingly. Conclusions These observations demonstrate that the Agrobacterium-mediated transient expression is an efficient method for in vivo assays of promoter constructs in less than one week. Our results provide the opportunity to gain further insights into the versatility of the expression system as a potential tool for high-throughput in planta expression screening prior to generating stably transgenic plants for pathogen phytosensing. This system could also be utilized for temporary phytosensing; e.g., not requiring stably transgenic plants.

  16. A Method to Teach Age-Specific Demography with Field Grown Rapid Cycling "Brassica rapa" (Wisconsin Fast Plants)

    Science.gov (United States)

    Kelly, Martin G.; Terrana, Sebastian

    2004-01-01

    In this paper, we demonstrate that rapid cycling "Brassica rapa" (Wisconsin Fast Plants) can be used in inquiry-based, student ecological fieldwork. We are the first to describe age-specific survival for field-grown Fast Plants and identify life history traits associated with individual survival. This experiment can be adapted by educators as a…

  17. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands

    NARCIS (Netherlands)

    Deyn, de G.B.; Quirk, H.; Oakley, S.; Ostle, N.J.; Bartgett, R.D.

    2011-01-01

    Plant-soil interactions are central to short-term carbon (C) cycling through the rapid transfer of recently assimilated C from plant roots to soil biota. In grassland ecosystems, changes in C cycling are likely to be influenced by land use and management that changes vegetation and the associated

  18. Effect of plant growth regulators on indices of growth analysis for sweet passion fruit seedlings (Passiflora alata Curtis

    Directory of Open Access Journals (Sweden)

    Carmen Sílvia Fernandes Boaro

    2008-09-01

    Full Text Available The objective of this work was to investigate the effects of GA3 + IBA + cinetina on the growth of Passiflora alata Curtis plants through growth analysis. The experiment was carried out by completely randomized block design, with six treatments and four replications. The plant growth regulators, gibberellin (GA3, auxin (IBA and cytokinin (kinetin, were applied to leaves at concentrations of 0 (control, 25, 50, 75, 100, 125mL.L-1. The applications were performed at 48, 55, 52, 69, and 76 days after the emergence of the plants and the growths were evaluated five times at 7-day intervals. The first evaluations were accomplished 55 days after plant emergence. The leaf area ratio (RAF, specific leaf area (AFE, liquid assimilation rate (TCA, and relative growth rate (TCR were analyzed. The following data were also analyzed for P. alata Curtis plants: leaf area, leaf lamina dry mass and total leaves dry mass. The growth analysis, which employed the ANACRES computer program, indicated that the growth regulators increased plant productivity.

  19. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L.

    Science.gov (United States)

    Sarathambal, Chinnathambi; Khankhane, Premraj Jagoji; Gharde, Yogita; Kumar, Bhumesh; Varun, Mayank; Arun, Sellappan

    2017-04-03

    In this study, plant growth-promoting potential isolates from rhizosphere of 10 weed species grown in heavy metal-contaminated areas were identified and their effect on growth, antioxidant enzymes, and cadmium (Cd) uptake in Arundo donax L. was explored. Plant growth-promoting traits of isolates were also analyzed. These isolates were found to produce siderophores and enzymes such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and aid in solubilization of mineral nutrients and modulate plant growth and development. Based on the presence of multiple plant growth-promoting traits, isolates were selected for molecular characterization and inoculation studies. Altogether, 58 isolates were obtained and 20% of them were able to tolerate Cd up to 400 ppm. The sequence analysis of the 16S rRNA genes indicates that the isolates belong to the phylum Firmicutes. Bacillus sp. along with mycorrhizae inoculation significantly improves the growth, the activity of antioxidants enzymes, and the Cd uptake in A. donax than Bacillus alone. Highly significant correlations were observed between Cd uptake, enzymatic activities, and plant growth characteristics at 1% level of significance. The synergistic interaction effect between these organisms helps to alleviate Cd effects on soil. Heavy metal-tolerant isolate along with arbuscular mycorrhizae (AM) could be used to improve the phytoremedial potential of plants.

  20. A modified MS2 bacteriophage plaque reduction assay for the rapid screening of antiviral plant extracts.

    Science.gov (United States)

    Cock, Ian; Kalt, F R

    2010-07-01

    Traditional methods of screening plant extracts and purified components for antiviral activity require up to a week to perform, prompting the need to develop more rapid quantitative methods to measure the ability of plant based preparations to block viral replication. We describe an adaption of an MS2 plaque reduction assay for use in S. aureus. MS2 bacteriophage was capable of infecting and replicating in B. cereus, S. aureus and F + E. coli but not F- E. coli. Indeed, both B. cereus and S. aureus were more sensitive to MS2 induced lysis than F+ E. coli. When MS2 bacteriophage was mixed with Camellia sinensis extract (1 mg/ml), Scaevola spinescens extract (1 mg/ml) or Aloe barbadensis juice and the mixtures inoculated into S. aureus, the formation of plaques was reduced to 8.9 ± 3.8%, 5.4 ± 2.4% and 72.7 ± 20.9% of the untreated MS2 control values respectively. The ability of the MS2 plaque reduction assay to detect antiviral activity in these known antiviral plant preparations indicates its suitability as an antiviral screening tool. An advantage of this assay compared with traditionally used cytopathic effect reduction assays and replicon based assays is the more rapid acquisition of results. Antiviral activity was detected within 24 h of the start of testing. The MS2 assay is also inexpensive and non-pathogenic to humans making it ideal for initial screening studies or as a simulant for pathogenic viruses.

  1. Different growth promoting effects of endophytic bacteria on invasive and native clonal plants

    Directory of Open Access Journals (Sweden)

    Zhi-Cong eDai

    2016-05-01

    Full Text Available The role of the interactions between endophytes and alien plants has been unclear yet in plant invasion. We used a completely germ-free culture system to quantify the plant growth-promoting (PGP effects of endophytic bacteria Bacillus sp. on aseptic seedlings of W. trilobata and of its native clonal congener W. chinensis. The endophytic bacteria did not affect the growth of W. chinensis, but they significantly promoted the growth of W. trilobata. With the PGP effects of endophytic bacteria, relative change ratios of the clonal traits and the ramets' growth traits of W. trilobata were significantly greater than those of W. chinensis. Our results indicate that the growth-promoting effects of endophytes may differ between invasive and native clonal plants, and the endophytes of invasive plant may be host-specific to facilitate plant invasion.

  2. [Plant growth promoting microorganisms as alternative to chemical protection from pathogens (review)].

    Science.gov (United States)

    Maksimov, I V; Abizgil'dina, R R; Pusenkova, L I

    2011-01-01

    The review analyses data on physiological and biochemical influence of rhizospheric and endophytic microorganisms promoting plant growth (PGPR-plant growth promoting rhizobacteria) on induced resistance of plants and the possibility of its use in plant cultivation to protect crops from pathogens and phytophages. Resistance of plants provided by PGPR due to their endosymbiotic interrelationships is directly achieved because they produce peptide antibiotics and hydrolases ofchitin and glucan and also because plants form their own system of induced resistance, followed by changes in the balance of defensive proteins, phytohormones, and pro-/antioxidant status.

  3. Regeneration of Dioscorea floribunda plants from cryopreserved encapsulated shoot tips: effect of plant growth regulators.

    Science.gov (United States)

    Mandal, B B; Ahuja-Ghosh, Sangeeta

    2007-01-01

    The encapsulation-dehydration protocol for the cryopreservation of in vitro shoot tips of Dioscorea floribunda was optimized. Maximum survival of 87% was obtained when overnight pretreatment with 0.3 M sucrose was followed by encapsulation, preculture in 0.75 M sucrose for 4 d, dehydration in a laminar air flow for 5.5 h, quenching in liquid nitrogen and thawing at 40 degrees C. During recovery growth, 29% shoot formation was obtained when cryopreserved shoot tips were initially cultured for 25 d on a medium with 1.5 mg per liter (-1) BAP, 0.2 mg per liter(-1) NAA and 0.2 mg per liter(-1) GA3 followed by culturing for 15 d on a medium with reduced BAP (1 mg per liter(-1)) but increased NAA (0.5 mg per liter(-1)) and GA3 (0.3 mg per liter(-1)). Finally, transfer on to a medium with further reduced doses of BAP (0.05 mg per liter(-1)) and NAA (0.15 mg per liter(-1)) but without GA3 stimulated production of fully grown plantlets. All plants regenerated without callus formation. Modification of post-thaw culture media with plant growth regulators was essential for regrowth of shoot tips to plantlets.

  4. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2

    Science.gov (United States)

    Tahir, Hafiz A. S.; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V.; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs. PMID:28223976

  5. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2.

    Science.gov (United States)

    Tahir, Hafiz A S; Gu, Qin; Wu, Huijun; Raza, Waseem; Hanif, Alwina; Wu, Liming; Colman, Massawe V; Gao, Xuewen

    2017-01-01

    Bacterial volatiles play a significant role in promoting plant growth by regulating the synthesis or metabolism of phytohormones. In vitro and growth chamber experiments were conducted to investigate the effect of volatile organic compounds (VOCs) produced by the plant growth promoting rhizobacterium Bacillus subtilis strain SYST2 on hormone regulation and growth promotion in tomato plants. We observed a significant increase in plant biomass under both experimental conditions; we observed an increase in photosynthesis and in the endogenous contents of gibberellin, auxin, and cytokinin, while a decrease in ethylene levels was noted. VOCs emitted by SYST2 were identified through gas chromatography-mass spectrometry analysis. Of 11 VOCs tested in glass jars containing plants in test tubes, only two, albuterol and 1,3-propanediole, were found to promote plant growth. Furthermore, tomato plants showed differential expression of genes involved in auxin (SlIAA1. SlIAA3), gibberellin (GA20ox-1), cytokinin (SlCKX1), expansin (Exp2, Exp9. Exp 18), and ethylene (ACO1) biosynthesis or metabolism in roots and leaves in response to B. subtilis SYST2 VOCs. Our findings suggest that SYST2-derived VOCs promote plant growth by triggering growth hormone activity, and provide new insights into the mechanism of plant growth promotion by bacterial VOCs.

  6. Effect of seaweed extracts on growth and yield of rice plants

    Directory of Open Access Journals (Sweden)

    ALUH NIKMATULLAH

    2010-07-01

    Full Text Available Sunarpi, Jupri A, Kurnianingsih R, Julisaniah NI, Nikmatullah A 2010. Effect of seaweed extracts on growth and yield of rice plants. Nusantara Bioscience 2: 73-77. Application of liquid seaweed fertilizers on some plant specieshas been reported to decrease application doses of nitrogen, phosphorus and potassium on some crop plants, as well as stimulating growth and production of many plants. It has been reported that there are at least 59 species of seaweeds found in coastal zone of West Nusa Tenggara Province, 15 of those species weres able to stimulate germination, growth and production of some horticultural and legume plants. The aim of this research is to investigate the effect of seaweed extracts obtained from ten species on growth and production of rice plants. To achive the goal, seaweed (100 g per species wasextracted with 100 mL of water, to obtain the concentration of 100%. Seaweed extract (15% was sprayed into the rice plants during vegetative and generative stages. Subsequently, the growth and yield parameters of rice plants were measured. The results shown that extracts of Sargassum sp.1, Sargassum sp.2, Sargassum polycistum, Hydroclathrus sp., Turbinaria ornata, and Turbinaria murayana, were able to induce growth of rice plants. However, only the Hydroclathrus sp. extract could enhance both growth and production of rice plants.

  7. Realizing the potential of rapid-cycling Brassica as a model system for use in plant biology research

    Science.gov (United States)

    Musgrave, M. E.

    2000-01-01

    Rapid-cycling Brassica populations were initially developed as a model for probing the genetic basis of plant disease. Paul Williams and co-workers selected accessions of the six main species for short time to flower and rapid seed maturation. Over multiple generations of breeding and selection, rapid-cycling populations of each of the six species were developed. Because of their close relationship with economically important Brassica species, rapid-cycling Brassica populations, especially those of B. rapa (RCBr) and B. oleracea, have seen wide application in plant and crop physiology investigations. Adding to the popularity of these small, short-lived plants for research applications is their extensive use in K-12 education and outreach.

  8. Plant growth-promoting rhizobacteria strain Bacillus amyloliquefaciens NJN-6-enriched bio-organic fertilizer suppressed Fusarium wilt and promoted the growth of banana plants.

    Science.gov (United States)

    Yuan, Jun; Ruan, Yunze; Wang, Beibei; Zhang, Jian; Waseem, Raza; Huang, Qiwei; Shen, Qirong

    2013-04-24

    Bacillus amyloliquefaciens strain NJN-6 is an important plant growth-promoting rhizobacteria (PGPR) which can produce secondary metabolites antagonistic to several soil-borne pathogens. In this study, the ability of a bio-organic fertilizer (BIO) containing NJN-6 strain to promote the growth and suppress Fusarium wilt of banana plants was evaluated in a pot experiment. The results showed that the application of BIO significantly decreased the incidence of Fusarium wilt and promoted the growth of banana plants compared to that for the organic fertilizer (OF). To determine the beneficial mechanism of the strain, the colonization of NJN-6 strain on banana roots was evaluated using scanning electron microscopy (SEM). The plant growth-promoting hormones indole-3-acetic acid (IAA) and gibberellin A3 (GA3), along with antifungal lipopeptides iturin A, were detected when the NJN-6 strain was incubated in both Landy medium with additional l-tryptophan and in root exudates of banana plants. In addition, some antifungal volatile organic compounds and iturin A were also detected in BIO. In summary, strain NJN-6 could colonize the roots of banana plants after the application of BIO and produced active compounds which were beneficial for the growth of banana plants.

  9. Bioprospecting glacial ice for plant growth promoting bacteria.

    Science.gov (United States)

    Balcazar, Wilvis; Rondón, Johnma; Rengifo, Marcos; Ball, María M; Melfo, Alejandra; Gómez, Wileidy; Yarzábal, Luis Andrés

    2015-08-01

    Glaciers harbor a wide diversity of microorganisms, metabolically versatile, highly tolerant to multiple environmental stresses and potentially useful for biotechnological purposes. Among these, we hypothesized the presence of bacteria able to exhibit well-known plant growth promoting traits (PGP). These kinds of bacteria have been employed for the development of commercial biofertilizers; unfortunately, these biotechnological products have proven ineffective in colder climates, like the ones prevailing in mountainous ecosystems. In the present work, we prospected glacial ice collected from two small tropical glaciers, located above 4.900 m in the Venezuelan Andes, for cold-active PGP bacteria. The initial screening strategy allowed us to detect the best inorganic-P solubilizers at low temperatures, from a sub-sample of 50 bacterial isolates. Solubilization of tricalcium phosphate, aluminum- and iron-phosphate, occurred in liquid cultures at low temperatures and was dependent on medium acidification by gluconic acid production, when bacteria were supplied with an appropriate source of carbon. Besides, the isolates were psychrophilic and in some cases exhibited a broad range of growth-temperatures, from 4 °C to 30 °C. Additional PGP abilities, including phytohormone- and HCN production, siderophore excretion and inhibition of phytopathogens, were confirmed in vitro. Nucleotidic sequence analysis of 16S rRNA genes allowed us to place the isolates within the Pseudomonas genus. Our results support the possible use of these strains to develop cold-active biofertilizers to be used in mountainous agriculture. Copyright © 2015 Elsevier GmbH. All rights reserved.

  10. In Vitro plant cell growth in microgravity and on clinostat

    Science.gov (United States)

    Laurinavicius, R.; Kenstaviciene, P.; Rupainiene, O.; Necitailo, G.

    1994-08-01

    For the study of gravity's role in the processes of plant cell differentiation in vitro, a model ``seed-seedling-callus'' has been used. Experiments were carried out on board the orbital stations Salyut-7 and Mir as well as on clinostat. They lasted from 18 to 72 days. It was determined that the exclusion of a one-sided action of gravity vector by means of clinostat and spaceflight conditions does not impede the formation and growth of callus tissue; however, at cell and subcellular levels structural and functional changes do take place. No significant changes were observed either on clinostat or in space concerning the accumulation of fresh biomass, while the percentage of dry material in space is lower than in control. Both in microgravity (MG) and in control, even after 72 days of growth, cells with a normally developed ultrastructure are present. In space, however, callus tissue more often contains cells in which the cross-section area of a cells, a nuclei and of mitochondria are smaller and the vacuole area - bigger than in controls. In microgravity a considerable decrease in the number of starch-containing cells and a reduction in the mean area of starch grains in amyloplasts is observed. In space the amount of soluble proteins in callus tissue is 1.5 times greater than in control. However, no differences were observed in fractions when separated by the SDS-PAGE method. In microgravity the changes in cell wall material components was noted. In the space-formed callus changes in the concentration of ions K, Na, Mg, Ca and P were observed. However, the direction of these changes depends on the age of callus. Discussed are the possible reasons for modification of morphological and metabolic parameters of callus cells when grown under changed gravity conditions.

  11. Capabilities of the Advanced Astroculture plant growth unit to support plant research conducted on the International Space Station

    Science.gov (United States)

    Zhou, W.; Durst, S.; Meyers, R.; Tellez, G.; Demars, M.; Sandstrom, P.

    Since 1990, WCSAR has developed a number of technologies for plant-based space life support systems, with a goal of providing robust and capable facilities suitable for conducting quality plant research in microgravity environment. These technologies have been substantially validated using the Astroculture payload through a series of space shuttle flights. Advanced ASTROCULTURETM (ADVASC), a space-based plant growth unit, has been developed to take advantage of plant research opportunities during the early assembly phase of the International Space Station (ISS) when ISS resources and up/down mass availability are limited. ADVASC provides an enclosed, environmentally controlled plant growth chamber with controlled parameters of temperature, relative humidity, light intensity, fluid nutrient delivery, and CO2 and hydrocarbon (ethylene) concentrations. Auto-prime technology eliminates the need for electrical power during launch vehicle ascent/descent, and therefore greatly relieves the shortage of launch vehicle resources and ISS crew time. State-of-the-art control software combined with fault tolerance and recovery technology significantly increases overall system robustness and efficiency. Tele-science features allow engineers and scientists to remotely receive telemetry data and video images, send remote commands, monitor plant development status, and troubleshoot subsystems if any unexpected behavior occurs. ADVASC is configured as two single-Middeck-Locker inserts installed in a standard EXPRESS Rack, with one insert containing the support systems and the other containing a large plant growth chamber. Thus, the insert with the support systems can remain on the ISS and only the insert containing the plant chamber needs to be transported to and from the ISS to accommodate different experiments. ADVASC has been used to successfully conduct three plant life cycle studies on board the ISS, two for Arabidopsis seed-to-seed growth and one for soybean seed-to-seed growth

  12. An Evolutionary Robotics Approach to the Control of Plant Growth and Motion: Modeling Plants and Crossing the Reality Gap

    DEFF Research Database (Denmark)

    Wahby, Mostafa; Hofstadler, Daniel Nicolas; Heinrich, Mary Katherine

    2016-01-01

    The self-organizing bio-hybrid collaboration of robots and natural plants allows for a variety of interesting applications. As an example we investigate how robots can be used to control the growth and motion of a natural plant, using LEDs to provide stimuli. We follow an evolutionary robotics...... approach where task performance is determined by monitoring the plant's reaction. First, we do initial plant experiments with simple, predetermined controllers. Then we use image sampling data as a model of the dynamics of the plant tip xy position. Second, we use this approach to evolve robot controllers...

  13. Integral parameters for characterizing water, energy, and aeration properties of soilless plant growth media

    Science.gov (United States)

    Chamindu Deepagoda, T. K. K.; Chen Lopez, Jose Choc; Møldrup, Per; de Jonge, Lis Wollesen; Tuller, Markus

    2013-10-01

    Over the last decade there has been a significant shift in global agricultural practice. Because the rapid increase of human population poses unprecedented challenges to production of an adequate and economically feasible food supply for undernourished populations, soilless greenhouse production systems are regaining increased worldwide attention. The optimal control of water availability and aeration is an essential prerequisite to successfully operate plant growth systems with soilless substrates such as aggregated foamed glass, perlite, rockwool, coconut coir, or mixtures thereof. While there are considerable empirical and theoretical efforts devoted to characterize water retention and aeration substrate properties, a holistic, physically-based approach considering water retention and aeration concurrently is lacking. In this study, the previously developed concept of integral water storage and energy was expanded to dual-porosity substrates and an analog integral oxygen diffusivity parameter was introduced to simultaneously characterize aeration properties of four common soilless greenhouse growth media. Integral parameters were derived for greenhouse crops in general, as well as for tomatoes. The integral approach provided important insights for irrigation management and for potential optimization of substrate properties. Furthermore, an observed relationship between the integral parameters for water availability and oxygen diffusivity can be potentially applied for the design of advanced irrigation and management strategies to ensure stress-free growth conditions, while conserving water resources.

  14. Enhancement of growth and chitosan production by Rhizopus oryzae in whey medium by plant growth hormones.

    Science.gov (United States)

    Chatterjee, Sudipta; Chatterjee, Sandipan; Chatterjee, Bishnu P; Guha, Arun K

    2008-03-01

    The effect of some plant growth hormones, viz., gibberellic acid, indole-3-acetic acid, indole-3-butyric acid, and kinetin on chitosan production by Rhizopus oryzae in deproteinized whey was studied. Hormones, at different concentrations, increase the mycelial growth by 19-32%. However, increase in chitosan content of the mycelia was relatively small (1.7-14.3%) over the control. Maximum enhancement was observed with gibberellic acid. Fifty percent more chitosan could be obtained from 1L of whey containing 0.1mg/L gibberellic acid. Hormones, at higher dose, instead of stimulation inhibited both growth and mycelial chitosan content. This study showed that hormones have no influence on degree of deacetylation of chitosan but increase the quality of the chitosan by increasing weight average molecular weight and decreasing polydispersity. All the hormones had been found to enhance chitin deacetylase activity of R. oryzae by 1.067-1.267-fold and may be one of the reasons for increased chitosan production.

  15. Plant Growth under Natural Light Conditions Provides Highly Flexible Short-Term Acclimation Properties toward High Light Stress

    Science.gov (United States)

    Schumann, Tobias; Paul, Suman; Melzer, Michael; Dörmann, Peter; Jahns, Peter

    2017-01-01

    Efficient acclimation to different growth light intensities is essential for plant fitness. So far, most studies on light acclimation have been conducted with plants grown under different constant light regimes, but more recent work indicated that acclimation to fluctuating light or field conditions may result in different physiological properties of plants. Thale cress (Arabidopsis thaliana) was grown under three different constant light intensities (LL: 25 μmol photons m−2 s−1; NL: 100 μmol photons m−2 s−1; HL: 500 μmol photons m−2 s−1) and under natural fluctuating light (NatL) conditions. We performed a thorough characterization of the morphological, physiological, and biochemical properties focusing on photo-protective mechanisms. Our analyses corroborated the known properties of LL, NL, and HL plants. NatL plants, however, were found to combine characteristics of both LL and HL grown plants, leading to efficient and unique light utilization capacities. Strikingly, the high energy dissipation capacity of NatL plants correlated with increased dynamics of thylakoid membrane reorganization upon short-term acclimation to excess light. We conclude that the thylakoid membrane organization and particularly the light-dependent and reversible unstacking of grana membranes likely represent key factors that provide the basis for the high acclimation capacity of NatL grown plants to rapidly changing light intensities. PMID:28515734

  16. Plant-mediated restriction of Salmonella enterica on tomato and spinach leaves colonized with Pseudomonas plant growth-promoting rhizobacteria.

    Science.gov (United States)

    Hsu, Chiun-Kang; Micallef, Shirley A

    2017-10-16

    Reducing Salmonella enterica association with plants during crop production could reduce risks of fresh produce-borne salmonellosis. Plant growth-promoting rhizobacteria (PGPR) colonizing plant roots are capable of promoting plant growth and boosting resistance to disease, but the effects of PGPR on human pathogen-plant associations are not known. Two root-colonizing Pseudomonas strains S2 and S4 were investigated in spinach, lettuce and tomato for their plant growth-promoting properties and their influence on leaf populations of S. enterica serovar Newport. Plant roots were inoculated with Pseudomonas in the seedling stage. At four (tomato) and six (spinach and lettuce) weeks post-germination, plant growth promotion was assessed by shoot dry weight (SDW) and leaf chlorophyll content measurements. Leaf populations of S. Newport were measured after 24h of leaf inoculation with this pathogen by direct plate counts on Tryptic Soy Agar. Root inoculation of spinach cv. 'Tyee', with Pseudomonas strain S2 or S4 resulted in a 69% and 63% increase in SDW compared to non-inoculated controls (plettuce cv. 'Parris Island Cos' responded positively to S2 and S4 inoculation (53% and 48% SDW increase, respectively; pSalmonella inoculation. Impairment of S. Newport leaf populations was also observed on spinach when plant roots were inoculated with S2 (plettuce was not influenced by Pseudomonas root colonization. These findings provide evidence that root inoculation of certain specialty crops with beneficial Pseudomonas strains exhibiting PGPR properties may not only promote plant growth, but also reduce the fitness of epiphytic S. enterica in the phyllosphere. Plant-mediated effects induced by PGPR may be an effective strategy to minimize contamination of crops with S. enterica during cultivation. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. A Rapid and Reliable Method for Total Protein Extraction from Succulent Plants for Proteomic Analysis.

    Science.gov (United States)

    Lledías, Fernando; Hernández, Felipe; Rivas, Viridiana; García-Mendoza, Abisaí; Cassab, Gladys I; Nieto-Sotelo, Jorge

    2017-08-01

    Crassulacean acid metabolism plants have some morphological features, such as succulent and reduced leaves, thick cuticles, and sunken stomata that help them prevent excessive water loss and irradiation. As molecular constituents of these morphological adaptations to xeric environments, succulent plants produce a set of specific compounds such as complex polysaccharides, pigments, waxes, and terpenoids, to name a few, in addition to uncharacterized proteases. Since all these compounds interfere with the analysis of proteins by electrophoretic techniques, preparation of high quality samples from these sources represents a real challenge. The absence of adequate protocols for protein extraction has restrained the study of this class of plants at the molecular level. Here, we present a rapid and reliable protocol that could be accomplished in 1 h and applied to a broad range of plants with reproducible results. We were able to obtain well-resolved SDS/PAGE protein patterns in extracts from different members of the subfamilies Agavoideae (Agave, Yucca, Manfreda, and Furcraea), Nolinoideae (Dasylirion and Beucarnea), and the Cactaceae family. This method is based on the differential solubility of contaminants and proteins in the presence of acetone and pH-altered solutions. We speculate about the role of saponins and high molecular weight carbohydrates to produce electrophoretic-compatible samples. A modification of the basic protocol allowed the analysis of samples by bidimensional electrophoresis (2DE) for proteomic analysis. Furostanol glycoside 26-O-β-glucosidase (an enzyme involved in steroid saponin synthesis) was successfully identified by mass spectrometry analysis and de novo sequencing of a 2DE spot from an Agave attenuata sample.

  18. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.

    Science.gov (United States)

    Olijve, Luuk L C; Meister, Konrad; DeVries, Arthur L; Duman, John G; Guo, Shuaiqi; Bakker, Huib J; Voets, Ilja K

    2016-04-05

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application.

  19. Survival and growth of restored Piedmont riparian forests as affected by site preparation, planting stock, and planting aids

    Science.gov (United States)

    Chelsea M. Curtis; W. Michael Aust; John R. Seiler; Brian D. Strahm

    2015-01-01

    Forest mitigation sites may have poor survival and growth of planted trees due to poor drainage, compacted soils, and lack of microtopography. The effects of five replications of five forestry mechanical site preparation techniques (Flat, Rip, Bed, Pit, and Mound), four regeneration sources (Direct seed, Bare root, Tubelings, and Gallon), and three planting aids (None...

  20. Rapid regulation of leaf photosynthesis, carbohydrate status and leaf area expansion to maintain growth in irregular light environments

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    to maintain carbohydrate status and growth in unpredictable light environments. Our recent results show rapid regulation of photosynthesis and leaf carbohydrate status to maintain growth and light interception in dynamic light environments when campanula, rose and chrysanthemum were grown in a cost...

  1. Reactive oxygen species mediate growth and death in submerged plants

    Directory of Open Access Journals (Sweden)

    Bianka eSteffens

    2013-06-01

    Full Text Available Aquatic and semi-aquatic plants are well adapted to survive partial or complete submergence which is commonly accompanied by oxygen deprivation. The gaseous hormone ethylene controls a number of adaptive responses to submergence including adventitious root growth and aerenchyma formation. Reactive oxygen species (ROS act as signaling intermediates in ethylene-controlled submergence adaptation and possibly also independent of ethylene. ROS levels are controlled by synthesis, enzymatic metabolism and nonenzymatic scavenging. While the actors are by and large known, we still have to learn about altered ROS at the subcellular level and how they are brought about, and the signaling cascades that trigger a specific response. This review briefly summarizes our knowledge on the contribution of ROS to submergence adaptation and describes spectrophotometrical, histochemical and live cell imaging detection methods that have been used to study changes in ROS abundance. Electron paramagnetic resonance (EPR spectroscopy is introduced as a method that allows identification and quantification of specific ROS in cell compartments. The use of advanced technologies such as EPR spectroscopy will be necessary to untangle the intricate and partially interwoven signaling networks of ethylene and ROS.

  2. A monoclonal antibody against the plant growth regulator, abscisic acid.

    Science.gov (United States)

    Banowetz, G M; Hess, J R; Carman, J G

    1994-12-01

    Monoclonal antibodies were prepared against the plant growth regulator abscisic acid (ABA) conjugated to keyhole limpet hemocyanin through C-4. One of these antibodies was characterized for use in a competition fluorescence enzyme-linked immunosorbent assay (F-ELISA). The antibody detected femtomole quantities of ABA when used in the F-ELISA and showed minimal cross-reactivity with ABA metabolites and structural analogs. Dilution analysis suggested that the F-ELISA could be used to determine the ABA content of methanolic extracts of crude samples of wheat seeds without further purification. The F-ELISA was used to determine the effect of seed priming on ABA levels in wheat seeds. The antibody also was used in a modified noncompetitive indirect ELISA to measure ABA content of wheat caryopses. The noncompetitive ELISA was more sensitive than the F-ELISA, although the F-ELISA had a broader measuring range. When our anti-ABA antibody and a commercially available anti-ABA antibody were compared by indirect ELISA, there were no significant differences between the ABA estimates.

  3. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transport and signaling

    Directory of Open Access Journals (Sweden)

    Vasileios eBitas

    2015-11-01

    Full Text Available Volatile organic compounds (VOCs have well-documented roles in plant-plant communication and directing animal behavior. In this study, we examine the less understood roles of VOCs in plant-fungal relationships. Phylogenetically and ecologically diverse strains of Fusarium oxysporum, a fungal species complex that often resides in the rhizosphere of assorted plants, produce volatile compounds that augment shoot and root growth of Arabidopsis thaliana and tobacco. Growth responses of A. thaliana hormone signaling mutants and expression patterns of a GUS reporter gene under the auxin-responsive DR5 promoter supported the involvement of auxin signaling in F. oxysporum volatile-mediated growth enhancement. In addition, 1-naphthylthalamic acid, an inhibitor of auxin efflux, negated F. oxysporum volatile-mediated growth enhancement in both plants. Comparison of the profiles of volatile compounds produced by F. oxysporum strains that differentially affected plant growth suggests that the relative compositions of both growth inhibitory and stimulatory compounds may determine the degree of plant growth enhancement. Volatile-mediated signaling between fungi and plants may represent a potentially conserved, yet mostly overlooked, mechanism underpinning plant-fungus interactions and fungal niche adaption.

  4. Colonization of root cells and plant growth promotion by Piriformospora indica occurs independently of plant common symbiosis genes

    OpenAIRE

    Banhara, Aline; Ding, Yi; Kühner, Regina; Zuccaro, Alga; Parniske, Martin

    2015-01-01

    Arbuscular mycorrhiza (AM) fungi (Glomeromycota) form symbiosis with and deliver nutrients via the roots of most angiosperms. AM fungal hyphae are taken up by living root epidermal cells, a program which relies on a set of plant common symbiosis genes (CSGs). Plant root epidermal cells are also infected by the plant growth-promoting fungus Piriformospora indica (Basidiomycota), raising the question whether this interaction relies on the AM-related CSGs. Here we show that intracellular coloniz...

  5. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    Science.gov (United States)

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity. PMID:22965092

  6. Genome Sequence of Enterobacter radicincitans DSM16656T, a Plant Growth-Promoting Endophyte

    OpenAIRE

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent; Ruppel, Silke

    2012-01-01

    Enterobacter radicincitans sp. nov. DSM16656T represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity.

  7. Genome sequence of Enterobacter radicincitans DSM16656(T), a plant growth-promoting endophyte.

    Science.gov (United States)

    Witzel, Katja; Gwinn-Giglio, Michelle; Nadendla, Suvarna; Shefchek, Kent; Ruppel, Silke

    2012-10-01

    Enterobacter radicincitans sp. nov. DSM16656(T) represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity.

  8. INTERSPECIFIC VARIATION IN THE GROWTH-RESPONSE OF PLANTS TO AN ELEVATED AMBIENT CO2 CONCENTRATION

    NARCIS (Netherlands)

    POORTER, H

    The effect of a doubling in the atmospheric CO2 concentration on the growth of vegetative whole plants was investigated. In a compilation of literature sources, the growth stimulation of 156 plant species was found to be on average 37%. This enhancement is small compared to what could be expected on

  9. Preschool Children's Explanations of Plant Growth and Rain Formation: A Comparative Analysis

    Science.gov (United States)

    Christidou, Vasilia; Hatzinikita, Vassilia

    2006-01-01

    This paper explores the different types and characteristics of preschool children's explanations of plant growth and rain formation. The children's explanations were categorized as naturalistic, non-naturalistic, or synthetic, i.e., explanations containing both naturalistic and non-naturalistic parts. In regards to plant growth the children…

  10. Draft Genome Sequence of Ochrobactrum intermedium Strain SA148, a Plant Growth-Promoting Desert Rhizobacterium

    KAUST Repository

    Lafi, Feras Fawzi

    2017-03-03

    Ochrobactrum intermedium strain SA148 is a plant growth-promoting bacterium isolated from sandy soil in the Jizan area of Saudi Arabia. Here, we report the 4.9-Mb draft genome sequence of this strain, highlighting different pathways characteristic of plant growth promotion activity and environmental adaptation of SA148.

  11. Plant growth responses of apple and pear trees to doses of glyphosate

    Science.gov (United States)

    Glyphosate is commonly used for intra-row weed management in perennial plantations, where unintended crop exposure to this herbicide can cause growth reduction. The objective of this research was to analyze the initial plant growth behavior of young apple and pear plants exposed to glyphosate. Glyph...

  12. Simulating bimodal tall fescue growth with a degree-day based process oriented plant model

    Science.gov (United States)

    Plant growth simulation models have a temperature response function driving development, with a base temperature and an optimum temperature defined. Such growth simulation models often function well when plant development rate shows a continuous change throughout the growing season. This approach ...

  13. Synergistic effects of some plant growth regulators on in vitro shoot ...

    African Journals Online (AJOL)

    The synergistic effects of some plant growth regulators was investigated upon shoot proliferation and growth of korarima (Aframomum corrorima (Braun) Jansen), an important culinary and medicinal plant species native to Ethiopia. Cultures were initiated from axillary bud explants of rhizome using Murashige and Skoog ...

  14. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  15. Early growth and survival of Acacia galpinii after planting in a semi ...

    African Journals Online (AJOL)

    Trial planting of the species as a decorative tree commenced in 1993 along urban roads in Bulawayo, Zimbabwe. Early growth and survival of the species after planting was investigated in order to assess its suitability for afforestation in semi-arid environments. Growth and survival of trees were measured 3 to 9 years after ...

  16. Complete Genome of the Plant Growth-Promoting Rhizobacterium Pseudomonas putida BIRD-1

    Energy Technology Data Exchange (ETDEWEB)

    Matilla, M.A.; van der Lelie, D.; Pizarro-Tobias, P.; Roca, A.; Fernandez, M.; Duque, E.; Molina, L.; Wu, X.; Gomez, M. J.; Segura, A.; Ramos, J.-L.

    2011-03-01

    We report the complete sequence of the 5.7-Mbp genome of Pseudomonas putida BIRD-1, a metabolically versatile plant growth-promoting rhizobacterium that is highly tolerant to desiccation and capable of solubilizing inorganic phosphate and iron and of synthesizing phytohormones that stimulate seed germination and plant growth.

  17. Effect of the different timing of AMF inoculation on plant growth and flower quality of chrysanthemum

    NARCIS (Netherlands)

    Sohn, B.K.; Kim, K.Y.; Chung, S.J.; Kim, W.S.; Park, S.M.; Kang, J.G.; Rim, Y.S.; Cho, J.S.; Kim, T.H.; Lee, J.H.

    2003-01-01

    Plant growth and flower quality of an ornamental plant (Chrysanthemum morifolium Ramat) var. Baekgwang in response to the different timing of arbuscular mycorrhizal fungi (AMF) inoculation were examined. To evaluate the effects of AMF inoculation timing on growth of chrysanthemum cuttings, AMF was

  18. How Does Your Garden Grow? Early Conceptualization of Seeds and Their Place in the Plant Growth Cycle.

    Science.gov (United States)

    Hickling, Anne K.; Gelman, Susan A.

    1995-01-01

    Examined young children's understanding of seed origins and growth preconditions and the stages of plant growth. Found that, by 4.5 years, children realized that natural causal mechanisms underlie plant growth and appreciated the relationship of seeds to plants. Results suggest that preschoolers hold theory-like understandings of plants similar to…

  19. Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2016-05-01

    Full Text Available Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2 pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. After removing the background influences, we find significant anthropogenic NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr−1 on average, relative to 2005, with the largest increments (15 % yr−1 or more over parts of several city clusters. The NO2 pollution in most provincial-level regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005–2013 reaches 11.3 ± 1.0 % yr−1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr−1 and the three well-known polluted regions in the east (5.3 ± 0.8 % yr−1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr−1 over the Yangtze River Delta, and −3.3 ± 0.3 % yr−1 over the Pearl River Delta. Subsequent socioeconomic analyses suggest that the rapid NO2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve

  20. Volatile compounds emitted by diverse phytopathogenic microorganisms promote plant growth and flowering through cytokinin action.

    Science.gov (United States)

    Sánchez-López, Ángela María; Baslam, Marouane; De Diego, Nuria; Muñoz, Francisco José; Bahaji, Abdellatif; Almagro, Goizeder; Ricarte-Bermejo, Adriana; García-Gómez, Pablo; Li, Jun; Humplík, Jan F; Novák, Ondřej; Spíchal, Lukáš; Doležal, Karel; Baroja-Fernández, Edurne; Pozueta-Romero, Javier

    2016-12-01

    It is known that volatile emissions from some beneficial rhizosphere microorganisms promote plant growth. Here we show that volatile compounds (VCs) emitted by phylogenetically diverse rhizosphere and non-rhizhosphere bacteria and fungi (including plant pathogens and microbes that do not normally interact mutualistically with plants) promote growth and flowering of various plant species, including crops. In Arabidopsis plants exposed to VCs emitted by the phytopathogen Alternaria alternata, changes included enhancement of photosynthesis and accumulation of high levels of cytokinins (CKs) and sugars. Evidence obtained using transgenic Arabidopsis plants with altered CK status show that CKs play essential roles in this phenomenon, because growth and flowering responses to the VCs were reduced in mutants with CK-deficiency (35S:AtCKX1) or low receptor sensitivity (ahk2/3). Further, we demonstrate that the plant responses to fungal VCs are light-dependent. Transcriptomic analyses of Arabidopsis leaves exposed to A. alternata VCs revealed changes in the expression of light- and CK-responsive genes involved in photosynthesis, growth and flowering. Notably, many genes differentially expressed in plants treated with fungal VCs were also differentially expressed in plants exposed to VCs emitted by the plant growth promoting rhizobacterium Bacillus subtilis GB03, suggesting that plants react to microbial VCs through highly conserved regulatory mechanisms. © 2016 John Wiley & Sons Ltd.

  1. A decade of rapid change: Biocultural influences on child growth in highland Peru.

    Science.gov (United States)

    Oths, Kathryn S; Smith, Hannah N; Stein, Max J; Lazo Landivar, Rodrigo J

    2017-10-30

    In the past decade many areas of Peru have been undergoing extreme environmental, economic, and cultural change. In the highland hamlet of Chugurpampa, La Libertad, climate change has ruined harvests and led to frequent periods of migration to the coast in search of livelihood. This biocultural research examines how the changes could be affecting the growth of children who maintain residence in the highlands. Clinical records from the early 2000s were compared to those from the early 2010s. Charts were randomly selected to record anthropometric data, netting a sample of 75 children ages 0-60 months of age. Analysis of covariance was run to compare mean stature, weight, and BMI between cohorts. Percentage of children who fall below the -2 threshold for z-scores for height and weight were compared by age and cohort. A significant secular trend in growth was found, with children born more recently larger than those born a decade before. The effect is most notable in the first year of life, with the growth advantage attenuated by the age of 3 for height and age 4 for weight. While children were unlikely to be stunted from 0 to 3 years of age, 44% of the later cohort were stunted and 11% were underweight from 4 to 5 years of age. Three possible explanations for the rapid shift are entertained: more time spent on the coast during gestation and early childhood, which may attenuate the effect of hypoxia on child growth; dietary change; and increased use of biomedicine. © 2017 Wiley Periodicals, Inc.

  2. Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant.

    Science.gov (United States)

    Asari, Shashidar; Tarkowská, Danuše; Rolčík, Jakub; Novák, Ondřej; Palmero, David Velázquez; Bejai, Sarosh; Meijer, Johan

    2017-01-01

    This study showed that Bacillus amyloliquefaciens UCMB5113 colonizing Arabidopsis roots changed root structure and promoted growth implying the usability of this strain as a novel tool to support sustainable crop production. Root architecture plays a crucial role for plants to ensure uptake of water, minerals and nutrients and to provide anchorage in the soil. The root is a dynamic structure with plastic growth and branching depending on the continuous integration of internal and environmental factors. The rhizosphere contains a complex microbiota, where some microbes can colonize plant roots and support growth and stress tolerance. Here, we report that the rhizobacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5113 stimulated the growth of Arabidopsis thaliana Col-0 by increased lateral root outgrowth and elongation and root-hair formation, although primary root elongation was inhibited. In addition, the growth of the above ground tissues was stimulated by UCMB5113. Specific hormone reporter gene lines were tested which suggested a role for at least auxin and cytokinin signaling during rhizobacterial modulation of Arabidopsis root architecture. UCMB5113 produced cytokinins and indole-3-acetic acid, and the formation of the latter was stimulated by root exudates and tryptophan. The plant growth promotion effect by UCMB5113 did not appear to depend on jasmonic acid in contrast to the disease suppression effect in plants. UCMB5113 exudates inhibited primary root growth, while a semi-purified lipopeptide fraction did not and resulted in the overall growth promotion indicating an interplay of many different bacterial compounds that affect the root growth of the host plant. This study illustrates that beneficial microbes interact with plants in root development via classic and novel signals.

  3. Effects of gasification biochar on plant-available water capacity and plant growth in two contrasting soil types

    DEFF Research Database (Denmark)

    Hansen, Veronika; Hauggaard-Nielsen, Henrik; Petersen, Carsten Tilbæk

    2016-01-01

    Abstract Gasification biochar (GB) contains recalcitrant carbon that can contribute to soil carbon sequestration and soil quality improvement. However, the impact of GB on plant-available water capacity (AWC) and plant growth in diverse soil types still needs to be explored. A pot experiment...... with spring barley (Hordeum vulgare L.) was conducted to investigate the effect of soil amendment by 1% straw and wood gasification biochar (SGB and WGB), respectively, on AWC and plant growth responses under two levels of water supply in a temperate sandy loam and a coarse sandy subsoil. In the sandy loam...

  4. Plant Lesions Promote the Rapid Multiplication of Escherichia coli O157:H7 on Postharvest Lettuce▿

    Science.gov (United States)

    Brandl, M. T.

    2008-01-01

    Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, the population sizes of E. coli O157:H7 increased 4.0-, 4.5-, and 11.0-fold on lettuce leaves that were mechanically bruised, cut into large pieces, and shredded into multiple pieces, respectively. During the same time, E. coli O157:H7 population sizes increased only twofold on leaves that were left intact after harvest. Also, the population size of E. coli O157:H7 was 27 times greater on young leaves affected by soft rot due to infection by Erwinia chrysanthemi than on healthy middle-aged leaves. Confocal microscopy revealed that leaf tip burn lesions, which are caused by a common physiological disorder of lettuce, harbored dense populations of E. coli O157:H7 cells both internally and externally. Investigation of the colonization of cut lettuce stems by E. coli O157:H7 showed that the pathogen grew 11-fold over 4 h of incubation after its inoculation onto the stems, from which large amounts of latex were released. The results of this study indicate that plant tissue damage of various types can promote significant multiplication of E. coli O157:H7 over a short time and suggest that harvesting and processing are critical control points in the prevention or reduction of E. coli O157:H7 contamination of lettuce. PMID:18641153

  5. Plant lesions promote the rapid multiplication of Escherichia coli O157:H7 on postharvest lettuce.

    Science.gov (United States)

    Brandl, M T

    2008-09-01

    Several outbreaks of Escherichia coli O157:H7 infections have been associated with minimally processed leafy vegetables in the United States. Harvesting and processing cause plant tissue damage. In order to assess the role of plant tissue damage in the contamination of leafy greens with E. coli O157:H7, the effect of mechanical, physiological, and plant disease-induced lesions on the growth of this pathogen on postharvest romaine lettuce was investigated. Within only 4 h after inoculation, the population sizes of E. coli O157:H7 increased 4.0-, 4.5-, and 11.0-fold on lettuce leaves that were mechanically bruised, cut into large pieces, and shredded into multiple pieces, respectively. During the same time, E. coli O157:H7 population sizes increased only twofold on leaves that were left intact after harvest. Also, the population size of E. coli O157:H7 was 27 times greater on young leaves affected by soft rot due to infection by Erwinia chrysanthemi than on healthy middle-aged leaves. Confocal microscopy revealed that leaf tip burn lesions, which are caused by a common physiological disorder of lettuce, harbored dense populations of E. coli O157:H7 cells both internally and externally. Investigation of the colonization of cut lettuce stems by E. coli O157:H7 showed that the pathogen grew 11-fold over 4 h of incubation after its inoculation onto the stems, from which large amounts of latex were released. The results of this study indicate that plant tissue damage of various types can promote significant multiplication of E. coli O157:H7 over a short time and suggest that harvesting and processing are critical control points in the prevention or reduction of E. coli O157:H7 contamination of lettuce.

  6. Microbial Inoculation Improves Growth of Oil Palm Plants (Elaeis guineensis Jacq.)

    OpenAIRE

    Om, Azlin Che; Ghazali, Amir Hamzah Ahmad; Keng, Chan Lai; Ishak, Zamzuri

    2009-01-01

    Introduction of diazotrophic rhizobacteria to oil palm tissues during the in vitro micropropagation process establishes an early associative interaction between the plant cells and bacteria. In the association, the diazotrophs provide the host plants with phytohormones and fixed nitrogen. This study was conducted to observe growth of bacterised tissue cultured oil palm plants under ex vitro conditions after 280 days of growth. Root dry weight, shoot dry weight, root volume, bacterial colonisa...

  7. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes

    OpenAIRE

    Habib, Sheikh Hasna; Kausar, Hossain; Saud, Halimi Mohd

    2016-01-01

    Salinity is a major environmental stress that limits crop production worldwide. In this study, we characterized plant growth-promoting rhizobacteria (PGPR) containing 1-aminocyclopropane-1-carboxylate (ACC) deaminase and examined their effect on salinity stress tolerance in okra through the induction of ROS-scavenging enzyme activity. PGPR inoculated okra plants exhibited higher germination percentage, growth parameters, and chlorophyll content than control plants. Increased antioxidant enzym...

  8. Survival and growth of planted northern red oak in northern West Virginia

    Science.gov (United States)

    Charles A. McNeel; David M. Hix; Edwin C. Townsend

    1993-01-01

    The survival and growth of northern red oak (Quercus rubra L.) seedlings planted beneath a shelterwood in northern West Virginia were evaluated one year after planting. The use of 1.5 m (5 ft) tall TUBEX tree shelters on planted seedlings was also examined. The study was conducted on both excellent and good sites (site indices of 27 m (89 ft) and 22...

  9. Plant growth regulation in seed crops of perennial ryegrass (Lolium perenne L)

    DEFF Research Database (Denmark)

    Boelt, Birte; Lemaire, Charles; Abel, Simon

    2016-01-01

    Seed yield components were recorded in plants of perennial ryegrass cv. Calibra a medium late, forage type (4n) in a two factorial block design with Nitrogen (N) and plant growth regulator (PGR) application in 2014 and 2015 at Aarhus University (AU), Flakkebjerg. For each plant, reproductive...

  10. Plant defences limit herbivore population growth by changing predator-prey interactions.

    Science.gov (United States)

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  11. In vitro antifungal activities of 26 plant extracts on mycelial growth of ...

    African Journals Online (AJOL)

    Antifungal activities of 26 plant extracts were tested against Phytophthora infestans using radial growth technique. While all tested plant extracts produced some antifungal activities Xanthium strumarium, Lauris nobilis, Salvia officinalis and Styrax officinalis were the most active plants that showed potent antifungal activity.

  12. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    Science.gov (United States)

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  13. Probiotic Pseudomonas communities enhance plant growth and nutrient assimilation via diversity-mediated ecosystem functioning

    NARCIS (Netherlands)

    Hu, Jie|info:eu-repo/dai/nl/412681919; Wei, Zhong; Weidner, Simone|info:eu-repo/dai/nl/370805992; Friman, Ville Petri; Xu, Yang Chun|info:eu-repo/dai/nl/413576779; Shen, Qi Rong; Jousset, Alexandre|info:eu-repo/dai/nl/370632656

    2017-01-01

    Plant-associated microbes play an important role in plant growth and development. While the introduction of beneficial microbes into the soil could improve plant production in low-input agricultural systems, real-world applications are still held back by poor survival and activity of the probiotic

  14. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas

    Directory of Open Access Journals (Sweden)

    Vyas Pratibha

    2009-08-01

    Full Text Available Abstract Background Phosphorus deficiency is a major constraint to crop production due to rapid binding of the applied phosphorus into fixed forms not available to the plants. Microbial solubilization of inorganic phosphates has been attributed mainly to the production of organic acids. Phosphate-solubilizing microorganisms enhance plant growth under conditions of poor phosphorus availability by solubilizing insoluble phosphates in the soil. This paper describes the production of organic acids during inorganic phosphate solubilization and influence on plant growth as a function of phosphate solubilization by fluorescent Pseudomonas. Results Nineteen phosphate-solubilizing fluorescent Pseudomonas strains of P. fluorescens, P. poae, P. trivialis, and Pseudomonas spp. produced gluconic acid, oxalic acid, 2-ketogluconic acid, lactic acid, succinic acid, formic acid, citric acid and malic acid in the culture filtrates during the solubilization of tricalcium phosphate, Mussoorie rock phosphate, Udaipur rock phosphate and North Carolina rock phosphate. The strains differed quantitatively and qualitatively in the production of organic acids during solubilization of phosphate substrates. Cluster analysis based on organic acid profiling revealed inter-species and intra-species variation in organic acids produced by Pseudomonas strains. The phosphate-solubilizing bacterial treatments P. trivialis BIHB 745, P. trivialis BIHB 747, Pseudomonas sp. BIHB 756 and P. poae BIHB 808 resulted in significantly higher or statistically at par growth and total N, P and K content over single super phosphate treatment in maize. These treatments also significantly affected pH, organic matter, and N, P, and K content of the soil. Conclusion The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates

  15. Organic acid production in vitro and plant growth promotion in maize under controlled environment by phosphate-solubilizing fluorescent Pseudomonas.

    Science.gov (United States)

    Vyas, Pratibha; Gulati, Arvind

    2009-08-22

    Phosphorus deficiency is a major constraint to crop production due to rapid binding of the applied phosphorus into fixed forms not available to the plants. Microbial solubilization of inorganic phosphates has been attributed mainly to the production of organic acids. Phosphate-solubilizing microorganisms enhance plant growth under conditions of poor phosphorus availability by solubilizing insoluble phosphates in the soil. This paper describes the production of organic acids during inorganic phosphate solubilization and influence on plant growth as a function of phosphate solubilization by fluorescent Pseudomonas. Nineteen phosphate-solubilizing fluorescent Pseudomonas strains of P. fluorescens, P. poae, P. trivialis, and Pseudomonas spp. produced gluconic acid, oxalic acid, 2-ketogluconic acid, lactic acid, succinic acid, formic acid, citric acid and malic acid in the culture filtrates during the solubilization of tricalcium phosphate, Mussoorie rock phosphate, Udaipur rock phosphate and North Carolina rock phosphate. The strains differed quantitatively and qualitatively in the production of organic acids during solubilization of phosphate substrates. Cluster analysis based on organic acid profiling revealed inter-species and intra-species variation in organic acids produced by Pseudomonas strains. The phosphate-solubilizing bacterial treatments P. trivialis BIHB 745, P. trivialis BIHB 747, Pseudomonas sp. BIHB 756 and P. poae BIHB 808 resulted in significantly higher or statistically at par growth and total N, P and K content over single super phosphate treatment in maize. These treatments also significantly affected pH, organic matter, and N, P, and K content of the soil. The results implied that organic acid production by Pseudomonas strains is independent of their genetic relatedness and each strain has its own ability of producing organic acids during the solubilization of inorganic phosphates. Significant difference in plant growth promotion by efficient

  16. Early and rapid globalization as part of innovation and growth strategies

    DEFF Research Database (Denmark)

    Zijdemans, Erik; Azimi, Zohreh; Tanev, Stoyan

    of technology start-ups as a specific growth strategy (Zijdemans & Tanev, 2014). Our research adopts a dynamic resource perspective according to which the distinction between ex-ante and ex-post value of resources (Schmidt & Keil, 2012) complements the effectual entrepreneurial approach, which is typical...... for start-ups that globalize rapidly in an environment with a high degree of uncertainty (Sarasvathy, Kumar, York, & Bhagavatula, 2014). The ex-ante valuation of resources (Schmidt & Keil, 2012) is related to the ex-post characteristics of BG firms (Tanev, 2012) resulting in a Global Value Generator (GVG......) – a framework linking the ex-ante value drivers and ex-post characteristics of BG firms. Our aim is to use the GVG to help innovative start-ups in making strategic ex-ante decisions contributing to the development of competitive global business models, complementary global resources and differentiated value...

  17. Involvement of hexokinase1 in plant growth promotion as mediated by Burkholderia phytofirmans.

    Science.gov (United States)

    Park, Jae Min; Lazarovits, George

    2014-06-01

    Potato plantlets inoculated with strain PsJN of the bacterium Burkholderia phytofirmans exhibit consistent and significant increases in plant growth under in vitro conditions, when compared with uninoculated plants. The greatest influence on the degree and type of growth enhancement that develops has been shown to be mediated by the sugar concentration in the agar media. Bacterial growth promotion has been suggested in other studies to be regulated by the sugar sensor enzyme hexokinase1, the role of which is activation of glucose phosphorylation. In this present study, we examined the co-relationship between root and stem development in potato plants treated with PsJN and the activity of hexokinase1. Plants grown in the presence of 1.5% and 3% sucrose showed increased levels of hexokinase1 activity only in the roots of inoculated plants, suggesting that the increased enzyme levels may be associated with root growth. Analysis for mRNA using reverse transcriptase did not reveal any significant differences in transcription levels of the gene between inoculated and uninoculated plants. When PsJN-inoculated plants were grown in 1.5% and 3% concentrations of glucose and fructose, stem height and mass, leaf number, root mass, and overall biomass increased. No growth promotion occurred when PsJN-inoculated plants were grown in 3% maltose. Subsequently, a hexokinase1 activity assay showed that PsJN-induced growth of potato plants was found to only occur when plants were grown in the presence of sugars that are recognized by the plant hexokinase1. The results suggest that PsJN may enhance sugar uptake in plants by direct or indirect stimulation of hexokinase1 activity in roots and this results in enhanced overall plant growth.

  18. Rapid breeding of parthenocarpic tomato plants using CRISPR/Cas9.

    Science.gov (United States)

    Ueta, Risa; Abe, Chihiro; Watanabe, Takahito; Sugano, Shigeo S; Ishihara, Ryosuke; Ezura, Hiroshi; Osakabe, Yuriko; Osakabe, Keishi

    2017-03-30

    Parthenocarpy in horticultural crop plants is an important trait with agricultural value for various industrial purposes as well as direct eating quality. Here, we demonstrate a breeding strategy to generate parthenocarpic tomato plants using the CRISPR/Cas9 system. We optimized the CRISPR/Cas9 system to introduce somatic mutations effectively into SlIAA9-a key gene controlling parthenocarpy-with mutation rates of up to 100% in the T0 generation. Furthermore, analysis of off-target mutations using deep sequencing indicated that our customized gRNAs induced no additional mutations in the host genome. Regenerated mutants exhibited morphological changes in leaf shape and seedless fruit-a characteristic of parthenocarpic tomato. And the segregated next generation (T1) also showed a severe phenotype associated with the homozygous mutated genome. The system developed here could be applied to produce parthenocarpic tomato in a wide variety of cultivars, as well as other major horticultural crops, using this precise and rapid breeding technique.

  19. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    Science.gov (United States)

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  20. Role of plant growth regulators as chemical signals in plant-microbe interactions: a double edged sword.

    Science.gov (United States)

    Spence, Carla; Bais, Harsh

    2015-10-01

    Growth regulators act not only as chemicals that modulate plant growth but they also act as signal molecules under various biotic and abiotic stresses. Of all growth regulators, abscisic acid (ABA) is long known for its role in modulating plants response against both biotic and abiotic stress. Although the genetic information for ABA biosynthesis in plants is well documented, the knowledge about ABA biosynthesis in other organisms is still in its infancy. It is known that various microbes including bacteria produce and secrete ABA, but the overall functional significance of why ABA is synthesized by microbes is not known. Here we discuss the functional involvement of ABA biosynthesis by a pathogenic fungus. Furthermore, we propose that ABA biosynthesis in plant pathogenic fungi could be targeted for novel fungicidal discovery. Copyright © 2015 Elsevier Ltd. All rights reserved.