WorldWideScience

Sample records for rapid phase change

  1. Kinetics of phase change

    Directory of Open Access Journals (Sweden)

    A.C. Faleiros

    2000-07-01

    Full Text Available The kinetic model for change of phases developed by M. Avrami at the end of the thirties has been used to describe the temporal behavior of phase changes. Until today this model is studied and adapted to include broader hypotheses. However, the mathematical format presented by M. Avrami is difficult to be understood by beginners. The purpose of this work is to clarify the mathematical treatment of Avrami's work, going straightforward to the arguments that led to his main results.

  2. A rapid molecular approach for chromosomal phasing.

    Directory of Open Access Journals (Sweden)

    John F Regan

    Full Text Available Determining the chromosomal phase of pairs of sequence variants - the arrangement of specific alleles as haplotypes - is a routine challenge in molecular genetics. Here we describe Drop-Phase, a molecular method for quickly ascertaining the phase of pairs of DNA sequence variants (separated by 1-200 kb without cloning or manual single-molecule dilution. In each Drop-Phase reaction, genomic DNA segments are isolated in tens of thousands of nanoliter-sized droplets together with allele-specific fluorescence probes, in a single reaction well. Physically linked alleles partition into the same droplets, revealing their chromosomal phase in the co-distribution of fluorophores across droplets. We demonstrated the accuracy of this method by phasing members of trios (revealing 100% concordance with inheritance information, and demonstrate a common clinical application by phasing CFTR alleles at genomic distances of 11-116 kb in the genomes of cystic fibrosis patients. Drop-Phase is rapid (requiring less than 4 hours, scalable (to hundreds of samples, and effective at long genomic distances (200 kb.

  3. Phase change materials science and applications

    CERN Document Server

    Raoux, Simone

    2009-01-01

    ""Phase Change Materials: Science and Applications"" provides a unique introduction of this rapidly developing field. This clearly written volume describes the material science of these fascinating materials from a theoretical and experimental perspective.

  4. Influences of rapid thermal process on solution-deposited Ti-silicate/Si films: Phase segregation, composition and interface changes, and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seung Muk; Hwang, Soo Min [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Soon Yong [Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University, Seoul (Korea, Republic of); Kim, Tae Woong; Lee, Sang Hyub; Park, Geun Chul; Choi, Ju Yun [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Yoon, Jae Jin [KLA-Tencor Corporation, 1 Technology Drive, Milpitas, CA 95035 (United States); Kim, Tae Jung; Kim, Young Dong [Nano-Optical Property Laboratory and Department of Physics, Kyung Hee University, Seoul (Korea, Republic of); Kim, Hyoungsub [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Lim, Jun Hyung, E-mail: lanosjh@gmail.com [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Joo, Jinho, E-mail: jinho@skku.edu [School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon (Korea, Republic of)

    2014-05-01

    Ti-silicate/Si films were synthesized using a solution deposition route, and the effects of a rapid thermal process (RTP) on the microstructure, chemical bonding state, and interfacial layer (IL) properties were investigated and correlated to the permittivity of the films. The precursor solution was prepared from Ti(IV)-isopropoxide and tetraethylorthosilicate, spin-coated on HF-treated Si substrates, dried, pyrolyzed (400 °C), and subjected to the RTP at 700 °C–1000 °C. The Ti-silicate film consisted of Ti-rich and Si-rich silicates after the pyrolysis and phase segregation became significant as the RTP temperature increase. The silicates segregated into TiO{sub 2}-like nanocrystals and Si-richer silicate at up to 850 °C, and the TiO{sub 2}-like nanocrystals grew remarkably while the Si-richer silicate was converted into nearly pure SiO{sub 2} at 1000 °C. In addition, the Ti content in the Ti-silicate layer decreased due to Ti out-diffusion to the IL and substrate. Based on HRTEM, FT-IR, XPS, and SIMS analyses, we suggest a model of phase segregation with Ti diffusion and demonstrate that the Ti diffusion can be a critical issue in applications of Ti-silicate/Si systems, in addition to other well-known phenomena, including phase segregation, TiO{sub 2} precipitation, or interface properties. - Highlights: • Role of RTP on microstructure and properties of Ti-silicate film was investigated. • Phase segregation and Ti diffusion varied with the RTP. • Effects of the Ti diffusion on the dielectric properties were firstly investigated. • The Ti diffusion seemed to be one of the critical issues in the film applications. • New phase segregation model with Ti diffusion was suggested.

  5. Phase change memory

    CERN Document Server

    Qureshi, Moinuddin K

    2011-01-01

    As conventional memory technologies such as DRAM and Flash run into scaling challenges, architects and system designers are forced to look at alternative technologies for building future computer systems. This synthesis lecture begins by listing the requirements for a next generation memory technology and briefly surveys the landscape of novel non-volatile memories. Among these, Phase Change Memory (PCM) is emerging as a leading contender, and the authors discuss the material, device, and circuit advances underlying this exciting technology. The lecture then describes architectural solutions t

  6. Phase-change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1972-01-01

    Handbook describes relationship between phase-change materials and more conventional thermal control techniques and discusses materials' space and terrestrial applications. Material properties of most promising phase-change materials and purposes and uses of metallic filler materials in phase-change material composites are provided.

  7. Phase change materials handbook

    Science.gov (United States)

    Hale, D. V.; Hoover, M. J.; Oneill, M. J.

    1971-01-01

    This handbook is intended to provide theory and data needed by the thermal design engineer to bridge the gap between research achievements and actual flight systems, within the limits of the current state of the art of phase change materials (PCM) technology. The relationship between PCM and more conventional thermal control techniques is described and numerous space and terrestrial applications of PCM are discussed. Material properties of the most promising PCMs are provided; the purposes and use of metallic filler materials in PCM composites are presented; and material compatibility considerations relevant to PCM design are included. The engineering considerations of PCM design are described, especially those pertaining to the thermodynamic and heat transfer phenomena peculiar to PCM design. Methods of obtaining data not currently available are presented. The special problems encountered in the space environment are described. Computational tools useful to the designer are discussed. In summary, each aspect of the PCM problem important to the design engineer is covered to the extent allowed by the scope of this effort and the state of the art.

  8. Multiphase flows with phase change

    Indian Academy of Sciences (India)

    Multiphase flows with phase change are ubiquitous in many industrial sectors ranging from energy and infra-structure to specialty chemicals and pharmaceuticals. My own interest in mul- tiphase flows with phase change started more than 15 years ago when I had initiated work on riser reactor for fluid catalytic cracking and ...

  9. Interfacial phase-change memory.

    Science.gov (United States)

    Simpson, R E; Fons, P; Kolobov, A V; Fukaya, T; Krbal, M; Yagi, T; Tominaga, J

    2011-07-03

    Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.

  10. interThermalPhaseChangeFoam—A framework for two-phase flow simulations with thermally driven phase change

    Directory of Open Access Journals (Sweden)

    Mahdi Nabil

    2016-01-01

    Full Text Available The volume-of-fluid (VOF approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam, which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A. By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  11. Indigenous people's detection of rapid ecological change.

    Science.gov (United States)

    Aswani, Shankar; Lauer, Matthew

    2014-06-01

    When sudden catastrophic events occur, it becomes critical for coastal communities to detect and respond to environmental transformations because failure to do so may undermine overall ecosystem resilience and threaten people's livelihoods. We therefore asked how capable of detecting rapid ecological change following massive environmental disruptions local, indigenous people are. We assessed the direction and periodicity of experimental learning of people in the Western Solomon Islands after a tsunami in 2007. We compared the results of marine science surveys with local ecological knowledge of the benthos across 3 affected villages and 3 periods before and after the tsunami. We sought to determine how people recognize biophysical changes in the environment before and after catastrophic events such as earthquakes and tsunamis and whether people have the ability to detect ecological changes over short time scales or need longer time scales to recognize changes. Indigenous people were able to detect changes in the benthos over time. Detection levels differed between marine science surveys and local ecological knowledge sources over time, but overall patterns of statistically significant detection of change were evident for various habitats. Our findings have implications for marine conservation, coastal management policies, and disaster-relief efforts because when people are able to detect ecological changes, this, in turn, affects how they exploit and manage their marine resources. © 2014 Society for Conservation Biology.

  12. Phase change material storage heater

    Science.gov (United States)

    Goswami, D. Yogi; Hsieh, Chung K.; Jotshi, Chand K.; Klausner, James F.

    1997-01-01

    A storage heater for storing heat and for heating a fluid, such as water, has an enclosure defining a chamber therein. The chamber has a lower portion and an upper portion with a heating element being disposed within the enclosure. A tube through which the fluid flows has an inlet and an outlet, both being disposed outside of the enclosure, and has a portion interconnecting the inlet and the outlet that passes through the enclosure. A densely packed bed of phase change material pellets is disposed within the enclosure and is surrounded by a viscous liquid, such as propylene glycol. The viscous liquid is in thermal communication with the heating element, the phase change material pellets, and the tube and transfers heat from the heating element to the pellets and from the pellets to the tube. The viscous fluid has a viscosity so that the frictional pressure drop of the fluid in contact with the phase change material pellets substantially reduces vertical thermal convection in the fluid. As the fluid flows through the tube heat is transferred from the viscous liquid to the fluid flowing through the tube, thereby heating the fluid.

  13. Phase Change Fabrics Control Temperature

    Science.gov (United States)

    2009-01-01

    Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.

  14. Public health in a rapidly changing world

    Directory of Open Access Journals (Sweden)

    Tatiana I. Andreeva

    2014-06-01

    Full Text Available Several months in 2013 and 2014 have been a hardly predictable time in Ukraine, and the situation is still far from being stable. This made the editorial team of TCPHEE based in Ukraine postpone publishing consecutive issues. However, while the situation still requires practical steps, many aspects including those related to public health require analysis and debate. Thus we invite opinion pieces and studies addressing all different spheres of how public health should function under changing social circumstances. There might be a wide range of such related topics. The most obvious ones are those linked to changing living conditions. Many studies have been undertaken and published with regard to health threats to refugees, people involved in natural or technical disasters (Noji, 2005. Along with environmental health threats, there might be mental health disturbances (World Health Organization, 1992 resulting from long-term strain, losses et cetera. Another important focus is related to changes in health services provision. Crimea, which is a former Ukrainian territory now occupied by the Russian Federation, was among those in Ukraine highly affected with HIV (Dehne, Khodakevich, Hamers, & Schwartlander, 1999. This was responded by several NGOs actively providing harm reduction services to high-risk groups along with methadone substitution therapy to opiate users and antiretroviral medicines to those HIV-infected (Curtis, 2010. However, there are news reports that Russia is going to stop provision of methadone (kommersant.ru, 2014. As opiate substitution programs have been shown an effective approach towards preventing HIV transmission among people who inject drugs (MacArthur et al., 2012, such change in public health policies might affect not only most at risk populations but their partners and population as a whole as well resulting in a rapid spread of HIV. Yet another related topic is that of how health services can be organized at times of

  15. Polymers in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, M.C.; Brites, M.J.; Alexandre, J.H. [National Lab. for Energy and Geology, Lisbon (Portugal)

    2010-07-01

    Phase Change Materials (PCMs) which are the core of latent heat thermal energy storage systems are currently an area of investigation of increasing interest. Several substances differing in physical and chemical characteristics as well as in thermal behavior have been studied as PCMS{sup 1-3}. In order to meet the requisites of particular systems, auxiliary materials are often used with specific functions. This bibliographic survey shows that polymeric materials have been proposed either as the PCM itself in solid-liquid or solid-solid transitions or to perform auxiliary functions of shape stabilisation and microencapsulation for solid-liquid PCMs. The PCMs have an operating temperature ranging from around 0 C (for the system water/polyacrilamid) to around 127 C (for crosslinked HDPE). (orig.)

  16. Subsampling phase retrieval for rapid thermal measurements of heated microstructures.

    Science.gov (United States)

    Taylor, Lucas N; Talghader, Joseph J

    2016-07-15

    A subsampling technique for real-time phase retrieval of high-speed thermal signals is demonstrated with heated metal lines such as those found in microelectronic interconnects. The thermal signals were produced by applying a current through aluminum resistors deposited on soda-lime-silica glass, and the resulting refractive index changes were measured using a Mach-Zehnder interferometer with a microscope objective and high-speed camera. The temperatures of the resistors were measured both by the phase-retrieval method and by monitoring the resistance of the aluminum lines. The method used to analyze the phase is at least 60× faster than the state of the art but it maintains a small spatial phase noise of 16 nm, remaining comparable to the state of the art. For slowly varying signals, the system is able to perform absolute phase measurements over time, distinguishing temperature changes as small as 2 K. With angular scanning or structured illumination improvements, the system could also perform fast thermal tomography.

  17. Millennium Ecosystem Assessment: MA Rapid Land Cover Change

    Data.gov (United States)

    National Aeronautics and Space Administration — The Millennium Ecosystem Assessment: MA Rapid Land Cover Change provides data and information on global and regional land cover change in raster format for...

  18. Rapid climate change: lessons from the recent geological past

    Science.gov (United States)

    Holmes, Jonathan; Lowe, John; Wolff, Eric; Srokosz, Meric

    2011-12-01

    Rapid, or abrupt, climate change is regarded as a change in the climate system to a new state following the crossing of a threshold. It generally occurs at a rate exceeding that of the change in the underlying cause. Episodes of rapid climate change abound in the recent geological past (defined here as the interval between the last glacial maximum, dated to approximately 20,000 years ago, and the present). Rapid climate changes are known to have occurred over time periods equal to or even less than a human lifespan: moreover, their effects on the global system are sufficiently large to have had significant societal impacts. The potential for similar events to occur in the future provides an important impetus for investigating the nature and causes of rapid climate change. This paper provides a brief overview of rapid climate change and an introduction to this special issue, which presents results generated by the palaeoclimatic component of the UK Natural Environment Research Council's rapid climate change programme, called RAPID. The papers in the special issue employ palaeoclimatic proxy data-sets obtained from marine, ice core and terrestrial archives to reconstruct rapid climate change during the last glacial cycle, its subsequent termination and the ensuing Holocene interglacial; some papers also report new attempts to match the palaeoclimate data to hypothesised causes through numerical modelling. The results confirm the importance of freshwater forcing in triggering changes in Atlantic meridional overturning circulation (MOC) and the close links between MOC and rapid climate change. While advancing our understanding of these linkages, the RAPID research has highlighted the need for further research in order to elucidate more specific details of the mechanisms involved.

  19. Are rapid changes in brain elasticity possible?

    Science.gov (United States)

    Parker, K. J.

    2017-09-01

    Elastography of the brain is a topic of clinical and preclinical research, motivated by the potential for viscoelastic measures of the brain to provide sensitive indicators of pathological processes, and to assist in early diagnosis. To date, studies of the normal brain and of those with confirmed neurological disorders have reported a wide range of shear stiffness and shear wave speeds, even within similar categories. A range of factors including the shear wave frequency, and the age of the individual are thought to have a possible influence. However, it may be that short term dynamics within the brain may have an influence on the measured stiffness. This hypothesis is addressed quantitatively using the framework of the microchannel flow model, which derives the tissue stiffness, complex modulus, and shear wave speed as a function of the vascular and fluid network in combination with the elastic matrix that comprise the brain. Transformation rules are applied so that any changes in the fluid channels or the elastic matrix can be mapped to changes in observed elastic properties on a macroscopic scale. The results are preliminary but demonstrate that measureable, time varying changes in brain stiffness are possible simply by accounting for vasodynamic or electrochemical changes in the state of any region of the brain. The value of this preliminary exploration is to identify possible mechanisms and order-of-magnitude changes that may be testable in vivo by specialized protocols.

  20. PCM Concrete. [Phase Change Materials

    Energy Technology Data Exchange (ETDEWEB)

    Juul Andersen, T. [Danish Technological Institute, Taastrup (Denmark); Poulsen, H.-H. [BASF A/S, Roedekro (Denmark); Passov, F. [Spaencom A/S, Hedehusene (Denmark); Heiselberg, P. [Aalborg Univ..Aalborg (Denmark)

    2013-04-01

    PCM-Concrete was a research and development project launched in 2009 and finished in 2012. The project, which was funded by The Danish National Advanced Technology Foundation, had a total budget of 1.7 million Euros and included 4 partners: Danish Technological Institute (project manager), Aalborg University, BASF A/S and Spaencom A/S. The overall vision of the project was to reduce energy consumption for heating and cooling in buildings by developing high-performance concrete structures microencapsulated Phase Change Materials (PCM). The PCM used in the project was Micronal produced by BASF A/S. Micronal is small capsules with an acrylic shell and inside a wax with a melting point at approx. 23 deg. C equal to a comfortable indoor temperature. During the melting process thermal energy is transferred to chemical reaction (melting/solidification) depending on PCM being heated up or cooled down. Adding Micronal to concrete would theoretically increase the thermal mass of the concrete and improve the diurnal heat capacity which is the amount of energy that can be stored and released during 24 hours. Nevertheless, it is a relatively new technology that has not received much attention, yet. In the PCM-Concrete project 5 main investigations were carried out: 1) Development of concrete mix design with PCM. 2) Investigation of thermal properties of the PCM concrete: thermal conductivity, specific heat capacity, density. 3) Up-scaling the research to industrial production of PCM-concrete structures. 4) Testing energy efficiency in full scale. 5) Confronting aesthetic and acoustic barriers to full exploitation of the potential of PCM-concrete structures. The results from the test program showed: 1) That the diurnal heat storage capacity is higher for all 4 hollow core decks with tiles attached compared to the reference hollow core deck. 2) The hollow core decks with concrete tiles without PCM performs slightly better than the tiles with PCM. 3) That is was impossible to

  1. Rapidly changing flows in the Earth's core

    DEFF Research Database (Denmark)

    Olsen, Nils; Mandea, M.

    2008-01-01

    recently been used to investigate small-scale core flow(3,4), but no advantage has yet been taken of the improved temporal resolution, partly because the filtering effect of the electrically conducting mantle was assumed to mask short-period magnetic variations(5). Here we show that changes in the magnetic...

  2. Social psychiatry in a rapidly changing world

    Directory of Open Access Journals (Sweden)

    Thomas K. J. Craig

    2016-01-01

    Full Text Available Many societies around the world are experiencing a period of unprecedented change in traditional social roles and customs. Globalisation has contributed to materialism and a me-first individualism that heightens awareness of income inequality that itself is one of the most robust markers of unhappiness in society. Ever increasing urbanisation has driven an erosion of large ‘joint’ family arrangements to be replaced by smaller and relatively isolated nuclear families and single parent living. Mass migration has unmasked deep seated fear and prejudice towards the outsider in society. These global changes are fertile ground for the social conditions that have long been known to be risks for mental illness – poverty, poor quality child care, social isolation and the active discrimination and exclusion of the alien, the physically disabled and mentally ill. While there is little we can do to reverse global change, there is much a social psychiatrist can do to mitigate the effect, ensuring his/her voice is added to other calls for reducing discriminatory practice, promoting evidence-based social interventions such as parenting advice and peer support and ensuring that the success of a treatment is measured not just in terms of symptomatic improvement but in whether it results in an outcome that is valued by the patient.

  3. Confined crystals of the smallest phase-change material.

    Science.gov (United States)

    Giusca, Cristina E; Stolojan, Vlad; Sloan, Jeremy; Börrnert, Felix; Shiozawa, Hidetsugu; Sader, Kasim; Rümmeli, Mark H; Büchner, Bernd; Silva, S Ravi P

    2013-09-11

    The demand for high-density memory in tandem with limitations imposed by the minimum feature size of current storage devices has created a need for new materials that can store information in smaller volumes than currently possible. Successfully employed in commercial optical data storage products, phase-change materials, that can reversibly and rapidly change from an amorphous phase to a crystalline phase when subject to heating or cooling have been identified for the development of the next generation electronic memories. There are limitations to the miniaturization of these devices due to current synthesis and theoretical considerations that place a lower limit of 2 nm on the minimum bit size, below which the material does not transform in the structural phase. We show here that by using carbon nanotubes of less than 2 nm diameter as templates phase-change nanowires confined to their smallest conceivable scale are obtained. Contrary to previous experimental evidence and theoretical expectations, the nanowires are found to crystallize at this scale and display amorphous-to-crystalline phase changes, fulfilling an important prerequisite of a memory element. We show evidence for the smallest phase-change material, extending thus the size limit to explore phase-change memory devices at extreme scales.

  4. Reversible switching in phase-change materials

    National Research Council Canada - National Science Library

    Wełnic, Wojciech; Wuttig, Matthias

    2008-01-01

    ... of these technologies, based on a class of materials that shows a significant change in optical and electronic properties upon undergoing the crystalline-to-amorphous phase transition, will be discussed in this review. These so-called phase-change materials are often, but not always, Te-based semiconducting or semimetallic alloys, such as those on the ...

  5. Rethinking species’ ability to cope with rapid climate change

    DEFF Research Database (Denmark)

    Hof, Christian; Levinsky, Irina; Bastos Araujo, Miguel

    2011-01-01

    Ongoing climate change is assumed to be exceptional because of its unprecedented velocity. However, new geophysical research suggests that dramatic climatic changes during the Late Pleistocene occurred extremely rapid, over just a few years. These abrupt climatic changes may have been even faster...... species' ability to cope with climate change, and that lessons must be learned for modelling future impacts of climate change on species....

  6. Engineering Changes During the Service Phase

    DEFF Research Database (Denmark)

    Vianello, Giovanna; Ahmed, Saeema

    2008-01-01

    an aerospace engine has been analyzed and the findings have been compared with change documentation from drilling machinery for the oil industry. These findings give insights into which phases of the design process should be modified in order to reduce the number of change requests from the service phase......This paper focuses upon understanding the characteristics of engineering changes, in particular changes that emerge during the service phase of complex products, and on how these changes can be related to the product development process. For this purpose, a set of engineering change reports from...... and to enable designers to efficiently answer the unavoidable change requests. This can be used to improve the product development process in order to take into account the factors leading to changes....

  7. Rapid Middle Eocene temperature change in western North America

    Science.gov (United States)

    Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page

    2016-09-01

    Eocene hyperthermals are among the most enigmatic phenomena of Cenozoic climate dynamics. These hyperthermals represent temperature extremes superimposed on an already warm Eocene climate and dramatically affected the marine and terrestrial biosphere, yet our knowledge of temperature and rainfall in continental interiors is still rather limited. We present stable isotope (δ18O) and clumped isotope temperature (Δ47) records from a middle Eocene (41 to 40 Ma) high-elevation mammal fossil locality in the North American continental interior (Montana, USA). Δ47 paleotemperatures of soil carbonates delineate a rapid +9/-11 °C temperature excursion in the paleosol record. Δ47 temperatures progressively increase from 23 °C ± 3 °C to peak temperatures of 32 °C ± 3 °C and subsequently drop by 11 °C. This hyperthermal event in the middle Eocene is accompanied by low δ18O values and reduced pedogenic carbonate concentrations in paleosols. Based on laser ablation U/Pb geochronology of paleosol carbonates in combination with magnetostratigraphy, biostratigraphy, stable isotope, and Δ47 evidence, we suggest that this pronounced warming event reflects the Middle Eocene Climatic Optimum (MECO) in western North America. The terrestrial expression of northern hemisphere MECO in western North America appears to be characterized by warmer and wetter (sub-humid) conditions, compared to the post-MECO phase. Large and rapid shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes, indicating the profound impact of the MECO on atmospheric circulation and rainfall patterns in the western North American continental interior during this transient warming event.

  8. Ecosystem stewardship: sustainability strategies for a rapidly changing planet

    Science.gov (United States)

    F. Stuart Chapin; Stephen R. Carpenter; Gary P. Kofinas; Carl Folke; Nick Abel; William C. Clark; Per Olsson; D. Mark Stafford Smith; Brian Walker; Oran R. Young; Fikret Berkes; Reinette Biggs; J. Morgan Grove; Rosamond L. Naylor; Evelyn Pinkerton; Will Steffen; Frederick J. Swanson

    2010-01-01

    Ecosystem stewardship is an action-oriented framework intended to foster the social-ecological sustainability of a rapidly changing planet. Recent developments identify three strategies that make optimal use of current understanding in an environment of inevitable uncertainty and abrupt change: reducing the magnitude of, and exposure and sensitivity to, known stresses...

  9. Managing in the rapidly changing context of higher education: a ...

    African Journals Online (AJOL)

    Higher education is one of the most rapidly changing sectors of our society. Besides the rate of change in the sector there are also, as seen from the continuous media coverage, a number of universities and technikons in some form of financial or leadership crisis. Over the past years one of the main reasons given for these ...

  10. Entransy in phase-change systems

    CERN Document Server

    Gu, Junjie

    2014-01-01

    Entransy in Phase-Change Systems summarizes recent developments in the area of entransy, especially on phase-change processes. This book covers new developments in the area including the great potential for energy saving for process industries, decreasing carbon dioxide emissions, reducing energy bills and improving overall efficiency of systems. This concise volume is an ideal book for engineers and scientists in energy-related industries.

  11. Chalcogenides Metastability and Phase Change Phenomena

    CERN Document Server

    Kolobov, Alexander V

    2012-01-01

    A state-of-the-art description of metastability observed in chalcogenide alloys is presented with the accent on the underlying physics. A comparison is made between sulphur(selenium)-based chalcogenide glasses, where numerous photo-induced phenomena take place entirely within the amorphous phase, and tellurides where a reversible crystal-to-amorphous phase-change transformation is a major effect. Applications of metastability in devices¿optical memories and nonvolatile electronic phase-change random-access memories among others are discussed, including the latest trends. Background material essential for understanding current research in the field is also provided.

  12. An emergent change of phase for electronics.

    Science.gov (United States)

    Takagi, Hidenori; Hwang, Harold Y

    2010-03-26

    Correlated electrons in transition metal oxides can form a variety of electronic phases. The phase change between these various states gives rise to novel device functions, including sensing, signal conversion, and nonvolatile memory, and is now at the frontier of research on "emergent research device materials." Those oxide devices may have an advantage over conventional semiconductor devices for added functionality and future downsizing to the nanoscale. The elucidation of the microscopic physics behind their operation is a key step for further development.

  13. Rapid Communication: v= 2 seniority changing transitions in yrast 3 ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 89; Issue 5. Rapid Communication: Δ υ = 2 seniority changing transitions in yrast 3 − states and B ( E 3 ) systematics of Sn isotopes. BHOOMIKA MAHESHWARI SWATI GARG ASHOK KUMAR JAIN. Research Article Volume 89 Issue 5 November 2017 Article ID 75 ...

  14. Rapid Communication: seniority changing transitions in yrast states ...

    Indian Academy of Sciences (India)

    Bhoomika Maheshwari

    2017-10-26

    Oct 26, 2017 ... Rapid Communication: v = 2 seniority changing transitions in yrast 3− states and B(E3) systematics of Sn isotopes. BHOOMIKA MAHESHWARI1,∗. , SWATI GARG2 and ASHOK KUMAR JAIN2. 1Department of Physics, Banasthali University, Banasthali 304 022, India. 2Department of Physics, IIT Roorkee, ...

  15. Geoengineering and the Risk of Rapid Climate Change

    Science.gov (United States)

    Ross, A. J.; Matthews, D.

    2008-12-01

    Many scientists have proposed that geoengineering could be used to artificially cool the planet as a means of reducing CO2-induced climate warming. However, several recent studies have shown some of the potential risks of geoengineering, including negative impacts on stratospheric ozone, the hydrologic cycle and the possibility of rapid climate change in the case of abrupt failure, or rapid decommissioning of geoengineering technology. In this study, we have emulated a geoengineering scenario in the MAGICC climate model, by counteracting the radiative forcing from greenhouse gases. We have used a hypothetical scenario of business-as-usual greenhouse gas emissions, in which geoengineering is implemented at the year 2020, and is removed abruptly after 40 years. By varying the climate sensitivity of the MAGICC model, and using previously published estimates of climate sensitivity likelihoods, we are able to derive a probabilistic prediction of the rate of temperature change following the removal of geoengineering. In a simulation without geoengineering (considering only the A1B AIM emissions scenario) the maximum annual rate of temperature change (in the highest climate sensitivity simulation) was 0.5° C per decade. In the geoengineering simulations the maximum annual rate of temperature change, occurring in the year after geoengineering was stopped, varied from 0.22° C per decade for a climate sensitivity of 0.5° C to nearly 8° C per decade for a climate sensitivity of 10° C. The most likely maximum rate of change (corresponding to a climate sensitivity of 2.5° C) was just over 5° C per decade. There is a 99.8 percent probability that the rate of temperature change following the stoppage of geoengineering in this scenario would exceed 3° C per decade. This risk of rapid climate change associated with the use of planetary-scale geoengineering is highly relevant to discussion of climate policies aimed at avoiding "dangerous anthropogenic interference" in the

  16. Major rapid weight loss induces changes in cardiac repolarization

    DEFF Research Database (Denmark)

    Vedel-Larsen, Esben; Iepsen, Eva Pers Winning; Lundgren, Julie

    2016-01-01

    analysis has been suggested as a more sensitive method to identify changes in cardiac repolarization. We examined the effect of a major and rapid weight loss on T-wave morphology. METHODS AND RESULTS: Twenty-six individuals had electrocardiograms (ECG) taken before and after eight weeks of weight loss...... intervention along with plasma measurements of fasting glucose, HbA1c, and potassium. For assessment of cardiac repolarization changes, T-wave Morphology Combination Score (MCS) and ECG intervals: RR, PR, QT, QTcF (Fridericia-corrected QT-interval), and QRS duration were derived. The participants lost......A1c (pMonitoring of MCS during calorie restriction makes it possible to detect repolarization changes with higher discriminative power than the QT-interval during major rapid weight...

  17. Phase Change Materials in the building industry

    NARCIS (Netherlands)

    De Haan, H.

    2011-01-01

    This paper is written for the TIDO-course AR0532 Smart & Bioclimatic Design Theory. In this paper is focused on the application of 'phase changing materials' (PCMs) in buildings as a design strategy that deploys local characteristics intelligently into the sustainable design of buildings. This

  18. Phase change thermal energy storage material

    Science.gov (United States)

    Benson, David K.; Burrows, Richard W.

    1987-01-01

    A thermal energy storge composition is disclosed. The composition comprises a non-chloride hydrate having a phase change transition temperature in the range of 70.degree.-95.degree. F. and a latent heat of transformation of at least about 35 calories/gram.

  19. Polyolefin composites containing a phase change material

    Science.gov (United States)

    Salyer, Ival O.

    1991-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein, said polyolefin being thermally form stable; the composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  20. Rapidly Activated Dynamic Phase Transitions in Nonlinear Solids

    Science.gov (United States)

    1993-02-15

    I Form Approv# edAD -A263 601 AiENTA11ON PAGE- f____________18 1. AGENCY USE ONLY (Lea"e blaWk 12. REPORT DATE 13. REPORT TYPE AND OATES COVEREO Feb...phase transforming media during high energy impact. Conversion of mechanical energy to thermal ener- gy has been studied by means of an extended theory...and Phase Structures in General Media , R. Fosdick, E. Dunn & M. Slemrod eds., IMA volume series, Springer- Verlag. Song, J. and T. L. Pence (1992

  1. Rapid climate change and society: assessing responses and thresholds.

    Science.gov (United States)

    Niemeyer, Simon; Petts, Judith; Hobson, Kersty

    2005-12-01

    Assessing the social risks associated with climate change requires an understanding of how humans will respond because it affects how well societies will adapt. In the case of rapid or dangerous climate change, of particular interest is the potential for these responses to cross thresholds beyond which they become maladaptive. To explore the possibility of such thresholds, a series of climate change scenarios were presented to U.K. participants whose subjective responses were recorded via interviews and surveyed using Q methodology. The results indicate an initially adaptive response to climate warming followed by a shift to maladaptation as the magnitude of change increases. Beyond this threshold, trust in collective action and institutions was diminished, negatively impacting adaptive capacity. Climate cooling invoked a qualitatively different response, although this may be a product of individuals being primed for warming because it has dominated public discourse. The climate change scenarios used in this research are severe by climatological standards. In reality, the observed responses might occur at a lower rate of change. Whatever the case, analysis of subjectivity has revealed potential for maladaptive human responses, constituting a dangerous or rapid climate threshold within the social sphere.

  2. The Chinese experience of rapid modernization: sociocultural changes, psychological consequences?

    Directory of Open Access Journals (Sweden)

    Jiahong eSun

    2016-04-01

    Full Text Available Mainland China has undergone profound changes dating back to the nineteenth century, including a contemporary period of rapid modernization that began in the 1980s. The result has been dramatic social, cultural, and economic shifts impacting the daily lives of Chinese people. In this paper, we explore the psychological implications of sociocultural transformation in China, emphasizing two central themes. First, rising individualism: findings from social and developmental psychology suggest that China’s rapid development has been accompanied by ever-increasing adherence to individualistic values. Second, rising rates of depression: findings from psychiatric epidemiology point to increasing prevalence of depression over this same time period, particularly in rural settings. We argue that links between sociocultural and psychological shifts in China can be usefully studied through a cultural psychology lens, emphasizing the mutual constitution of culture, mind, and brain. In particular, we note that the link between social change, individualism, and rising mental illness deserves careful attention. Our review suggests that shifting values and socialization practices shape emotion norms of concealment and display, with implications for depressive symptom presentation. The challenge comes with interpretation. Increasing prevalence rates of depression may indeed be a general response to the rapidity of sociocultural change, or a specific consequence of rising individualism—but may also result from increasingly ‘Western’ patterns of symptom presentation, or improvements in diagnostic practice. We conclude by considering the challenges posed to standard universal models of psychological phenomena.

  3. The Chinese Experience of Rapid Modernization: Sociocultural Changes, Psychological Consequences?

    Science.gov (United States)

    Sun, Jiahong; Ryder, Andrew G.

    2016-01-01

    Mainland China has undergone profound changes dating back to the nineteenth century, including a contemporary period of rapid modernization that began in the 1980s. The result has been dramatic social, cultural, and economic shifts impacting the daily lives of Chinese people. In this paper, we explore the psychological implications of sociocultural transformation in China, emphasizing two central themes. First, rising individualism: findings from social and developmental psychology suggest that China’s rapid development has been accompanied by ever-increasing adherence to individualistic values. Second, rising rates of depression: findings from psychiatric epidemiology point to increasing prevalence of depression over this same time period, particularly in rural settings. We argue that links between sociocultural and psychological shifts in China can be usefully studied through a cultural psychology lens, emphasizing the mutual constitution of culture, mind, and brain. In particular, we note that the link between social change, individualism, and rising mental illness deserves careful attention. Our review suggests that shifting values and socialization practices shape emotion norms of concealment and display, with implications for depressive symptom presentation. The challenge comes with interpretation. Increasing prevalence rates of depression may indeed be a general response to the rapidity of sociocultural change, or a specific consequence of rising individualism—but may also result from increasingly ‘Western’ patterns of symptom presentation, or improvements in diagnostic practice. We conclude by considering the challenges posed to standard universal models of psychological phenomena. PMID:27092093

  4. Thermodynamics phase changes of nanopore fluids

    KAUST Repository

    Islam, Akand W.

    2015-07-01

    The van der Waals (vdW) equation (Eq.) is modified to describe thermodynamic of phase behavior of fluids confined in nanopore. Our aim is to compute pressures exerted by the fluid molecules and to investigate how they change due to pore proximity by assuming the pore wall is inert. No additional scaling of model parameters is imposed and original volume and energy parameters are used in the calculations. Our results clearly show the phase changes due to confinement. The critical shifts of temperatures and pressures are in good agreement compared to the laboratory data and molecular simulation. Peng-Robinson (PR) equation-of-state (EOS) has resulted in different effect than the vdW. This work delivers insights into the nature of fluid behavior in extremely low-permeability nanoporous media, especially in the tight shale reservoirs, below the critical temperatures. © 2015 Elsevier B.V.

  5. Kinetic Phase Diagrams of Ternary Al-Cu-Li System during Rapid Solidification: A Phase-Field Study.

    Science.gov (United States)

    Yang, Xiong; Zhang, Lijun; Sobolev, Sergey; Du, Yong

    2018-02-08

    Kinetic phase diagrams in technical alloys at different solidification velocities during rapid solidification are of great importance for guiding the novel alloy preparation, but are usually absent due to extreme difficulty in performing experimental measurements. In this paper, a phase-field model with finite interface dissipation was employed to construct kinetic phase diagrams in the ternary Al-Cu-Li system for the first time. The time-elimination relaxation scheme was utilized. The solute trapping phenomenon during rapid solidification could be nicely described by the phase-field simulation, and the results obtained from the experiment measurement and/or the theoretical model were also well reproduced. Based on the predicted kinetic phase diagrams, it was found that with the increase of interface moving velocity and/or temperature, the gap between the liquidus and solidus gradually reduces, which illustrates the effect of solute trapping and tendency of diffusionless solidification.

  6. The rapid enrollment design for Phase I clinical trials.

    Science.gov (United States)

    Ivanova, Anastasia; Wang, Yunfei; Foster, Matthew C

    2016-07-10

    We propose a dose-finding design for Phase I oncology trials where each new patient is assigned to the dose most likely to be the target dose given observed data. The main model assumption is that the dose-toxicity curve is non-decreasing. This method is beneficial when it is desirable to assign a patient to a dose as soon as the patient is enrolled into a study. To prevent assignments to doses with limited toxicity information in fast accruing trials we propose a conservative rule that assigns temporary fractional toxicities to patients still in follow-up. We also recommend always using a safety rule in any fast accruing dose-finding trial. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Procedural Modeling for Rapid-Prototyping of Multiple Building Phases

    Science.gov (United States)

    Saldana, M.; Johanson, C.

    2013-02-01

    RomeLab is a multidisciplinary working group at UCLA that uses the city of Rome as a laboratory for the exploration of research approaches and dissemination practices centered on the intersection of space and time in antiquity. In this paper we present a multiplatform workflow for the rapid-prototyping of historical cityscapes through the use of geographic information systems, procedural modeling, and interactive game development. Our workflow begins by aggregating archaeological data in a GIS database. Next, 3D building models are generated from the ArcMap shapefiles in Esri CityEngine using procedural modeling techniques. A GIS-based terrain model is also adjusted in CityEngine to fit the building elevations. Finally, the terrain and city models are combined in Unity, a game engine which we used to produce web-based interactive environments which are linked to the GIS data using keyhole markup language (KML). The goal of our workflow is to demonstrate that knowledge generated within a first-person virtual world experience can inform the evaluation of data derived from textual and archaeological sources, and vice versa.

  8. Sprayable Phase Change Coating Thermal Protection Material

    Science.gov (United States)

    Richardson, Rod W.; Hayes, Paul W.; Kaul, Raj

    2005-01-01

    NASA has expressed a need for reusable, environmentally friendly, phase change coating that is capable of withstanding the heat loads that have historically required an ablative thermal insulation. The Space Shuttle Program currently relies on ablative materials for thermal protection. The problem with an ablative insulation is that, by design, the material ablates away, in fulfilling its function of cooling the underlying substrate, thus preventing the insulation from being reused from flight to flight. The present generation of environmentally friendly, sprayable, ablative thermal insulation (MCC-l); currently use on the Space Shuttle SRBs, is very close to being a reusable insulation system. In actual flight conditions, as confirmed by the post-flight inspections of the SRBs, very little of the material ablates. Multi-flight thermal insulation use has not been qualified for the Space Shuttle. The gap that would have to be overcome in order to implement a reusable Phase Change Coating (PCC) is not unmanageable. PCC could be applied robotically with a spray process utilizing phase change material as filler to yield material of even higher strength and reliability as compared to MCC-1. The PCC filled coatings have also demonstrated potential as cryogenic thermal coatings. In experimental thermal tests, a thin application of PCC has provided the same thermal protection as a much thicker and heavier application of a traditional ablative thermal insulation. In addition, tests have shown that the structural integrity of the coating has been maintained and phase change performance after several aero-thermal cycles was not affected. Experimental tests have also shown that, unlike traditional ablative thermal insulations, PCC would not require an environmental seal coat, which has historically been required to prevent moisture absorption by the thermal insulation, prevent environmental degradation, and to improve the optical and aerodynamic properties. In order to reduce

  9. RAPID CHANGES IN SOCIETY, TECHNOLOGY ,ECONOMY AND PUBLIC SERVICE INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Tirthendu Bagchi

    2017-03-01

    Full Text Available Current paper has the purpose to analyze the statement by Drucker (1985 that rapid changes in today’s society, technology, and economy in general are simultaneously a great threat to public-service institutions and even greater opportunity. The statement by Drucker will be analyzed  particularly with context of post offices that what are they going through these days or have gone through. Finally, some recommendations will be made for USPS based on the findings of the analysis..

  10. Electrical transport in crystalline phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Woda, Michael

    2012-01-06

    In this thesis, the electrical transport properties of crystalline phase change materials are discussed. Phase change materials (PCM) are a special class of semiconducting and metallic thin film alloys, typically with a high amount of the group five element antimony or the group six element tellurium, such as Ge{sub 2}Sb{sub 2}Te{sub 5}. The unique property portfolio of this material class makes it suitable for memory applications. PCMs reveal fast switching between two stable room-temperature phases (amorphous and crystalline) realized by optical laser or electrical current pulses in memory devices. Additionally, a pronounced property contrast in form of optical reflectivity and electrical conductivity between the amorphous and crystalline phase is the characteristic fingerprint of PCMs. The emerging electrical solid state memory PCRAM is a very promising candidate to replace Flash memory in the near future or to even become a universal memory, which is non-volatile and shows the speed and cyclability of DRAM. One of the main technological challenges is the switching process into the amorphous state, which is the most power demanding step. In order to reduce the switching power, the crystalline resistivity needs to be increased at a given voltage. Thus understanding and tayloring of this property is mandatory. In this work, first the technological relevance, i.e. optical and electrical memory concepts based on PCMs are introduced. Subsequently a description of the physical properties of PCMs in four categories is given. Namely, structure, kinetics, optical properties and electrical properties are discussed. Then important recent developments such as the identification of resonant bonding in crystalline PCMs and a property predicting coordination scheme are briefly reviewed. The following chapter deals with the theoretical background of electrical transport, while the next chapter introduces the experimental techniques: Sputtering, XRR, XRD, DSC, thermal annealing

  11. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    Science.gov (United States)

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  12. Development of Middle Stone Age innovation linked to rapid climate change.

    Science.gov (United States)

    Ziegler, Martin; Simon, Margit H; Hall, Ian R; Barker, Stephen; Stringer, Chris; Zahn, Rainer

    2013-01-01

    The development of modernity in early human populations has been linked to pulsed phases of technological and behavioural innovation within the Middle Stone Age of South Africa. However, the trigger for these intermittent pulses of technological innovation is an enigma. Here we show that, contrary to some previous studies, the occurrence of innovation was tightly linked to abrupt climate change. Major innovational pulses occurred at times when South African climate changed rapidly towards more humid conditions, while northern sub-Saharan Africa experienced widespread droughts, as the Northern Hemisphere entered phases of extreme cooling. These millennial-scale teleconnections resulted from the bipolar seesaw behaviour of the Atlantic Ocean related to changes in the ocean circulation. These conditions led to humid pulses in South Africa and potentially to the creation of favourable environmental conditions. This strongly implies that innovational pulses of early modern human behaviour were climatically influenced and linked to the adoption of refugia.

  13. PHASE CHANGE AROUND A FINNED TUBE

    Directory of Open Access Journals (Sweden)

    Aytunç EREK

    2003-01-01

    Full Text Available This study presents the heat transfer enhancement in the thermal energy storage system by using radially finned tube. The solution of the system consists of the solving the equations of the heat transfer fluid (HTF, the pipe wall and fin, and the phase change material (PCM as one domain. The control volume finite difference approach and the semi implicit solver (SIS are used to solve the equations. Fully developed velocity distribution is taken in the HTF. Flow parameters (Re number and inlet temperature of coolant and fin parameters (the number of fins, fin length, fin thickness are found to influence solidification fronts and the total stored energy.

  14. Rapidly tunable optical parametric oscillator based on aperiodic quasi-phase matching.

    Science.gov (United States)

    Descloux, Delphine; Dherbecourt, Jean-Baptiste; Melkonian, Jean-Michel; Raybaut, Myriam; Lai, Jui-Yu; Drag, Cyril; Godard, Antoine

    2016-05-16

    A new optical parametric oscillator (OPO) architecture with high tuning speed capability is demonstrated. This device exploits the versatility offered by aperiodic quasi-phase matching (QPM) to provide a broad parametric gain spectrum without changing the temperature, angle, or position of the nonlinear crystal. Rapid tuning is then straightforwardly achieved using a fast intracavity spectral filter. This concept is demonstrated here for a picosecond synchronously pumped OPO containing an aperiodically poled MgO-doped LiNbO3 crystal and a rapidly tunable spectral filter based on a diffraction grating. Tuning over 160 nm around 3.86 μm is achieved at fixed temperature and a fast tuning over 30 nm in 40 μs is demonstrated. Different configurations are tested and compared. The cavity length detuning is analyzed and discussed. This device is successfully used to detect N2O by absorption. This approach could be generalized to other spectral ranges (e.g., visible) and temporal regimes (e.g., continuous-wave or nanosecond).

  15. Material Engineering for Phase Change Memory

    Science.gov (United States)

    Cabrera, David M.

    As semiconductor devices continue to scale downward, and portable consumer electronics become more prevalent there is a need to develop memory technology that will scale with devices and use less energy, while maintaining performance. One of the leading prototypical memories that is being investigated is phase change memory. Phase change memory (PCM) is a non-volatile memory composed of 1 transistor and 1 resistor. The resistive structure includes a memory material alloy which can change between amorphous and crystalline states repeatedly using current/voltage pulses of different lengths and magnitudes. The most widely studied PCM materials are chalcogenides - Germanium-Antimony-Tellerium (GST) with Ge2Sb2Te3 and Germanium-Tellerium (GeTe) being some of the most popular stochiometries. As these cells are scaled downward, the current/voltage needed to switch these materials becomes comparable to the voltage needed to sense the cell's state. The International Roadmap for Semiconductors aims to raise the threshold field of these devices from 66.6 V/mum to be at least 375 V/mum for the year 2024. These cells are also prone to resistance drift between states, leading to bit corruption and memory loss. Phase change material properties are known to influence PCM device performance such as crystallization temperature having an effect on data retention and litetime, while resistivity values in the amorphous and crystalline phases have an effect on the current/voltage needed to write/erase the cell. Addition of dopants is also known to modify the phase change material parameters. The materials G2S2T5, GeTe, with dopants - nitrogen, silicon, titanium, and aluminum oxide and undoped Gallium-Antimonide (GaSb) are studied for these desired characteristics. Thin films of these compositions are deposited via physical vapor deposition at IBM Watson Research Center. Crystallization temperatures are investigated using time resolved x-ray diffraction at Brookhaven National Laboratory

  16. Phase Transformation Volume Change Control of Strain and Instability Mechanisms

    Science.gov (United States)

    Green, H. W.

    2011-12-01

    Phase transformations that are accompanied by significant change in volume self-organize the transformation process under stress to enhance strain and/or decrease stress. When the kinetics of the reaction are reasonably rapid, this occurs by nucleation and growth of phase(s) on grain boundaries of appropriate orientation to facilitate strain. When the kinetics of reaction are sluggish (ratio of nucleation rate to growth rate >> 1) and the reaction is polymorphic and exothermic, under specific conditions this process can lead to shearing instability in which the volume change of reaction drives runaway nucleation at stress concentrations leading to macroscopic faulting. Under these conditions, the detailed processes and microstructures produced depend on the sign of volume change but the failure is very similar whether volume change is positive or negative. The microstructures confirm that the mesoscale physics of this process (self-organization of primary features and nucleation/propagation of a fault) is the same as for brittle shear fracture, despite the large difference in the fundamental microscopic physics (formation of nanocrystalline microlenses instead of tensile cracks, and fault propagation by grain-boundary sliding rather than frictional sliding). When volume change is negative and the kinetics of reaction are less sluggish (ratio of nucleation rate to growth rate of order 1), nucleation of the new (denser) phase occurs preferentially on grain boundaries normal to maximum compression and new crystals nucleated on any orientation of grain boundary grow parallel to maximum compression. The result is stylolite-like volume loss normal to maximum compression. Observations of polyphase metamorphic rocks suggest that similar creep can occur during prograde metamorphism by nucleation of more-dense phases and less-dense phases on different populations of phase-boundary orientations such that the overall pattern achieves a macroscopic strain by volume transfer

  17. Modeling second-phase formation during rapid resolidification of stainless steel alloys

    Energy Technology Data Exchange (ETDEWEB)

    Elmer, J.W. (Lawrence Livermore National Lab., CA (USA)); Eagar, T.W.; Allen, S.M. (Massachusetts Inst. of Tech., Cambridge, MA (USA))

    1991-01-28

    Many common stainless steel (SS) alloy microstructures consist of a mixture of ferrite and austenite phases, however, when these alloys are rapidly resolidified using laser beam (LB) or electron beam (EB) processes they solidify in the single-phase-austenite or single-phase-ferrite mode. This paper investigates the influence of solidification rate on the reduction, and eventual elimination, of second phases during the rapid solidification of SS alloys. The influence of solidification rate on the ferrite content of these alloys was studied by calculating the dendrite-tip undercooling and then incorporating these results into a solute-redistribution model to calculate the relative fractions of primary and secondary phase that solidify from the melt. Single-phase solidification was predicted at high cooling rates and was confirmed through STEM analysis, showing solidification microstructures void of any significant microchemical composition gradients. Results showed a rapid-solidification model was used to calculate the relative fractions of primary and secondary phases that form during the resolidification of stainless steel alloys. The rapid-solidification model shows that the ferrite content of primary-austenite solidified alloys decreases and the ferrite content of primary-ferrite solidified alloys increases with increasing cooling rate. Results of the model indicate that primary-austenite alloys will solidify in the single-phase mode at all interface velocities greater than about 20 mm/s. This value correlates well with experiments. Results of the model indicate that primary-ferrite alloys will solidify in the single-phase mode at all interface velocities greater than about 50 mm/s. The experimentally-observed interface velocity for single-phase-ferrite solidification is significantly less (10 mm/s). This discrepancy is proposed to be related to the relative difficulty of nucleating austenite from the eutectic liquid. 13 refs., 5 figs., 2 tabs.

  18. Disorder trapping by rapidly moving phase interface in an undercooled liquid

    Science.gov (United States)

    Galenko, Peter; Danilov, Denis; Nizovtseva, Irina; Reuther, Klemens; Rettenmayr, Markus

    2017-08-01

    Non-equilibrium phenomena such as the disappearance of solute drag, the origin of solute trapping and evolution of disorder trapping occur during fast transformations with originating metastable phases [D.M. Herlach, P.K. Galenko, D. Holland-Moritz, Metastable solids from undrercooled melts (Elsevier, Amsterdam, 2007)]. In the present work, a theoretical investigation of disorder trapping by a rapidly moving phase interface is presented. Using a model of fast phase transformations, a system of governing equations for the diffusion of atoms, and the evolution of both long-range order parameter and phase field variable is formulated. First numerical solutions are carried out for a congruently melting binary alloy system.

  19. Rapid treatment-induced brain changes in pediatric CRPS.

    Science.gov (United States)

    Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David

    2016-03-01

    To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex- and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray, two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation.

  20. Rapid Treatment-Induced Brain Changes in Pediatric CRPS

    Science.gov (United States)

    Erpelding, Nathalie; Simons, Laura; Lebel, Alyssa; Serrano, Paul; Pielech, Melissa; Prabhu, Sanjay; Becerra, Lino; Borsook, David

    2014-01-01

    To date, brain structure and function changes in children with complex regional pain syndrome (CRPS) as a result of disease and treatment remain unknown. Here, we investigated (a) gray matter (GM) differences between patients with CRPS and healthy controls and (b) GM and functional connectivity (FC) changes in patients following intensive interdisciplinary psychophysical pain treatment. Twenty-three patients (13 females, 9 males; average age ± SD = 13.3 ± 2.5 years) and 21 healthy sex-and age-matched controls underwent magnetic resonance imaging. Compared to controls, patients had reduced GM in the primary motor cortex, premotor cortex, supplementary motor area, midcingulate cortex, orbitofrontal cortex, dorsolateral prefrontal cortex (dlPFC), posterior cingulate cortex, precuneus, basal ganglia, thalamus, and hippocampus. Following treatment, patients had increased GM in the dlPFC, thalamus, basal ganglia, amygdala, and hippocampus, and enhanced FC between the dlPFC and the periaqueductal gray (PAG), two regions involved in descending pain modulation. Accordingly, our results provide novel evidence for GM abnormalities in sensory, motor, emotional, cognitive, and pain modulatory regions in children with CRPS. Furthermore, this is the first study to demonstrate rapid treatment-induced GM and FC changes in areas implicated in sensation, emotion, cognition, and pain modulation. PMID:25515312

  1. Mobile work: Ergonomics in a rapidly changing work environment.

    Science.gov (United States)

    Honan, Meg

    2015-01-01

    Places of work have been completely transformed by innovations in mobile work tools and ever-present access to internet data. This article characterizes use patterns and provides preliminary considerations for productive and comfortable use of common mobile devices. Two surveys described trends in mobile work. In the first, ergonomics professionals who oversee programs reported common mobile devices, their users and what data is accessed. The second, an end user survey, explored common activities performed on mobile devices, duration of use and locations where mobile work is common. The survey results provide a baseline data point for the status of mobile work in early 2014. Research indicates that additional risks have been introduced to the neck, thumbs and hands when using mobile devices. Possible trends regarding device use and work locations emerge. Intervention studies provide some direction for the practitioner. Practical strategies are outlined to reduce exposure intensity and duration. Contemporary mobile work presents tremendous change and opportunity for ergonomists and researchers to keep pace with fitting the changing models of work to the person. Continued research is needed on current mobile device use patterns to better understand ergonomic risk exposure in this rapidly changing realm.

  2. Effects of rapid changes in temperature on two estuarine crustaceans

    Energy Technology Data Exchange (ETDEWEB)

    Burton, D.T.; Capizzi, T.P.; Margrey, S.L.; Wakefield, W.W.

    1981-01-01

    Weight specific oxygen consumption (Q/sub O/sub 2// patterns of the amphipod, Gammarus sp. (acclimated to 5/sup 0/, 15/sup 0/ and 25/sup 0/ C) and of juvenile blue crabs, Callinectes sapidus (15/sup 0/ and 25/sup 0/ C) were used to evaluate the potential effect of exposure to rapid temperature changes simulating once-through power plant pumped entrainment. Amphipods at all acclimation temperatures and blue crabs at 15/sup 0/ C responded to the temperature changes by increasing Q/sub O/sub 2// above pre-exposure levels after the thermal increase and then returning to pre-exposure levels. The response was judged to be a normal physiological compensation response, not a thermal stress response, as suggested by some investigators. Significant differences were found among seasonal Q/sub O/sub 2// patterns in both species; Q/sub O/sub 2// increased with increasing acclimation temperature. However, no seasonal stress effects were found as a result of exposure to the temperature changes. This implies that the effects of ..delta..T's up to 10(/sup 0/C) from power plants of this design should have no significant impact on these organisms.

  3. Rapid genomic DNA changes in allotetraploid fish hybrids.

    Science.gov (United States)

    Wang, J; Ye, L H; Liu, Q Z; Peng, L Y; Liu, W; Yi, X G; Wang, Y D; Xiao, J; Xu, K; Hu, F Z; Ren, L; Tao, M; Zhang, C; Liu, Y; Hong, Y H; Liu, S J

    2015-06-01

    Rapid genomic change has been demonstrated in several allopolyploid plant systems; however, few studies focused on animals. We addressed this issue using an allotetraploid lineage (4nAT) of freshwater fish originally derived from the interspecific hybridization of red crucian carp (Carassius auratus red var., ♀, 2n=100) × common carp (Cyprinus carpio L., ♂, 2n=100). We constructed a bacterial artificial chromosome (BAC) library from allotetraploid hybrids in the 20th generation (F20) and sequenced 14 BAC clones representing a total of 592.126 kb, identified 11 functional genes and estimated the guanine-cytosine content (37.10%) and the proportion of repetitive elements (17.46%). The analysis of intron evolution using nine orthologous genes across a number of selected fish species detected a gain of 39 introns and a loss of 30 introns in the 4nAT lineage. A comparative study based on seven functional genes among 4nAT, diploid F1 hybrids (2nF1) (first generation of hybrids) and their original parents revealed that both hybrid types (2nF1 and 4nAT) not only inherited genomic DNA from their parents, but also demonstrated rapid genomic DNA changes (homoeologous recombination, parental DNA fragments loss and formation of novel genes). However, 4nAT presented more genomic variations compared with their parents than 2nF1. Interestingly, novel gene fragments were found for the iqca1 gene in both hybrid types. This study provided a preliminary genomic characterization of allotetraploid F20 hybrids and revealed evolutionary and functional genomic significance of allopolyploid animals.

  4. Phase Change Enthalpies and Entropies of Liquid Crystals

    National Research Council Canada - National Science Library

    Acree, William E; Chickos, James S

    2006-01-01

    .... A group additivity approach used to estimate total phase change entropies of organic molecules applied to 627 of these liquid crystals is found to significantly overestimate their total phase change entropies...

  5. Phase changes in the BRCA policy domain.

    Science.gov (United States)

    Modell, Stephen M; King, Susan B; Citrin, Toby; Kardia, Sharon L R

    2014-06-01

    The recent US Supreme Court ruling against gene patenting has been accompanied by the passage at the federal level of the Patient Protection and Affordable Care Act, both events representing a thawing or phase change in policies that will now make preventive techniques, such as BRCA genetic testing to predict risk for familial breast and ovarian cancer, more affordable and accessible. Authors including Yun-Han Huang in this journal have noted the judicial ruling is one step--a significant one--in the process of patent system reform. This commentary links such changes with policy formation and action taken by members of diverse religious communities in the aftermath of the Human Genome Project and continuing in today's genome sequencing area. Religious engagement has acted as a catalyzing force for change in the creation and dissemination of genetic developments. Religious perspectives are needed to solve the new ethical dilemmas posed by population screening for BRCA mutations and the rise of direct-to-consumer and provider marketing of such genetic tests, which have far-reaching consequences at the individual, family, and societal levels.

  6. Quiescent-phase evolution of a surge-type glacier: Black Rapids Glacier, Alaska, U.S.A.

    Science.gov (United States)

    Heinrichs, T.A.; Mayo, L.R.; Echelmeyer, K.A.; Harrison, W.D.

    1996-01-01

    Black Rapids Glacier, a surge-type glacier in the Alaska Range, most recently surged in 1936-37 and is currently in its quiescent phase. Mass balance, ice velocity and thickness change have been measured at three to ten sites from 1972 to 1994. The annual speed has undergone cyclical fluctuations of as much as 45% about the mean speed. Ice thickness and surface slope did not change enough to cause the speed fluctuations through changes in ice deformation, which indicates that they are being driven by changes in basal motion. The behavior of Black Rapids Glacier during this quiescent phase is significantly different from that of Variegated Glacier, another well-studied surge-type glacier in Alaska. The present medial-moraine configuration of Black Rapids Glacier indicates that a surge could occur at any time. However, ice velocity data indicate that the next surge may not be imminent. We believe that there is little chance that the next surge will cross and dam the Delta River.

  7. Cooling of Electronics with Phase Change Materials

    Science.gov (United States)

    Saha, S. K.; Dutta, P.

    2010-10-01

    This paper deals with phase change materials (PCMs), used in conjunction with thermal conductivity enhancer (TCE), as means of thermal management of electronic systems. This work was motivated by the need for short term thermal management of high packing density equipments (such as in avionics). Eicosane is used as PCM, while aluminium pin or plate fins are used as TCE. The test section considered in all cases is 42×42 mm square base with TCE height of 25 mm. An electronic heater producing 4, 6 and 8 W was used to simulate the heat generation of electronic chips. Various volumetric percentages of TCE in the conglomerate of PCM and TCE were considered, namely, 0, 2, 8, 18 and 27%. The case with 8% volumetric percentage of TCE was found to have the best thermal performance. A numerical model was developed to enable interpretation of experimental results and to perform parametric studies.

  8. Dry powder mixes comprising phase change materials

    Science.gov (United States)

    Salyer, Ival O.

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  9. Thermal energy storage in phase change material

    Science.gov (United States)

    White, P.; Buchlin, J. M.

    1982-03-01

    The present study deals with an experimental investigation of low temperature thermal storage based on macroencapsulation of Phase Change Material (PCM). The storage performance capabilities of capsule bed, tube bank and tubular single-pass heat exchanger are compared. The tests are conducted on the VKI Solar Utility Network (SUN) which is a closed loop facility designed to study air heating systems. An original data acquisition chain based on two conversing microprocessors is developed to carry out mass flow, pressure drop and temperature measurements. The experimental results are interpreted on the basis of comparison with numerical predictions and they allow to draw the following conclusions. Each type of matrix has its own range of operation for practical application but from a heat transfer standpoint, the PCM capsule packing unit is strongly recommended. It is suggested to extend this investigation to the effect of Reynolds number to find optimum range for thermomechanical efficiency.

  10. A low cost rapid prototype platform for a three phase PFC rectifier application

    DEFF Research Database (Denmark)

    Haase, Frerk; Kouchaki, Alireza; Nymand, Morten

    2015-01-01

    In this paper the design and development of a low cost rapid prototype platform for a Three Phase PFC rectifier application is presented. The active rectifier consists of a SiC-MOSFET based PWM converter and a low cost rapid prototype platform for simulating and implementing the digital control...... is then performed using automatic code generation for embedded targets, which provided a close link between simulation and implementation of the PFC controller. The paper shows how this rapid prototype platform developed and how it was used for the design and implementation of the controller for a high efficient Si...

  11. Rapid Prediction of Configuration Aerodynamics in the ConceptualDesign Phase

    Directory of Open Access Journals (Sweden)

    C. Munro

    2001-01-01

    Full Text Available Conceptual aircraft design is characterised by the requirement to analyse a large number of configurations rapidly and cost effectively. For unusual configurations such as those typified by unmanned combat air vehicles (UCAVs adequately predicting their aerodynamic characteristics through existing empirical methods is fraught with uncertainty. By utilising rapid and low cost experimental tools such as the water tunnel and subscale flight testing it is proposed that the required aerodynamic characteristics can rapidly be acquired with sufficient fidelity for the conceptual design phase. Furthermore, the initial design predictions can to some extent be validated using flight-derived aerodynamic data from subscale flight testing.

  12. Pheromones-based sexual selection in a rapidly changing world.

    Science.gov (United States)

    Henneken, Jessica; Jones, Therésa M

    2017-12-01

    Insects utilise chemical cues for a range of different purposes and the complexity and degree of specificity of these signals is arguably unparalleled in the animal kingdom. Chemical signals are particularly important for insect reproduction and the selective pressures driving their evolution and maintenance have been the subject of previous reviews. However, the world in which chemical cues evolved and are maintained is changing at an unprecedented rate. How (or indeed whether) chemical signals used in sexual selection will respond is largely unknown. Here, we explore how recent increases in urbanisation and associated anthropogenic impacts may affect how chemical signals are produced and perceived. We focus on four anthropomorphic influences which have the potential to interact with pheromone-mediated sexual selection processes; climatic temperature shifts, exposure to chemical pollutants, the presence of artificial light at night and nutrient availability. Our aim is to provide a broad overview of key areas where the rapidly changing environment of the future might specifically affect pheromones utilised in sexual selection. Copyright © 2017. Published by Elsevier Inc.

  13. Review of Development Survey of Phase Change Material Models in Building Applications

    OpenAIRE

    Hussein J. Akeiber; Mazlan A. Wahid; Hussen, Hasanen M.; Abdulrahman Th. Mohammad

    2014-01-01

    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed accordi...

  14. Phase change material thermal capacitor clothing

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2005-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  15. Ethnobiology 5: Interdisciplinarity in an Era of Rapid Environmental Change

    Directory of Open Access Journals (Sweden)

    Steve Wolverton

    2013-01-01

    Full Text Available Ethnobiology 5 stems from Eugene Hunn’s four phases of the history of ethnobiology and focuses on the relevance of ethnobiological research in the context of environmental and cultural change.  It refers to a contemporary phase of the field’s historical development.  In this paper, I argue that ethnobiology is preadapted to be a scholarly umbrella for a number of disciplines that concern human-environment interactions, suggesting that one goal of Ethnobiology 5 is to bridge traditional academic boundaries in order to broaden the community of ethnobiologists. Another goal of Ethnobiology 5 is to capitalize on and communicate the relevance of ethnobiological scholarship for solving problems related to contemporary environmental and cultural crises.  Indeed, ethnobiology is not a subfield of any traditional discipline and by the nature of its name bridges humanities, social science, and science.  Ethnobiology has always been interdisciplinary in terms of its subject matter, yet its community of scholars is relatively small compared to mission-driven disciplines, such as conservation biology.  Venues for publication and presentation of ethnobiological research, as well as how ethnobiologists portray their research, are critical to growing ethnobiology.

  16. Evaluation of immediate soft tissue changes after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Ki Beom Kim

    2012-10-01

    Full Text Available OBJECTIVE: To evaluate immediate soft tissue changes following rapid maxillary expansion (RME in growing patients, using cone beam computed tomography (CBCT. METHODS: Twenty-three consecutive patients (10 male, 13 female treated by RME were selected. Patients were scanned using CBCT prior to placement of the rapid maxillary expander (T0, then immediately following full activation of the appliance (T1. Defined landmarks were then located on the pre- and post-treatment orientated images. Change in landmark position from pre- to post-treatment was then measured. In addition to landmarks, 10 direct measures were made to determine distance change without regard to direction to measure soft tissue change of the lips. RESULTS: Significant transverse expansion was measured on most soft tissue landmark locations. All the measures made showed significant change in the lip position with a lengthening of the vertical dimension of the upper lip, and a generalized decrease of anterior-posterior thickness of both the upper and lower lips. CONCLUSIONS: Significant changes in the soft tissue do occur with RME treatment. There is a transverse widening of the midface, and a thinning of the lips.OBJETIVO: avaliar as mudanças imediatas no tecido mole após a expansão rápida da maxila (ERM em pacientes em fase de crescimento, usando tomografia computadorizada de feixe cônico (TCFC. MÉTODOS: vinte e três pacientes (10 do sexo masculino e 13 do feminino tratados com ERM foram selecionados. Os pacientes foram escaneados por TCFC antes da implantação do expansor maxilar (T0 e imediatamente após a completa ativação do aparelho (T1. Pontos cefalométricos definidos foram localizados nas imagens pré- e pós-tratamento. As mudanças de posição desses pontos do pré- para o pós-tratamento foram, então, analisadas. Adicionalmente aos pontos, 10 medições diretas foram realizadas para determinar a mudança nas distâncias - independentemente da direção - nos

  17. Human relations with soil are changing rapidly: SSSA's new Work Group on Soil Change

    Science.gov (United States)

    Humanity has rapidly become Earth’s chief agent of soil change, and geologists have named the epoch in which we live the Anthropocene, due to the global scale of human impact on the environment, including soil. In response to the increasing influence of humans on soil processes, the disciplines of ...

  18. Evaluation of rapid volume changes of substrate-adherent cells by conventional microscopy 3D imaging.

    Science.gov (United States)

    Boudreault, F; Grygorczyk, R

    2004-09-01

    Precise measurement of rapid volume changes of substrate-adherent cells is essential to understand many aspects of cell physiology, yet techniques to evaluate volume changes with sufficient precision and high temporal resolution are limited. Here, we describe a novel imaging method that surveys the rapid morphology modifications of living, substrate-adherent cells based on phase-contrast, digital video microscopy. Cells grown on a glass substrate are mounted in a custom-designed, side-viewing chamber and subjected to hypotonic swelling. Side-view images of the rapidly swelling cell, and at the end of the assay, an image of the same cell viewed from a perpendicular direction through the substrate, are acquired. Based on these images, off-line reconstruction of 3D cell morphology is performed, which precisely measures cell volume, height and surface at different points during cell volume changes. Volume evaluations are comparable to those obtained by confocal laser scanning microscopy (DeltaVolume microscopy without the need for cell staining or intense illumination to monitor cell volume make this system a promising new tool to investigate the fundamentals of cell volume physiology.

  19. Preparation and Characterization of Composite Phase Change Materials Containing Nanoparticles

    OpenAIRE

    Jia Yu; Zhichao Yu; Chenlong Tang; Xuan Chen; Qingfei Song; Li Kong

    2016-01-01

    The phase change thermal control method is now widely used in aircraft thermal protection due to its high energy density, constant temperature control, flexible operation, and many other advantages.1–6 However, thermal conductivity of most current phase change materials is low in phase transition process.7–10 This paper will add high thermal nanoparticles to phase change material in order to enhance the thermal conductivity, which, however, has some problems, such as settlement in the macro, ...

  20. Superfluid phases of triplet pairing and rapid cooling of the neutron star in Cassiopeia A

    Directory of Open Access Journals (Sweden)

    Lev B. Leinson

    2015-02-01

    Full Text Available In a simple model it is demonstrated that the neutron star surface temperature evolution is sensitive to the phase state of the triplet superfluid condensate. A multicomponent triplet pairing of superfluid neutrons in the core of a neutron star with participation of several magnetic quantum numbers leads to neutrino energy losses exceeding the losses from the unicomponent pairing. A phase transition of the neutron condensate into the multicomponent state triggers more rapid cooling of superfluid core in neutron stars. This makes it possible to simulate an anomalously rapid cooling of neutron stars within the minimal cooling paradigm without employing any exotic scenarios suggested earlier for rapid cooling of isolated neutron star in Cassiopeia A.

  1. Mechanics of Metals with Phase Changes

    Energy Technology Data Exchange (ETDEWEB)

    Lashley, Jason C. [Brigham Young Univ., Provo, UT (United States)

    2001-01-01

    New experimental data is presented on some exotic metals that exhibit phase changes at cryogenic temperatures. The types of phase changes that were detected in the specific heat data range from martensitic (diffusion less) transitions to superconducting transitions. In addition, the charge density wave (CDW) state in uranium metal was detected in the specific heat. Specific-heat measurements were made in zero-magnetic field using an apparatus capable of obtaining temperatures as low as 0.4 K. Calibration performed on this apparatus, using a single-crystal copper sample, show its accuracy to be 0.50%, while the resolution was better than 0.1%. Our measurements demonstrate that similar high precision and accurate specific-heat measurements can be obtained on milligram-scale samples. In Chapters 2 and 3, specific-heat measurements are presented for the B2 (CsCl structure) alloy AuZn and for α-uranium (orthorhombic symmetry). The AuZn alloy exhibits a continuous transition at 64.75 K and an entropy of transition of (ΔStr) 2.02 J K-1 mol-1. Calculation of the Debye temperature, by extrapolating of the high temperature phase elastic constants to T = 0 K yields a value of 207 K (±2 K), in favorable agreement with the calorimetric value of 219 K (±0.50 K), despite the intervening martensitic transition. Reported results for single-crystal α-U show a low-temperature limiting θD of 256 K (±0.50 K) and four low-temperature anomalies: a superconducting transition below 1 K, an electronic transition at 22 K, and two anomalies at 38 K and at 42 K indicative of the CDW state. In order to continue the study of the actinide series of elements, a program was initiated to first purify and then grow single crystals of plutonium. Accordingly, the focus of Chapters 4 through 6 will be a description of plutonium sample preparation. In this program plutonium metal was purified via zone refining, using a levitated molten zone to minimize

  2. Phase Change Material Heat Exchanger Life Test

    Science.gov (United States)

    Lillibridge, Sean; Stephan, Ryan

    2009-01-01

    Low Lunar Orbit (LLO) poses unique thermal challenges for the orbiting space craft, particularly regarding the performance of the radiators. The IR environment of the space craft varies drastically from the light side to the dark side of the moon. The result is a situation where a radiator sized for the maximal heat load in the most adverse situation is subject to freezing on the dark side of the orbit. One solution to this problem is to implement Phase Change Material (PCM) Heat Exchangers. PCM Heat Exchangers act as a "thermal capacitor," storing thermal energy when there is too much being produced by the space craft to reject to space, and then feeding that energy back into the thermal loop when conditions are more favorable. Because they do not use an expendable resource, such as the feed water used by sublimators and evaporators, PCM Heat Exchangers are ideal for long duration LLO missions. In order to validate the performance of PCM Heat Exchangers, a life test is being conducted on four n-Pentadecane, carbon filament heat exchangers. Fluid loop performance, repeatability, and measurement of performance degradation over 2500 melt-freeze cycles will be performed.

  3. Reconfigurable Braille display with phase change locking

    Science.gov (United States)

    Soule, Cody W.; Lazarus, Nathan

    2016-07-01

    Automatically updated signs and displays for sighted people are common in today’s world. However, there is no cheap, low power equivalent available for the blind. This work demonstrates a reconfigurable Braille cell using the solid-to-liquid phase change of a low melting point alloy as a zero holding power locking mechanism. The device is actuated with the alloy in the liquid state, and is then allowed to solidify to lock the Braille dot in the actuated position. A low-cost manufacturing process is developed that includes molding of a rigid silicone to create pneumatic channels, and bonding of a thin membrane of a softer silicone on the surface for actuation. A plug of Field’s metal (melting point 62 °C) is placed in the pneumatic channels below each Braille dot to create the final device. The device is well suited for low duty cycle operation in applications such as signs, and is able to maintain its state indefinitely without additional power input. The display requires a pneumatic pressure of only 24 kPa for actuation, and reconfiguration has been demonstrated in less than a minute and a half.

  4. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  5. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    OpenAIRE

    Tianyi Zhao; Youzhuan Zhang; Jingxia Wang; Yanlin Song; Lei Jiang

    2014-01-01

    This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs) by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs woul...

  6. Application of phase-change materials in memory taxonomy

    Science.gov (United States)

    Wang, Lei; Tu, Liang; Wen, Jing

    2017-01-01

    Abstract Phase-change materials are suitable for data storage because they exhibit reversible transitions between crystalline and amorphous states that have distinguishable electrical and optical properties. Consequently, these materials find applications in diverse memory devices ranging from conventional optical discs to emerging nanophotonic devices. Current research efforts are mostly devoted to phase-change random access memory, whereas the applications of phase-change materials in other types of memory devices are rarely reported. Here we review the physical principles of phase-change materials and devices aiming to help researchers understand the concept of phase-change memory. We classify phase-change memory devices into phase-change optical disc, phase-change scanning probe memory, phase-change random access memory, and phase-change nanophotonic device, according to their locations in memory hierarchy. For each device type we discuss the physical principles in conjunction with merits and weakness for data storage applications. We also outline state-of-the-art technologies and future prospects. PMID:28740557

  7. Optical Defocus Rapidly Changes Choroidal Thickness in Schoolchildren.

    Directory of Open Access Journals (Sweden)

    Danyang Wang

    Full Text Available The current study aimed to examine the short-term choroidal response to optical defocus in schoolchildren. Myopic schoolchildren aged 8-16 were randomly allocated to control group (CG, myopic defocus group (MDG and hyperopic defocus group (HDG (n = 17 per group. Children in MDG and HDG received additional +3D and -3D lenses, respectively, to their full corrections on the right eyes. Full correction was given to their left eyes, and on both eyes in the CG. Axial length (AXL and subfoveal choroidal thickness (SFChT were then measured by spectral domain optical coherence tomography. Children wore their group-specific correction for 2 hours after which any existing optical defocus was removed, and subjects wore full corrections for another 2 hours. Both the AXL and SFChT were recorded hourly for 4 hours. The mean refraction of all subjects was -3.41 ± 0.37D (± SEM. SFChT thinned when exposed to hyperopic defocus for 2 hours but less thinning was observed in response to myopic defocus compared to the control group (p < 0.05, two-way ANOVA. Removal of optical defocus significantly decreased SFChT in the MDG and significantly increased SFChT in the HDG after 1 and 2 hours (mean percentage change at 2-hour; control vs. hyperopic defocus vs. myopic defocus; -0.33 ± 0.59% vs. 3.04 ± 0.60% vs. -1.34 ± 0.74%, p < 0.01. Our results showed short-term exposure to myopic defocus induced relative choroidal thickening while hyperopic defocus led to choroidal thinning in children. This rapid and reversible choroidal response may be an important clinical parameter in gauging retinal response to optical defocus in human myopia.

  8. Hydrothermal iron flux variability following rapid sea level changes

    National Research Council Canada - National Science Library

    Middleton, Jennifer L; Langmuir, Charles H; Mukhopadhyay, Sujoy; McManus, Jerry F; Mitrovica, Jerry X

    2016-01-01

    .... Mir sediments reveal sixfold to eightfold increases in hydrothermal iron and copper deposition during the Last Glacial Maximum, followed by a rapid decline during the sea level rise associated with deglaciation...

  9. Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials

    Science.gov (United States)

    Wang, Weijie; Loke, Desmond; Shi, Luping; Zhao, Rong; Yang, Hongxin; Law, Leong-Tat; Ng, Lung-Tat; Lim, Kian-Guan; Yeo, Yee-Chia; Chong, Tow-Chong; Lacaita, Andrea L.

    2012-01-01

    The quest for universal memory is driving the rapid development of memories with superior all-round capabilities in non-volatility, high speed, high endurance and low power. Phase-change materials are highly promising in this respect. However, their contradictory speed and stability properties present a key challenge towards this ambition. We reveal that as the device size decreases, the phase-change mechanism changes from the material inherent crystallization mechanism (either nucleation- or growth-dominated), to the hetero-crystallization mechanism, which resulted in a significant increase in PCRAM speeds. Reducing the grain size can further increase the speed of phase-change. Such grain size effect on speed becomes increasingly significant at smaller device sizes. Together with the nano-thermal and electrical effects, fast phase-change, good stability and high endurance can be achieved. These findings lead to a feasible solution to achieve a universal memory. PMID:22496956

  10. Illustrating Phase Changes Using Graphics Modelling of Soap Film Patterns.

    Science.gov (United States)

    Tilley, John; Lovett, David

    1995-01-01

    Soap films can exhibit sudden changes analogous to phase transitions, and these changes can be animated using the software package Mathematica. In this way students can be introduced to phase changes earlier than usual. Soap films provide excellent examples of patterning that arises from simple balancing of forces and minimizing of energy.…

  11. A Phase-Change Composite for Use in Building Envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Ron S. [LMES/ORNL; Stovall, T. K. [LMES/ORNL; Weaver, K. E. [LMES/ORNL; Wilkes, K. E. [LMES/ORNL; Roy, S. [PhD Research Group, Inc.

    1992-06-15

    The objective of this project is to develop composite thermal insulations containing phase-change materials for use in the building envelope. The use of a phase-change insulation composite in the building envelope could result in a significant increase in energy efficiency. PhD Research provided candidate phase-change composites, and ORNL performed analytical and experimental evaluations of their thermal performance. The thermal resistance of the prototype panels was somewhat less than that of commercial products, although their thermal capacity was greater. Using these results, PhD Research has been working to modify the design and to produce practical building elements that incorporate phase-change material.

  12. Nano composite phase change materials microcapsules

    Science.gov (United States)

    Song, Qingwen

    MicroPCMs with nano composite structures (NC-MicroPCMs) have been systematically studied. NC-MicroPCMs were fabricated by the in situ polymerization and addition of silver NPs into core-shell structures. A full factorial experiment was designed, including three factors of core/shell, molar ratio of formaldehyde/melamine and NPs addition. 12 MicroPCMs samples were prepared. The encapsulated efficiency is approximately 80% to 90%. The structural/morphological features of the NC-MicroPCMs were evaluated. The size was in a range of 3.4 mu m to 4.0 mu m. The coarse appearance is attributed to NPs and NPs are distributed on the surface, within the shell and core. The NC-MicroPCMs contain new chemical components and molecular groups, due to the formation of chemical bonds after the pretreatment of NPs. Extra X-ray diffraction peaks of silver were found indicating silver nano-particles were formed into an integral structure with the core/shell structure by means of chemical bonds and physical linkages. Extra functionalities were found, including: (1) enhancement of IR radiation properties; (2) depression of super-cooling, and (3) increase of thermal stabilities. The effects of SERS (Surface Enhanced Raman Spectroscopy) arising from the silver nano-particles were observed. The Raman scattering intensity was magnified more than 100 times. These effects were also exhibited in macroscopic level in the fabric coatings as enhanced IR radiation properties were detected by the "Fabric Infrared Radiation Management Tester" (FRMT). "Degree of Crystallinity" (DOC) was measured and found the three factors have a strong influence on it. DOC is closely related to thermal stability and MicroPCMs with a higher DOC show better temperature resistance. The thermal regulating effects of the MicroPCMs coatings were studied. A "plateau regions" was detected around the temperature of phase change, showing the function of PCMs. Addition of silver nano-particles to the MicroPCMs has a positive

  13. Women in Physics in a Rapidly Changing China

    Science.gov (United States)

    Wu, Ling-An

    2008-03-01

    Despite the upheavals of the 20th century, physics managed to survive quite well in China, where the first woman president of the American Physical Society was born and bred. During the 1950s as a result of policies that emphasized science and engineering, declared equal rights and equal pay for men and women, and assigned jobs to college graduates irrespective of sex, the number of women in physics increased rapidly, many of whom made notable achievements. Since China's opening up over the last thirty years tremendous changes have taken place, and women now face new opportunities as well as challenges in all aspects of society. Whereas physics used to be regarded as the most elite of the sciences, new fields such as computer science, biotechnology and business are now competing for the best students. Compared with other countries the statistics are not bad; in schools and many physics departments the ratio of women teachers may be 30% or higher, but the numbers drop drastically with rank. Moreover, in some research institutions the ratio of female physicists is actually declining, due to retirement of the older generation and fewer successors. Compulsory retirement for women at an earlier age than for men is also a new factor. Conversely, in recent years the ratio of female graduate students enrolling in physics has increased, even reaching 40% in some universities. However, the reasons for this do not bode well: men are not performing so well as women in entrance exams, while the latter are facing increasing discrimination in employment so they have to seek higher degree qualifications. With the further development of China's economy there will be abundant demand for qualified personnel including women with a physics background. It is imperative to actively support the upcoming generation of women physicists and not lose them in the leaky pipeline. The Chinese Physical Society has taken certain positive steps, such as the recent establishment of the Xie Xi

  14. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve.

    Science.gov (United States)

    Benowitz, L I; Shashoua, V E; Yoon, M G

    1981-03-01

    Double labeling methods were used to identify changes in the complement of proteins synthesized in the retinal ganglion cells and transported down the optic nerve during the process of axonal regeneration. Eight to 62 days after goldfish underwent a unilateral optic nerve crush, one eye was labeled with [3H]-, the other with [14C]proline. Control and regenerating optic nerves were dissected out and homogenized together after 5 hr, a time which allowed us to examine selectively membrane-bound components which migrate in the rapid phase of axoplasmic transport. Proteins from the two sides were so-purified and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the 3H and 14C incorporation patterns along the gels revealed a radical shift away from the normal labeling spectrum during regeneration, with selective changes in labeling at particular molecular weights varying over a 3-fold range. Eight days after crushing the optic nerve, the greatest increases in labeling were seen for material with apparent molecular weights of 24,000 to 27,000, 44,000, and 210,000 daltons. These peaks declined thereafter, and on days 29 to 39, the most prominent increases were at 110,000 to 140,000 daltons. These studies indicate a continuously changing pattern in the synthesis and/or degradation of proteins that are rapidly transported down the optic nerve during regeneration and point to molecular species potential significance in the establishment of the visual map upon the brain.

  15. Specific changes in rapidly transported proteins during regeneration of the goldfish optic nerve

    Energy Technology Data Exchange (ETDEWEB)

    Benowitz, L.I.; Shashoua, V.E.; Yoon, M.G.

    1981-03-01

    Double labeling methods were used to identify changes in the complement of proteins synthesized in the retinal ganglion cells and transported down the optic nerve during the process of axonal regeneration. Eight to 62 days after goldfish underwent a unilateral optic nerve crush, one eye was labeled with (3H)-, the other with (14C)proline. Control and regenerating optic nerves were dissected out and homogenized together after 5 hr, a time which allowed us to examine selectively membrane-bound components which migrate in the rapid phase of axoplasmic transport. Proteins from the two sides were so-purified and separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Analysis of the 3H and 14C incorporation patterns along the gels revealed a radical shift away from the normal labeling spectrum during regeneration, with selective changes in labeling at particular molecular weights varying over a 3-fold range. Eight days after crushing the optic nerve, the greatest increases in labeling were seen for material with apparent molecular weights of 24,000 to 27,000, 44,000, and 210,000 daltons. These peaks declined thereafter, and on days 29 to 39, the most prominent increases were at 110,000 to 140,000 daltons. These studies indicate a continuously changing pattern in the synthesis and/or degradation of proteins that are rapidly transported down the optic nerve during regeneration and point to molecular species potential significance in the establishment of the visual map upon the brain.

  16. Crystal growth within a phase change memory cell.

    Science.gov (United States)

    Sebastian, Abu; Le Gallo, Manuel; Krebs, Daniel

    2014-07-07

    In spite of the prominent role played by phase change materials in information technology, a detailed understanding of the central property of such materials, namely the phase change mechanism, is still lacking mostly because of difficulties associated with experimental measurements. Here, we measure the crystal growth velocity of a phase change material at both the nanometre length and the nanosecond timescale using phase-change memory cells. The material is studied in the technologically relevant melt-quenched phase and directly in the environment in which the phase change material is going to be used in the application. We present a consistent description of the temperature dependence of the crystal growth velocity in the glass and the super-cooled liquid up to the melting temperature.

  17. Rapid method to estimate temperature changes in electronics elements

    Directory of Open Access Journals (Sweden)

    Oborskii G. A., Savel’eva O. S., Shikhireva Yu. V.

    2014-06-01

    Full Text Available Thermal behavior of electronic equipment is the determining factor for performing rapid assessment of the effectiveness of design and operation of the equipment. The assessment method proposed in this article consists in fixation of an infrared video stream from the surface of the device and converting it into a visible flow by means of a thermal imager, splitting it into component colors and their further processing using parabolic transformation. The result of the transformation is the number used as a rapid criterion for estimation of distribution stability of heat in the equipment.

  18. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism.

    Science.gov (United States)

    Sanuki, Yosuke; Araki, Tetsuro; Nakazono, Osamu; Tsurui, Kazuyuki

    2017-01-01

    Drug-induced liver injury is a major cause of safety-related drug-marketing withdrawals. Several drugs have been reported to disrupt mitochondrial function, resulting in hepatotoxicity. The development of a simple and effective in vitro assay to identify the potential for mitochondrial toxicity is thus desired to minimize the risk of causing hepatotoxicity and subsequent drug withdrawal. An in vitro test method called the "glucose-galactose" assay is often used in drug development but requires prior-culture of cells over several passages for mitochondrial adaptation, thereby restricting use of the assay. Here, we report a rapid version of this method with the same predictability as the original method. We found that replacing the glucose in the medium with galactose resulted in HepG2 cells immediately shifting their energy metabolism from glycolysis to oxidative phosphorylation due to drastic energy starvation; in addition, the intracellular concentration of ATP was reduced by mitotoxicants when glucose in the medium was replaced with galactose. Using our proposed rapid method, mitochondrial dysfunction in HepG2 cells can be evaluated by drug exposure for one hour without a pre-culture step. This rapid assay for mitochondrial toxicity may be more suitable for high-throughput screening than the original method at an early stage of drug development.

  19. Rapid socio-cultural change and health in the Arctic

    DEFF Research Database (Denmark)

    Bjerregaard, P

    2001-01-01

    health and survival have improved but at the expense of mental health. The incidence of tuberculosis and the infant mortality rate have decreased because of improved socioeconomic conditions and health care. Mental health has deteriorated parallel to the rapid modernization of Greenlandic society...

  20. Amorphous Phase Formation Analysis of Rapidly Solidified CoCr Droplets

    Science.gov (United States)

    Bogno, Abdoul-Aziz; Riveros, Carlos; Henein, Hani; Li, Delin

    2016-12-01

    This paper investigates amorphous phase formation and rapid solidification characteristics of a CoCr alloy. High cooling rate and high undercooling-induced rapid solidification of the alloy was achieved by impulse atomization in helium atmosphere. Two atomization experiments were carried out to generate powders of a wide size range from liquid CoCr at two different temperatures. Amorphous fraction and kinetic crystallization properties of impulse atomized powders were systematically quantified by means of differential scanning calorimetry. In addition, different but complementary characterization tools were used to analyze the powders microstructures. The fraction of amorphous phase within the investigated powders is found to be promoted by high cooling rate or smaller powder size. The critical cooling rate for amorphous phase formation, which is influenced by the oxygen content in the melt, is found to be 3 × 104 K s-1 and corresponds to a 160- µm-diameter powder atomized in helium. Hardness of the powders is found to follow a trend that is described by the Hall-Petch relation when a relatively high fraction of crystalline structures is present and decreases with the fraction of amorphous phase.

  1. Kinetics of the B1-B2 phase transition in KCl under rapid compression

    Science.gov (United States)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Park, Changyong; Kono, Yoshio; Kenney-Benson, Curtis; Rod, Eric; Shen, Guoyin

    2016-01-01

    Kinetics of the B1-B2 phase transition in KCl has been investigated under various compression rates (0.03-13.5 GPa/s) in a dynamic diamond anvil cell using time-resolved x-ray diffraction and fast imaging. Our experimental data show that the volume fraction across the transition generally gives sigmoidal curves as a function of pressure during rapid compression. Based upon classical nucleation and growth theories (Johnson-Mehl-Avrami-Kolmogorov theories), we propose a model that is applicable for studying kinetics for the compression rates studied. The fit of the experimental volume fraction as a function of pressure provides information on effective activation energy and average activation volume at a given compression rate. The resulting parameters are successfully used for interpreting several experimental observables that are compression-rate dependent, such as the transition time, grain size, and over-pressurization. The effective activation energy (Qeff) is found to decrease linearly with the logarithm of compression rate. When Qeff is applied to the Arrhenius equation, this relationship can be used to interpret the experimentally observed linear relationship between the logarithm of the transition time and logarithm of the compression rates. The decrease of Qeff with increasing compression rate results in the decrease of the nucleation rate, which is qualitatively in agreement with the observed change of the grain size with compression rate. The observed over-pressurization is also well explained by the model when an exponential relationship between the average activation volume and the compression rate is assumed.

  2. Combination of Cooling Curve and Micro-Chemical Phase Analysis of Rapidly Quenched Magnesium AM60B Alloy

    Science.gov (United States)

    Marchwica, P. C.; Gesing, A. J.; Sokolowski, J. H.; Blawert, C.; Jekl, J.; Berkmortel, R.

    Macro test samples of magnesium alloy AM60B were melted and quenched at maximum instantaneous cooling rates ranging from -5°C/s to -500°C/s and the resultant cooling curves were analyzed. Characteristic reactions on these curves corresponding to formation of individual phases were identified with the aid of literature data as well as metallographic and micro-chemical analysis. The results indicate that these phases, their size and location in the micro structure, their chemistry and their relative proportions all change in response to the increase in the cooling rate. These rapid cooling rates are typical of real industrial solidification processes such as die casting. These findings can be used to improve future computer models of casting solidification processes for magnesium and for other alloys.

  3. Assessment of changes in smile after rapid maxillary expansion

    Directory of Open Access Journals (Sweden)

    Ana Paula Morales Cobra de Carvalho

    2012-10-01

    Full Text Available INTRODUCTION: This study evaluated changes in the smile characteristics of patients with maxillary constriction submitted to rapid maxillary expansion (RME. METHODS: The sample consisted of 81 extraoral photographs of maximum smile of 27 patients with mean age of 10 years, before expansion and 3 and 6 months after fixation of the expanding screw. The photographs were analyzed on the software Cef X 2001, with achievement of the following measurements: Transverse smile area, buccal corridors, exposure of maxillary incisors, gingival exposure of maxillary incisors, smile height, upper and lower lip thickness, smile symmetry and smile arch. Statistical analysis was performed by analysis of variance (ANOVA, at a significance level of 5%. RESULTS: RME promoted statistically significant increase in the transverse smile dimension and exposure of maxillary central and lateral incisors; maintenance of right and left side smile symmetry and of the lack of parallelism between the curvature of the maxillary incisal edges and lower lip border. CONCLUSIONS: RME was beneficial for the smile esthetics with the increase of the transverse smile dimension and exposure of maxillary central and lateral incisors.INTRODUÇÃO: esse estudo avaliou as alterações das características do sorriso de pacientes com atresia maxilar submetidos à expansão rápida da maxila (ERM. MÉTODOS: a amostra consistiu de 81 fotografias extrabucais do sorriso máximo de 27 pacientes, com idade média de 10 anos, antes da expansão e aos três e seis meses após a fixação do parafuso expansor. As análises das fotografias foram realizadas por meio do programa Cef X 2001, e as seguintes medidas foram analisadas: dimensão transversal do sorriso, corredores bucais, quantidade de exposição dos incisivos superiores, exposição gengival dos incisivos superiores, altura do sorriso, espessuras dos lábios superior e inferior, simetria e arco do sorriso. As alterações no sorriso durante

  4. Comparing records to understand past rapid climate change: An INTIMATE database update

    Science.gov (United States)

    Kearney, Rebecca; Bronk Ramsey, Christopher; Staff, Richard A.; Albert, Paul G.

    2017-04-01

    Integrating multi-proxy records from ice, terrestrial and marine records enhances the understanding of the temporal and spatial variation of past rapid climatic changes globally. By handling these records on their own individual timescales and linking them through known chronological relationships (e.g. tephra, 10Be and 14C), regional comparisons can be made for these past climatic events. Furthermore, the use of time-transfer functions enables the chronological uncertainties between different archives to be quantified. The chronological database devised by the working group 1 (WG1) of INTIMATE, exclusively uses this methodology to provide a means to visualise and compare palaeoclimate records. Development of this database is ongoing, with numerous additional records being added to the database with a particular focus on European archives spanning the Late Glacial period. Here we present a new phase of data collection. Through selected cases study sites across Europe, we aim to illustrate the database as a novel tool in understanding spatial and temporal variations in rapid climatic change. Preliminary results allow questions such as time transgression and regional expressions of rapid climate change to be investigated. The development of this database will continue through additional input of raw climate proxy data, linking to other relevant databases (e.g. Fossil Pollen Database) and providing output data that can be analysed in the statistical programming language of R. A major goal of this work to is not only provide a detailed database, but allow researchers to integrate their own climate proxy data with that on the database.

  5. Heat storage system utilizing phase change materials government rights

    Science.gov (United States)

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  6. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jeong [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  7. Changes of pulp-chamber dimensions 1 year after rapid maxillary expansion.

    Science.gov (United States)

    Baratieri, Carolina; Alves, Matheus; Mattos, Cláudia Trindade; Souza, Margareth Maria Gomes de; Ruellas, Antônio Carlos de Oliveira

    2013-04-01

    The purpose of this study was to examine the effect of orthopedic forces on maxillary first molars' and maxillary central incisors' pulp chambers in children having rapid maxillary expansion as the only intervention compared with children having no orthodontic intervention by using cone-beam computed tomography images. In this prospective controlled clinical study, we evaluated 60 maxillary first molars and 60 maxillary central incisors from 30 children (18 boys, 12 girls) in the mixed dentition and during the pubertal growth period. The treated group had rapid maxillary expansion with the Haas expander, followed by 6 months of retention and 6 months of follow-up out of retention; the control group had no intervention during the study. Cone-beam computed tomography scans were taken initially and 1 year after the rapid maxillary expansion active phase. Initially, a 3-dimensional scrolling in all pulp chambers of the evaluated teeth was performed with Dolphin Imaging software (version 11.0; Dolphin Imaging & Management Solutions, Chatsworth, Calif) to describe the incidence of pulp-chamber calcifications. The dimensions of the pulp chambers of the molars and incisors were also investigated. Cross-sectional and longitudinal slices were used for each molar (coronal and axial slices) and incisor (sagittal and axial slices). The area (mm(2)) was obtained from 3 slices of each kind (6 measurements for each tooth). The results suggest that rapid maxillary expansion did not induce new pulp-chamber calcification. Also, it did not interfere in normal pulp-chamber dimension changes of the anchorage molars. The pulp chamber of the central incisors can be expected to be minimally wider 1 year after the therapy. Copyright © 2013 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Dual-energy synchrotron X ray measurements of rapid soil density and water content changes in swelling soils during infiltration

    Science.gov (United States)

    Garnier, Patricia; Angulo-Jaramillo, Rafael; DiCarlo, David A.; Bauters, Tim W. J.; Darnault, Christophe J. G.; Steenhuis, Tammo S.; Parlange, J.-Yves; Baveye, Philippe

    1998-11-01

    Understanding soil swelling is hampered by the difficulty of simultaneously measuring water content and bulk density. A number of studies have used dual-energy gamma rays to investigate soil swelling. The long counting time of this technique makes it impracticable for studying the rapid changes in moisture content and soil swelling shortly after infiltration is initiated. In this paper, we use the dual-energy synchrotron X ray to measure, for the first time, the water content and bulk density changes during the fast, initial phase of the swelling process. Ponded infiltration experiments were performed with two soils: a bentonite-sand mixture and a vertisol. Swelling curves and hydraulic diffusivity were determined. Deformation was very rapid immediately after water application and then became progressively slower. The hydraulic diffusivity decreased with time, which can partially explain the very rapid decrease in infiltration rates observed in the field.

  9. Soap Films, Phase Changes and Catastrophes.

    Science.gov (United States)

    Lovett, David

    1979-01-01

    Discusses how to produce sudden first-order and second-order changes in the configurations of soap films by using models whose dimensions are variable. Shows how to construct a two dimensional catastrophe machine. (GA)

  10. Rapid directional change degrades GPS distance measurement validity during intermittent intensity running.

    Directory of Open Access Journals (Sweden)

    Jonathan C Rawstorn

    Full Text Available Use of the Global Positioning System (GPS for quantifying athletic performance is common in many team sports. The effect of running velocity on measurement validity is well established, but the influence of rapid directional change is not well understood in team sport applications. This effect was systematically evaluated using multidirectional and curvilinear adaptations of a validated soccer simulation protocol that maintained identical velocity profiles. Team sport athletes completed 90 min trials of the Loughborough Intermittent Shuttle-running Test movement pattern on curvilinear, and multidirectional shuttle running tracks while wearing a 5 Hz (with interpolated 15 Hz output GPS device. Reference total distance (13 200 m was systematically over- and underestimated during curvilinear (2.61±0.80% and shuttle (-3.17±2.46% trials, respectively. Within-epoch measurement uncertainty dispersion was widest during the shuttle trial, particularly during the jog and run phases. Relative measurement reliability was excellent during both trials (Curvilinear r = 1.00, slope = 1.03, ICC = 1.00; Shuttle r = 0.99, slope = 0.97, ICC = 0.99. Absolute measurement reliability was superior during the curvilinear trial (Curvilinear SEM = 0 m, CV = 2.16%, LOA ± 223 m; Shuttle SEM = 119 m, CV = 2.44%, LOA ± 453 m. Rapid directional change degrades the accuracy and absolute reliability of GPS distance measurement, and caution is recommended when using GPS to quantify rapid multidirectional movement patterns.

  11. Policy options to respond to rapid climate change

    NARCIS (Netherlands)

    Swart, R.J.; Marinova, N.A.; Bakker, S.; Tilburg, van X.

    2009-01-01

    Ongoing research on climate change indicates that we cannot rule out the possibility of extreme climatic changes, beyond current IPCC scenarios. The thinking about policy responses to address these risks is still in its infancy. This study explores the possibilities for responding to extreme

  12. Identifying the Reducing Resistance to Change Phase in an Organizational Change Model

    OpenAIRE

    Daniela Bradutanu

    2012-01-01

    In this article we examine where in an organizational change process it is better to place the reducing resistance to change phase, so that employees would accept the new changes easier and not manifest too much resistance. After analyzing twelve organizational change models we have concluded that the place of the reducing resistance to change phase in an organizational change process is not the same, it being modified according to the type of change. The results of this study are helpful for...

  13. Changes in Sensory Evoked Responses Coincide with Rapid Improvement in Speech Identification Performance

    Science.gov (United States)

    Alain, Claude; Campeanu, Sandra; Tremblay, Kelly

    2010-01-01

    Perceptual learning is sometimes characterized by rapid improvements in performance within the first hour of training (fast perceptual learning), which may be accompanied by changes in sensory and/or response pathways. Here, we report rapid physiological changes in the human auditory system that coincide with learning during a 1-hour test session…

  14. PHASE CHANGE MATERIALS IN FLOOR TILES FOR THERMAL ENERGY STORAGE

    Energy Technology Data Exchange (ETDEWEB)

    Douglas C. Hittle

    2002-10-01

    Passive solar systems integrated into residential structures significantly reduce heating energy consumption. Taking advantage of latent heat storage has further increased energy savings. This is accomplished by the incorporation of phase change materials into building materials used in passive applications. Trombe walls, ceilings and floors can all be enhanced with phase change materials. Increasing the thermal storage of floor tile by the addition of encapsulated paraffin wax is the proposed topic of research. Latent heat storage of a phase change material (PCM) is obtained during a change in phase. Typical materials use the latent heat released when the material changes from a liquid to a solid. Paraffin wax and salt hydrates are examples of such materials. Other PCMs that have been recently investigated undergo a phase transition from one solid form to another. During this process they will release heat. These are known as solid-state phase change materials. All have large latent heats, which makes them ideal for passive solar applications. Easy incorporation into various building materials is must for these materials. This proposal will address the advantages and disadvantages of using these materials in floor tile. Prototype tile will be made from a mixture of quartz, binder and phase change material. The thermal and structural properties of the prototype tiles will be tested fully. It is expected that with the addition of the phase change material the structural properties will be compromised to some extent. The ratio of phase change material in the tile will have to be varied to determine the best mixture to provide significant thermal storage, while maintaining structural properties that meet the industry standards for floor tile.

  15. Review of Development Survey of Phase Change Material Models in Building Applications

    Directory of Open Access Journals (Sweden)

    Hussein J. Akeiber

    2014-01-01

    Full Text Available The application of phase change materials (PCMs in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  16. Review of development survey of phase change material models in building applications.

    Science.gov (United States)

    Akeiber, Hussein J; Wahid, Mazlan A; Hussen, Hasanen M; Mohammad, Abdulrahman Th

    2014-01-01

    The application of phase change materials (PCMs) in green buildings has been increasing rapidly. PCM applications in green buildings include several development models. This paper briefly surveys the recent research and development activities of PCM technology in building applications. Firstly, a basic description of phase change and their principles is provided; the classification and applications of PCMs are also included. Secondly, PCM models in buildings are reviewed and discussed according to the wall, roof, floor, and cooling systems. Finally, conclusions are presented based on the collected data.

  17. Rapid and widely disseminated acute phase protein response after experimental bacterial infection of pigs

    DEFF Research Database (Denmark)

    Skovgaard, Kerstin; Mortensen, Shila; Boye, Mette

    2009-01-01

    The acute phase protein response is a well-described generalized early host response to tissue injury, inflammation and infection, observed as pronounced changes in the concentrations of a number of circulating serum proteins. The biological function of this response and its interplay with other...... infection in pigs. The lung infection was established with the pig specific respiratory pathogen Actinobacillus pleuropneumoniae. Quantitative real-time PCR based expression analysis were performed on samples from liver, tracheobronchial lymph node, tonsils, spleen and on blood leukocytes, supplemented...... with measurements of interleukin-6 and selected acute phase proteins in serum. C-reactive protein and serum amyloid A were clearly induced 14-18 h after infection. Extrahepatic expression of acute phase proteins was found to be dramatically altered as a result of the lung infection with an extrahepatic acute phase...

  18. Changes in nasal volume of patients undergoing rapid maxillary expansion

    OpenAIRE

    Muniz, Renata Da Fonseca Lacerda E; Mario Cappellette Jr.; Daniela Carlini

    2008-01-01

    Os efeitos da disjunção maxilar na resistência nasal e fluxo aéreo têm sido amplamente discutidos na literatura, com controvérsias. Suas indicações esqueléticas e dentárias parecem estar bem claras. Porém, aquelas puramente rinológicas não são justificadas, porque nem sempre resultados positivos são encontrados. Este estudo teve por finalidade avaliar a repercussão da disjunção maxilar ortopédica no aspecto respiratório e rinológico dos pacientes submetidos a esse procedimento.Rapid maxillary...

  19. Rapid Single-step Formation of Liposomes by Flow Assisted Stationary Phase Interdiffusion.

    Science.gov (United States)

    Has, Chandra; Phapal, Sopan M; Sunthar, P

    2018-01-17

    Laboratory preparation of unilamellar liposomes often involves multiple steps carried out over several hours to achieve a monodisperse size distribution. Here we present a methodology, based on a recently introduced lipid self-assembly principle-stationary phase interdiffusion (SPI)-to prepare large unilamellar vesicles (LUVs) of a monodisperse population in a short period of about 10min. The stationary interface between a lipid-ethanol phase and an aqueous phase is created by a density difference induced convective flow in a horizontal capillary. The average size of the liposomes, as expected from the SPI principle, is modulated only by the temperature and the type of lipids. Lipid concentration, ethanol content, pH of the aqueous phase, and the time duration of the experiment have little influence on the mean diameter of the vesicles. This simple methodology can be easily carried out with a capillary and a micro-needled syringe, and provides a rapid production tool for researchers requiring reproducible liposome suspensions. Refined natural lipids, based on soy and egg lecithin mixtures, yield LUVs in the range 100-200 nm, suitable for drug delivery applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Rapid response to climate change in a marginal sea.

    Science.gov (United States)

    Schroeder, K; Chiggiato, J; Josey, S A; Borghini, M; Aracri, S; Sparnocchia, S

    2017-06-22

    The Mediterranean Sea is a mid-latitude marginal sea, particularly responsive to climate change as reported by recent studies. The Sicily Channel is a choke point separating the sea in two main basins, the Eastern Mediterranean Sea and the Western Mediterranean Sea. Here, we report and analyse a long-term record (1993-2016) of the thermohaline properties of the Intermediate Water that crosses the Sicily Channel, showing increasing temperature and salinity trends much stronger than those observed at intermediate depths in the global ocean. We investigate the causes of the observed trends and in particular determine the role of a changing climate over the Eastern Mediterranean, where the Intermediate Water is formed. The long-term Sicily record reveals how fast the response to climate change can be in a marginal sea like the Mediterranean Sea compared to the global ocean, and demonstrates the essential role of long time series in the ocean.

  1. The African Climate Change Fellowship Program Phase III | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The African Climate Change Fellowship Program Phase III. Climate change and climate variability are significantly impeding development in Africa. The Economic Commission for Africa argues that scientists and policymakers must learn to better manage climate risks and to integrate climate change considerations into ...

  2. Rapid millennial-scale vegetation changes in the tropical Andes

    NARCIS (Netherlands)

    Urrego, D.H.; Hooghiemstra, H.; Rama-Corredor, O.; Martrat, B.; Grimalt, J.O.; Thompson, L.

    2015-01-01

    We compare eight pollen records reflecting climatic and environmental change from the tropical Andes. Our analysis focuses on the last 50 ka, with particular emphasis on the Pleistocene to Holocene transition. We explore ecological grouping and downcore ordination results as two approaches for

  3. Planetary health: protecting human health on a rapidly changing planet.

    Science.gov (United States)

    Myers, Samuel S

    2018-12-23

    The impact of human activities on our planet's natural systems has been intensifying rapidly in the past several decades, leading to disruption and transformation of most natural systems. These disruptions in the atmosphere, oceans, and across the terrestrial land surface are not only driving species to extinction, they pose serious threats to human health and wellbeing. Characterising and addressing these threats requires a paradigm shift. In a lecture delivered to the Academy of Medical Sciences on Nov 13, 2017, I describe the scale of human impacts on natural systems and the extensive associated health effects across nearly every dimension of human health. I highlight several overarching themes that emerge from planetary health and suggest advances in the way we train, reward, promote, and fund the generation of health scientists who will be tasked with breaking out of their disciplinary silos to address this urgent constellation of health threats. I propose that protecting the health of future generations requires taking better care of Earth's natural systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Alveolar bone changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Akin, Mehmet; Baka, Zeliha Muge; Ileri, Zehra; Basciftci, Faruk Ayhan

    2015-09-01

    To quantitatively evaluate the effects of asymmetric rapid maxillary expansion (ARME) on cortical bone thickness and buccal alveolar bone height (BABH), and to determine the formation of dehiscence and fenestration in the alveolar bone surrounding the posterior teeth, using cone-beam computed tomography (CBCT). The CBCT records of 23 patients with true unilateral posterior skeletal crossbite (10 boys, 14.06 ± 1.08 years old, and 13 girls, 13.64 ± 1.32 years old) who had undergone ARME were selected from our clinic archives. The bonded acrylic ARME appliance, including an occlusal stopper, was used on all patients. CBCT records had been taken before ARME (T1) and after the 3-month retention period (T2). Axial slices of the CBCT images at 3 vertical levels were used to evaluate the buccal and palatal aspects of the canines, first and second premolars, and first molars. Paired samples and independent sample t-tests were used for statistical comparison. The results suggest that buccal cortical bone thickness of the affected side was significantly more affected by the expansion than was the unaffected side (P ARME significantly reduced the BABH of the canines (P ARME also increased the incidence of dehiscence and fenestration on the affected side. ARME may quantitatively decrease buccal cortical bone thickness and height on the affected side.

  5. Understanding Phase-Change Memory Alloys from a Chemical Perspective

    National Research Council Canada - National Science Library

    Kolobov, A V; Fons, P; Tominaga, J

    2015-01-01

    Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique...

  6. Design and Construction of an Automatic Three-Phase Change ...

    African Journals Online (AJOL)

    This paper presents the design and construction of an automatic three-phase change over voltage regulator capable of maintaining constant output voltage of 220Vwith current range of 5-12A. Its output power rating is about 3200W. The input is capable of searching and selecting a live phase from the mains voltage source ...

  7. Shape change as entropic phase transition: A study using Jarzynski ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 124; Issue 1. Shape change as entropic phase transition: A study using ... Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/jcsc/124/01/0021-0028. Keywords. Fick-Jacobs equation; entropic potental; Jarzynski equality; phase transition.

  8. Sb-Te Phase-change Materials under Nanoscale Confinement

    Science.gov (United States)

    Ihalawela, Chandrasiri A.

    Size, speed and efficiency are the major challenges of next generation nonvolatile memory (NVM), and phase-change memory (PCM) has captured a great attention due to its promising features. The key for PCM is rapid and reversible switching between amorphous and crystalline phases with optical or electrical excitation. The structural transition is associated with significant contrast in material properties which can be utilized in optical (CD, DVD, BD) and electronic (PCRAM) memory applications. Importantly, both the functionality and the success of PCM technology significantly depend on the core material and its properties. So investigating PC materials is crucial for the development of PCM technology to realized enhanced solutions. In regards to PC materials, Sb-Te binary plays a significant role as a basis to the well-known Ge-Sb-Te system. Unlike the conventional deposition methods (sputtering, evaporation), electrochemical deposition method is used due to its multiple advantages, such as conformality, via filling capability, etc. First, the controllable synthesis of Sb-Te thin films was studied for a wide range of compositions using this novel deposition method. Secondly, the solid electrolytic nature of stoichiometric Sb2Te3 was studied with respect to precious metals. With the understanding of 2D thin film synthesis, Sb-Te 1D nanowires (18 - 220 nm) were synthesized using templated electrodeposition, where nanoporous anodic aluminum oxide (AAO) was used as a template for the growth of nanowires. In order to gain the controllability over the deposition in high aspect ratio structures, growth mechanisms of both the thin films and nanowires were investigated. Systematic understanding gained thorough previous studies helped to formulate the ultimate goal of this dissertation. In this dissertation, the main objective is to understand the size effect of PC materials on their phase transition properties. The reduction of effective memory cell size in conjunction with

  9. Thermal Performance of Microencapsulated Phase Change Material Survey

    National Research Council Canada - National Science Library

    Alvarado, Jorge L; Jones, Barclay G; Marsh, Charles P; Kessler, David A; Sohn, Chang W; Feickert, Carl A; Phetteplace, Gary E; Crowley, Eric D; Franks, Ryan J; Carlson, Thomas A

    2008-01-01

    ...). Because PCMs have greater thermal capacity than the carrier fluid, owing to their latent heat of phase change, they can increase the amount of heat transfer at equivalent volumetric flow in a heat...

  10. Aging mechanisms in amorphous phase-change materials

    National Research Council Canada - National Science Library

    Raty, Jean Yves; Zhang, Wei; Luckas, Jennifer; Chen, Chao; Mazzarello, Riccardo; Bichara, Christophe; Wuttig, Matthias

    2015-01-01

    Aging is a ubiquitous phenomenon in glasses. In the case of phase-change materials, it leads to a drift in the electrical resistance, which hinders the development of ultrahigh density storage devices...

  11. Phase Change Material Thermal Power Generator

    Science.gov (United States)

    Jones, Jack A. (Inventor); Chao, Yi (Inventor); Valdez, Thomas I. (Inventor)

    2014-01-01

    An energy producing device, for example a submersible vehicle for descending or ascending to different depths within water or ocean, is disclosed. The vehicle comprises a temperature-responsive material to which a hydraulic fluid is associated. A pressurized storage compartment stores the fluid as soon as the temperature-responsive material changes density. The storage compartment is connected with a hydraulic motor, and a valve allows fluid passage from the storage compartment to the hydraulic motor. An energy storage component, e.g. a battery, is connected with the hydraulic motor and is charged by the hydraulic motor when the hydraulic fluid passes through the hydraulic motor. Upon passage in the hydraulic motor, the fluid is stored in a further storage compartment and is then sent back to the area of the temperature-responsive material.

  12. Dynamic changes at the rapidly advancing Yahtse Glacier, Alaska

    Science.gov (United States)

    Durkin, William J.; Bartholomaus, Timothy C.; Willis, Michael J.; Pritchard, Matthew E.

    2017-03-01

    Since 1990, Yahtse Glacier in southern Alaska has advanced at an average rate of ˜100 m/yr despite of a negative mass balance, widespread thinning in its accumulation area, and a low accumulation-area ratio. To better understand the interannual and seasonal changes at Yahtse and the processes driving these changes, we construct velocity and ice surface elevation time series spanning the years 1985-2014 and 2000-2014, respectively, using satellite optical and synthetic aperture radar (SAR) observations. In terms of seasonal changes, we find contrasting dynamics above and below a steep (up to 18% slope) icefall located approximately 6 km from the terminus. Above the icefall, speeds peak in May and reach minima in October synchronous with the development of a calving embayment at the terminus. This may be caused by an efficient, channelized subglacial drainage system that focuses subglacial discharge into a plume, resulting in a local increase in calving and submarine melting. However, velocities near the terminus are fastest in the winter, following terminus retreat, possibly off of a terminal moraine resulting in decreased backstress. Between 1996-2014 the terminus decelerated by ˜40% at an average rate of ˜0.4 m/day/yr , transitioned from tensile to compressive longitudinal strain rates, and dynamically thickened at rates of 1-6 m/yr , which we hypothesize is in response to the development and advance of a terminal moraine. The described interannual changes decay significantly upstream of the icefall, indicating that the icefall may inhibit the upstream transmission of stress perturbations. We suggest that diminished stress transmission across the icefall could allow Yahtse’s upper basin to remain in a state of mass drawdown despite of moraine-enabled terminus advance. Our work highlights the importance of glacier geometry in controlling tidewater glacier re-advance, particularly in a climate favoring increasing equilibrium line altitudes.

  13. Rapid changes in the gut microbiome during human evolution

    OpenAIRE

    Moeller, Andrew H.; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V.; Pusey, Anne E.; Peeters, Martine; Hahn, Beatrice H.; Ochman, Howard

    2014-01-01

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversificatio...

  14. Rapid isotopic changes in groundwater, upper Rio Guanajuato catchment, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Cortes, Alejandra; Durazo, Jaime [Departamento de recursos naturales, Instituto de Geofisica, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Kralisch, Stefanie [Posgrado en Ciencias de la Tierra, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2007-01-15

    Significant changes in the isotopic composition of groundwater in the upper catchment of Rio Guanajuato, Mexico, were detected in two independent sets of samplers for 3 % of the 1600 high-production wells in the area. Sampling was done in December 1998 (53 samples), and in July - August 2003 (41 samples). Average deuterium concentration did not change between 1998 and 2003 but the average oxygen-18 concentration suggested a generalized dilution from deep water from infiltrated local precipitation. This regional change occurred within 56 months, indicating a highly dynamic hydrogeologic system. Fast replenishment of aquifer storage, or non sustainable over-pumping of old aquifer reserves, are possible explanations. [Spanish] Cambios isotopicos significativos en el agua subterranea de la cuenca alta del Rio Guanajuato, Mexico, fueron detectados en dos conjuntos independientes de muestras que incluyeron al 3% de los 1600 pozos de alta produccion del area. Los muestreos se realizaron en diciembre de 1998 (53 muestras) y en julio - agosto del 2003 (41 muestras). La concentracion promedio del deuterio no cambio entre 1998 y 2003, pero la del oxigeno-18 sugiere una dilucion generalizada del agua profunda por infiltracion de la precipitacion local. Este cambio regional ocurrio dentro de 56 meses, indicando un sistema hidrogeologico muy dinamico. La rapida recuperacion del almacenamiento acuifero o el bombeo insostenible de reservas acuiferas viejas son explicaciones posibles.

  15. Modelling Phase Change in a 3D Thermal Transient Analysis

    OpenAIRE

    Haque, EEU; Hampson, PR

    2016-01-01

    A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine) is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC) results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer) and adjacent (metal) s...

  16. Rapid changes in gene expression direct rapid shifts in intestinal form and function in the Burmese python after feeding.

    Science.gov (United States)

    Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A

    2015-05-01

    Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.

  17. Phase Change Material Systems for High Temperature Heat Storage.

    Science.gov (United States)

    Perraudin, David Y S; Binder, Selmar R; Rezaei, Ehsan; Ortonaa, Alberto; Haussener, Sophia

    2015-01-01

    Efficient, cost effective, and stable high-temperature heat storage material systems are important in applications such as high-temperature industrial processes (metal processing, cement and glass manufacturing, etc.), or electricity storage using advanced adiabatic compressed air energy storage. Incorporating phase change media into heat storage systems provides an advantage of storing and releasing heat at nearly constant temperature, allowing steady and optimized operation of the downstream processes. The choice of, and compatibility of materials and encapsulation for the phase change section is crucial, as these must guarantee good and stable performance and long lifetime at low cost. Detailed knowledge of the material properties and stability, and the coupled heat transfer, phase change, and fluid flow are required to allow for performance and lifetime predictions. We present coupled experimental-numerical techniques allowing prediction of the long-term performance of a phase change material-based high-temperature heat storage system. The experimental investigations focus on determination of material properties (melting temperature, heat of fusion, etc.) and phase change material and encapsulation interaction (stability, interface reactions, etc.). The computational investigations focus on an understanding of the multi-mode heat transfer, fluid flow, and phase change processes in order to design the material system for enhanced performance. The importance of both the experimental and numerical approaches is highlighted and we give an example of how both approaches can be complementarily used for the investigation of long-term performance.

  18. Recent Advances on Neuromorphic Systems Using Phase-Change Materials

    Science.gov (United States)

    Wang, Lei; Lu, Shu-Ren; Wen, Jing

    2017-05-01

    Realization of brain-like computer has always been human's ultimate dream. Today, the possibility of having this dream come true has been significantly boosted due to the advent of several emerging non-volatile memory devices. Within these innovative technologies, phase-change memory device has been commonly regarded as the most promising candidate to imitate the biological brain, owing to its excellent scalability, fast switching speed, and low energy consumption. In this context, a detailed review concerning the physical principles of the neuromorphic circuit using phase-change materials as well as a comprehensive introduction of the currently available phase-change neuromorphic prototypes becomes imperative for scientists to continuously progress the technology of artificial neural networks. In this paper, we first present the biological mechanism of human brain, followed by a brief discussion about physical properties of phase-change materials that recently receive a widespread application on non-volatile memory field. We then survey recent research on different types of neuromorphic circuits using phase-change materials in terms of their respective geometrical architecture and physical schemes to reproduce the biological events of human brain, in particular for spike-time-dependent plasticity. The relevant virtues and limitations of these devices are also evaluated. Finally, the future prospect of the neuromorphic circuit based on phase-change technologies is envisioned.

  19. Superlattice-like structure for phase change optical recording

    Science.gov (United States)

    Chong, T. C.; Shi, L. P.; Qiang, W.; Tan, P. K.; Miao, X. S.; Hu, X.

    2002-04-01

    In order to increase the crystallization speed and data transfer rate (DTR), a superlattice-like structure (SLL) was applied to the recording layer of phase change optical disks. Unlike the conventional phase change layer, the recording layer with the SLL structure consisted of alternating thin layers of two different phase change materials, i.e., GeTe and Sb2Te3. Although neither GeTe nor Sb2Te3 could be used as a phase change layer material for practical applications, present experimental results revealed that the phase change optical disk with the SLL structure demonstrated an excellent recording property that could meet practical recording requirements. X-ray photoelectron spectroscopy was employed to confirm that the SLL structure could be preserved after many times of melting and quenching. Dynamic properties of the optical recording disk with the SLL structure were investigated with a 1 T pulse duration of 8 ns and a constant linear velocity of 19 m/s. A clear eye pattern was observed. The carrier-to-noise ratio was about 58 dB and a DTR of 47 Mbit/s was achieved. The DTR would be as high as 140 Mbit/s if the blue light is used. It has been proven that the SLL structure is a useful means to increase the DTR of phase change optical recording disks.

  20. Simulation of rapid ecological change in Lake Ontario

    Science.gov (United States)

    McKenna, James E.; Chalupnicki, Marc; Dittman, Dawn E.; Watkins, James M.

    2017-01-01

    Lower trophic level processes are integral to proper functioning of large aquatic ecosystems and have been disturbed in Lake Ontario by various stressors including exotic species. The invasion of benthic habitats by dreissenid mussels has led to systemic changes and native faunal declines. Size-dependent physiological rates, spatial differences and connectivity, competition, and differential population dynamics among invertebrate groups contributed to the change and system complexity. We developed a spatially explicit, individual-based mechanistic model of the benthic ecosystem in Lake Ontario, with coupling to the pelagic system, to examine ecosystem dynamics and effects of dreissenid mussel invasion and native fauna losses. Benthic organisms were represented by functional groups; filter-feeders (i.e., dreissenid mussels), surface deposit-feeders (e.g., native amphipod Diporeia spp.), and deposit-feeders (e.g., oligochaetes and other burrowers). The model was stable, represented ecological structure and function effectively, and reproduced observed effects of the mussel invasion. Two hypotheses for causes of Diporeia loss, competition or disease-like mortality, were tested. Simple competition for food did not explain observed declines in native surface deposit-feeders during the filter-feeder invasion. However, the elevated mortality scenario supports a disease-like cause for loss of the native amphipod, with population changes in various lake areas and altered benthic biomass transfers. Stabilization of mussel populations and possible recovery of the native, surface-deposit feeding amphipod were predicted. Although further research is required on forcing functions, model parameters, and natural conditions, the model provides a valuable tool to help managers understand the benthic system and plan for response to future disruptions.

  1. Rapid analysis of constituents of Radix Cyathulae using hydrophilic interaction-reverse phase LC-MS.

    Science.gov (United States)

    Ren, Mei-Ting; Li, Hui-Jun; Sheng, Long-Sheng; Liu, Peng; Li, Ping

    2009-11-01

    A hydrophilic interaction chromatography (HILIC) and reverse-phase liquid chromatography (RPLC) coupled with electrospray TOF MS method was developed for the analysis and characterization of constituents in the radix of Cyathula officinalis Kuan. Separation parameters of HILIC such as buffer pH, mobile phase strength, and organic modifier were evaluated. Fructose, glucose, and sucrose were identified by HILIC-ESI/TOF MS. Reverse-phase liquid chromatography-ESI/TOF MS were applied for quick and sensitive identification of major saponins in Cyathula officinalis. In-source collision-induced dissociation has been performed to elucidate the fragmentation pathways of oleanane-, hederagenin-, and gypsogmin-type saponins. Twelve saponins were characterized in this plant for the first time, and four of them were presumed to be new compounds. In addition, one phytoecdysteroid (cyasterone) and one coumarin (6,7-dimethoxycoumarin) were detected at the same time. The present method was capable of rapid characterizing and providing structure information of constituents from herbal drugs.

  2. Void formation induced electrical switching in phase-change nanowires.

    Science.gov (United States)

    Meister, Stefan; Schoen, David T; Topinka, Mark A; Minor, Andrew M; Cui, Yi

    2008-12-01

    Solid-state structural transformation coupled with an electronic property change is an important mechanism for nonvolatile information storage technologies, such as phase-change memories. Here we exploit phase-change GeTe single-nanowire devices combined with ex situ and in situ transmission electron microscopy to correlate directly nanoscale structural transformations with electrical switching and discover surprising results. Instead of crystalline-amorphous transformation, the dominant switching mechanism during multiple cycling appears to be the opening and closing of voids in the nanowires due to material migration, which offers a new mechanism for memory. During switching, composition change and the formation of banded structural defects are observed in addition to the expected crystal-amorphous transformation. Our method and results are important to phase-change memories specifically, but also to any device whose operation relies on a small scale structural transformation.

  3. Managing marine disease emergencies in an era of rapid change.

    Science.gov (United States)

    Groner, Maya L; Maynard, Jeffrey; Breyta, Rachel; Carnegie, Ryan B; Dobson, Andy; Friedman, Carolyn S; Froelich, Brett; Garren, Melissa; Gulland, Frances M D; Heron, Scott F; Noble, Rachel T; Revie, Crawford W; Shields, Jeffrey D; Vanderstichel, Raphaël; Weil, Ernesto; Wyllie-Echeverria, Sandy; Harvell, C Drew

    2016-03-05

    Infectious marine diseases can decimate populations and are increasing among some taxa due to global change and our increasing reliance on marine environments. Marine diseases become emergencies when significant ecological, economic or social impacts occur. We can prepare for and manage these emergencies through improved surveillance, and the development and iterative refinement of approaches to mitigate disease and its impacts. Improving surveillance requires fast, accurate diagnoses, forecasting disease risk and real-time monitoring of disease-promoting environmental conditions. Diversifying impact mitigation involves increasing host resilience to disease, reducing pathogen abundance and managing environmental factors that facilitate disease. Disease surveillance and mitigation can be adaptive if informed by research advances and catalysed by communication among observers, researchers and decision-makers using information-sharing platforms. Recent increases in the awareness of the threats posed by marine diseases may lead to policy frameworks that facilitate the responses and management that marine disease emergencies require. © 2016 The Author(s).

  4. Rapid adaptive responses to climate change in corals

    KAUST Repository

    Torda, Gergely

    2017-09-01

    Pivotal to projecting the fate of coral reefs is the capacity of reef-building corals to acclimatize and adapt to climate change. Transgenerational plasticity may enable some marine organisms to acclimatize over several generations and it has been hypothesized that epigenetic processes and microbial associations might facilitate adaptive responses. However, current evidence is equivocal and understanding of the underlying processes is limited. Here, we discuss prospects for observing transgenerational plasticity in corals and the mechanisms that could enable adaptive plasticity in the coral holobiont, including the potential role of epigenetics and coral-associated microbes. Well-designed and strictly controlled experiments are needed to distinguish transgenerational plasticity from other forms of plasticity, and to elucidate the underlying mechanisms and their relative importance compared with genetic adaptation.

  5. Rapid changes in the gut microbiome during human evolution.

    Science.gov (United States)

    Moeller, Andrew H; Li, Yingying; Mpoudi Ngole, Eitel; Ahuka-Mundeke, Steve; Lonsdorf, Elizabeth V; Pusey, Anne E; Peeters, Martine; Hahn, Beatrice H; Ochman, Howard

    2014-11-18

    Humans are ecosystems containing trillions of microorganisms, but the evolutionary history of this microbiome is obscured by a lack of knowledge about microbiomes of African apes. We sequenced the gut communities of hundreds of chimpanzees, bonobos, and gorillas and developed a phylogenetic approach to reconstruct how present-day human microbiomes have diverged from those of ancestral populations. Compositional change in the microbiome was slow and clock-like during African ape diversification, but human microbiomes have deviated from the ancestral state at an accelerated rate. Relative to the microbiomes of wild apes, human microbiomes have lost ancestral microbial diversity while becoming specialized for animal-based diets. Individual wild apes cultivate more phyla, classes, orders, families, genera, and species of bacteria than do individual humans across a range of societies. These results indicate that humanity has experienced a depletion of the gut flora since diverging from Pan.

  6. Complex interactions in Lake Michigan’s rapidly changing ecosystem

    Science.gov (United States)

    Vanderploeg, Henry A.; Bunnell, David B.; Carrick, Hunter J.; Hook, Tomas O.

    2015-01-01

    For over 30 years, Lake Michigan’s food web has been in a constant state of transition from reductions in nutrient loading and proliferation of invasive species at multiple trophic levels. In particular, there has been concern about impacts from the invasive predatory cercopagids (Bythotrephes longimanus and Cercopagis pengoi) and expanding dreissenid mussel and round goby populations. This special issue brings together papers that explore the status of the Lake Michigan food web and the factors responsible for these changes, and suggests research paths that must be taken for understanding and predicting system behavior. This introductory paper describes the special issue origin, presents an overview of the papers, and draws overarching conclusions from the papers.

  7. Structural Changes of PVDF Membranes by Phase Separation Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Semin; Kim, Sung Soo [Kyung Hee University, Yongin (Korea, Republic of)

    2016-02-15

    Thermally induced phase separation (TIPS) and nonsolvent induced phase separation (NIPS) were simultaneously induced for the preparation of flat PVDF membranes. N-methyl-2-pyrrolidone (NMP) was used as a solvent and dibutyl-phthlate (DBP) was used as a diluent for PVDF. When PVDF was melt blended with NMP and DBP, crystallization temperature was lowered for TIPS and unstable region was expanded for NIPS. Ratio of solvent to diluent changed the phase separation mechanism to obtain the various membrane structures. Contact mode of dope solution with nonsolvent determined the dominant phase separation behavior. Since heat transfer rate was greater than mass transfer rate, surface structure was formed by NIPS and inner structure was by TIPS. Quenching temperature of dope solution also affected the phase separation mechanism and phase separation rate to result in the variation of structure.

  8. Lattice-Boltzmann-based two-phase thermal model for simulating phase change

    NARCIS (Netherlands)

    Kamali, M.R.; Gillissen, J.J.J.; Van den Akker, H.E.A.; Sundaresan, S.

    2013-01-01

    A lattice Boltzmann (LB) method is presented for solving the energy conservation equation in two phases when the phase change effects are included in the model. This approach employs multiple distribution functions, one for a pseudotemperature scalar variable and the rest for the various species. A

  9. Rapid maxillary expansion treatment could produce long-term dental arch changes

    NARCIS (Netherlands)

    Ren, Yijin

    2005-01-01

    : Data Sources: Medline, Medline In-Process, LILACS (Latin American and Caribbean Health Sciences Literature), PUBMED, Embase, Web of Science and the Cochrane Library were searched. Search terms were rapid palatal expansion or rapid maxillary expansion (RME) and tooth or dental changes. Reference

  10. Coral Reefs Under Rapid Climate Change and Ocean Acidification

    Science.gov (United States)

    Hoegh-Guldberg, O.; Mumby, P. J.; Hooten, A. J.; Steneck, R. S.; Greenfield, P.; Gomez, E.; Harvell, C. D.; Sale, P. F.; Edwards, A. J.; Caldeira, K.; Knowlton, N.; Eakin, C. M.; Iglesias-Prieto, R.; Muthiga, N.; Bradbury, R. H.; Dubi, A.; Hatziolos, M. E.

    2007-12-01

    Atmospheric carbon dioxide concentration is expected to exceed 500 parts per million and global temperatures to rise by at least 2°C by 2050 to 2100, values that significantly exceed those of at least the past 420,000 years during which most extant marine organisms evolved. Under conditions expected in the 21st century, global warming and ocean acidification will compromise carbonate accretion, with corals becoming increasingly rare on reef systems. The result will be less diverse reef communities and carbonate reef structures that fail to be maintained. Climate change also exacerbates local stresses from declining water quality and overexploitation of key species, driving reefs increasingly toward the tipping point for functional collapse. This review presents future scenarios for coral reefs that predict increasingly serious consequences for reef-associated fisheries, tourism, coastal protection, and people. As the International Year of the Reef 2008 begins, scaled-up management intervention and decisive action on global emissions are required if the loss of coral-dominated ecosystems is to be avoided.

  11. Rapid response to changing environments during biological invasions: DNA methylation perspectives.

    Science.gov (United States)

    Huang, Xuena; Li, Shiguo; Ni, Ping; Gao, Yangchun; Jiang, Bei; Zhou, Zunchun; Zhan, Aibin

    2017-12-01

    Dissecting complex interactions between species and their environments has long been a research hot spot in the fields of ecology and evolutionary biology. The well-recognized Darwinian evolution has well-explained long-term adaptation scenarios; however, "rapid" processes of biological responses to environmental changes remain largely unexplored, particularly molecular mechanisms such as DNA methylation that have recently been proposed to play crucial roles in rapid environmental adaptation. Invasive species, which have capacities to successfully survive rapidly changing environments during biological invasions, provide great opportunities to study molecular mechanisms of rapid environmental adaptation. Here, we used the methylation-sensitive amplified polymorphism (MSAP) technique in an invasive model ascidian, Ciona savignyi, to investigate how species interact with rapidly changing environments at the whole-genome level. We detected quite rapid DNA methylation response: significant changes of DNA methylation frequency and epigenetic differentiation between treatment and control groups occurred only after 1 hr of high-temperature exposure or after 3 hr of low-salinity challenge. In addition, we detected time-dependent hemimethylation changes and increased intragroup epigenetic divergence induced by environmental stresses. Interestingly, we found evidence of DNA methylation resilience, as most stress-induced DNA methylation variation maintained shortly (~48 hr) and quickly returned back to the control levels. Our findings clearly showed that invasive species could rapidly respond to acute environmental changes through DNA methylation modifications, and rapid environmental changes left significant epigenetic signatures at the whole-genome level. All these results provide fundamental background to deeply investigate the contribution of DNA methylation mechanisms to rapid contemporary environmental adaptation. © 2017 John Wiley & Sons Ltd.

  12. miRNA control of vegetative phase change in trees.

    Science.gov (United States)

    Wang, Jia-Wei; Park, Mee Yeon; Wang, Ling-Jian; Koo, Yeonjong; Chen, Xiao-Ya; Weigel, Detlef; Poethig, R Scott

    2011-02-01

    After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays), vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima), as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  13. miRNA control of vegetative phase change in trees.

    Directory of Open Access Journals (Sweden)

    Jia-Wei Wang

    2011-02-01

    Full Text Available After germination, plants enter juvenile vegetative phase and then transition to an adult vegetative phase before producing reproductive structures. The character and timing of the juvenile-to-adult transition vary widely between species. In annual plants, this transition occurs soon after germination and usually involves relatively minor morphological changes, whereas in trees and other perennial woody plants it occurs after months or years and can involve major changes in shoot architecture. Whether this transition is controlled by the same mechanism in annual and perennial plants is unknown. In the annual forb Arabidopsis thaliana and in maize (Zea mays, vegetative phase change is controlled by the sequential activity of microRNAs miR156 and miR172. miR156 is highly abundant in seedlings and decreases during the juvenile-to-adult transition, while miR172 has an opposite expression pattern. We observed similar changes in the expression of these genes in woody species with highly differentiated, well-characterized juvenile and adult phases (Acacia confusa, Acacia colei, Eucalyptus globulus, Hedera helix, Quercus acutissima, as well as in the tree Populus x canadensis, where vegetative phase change is marked by relatively minor changes in leaf morphology and internode length. Overexpression of miR156 in transgenic P. x canadensis reduced the expression of miR156-targeted SPL genes and miR172, and it drastically prolonged the juvenile phase. Our results indicate that miR156 is an evolutionarily conserved regulator of vegetative phase change in both annual herbaceous plants and perennial trees.

  14. Phase change materials and the perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  15. Phase Change Materials and the perception of wetness.

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kappers, A.M.L.; Daanen, H.A.M.

    2012-01-01

    Phase change materials (PCMs) are increasingly incorporated in textiles in order to serve as a thermal buffer when humans change from a hot to a cold environment and the reverse. Due to the absence of wetness sensors in the skin, cooling of the skin may be perceived as a sensation of wetness instead

  16. A novel method for ATLAS FSI alignment based on rapid, direct phase monitoring

    CERN Document Server

    Gibson, S M; The ATLAS collaboration; Horton, K; Lewis, A; Liang, Z; Livermore, S; Mattravers, C; Nickerson, R B

    2010-01-01

    Frequency Scanning Interferometry is a precise, multiple distance measurement technique, originally developed for ATLAS, which is suited to a variety of applications in the survey and alignment of future accelerators and particle detectors. The ATLAS inner detector is instrumented with an automated FSI alignment system, capable of simultaneously measuring hundreds of interferometers within the operational particle tracker. The alignment system began data taking in 2008 and we present the latest results from the on-detector system during LHC running. A new method has been developed based on rapid, direct monitoring of the interferometer phase, which allows the measurement of short term motions with improved precision, at a fraction of the wavelength of light (typically sensitive to < 50 nm). We outline the theory behind this novel technique and demonstrate precise measurements from ATLAS, which reveal interesting micron-level movements of the inner detector, correlated with thermal cycles and magnetic f...

  17. Rapid experimental SAD phasing and hot-spot identification with halogenated fragments

    Directory of Open Access Journals (Sweden)

    Joseph D. Bauman

    2016-01-01

    Full Text Available Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT. The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites for in silico screening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K by single-wavelength anomalous dispersion (SAD from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.

  18. Adversary phase change detection using SOMs and text data.

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2010-05-01

    In this work, we developed a self-organizing map (SOM) technique for using web-based text analysis to forecast when a group is undergoing a phase change. By 'phase change', we mean that an organization has fundamentally shifted attitudes or behaviors. For instance, when ice melts into water, the characteristics of the substance change. A formerly peaceful group may suddenly adopt violence, or a violent organization may unexpectedly agree to a ceasefire. SOM techniques were used to analyze text obtained from organization postings on the world-wide web. Results suggest it may be possible to forecast phase changes, and determine if an example of writing can be attributed to a group of interest.

  19. Multiplex Solid-Phase PCR for Rapid Detection and Identification of Salmonella spp. at Sub-species

    DEFF Research Database (Denmark)

    Cao, Cuong; Høgberg, Jonas; Wolff, Anders

    -PCR gel electrophoresis. The method will be useful for development of point-of-care devices for rapid detection and identification of Salmonella spp. A solid-phase PCR for rapid detection and identification of S. enteritidis, S. typhimurium and S. dublin is developed. The method offers advantages......This study presents a solid-phase PCR (SP-PCR) for rapid detection, identification, and sub-typing of various Salmonella species, the major food-borne cause of salmonellosis. The target DNA is firstly amplified with PCR primers (one primer is labeled with fluorophores) in the liquid phase...... by the liquid phase primer thus generating new templates for the SP-PCR. After the reaction, PCR products labeled with fluorophores remain attached to the substrate and can be visualized directly by fluorescence readout devices. Using this method, S. enteritidis, S. typhimurium and S. dublin can be detected...

  20. Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics.

    Science.gov (United States)

    Rogers, Stephen M; Cullen, Darron A; Anstey, Michael L; Burrows, Malcolm; Despland, Emma; Dodgson, Tim; Matheson, Tom; Ott, Swidbert R; Stettin, Katja; Sword, Gregory A; Simpson, Stephen J

    2014-06-01

    Desert Locusts can change reversibly between solitarious and gregarious phases, which differ considerably in behaviour, morphology and physiology. The two phases show many behavioural differences including both overall levels of activity and the degree to which they are attracted or repulsed by conspecifics. Solitarious locusts perform infrequent bouts of locomotion characterised by a slow walking pace, groom infrequently and actively avoid other locusts. Gregarious locusts are highly active with a rapid walking pace, groom frequently and are attracted to conspecifics forming cohesive migratory bands as nymphs and/or flying swarms as adults. The sole factor driving the onset of gregarization is the presence of conspecifics. In several previous studies concerned with the mechanism underlying this transformation we have used an aggregate measure of behavioural phase state, Pgreg, derived from logistic regression analysis, which combines and weights several behavioural variables to characterise solitarious and gregarious behaviour. Using this approach we have analysed the time course of behavioural change, the stimuli that induce gregarization and the key role of serotonin in mediating the transformation. Following a recent critique that suggested that using Pgreg may confound changes in general activity with genuine gregarization we have performed a meta-analysis examining the time course of change in the individual behaviours that we use to generate Pgreg. We show that the forced crowding of solitarious locusts, tactile stimulation of the hind femora, and the short-term application of serotonin each induce concerted changes in not only locomotion-related variables but also grooming frequency and attraction to other locusts towards those characteristic of long-term gregarious locusts. This extensive meta-analysis supports and extends our previous conclusions that solitarious locusts undergo a rapid behavioural gregarization upon receiving appropriate stimulation for

  1. Rapid behavioural gregarization in the desert locust, Schistocerca gregaria entails synchronous changes in both activity and attraction to conspecifics

    Science.gov (United States)

    Rogers, Stephen M.; Cullen, Darron A.; Anstey, Michael L.; Burrows, Malcolm; Despland, Emma; Dodgson, Tim; Matheson, Tom; Ott, Swidbert R.; Stettin, Katja; Sword, Gregory A.; Simpson, Stephen J.

    2014-01-01

    Desert Locusts can change reversibly between solitarious and gregarious phases, which differ considerably in behaviour, morphology and physiology. The two phases show many behavioural differences including both overall levels of activity and the degree to which they are attracted or repulsed by conspecifics. Solitarious locusts perform infrequent bouts of locomotion characterised by a slow walking pace, groom infrequently and actively avoid other locusts. Gregarious locusts are highly active with a rapid walking pace, groom frequently and are attracted to conspecifics forming cohesive migratory bands as nymphs and/or flying swarms as adults. The sole factor driving the onset of gregarization is the presence of conspecifics. In several previous studies concerned with the mechanism underlying this transformation we have used an aggregate measure of behavioural phase state, Pgreg, derived from logistic regression analysis, which combines and weights several behavioural variables to characterise solitarious and gregarious behaviour. Using this approach we have analysed the time course of behavioural change, the stimuli that induce gregarization and the key role of serotonin in mediating the transformation. Following a recent critique that suggested that using Pgreg may confound changes in general activity with genuine gregarization we have performed a meta-analysis examining the time course of change in the individual behaviours that we use to generate Pgreg. We show that the forced crowding of solitarious locusts, tactile stimulation of the hind femora, and the short-term application of serotonin each induce concerted changes in not only locomotion-related variables but also grooming frequency and attraction to other locusts towards those characteristic of long-term gregarious locusts. This extensive meta-analysis supports and extends our previous conclusions that solitarious locusts undergo a rapid behavioural gregarization upon receiving appropriate stimulation for

  2. IMPACTS OF TECHNOLOGICAL CHANGES IN WAREHOUSING, PHASE I.

    Science.gov (United States)

    HAMILTON, PHYLLIS D.; KINCAID, HARRY V.

    THE OBJECTIVES OF THIS STUDY WERE (1) TO DETERMINE THE AVAILABILITY, NATURE, AND RELIABILITY OF DATA ON THE RAPID CHANGE IN THE WAREHOUSING FUNCTION IN INDUSTRY AND (2) TO PROVIDE A BASIS FOR DECISIONS CONCERNING THE DESIRABILITY AND FEASIBILITY OF CONDUCTING SUBSEQUENT STUDIES. THREE MAJOR SOURCES OF INFORMATION ON CALIFORNIA, OREGON, WASHINGTON,…

  3. Effect of local absorption changes on phase-shift measurement using phase modulation spectroscopy

    Science.gov (United States)

    Cui, Weijia; Ostrander, Lee E.

    1993-09-01

    Recently, researchers have used phase modulation of photons (PMP) at near infrared wavelengths to assess in vivo tissue blood perfusion. The incident light intensity is amplitude modulated in the megahertz to gigahertz range and the phase shift is measured at the detector for the photon waves that have migrated through biological tissue. The obtained phase shift is related to the pathlength for the detected photons. In the past, the models for this process have not considered the effect upon phase produced by inhomogeneities within the in vivo tissue. The phase shift is a function of the distribution of the optical properties within the medium. We used a simple experimental model to investigate the effect upon phase shift of the location for optical changes. A mathematical model has been developed to describe this effect. The results demonstrate that a measured phase shift depends upon the location at which the optical properties are changed, as well as upon the magnitude of change in the optical properties. In vivo tissue is inhomogeneous so that its optical properties are also inhomogeneous. It is therefore important to consider the optical property distribution of the in vivo tissue when assessing blood perfusion using phase modulation measurements.

  4. Rapid solid-phase extraction and analysis of resveratrol and other polyphenols in red wine.

    Science.gov (United States)

    Hashim, Shima N N S; Schwarz, Lachlan J; Boysen, Reinhard I; Yang, Yuanzhong; Danylec, Basil; Hearn, Milton T W

    2013-10-25

    Red wine has long been credited as a good source of health-beneficial antioxidants, including the bioactive polyphenols catechin, quercetin, and (E)-resveratrol. In this paper, we report the application of reusable molecularly imprinted polymers (MIPs) for the selective and robust solid-phase extraction (SPE) and rapid analysis of (E)-resveratrol (LOD=8.87×10(-3) mg/L, LOQ=2.94×10(-2) mg/L), along with a range of other polyphenols from an Australian Pinot noir red wine. Optimization of the molecularly imprinted solid-phase extraction (MISPE) protocol resulted in the significant enrichment of (E)-resveratrol and several structurally related polyphenols. These secondary metabolites were subsequently identified by RP-HPLC and μLC-ESI ion trap MS/MS methods. The developed MISPE protocol employed low volumes of environmentally benign solvents selected according to the Green Chemistry principles, and resulted in the recovery of 99% of the total (E)-resveratrol present. These results further demonstrate the potential of generic protocols for the analysis of target compound with health beneficial properties within the food and nutraceutical industries using tailor-made MIPs. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Uncertainty in project phases: A framework for organisational change management

    OpenAIRE

    Kreye, Melanie; Balangalibun, Sarah

    2015-01-01

    Uncertainty is an integral challenge when managing organisational change projects (OCPs). Current literature highlights the importance of uncertainty; however, falls short of giving insights into the nature of uncertainty and suggestions for managing it. Specifically, no insights exist on how uncertainty develops over the different phases of OCPs. This paper presents case-based evidence on different sources of uncertainty in OCPs and how these develop over the different project phases. The re...

  6. Crystallisation, melting, recrystallisation and polymorphism of n-eicosane for application as a phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Genovese, A. [School of Applied Science, RMIT University, G.P.O. Box 2476V, Melbourne, Vic. 3001 (Australia); Amarasinghe, G. [School of Applied Science, RMIT University, G.P.O. Box 2476V, Melbourne, Vic. 3001 (Australia); Glewis, M. [School of Applied Science, RMIT University, G.P.O. Box 2476V, Melbourne, Vic. 3001 (Australia); Mainwaring, D. [School of Applied Science, RMIT University, G.P.O. Box 2476V, Melbourne, Vic. 3001 (Australia); Shanks, Robert A. [School of Applied Science, RMIT University, G.P.O. Box 2476V, Melbourne, Vic. 3001 (Australia)]. E-mail: robert.shanks@rmit.edu.au

    2006-04-15

    Phase change materials (PCM) provide thermoregulation originating from the latent heat exchanged during melting or crystallisation. Linear hydrocarbons have weak interactions, but high symmetry, providing an effective quantity of latent heat over the most acceptable temperature range for applications. The ability to both melt and crystallise over a narrow range is made complex by nucleation, polymorphism and the kinetic nature of these changes. Differential scanning calorimetry (DSC), optical microscopy and temperature modulated DSC (TMDSC) was used to study the melting of n-eicosane. This PCM has a low deg.ree of supercooling and conversion to the most stable crystalline state (triclinic) that occurs rapidly from a metastable phase (rotator) state on cooling. TMDSC revealed a small, yet similar deg.ree of thermodynamic reversibility in the melting of each of the crystalline phases.

  7. Subthreshold electrical transport in amorphous phase-change materials

    Science.gov (United States)

    Le Gallo, Manuel; Kaes, Matthias; Sebastian, Abu; Krebs, Daniel

    2015-09-01

    Chalcogenide-based phase-change materials play a prominent role in information technology. In spite of decades of research, the details of electrical transport in these materials are still debated. In this article, we present a unified model based on multiple-trapping transport together with 3D Poole-Frenkel emission from a two-center Coulomb potential. With this model, we are able to explain electrical transport both in as-deposited phase-change material thin films, similar to experimental conditions in early work dating back to the 1970s, and in melt-quenched phase-change materials in nanometer-scale phase-change memory devices typically used in recent studies. Experimental measurements on two widely different device platforms show remarkable agreement with the proposed mechanism over a wide range of temperatures and electric fields. In addition, the proposed model is able to seamlessly capture the temporal evolution of the transport properties of the melt-quenched phase upon structural relaxation.

  8. Phase-change techniques for finite element conduction codes

    Energy Technology Data Exchange (ETDEWEB)

    Lemmon, E C

    1979-01-01

    A method employing integral averaging techniques is proposed to aid conduction finite element code users in approximating multidimensional phase change problems such as: (a) liquid solidification under action of surface heat removal such as ice production or solidification of a casting, (b) thermal/chemical decomposition of a solid without removal of degraded material from the remaining virgin material such as charring of wood or reinforced plastics, (c) ablation of solids where the products of decomposition are removed on formation such as melting glass or subliming teflon. Of prime interest to the method is the determination of the amount of material solidified, decomposed, melted or sublimed and the location of the phase change interface as a function of time as it moves through the one-, two-, or three-dimensional finite element mesh. As the interface moves through each element, the energy involved in the phase change process and the difference in heat capacity and conductivity of two phases is accounted for. A method is also included to accommodate convective heat transfer at the moving phase change interface.

  9. Molybdenum oxide-base phase change resistive switching material

    Science.gov (United States)

    Ogawa, Yukiko; Shindo, Satoshi; Sutou, Yuji; Koike, Junichi

    2017-10-01

    We investigated the temperature dependence of electrical resistance of a reactively sputtered Mo-oxide film with a composition near MoO3 and found that the sputtered Mo-oxide film shows a large electrical resistance drop of much more than 104-fold at over 350 °C. Such a large drop in electrical resistance was found to be caused by a phase transition from an amorphous state to a crystalline state. It was confirmed that a W/Mo-oxide/W device shows a typical resistive switching effect of a phase change random access memory material and exhibits reversible resistive switching by the application of unidirectional set and reset voltage. The resistance contrast of the device had a large value of about 105-106. Furthermore, the Mo-oxide film showed much better thermal stability in the amorphous state than conventional phase change materials. These results indicate that the Mo-oxide film is a promising oxide-base phase change material for phase change random access memory.

  10. Design rules for phase-change materials in data storage applications.

    Science.gov (United States)

    Lencer, Dominic; Salinga, Martin; Wuttig, Matthias

    2011-05-10

    Phase-change materials can rapidly and reversibly be switched between an amorphous and a crystalline phase. Since both phases are characterized by very different optical and electrical properties, these materials can be employed for rewritable optical and electrical data storage. Hence, there are considerable efforts to identify suitable materials, and to optimize them with respect to specific applications. Design rules that can explain why the materials identified so far enable phase-change based devices would hence be very beneficial. This article describes materials that have been successfully employed and dicusses common features regarding both typical structures and bonding mechanisms. It is shown that typical structural motifs and electronic properties can be found in the crystalline state that are indicative for resonant bonding, from which the employed contrast originates. The occurence of resonance is linked to the composition, thus providing a design rule for phase-change materials. This understanding helps to unravel characteristic properties such as electrical and thermal conductivity which are discussed in the subsequent section. Then, turning to the transition kinetics between the phases, the current understanding and modeling of the processes of amorphization and crystallization are discussed. Finally, present approaches for improved high-capacity optical discs and fast non-volatile electrical memories, that hold the potential to succeed present-day's Flash memory, are presented. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Analysis of writing and erasing behaviours in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Hyot, B. E-mail: bhyot@cea.fr; Poupinet, L.; Gehanno, V.; Desre, P.J

    2002-09-01

    An understanding of the process involved in writing and erasing of phase-change optical recording media is vital to the development of new, and the improvement of existing, products. The present work investigates both experimental and theoretical laser-induced fast structural transformations of GeSbTe thin films. Optical and microstructural changes are correlated using both a static tester and transmission electron microscopy. In the second part of this paper we try to elucidate the physics underlying the amorphous-to-crystalline phase transformation under short-pulse laser excitation. Both thermal and thermodynamical behaviours must be taken into account to illustrate real processes.

  12. Using adversary text to detect adversary phase changes.

    Energy Technology Data Exchange (ETDEWEB)

    Speed, Ann Elizabeth; Doser, Adele Beatrice; Warrender, Christina E.

    2009-05-01

    The purpose of this work was to help develop a research roadmap and small proof ofconcept for addressing key problems and gaps from the perspective of using text analysis methods as a primary tool for detecting when a group is undergoing a phase change. Self- rganizing map (SOM) techniques were used to analyze text data obtained from the tworld-wide web. Statistical studies indicate that it may be possible to predict phase changes, as well as detect whether or not an example of writing can be attributed to a group of interest.

  13. Inserting Phase Change Lines into Microsoft Excel® Graphs.

    Science.gov (United States)

    Dubuque, Erick M

    2015-10-01

    Microsoft Excel® is a popular graphing tool used by behavior analysts to visually display data. However, this program is not always friendly to the graphing conventions used by behavior analysts. For example, adding phase change lines has typically been a cumbersome process involving the insertion of line objects that do not move when new data is added to a graph. The purpose of this article is to describe a novel way to add phase change lines that move when new data is added and when graphs are resized.

  14. Lightweight Phase-Change Material For Solar Power

    Science.gov (United States)

    Stark, Philip

    1993-01-01

    Lightweight panels containing phase-change materials developed for use as heat-storage elements of compact, lightweight, advanced solar dynamic power system. During high insolation, heat stored in panels via latent heat of fusion of phase-change material; during low insolation, heat withdrawn from panels. Storage elements consist mainly of porous carbon-fiber structures imbued with germanium. Developed for use aboard space station in orbit around Earth, also adapted to lightweight, compact, portable solar-power systems for use on Earth.

  15. Phase change material for temperature control and material storage

    Science.gov (United States)

    Wessling, Jr., Francis C. (Inventor); Blackwood, James M. (Inventor)

    2011-01-01

    A phase change material comprising a mixture of water and deuterium oxide is described, wherein the mole fraction of deuterium oxide is selected so that the mixture has a selected phase change temperature within a range between 0.degree. C. and 4.degree. C. The mixture is placed in a container and used for passive storage and transport of biomaterials and other temperature sensitive materials. Gels, nucleating agents, freezing point depression materials and colorants may be added to enhance the characteristics of the mixture.

  16. Phase change material for efficient removal of crystal violet dye.

    Science.gov (United States)

    Haik, Yousef; Qadri, Shahnaz; Ganoe, Ashley; Ashraf, Sarmadia; Sawafta, Reyad

    2010-04-15

    Hazardous dye removal and recovery from wastewater requires efficient capturing material. We report a phase change material (PCM) with phase change temperature of 16 degrees C giving up to 98% removal of crystal violet in few minutes. The PCM was found to collect 54 times of its weight soluble dye. The dye adsorption kinetics obeys a second order pseudo rate. Upon cooling the PCM to below 16 degrees C it gels and enabled solid removal of the captured dye. 2009 Elsevier B.V. All rights reserved.

  17. Nanoscale phase change memory with graphene ribbon electrodes

    Science.gov (United States)

    Behnam, Ashkan; Xiong, Feng; Cappelli, Andrea; Wang, Ning C.; Carrion, Enrique A.; Hong, Sungduk; Dai, Yuan; Lyons, Austin S.; Chow, Edmond K.; Piccinini, Enrico; Jacoboni, Carlo; Pop, Eric

    2015-09-01

    Phase change memory (PCM) devices are known to reduce in power consumption as the bit volume and contact area of their electrodes are scaled down. Here, we demonstrate two types of low-power PCM devices with lateral graphene ribbon electrodes: one in which the graphene is patterned into narrow nanoribbons and the other where the phase change material is patterned into nanoribbons. The sharp graphene "edge" contacts enable switching with threshold voltages as low as ˜3 V, low programming currents (100. Large-scale fabrication with graphene grown by chemical vapor deposition also enables the study of heterogeneous integration and that of variability for such nanomaterials and devices.

  18. Modelling Phase Change in a 3D Thermal Transient Analysis

    Directory of Open Access Journals (Sweden)

    E Haque

    2016-09-01

    Full Text Available A 3D thermal transient analysis of a gap profiling technique which utilises phase change material (plasticine is conducted in ANSYS. Phase change is modelled by assigning enthalpy of fusion over a wide temperature range based on Differential Scanning Calorimetry (DSC results. Temperature dependent convection is approximated using Nusselt number correlations. A parametric study is conducted on the thermal contact conductance value between the profiling device (polymer and adjacent (metal surfaces. Initial temperatures are established using a liner extrapolation based on experimental data. Results yield good correlation with experimental data.

  19. Integrated Ocean Management as a Strategy to Meet Rapid Climate Change: The Norwegian Case

    OpenAIRE

    Hoel, Alf Håkon; Olsen, Erik

    2012-01-01

    The prospects of rapid climate change and the potential existence of tipping points in marine ecosystems where nonlinear change may result from them being overstepped, raises the question of strategies for coping with ecosystem change. There is broad agreement that the combined forces of climate change, pollution and increasing economic activities necessitates more comprehensive approaches to oceans management, centering on the concept of ecosystem-based oceans management. This article addres...

  20. Rapid variations in fluid chemistry constrain hydrothermal phase separation at the Main Endeavour Field

    Science.gov (United States)

    Love, Brooke; Lilley, Marvin; Butterfield, David; Olson, Eric; Larson, Benjamin

    2017-02-01

    Previous work at the Main Endeavour Field (MEF) has shown that chloride concentration in high-temperature vent fluids has not exceeded 510 mmol/kg (94% of seawater), which is consistent with brine condensation and loss at depth, followed by upward flow of a vapor phase toward the seafloor. Magmatic and seismic events have been shown to affect fluid temperature and composition and these effects help narrow the possibilities for sub-surface processes. However, chloride-temperature data alone are insufficient to determine details of phase separation in the upflow zone. Here we use variation in chloride and gas content in a set of fluid samples collected over several days from one sulfide chimney structure in the MEF to constrain processes of mixing and phase separation. The combination of gas (primarily magmatic CO2 and seawater-derived Ar) and chloride data, indicate that neither variation in the amount of brine lost, nor mixing of the vapor phase produced at depth with variable quantities of (i) brine or (ii) altered gas rich seawater that has not undergone phase separation, can explain the co-variation of gas and chloride content. The gas-chloride data require additional phase separation of the ascending vapor-like fluid. Mixing and gas partitioning calculations show that near-critical temperature and pressure conditions can produce the fluid compositions observed at Sully vent as a vapor-liquid conjugate pair or as vapor-liquid pair with some remixing, and that the gas partition coefficients implied agree with theoretically predicted values.Plain Language SummaryWhen the chemistry of fluids from deep sea hot springs changes over a short time span, it allows us to narrow down the conditions and processes that created those fluids. This gives us a better idea what is happening under the seafloor where the water is interacting with hot rocks and minerals, boiling, and taking on the character it will have when it emerges at the seafloor. Gasses like argon can be

  1. Evaluation of Ti(3)Si Phase Stability from Heat-Treated, Rapidly Solidified Ti-Si Alloys

    OpenAIRE

    COSTA, Alex Matos da Silva; de Lima, Gisele Ferreira; Rodrigues,Geovani; NUNES, Carlos Angelo; Coelho,Gilberto Carvalho; Suzuki, Paulo Atsushi

    2010-01-01

    Ti-base alloys containing significant amounts of silicon have been considered for high temperature structural applications. Thus, information concerning phase stability on the Ti-Si system is fundamental and there are not many investigations covering the phase stability of the Ti(3)Si phase, specially its dependence on oxygen/nitrogen contamination. In this work the stability of this phase has been evaluated through heat-treatment of rapidly solidified Ti-rich Ti-Si alloys at 700 A degrees C ...

  2. Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.

    Science.gov (United States)

    Žnidarčič, Anton; Mettin, Robert; Dular, Matevž

    2015-01-01

    Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr [Houston, TX; Reynolds, Daniel R [Oakland, CA

    2009-03-24

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  4. Vibration damping and heat transfer using material phase changes

    Science.gov (United States)

    Kloucek, Petr (Inventor); Reynolds, Daniel R. (Inventor)

    2009-01-01

    A method and apparatus wherein phase changes in a material can dampen vibrational energy, dampen noise and facilitate heat transfer. One embodiment includes a method for damping vibrational energy in a body. The method comprises attaching a material to the body, wherein the material comprises a substrate, a shape memory alloy layer, and a plurality of temperature change elements. The method further comprises sensing vibrations in the body. In addition, the method comprises indicating to at least a portion of the temperature change elements to provide a temperature change in the shape memory alloy layer, wherein the temperature change is sufficient to provide a phase change in at least a portion of the shape memory alloy layer, and further wherein the phase change consumes a sufficient amount of kinetic energy to dampen at least a portion of the vibrational energy in the body. In other embodiments, the shape memory alloy layer is a thin film. Additional embodiments include a sensor connected to the material.

  5. Rapid microwave pyrolysis of coal: methodology and examination of the residual and volatile phases

    Energy Technology Data Exchange (ETDEWEB)

    Monsef-Mirzai, P.; Ravindran, M.; McWhinnie, W.R.; Burchill, P. (Aston University, Birmingham (United Kingdom). Dept. of Chemical Engineering and Applied Chemistry)

    1995-01-01

    Substances such as CuO, Fe[sub 3]O[sub 4] and even metallurgical coke (termed 'receptors') heat rapidly in a microwave oven at 2.45 GHz. The receptor, when mixed with Creswell coal and subjected to microwave radiation, induces rapid pyrolysis of the coal. Condensable tar yields of 20 wt% are obtained with coke, 27 wt% with Fe[sub 3]O[sub 4] and as high as 49 wt% in some experiments with CuO. Despite the high final temperature (1200-1300[degree]C after 3 min), analyses suggest that the volatiles are released in the lower part of the temperature regime but that some secondary cracking does occur. The tars are similar in composition, although with coke the proportion of aromatic hydrogen is greater than with CuO and Fe[sub 3]O[sub 4]. X-ray photoelectron spectroscopy shows that both pyridinic and pyrrolic nitrogen are present in the tars and chars, and that the dominant form of tar sulfur is thiophenic. There is evidence that mineral sulfur is immobilized when CuO in particular is the receptor. The chars formed show a degree of graphitization and are themselves excellent microwave receptors. In the presence of oxide receptors, char-oxide redox reactions occur, with loss of char, reduction of oxide and enhanced yields of CO and CO[sub 2]. Of the lighter hydrocarbons identified in the gas phase, methane predominates. The data obtained are compared with those for other pyrolysis methods. 22 refs., 1 fig., 9 tabs.

  6. Ultrafast characterization of phase-change material crystallization properties in the melt-quenched amorphous phase.

    Science.gov (United States)

    Jeyasingh, Rakesh; Fong, Scott W; Lee, Jaeho; Li, Zijian; Chang, Kuo-Wei; Mantegazza, Davide; Asheghi, Mehdi; Goodson, Kenneth E; Wong, H-S Philip

    2014-06-11

    Phase change materials are widely considered for application in nonvolatile memories because of their ability to achieve phase transformation in the nanosecond time scale. However, the knowledge of fast crystallization dynamics in these materials is limited because of the lack of fast and accurate temperature control methods. In this work, we have developed an experimental methodology that enables ultrafast characterization of phase-change dynamics on a more technologically relevant melt-quenched amorphous phase using practical device structures. We have extracted the crystallization growth velocity (U) in a functional capped phase change memory (PCM) device over 8 orders of magnitude (10(-10) 10(8) K/s), which reveals the extreme fragility of Ge2Sb2Te5 in its supercooled liquid phase. Furthermore, these crystallization properties were studied as a function of device programming cycles, and the results show degradation in the cell retention properties due to elemental segregation. The above experiments are enabled by the use of an on-chip fast heater and thermometer called as microthermal stage (MTS) integrated with a vertical phase change memory (PCM) cell. The temperature at the PCM layer can be controlled up to 600 K using MTS and with a thermal time constant of 800 ns, leading to heating rates ∼10(8) K/s that are close to the typical device operating conditions during PCM programming. The MTS allows us to independently control the electrical and thermal aspects of phase transformation (inseparable in a conventional PCM cell) and extract the temperature dependence of key material properties in real PCM devices.

  7. Curioser and Curioser: New Concepts in the Rapidly Changing Landscape of Educational Administration.

    Science.gov (United States)

    Fowler, Frances C.

    1999-01-01

    The new "Handbook" assumes that society is changing rapidly and educational administration must change with it. This article critiques chapters on four concepts: ideology, the new consumerism, social capital, and the new institutionalism. Consumerism is pure 19th-century liberalism/individualism; social capital theory and…

  8. Rapid climate change did not cause population collapse at the end of the European Bronze Age.

    Science.gov (United States)

    Armit, Ian; Swindles, Graeme T; Becker, Katharina; Plunkett, Gill; Blaauw, Maarten

    2014-12-02

    The impact of rapid climate change on contemporary human populations is of global concern. To contextualize our understanding of human responses to rapid climate change it is necessary to examine the archeological record during past climate transitions. One episode of abrupt climate change has been correlated with societal collapse at the end of the northwestern European Bronze Age. We apply new methods to interrogate archeological and paleoclimate data for this transition in Ireland at a higher level of precision than has previously been possible. We analyze archeological (14)C dates to demonstrate dramatic population collapse and present high-precision proxy climate data, analyzed through Bayesian methods, to provide evidence for a rapid climatic transition at ca. 750 calibrated years B.C. Our results demonstrate that this climatic downturn did not initiate population collapse and highlight the nondeterministic nature of human responses to past climate change.

  9. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution.

    Science.gov (United States)

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; Kilcoyne, David A; Jun, Yubin; Oh, Jae Eun; Monteiro, Paulo J M

    2016-05-21

    Monosulfoaluminate (Ca₄Al₂(SO₄)(OH)12∙6H₂O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO₄(2-) and OH(-)) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel's salt or Friedel's salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.

  10. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Seyoon Yoon

    2016-05-01

    Full Text Available Monosulfoaluminate (Ca4Al2(SO4(OH12∙6H2O plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO42− and OH− with chloride ions. In this study, scanning transmission X-ray microscope (STXM, X-ray absorption near edge structure (XANES spectroscopy, and X-ray diffraction (XRD were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formed ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.

  11. Calculation of Phase-Change Boundary Position in Continuous Casting

    Directory of Open Access Journals (Sweden)

    Ivanova A.A.

    2013-12-01

    Full Text Available The problem of determination of the phase-change boundary position at the mathematical modeling of continuous ingot temperature field is considered. The description of the heat transfer process takes into account the dependence of the thermal physical characteristics on the temperature, so that the mathematical model is based on the nonlinear partial differential equations. The boundary position between liquid and solid phase is given by the temperatures equality condition and the Stefan condition for the two-dimensional case. The new method of calculation of the phase-change boundary position is proposed. This method based on the finite-differences with using explicit schemes and on the iteration method of solving of non-linear system equations. The proposed method of calculation is many times faster than the real time. So that it amenable to be used for model predictive control of continuous semifinished product solidification.

  12. Unusual crystallization behavior in Ga-Sb phase change alloys

    Directory of Open Access Journals (Sweden)

    Magali Putero

    2013-12-01

    Full Text Available Combined in situ X-ray scattering techniques using synchrotron radiation were applied to investigate the crystallization behavior of Sb-rich Ga-Sb alloys. Measurements of the sheet resistance during heating indicated a reduced crystallization temperature with increased Sb content, which was confirmed by in situ X-ray diffraction. The electrical contrast increased with increasing Sb content and the resistivities in both the amorphous and crystalline phases decreased. It was found that by tuning the composition between Ga:Sb = 9:91 (in at.% and Ga:Sb = 45:55, the change in mass density upon crystallization changes from an increase in mass density which is typical for most phase change materials to a decrease in mass density. At the composition of Ga:Sb = 30:70, no mass density change is observed which should be very beneficial for phase change random access memory (PCRAM applications where a change in mass density during cycling is assumed to cause void formation and PCRAM device failure.

  13. Doped SbTe phase change material in memory cells

    NARCIS (Netherlands)

    in ‘t Zandt, M.A.A.; Jedema, F.J.; Gravesteijn, Dirk J; Gravesteijn, D.J.; Attenborough, K.; Wolters, Robertus A.M.

    2009-01-01

    Phase Change Random Access Memory (PCRAM) is investigated as replacement for Flash. The memory concept is based on switching a chalcogenide from the crystalline (low ohmic) to the amorphous (high ohmic) state and vice versa. Basically two memory cell concepts exist: the Ovonic Unified Memory (OUM)

  14. Characterization of electrical contacts for phase change memory cells

    NARCIS (Netherlands)

    Roy, Deepu

    2011-01-01

    Advancements in integrated circuits demand an increasing requirement for a faster, low-cost non-volatile memory with improved scaling potential. Phase change memory is an important emerging memory technology qualifying these requirements. With dimensional scaling, the contacts are scaled by F2,

  15. Method for preparing polyolefin composites containing a phase change material

    Science.gov (United States)

    Salyer, Ival O.

    1990-01-01

    A composite useful in thermal energy storage, said composite being formed of a polyolefin matrix having a phase change material such as a crystalline alkyl hydrocarbon incorporated therein. The composite is useful in forming pellets, sheets or fibers having thermal energy storage characteristics; methods for forming the composite are also disclosed.

  16. Phase change material selection for small scale solar energy ...

    African Journals Online (AJOL)

    This paper focuses on choosing an appropriate phase change material for latent heat storing systems that can store excess energy of a small scale solar thermal power plant suitable for distributed or off grid power supply. Most commercially available thermal storage materials cater for Mega Watt scale power plants ...

  17. Scalability of Phase Change Materials in Nanostructure Template

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2015-01-01

    Full Text Available The scalability of In2Se3, one of the phase change materials, is investigated. By depositing the material onto a nanopatterned substrate, individual In2Se3 nanoclusters are confined in the nanosize pits with well-defined shape and dimension permitting the systematic study of the ultimate scaling limit of its use as a phase change memory element. In2Se3 of progressively smaller volume is heated inside a transmission electron microscope operating in diffraction mode. The volume at which the amorphous-crystalline transition can no longer be observed is taken as the ultimate scaling limit, which is approximately 5 nm3 for In2Se3. The physics for the existence of scaling limit is discussed. Using phase change memory elements in memory hierarchy is believed to reduce its energy consumption because they consume zero leakage power in memory cells. Therefore, the phase change memory applications are of great importance in terms of energy saving.

  18. [Phase changes of energy metabolism during adaptation to immobilization stress].

    Science.gov (United States)

    Portnichenko, V I; Nosar, V I; Honchar, O O; Opanasenko, H V; Hlazyrin, I D; Man'kovs'ka, I M

    2014-01-01

    In stress, it was showed the organ and tissue changes associated with damage by lipid peroxides, and the disrupted barrier function. As a consequence, it was to lead to a syndrome of "stress-induced lung" and violation of oxygen delivery to the tissues and hypoxia. Purpose of the study was to investigate the dynamics of changes in gas exchange, blood glucose, body temperature, oxidant and antioxidant system activity, as well as mitochondrial respiration by Chance under the influence of chronic stress (6-hour immobilization daily for 3 weeks). It was identified 4 phase changes of energy metabolism in the dynamics of chronic stress. In the first phase, hypomethabolic, instability oxidative metabolism, decreased oxidation of NAD-dependent substrates, significant elevation of FAD-dependent substrates oxidation and low MRU were found. The activity of superoxide dismutase (MnSOD) was increased; it was occurred on a background low activity of glutathione peroxidase, and of misbalanced antioxidant system. After seven immobilizations, second phase-shift in energy metabolism, was observed, and then the third phase (hypermetabolic) started. It was characterized by gradual increase in oxidative metabolism, the restoration of oxidation of NAD-dependent substrates, MRU, as well as optimizing balance of oxidant and antioxidant systems. The fourth phase was started after 15 immobilizations, and characterized by the development of adaptive reactions expressed in increased tolerance of energy metabolism to the impact of immobilization. The results are correlated with changes in the dynamics of blood corticosterone. Thus, it was found the phase character of the energy metabolism rebuilding during the chronic stress.

  19. Rapid experimental SAD phasing and hot-spot identification with halogenated fragments

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, Joseph D.; Harrison, Jerry Joe E. K.; Arnold, Eddy

    2016-01-01

    Through X-ray crystallographic fragment screening, 4-bromopyrazole was discovered to be a `magic bullet' that is capable of binding at many of the ligand `hot spots' found in HIV-1 reverse transcriptase (RT). The binding locations can be in pockets that are `hidden' in the unliganded crystal form, allowing rapid identification of these sites forin silicoscreening. In addition to hot-spot identification, this ubiquitous yet specific binding provides an avenue for X-ray crystallographic phase determination, which can be a significant bottleneck in the determination of the structures of novel proteins. The anomalous signal from 4-bromopyrazole or 4-iodopyrazole was sufficient to determine the structures of three proteins (HIV-1 RT, influenza A endonuclease and proteinase K) by single-wavelength anomalous dispersion (SAD) from single crystals. Both compounds are inexpensive, readily available, safe and very soluble in DMSO or water, allowing efficient soaking into crystals.

  20. Atomic mobility in the overheated amorphous GeTe compound for phase change memories

    Energy Technology Data Exchange (ETDEWEB)

    Sosso, G.C. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano (Italy); Thomas Young Centre and Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); London Centre for Nanotechnology, 17-19 Gordon Street, London WC1H 0AH (United Kingdom); Behler, J. [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, Universitaetsstrasse 150, 44780 Bochum (Germany); Bernasconi, M. [Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Via R. Cozzi 55, 20125 Milano (Italy)

    2016-02-15

    Abstractauthoren Phase change memories rest on the ability of some chalcogenide alloys to undergo a fast and reversible transition between the crystalline and amorphous phases upon Joule heating. The fast crystallization is due to a high nucleation rate and a large crystal growth velocity which are actually possible thanks to the fragility of the supercooled liquid that allows for the persistence of a high atomic mobility at high supercooling where the thermodynamical driving force for crystallization is also high. Since crystallization in the devices occurs by rapidly heating the amorphous phase, hysteretic effects might arise with a different diffusion coefficient and viscosity on heating than on cooling. In this work, we have quantified these hysteretic effects in the phase change compound GeTe by means of molecular dynamics simulations. The atomic mobility in the overheated amorphous phase is lower than in supercooled liquid at the same temperature and the viscosity is consequently higher. Still, the simulations of the overheated amorphous phase reveal a breakdown of the Stokes-Einstein relation between the diffusion coefficient and the viscosity, similarly to what we found previously in the supercooled liquid. Evidences are provided that the breakdown is due to the emergence of dynamical heterogeneities at high supercooling. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Rapid changes in the geomagnetic field: from global to regional scales

    OpenAIRE

    Mandea, M.; Olsen, N; Monika Korte; Verbanac, G.; Y. Yahiat

    2008-01-01

    A large part of the Earth's magnetic field is generated by fluid motion in the molten outer core. Its temporal change, called secular variation, is characterized by occasional rapid changes known as geomagnetic jerks, sudden change in the second time derivative of the magnetic field. For a while, detailed studies of these phenomena suffered from the sparse distribution of geomagnetic observatories over many parts of the Earth. Recent studies on magnetic data provided by magnetic satellites, w...

  2. Dynamic diagnostic relationism: a new diagnostic paradigm for complex rapidly changing clinical conditions.

    Science.gov (United States)

    Lynn, Lawrence A

    2014-01-01

    Decades of large, apparently well-designed clinical trials have failed to generate reproducible results in the investigation of many complex rapidly evolving and changing conditions such as sepsis. One possibility for the failure is that 20th century threshold science may be too simplistic to apply to complex rapidly changing conditions, especially those with unknown times of onset. There is an acute need to reconsider the fundamental validity of the application of simple threshold science in the study of complex rapidly evolving and changing conditions. In this letter, four potential axioms are presented which define a new science which assesses the probability of disease as a function of motion images of all the available clinical data.

  3. Uncertainty in project phases: A framework for organisational change management

    DEFF Research Database (Denmark)

    Kreye, Melanie; Balangalibun, Sarah

    2015-01-01

    Uncertainty is an integral challenge when managing organisational change projects (OCPs). Current literature highlights the importance of uncertainty; however, falls short of giving insights into the nature of uncertainty and suggestions for managing it. Specifically, no insights exist on how...... in the early stage of the change project but was delayed until later phases. Furthermore, the sources of uncertainty were found to be predominantly within the organisation that initiated the change project and connected to the project scope. Based on these findings, propositions for future research are defined...

  4. Understanding phase-change behaviors of carbon-doped Ge₂Sb₂Te₅ for phase-change memory application.

    Science.gov (United States)

    Zhou, Xilin; Xia, Mengjiao; Rao, Feng; Wu, Liangcai; Li, Xianbin; Song, Zhitang; Feng, Songlin; Sun, Hongbo

    2014-08-27

    Phase-change materials are highly promising for next-generation nonvolatile data storage technology. The pronounced effects of C doping on structural and electrical phase-change behaviors of Ge2Sb2Te5 material are investigated at the atomic level by combining experiments and ab initio molecular dynamics. C dopants are found to fundamentally affect the amorphous structure of Ge2Sb2Te5 by altering the local environments of Ge-Te tetrahedral units with stable C-C chains. The incorporated C increases the amorphous stability due to the enhanced covalent nature of the material with larger tetrahedral Ge sites. The four-membered rings with alternating atoms are reduced greatly with carbon addition, leading to sluggish phase transition and confined crystal grains. The lower RESET power is presented in the PCM cells with carbon-doped material, benefiting from its high resistivity and low thermal conductivity.

  5. Timing of Class II treatment: skeletal changes comparing 1-phase and 2-phase treatment.

    Science.gov (United States)

    Dolce, Calogero; McGorray, Susan P; Brazeau, Lisamarie; King, Gregory J; Wheeler, Timothy T

    2007-10-01

    Previous studies reported small but significant skeletal changes as a result of early treatment of Class II malocclusion with headgear and functional appliances. In this study, we report on the skeletal changes for 1-phase and 2-phase treatment of Class II malocclusion. This was a prospective randomized clinical trial conducted sy the Department of Orthodontics at the University of Florida between 1990 and 2000. A total of 261 subjects demonstrating at least a one half-cusp Class II molar relationship and meeting the inclusion criteria were enrolled in the study and had at least 1 follow-up visit. During phase 1, 86 subjects were treated with a bionator, 95 were treated with a headgear/biteplane, and 80 served as the observation group. For phase 2, all subjects were then treated with full orthodontics appliances. Skeletal changes were monitored with cephalograms taken at baseline, at the end of early Class II treatment or observation baseline, at the beginning of fixed appliances, and at end of orthodontic treatment. Overall skeletal changes at the end of phase 1 treatment were as follows: (1) SNA angle increased in the bionator (0.51) and the observation groups (0.67), whereas it decreased (-0.50) in the headgear/biteplane group; (2) SNB angle increased in the bionator (1.36) and the observation groups (0.84), whereas it remained unchanged (0.19) in the headgear/biteplane group; (3) ANB angle decreased in the bionator (-0.85) and the headgear/biteplane groups (-0.72), and was unchanged in the observation group; and (4) the mandibular plane angle increased (1.30) only in the headgear/biteplane group. By the end of full orthodontic treatment, the skeletal differences in all measurements for all 3 groups were within 1 degrees . Linear regression models showed that, during phase 1, baseline value and treatment group were significant. However, when the entire treatment period was considered, treatment group had no effect. There is temporary skeletal change as a result

  6. Electric-field-assisted crystallisation in phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohary, Krisztian; Diosdado, Jorge A.V.; Ashwin, Peter; Wright, C. David [College of Engineering, Mathematics, and Physical Sciences, University of Exeter (United Kingdom)

    2012-10-15

    Phase-change materials are of intense research interest due mainly to their use in phase-change memory (PCM) devices that are emerging as a promising technology for future non-volatile, solid-state, electrical storage. Electrically driven transitions from the amorphous to the crystalline phase in such devices exhibit characteristic threshold switching. Several alternative electronic explanations for the origins of this characteristic behaviour have been put forward, for example Poole-Frenkel effects, delocalisation of tail states, field emission processes and space charge limited currents [for a full discussion, see Radielli et al., J. Appl. Phys. 103, 111101 (2008) and Simon et al., MRS Proc. 1251, H01-H011 (2010)]. However, an alternative to these conventional electronic models of threshold switching is based on electric field induced lowering of the system free energy, leading to the field induced nucleation of conducting crystal filaments. In this paper we investigate this alternative view. We present a detailed kinetics study of crystallisation in the presence of an electric field for the phase-change material Ge{sub 2}Sb{sub 2}Te{sub 5}. We derive quantitative crystallisation maps to show the effects of both temperature and electric field on crystallisation and we identify field ranges and parameter values where the electric field might play a significant role. Then we carry out physically realistic simulations of the threshold switching process in typical phase-change device structures, both with and without electric field dependent energy contributions to the system free energy. Our results show that threshold switching can be obtained by a mechanism driven purely by electric field induced nucleation, but the fields so required are large, of the order of 300 MV m{sup -1}, and significantly larger than the experimentally measured threshold fields. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Origin, secret, and application of the ideal phase-change material GeSbTe

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Noboru [Advanced Technology Research Laboratories, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, 619-0237 Kyoto (Japan); Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology, Central 4, 1-1-1, Higashi, Tsukuba, Ibaraki 305-8562 (Japan)

    2012-10-15

    Discovery of the GeSbTe phase-change alloy in particular along the GeTe-Sb{sub 2}Te{sub 3} tie-line took place in the mid-1980s. The amorphous alloys showed ideal properties, for example, high thermal stability at r.t. and laser-induced rapid crystallization with large optical changes. Thereafter, GeSbTe was successively applied to various optical disks such as DVDs and BDs. Through DSC and XRD analyses, the appearance of the metastable phase having a NaCl-type structure was observed over a wide compositional region. This was the ''key'' to realizing the ideal phase-change properties. During this year, the role of the constituent elements of Ge and Sb became clear by RMC modeling using AXS data at SPring-8, where the ''nucleation dominant crystallization process'' was well explained. The aspect of the latest Blu-ray Disc (BD) product of Panasonic: GeSbTe phase-change films are utilized in every recording layer. It is seen that the front-side recording layers, L1 and L2, are highly transparent. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Optimal design variable considerations in the use of phase change materials in indirect evaporative cooling

    Science.gov (United States)

    Chilakapaty, Ankit Paul

    The demand for sustainable, energy efficient and cost effective heating and cooling solutions is exponentially increasing with the rapid advancement of computation and information technology. Use of latent heat storage materials also known as phase change materials (PCMs) for load leveling is an innovative solution to the data center cooling demands. These materials are commercially available in the form of microcapsules dispersed in water, referred to as the microencapsulated phase change slurries and have higher heat capacity than water. The composition and physical properties of phase change slurries play significant role in energy efficiency of the cooling systems designed implementing these PCM slurries. Objective of this project is to study the effect of PCM particle size, shape and volumetric concentration on overall heat transfer potential of the cooling systems designed with PCM slurries as the heat transfer fluid (HTF). In this study uniform volume heat source model is developed for the simulation of heat transfer potential using phase change materials in the form of bulk temperature difference in a fully developed flow through a circular duct. Results indicate the heat transfer potential increases with PCM volumetric concentration with gradually diminishing returns. Also, spherical PCM particles offer greater heat transfer potential when compared to cylindrical particles. Results of this project will aid in efficient design of cooling systems based on PCM slurries.

  9. Rapid nanostructuration of polymer colloid surfaces by nonsolvent induced phase separation.

    Science.gov (United States)

    Zheng, Lu; Ma, Zhaohui; Li, Zhanping; Yan, Qingfeng

    2015-03-01

    We have designed an effective strategy for producing nanostructures on the polymer colloid surfaces within few minutes. The poly(N-vinylpyrrolidone) (PVP)-stabilized polystyrene colloid latex dispersed in ethanol was exposed to a nonsolvent medium of PVP and nanometric droplets formed on the polymer colloid surfaces within few minutes. Surface wettability of the polymer colloids with nanoprotrusions experienced a significant change as compared with the smooth polymer colloids. The formation mechanism was ascribed to the precipitation of PVP phase due to the nonsolvent induced phase separation. To further confirm the proposed mechanism, the material components included in the polymer colloid lattices before the nanostructuration process and surface compositions on the nanostructured polymer colloid surfaces were characterized using gel permeation chromatography (GPC) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) respectively. This new strategy provides an alternative and promising method for patterning curved polymer surfaces. The polymer colloids with different surface textures would be ideal for use as model systems in biomedical research such as targets in phagocytosis and platforms of drug delivery. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Interaction of a magnetic island chain in a tokamak plasma with a resonant magnetic perturbation of rapidly oscillating phase

    Science.gov (United States)

    Fitzpatrick, Richard

    2017-12-01

    An investigation is made into the interaction of a magnetic island chain, embedded in a tokamak plasma, with an externally generated magnetic perturbation of the same helicity whose helical phase is rapidly oscillating. The analysis is similar in form to the classic analysis used by Kapitza [Sov. Phys. JETP 21, 588 (1951)] to examine the angular motion of a rigid pendulum whose pivot point undergoes rapid vertical oscillations. The phase oscillations are found to modify the existing terms, and also to give rise to new terms, in the equations governing the secular evolution of the island chain's radial width and helical phase. An examination of the properties of the new secular evolution equation reveals that it is possible to phase-lock an island chain to an external magnetic perturbation with an oscillating helical phase in a stabilizing phase relation provided that the amplitude, ɛ, of the phase oscillations (in radians) is such that |J0(ɛ )|≪1 , and the mean angular frequency of the perturbation closely matches the natural angular frequency of the island chain.

  11. Reconfigurable optical manipulation by phase change material waveguides.

    Science.gov (United States)

    Zhang, Tianhang; Mei, Shengtao; Wang, Qian; Liu, Hong; Lim, Chwee Teck; Teng, Jinghua

    2017-05-25

    Optical manipulation by dielectric waveguides enables the transportation of particles and biomolecules beyond diffraction limits. However, traditional dielectric waveguides could only transport objects in the forward direction which does not fulfill the requirements of the next generation lab-on-chip system where the integrated manipulation system should be much more flexible and multifunctional. In this work, bidirectional transportation of objects on the nanoscale is demonstrated on a rectangular waveguide made of the phase change material Ge2Sb2Te5 (GST) by numerical simulations. Either continuous pushing forces or pulling forces are generated on the trapped particles when the GST is in the amorphous or crystalline phase. With the technique of a femtosecond laser induced phase transition on the GST, we further proposed a reconfigurable optical trap array on the same waveguide. This work demonstrates GST waveguide's potential of achieving multifunctional manipulation of multiple objects on the nanoscale with plausible optical setups.

  12. Monitoring changes in seismic velocity related to an ongoing rapid inflation event at Okmok volcano, Alaska

    Science.gov (United States)

    Bennington, Ninfa; Haney, Matt; De Angelis, Silvio; Thurber, Clifford; Freymueller, Jeff

    2015-01-01

    Okmok is one of the most active volcanoes in the Aleutian Arc. In an effort to improve our ability to detect precursory activity leading to eruption at Okmok, we monitor a recent, and possibly ongoing, GPS-inferred rapid inflation event at the volcano using ambient noise interferometry (ANI). Applying this method, we identify changes in seismic velocity outside of Okmok’s caldera, which are related to the hydrologic cycle. Within the caldera, we observe decreases in seismic velocity that are associated with the GPS-inferred rapid inflation event. We also determine temporal changes in waveform decorrelation and show a continual increase in decorrelation rate over the time associated with the rapid inflation event. Themagnitude of relative velocity decreases and decorrelation rate increases are comparable to previous studies at Piton de la Fournaise that associate such changes with increased production of volatiles and/ormagmatic intrusion within the magma reservoir and associated opening of fractures and/or fissures. Notably, the largest decrease in relative velocity occurs along the intrastation path passing nearest to the center of the caldera. This observation, along with equal amplitude relative velocity decreases revealed via analysis of intracaldera autocorrelations, suggests that the inflation sourcemay be located approximately within the center of the caldera and represent recharge of shallow magma storage in this location. Importantly, there is a relative absence of seismicity associated with this and previous rapid inflation events at Okmok. Thus, these ANI results are the first seismic evidence of such rapid inflation at the volcano.

  13. Complex Nonlinearity Chaos, Phase Transitions, Topology Change and Path Integrals

    CERN Document Server

    Ivancevic, Vladimir G

    2008-01-01

    Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals is a book about prediction & control of general nonlinear and chaotic dynamics of high-dimensional complex systems of various physical and non-physical nature and their underpinning geometro-topological change. The book starts with a textbook-like expose on nonlinear dynamics, attractors and chaos, both temporal and spatio-temporal, including modern techniques of chaos–control. Chapter 2 turns to the edge of chaos, in the form of phase transitions (equilibrium and non-equilibrium, oscillatory, fractal and noise-induced), as well as the related field of synergetics. While the natural stage for linear dynamics comprises of flat, Euclidean geometry (with the corresponding calculation tools from linear algebra and analysis), the natural stage for nonlinear dynamics is curved, Riemannian geometry (with the corresponding tools from nonlinear, tensor algebra and analysis). The extreme nonlinearity – chaos – corresponds to th...

  14. Development of Latent Heat Storage Phase Change Material Containing Plaster

    Directory of Open Access Journals (Sweden)

    Diana BAJARE

    2016-05-01

    Full Text Available This paper reviews the development of latent heat storage Phase Change Material (PCM containing plaster as in passive application. Due to the phase change, these materials can store higher amounts of thermal energy than traditional building materials and can be used to add thermal inertia to lightweight constructions. It was shown that the use of PCMs have advantages stabilizing the room temperature variations during summer days, provided sufficient night ventilation is allowed. Another advantage of PCM usage is stabilized indoor temperature on the heating season. The goal of this study is to develop cement and lime based plaster containing microencapsulated PCM. The plaster is expected to be used for passive indoor applications and enhance the thermal properties of building envelope. The plaster was investigated under Scanning Electron Microscope and the mechanical, physical and thermal properties of created plaster samples were determined.

  15. Design of practicable phase-change metadevices for near-infrared absorber and modulator applications.

    Science.gov (United States)

    Carrillo, Santiago García-Cuevas; Nash, Geoffrey R; Hayat, Hasan; Cryan, Martin J; Klemm, Maciej; Bhaskaran, Harish; Wright, C David

    2016-06-13

    Phase-change chalcogenide alloys, such as Ge2Sb2Te5 (GST), have very different optical properties in their amorphous and crystalline phases. The fact that such alloys can be switched, optically or electrically, between such phases rapidly and repeatedly means that they have much potential for applications as tunable photonic devices. Here we incorporate chalcogenide phase-change films into a metal-dielectric-metal metamaterial electromagnetic absorber structure and design absorbers and modulators for operation at technologically important near-infrared wavelengths, specifically 1550 nm. Our design not only exhibits excellent performance (e.g. a modulation depth of ~77% and an extinction ratio of ~20 dB) but also includes a suitable means for protecting the GST layer from environmental oxidation and is well-suited, as confirmed by electro-thermal and phase-transformation simulations, to in situ electrical switching. We also present a systematic study of design optimization, including the effects of expected manufacturing tolerances on device performance and, by means of a sensitivity analysis, identify the most critical design parameters.

  16. Microencapsulated Phase-Change Materials For Storage Of Heat

    Science.gov (United States)

    Colvin, David P.

    1989-01-01

    Report describes research on engineering issues related to storage and transport of heat in slurries containing phase-change materials in microscopic capsules. Specific goal of project to develop lightweight, compact, heat-management systems used safely in inhabited areas of spacecraft. Further development of obvious potential of technology expected to lead to commercialization and use in aircraft, electronic equipment, machinery, industrial processes, and other sytems in which requirements for management of heat compete with severe restrictions on weight or volume.

  17. Silicon waveguide optical switch with embedded phase change material.

    Science.gov (United States)

    Miller, Kevin J; Hallman, Kent A; Haglund, Richard F; Weiss, Sharon M

    2017-10-30

    Phase-change materials (PCMs) have emerged as promising active elements in silicon (Si) photonic systems. In this work, we design, fabricate, and characterize a hybrid Si-PCM optical switch. By integrating vanadium dioxide (a PCM) within a Si photonic waveguide, in a non-resonant geometry, we achieve ~10 dB broadband optical contrast with a PCM length of 500 nm using thermal actuation.

  18. Study of large nonlinear change phase in Hibiscus Sabdariffa

    Science.gov (United States)

    Trejo-Durán, M.; Alvarado-Méndez, E.; Andrade-Lucio, J. A.; Rojas-Laguna, R.; Vázquez-Guevara, M. A.

    2015-09-01

    High intensities electromagnetic energy interacting with organic media gives rise to nonlinear optical effects. Hibiscus Sabdariffa is a flower whose concentrated solution presents interesting nonlinear optical properties. This organic material shows an important self-phase modulation with changes bigger than 2π. We present a diffraction ring patterns study of the Hibiscus Sabdariffa solution. Numerical results of transmittance, with refraction and simultaneous absorption, are shown.

  19. An Energy Based Numerical Approach to Phase Change Problems

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Krenk, Steen

    1996-01-01

    Phase change problems, occurring e.g. in melting, casting and freezing processes, are often characterized by a very narrow transition zone with very lareg changes in heat capacity and conductivity. This leads to problems in numerical procedures, where the transition zone propagates through a mesh...... in the mid-point of the current time step and full energy balance is restored in each iteration by adjusting the local temperature. Examples demonstrate improved accuracy, a reduction of the numerical disturbances introduced by the passage of the transition zone and a smaller number of timesteps needed...

  20. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    Science.gov (United States)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  1. Voice and speech changes in various phases of menstrual cycle.

    Science.gov (United States)

    Çelik, Öner; Çelik, Aygen; Ateşpare, Altay; Boyacı, Zerrin; Çelebi, Saban; Gündüz, Tonguç; Aksungar, Fehime Benli; Yelken, Kürşat

    2013-09-01

    The reproductive system in females undergoes a regular cyclic change known as the menstrual cycle. Laryngeal changes are evident and fluctuate systematically during the reproductive years with the menstrual cycle. The impact of estrogens in concert with progesterone produces the characteristics of the female voice, with a fundamental frequency (F(0)) higher than that of male. To characterize changes in voice and speech in adolescent females in different phases of the menstrual cycle--during menstruation, after menstruation, mid-menstrual cycle, and premenstruation. Sixteen adult females who were nonusers of oral contraceptives participated in a cross-sectional study of menstrual cycle influences on voicing and speaking tasks. Acoustic analysis (F(0), intensity, perturbation measurements [jitter and shimmer], and harmonic-to-noise ratio), maximum phonation time (MPT), s/z ratio, and perceptual assessments (grade [G], roughness [R], breathiness [B], asthenia [A], and strain [S] [GRBAS] and Voice Handicap Index-10 [VHI-10]) scales were performed during all phases. None of the acoustic analysis parameters and MPT and s/z ratio measurements revealed statistically significant difference (P > 0.05). Perceptual voice assessment scales either clinician based or patients self-evaluated showed significant differences among phases (P menstrual cycle. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  2. Computed tomographic demonstration of rapid changes in fatty infiltration of the liver

    Energy Technology Data Exchange (ETDEWEB)

    Bashist, B. (Columbia-Presbyterian Medical Center, New York); Hecht, H.L.; Harely, W.D.

    1982-03-01

    Two alcoholic patients in whom computed tomography (CT) demonstrated reversal of fatty infiltration of the liver are described. The rapid reversibility of fatty infiltration can be useful in monitoring alcoholics with fatty livers. Focal fatty infiltration can mimic focal hepatic lesions and repeat scans can be utilized to assess changes in CT attenuation values when this condition is suspected.

  3. Rapidly changing mortality profiles in South Africa in its nine provinces

    African Journals Online (AJOL)

    number from HIV/AIDS and tuberculosis combined by 2012.[1]. Cardiovascular ... diabetes and renal disease have increased.[1,7] Furthermore ... Creative Commons licence CC-BY-NC 4.0. Rapidly changing mortality profiles in South Africa in its nine provinces. Non-communicable disease. HIV/AIDS and TB. Other type 1.

  4. Engaging Chicago residents in climate change action: Results from Rapid Ethnographic Inquiry

    Science.gov (United States)

    Lynne M. Westphal; Jennifer. Hirsch

    2010-01-01

    Addressing climate change requires action at all levels of society, from neighborhood to international levels. Using Rapid Ethnography rooted in Asset Based Community Development theory, we investigated climate-friendly attitudes and behaviors in two Chicago neighborhoods in order to assist the City with implementation of its Climate Action Plan. Our research suggests...

  5. Monitoring of rapid land cover changes in eastern Japan using Terra/MODIS data

    Science.gov (United States)

    Harada, I.; Hara, K.; Park, J.; Asanuma, I.; Tomita, M.; Hasegawa, D.; Short, K.; Fujihara, M.,

    2015-04-01

    Vegetation and land cover in Japan are rapidly changing. Abandoned farmland in 2010, for example, was 396,000 ha, or triple that of 1985. Efficient monitoring of changes in land cover is vital to both conservation of biodiversity and sustainable regional development. The Ministry of Environment is currently producing 1/25,000 scale vegetation maps for all of Japan, but the work is not yet completed. Traditional research is time consuming, and has difficulty coping with the rapid nature of change in the modern world. In this situation, classification of various scale remotely sensed data can be of premier use for efficient and timely monitoring of changes in vegetation.. In this research Terra/MODIS data is utilized to classify land cover in all of eastern Japan. Emphasis is placed on the Tohoku area, where large scale and rapid changes in vegetation have occurred in the aftermath of the Great Eastern Japan Earthquake of 11 March 2011. Large sections of coastal forest and agricultural lands, for example, were directly damaged by the earthquake or inundated by subsequent tsunami. Agricultural land was also abandoned due to radioactive contamination from the Fukushima nuclear power plant accident. The classification results are interpreted within the framework of a Landscape Transformation Sere model developed by Hara et al (2010), which presents a multi-staged pattern for tracking vegetation changes under successively heavy levels of human interference. The results of the research will be useful for balancing conservation of biodiversity and ecosystems with the needs for regional redevelopment.

  6. Heat transfers in porous media. Phase changes; Transferts de chaleur dans les milieux poreux. Changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Bories, S.; Mojtabi, A.; Prat, M.; Quintard, M. [Institut de Mecanique des Fluides de Toulouse, 31 (France)

    2008-10-15

    Phase change phenomena in porous media, like all poly-phase processes, are complex and still only partially understood. This article deals only with the liquid-vapor phase change (vaporization-condensation) because of its particular practical importance in numerous domains. Content: 1 - Fixing of a fluid constituent inside a porous matrix; 2 - mathematical modeling; 3 - example of reference situations: phase changes at temperatures below the saturation temperature (vaporization, condensation), phase changes at temperatures above the saturation temperature (condensation, vaporization-boiling); 4 - conclusion. (J.S.)

  7. Electronic transport in amorphous phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Luckas, Jennifer Maria

    2012-09-14

    Phase change materials combine a pronounced contrast in resistivity and reflectivity between their disordered amorphous and ordered crystalline state with very fast crystallization kinetics. Due to this exceptional combination of properties phase-change materials find broad application in non-volatile optical memories such as CD, DVD or Bluray Disc. Furthermore, this class of materials demonstrates remarkable electrical transport phenomena in their disordered state, which have shown to be crucial for their application in electronic storage devices. The threshold switching phenomenon denotes the sudden decrease in resistivity beyond a critical electrical threshold field. The threshold switching phenomenon facilitates the phase transitions at practical small voltages. Below this threshold the amorphous state resistivity is thermally activated and is observed to increase with time. This effect known as resistance drift seriously hampers the development of multi-level storage devices. Hence, understanding the physical origins of threshold switching and resistance drift phenomena is crucial to improve non-volatile phase-change memories. Even though both phenomena are often attributed to localized defect states in the band gap, the defect state density in amorphous phase-change materials has remained poorly studied. Starting from a brief introduction of the physics of phase-change materials this thesis summarizes the most important models behind electrical switching and resistance drift with the aim to discuss the role of localized defect states. The centerpiece of this thesis is the investigation of defects state densities in different amorphous phase-change materials and electrical switching chalcogenides. On the basis of Modulated Photo Current (MPC) Experiments and Photothermal Deflection Spectroscopy, a sophisticated band model for the disordered phase of the binary phase-change alloy GeTe has been developed. By this direct experimental approach the band-model for a

  8. Integrated ocean management as a strategy to meet rapid climate change: the Norwegian case.

    Science.gov (United States)

    Hoel, Alf Håkon; Olsen, Erik

    2012-02-01

    The prospects of rapid climate change and the potential existence of tipping points in marine ecosystems where nonlinear change may result from them being overstepped, raises the question of strategies for coping with ecosystem change. There is broad agreement that the combined forces of climate change, pollution and increasing economic activities necessitates more comprehensive approaches to oceans management, centering on the concept of ecosystem-based oceans management. This article addresses the Norwegian experience in introducing integrated, ecosystem-based oceans management, emphasizing how climate change, seen as a major long-term driver of change in ecosystems, is addressed in management plans. Understanding the direct effects of climate variability and change on ecosystems and indirect effects on human activities is essential for adaptive planning to be useful in the long-term management of the marine environment.

  9. Engineering the phase front of light with phase-change material based planar lenses.

    Science.gov (United States)

    Chen, Yiguo; Li, Xiong; Sonnefraud, Yannick; Fernández-Domínguez, Antonio I; Luo, Xiangang; Hong, Minghui; Maier, Stefan A

    2015-03-02

    A novel hybrid planar lens is proposed to engineer the far-field focusing patterns. It consists of an array of slits which are filled with phase-change material Ge2Sb2Te5 (GST). By varying the crystallization level of GST from 0% to 90%, the Fabry-Pérot resonance supported inside each slit can be spectrally shifted across the working wavelength at 1.55 µm, which results in a transmitted electromagnetic phase modulation as large as 0.56π. Based on this geometrically fixed platform, different phase fronts can be constructed spatially on the lens plane by assigning the designed GST crystallization levels to the corresponding slits, achieving various far-field focusing patterns. The present work offers a promising route to realize tunable nanophotonic components, which can be used in optical circuits and imaging applications.

  10. Performance of a Rapid and Simple HIV Testing Algorithm in a Multicenter Phase III Microbicide Clinical Trial▿

    OpenAIRE

    Crucitti, Tania; Taylor, Doug; Beelaert, Greet; Fransen, Katrien; Van Damme, Lut

    2011-01-01

    A multitest sequential algorithm based on rapid and simple (R/S) assays was applied for the diagnosis of HIV infection among participants in a phase 3 microbicide effectiveness trial. HIV testing was performed on finger-prick blood samples obtained from patients after their enrollment in the trial. The specimens were tested in a serial procedure using three different rapid tests (Determine HIV-1/2 [Abbott], SD Bioline HIV-1/2 3.0 [Standard Diagnostics], and Uni-Gold HIV [Trinity Biotech]). In...

  11. A System of Equations of Heat Transfer and Changing Phase Mass in Phase Transition Heat Accumulators

    Directory of Open Access Journals (Sweden)

    N. A. Rossikhin

    2017-01-01

    Full Text Available The article proposes a system of differential equations describing the processes in the latent phase transition heat accumulators (PTHA and formulates an appropriate boundary value problem.  Herewith a simplified mathematical model is used with the main assumptions such as one-dimensional flow, quasi-stationary temperature fields and one-dimensional change of phase boundary.In contrast to other publications associated with calculations of latent PTHA based on the similar simplifications, the article uses such a parameter as a specific mass of phase per unit of the accumulator length (per running meter of length, as the unknown function, thereby providing the universal writing of differential equations for all the latent PTHA where the simplifications used are appropriate in their deriving.The specific features of different accumulators are that the coefficients in the equations represent different functions that are proper for a specific design of these devices. There are two examples noted to calculate these coefficients (of the thermal resistances for specific types of accumulators, calculated on the basis of one-dimensionality and quasi-stationarity as applied to the change of phase boundary.The proposed mathematical model owing to its generality allows to describe a wide class of latent heat accumulators which have the heat transfer fluids, and on this basis analyze the features of the charging and discharging processes as well as to have the opportunity to find the optimal parameters to optimize the unit as a whole.

  12. Gradient Augmented Level Set Method for Two Phase Flow Simulations with Phase Change

    Science.gov (United States)

    Anumolu, C. R. Lakshman; Trujillo, Mario F.

    2016-11-01

    A sharp interface capturing approach is presented for two-phase flow simulations with phase change. The Gradient Augmented Levelset method is coupled with the two-phase momentum and energy equations to advect the liquid-gas interface and predict heat transfer with phase change. The Ghost Fluid Method (GFM) is adopted for velocity to discretize the advection and diffusion terms in the interfacial region. Furthermore, the GFM is employed to treat the discontinuity in the stress tensor, velocity, and temperature gradient yielding an accurate treatment in handling jump conditions. Thermal convection and diffusion terms are approximated by explicitly identifying the interface location, resulting in a sharp treatment for the energy solution. This sharp treatment is extended to estimate the interfacial mass transfer rate. At the computational cell, a d-cubic Hermite interpolating polynomial is employed to describe the interface location, which is locally fourth-order accurate. This extent of subgrid level description provides an accurate methodology for treating various interfacial processes with a high degree of sharpness. The ability to predict the interface and temperature evolutions accurately is illustrated by comparing numerical results with existing 1D to 3D analytical solutions.

  13. Frightening music triggers rapid changes in brain monoamine receptors: a pilot PET study.

    Science.gov (United States)

    Zhang, Ying; Chen, Qiaozhen; Du, Fenglei; Hu, Yanni; Chao, Fangfang; Tian, Mei; Zhang, Hong

    2012-10-01

    Frightening music can rapidly arouse emotions in listeners that mimic those from actual life-threatening experiences. However, studies of the underlying mechanism for perceiving danger created by music are limited. We investigated monoamine receptor changes induced by frightening music using (11)C-N-methyl-spiperone ((11)C-NMSP) PET. Ten healthy male volunteers were included, and their psychophysiologic changes were evaluated. Compared with the baseline condition, listening to frightening music caused a significant decrease in (11)C-NMSP in the right and left caudate nuclei, right limbic region, and right paralimbic region; a particularly significant decrease in the right anterior cingulate cortex; but an increase in the right frontal occipital and left temporal lobes of the cerebral cortex. Transient fright triggers rapid changes in monoamine receptors, which decrease in the limbic and paralimbic regions but increase in the cerebral cortex.

  14. Pulse voltage induced phase change characteristics of the ZnxSbyTez phase-change prototype device

    Science.gov (United States)

    Li, Rui; Xu, Ling; Fang, Henan; Lu, Ronghua; Wu, Tao; Yang, Fei; Ma, Zhongyuan; Xu, Jun

    2016-10-01

    ZnxSbyTez thin films are deposited on quartz or glass substrates by the electron beam evaporation technique in an ultra-high vacuum. A prototype phase change memory device using the ZST (ZnxSbyTez) thin film is fabricated. The current-voltage test results of the device show the threshold voltage of ZST531 (Zn5.18Sb3.75Te1.10 at.%) is 2.4 V, which is similar to that of the device based on pure Ge2Sb2Te5. It is shown that the phase-change device with the ZST film is able to perform several reading and writing cycles and the off/on resistance ratio is nearly 10 under pulse voltage. The switching performance of the device is also investigated. Most importantly, the results of the in situ resistance measurements show that the increase of crystallization temperature and the higher 10-year data retention temperature are as high as 300 °C and 191 °C, respectively. This indicates that the ZnxSbyTez material is quite stable, and thus appropriate for use in phase-change memory.

  15. Pulse voltage induced phase change characteristics of the ZnxSbyTez phase-change prototype device

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-10-01

    Full Text Available ZnxSbyTez thin films are deposited on quartz or glass substrates by the electron beam evaporation technique in an ultra-high vacuum. A prototype phase change memory device using the ZST (ZnxSbyTez thin film is fabricated. The current–voltage test results of the device show the threshold voltage of ZST531 (Zn5.18Sb3.75Te1.10 at.% is 2.4 V, which is similar to that of the device based on pure Ge2Sb2Te5. It is shown that the phase-change device with the ZST film is able to perform several reading and writing cycles and the off/on resistance ratio is nearly 10 under pulse voltage. The switching performance of the device is also investigated. Most importantly, the results of the in situ resistance measurements show that the increase of crystallization temperature and the higher 10-year data retention temperature are as high as 300 °C and 191 °C, respectively. This indicates that the ZnxSbyTez material is quite stable, and thus appropriate for use in phase-change memory.

  16. A phenomenological approach of solidification of polymeric phase change materials

    Science.gov (United States)

    Bahrani, Seyed Amir; Royon, Laurent; Abou, Bérengère; Osipian, Rémy; Azzouz, Kamel; Bontemps, André

    2017-01-01

    Phase Change Materials (PCMs) are widely used in thermal energy storage and thermal management systems due to their small volume for a given stored energy and their capability for maintaining nearly constant temperatures. However, their performance is limited by their low thermal conductivity and possible leaks while in the liquid phase. One solution is to imprison the PCM inside a polymer mesh to create a Polymeric Phase Change Material (PPCM). In this work, we have studied the cooling and solidification of five PPCMs with different PCMs and polymer fractions. To understand the heat transfer mechanisms involved, we have carried out micro- and macrorheological measurements in which Brownian motion of tracers embedded in PPCMs has been depicted and viscoelastic moduli have been measured, respectively. Beyond a given polymer concentration, it was shown that the Brownian motion of the tracers is limited by the polymeric chains and that the material exhibits an elastic behavior. This would suggest that heat transfer essentially occurs by conduction, instead of convection. Experiments were conducted to measure temperature variation during cooling of the five samples, and a semi-empirical model based on a phenomenological approach was proposed as a practical tool to choose and size PPCMs.

  17. Rapidly assessing changes in bone mineral balance using natural stable calcium isotopes

    Science.gov (United States)

    Morgan, Jennifer L. L.; Skulan, Joseph L.; Gordon, Gwyneth W.; Romaniello, Stephen J.; Smith, Scott M.; Anbar, Ariel D.

    2012-06-01

    The ability to rapidly detect changes in bone mineral balance (BMB) would be of great value in the early diagnosis and evaluation of therapies for metabolic bone diseases such as osteoporosis and some cancers. However, measurements of BMB are hampered by difficulties with using biochemical markers to quantify the relative rates of bone resorption and formation and the need to wait months to years for altered BMB to produce changes in bone mineral density large enough to resolve by X-ray densitometry. We show here that, in humans, the natural abundances of Ca isotopes in urine change rapidly in response to changes in BMB. In a bed rest experiment, use of high-precision isotope ratio MS allowed the onset of bone loss to be detected in Ca isotope data after about 1 wk, long before bone mineral density has changed enough to be detectable with densitometry. The physiological basis of the relationship between Ca isotopes and BMB is sufficiently understood to allow quantitative translation of changes in Ca isotope abundances to changes in bone mineral density using a simple model. The rate of change of bone mineral density inferred from Ca isotopes is consistent with the rate observed by densitometry in long-term bed rest studies. Ca isotopic analysis provides a powerful way to monitor bone loss, potentially making it possible to diagnose metabolic bone disease and track the impact of treatments more effectively than is currently possible.

  18. Effect of "phase change" complex on postoperative adhesion prevention.

    Science.gov (United States)

    Li, Xiao-Dong; Xia, Dong-Lin; Shen, Ling-Ling; He, Hong; Chen, Chao; Wang, Yu-Fei; Chen, Yan-Pei; Guo, Ling-Yan; Gu, Hai-Ying

    2016-05-01

    Postsurgical peritoneal adhesion is a major clinical problem. Numerous anti-adhesion products have been studied, but none could be easily used to provide a physical barrier. In this study, we developed a "phase change" anti-adhesion barrier for reducing peritoneal adhesion by cross-linked copolymerization of O-carboxymethyl chitosan (CMC) and CaCl2 and addition of cyclosporin A (CsA). The CMC-CaCl2-CsA compound was characterized by equilibrium swelling rate, weight loss, releasing effect, and coagulation test, and its biosafety was characterized by acute oral toxicity, hemolysis, and cytotoxicity. Intestinal adhesion model was applied on 64 Sprague-Dawley rats, which received CMC, CMC-CaCl2, or CMC-CaCl2-CsA treatment. At postoperative days 7 and 14, the rats were euthanized, and adhesions were graded by an investigator blinded to the treatment groups, using a predetermined adhesion scoring system. The cecum and adhesion tissue were stained with hematoxylin and eosin and antibodies for matrix metalloproteinase-9 and TIMP-1 for further histopathologic examination. The phase change anti-adhesive material exhibited effective blood clotting and were nontoxic in clotting experiments and acute toxicity test. The degradation rate could be adjusted using phosphate-buffered solution with varying pH. Adhesions were significantly reduced in the CMC-CaCl2-CsA treatment group compared with the control group (P treatment group at 7 days after surgery. "Phase-change" adhesive can undergo changes after application, and it inhibits the formation of abdominal adhesions after surgery. The material is convenient for using by surgeons and provides an effective tool for intestinal adhesion prevention. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Phase-change contrast agents for imaging and therapy.

    Science.gov (United States)

    Sheeran, Paul S; Dayton, Paul A

    2012-01-01

    Phase-change contrast agents (PCCAs) for ultrasound-based applications have resulted in novel ways of approaching diagnostic and therapeutic techniques beyond what is possible with microbubble contrast agents and liquid emulsions. When subjected to sufficient pressures delivered by an ultrasound transducer, stabilized droplets undergo a phase-transition to the gaseous state and a volumetric expansion occurs. This phenomenon, termed acoustic droplet vaporization, has been proposed as a means to address a number of in vivo applications at the microscale and nanoscale. In this review, the history of PCCAs, physical mechanisms involved, and proposed applications are discussed with a summary of studies demonstrated in vivo. Factors that influence the design of PCCAs are discussed, as well as the need for future studies to characterize potential bioeffects for administration in humans and optimization of ultrasound parameters.

  20. Low-energy phase change memory with graphene confined layer

    Science.gov (United States)

    Zhu, Chengqiu; Ma, Jun; Ge, Xiaoming; Rao, Feng; Ding, Keyuan; Lv, Shilong; Wu, Liangcai; Song, Zhitang

    2016-06-01

    How to reduce the Reset operation energy is the key scientific and technological problem in the field of phase change memory (PCM). Here, we show in the Ge2Sb2Te5 based PCM cell, inserting an additional graphene monolayer in the Ge2Sb2Te5 layer can remarkably decrease both the Reset current and energy. Because of the small out-of-plane electrical and thermal conductivities of such monolayer graphene, the Set resistance and the heat dissipation towards top TiN electrode of the modified PCM cell are significantly increased and decreased, respectively. The mushroom-typed larger active phase transition volume thus can be confined inside the underlying thinner GST layer, resulting in the lower power consumption.

  1. Process for rapid detection of fratricidal defects on optics using Linescan Phase Differential Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ravizza, F L; Nostrand, M C; Kegelmeyer, L M; Hawley, R A; Johnson, M A

    2009-11-05

    Phase-defects on optics used in high-power lasers can cause light intensification leading to laser-induced damage of downstream optics. We introduce Linescan Phase Differential Imaging (LPDI), a large-area dark-field imaging technique able to identify phase-defects in the bulk or surface of large-aperture optics with a 67 second scan-time. Potential phase-defects in the LPDI images are indentified by an image analysis code and measured with a Phase Shifting Diffraction Interferometer (PSDI). The PSDI data is used to calculate the defects potential for downstream damage using an empirical laser-damage model that incorporates a laser propagation code. A ray tracing model of LPDI was developed to enhance our understanding of its phase-defect detection mechanism and reveal limitations.

  2. Measurement of crystal growth velocity in a melt-quenched phase-change material.

    Science.gov (United States)

    Salinga, Martin; Carria, Egidio; Kaldenbach, Andreas; Bornhöfft, Manuel; Benke, Julia; Mayer, Joachim; Wuttig, Matthias

    2013-01-01

    Phase-change materials are the basis for next-generation memory devices and reconfigurable electronics, but fundamental understanding of the unconventional kinetics of their phase transitions has been hindered by challenges in the experimental quantification. Here we obtain deeper understanding based on the temperature dependence of the crystal growth velocity of the phase-change material AgInSbTe, as derived from laser-based time-resolved reflectivity measurements. We observe a strict Arrhenius behaviour for the growth velocity over eight orders of magnitude (from ~10 nm s(-1) to ~1 m s(-1)). This can be attributed to the formation of a glass at elevated temperatures because of rapid quenching of the melt. Further, the temperature dependence of the viscosity is derived, which reveals that the supercooled liquid phase must have an extremely high fragility (>100). Finally, the new experimental evidence leads to an interpretation, which comprehensively explains existing data from various different experiments reported in literature.

  3. Simulation of recrystallization in phase-change recording materials

    Science.gov (United States)

    Nishi, Yoshiko; Kando, Hidehiko; Terao, Motoyasu

    2002-01-01

    Phase-change optical discs are common media for audio-visual equipment and computer peripherals. In such recording media as the DVD-RAM, amorphous marks are written on the crystalline matrix by controlling the power of laser beam pulses. Due to the need for higher capacity optical disc drives, track pitches are becoming narrower, so that the thermal effects of adjacent tracks are no longer negligible. This is also a problem in the track direction. Achieving higher density in drives requires smaller marks on the media, leading to shorter intervals between pulses. The thermal effects of the following pulses change the shape of the amorphous mark made by previous pulse. That is, the trailing boundary of an amorphous mark is re-crystallized by the heat of the following pulses. Close attention to the re-crystallization of the recording material is necessary to control the mark shapes on phase-change optical discs. We have simulated the movement of the crystalline/amorphous boundary during the writing process. We have also developed the concept of a 're-crystallization-ring' to explain the mark-forming process. The movement of the boundary was traced by drawing arrows to represent the crystallization direction and speed. The trace lines of these arrows matched the streamlines for crystal growth as observed by TEM. Simulation was done for both GeSbTe and Ag-InSbTe recording materials.

  4. Rapid Hip Osteoarthritis Development in a Patient with Anterior Acetabular Cyst with Sagittal Alignment Change

    Directory of Open Access Journals (Sweden)

    Yasuhiro Homma

    2014-01-01

    Full Text Available Rapidly destructive coxarthrosis (RDC is rare and develops unusual clinical course. Recent studies suggest multiple possible mechanisms of the development of RDC. However the exact mechanism of RDC is still not clear. The difficulty of the study on RDC is attributed to its rareness and the fact that the data before the onset of RDC is normally unavailable. In this report, we presented the patient having the radiographic data before the onset who had rapid osteoarthritis (OA development after contralateral THA, which meets the current criteria of RDC. We thought that the increased posterior tilt of the pelvis after THA reinforced the stress concentration at pre-existed anterior acetabular cyst, thereby the destruction of the cyst was occurred. As a result the rapid OA was developed. We think that there is the case of rapid osteoarthritis developing due to alternating load concentration by posterior pelvic tilt on preexisting anterior acetabular cyst such as our patient among the cases diagnosed as RDC without any identifiable etiology. The recognition of sagittal alignment changes and anterior acetabular cyst may play important role in prediction and prevention of the rapid hip osteoarthritis development similar to RDC.

  5. Phase selection and nanocrystallization in Cu-free soft magnetic FeSiNbB amorphous alloy upon rapid annealing

    Energy Technology Data Exchange (ETDEWEB)

    Morsdorf, L.; Povstugar, I.; Raabe, D. [Department for Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Pradeep, K. G., E-mail: kg.prad@mpie.de, E-mail: kgprad@gmail.com [Department for Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Düsseldorf (Germany); Materials Chemistry, RWTH Aachen University, Kopernikusstrasse 10, 52074 Aachen (Germany); Herzer, G. [Vacuumschmelze GmbH & Co KG, Grüner Weg 37, D-63450 Hanau (Germany); Kovács, A.; Dunin-Borkowski, R. E. [Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons and Peter Grünberg Institute 5, Forschungszentrum Jülich, 52425 Jülich (Germany); Konygin, G. [Physical-Technical Institute UrB RAS, Kirov str. 132, 426008 Izhevsk (Russian Federation); Choi, P. [Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of)

    2016-03-28

    Nucleation of soft magnetic Fe{sub 3}Si nanocrystals in Cu-free Fe{sub 74.5}Si{sub 15.5}Nb{sub 3}B{sub 7} alloy, upon rapid (10 s) and conventional (30 min) annealing, was investigated using x-ray diffraction, transmission electron microscopy, Mössbauer spectroscopy, and atom probe tomography. By employing rapid annealing, preferential nucleation of Fe{sub 3}Si nanocrystals was achieved, whereas otherwise there is simultaneous nucleation of both Fe{sub 3}Si and undesired Fe-B compound phases. Analysis revealed that the enhanced Nb diffusivity, achieved during rapid annealing, facilitates homogeneous nucleation of Fe{sub 3}Si nanocrystals while shifting the secondary Fe-B crystallization to higher temperatures resulting in pure soft magnetic nanocrystallization with very low coercivities of ∼10 A/m.

  6. Heat transfer characteristics of building walls using phase change material

    Science.gov (United States)

    Irsyad, M.; Pasek, A. D.; Indartono, Y. S.; Pratomo, A. W.

    2017-03-01

    Minimizing energy consumption in air conditioning system can be done with reducing the cooling load in a room. Heat from solar radiation which passes through the wall increases the cooling load. Utilization of phase change material on walls is expected to decrease the heat rate by storing energy when the phase change process takes place. The stored energy is released when the ambient temperature is low. Temperature differences at noon and evening can be utilized as discharging and charging cycles. This study examines the characteristics of heat transfer in walls using phase change material (PCM) in the form of encapsulation and using the sleeve as well. Heat transfer of bricks containing encapsulated PCM, tested the storage and released the heat on the walls of the building models were evaluated in this study. Experiments of heat transfer on brick consist of time that is needed for heat transfer and thermal conductivity test as well. Experiments were conducted on a wall coated by PCM which was exposed on a day and night cycle to analyze the heat storage and heat release. PCM used in these experiments was coconut oil. The measured parameter is the temperature at some points in the brick, walls and ambient temperature as well. The results showed that the use of encapsulation on an empty brick can increase the time for thermal heat transfer. Thermal conductivity values of a brick containing encapsulated PCM was lower than hollow bricks, where each value was 1.3 W/m.K and 1.6 W/m.K. While the process of heat absorption takes place from 7:00 am to 06:00 pm, and the release of heat runs from 10:00 pm to 7:00 am. The use of this PCM layer can reduce the surface temperature of the walls of an average of 2°C and slows the heat into the room.

  7. Low-temperature sintering and phase changes in chromite interconnect materials

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Armstrong, T.R.; McCready, D.E.; Coffey, G.W.; Maupin, G.D.; Bates, J.L.

    1993-05-01

    Sintering shrinkage curves and phase changes were compared for calcium-substituted lanthanum chromates with either slight Asite enrichment or depletion. Of the former type, La{sub 0.7}Ca{sub 0.31},CrO{sub 3} that was synthesized by the glycine-nitrate method sintered to high density in air at 1250C, exhibiting two rapid-shrinkage events. Weight loss measurements corroborated XRD data showing that, prior to densiflcation, over half the Ca resided in non-perovskite phases, including CaCrO{sub 4}. In the La{sub 0.7}Ca{sub 0.31}CrO{sub 3}, densification was closely associated with re-dissolution of the Ca into the perovskite.

  8. Low-temperature sintering and phase changes in chromite interconnect materials

    Energy Technology Data Exchange (ETDEWEB)

    Chick, L.A.; Armstrong, T.R.; McCready, D.E.; Coffey, G.W.; Maupin, G.D.; Bates, J.L.

    1993-05-01

    Sintering shrinkage curves and phase changes were compared for calcium-substituted lanthanum chromates with either slight Asite enrichment or depletion. Of the former type, La[sub 0.7]Ca[sub 0.31],CrO[sub 3] that was synthesized by the glycine-nitrate method sintered to high density in air at 1250C, exhibiting two rapid-shrinkage events. Weight loss measurements corroborated XRD data showing that, prior to densiflcation, over half the Ca resided in non-perovskite phases, including CaCrO[sub 4]. In the La[sub 0.7]Ca[sub 0.31]CrO[sub 3], densification was closely associated with re-dissolution of the Ca into the perovskite.

  9. Recent changes in phytoplankton communities associated with rapid regional climate change along the western Antarctic Peninsula.

    Science.gov (United States)

    Montes-Hugo, Martin; Doney, Scott C; Ducklow, Hugh W; Fraser, William; Martinson, Douglas; Stammerjohn, Sharon E; Schofield, Oscar

    2009-03-13

    The climate of the western shelf of the Antarctic Peninsula (WAP) is undergoing a transition from a cold-dry polar-type climate to a warm-humid sub-Antarctic-type climate. Using three decades of satellite and field data, we document that ocean biological productivity, inferred from chlorophyll a concentration (Chl a), has significantly changed along the WAP shelf. Summertime surface Chl a (summer integrated Chl a approximately 63% of annually integrated Chl a) declined by 12% along the WAP over the past 30 years, with the largest decreases equatorward of 63 degrees S and with substantial increases in Chl a occurring farther south. The latitudinal variation in Chl a trends reflects shifting patterns of ice cover, cloud formation, and windiness affecting water-column mixing. Regional changes in phytoplankton coincide with observed changes in krill (Euphausia superba) and penguin populations.

  10. Thermal energy storage using phase change materials fundamentals and applications

    CERN Document Server

    Fleischer, Amy S

    2015-01-01

    This book presents a comprehensive introduction to the use of solid‐liquid phase change materials to store significant amounts of energy in the latent heat of fusion. The proper selection of materials for different applications is covered in detail, as is the use of high conductivity additives to enhance thermal diffusivity. Dr. Fleischer explores how applications of PCMS have expanded over the past 10 years to include the development of high efficiency building materials to reduce heating and cooling needs, smart material design for clothing, portable electronic systems thermal management, solar thermal power plant design and many others. Additional future research directions and challenges are also discussed.

  11. Phase Change Materials for Thermal Management of IC Packages

    Directory of Open Access Journals (Sweden)

    P. Fiala

    2007-06-01

    Full Text Available This paper deals with the application of phase change materials (PCM for thermal management of integrated circuits as a viable alternative to active forced convection cooling systems. The paper presents an analytical description and solution of heat transfer, melting and freezing process in 1D which is applied to inorganic crystalline salts. There are also results of numerical simulation of a real 3D model. These results were obtained by means of the finite element method (FEM. Results of 3D numerical solutions were verified experimentally.

  12. Polymeric compositions incorporating polyethylene glycol as a phase change material

    Science.gov (United States)

    Salyer, Ival O.; Griffen, Charles W.

    1989-01-01

    A polymeric composition comprising a polymeric material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the composition is useful in making molded and/or coated materials such as flooring, tiles, wall panels and the like; paints containing polyethylene glycols or end-capped polyethylene glycols are also disclosed.

  13. Effects of high latitude protected areas on bird communities under rapid climate change.

    Science.gov (United States)

    Santangeli, Andrea; Rajasärkkä, Ari; Lehikoinen, Aleksi

    2017-06-01

    Anthropogenic climate change is rapidly becoming one of the main threats to biodiversity, along with other threats triggered by human-driven land-use change. Species are already responding to climate change by shifting their distributions polewards. This shift may create a spatial mismatch between dynamic species distributions and static protected areas (PAs). As protected areas represent one of the main pillars for preserving biodiversity today and in the future, it is important to assess their contribution in sheltering the biodiversity communities, they were designated to protect. A recent development to investigate climate-driven impacts on biological communities is represented by the community temperature index (CTI). CTI provides a measure of the relative temperature average of a community in a specific assemblage. CTI value will be higher for assemblages dominated by warm species compared with those dominated by cold-dwelling species. We here model changes in the CTI of Finnish bird assemblages, as well as changes in species densities, within and outside of PAs during the past four decades in a large boreal landscape under rapid change. We show that CTI has markedly increased over time across Finland, with this change being similar within and outside PAs and five to seven times slower than the temperature increase. Moreover, CTI has been constantly lower within than outside of PAs, and PAs still support communities, which show colder thermal index than those outside of PAs in the 1970s and 1980s. This result can be explained by the higher relative density of northern species within PAs than outside. Overall, our results provide some, albeit inconclusive, evidence that PAs may play a role in supporting the community of northern species. Results also suggest that communities are, however, shifting rapidly, both inside and outside of PAs, highlighting the need for adjusting conservation measures before it is too late. © 2016 John Wiley & Sons Ltd.

  14. Dynamics of plumes in a compressible mantle with phase changes: Implications for phase boundary topography

    Science.gov (United States)

    Bossmann, Andrea B.; van Keken, Peter E.

    2013-11-01

    While plumes rising from the deep mantle may be responsible for hotspot volcanism, their existence has not yet been unambiguously confirmed by seismological studies. Several seismic studies reported that the topography of the 670-km discontinuity is flat below hotspots, which disagrees with the elevation expected due to its negative Clapeyron slope and plume excess temperature. An improved numerical method that includes compressibility and consistently implemented phase transitions is used to study plume evolution in the Earth’s mantle. The influence of latent heat on plume behavior for varying convective vigor and Clapeyron slope of the endothermic phase change at 670 km depth is studied in axisymmetric spherical shell geometry. Minor differences in plume dynamics are found for models considering and neglecting latent heat. Three regimes of plume behavior at the endothermic phase boundary are observed: besides complete plume inhibition and penetration along the symmetry axis an intermediate regime in which the plume forms a ring around the symmetry axis is found. These models also predict that the 670-km discontinuity is flat below hotspots due to a large plume head in the lower mantle of about 1000 km diameter that significantly thins as it rises into the upper mantle. This is explained by the lower viscosity in the upper mantle and the spreading of the temporarily inhibited plume below the endothermic phase boundary, which reconciles the flat 670-km discontinuity with a deep mantle plume origin.

  15. Rapid assessment of large scale vegetation change based on multi-temporal phenological analysis

    Science.gov (United States)

    Cai, Danlu; Guan, Yanning; Guo, Shan; Yan, Baoping; Xing, Zhi; Zhang, Chunyan; Piao, Yingchao; An, Xudong; Kang, Lihua

    2011-11-01

    Detecting vegetation change is critical for earth system and sustainability science. The existing methods, however, show several limitations, including inevitable selection of imagery acquisition dates, affection from vegetation related noise on temporal trajectory analysis, and assumptions due to vegetation classification model. This paper presents a multitemporal phenological frequency analysis over a relatively short period (MTPFA-SP) methodology to detect vegetation changes. This MTPFA-SP methodology bases on the amplitude components of fast Fourier transforming (FFT) and is implemented with two steps. First, NDVI time series over two periods are transformed with FFT into frequency domain, separately. Second, amplitude components with phenological information from Step 1 are selected for further change comparison. In this methodology, component selection shows physical meanings of natural vegetation process in frequency domain. Comparisons among those selected components help enhance the ability to rapidly detect vegetation changes. To validate this MTPFA-SP methodology, we detect changes between two periods (2001-2005 and 2006-2010) in the eastern Tibet Plateau area and make two kinds of assessments. The first is for a larger scale, including statistic analysis of altitudinal zonality and latitudinal zonality. The second assessment is for rapid detection of vegetation change location. Landsat TM image were employed to validate the result.

  16. Rapid climate changes in the tropical Atlantic region during the last deglaciation

    Science.gov (United States)

    Hughen, Konrad A.; Overpeck, Jonathan T.; Peterson, Larry C.; Trumbore, Susan

    1996-03-01

    THE climate system is capable of changing abruptly from one stable mode to another1-3. Rapid climate oscillations-in particular the Younger Dryas cold period during the last deglaciation-have long been recognized from records throughout the North Atlantic region4-14, and the distribution of these records at mostly high latitudes suggests that the changes were caused by rapid reorganizations of the North Atlantic thermohaline circulation6,8,10,15. But events far from the North Atlantic region that are synchronous with the Younger Dryas16-19 raise the possibility that a more global forcing mechanism was responsible20. Here we present high-resolution records of laminated sediments of the last deglaciation from the Cariaco basin (tropical Atlantic Ocean) which show many abrupt sub-decade to century-scale oscillations in surface-ocean biological productivity that are synchronous with climate changes at high latitudes. We attribute these productivity variations to changes in or duration of up-welling rate (and hence nutrient supply) caused by changes in trade-wind strength, which is in turn influenced by the thermo-haline circulation through its effect on sea surface temperature6,21. Abrupt climate changes in the tropical Atlantic during the last deglaciation are thus consistent with a North Atlantic circulation forcing mechanism.

  17. Innovative Phase Change Thermal Energy Storage Solution for Baseload Power Phase 1 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Songgang

    2013-05-15

    The primary purpose of this project is to develop and validate an innovative, scalable phase change salt thermal energy storage (TES) system that can interface with Infinia’s family of free-piston Stirling engines (FPSE). This TES technology is also appropriate for Rankine and Brayton power converters. Solar TES systems based on latent heat of fusion rather than molten salt temperature differences, have many advantages that include up to an order of magnitude higher energy storage density, much higher temperature operation, and elimination of pumped loops for most of Infinia’s design options. DOE has funded four different concepts for solar phase change TES, including one other Infinia awarded project using heat pipes to transfer heat to and from the salt. The unique innovation in this project is an integrated TES/pool boiler heat transfer system that is the simplest approach identified to date and arguably has the best potential for minimizing the levelized cost of energy (LCOE). The Phase 1 objectives are to design, build and test a 1-hour TES proof-of-concept lab demonstrator integrated with an Infinia 3 kW Stirling engine, and to conduct a preliminary design of a 12-hour TES on-sun prototype.

  18. Controllable Thermal Rectification Realized in Binary Phase Change Composites

    Science.gov (United States)

    Chen, Renjie; Cui, Yalong; Tian, He; Yao, Ruimin; Liu, Zhenpu; Shu, Yi; Li, Cheng; Yang, Yi; Ren, Tianling; Zhang, Gang; Zou, Ruqiang

    2015-03-01

    Phase transition is a natural phenomenon happened around our daily life, represented by the process from ice to water. While melting and solidifying at a certain temperature, a high heat of fusion is accompanied, classified as the latent heat. Phase change material (PCM) has been widely applied to store and release large amount of energy attributed to the distinctive thermal behavior. Here, with the help of nanoporous materials, we introduce a general strategy to achieve the binary eicosane/PEG4000 stuffed reduced graphene oxide aerogels, which has two ends with different melting points. It's successfully demonstrated this binary PCM composites exhibits thermal rectification characteristic. Partial phase transitions within porous networks instantaneously result in one end of the thermal conductivity saltation at a critical temperature, and therefore switch on or off the thermal rectification with the coefficient up to 1.23. This value can be further raised by adjusting the loading content of PCM. The uniqueness of this device lies in its performance as a normal thermal conductor at low temperature, only exhibiting rectification phenomenon when temperature is higher than a critical value. The stated technology has broad applications for thermal energy control in macroscopic scale such as energy-efficiency building or nanodevice thermal management.

  19. Changes in nasal air flow and school grades after rapid maxillary expansion in oral breathing children

    OpenAIRE

    Torre, Hilda; Alarcón, Jose Antonio

    2012-01-01

    Objective: To analyse the changes in nasal air flow and school grades after rapid maxillary expansion (RME) in oral breathing children with maxillary constriction. Material and Methods: Forty-four oral breathing children (mean age 10.57 y) underwent orthodontic RME with a Hyrax screw. Forty-four age-matched children (mean age 10.64 y) with nasal physiological breathing and adequate transverse maxillary dimensions served as the control group. The maxillary widths, nasal air flow assessed via p...

  20. Environmental impacts of rapid water level changes; Miljoekonsekvenser av raske vannstandsendringer

    Energy Technology Data Exchange (ETDEWEB)

    Arnekleiv, Jo Vegar; Bakken, Tor Haakon; Bogen, Jim; Boensnes, Truls Erik; Elster, Margrethe; Harby, Atle; Kutznetsova, Yulia; Saltveit, Svein Jakob; Sauterleute, Julian; Stickler, Morten; Sundt, Haakon; Tjomsland, Torulv; Ugedal, Ola

    2012-07-01

    This report summarizes the state of knowledge of the environmental impacts of power driving and rapid water level changes and describes possible mitigation measures. The report assesses the environmental effects of possible increased power installation in Mauranger and Tonstad power plants, based on existing data and knowledge. At Straumsmo plants in Barduelva there are collected some physical data and the environmental impact of existing power driving is considered. (eb)

  1. Gradient augmented level set method for phase change simulations

    Science.gov (United States)

    Anumolu, Lakshman; Trujillo, Mario F.

    2018-01-01

    A numerical method for the simulation of two-phase flow with phase change based on the Gradient-Augmented-Level-set (GALS) strategy is presented. Sharp capturing of the vaporization process is enabled by: i) identification of the vapor-liquid interface, Γ (t), at the subgrid level, ii) discontinuous treatment of thermal physical properties (except for μ), and iii) enforcement of mass, momentum, and energy jump conditions, where the gradients of the dependent variables are obtained at Γ (t) and are consistent with their analytical expression, i.e. no local averaging is applied. Treatment of the jump in velocity and pressure at Γ (t) is achieved using the Ghost Fluid Method. The solution of the energy equation employs the sub-grid knowledge of Γ (t) to discretize the temperature Laplacian using second-order one-sided differences, i.e. the numerical stencil completely resides within each respective phase. To carefully evaluate the benefits or disadvantages of the GALS approach, the standard level set method is implemented and compared against the GALS predictions. The results show the expected trend that interface identification and transport are predicted noticeably better with GALS over the standard level set. This benefit carries over to the prediction of the Laplacian and temperature gradients in the neighborhood of the interface, which are directly linked to the calculation of the vaporization rate. However, when combining the calculation of interface transport and reinitialization with two-phase momentum and energy, the benefits of GALS are to some extent neutralized, and the causes for this behavior are identified and analyzed. Overall the additional computational costs associated with GALS are almost the same as those using the standard level set technique.

  2. Portable Thermoelectric Power Generator Coupled with Phase Change Material

    Directory of Open Access Journals (Sweden)

    Lim Chong C.

    2014-07-01

    Full Text Available Solar is the intermittent source of renewable energy and all thermal solar systems having a setback on non-functioning during the night and cloudy environment. This paper presents alternative solution for power generation using thermoelectric which is the direct conversion of temperature gradient of hot side and cold side of thermoelectric material to electric voltage. Phase change material with latent heat effect would help to prolong the temperature gradient across thermoelectric material for power generation. Besides, the concept of portability will enable different power source like solar, wasted heat from air conditioner, refrigerator, stove etc, i.e. to create temperature different on thermoelectric material for power generation. Furthermore, thermoelectric will generate direct current which is used by all the gadgets like Smartphone, tablet, laptop etc. The portable concept of renewable energy will encourage the direct usage of renewable energy for portable gadgets. The working principle and design of portable thermoelectric power generator coupled with phase change material is presented in this paper.

  3. Preliminary Trade Study of Phase Change Heat Sinks

    Science.gov (United States)

    Anderson, Molly; Leimkeuhler, Thomas; Quinn, Gregory; Golliher, Eric

    2006-01-01

    For short durations, phase change based heat rejection systems are a very effective way of removing heat from spacecraft. Future NASA vehicles, such as the Crew Exploration Vehicle (CEV), will require non-radiative heat rejection systems during at least a portion of the planned mission, just as their predecessors have. While existing technologies are available to modify, such as Apollo era sublimators, or the Space Shuttle Flash Evaporator System (FES), several new technologies are under development or investigation to progress beyond these existing heat rejection systems. Examples include the Multi-Fluid Evaporator developed by Hamilton Sundstrand, improvements upon the Contaminant Insensitive Sublimator originally developed for the X-38 program, and a Compact Flash Evaporator System (CFES). Other possibilities evaluate new ways of operating existing designs. The new developments are targeted at increasing operating life, expanding the environments in which the system can operate, improving the mass and volume characteristics, or some combination of these or other improvements. This paper captures the process and results of a preliminary trade study performed at Johnson Space Center to compare the various existing and proposed phase change based heat rejection systems for the CEV. Because the new systems are still in development, and the information on existing systems is extrapolation, this trade study is not meant to suggest a final decision for future vehicles. The results of this early trade study are targeted to aid the development efforts for the new technologies by identifying issues that could reduce the chances of selection for the CEV.

  4. Subscale Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Sheth, Rubik; Hansen, Scott

    2016-01-01

    Supplemental heat rejection devices are required in many spacecraft as the radiators are not sized to meet the full heat rejection demand. One means of obtaining additional heat rejection is through the use of phase change material heat exchangers (PCM HX's). PCM HX's utilize phase change to store energy in unfavorable thermal environments (melting) and reject the energy in favorable environments (freezing). Traditionally, wax has been used as a PCM on spacecraft. However, water is an attractive alternative because it is capable of storing about 40% more energy per unit mass due to its higher latent heat of fusion. The significant problem in using water as a PCM is its expansion while freezing, leading to structural integrity concerns when housed in an enclosed heat exchanger volume. Significant investigation and development has taken place over the past five years to understand and overcome the problems associated with water PCM HX's. This paper reports on the final efforts by Johnson Space Center's Thermal Systems Branch to develop a water based PCM HX. The test article developed and reported on is a subscale version of the full-scale water-based PCM HX's constructed by Mezzo Technologies. The subscale unit was designed by applying prior research on freeze front propagation and previous full-scale water PCM HX development. Design modifications to the subscale unit included use of urethane bladder, decreased aspect ratio, perforated protection sheet, and use of additional mid-plates. Testing of the subscale unit was successful and 150 cycles were completed without fail.

  5. Direct numerical simulation of incompressible multiphase flow with phase change

    Science.gov (United States)

    Lee, Moon Soo; Riaz, Amir; Aute, Vikrant

    2017-09-01

    Simulation of multiphase flow with phase change is challenging because of the potential for unphysical pressure oscillations, spurious velocity fields and mass flux errors across the interface. The resulting numerical errors may become critical when large density contrasts are present. To address these issues, we present a new approach for multiphase flow with phase change that features, (i) a smooth distribution of sharp velocity jumps and mass flux within a narrow region surrounding the interface, (ii) improved mass flux projection from the implicit interface onto the uniform Cartesian grid and (iii) post-advection velocity correction step to ensure accurate velocity divergence in interfacial cells. These new features are implemented in combination with a sharp treatment of the jumps in pressure and temperature gradient. A series of 1-D, 2-D, axisymmetric and 3-D problems are solved to verify the improvements afforded by the new approach. Axisymmetric film boiling results are also presented, which show good qualitative agreement with heat transfer correlations as well as experimental observations of bubble shapes.

  6. Characterization of Encapsulated Phase Change Materials for Thermal Energy Storage

    Science.gov (United States)

    Zhao, Weihuan

    Solar energy is receiving a lot of attentions at present since it is a kind of clean, renewable and sustainable energy. A major limitation however is that it is available for only about 2,000 hours a year in many places. One way to improve this situation is to use thermal energy storage (TES) system for the off hours. A novel method to store solar energy for large scale energy usage is using high melting temperature encapsulated phase change materials (EPCMs). The present work is a study of thermal energy storage systems with phase change materials (PCMs). It is hoped that this work is to help understand the storage capability and heat transfer processes in the EPCM capsules in order to help design large EPCM based thermoclines. A calorimeter system was built to test the energy stored in EPCM capsules and examine the storage capabilities and potential for storage deterioration in EPCM capsules to determine the types of EPCMs suitable for TES. To accomplish this, the heat transfer performances of the EPCMs are studied in detail. Factors which could affect the heat transfer performance including the properties of materials, the sizes of capsules, the types of heat transfer fluids, the gravity effect of solid PCM, the buoyancy-driven convection in the molten PCM, void space inside the capsule are given attention. Understanding these characteristics for heat transfer process could help build the EPCM based thermoclines to make energy storage economical for solar energy and other applications.

  7. Phase change energy storage for solar dynamic power systems

    Science.gov (United States)

    Chiaramonte, F. P.; Taylor, J. D.

    1992-01-01

    This paper presents the results of a transient computer simulation that was developed to study phase change energy storage techniques for Space Station Freedom (SSF) solar dynamic (SD) power systems. Such SD systems may be used in future growth SSF configurations. Two solar dynamic options are considered in this paper: Brayton and Rankine. Model elements consist of a single node receiver and concentrator, and takes into account overall heat engine efficiency and power distribution characteristics. The simulation not only computes the energy stored in the receiver phase change material (PCM), but also the amount of the PCM required for various combinations of load demands and power system mission constraints. For a solar dynamic power system in low earth orbit, the amount of stored PCM energy is calculated by balancing the solar energy input and the energy consumed by the loads corrected by an overall system efficiency. The model assumes an average 75 kW SD power system load profile which is connected to user loads via dedicated power distribution channels. The model then calculates the stored energy in the receiver and subsequently estimates the quantity of PCM necessary to meet peaking and contingency requirements. The model can also be used to conduct trade studies on the performance of SD power systems using different storage materials.

  8. Analysis of wallboard containing a phase change material

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, J.J. (Oak Ridge National Lab., TN (USA)); Heberle, D.P. (California State Polytechnic Univ., Pomona, CA (USA))

    1990-01-01

    Phase change materials (PCMs) used on the interior of buildings hold the promise for improved thermal performance by reducing the energy requirements for space conditioning and by improving thermal comfort by reducing temperature swings inside the building. Efforts are underway to develop a gypsum wallboard containing a hydrocarbon PCM. With a phase change temperature in the room temperature range, the PCM wallboard adds substantially to the thermal mass of the building while serving the same architectural function as conventional wallboard. To determine the thermal and economic performance of this PCM wallboard, the Transient Systems Simulation Program (TRNSYS) was modified to accommodate walls that are covered with PCM plasterboard, nd to apportion the direct beam solar radiation to interior surfaces of a building. The modified code was used to simulate the performance of conventional and direct-gain passive solar residential-sized buildings with and without PCM wallboard. Space heating energy savings were determined as a function of PCM wallboard characteristics. Thermal comfort improvements in buildings containing the PCM were qualified in terms of energy savings. The report concludes with a present worth economic analysis of these energy savings and arrives at system costs and economic payback based on current costs of PCMs under study for the wallboard application. 5 refs., 4 figs., 4 tabs.

  9. Studies on a Heat Storage Container with Phase Change Material

    Science.gov (United States)

    Toyoda, Naoki; Watanabe, Koji; Watanabe, Mituo; Yanadori, Michio

    This paper deals with the heat transfer characteristics when a phase change medium discharges the storing energy to a finned tube in a heat storage container. In this experiments, the phase change medium is Calcium Chloride Hexahydrate (CaCl26H2O)with fusion temperature 28°C. The following results are obtained. 1. In solidification process of the medium, the heat discharge quantity to a finned tube is greater than that to a single tube, However, the heat dischage quantity of the finned tube does not increase inproportion to the surface area of the fin. 2. The fin effect of the finned tube decreases as the increase of the accumulative heat discharge quantity rate. 3. This reason lies in the fact that the thermal resistance of the finned tube is greater than that of the single tube. Especially, in the range of the large values of the accumulative heat discharge quantity rate, it is consiberable that the themal resistanse increases so that the ratio of the dead space of the heat transfer area increases at the contact parts of the fins and the tube.

  10. Possibility for rapid generation of high-pressure phases in single-crystal silicon by fast nanoindentation

    Science.gov (United States)

    Huang, Hu; Yan, Jiwang

    2015-11-01

    High-pressure phases of silicon such as Si-XII/Si-III exhibit attractive optical, electrical and chemical properties, but until now, it has been technologically impossible to produce a significant quantity of Si-XII or Si-III. In this study, to explore the possibility of generating high-pressure silicon phases efficiently, comparative nanoindentation experiments were conducted. Effects of the loading rate, unloading rate and maximum indentation load were investigated, and key factors affecting the high-pressure phase formation were identified. A new nanoindentation protocol is proposed that introduces an intermediate holding stage into the unloading process. The resulting end phases under the indent were detected by a laser micro-Raman spectrometer and compared with those formed in conventional nanoindentation. The results indicate that high-pressure phases Si-XII and Si-III were successfully formed during the intermediate holding stage even with a very high loading/unloading rate. This finding demonstrates the possibility of rapid production of high-pressure phases of silicon through fast mechanical loading and unloading.

  11. Rapid and specific gray matter changes in M1 induced by balance training.

    Science.gov (United States)

    Taubert, Marco; Mehnert, Jan; Pleger, Burkhard; Villringer, Arno

    2016-06-01

    Training-induced changes in cortical structure can be observed non-invasively with magnetic resonance imaging (MRI). While macroscopic changes were found mainly after weeks to several months of training in humans, imaging of motor cortical networks in animals revealed rapid microstructural alterations after a few hours of training. We used MRI to test the hypothesis of immediate and specific training-induced alterations in motor cortical gray matter in humans. We found localized increases in motor cortical thickness after 1h of practice in a complex balancing task. These changes were specific to motor cortical effector representations primarily responsible for balance control in our task (lower limb and trunk) and these effects could be confirmed in a replication study. Cortical thickness changes (i) linearly increased across the training session, (ii) occurred independent of alterations in resting cerebral blood flow and (iii) were not triggered by repetitive use of the lower limbs. Our findings show that motor learning triggers rapid and specific gray matter changes in M1. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Rapid replacement of bridge deck expansion joints study - phase I : [tech transfer summary].

    Science.gov (United States)

    2014-12-01

    This initial research phase focused on documenting the current : means and methods of bridge expansion joint deterioration, : maintenance, and replacement and on identifying improvements : through all of the input gathered.

  13. Rapid changes in brain structure predict improvements induced by perceptual learning.

    Science.gov (United States)

    Ditye, Thomas; Kanai, Ryota; Bahrami, Bahador; Muggleton, Neil G; Rees, Geraint; Walsh, Vincent

    2013-11-01

    Practice-dependent changes in brain structure can occur in task relevant brain regions as a result of extensive training in complex motor tasks and long-term cognitive training but little is known about the impact of visual perceptual learning on brain structure. Here we studied the effect of five days of visual perceptual learning in a motion-color conjunction search task using anatomical MRI. We found rapid changes in gray matter volume in the right posterior superior temporal sulcus, an area sensitive to coherently moving stimuli, that predicted the degree to which an individual's performance improved with training. Furthermore, behavioral improvements were also predicted by volumetric changes in an extended white matter region underlying the visual cortex. These findings point towards quick and efficient plastic neural mechanisms that enable the visual brain to deal effectively with changing environmental demands. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Rapid phase-modulated water-excitation steady-state free precession for fat-suppressed cine cardiovascular MR

    Directory of Open Access Journals (Sweden)

    Raman Subha V

    2008-05-01

    Full Text Available Abstract Background The purpose of this article is to describe a steady-state free precession (SSFP sequence for fat-suppressed cine cardiovascular magnetic resonance (CMR. A rapid phase-modulated binomial water-excitation (WE pulse is utilized to minimize repetition time and acquisition time. Methods Three different water-excitation pulses were combined with cine-SSFP for evaluation. The frequency response of each sequence was simulated and examined in phantom imaging studies. The ratio of fat to water signal amplitude was measured in phantoms to evaluate the fat-suppression capabilities of each method. Six volunteers underwent CMR of the heart at 1.5T to compare retrospectively-gated cine-SSFP with and without water-excitation. The ratio of fat to myocardium signal amplitude was measured for conventional cine-SSFP and phase-modulated WE-SSFP. The proposed WE-SSFP method was tested in one patient referred for CMR to characterize a cardiac mass. Results and discussion The measured frequency response in a phantom corresponded to the numerical Bloch equation simulation demonstrating the widened stop-band around the fat resonant frequency for all water-excitation pulses tested. In vivo measurements demonstrated that a rapid, phase-modulated water-excitation pulse significantly reduced the signal amplitude ratio of fat to myocardium from 6.92 ± 2.9 to 0.8 ± 0.13 (mean ± SD without inducing any perceptible artifacts in SSFP cine CMR. Conclusion fat-suppression can be achieved in SSFP cine CMR while maintaining steady-state equilibrium using rapid, phase modulated, binomial water-excitation pulses.

  15. Single frame profilometry with rapid phase demodulation on colour-coded fringes

    Science.gov (United States)

    Yee, Cong Kai; Yen, Kin Sam

    2017-08-01

    Digital fringe profilometry is a non-contact surface profiling technique with huge potential at real-time dynamic whole-field measurement. However, this technique is usually bottlenecked at the phase demodulation and unwrapping during fringe analysis. This paper proposes a single frame profilometry system that used direct arccosine function demodulation on colour-coded sinusoidal fringes to simplify the fringe analysis process. Since the range of arccosine function output is restricted from 0 to π, the intensity gradient was used along with arccosine function to demodulate the fringe intensity levels into wrapped phase map (0-2π). The projected fringes were coloured in red, green and blue according to the De Bruijn's sequence. The fringe order was identified directly from the colours of three consecutive fringes by matching to the De Bruijn's sequence to unwrap the wrapped phase map into continuous phase map. The phase differences between the continuous phase maps of reference plane and object surface were then obtained and related to the equipment setup position using trigonometry to rebuild the 3D model. The proposed method was tested experimentally by reconstructing three physical objects. Although the reconstructed surface contained phase errors due to gamma non-linearity, the geometrical shapes of the objects can be reconstructed with reasonable accuracy and consistency. The percentage deviations of dimensions in x, y and z-axis were 1.24%, -1.96% and -2.30% respectively. Meanwhile the uncertainties of dimensions in x, y and z-axis were ±0.15%, ±0.24% and ±1.07% respectively at 95% confidence level.

  16. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation

    Science.gov (United States)

    Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E.

    2015-01-01

    Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures. PMID:26068587

  17. A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation.

    Science.gov (United States)

    Zhou, Xilin; Dong, Weiling; Zhang, Hao; Simpson, Robert E

    2015-06-11

    Oxygen-doped germanium telluride phase change materials are proposed for high temperature applications. Up to 8 at.% oxygen is readily incorporated into GeTe, causing an increased crystallisation temperature and activation energy. The rhombohedral structure of the GeTe crystal is preserved in the oxygen doped films. For higher oxygen concentrations the material is found to phase separate into GeO2 and TeO2, which inhibits the technologically useful abrupt change in properties. Increasing the oxygen content in GeTe-O reduces the difference in film thickness and mass density between the amorphous and crystalline states. For oxygen concentrations between 5 and 6 at.%, the amorphous material and the crystalline material have the same density. Above 6 at.% O doping, crystallisation exhibits an anomalous density change, where the volume of the crystalline state is larger than that of the amorphous. The high thermal stability and zero-density change characteristic of Oxygen-incorporated GeTe, is recommended for efficient and low stress phase change memory devices that may operate at elevated temperatures.

  18. Rapid emergence of climate change in environmental drivers of marine ecosystems

    Science.gov (United States)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  19. Rapid Detection of Land Cover Changes Using Crowdsourced Geographic Information: A Case Study of Beijing, China

    Directory of Open Access Journals (Sweden)

    Yuan Meng

    2017-08-01

    Full Text Available Land cover change (LCC detection is a significant component of sustainability research including ecological economics and climate change. Due to the rapid variability of natural environment, effective LCC detection is required to capture sufficient change-related information. Although such information has been available through remotely sensed images, the complicated image processing and classification make it time consuming and labour intensive. In contrast, the freely available crowdsourced geographic information (CGI contains easily interpreted textual information, and thus has the potential to be applied for capturing effective change-related information. Therefore, this paper presents and evaluates a method using CGI for rapid LCC detection. As a case study, Beijing is chosen as the study area, and CGI is applied to monitor LCC information. As one kind of CGI which is generated from commercial Internet maps, points of interest (POIs with detailed textual information are utilised to detect land cover in 2016. Those POIs are first classified into land cover nomenclature based on their textual information. Then, a kernel density approach is proposed to effectively generate land cover regions in 2016. Finally, with GlobeLand30 in 2010 as baseline map, LCC is detected using the post-classification method in the period of 2010–2016 in Beijing. The result shows that an accuracy of 89.20% is achieved with land cover regions generated by POIs, indicating that POIs are reliable for rapid LCC detection. Additionally, an LCC detection comparison is proposed between remotely sensed images and CGI, revealing the advantages of POIs in terms of LCC efficiency. However, due to the uneven distribution, remotely sensed images are still required in areas with few POIs.

  20. Rapid RNA Exchange in Aqueous Two-Phase System and Coacervate Droplets

    Science.gov (United States)

    Jia, Tony Z.; Hentrich, Christian; Szostak, Jack W.

    2014-02-01

    Compartmentalization in a prebiotic setting is an important aspect of early cell formation and is crucial for the development of an artificial protocell system that effectively couples genotype and phenotype. Aqueous two-phase systems (ATPSs) and complex coacervates are phase separation phenomena that lead to the selective partitioning of biomolecules and have recently been proposed as membrane-free protocell models. We show in this study through fluorescence recovery after photobleaching (FRAP) microscopy that despite the ability of such systems to effectively concentrate RNA, there is a high rate of RNA exchange between phases in dextran/polyethylene glycol ATPS and ATP/poly-L-lysine coacervate droplets. In contrast to fatty acid vesicles, these systems would not allow effective segregation and consequent evolution of RNA, thus rendering these systems ineffective as model protocells.

  1. Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis, Phase 2 Results

    Science.gov (United States)

    Murri, Daniel G.

    2011-01-01

    The NASA Engineering and Safety Center (NESC) was requested to establish the Simulation Framework for Rapid Entry, Descent, and Landing (EDL) Analysis assessment, which involved development of an enhanced simulation architecture using the Program to Optimize Simulated Trajectories II simulation tool. The assessment was requested to enhance the capability of the Agency to provide rapid evaluation of EDL characteristics in systems analysis studies, preliminary design, mission development and execution, and time-critical assessments. Many of the new simulation framework capabilities were developed to support the Agency EDL-Systems Analysis (SA) team that is conducting studies of the technologies and architectures that are required to enable human and higher mass robotic missions to Mars. The findings, observations, and recommendations from the NESC are provided in this report.

  2. Enabling tunable micromechanical bandpass filters through phase-change materials

    Science.gov (United States)

    Cao, Yunqi; Torres, David; Wang, Tongyu; Tan, Xiaobo; Sepúlveda, Nelson

    2017-08-01

    Vanadium dioxide (VO2), one of the most promising phase-change smart materials, has shown strong frequency tuning capabilities in MEMS resonators. In this paper, we demonstrate the potential use of VO2-based MEMS devices as second-order kilohertz (kHz) bandpass filters with tunable band selectivity and adjustable bandwidth (BW). Two identical on-chip micro resonators are actuated using mechanical excitation and measured using optical detection. One of the resonators is not actuated while the other is tuned by applying electric currents across an integrated resistive heater, which induces the phase transition of the VO2, and consequently a large stress to the mechanical structure. The responses of both MEMS resonators are combined, resulting in a resonant peak of tunable BW controlled by the input current. The BW can be extended to 2.62 times by using two bridges or 2.39 times by implementing one pair of cantilevers. The results for both devices are discussed.

  3. Phase Change Material Heat Sink for an ISS Flight Experiment

    Science.gov (United States)

    Quinn, Gregory; Stieber, Jesse; Sheth, Rubik; Ahlstrom, Thomas

    2015-01-01

    A flight experiment is being constructed to utilize the persistent microgravity environment of the International Space Station (ISS) to prove out operation of a microgravity compatible phase change material (PCM) heat sink. A PCM heat sink can help to reduce the overall mass and volume of future exploration spacecraft thermal control systems (TCS). The program is characterizing a new PCM heat sink that incorporates a novel phase management approach to prevent high pressures and structural deformation that often occur with PCM heat sinks undergoing cyclic operation in microgravity. The PCM unit was made using brazed aluminum construction with paraffin wax as the fusible material. It is designed to be installed into a propylene glycol and water cooling loop, with scaling consistent with the conceptual designs for the Orion Multipurpose Crew Vehicle. This paper reports on the construction of the PCM heat sink and on initial ground test results conducted at UTC Aerospace Systems prior to delivery to NASA. The prototype will be tested later on the ground and in orbit via a self-contained experiment package developed by NASA Johnson Space Center to operate in an ISS EXPRESS rack.

  4. Thermal transport in phase-change materials from atomistic simulations

    Science.gov (United States)

    Sosso, Gabriele C.; Donadio, Davide; Caravati, Sebastiano; Behler, Jörg; Bernasconi, Marco

    2012-09-01

    We computed the thermal conductivity (κ) of amorphous GeTe by means of classical molecular dynamics and lattice dynamics simulations. GeTe is a phase change material of interest for applications in nonvolatile memories. An interatomic potential with close-to-ab initio accuracy was used as generated by fitting a huge ab initio database with a neural network method. It turns out that the majority of heat carriers are nonpropagating vibrations (diffusons), the small percentage of propagating modes giving a negligible contribution to the total value of κ. This result is in contrast with the properties of other amorphous semiconductors such as Si for which nonpropagating and propagating vibrations account for about one half of the value of κ each. This outcome suggests that the value of κ measured for the bulk amorphous phase can be used to model the thermal transport of GeTe and possibly of other materials in the same class also in nanoscaled memory devices. Actually, the contribution from propagating modes, which may endure ballistic transport at the scale of 10-20 nm, is negligible.

  5. Electric vehicles batteries thermal management systems employing phase change materials

    Science.gov (United States)

    Ianniciello, Lucia; Biwolé, Pascal Henry; Achard, Patrick

    2018-02-01

    Battery thermal management is necessary for electric vehicles (EVs), especially for Li-ion batteries, due to the heat dissipation effects on those batteries. Usually, air or coolant circuits are employed as thermal management systems in Li-ion batteries. However, those systems are expensive in terms of investment and operating costs. Phase change materials (PCMs) may represent an alternative which could be cheaper and easier to operate. In fact, PCMs can be used as passive or semi-passive systems, enabling the global system to sustain near-autonomous operations. This article presents the previous developments introducing PCMs for EVs battery cooling. Different systems are reviewed and solutions are proposed to enhance PCMs efficiency in those systems.

  6. On-chip phase-change photonic memory and computing

    Science.gov (United States)

    Cheng, Zengguang; Ríos, Carlos; Youngblood, Nathan; Wright, C. David; Pernice, Wolfram H. P.; Bhaskaran, Harish

    2017-08-01

    The use of photonics in computing is a hot topic of interest, driven by the need for ever-increasing speed along with reduced power consumption. In existing computing architectures, photonic data storage would dramatically improve the performance by reducing latencies associated with electrical memories. At the same time, the rise of `big data' and `deep learning' is driving the quest for non-von Neumann and brain-inspired computing paradigms. To succeed in both aspects, we have demonstrated non-volatile multi-level photonic memory avoiding the von Neumann bottleneck in the existing computing paradigm and a photonic synapse resembling the biological synapses for brain-inspired computing using phase-change materials (Ge2Sb2Te5).

  7. Review on phase change materials for building applications

    Directory of Open Access Journals (Sweden)

    Lavinia SOCACIU

    2014-11-01

    Full Text Available In nowadays, the Phase Change Material (PCM is a viable alternative for reducing the energy consumption and for increase the thermal comfort in buildings. The use of PCM in building applications provides the potential to increase the indoor thermal comfort for occupants due to the reduced indoor temperature fluctuations and lower global energy consumption. The possibility to incorporate the PCM into the material of construction for cooling and heating the buildings gained the interest of researchers from all the world because the PCM have a high heat of fusion, meaning it is capable to storing and release large amounts of energy in the form of heat during its melting and solidifying process at a specific temperature.

  8. Characterization of Concrete Mixes Containing Phase Change Materials

    Science.gov (United States)

    Paksoy, H.; Kardas, G.; Konuklu, Y.; Cellat, K.; Tezcan, F.

    2017-10-01

    Phase change materials (PCM) can be used in passive building applications to achieve near zero energy building goals. For this purpose PCM can be added in building structures and materials in different forms. Direct incorporation, form stabilization and microencapsulation are different forms used for PCM integration in building materials. In addition to thermal properties of PCM itself, there are several other criteria that need to be fulfilled for the PCM enhanced building materials. Mechanical properties, corrosive effects, morphology and thermal buffering have to be determined for reliable and long-term applications in buildings. This paper aims to give an overview of characterization methods used to determine these properties in PCM added fresh concrete mixes. Thermal, compressive strength, corrosion, and microscopic test results for concrete mixes with PCM are discussed.

  9. Color printing enabled by phase change materials on paper substrate

    Science.gov (United States)

    Ji, Hong-Kai; Tong, Hao; Qian, Hang; Liu, Nian; Xu, Ming; Miao, Xiang-Shui

    2017-12-01

    We have coated phase change materials (PCMs) on rough and flexible substrates to achieve multicolor changeable devices. The principle of the device is based on an earlier discovery that lights have strong interference effect in PCM films, leading to various colors by reflection. In this work, paper substrates are laminated by parylene layers to protect the device from water before coated with functional PCM films. The PCM-based color printing (PCP) on paper is not affected by rough surfaces and shows a similar color appearance as that on smooth surfaces. In particular, the color-printed device can be patterned by UV lithography to display a clear and tunable optical image, and it exhibits a low sensitivity to the angle of view. Such PCP has potential applications for low-cost, disposable, and flexible displays.

  10. TEM specimen preparation of a phase-change optical disk

    Science.gov (United States)

    Kouzaki

    2000-01-01

    It has been popular to use transmission electron microscopy (TEM) observation for investigating the microstructure of a phase-change optical disk. In the present work, a new method to prepare a plan-view TEM sample from a disk has been developed. In this method, a copper mesh is placed on a specific area of interest in the disk in advance and then the material is thinned down. By employing this procedure, it becomes possible for the first time to obtain foils that contain the specific area. Furthermore, an advanced method to prepare a cross-sectional TEM sample has also been developed, in which elimination of the polymer substrate is followed by ion milling. With this method, it is possible to prepare cross-sectional foils for high-resolution and analytical electron microscopy observations.

  11. Plastic phase change material and articles made therefrom

    Science.gov (United States)

    Abhari, Ramin

    2016-04-19

    The present invention generally relates to a method for manufacturing phase change material (PCM) pellets. The method includes providing a melt composition, including paraffin and a polymer. The paraffin has a melt point of between about 10.degree. C. and about 50.degree. C., and more preferably between about 18.degree. C. and about 28.degree. C. In one embodiment, the melt composition includes various additives, such as a flame retardant. The method further includes forming the melt composition into PCM pellets. The method further may include the step of cooling the melt to increase the melt viscosity before pelletizing. Further, PCM compounds are provided having an organic PCM and a polymer. Methods are provided to convert the PCM compounds into various form-stable PCMs. A method of coating the PCMs is included to provide PCMs with substantially no paraffin seepage and with ignition resistance properties.

  12. Self-tracking phase change concentrator device demonstrator

    Science.gov (United States)

    Zagolla, V.; Tremblay, E.; Moser, C.

    2014-10-01

    Concentration photovoltaic systems uses free-space optics to concentrate sunlight onto photovoltaic cells, using mechanical trackers to accurately track the sun's position and keep the focal spot on the PV cell. We recently proposed and demonstrated a proof-of concept of a self-tracking mechanism using a phase-change material to greatly extend the acceptance angle of the concentration device. The light responsive mechanism allows for efficient waveguide coupling and light concentration independent of the angle of incidence inside its angular range of acceptance. The system uses a lens pair to achieve a flat Petzval field curvature over the acceptance angle range. A waveguide slab acts as the concentrating device. The use of a dichroic prism membrane separates the solar spectrum into two parts, lower wavelengths (750nm) is used to power the self-tracking mechanism. The energy in this part of the spectrum is absorbed by a carbon black paraffin wax mixture that undergoes a phase change and subsequently creates a coupling feature due to thermal expansion which allows the lower wavelength part to be coupled into the waveguide. We show the extension of our proof-of concept to a device-like demonstrator, featuring the extension to a lens array and much larger dimensions. All parts of the proof-of-concept device have been upscaled to meet the requirements of a larger scale demonstrator. The demonstrator has an acceptance angle of +/- 16 degrees and can achieve an effective concentration factor of 20x. We present experimental and simulation results of the demonstration device.

  13. Changing arctic ecosystems—What is causing the rapid increase of snow geese in northern Alaska?

    Science.gov (United States)

    Hupp, Jerry W.; Ward, David H.; Whalen, Mary E.; Pearce, John M.

    2015-09-10

    Through the Changing Arctic Ecosystems (CAE) initiative, the U.S. Geological Survey (USGS) informs key resource management decisions for Arctic Alaska by providing scientific information on current and future ecosystem response to a warming climate. The Arctic Coastal Plain (ACP) of northern Alaska is a key study area within the USGS CAE initiative. This region has experienced a warming trend over the past decades, leading to decreased sea ice, permafrost thaw, and an advancement of spring phenology. The number of birds on the ACP also is changing, marked by increased populations of the four species of geese that nest in the region. The Snow Goose (Chen caerulescens) is the most rapidly increasing of these species. USGS CAE research is quantifying these changes and their implications for management agencies.

  14. Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material

    Science.gov (United States)

    Fumoto, Koji; Sato, Noriaki; Kawaji, Masahiro; Kawanami, Tsuyoshi; Inamura, Takao

    2014-10-01

    The primary objective of this study was to investigate the fundamental phase change characteristics of a nanoemulsion using differential scanning calorimetry (DSC). Tetradecane, which has a slightly higher melting point than water, was utilized as the phase change material for the nanoemulsion. The melting point of the nanoemulsion, the melting peak temperature, and latent heat were examined in detail. Regarding the fundamental phase change characteristics of the nanoemulsion, it was found that its phase change characteristics were strongly affected by the temperature-scanning rate of the DSC. Moreover, it was confirmed that the phase change behavior does not change with repeated solidification and melting.

  15. Rapid and noncontact photoacoustic tomography imaging system using an interferometer with high-speed phase modulation technique

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun [School of Physics and Telecom Engineering, South China Normal University, Guangzhou 510006 (China); Tang, Zhilie; Wu, Yongbo [School of Physics and Telecom Engineering, South China Normal University, Guangzhou 510006 (China); GuangDong Province Key Laboratory of Quantum Engineering and Quantum Materials, South China Normal University, IMOT, Guangzhou 510006 (China); Wang, Yi [School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004 (China)

    2015-04-15

    We designed, fabricated, and tested a rapid and noncontact photoacoustic tomography (PAT) imaging system using a low-coherence interferometer with high-speed phase modulation technique. Such a rapid and noncontact probing system can greatly decrease the time of imaging. The proposed PAT imaging system is experimentally verified by capturing images of a simulated tissue sample and the blood vessels within the ear flap of a mouse (pinna) in vivo. The axial and lateral resolutions of the system are evaluated at 45 and ∼15 μm, respectively. The imaging depth of the system is 1 mm in a special phantom. Our results show that the proposed system opens a promising way to realize noncontact, real-time PAT.

  16. A rapid method of monitoring the acute phase response in a rat model

    African Journals Online (AJOL)

    collectively as the acute phase response (APR), take place. This response ... The blood samples (in Eppendorf tubes) were chilled on ice ... MG in the samples. The latter were then corrected for a sample volume of 200 JJI and the weights of MG in the two spiked samples recovered were calculated from their difference from ...

  17. Rapid amplitude-phase reconstruction of femtosecond pulses from intensity autocorrelation and spectrum

    NARCIS (Netherlands)

    Baltuška, Andrius; Pugžlys, Audrius; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    1999-01-01

    The retrieval of time-dependent intensity and phase of femtosecond laser pulses is a long standing problem. To date, frequency-resolved optical gating (FROG) is probably the most trustworthy pulse measurement method. However, it requires a substantial experimental and numerical involvement. This

  18. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John

    2014-01-01

    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  19. Young's modulus and residual stress of GeSbTe phase-change thin films

    NARCIS (Netherlands)

    Nazeer, H.; Bhaskaran, Harish; Woldering, L.A.; Abelmann, Leon

    2015-01-01

    The mechanical properties of phase change materials alter when the phase is transformed. In this paper, we report on experiments that determine the change in crucial parameters such as Young's modulus and residual stress for two of the most widely employed compositions of phase change films,

  20. Contact resistance of TiW to phase change material in the amorphous and crystalline states

    NARCIS (Netherlands)

    Roy, D.; in ‘t Zandt, M.A.A.; Wolters, Robertus A.M.; Timmering, C.E.; Klootwijk, J.H.

    2009-01-01

    Electrical characterisation of metal to Phase Change Material (PCM) contacts is necessary for optimum power transfer during switching of a Phase Change Random Access Memory (PCRAM) cell. In this article, titanium tungsten (Ti0.3W0.7) to two phase change materials; doped-Sb2Te and Ge2Sb2Te5 are

  1. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to

  2. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarad; H. Yasuhara; A. Alajmi

    2002-04-20

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray micro-tomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in

  3. Rapid Holocene coastal change revealed by high-resolution micropaleontological analysis, Pamlico Sound, North Carolina, USA

    Science.gov (United States)

    Grand, Pre C.; Culver, S.J.; Mallinson, D.J.; Farrell, K.M.; Corbett, D.R.; Horton, B.P.; Hillier, C.; Riggs, S.R.; Snyder, S.W.; Buzas, M.A.

    2011-01-01

    Foraminiferal analyses of 404 contiguous samples, supported by diatom, lithologic, geochronologic and seismic data, reveal both rapid and gradual Holocene paleoenvironmental changes in an 8.21-m vibracore taken from southern Pamlico Sound, North Carolina. Data record initial flooding of a latest Pleistocene river drainage and the formation of an estuary 9000. yr ago. Estuarine conditions were punctuated by two intervals of marine influence from approximately 4100 to 3700 and 1150 to 500. cal. yr BP. Foraminiferal assemblages in the muddy sand facies that accumulated during these intervals contain many well-preserved benthic foraminiferal species, which occur today in open marine settings as deep as the mid shelf, and significant numbers of well-preserved planktonic foraminifera, some typical of Gulf Stream waters. We postulate that these marine-influenced units resulted from temporary destruction of the southern Outer Banks barrier islands by hurricanes. The second increase in marine influence is coeval with increased rate of sea-level rise and a peak in Atlantic tropical cyclone activity during the Medieval Climate Anomaly. This high-resolution analysis demonstrates the range of environmental variability and the rapidity of coastal change that can result from the interplay of changing climate, sea level and geomorphology in an estuarine setting. ?? 2011 University of Washington.

  4. Modulators of mercury risk to wildlife and humans in the context of rapid global change

    Science.gov (United States)

    Eagles-Smith, Collin A.; Silbergeld, Ellen K.; Basu, Niladri; Bustamante, Paco; Diaz-Barriga, Fernando; Hopkins, William A.; Kidd, Karen A.; Nyland, Jennifer F.

    2018-01-01

    Environmental mercury (Hg) contamination is an urgent global health threat. The complexity of Hg in the environment can hinder accurate determination of ecological and human health risks, particularly within the context of the rapid global changes that are altering many ecological processes, socioeconomic patterns, and other factors like infectious disease incidence, which can affect Hg exposures and health outcomes. However, the success of global Hg-reduction efforts depends on accurate assessments of their effectiveness in reducing health risks. In this paper, we examine the role that key extrinsic and intrinsic drivers play on several aspects of Hg risk to humans and organisms in the environment. We do so within three key domains of ecological and human health risk. First, we examine how extrinsic global change drivers influence pathways of Hg bioaccumulation and biomagnification through food webs. Next, we describe how extrinsic socioeconomic drivers at a global scale, and intrinsic individual-level drivers, influence human Hg exposure. Finally, we address how the adverse health effects of Hg in humans and wildlife are modulated by a range of extrinsic and intrinsic drivers within the context of rapid global change. Incorporating components of these three domains into research and monitoring will facilitate a more holistic understanding of how ecological and societal drivers interact to influence Hg health risks.

  5. Rapid transgenerational acclimation of a tropical reef fish to climate change

    Science.gov (United States)

    Donelson, J. M.; Munday, P. L.; McCormick, M. I.; Pitcher, C. R.

    2012-01-01

    Understanding the capacity of species to acclimate and adapt to expected temperature increases is critical for making predictions about the biological impacts of global warming, yet it is one of the least certain aspects of climate change science. Tropical species are considered to be especially sensitive to climate change because they live close to their thermal maximum and exhibit limited capacity for acclimation. Here, we demonstrate that a tropical reef fish is highly sensitive to small increases in water temperature, but can rapidly acclimate over multiple generations. Acute exposure to elevated temperatures (+1.5°C and +3.0°C) predicted to occur this century caused a 15% and 30% respective decrease in individual's maximum ability to perform aerobic activities such as swimming or foraging, known as aerobic scope. However, complete compensation in aerobic scope occurred when both parents and offspring were reared throughout their lives at elevated temperature. Such acclimation could reduce the impact of warming temperatures and allow populations to persist across their current range. This study reveals the importance of transgenerational acclimation as a mechanism for coping with rapid climate change and highlights that single generation studies risk underestimating the potential of species to cope.

  6. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    Science.gov (United States)

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast

  7. Wiki management a revolutionary new model for a rapidly changing and collaborative world

    CERN Document Server

    Collins, Rod

    2013-01-01

    We now live in a "wiki" world where mass collaboration is not only possible-it's often the best solution. Conventional management thought assumes that command-and-control is the most effective way to organize the efforts of large numbers of people, but rapid change and increasing complexity have rendered that model obsolete. As a result, most managers today lack the skills and knowledge needed to succeed in an age when networks are proving smarter and faster than hierarchies. Designing organizations for mass collaboration demands a new and very different model-wiki management.

  8. Experiences of Families Transmitting Values in a Rapidly Changing Society: Implications for Family Therapists.

    Science.gov (United States)

    Akyil, Yudum; Prouty, Anne; Blanchard, Amy; Lyness, Kevin

    2016-06-01

    Intergenerational value transmission affects parent-child relationships and necessitates constant negotiation in families. Families with adolescents from rapidly changing societies face unique challenges in balancing the traditional collectivistic family values that promote harmony with emerging values that promote autonomy. Using modern Turkey as an example of such a culture, the authors examine the transmission process in families that hold more traditional and collectivistic values than their adolescent children. Special consideration is given to generational and cultural differences in the autonomy and relatedness dimensions. © 2015 Family Process Institute.

  9. Electrode Probes for the Rapid Assay of Seafood Toxicants. Phase 1

    Science.gov (United States)

    1990-03-01

    probes can provide rapid analyte determination in complex samples such as blood. For instance, diabetics can now use an electrochemical enzyme...control was incorporated in which there was no aOA/POD; 50 A1 PBS-Tween and 50 p1 of MeOH (45% in aquo ) were incubated for 30 minutes as above. The... complex samples such as fish tissue, urine and blood. 18 Referenoes (1) The Merck Index, loth Edition, M. Windholz, S. Budavari, R.F. Blumetti and E.S

  10. Phase change thermal control materials, method and apparatus

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    An apparatus and method for metabolic cooling and insulation of a user in a cold environment. In its preferred embodiment the apparatus is a highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The apparatus can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The apparatus may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the apparatus also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  11. Flexible composite material with phase change thermal storage

    Science.gov (United States)

    Buckley, Theresa M. (Inventor)

    2001-01-01

    A highly flexible composite material having a flexible matrix containing a phase change thermal storage material. The composite material can be made to heat or cool the body or to act as a thermal buffer to protect the wearer from changing environmental conditions. The composite may also include an external thermal insulation layer and/or an internal thermal control layer to regulate the rate of heat exchange between the composite and the skin of the wearer. Other embodiments of the PCM composite also provide 1) a path for evaporation or direct absorption of perspiration from the skin of the wearer for improved comfort and thermal control, 2) heat conductive pathways within the material for thermal equalization, 3) surface treatments for improved absorption or rejection of heat by the material, and 4) means for quickly regenerating the thermal storage capacity for reuse of the material. Applications of the composite materials are also described which take advantage of the composite's thermal characteristics. The examples described include a diver's wet suit, ski boot liners, thermal socks, ,gloves and a face mask for cold weather activities, and a metabolic heating or cooling blanket useful for treating hypothermia or fever patients in a medical setting and therapeutic heating or cooling orthopedic joint supports.

  12. FPGA-based prototype storage system with phase change memory

    Science.gov (United States)

    Li, Gezi; Chen, Xiaogang; Chen, Bomy; Li, Shunfen; Zhou, Mi; Han, Wenbing; Song, Zhitang

    2016-10-01

    With the ever-increasing amount of data being stored via social media, mobile telephony base stations, and network devices etc. the database systems face severe bandwidth bottlenecks when moving vast amounts of data from storage to the processing nodes. At the same time, Storage Class Memory (SCM) technologies such as Phase Change Memory (PCM) with unique features like fast read access, high density, non-volatility, byte-addressability, positive response to increasing temperature, superior scalability, and zero standby leakage have changed the landscape of modern computing and storage systems. In such a scenario, we present a storage system called FLEET which can off-load partial or whole SQL queries to the storage engine from CPU. FLEET uses an FPGA rather than conventional CPUs to implement the off-load engine due to its highly parallel nature. We have implemented an initial prototype of FLEET with PCM-based storage. The results demonstrate that significant performance and CPU utilization gains can be achieved by pushing selected query processing components inside in PCM-based storage.

  13. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program.

    Science.gov (United States)

    Qu, Su; Olafsrud, Solveig Mjelstad; Meza-Zepeda, Leonardo A; Saatcioglu, Fahri

    2013-01-01

    One of the most common integrative medicine (IM) modalities is yoga and related practices. Previous work has shown that yoga may improve wellness in healthy people and have benefits for patients. However, the mechanisms of how yoga may positively affect the mind-body system are largely unknown. Here we have assessed possible rapid changes in global gene expression profiles in the peripheral blood mononuclear cells (PBMCs) in healthy people that practiced either a comprehensive yoga program or a control regimen. The experimental sessions included gentle yoga postures, breathing exercises, and meditation (Sudarshan Kriya and Related Practices--SK&P) compared with a control regimen of a nature walk and listening to relaxing music. We show that the SK&P program has a rapid and significantly greater effect on gene expression in PBMCs compared with the control regimen. These data suggest that yoga and related practices result in rapid gene expression alterations which may be the basis for their longer term cell biological and higher level health effects.

  14. Rapid gene expression changes in peripheral blood lymphocytes upon practice of a comprehensive yoga program.

    Directory of Open Access Journals (Sweden)

    Su Qu

    Full Text Available One of the most common integrative medicine (IM modalities is yoga and related practices. Previous work has shown that yoga may improve wellness in healthy people and have benefits for patients. However, the mechanisms of how yoga may positively affect the mind-body system are largely unknown. Here we have assessed possible rapid changes in global gene expression profiles in the peripheral blood mononuclear cells (PBMCs in healthy people that practiced either a comprehensive yoga program or a control regimen. The experimental sessions included gentle yoga postures, breathing exercises, and meditation (Sudarshan Kriya and Related Practices--SK&P compared with a control regimen of a nature walk and listening to relaxing music. We show that the SK&P program has a rapid and significantly greater effect on gene expression in PBMCs compared with the control regimen. These data suggest that yoga and related practices result in rapid gene expression alterations which may be the basis for their longer term cell biological and higher level health effects.

  15. Development of a Rapid Cell-free Method for Cytotoxicity Assessment of Vapor Phase of Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Cahours X

    2014-12-01

    Full Text Available Currently, several in vitro tests are widely used to measure toxicological properties of mainstream smoke (Neutral Red Uptake Assay, Micronucleus assay, Ames Test. These tests are necessary to assess cytotoxicity, genotoxicity, and mutagenicity, but are time consuming. This is essentially due to the preparation and the handling of cells. It is difficult to use these in vitro tests as screening method for product testing and development. For a better assessment of the cytotoxicity of the vapor phase, a rapid cell-free method has been developed. This paper describes a capillary electrophoresis cell-free method, based on the depletion of an anti-oxidant L-gamma-glutamyl-L-cysteinylglycine (GSH, applied to an aliquot of vapor phase phosphate buffered saline (PBS-trapped cigarette smoke (as recommended for in vitro testing. The correlation between this method and the survival/viability test (Neutral Red cytotoxicity is excellent (coefficient of correlation (r = 0.99.

  16. A rapid and rational approach to generating isomorphous heavy-atom phasing derivatives.

    Science.gov (United States)

    Lu, Jinghua; Sun, Peter D

    2014-09-01

    In attempts to replace the conventional trial-and-error heavy-atom derivative search method with a rational approach, we previously defined heavy metal compound reactivity against peptide ligands. Here, we assembled a composite pH- and buffer-dependent peptide reactivity profile for each heavy metal compound to guide rational heavy-atom derivative search. When knowledge of the best-reacting heavy-atom compound is combined with mass spectrometry assisted derivatization, and with a quick-soak method to optimize phasing, it is likely that the traditional heavy-atom compounds could meet the demand of modern high-throughput X-ray crystallography. As an example, we applied this rational heavy-atom phasing approach to determine a previously unknown mouse serum amyloid A2 crystal structure. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  17. Quatification of Primary Phase Undercooling of Rapidly Solidified Droplets with 3D Microtomography

    Science.gov (United States)

    Ilbagi, A.; Khatibi, P. Delshad; Henein, H.; Gandin, Ch. A.; Herlach, D. M.

    Powders of different compositions of Al-Cu alloys were atomized in helium and nitrogen and the microstructure of the atomized droplets was examined using X-ray micro-tomography. A method was developed to remove X-ray artifacts and background noise from the particles images. The method developed involves creating a clean mask file using MATLAB image toolbox, followed by applying the mask file to the original image to achieve clean images for the particle of interest. Separate features of interest in the droplets, such as region of initial growth and primary dendrites, were investigated at the various stages of solidification. The data is used to estimate the primary phase undercooling of the droplets, which will be used in a solidification model as an input to estimate the phase fractions. The results will then be compared with the experimental results.

  18. Rapid purification of diastereoisomers from Piper kadsura using supercritical fluid chromatography with chiral stationary phases.

    Science.gov (United States)

    Xin, Huaxia; Dai, Zhuoshun; Cai, Jianfeng; Ke, Yanxiong; Shi, Hui; Fu, Qing; Jin, Yu; Liang, Xinmiao

    2017-08-04

    Supercritical fluid chromatography (SFC) with chiral stationary phases (CSPs) is an advanced solution for the separation of achiral compounds in Piper kadsura. Analogues and stereoisomers are abundant in natural products, but there are obstacles in separation using conventional method. In this paper, four lignan diastereoisomers, (-)-Galbelgin, (-)-Ganschisandrin, Galgravin and (-)-Veraguensin, from Piper kadsura were separated and purified by chiral SFC. Purification strategy was designed, considering of the compound enrichment, sample purity and purification throughput. Two-step achiral purification method on chiral preparative columns with stacked automated injections was developed. Unconventional mobile phase modifier dichloromethane (DCM) was applied to improve the sample solubility. Four diastereoisomers was prepared at the respective weight of 103.1mg, 10.0mg, 152.3mg and 178.6mg from 710mg extract with the purity of greater than 98%. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Changes in head posture after rapid maxillary expansion in patients with nasopharyngeal obstruction

    Directory of Open Access Journals (Sweden)

    Kjurchieva-Chuchkova G

    2016-09-01

    Full Text Available Introduction: Nasopharyngeal obstruction is an important etiologic factor in the development of an extreme vertical growth facial pattern, and insufficient transversal growth of the maxilla. The treatment outcomes associated with rapid maxillary expansion in the literature are mainly discussed in terms of changes in dentofacial morphology, without special reference to changes in the pharyngeal airway, the position of the mandible, hyoid bone and the tongue. Aim: The aim of this study was to evaluate the effects of rapid maxillary expansion (RME, on changes in head posture and airway dimension. Materials and methods: The cephalometric evaluation was conducted on thirty lateral cephalograms of patients with nasopharyngeal obstruction (mean age 9.11 years; standard deviation (SD ± 2.0; range 8-14 years treated with appliance for rapid maxillary expansion. Patients were randomly divided into two groups: 1 study group comprised of 15 patients treated with RME immediately after the first visit; 2 a control group comprised of 15 subjects monitored for approximately 12 months prior to commencing therapy, who became untreated controls. Lateral cephalograms, taken in the natural head position, were obtained at the first visit and 6 months later for all subjects. Six angular measurements were measured to describe craniocervical angulation, and five linear measurements were measured to describe airway dimension. Results: The investigated group treated with RME shows a statistically significant decrease in craniocervical angulation, especially at the angle of interaction between palatal plane and the tangent odontoid processus (4.07 degrees, for PP/OPT angle and angle interaction between palatal plane and the tangent of cervical vertebra (4.95 degrees for PP/CVT angle. Airway dimension in the treated group increased, especially at the levels PNS-ad1 (2.52 mm, ve-pve (2.97 mm, and uv-puv (2.88 mm. No significant changes were observed in the control group

  20. Sinterable Ceramic Powders from Laser Heated Gas Phase Reactions and Rapidly Solidified Ceramic Materials.

    Science.gov (United States)

    1984-07-01

    Gattuso, T. R., Meunier, M., Adler, D., and Haggerty, J. S., "IR Laser- Induced Deposition of Silicon Thin Films ", to be published in the Proceedings of...and Thin Films by Laser Induced Gas Phase Reactions", presented at the Nineteenth University Conference on Ceramic Science, Emergent Process Methods... Silicon Carbonitrides from Monomeric Organosilicon Precursors". To be presented at the 1983 Annual Meeting of the American Ceramic Society, April 1983

  1. Rapid amplitude-phase reconstruction of femtosecond pulses from intensity autocorrelation and spectrum

    OpenAIRE

    Baltuška, Andrius; Pugžlys, Audrius; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    1999-01-01

    The retrieval of time-dependent intensity and phase of femtosecond laser pulses is a long standing problem. To date, frequency-resolved optical gating (FROG) is probably the most trustworthy pulse measurement method. However, it requires a substantial experimental and numerical involvement. This motivates the quest for other simpler high-fidelity pulse measuring techniques. We present a new method of deciphering the pulse structure from the intensity autocorrelation trace and the intensity sp...

  2. Rapid changes in the light/dark cycle disrupt memory of conditioned fear in mice.

    Directory of Open Access Journals (Sweden)

    Dawn H Loh

    Full Text Available BACKGROUND: Circadian rhythms govern many aspects of physiology and behavior including cognitive processes. Components of neural circuits involved in learning and memory, e.g., the amygdala and the hippocampus, exhibit circadian rhythms in gene expression and signaling pathways. The functional significance of these rhythms is still not understood. In the present study, we sought to determine the impact of transiently disrupting the circadian system by shifting the light/dark (LD cycle. Such "jet lag" treatments alter daily rhythms of gene expression that underlie circadian oscillations as well as disrupt the synchrony between the multiple oscillators found within the body. METHODOLOGY/PRINCIPAL FINDINGS: We subjected adult male C57Bl/6 mice to a contextual fear conditioning protocol either before or after acute phase shifts of the LD cycle. As part of this study, we examined the impact of phase advances and phase delays, and the effects of different magnitudes of phase shifts. Under all conditions tested, we found that recall of fear conditioned behavior was specifically affected by the jet lag. We found that phase shifts potentiated the stress-evoked corticosterone response without altering baseline levels of this hormone. The jet lag treatment did not result in overall sleep deprivation, but altered the temporal distribution of sleep. Finally, we found that prior experience of jet lag helps to compensate for the reduced recall due to acute phase shifts. CONCLUSIONS/SIGNIFICANCE: Acute changes to the LD cycle affect the recall of fear-conditioned behavior. This suggests that a synchronized circadian system may be broadly important for normal cognition and that the consolidation of memories may be particularly sensitive to disruptions of circadian timing.

  3. Multi-Phase Fracture-Matrix Interactions Under Stress Changes

    Energy Technology Data Exchange (ETDEWEB)

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-12-07

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the

  4. Ecological Pleiotropy Suppresses the Dynamic Feedback Generated by a Rapidly Changing Trait.

    Science.gov (United States)

    DeLong, John P

    2017-05-01

    Population dynamics may carry a signature of an ecology-evolution-ecology feedback, known as eco-evolutionary dynamics, when functionally important traits change. Given current theory, the absence of a feedback from a trait with strong links to species interactions should not occur. In a previous study with the Didinium-Paramecium predator-prey system, however, rapid and large-magnitude changes in predator cell volume occurred without any noticeable effect on the population dynamics. Here I resolve this theory-data conflict by showing that ecological pleiotropy-when a trait has more than one functional effect on an ecological process-suppresses shifts in dynamics that would arise, given the links between cell volume and the species interaction. Whether eco-evolutionary dynamics arise, therefore, depends not just on the ecology-evolution feedback but on the net effect that a trait has on different parts of the underlying interaction.

  5. MRI evaluation of body composition changes in wrestlers undergoing rapid weight loss.

    Science.gov (United States)

    Kukidome, T; Shirai, K; Kubo, J; Matsushima, Y; Yanagisawa, O; Homma, T; Aizawa, K

    2008-10-01

    Changes in body composition of college wrestlers undergoing rapid weight reduction were evaluated over time using magnetic resonance imaging (MRI). This study evaluated 12 wrestlers (male, 18-22 years of age) who participated in Japan's 2005 intercollegiate wrestling tournament. For this study, MRI (of the right femoral region and the trunk), as well as measurements of body weight, body fat percentage and body water content, were performed 1 month and 1 week prior to the weigh-in, on the day of the weigh-in, on the day of the match (after the match), and 1 week after the weigh-in. A survey of food and fluid intake was also conducted. Several variables were significantly lower on the day of the weigh-in than one month prior: body weight (pfat (pmuscle, and trunk fat; quadriceps muscle; lower subcutaneous; and food intake (pweight reduction reduced the wrestlers' cross-sectional areas of muscle and fat tissues, which tended to recover through rehydration after the weigh-in. These results suggest that rapid weight reduction of wrestlers induced changes in different regions of the body.

  6. Health Systems Research in a Complex and Rapidly Changing Context: Ethical Implications of Major Health Systems Change at Scale.

    Science.gov (United States)

    MacGregor, Hayley; Bloom, Gerald

    2016-12-01

    This paper discusses health policy and systems research in complex and rapidly changing contexts. It focuses on ethical issues at stake for researchers working with government policy makers to provide evidence to inform major health systems change at scale, particularly when the dynamic nature of the context and ongoing challenges to the health system can result in unpredictable outcomes. We focus on situations where 'country ownership' of HSR is relatively well established and where there is significant involvement of local researchers and close ties and relationships with policy makers are often present. We frame our discussion around two country case studies with which we are familiar, namely China and South Africa and discuss the implications for conducting 'embedded' research. We suggest that reflexivity is an important concept for health system researchers who need to think carefully about positionality and their normative stance and to use such reflection to ensure that they can negotiate to retain autonomy, whilst also contributing evidence for health system change. A research process informed by the notion of reflexive practice and iterative learning will require a longitudinal review at key points in the research timeline. Such review should include the convening of a deliberative process and should involve a range of stakeholders, including those most likely to be affected by the intended and unintended consequences of change. © 2016 The Authors Developing World Bioethics Published by John Wiley & Sons Ltd.

  7. Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics.

    Science.gov (United States)

    Eisen, Rebecca J; Bearden, Scott W; Wilder, Aryn P; Montenieri, John A; Antolin, Michael F; Gage, Kenneth L

    2006-10-17

    Plague is a highly virulent disease believed to have killed millions during three historic human pandemics. Worldwide, it remains a threat to humans and is a potential agent of bioterrorism. Dissemination of Yersinia pestis, the etiological agent of plague, by blocked fleas has been the accepted paradigm for flea-borne transmission. However, this mechanism, which requires a lengthy extrinsic incubation period before a short infectious window often followed by death of the flea, cannot sufficiently explain the rapid rate of spread that typifies plague epidemics and epizootics. Inconsistencies between the expected rate of spread by blocked rat fleas and that observed during the Black Death has even caused speculation that plague was not the cause of this medieval pandemic. We used the primary vector to humans in North America, Oropsylla montana, which rarely becomes blocked, as a model for studying alternative flea-borne transmission mechanisms. Our data revealed that, in contrast to the classical blocked flea model, O. montana is immediately infectious, transmits efficiently for at least 4 d postinfection (early phase) and may remain infectious for a long time because the fleas do not suffer block-induced mortality. These factors match the criteria required to drive plague epizootics as defined by recently published mathematical models. The scenario of efficient early-phase transmission by unblocked fleas described in our study calls for a paradigm shift in concepts of how Y. pestis is transmitted during rapidly spreading epizootics and epidemics, including, perhaps, the Black Death.

  8. Environmental influences on the at-sea behaviour of a major consumer, Mirounga leonina, in a rapidly changing environment

    Directory of Open Access Journals (Sweden)

    Trevor McIntyre

    2014-11-01

    Full Text Available Understanding the distribution and foraging ecology of major consumers within pelagic systems, specifically in relation to physical parameters, can be important for the management of bentho-pelagic systems undergoing rapid change associated with global climate change and other anthropogenic disturbances such as fishing (i.e., the Antarctic Peninsula and Scotia Sea. We tracked 11 adult male southern elephant seals (Mirounga leonina, during their five-month post-moult foraging migrations from King George Island (Isla 25 de Mayo, northern Antarctic Peninsula, using tags capable of recording and transmitting behavioural data and in situ temperature and salinity data. Seals foraged mostly within the Weddell–Scotia Confluence, while a few foraged along the western Antarctic Peninsula shelf of the Bellingshausen Sea. Mixed model outputs suggest that the at-sea behaviour of seals was associated with a number of environmental parameters, especially seafloor depth, sea-ice concentrations and the temperature structure of the water column. Seals increased dive bottom times and travelled at slower speeds in shallower areas and areas with increased sea-ice concentrations. Changes in dive depth and durations, as well as relative amount of time spent during the bottom phases of dives, were observed in relation to differences in overall temperature gradient, likely as a response to vertical changes in prey distribution associated with temperature stratification in the water column. Our results illustrate the likely complex influences of bathymetry, hydrography and sea ice on the behaviour of male southern elephant seals in a changing environment and highlight the need for region-specific approaches to studying environmental influences on behaviour.

  9. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography

    Science.gov (United States)

    Koulakov, Ivan; Gordeev, Evgeniy I.; Dobretsov, Nikolay L.; Vernikovsky, Valery A.; Senyukov, Sergey; Jakovlev, Andrey; Jaxybulatov, Kayrly

    2013-08-01

    We present the results of time-dependent local earthquake tomography for the Kluchevskoy group of volcanoes in Kamchatka, Russia. We consider the time period from 1999 to 2009, which covers several stages of activity of Kluchevskoy and Bezymianny volcanoes. The results are supported by synthetic tests that recover a common 3D model based on data corresponding to different time windows. Throughout the period, we observe a robust feature below 25 km depth with anomalously high Vp/Vs values (up to 2.2). We interpret this feature as a channel bringing deep mantle materials with high fluid and melt content to the bottom of the crust. This mantle channel directly or indirectly determines the activity of all volcanoes of the Kluchevskoy group. In the crust, we model complex structure that varies over time. During the pre-eruptive period, we detected two levels of potential magma storage: one in the middle crust at 10-12 km depth and one close to the surface just below Kluchevskoy volcano. In 2005, a year of powerful eruptions of Kluchevskoy and Besymiyanny volcanoes, we observe a general increase in Vp/Vs throughout the crust. In the relaxation period following the eruption, the Vp/Vs values are generally low, and no strong anomalous zones in the crust are observed. We propose that very rapid variations in Vp/Vs are most likely due to abrupt changes in the stress and deformation states, which cause fracturing and the active transport of fluids. These fluids drive more fracturing in a positive feedback system that ultimately leads to eruption. We envision the magma reservoirs beneath the Kluchevskoy group as sponge-structured volumes that may quickly change the content of the molten phases as fluids pulse rapidly through the system.

  10. A simple and rapid method for standard preparation of gas phase extract of cigarette smoke.

    Directory of Open Access Journals (Sweden)

    Tsunehito Higashi

    Full Text Available Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE. CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS. An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤ 15 mg/ml showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥ 20 mg/ml, the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml.

  11. A Simple and Rapid Method for Standard Preparation of Gas Phase Extract of Cigarette Smoke

    Science.gov (United States)

    Higashi, Tsunehito; Mai, Yosuke; Noya, Yoichi; Horinouchi, Takahiro; Terada, Koji; Hoshi, Akimasa; Nepal, Prabha; Harada, Takuya; Horiguchi, Mika; Hatate, Chizuru; Kuge, Yuji; Miwa, Soichi

    2014-01-01

    Cigarette smoke consists of tar and gas phase: the latter is toxicologically important because it can pass through lung alveolar epithelium to enter the circulation. Here we attempt to establish a standard method for preparation of gas phase extract of cigarette smoke (CSE). CSE was prepared by continuously sucking cigarette smoke through a Cambridge filter to remove tar, followed by bubbling it into phosphate-buffered saline (PBS). An increase in dry weight of the filter was defined as tar weight. Characteristically, concentrations of CSEs were represented as virtual tar concentrations, assuming that tar on the filter was dissolved in PBS. CSEs prepared from smaller numbers of cigarettes (original tar concentrations ≤15 mg/ml) showed similar concentration-response curves for cytotoxicity versus virtual tar concentrations, but with CSEs from larger numbers (tar ≥20 mg/ml), the curves were shifted rightward. Accordingly, the cytotoxic activity was detected in PBS of the second reservoir downstream of the first one with larger numbers of cigarettes. CSEs prepared from various cigarette brands showed comparable concentration-response curves for cytotoxicity. Two types of CSEs prepared by continuous and puff smoking protocols were similar regarding concentration-response curves for cytotoxicity, pharmacology of their cytotoxicity, and concentrations of cytotoxic compounds. These data show that concentrations of CSEs expressed by virtual tar concentrations can be a reference value to normalize their cytotoxicity, irrespective of numbers of combusted cigarettes, cigarette brands and smoking protocols, if original tar concentrations are ≤15 mg/ml. PMID:25229830

  12. A multiplexed microfluidic toolbox for the rapid optimization of affinity-driven partition in aqueous two phase systems.

    Science.gov (United States)

    Bras, Eduardo J S; Soares, Ruben R G; Azevedo, Ana M; Fernandes, Pedro; Arévalo-Rodríguez, Miguel; Chu, Virginia; Conde, João P; Aires-Barros, M Raquel

    2017-09-15

    Antibodies and other protein products such as interferons and cytokines are biopharmaceuticals of critical importance which, in order to be safely administered, have to be thoroughly purified in a cost effective and efficient manner. The use of aqueous two-phase extraction (ATPE) is a viable option for this purification, but these systems are difficult to model and optimization procedures require lengthy and expensive screening processes. Here, a methodology for the rapid screening of antibody extraction conditions using a microfluidic channel-based toolbox is presented. A first microfluidic structure allows a simple negative-pressure driven rapid screening of up to 8 extraction conditions simultaneously, using less than 20μL of each phase-forming solution per experiment, while a second microfluidic structure allows the integration of multi-step extraction protocols based on the results obtained with the first device. In this paper, this microfluidic toolbox was used to demonstrate the potential of LYTAG fusion proteins used as affinity tags to optimize the partitioning of antibodies in ATPE processes, where a maximum partition coefficient (K) of 9.2 in a PEG 3350/phosphate system was obtained for the antibody extraction in the presence of the LYTAG-Z dual ligand. This represents an increase of approx. 3.7 fold when compared with the same conditions without the affinity molecule (K=2.5). Overall, this miniaturized and versatile approach allowed the rapid optimization of molecule partition followed by a proof-of-concept demonstration of an integrated back extraction procedure, both of which are critical procedures towards obtaining high purity biopharmaceuticals using ATPE. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Experimental Investigation of Ice Phase Change Material Heat Exchangers

    Science.gov (United States)

    Leimkuehler, Thomas O.; Stephan, Ryan A.

    2012-01-01

    Phase change materials (PCM) may be useful for spacecraft thermal control systems that involve cyclical heat loads or cyclical thermal environments. Thermal energy can be stored in the PCM during peak heat loads or in adverse thermal environments. The stored thermal energy can then be released later during minimum heat loads or in more favorable thermal environments. This can result in a decreased turndown ratio for the radiator and a reduced system mass. The use of water as a PCM rather than the more traditional paraffin wax has the potential for significant mass reduction since the latent heat of formation of water is approximately 70% greater than that of wax. One of the potential drawbacks of using ice as a PCM is its potential to rupture its container as water expands upon freezing. In order to develop a space qualified ice PCM heat exchanger, failure mechanisms must first be understood. Therefore, a methodical experimental investigation has been undertaken to demonstrate and document specific failure mechanisms due to ice expansion in the PCM. A number of ice PCM heat exchangers were fabricated and tested. Additionally, methods for controlling void location in order to reduce the risk of damage due to ice expansion were investigated. This paper presents an overview of the results of this investigation from the past three years.

  14. Water Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Ribik B.; Atwell, Matt; Cheek, Ann; Agarwal, Muskan; Hong, Steven; Patel, Aashini,; Nguyen, Lisa; Posada, Luciano

    2014-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft’s radiators are not sized to reject the full heat load requirement. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a “topper” to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HXs do not use a consumable, thereby leading to reduced launch mass and volume requirements. Studies conducted in this paper investigate utilizing water’s high latent heat of formation as a PCM, as opposed to traditional waxes, and corresponding complications surrounding freezing water in an enclosed volume. Work highlighted in this study is primarily visual and includes understanding ice formation, freeze front propagation, and the solidification process of water/ice. Various test coupons were constructed of copper to emulate the interstitial pin configuration (to aid in conduction) of the proposed water PCM HX design. Construction of a prototypic HX was also completed in which a flexible bladder material and interstitial pin configurations were tested. Additionally, a microgravity flight was conducted where three copper test articles were frozen continuously during microgravity and 2-g periods and individual water droplets were frozen during microgravity.

  15. Continued Water-Based Phase Change Material Heat Exchanger Development

    Science.gov (United States)

    Hansen, Scott W.; Sheth, Rubik B.; Poynot, Joe; Giglio, Tony; Ungar, Gene K.

    2015-01-01

    In a cyclical heat load environment such as low Lunar orbit, a spacecraft's radiators are not sized to meet the full heat rejection demands. Traditionally, a supplemental heat rejection device (SHReD) such as an evaporator or sublimator is used to act as a "topper" to meet the additional heat rejection demands. Utilizing a Phase Change Material (PCM) heat exchanger (HX) as a SHReD provides an attractive alternative to evaporators and sublimators as PCM HX's do not use a consumable, thereby leading to reduced launch mass and volume requirements. In continued pursuit of water PCM HX development two full-scale, Orion sized water-based PCM HX's were constructed by Mezzo Technologies. These HX's were designed by applying prior research on freeze front propagation to a full-scale design. Design options considered included bladder restraint and clamping mechanisms, bladder manufacturing, tube patterns, fill/drain methods, manifold dimensions, weight optimization, and midplate designs. Two units, Units A and B, were constructed and differed only in their midplate design. Both units failed multiple times during testing. This report highlights learning outcomes from these tests and are applied to a final sub-scale PCM HX which is slated to be tested on the ISS in early 2017.

  16. Freezing Point Depressions of Phase Change CO2 Solvents

    DEFF Research Database (Denmark)

    Arshad, Muhammad Waseem; Fosbøl, Philip Loldrup; von Solms, Nicolas

    2013-01-01

    Freezing point depressions (FPD) in phase change solvents containing 2-(diethylamino)ethanol (DEEA) and 3-(methylamino)propylamine (MAPA) were measured using a modified Beckmann apparatus. The measurements were performed for the binary aqueous DEEA and MAPA solutions, respectively......, in the concentration ranges of (0 to 55) mass percent and (0 to 32.5) mass percent of amine. For the ternary aqueous DEEA–MAPA solutions, freezing points were measured for 5:1, 3:1, 1:1, 1:3, and 1:5 molar ratios of DEEA/MAPA. The FPD method was extended for easy and accurate measurement of freezing points in the CO2...... loaded systems. It is based on saturation of the solution by CO2 and then dilution by using a batch of the original unloaded solution in order to get the solutions with different CO2 loadings. Freezing point measurements were then carried out for (12, 20, 30, and 33) mass percent DEEA solutions and (10...

  17. Electrical conduction in chalcogenide glasses of phase change memory

    Science.gov (United States)

    Nardone, M.; Simon, M.; Karpov, I. V.; Karpov, V. G.

    2012-10-01

    Amorphous chalcogenides have been extensively studied over the last half century due to their application in rewritable optical data storage and in non-volatile phase change memory devices. Yet, the nature of the observed non-ohmic conduction in these glasses is still under debate. In this review, we consolidate and expand the current state of knowledge related to dc conduction in these materials. An overview of the pertinent experimental data is followed by a review of the physics of localized states that are peculiar to chalcogenide glasses. We then describe and evaluate twelve relevant transport mechanisms with conductivities that depend exponentially on the electric field. The discussed mechanisms include various forms of Poole-Frenkel ionization, Schottky emission, hopping conduction, field-induced delocalization of tail states, space-charge-limited current, field emission, percolation band conduction, and transport through crystalline inclusions. Most of the candidates provide more or less satisfactory fits of the observed non-linear IV data. Our analysis calls upon additional studies that would enable one to discriminate between the various alternative models.

  18. Temporal correlation detection using computational phase-change memory.

    Science.gov (United States)

    Sebastian, Abu; Tuma, Tomas; Papandreou, Nikolaos; Le Gallo, Manuel; Kull, Lukas; Parnell, Thomas; Eleftheriou, Evangelos

    2017-10-24

    Conventional computers based on the von Neumann architecture perform computation by repeatedly transferring data between their physically separated processing and memory units. As computation becomes increasingly data centric and the scalability limits in terms of performance and power are being reached, alternative computing paradigms with collocated computation and storage are actively being sought. A fascinating such approach is that of computational memory where the physics of nanoscale memory devices are used to perform certain computational tasks within the memory unit in a non-von Neumann manner. We present an experimental demonstration using one million phase change memory devices organized to perform a high-level computational primitive by exploiting the crystallization dynamics. Its result is imprinted in the conductance states of the memory devices. The results of using such a computational memory for processing real-world data sets show that this co-existence of computation and storage at the nanometer scale could enable ultra-dense, low-power, and massively-parallel computing systems.

  19. Applications of fibrous substrates containing insolubilized phase change polymers

    Science.gov (United States)

    Vigo, Tyrone L.; Bruno, Joseph S.

    1993-01-01

    Incorporation of polyethylene glycols into fibrous substrates produces several improved functional properties when they are insolubilized by crosslinking with a methylolamide resin or by polyacetal formation by their reaction with glyoxal. The range of molecular weights of polyols that may be insolubilized is broad as are the curing conditions (0.25-10 min at 80-200C). Most representative fiber types and blends (natural and synthetic) and all types of fabric constructions (woven, nonwoven and knit) have been modified by incorporation of the bound polyols. The most novel property is the thermal adaptability of the modified substrates to many climatic conditions. This adaptability is due to the high latent heat of the crosslinked polyols that function as phase change materials, the hydrophilic nature of the crosslinked polymer and its enhanced thermal conductivity. Other enhanced properties imparted to fabrics include flex and flat abrasion, antimicrobial activity, reduced static charge, resistance to oily soils, resiliency, wind resistance and reduced lint loss. Applications commercialized in the U.S. and Japan include sportswear and skiwear. Several examples of electric sets of properties useful for specific end uses are given. In addition, other uses are biomedical horticultural, aerospace, indoor insulation, automotive interiors and components and packaging material.

  20. THE EFFECT OF PHASE CHANGE MATERIALS ON THE TENSILE STRENGTH

    Directory of Open Access Journals (Sweden)

    HERROELEN Thomas

    2016-05-01

    Full Text Available PCM’s need some important properties to have use such as high heat storage capacity, easy availability and low cost and can have different effects such as flavour, softness or exchange of heat. They are put inside of microcapsules, so they can be inbedded inside the strain, otherwise it wouldn’t be so effective. So basically the microcapsules consist of a core that’s the PCM and a polymer shell. This shell needs to be strong enough to hold the PCM and also withstand up to a certain level of heat and mechanical damage. This study investigates the tensile strength of fabrics composed by fibres, some of these fibres have benn inbedded phase change microcapsules (PCM’s. The investigated fabrics are divided by composition and by structure. By knitting the fabrics in different structures you could be able to investigate which knitting way could be the most effective to have a high tensile strength. Tensile strength tests are performed on specimens with different structures but also with different compositions which could indicate that some strains are tougher then others and more specifically if the PCM’s have a different effect on them.

  1. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    Science.gov (United States)

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  2. Study on WSb{sub 3}Te material for phase-change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Yun [Shandong Province Key Laboratory of Laser Polarization and Information Technology, School of Physics and Engineering, Qufu Normal University, 273165 Qufu (China); State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, 200050 Shanghai (China); Zhou, Xilin [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, 200050 Shanghai (China); Han, Peigao, E-mail: hanpeigao@126.com [Shandong Province Key Laboratory of Laser Polarization and Information Technology, School of Physics and Engineering, Qufu Normal University, 273165 Qufu (China); Song, Zhitang [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, 200050 Shanghai (China); Wu, Liangcai, E-mail: wuliangcai@mail.sim.ac.cn [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, 200050 Shanghai (China); Zhu, Chengqiu [State Key Laboratory of Functional Materials for Informatics, Laboratory of Nanotechnology, Shanghai Institute of Micro-system and Information Technology, Chinese Academy of Sciences, 200050 Shanghai (China); Guo, Wenjing [Shandong Province Key Laboratory of Laser Polarization and Information Technology, School of Physics and Engineering, Qufu Normal University, 273165 Qufu (China); Xu, Ling; Ma, Zhongyuan [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Song, Lianke [Shandong Province Key Laboratory of Laser Polarization and Information Technology, School of Physics and Engineering, Qufu Normal University, 273165 Qufu (China)

    2015-11-15

    Highlights: • Thermal stability of Sb{sub 3}Te film was significantly increased through W doping. • SET/RESET speed of 10 ns was obtained with large sensing margin. • The role of W in suppressing crystallization was proved by XRD, TEM and Raman scattering. - Abstract: The phase-change performance of W{sub x}Sb{sub 3}Te material were systemically investigated by in situ resistance-temperature measurement, X-ray diffraction (XRD), Raman scattering, adhesive strength test and transmission electron microscope (TEM) in this paper. Experimental results show that the thermal stability of Sb{sub 3}Te was increased significantly with W doping. XRD and TEM results prove that the incorporation of W plays a role in suppressing the crystallization of Sb{sub 3}Te films, causing smaller grain size. Furthermore, the adhesive strength between W electrode and phase-change material was increased obviously by W addition and a relatively rapid SET/RESET operation of 10 ns is realized with large sensing margin.

  3. Hydrogen-induced changes in the crystalline structure and mechanical properties of a Zn-Al eutectoid alloy rapidly solidified

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval Jimenez, Alberto; Iturbe Garcia, Jose Luis [Instituto Nacional de Investigaciones Nucleares, Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: alberto.sandoval@inin.gob.mx; asandovalj@correo.unam.mx; Negrete Sanchez, Jesus [Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Torres Villasenor, Gabriel [Instituto de Investigaciones en Materiales, UNAM, Mexico D.F. (Mexico)

    2009-09-15

    Ribbon fractions of a zinc-aluminum eutectoid (Zn40.8Al%at.) alloy, obtained by rapid solidification using melt spinning technique, were submitted to a thermo-hydrogenation process by periods of 1, 6, 18, 24, 30, and 48 hours, to 200 degrees Celsius and 20 atmospheres. Thermo-hydrogenated samples were analyzed by transmission electron microscopy (TEM). Hydrogen-induced changes were produced, such as microstructure refining, development of crystalline defects, microhardness changes and modification of stable crystalline structures to {alpha}R meta-stable phase at room temperature. [Spanish] Fracciones de tiras de una aleacion eutectoide de zinc-aluminio (Zn40.8Al%at.), obtenidas mediante solidificacion rapida usando la tecnica de melt spinning, se sometieron a un proceso de termohidrogenacion por periodos de 1, 6, 18, 24, 30 y 48 horas, a 200 grados centigrados y 20 atmosferas. Las muestras termohidrogenadas se analizaron por microscopia electronica de transmision (MET). Se produjeron cambios inducidos por hidrogeno, tales como la refinacion de la microestructura, el desarrollo de defectos cristalinos, cambios de microdureza y modificacion de las estructuras cristalinas estables a fase metaestable {alpha}R a temperatura ambiente.

  4. Rapid yet accurate measurement of mass diffusion coefficients by phase shifting interferometer

    CERN Document Server

    Guo Zhi Xiong; Komiya, A

    1999-01-01

    The technique of using a phase-shifting interferometer is applied to the study of diffusion in transparent liquid mixtures. A quick method is proposed for determining the diffusion coefficient from the measurements of the location of fringes on a grey level picture. The measurement time is very short (within 100 s) and a very small transient diffusion field can be observed and recorded accurately with a rate of 30 frames per second. The measurement can be completed using less than 0.12 cc of solutions. The influence of gravity on the measurement of the diffusion coefficient is eliminated in the present method. Results on NaCl-water diffusion systems are presented and compared with the reference data. (author)

  5. Wildlife health in a rapidly changing North: focus on avian disease

    Science.gov (United States)

    Van Hemert, Caroline R.; Pearce, John M.; Handel, Colleen M.

    2014-01-01

    Climate-related environmental changes have increasingly been linked to emerging infectious diseases in wildlife. The Arctic is facing a major ecological transition that is expected to substantially affect animal and human health. Changes in phenology or environmental conditions that result from climate warming may promote novel species assemblages as host and pathogen ranges expand to previously unoccupied areas. Recent evidence from the Arctic and subarctic suggests an increase in the spread and prevalence of some wildlife diseases, but baseline data necessary to detect and verify such changes are still lacking. Wild birds are undergoing rapid shifts in distribution and have been implicated in the spread of wildlife and zoonotic diseases. Here, we review evidence of current and projected changes in the abundance and distribution of avian diseases and outline strategies for future research. We discuss relevant climatic and environmental factors, emerging host–pathogen contact zones, the relationship between host condition and immune function, and potential wildlife and human health outcomes in northern regions.

  6. Surface modification induced phase transformation and structure variation on the rapidly solidified recast layer of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Ming-Hung [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Haung, Chiung-Fang [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Division of Family and Operative Dentistry, Department of Dentistry, Taipei Medical University Hospital, Taipei 110, Taiwan (China); Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Shyu, Shih-Shiun [Department of Dentistry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan (China); Chou, Yen-Ru [Research Center for Biomedical Devices and Prototyping Production, Taipei Medical University, Taipei 110, Taiwan (China); Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan (China); Lin, Ming-Hong [Department of Mechanical Engineering and Graduate Institute of Mechanical and Precision Engineering, National Kaoshiung University of Applied Sciences, Kaoshiung 807, Taiwan (China); Peng, Pei-Wen, E-mail: apon@tmu.edu.tw [School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan (China); and others

    2015-08-15

    In this study, neodymium-doped yttrium orthovanadate (Nd:YVO{sub 4}) as a laser source with different scanning speeds was used on biomedical Ti surface. The microstructural and biological properties of laser-modified samples were investigated by means of optical microscope, electron microscope, X-ray diffraction, surface roughness instrument, contact angle and cell cytotoxicity assay. After laser modification, the rough volcano-like recast layer with micro-/nanoporous structure and wave-like recast layer with nanoporous structure were generated on the surfaces of laser-modified samples, respectively. It was also found out that, an α → (α + rutile-TiO{sub 2}) phase transition occurred on the recast layers of laser-modified samples. The Ti surface becomes hydrophilic at a high speed laser scanning. Moreover, the cell cytotoxicity assay demonstrated that laser-modified samples did not influence the cell adhesion and proliferation behaviors of osteoblast (MG-63) cell. The laser with 50 mm/s scanning speed induced formation of rough volcano-like recast layer accompanied with micro-/nanoporous structure, which can promote cell adhesion and proliferation of MG-63 cell on Ti surface. The results indicated that the laser treatment was a potential technology to enhance the biocompatibility for titanium. - Highlights: • Laser induced the formation of recast layer with micro-/nanoporous structure on Ti. • An α → (α + rutile-TiO{sub 2}) phase transition was observed within the recast layer. • The Ti surface becomes hydrophilic at a high speed laser scanning. • Laser-modified samples exhibit good biocompatibility to osteoblast (MG-63) cell.

  7. In Situ Transmission Electron Microscopy Observation of Nanostructural Changes in Phase-Change Memory

    KAUST Repository

    Meister, Stefan

    2011-04-26

    Phase-change memory (PCM) has been researched extensively as a promising alternative to flash memory. Important studies have focused on its scalability, switching speed, endurance, and new materials. Still, reliability issues and inconsistent switching in PCM devices motivate the need to further study its fundamental properties. However, many investigations treat PCM cells as black boxes; nanostructural changes inside the devices remain hidden. Here, using in situ transmission electron microscopy, we observe real-time nanostructural changes in lateral Ge2Sb2Te5 (GST) PCM bridges during switching. We find that PCM devices with similar resistances can exhibit distinct threshold switching behaviors due to the different initial distribution of nanocrystalline and amorphous domains, explaining variability of switching behaviors of PCM cells in the literature. Our findings show a direct correlation between nanostructure and switching behavior, providing important guidelines in the design and operation of future PCM devices with improved endurance and lower variability. © 2011 American Chemical Society.

  8. Bird mercury concentrations change rapidly as chicks age: Toxicological risk is highest at hatching and fledging.

    Science.gov (United States)

    Ackerman, Joshua T.; Eagles-Smith, Collin A.; Herzog, Mark P.

    2011-01-01

    Toxicological risk of methylmercury exposure to juvenile birds is complex due to the highly transient nature of mercury concentrations as chicks age. We examined total mercury and methylmercury concentrations in blood, liver, kidney, muscle, and feathers of 111 Forster's tern (Sterna forsteri), 69 black-necked stilt (Himantopus mexicanus), and 43 American avocet (Recurvirostra americana) chicks as they aged from hatching through postfledging at wetlands that had either low or high mercury contamination in San Francisco Bay, California. For each waterbird species, internal tissue, and wetland, total mercury and methylmercury concentrations changed rapidly as chicks aged and exhibited a quadratic, U-shaped pattern from hatching through postfledging. Mercury concentrations were highest immediately after hatching, due to maternally deposited mercury in eggs, then rapidly declined as chicks aged and diluted their mercury body burden through growth in size and mercury depuration into growing feathers. Mercury concentrations then increased during fledging when mass gain and feather growth slowed, while chicks continued to acquire dietary mercury. In contrast to mercury in internal tissues, mercury concentrations in chick feathers were highly variable and declined linearly with age. For 58 recaptured Forster's tern chicks, the proportional change in blood mercury concentration was negatively related to the proportional change in body mass, but not to the amount of feathers or wing length. Thus, mercury concentrations declined more in chicks that gained more mass between sampling events. The U-shaped pattern of mercury concentrations from hatching to fledging indicates that juvenile birds may be at highest risk to methylmercury toxicity shortly after hatching when maternally deposited mercury concentrations are still high and again after fledging when opportunities for mass dilution and mercury excretion into feathers are limited.

  9. Rapid Changes in Cortical and Subcortical Brain Regions after Early Bilateral Enucleation in the Mouse.

    Directory of Open Access Journals (Sweden)

    Olga O Kozanian

    Full Text Available Functional sensory and motor areas in the developing mammalian neocortex are formed through a complex interaction of cortically intrinsic mechanisms, such as gene expression, and cortically extrinsic mechanisms such as those mediated by thalamic input from the senses. Both intrinsic and extrinsic mechanisms are believed to be involved in cortical patterning and the establishment of areal boundaries in early development; however, the nature of the interaction between intrinsic and extrinsic processes is not well understood. In a previous study, we used a perinatal bilateral enucleation mouse model to test some aspects of this interaction by reweighting sensory input to the developing cortex. Visual deprivation at birth resulted in a shift of intraneocortical connections (INCs that aligned with ectopic ephrin A5 expression in the same location ten days later at postnatal day (P 10. A prevailing question remained: Does visual deprivation first induce a change in gene expression, followed by a shift in INCs, or vice versa? In the present study, we address this question by investigating the neuroanatomy and patterns of gene expression in post-natal day (P 1 and 4 mice following bilateral enucleation at birth. Our results demonstrate a rapid reduction in dorsal lateral geniculate nucleus (dLGN size and ephrin A5 gene expression 24-hours post-enucleation, with more profound effects apparent at P4. The reduced nuclear size and diminished gene expression mirrors subtle changes in ephrin A5 expression evident in P1 and P4 enucleated neocortex, 11 and 8 days prior to natural eye opening, respectively. Somatosensory and visual INCs were indistinguishable between P1 and P4 mice bilaterally enucleated at birth, indicating that perinatal bilateral enucleation initiates a rapid change in gene expression (within one day followed by an alteration of sensory INCs later on (second postnatal week. With these results, we gain a deeper understanding of how gene

  10. The use of lipids as phase change materials for thermal energy storage

    Science.gov (United States)

    Phase change materials (PCMs) are substances capable of absorbing and releasing large 2 amounts of thermal energy (heat or cold) as latent heat over constant temperature as they 3 undergo a change in state of matter (phase transition), commonly, between solid and 4 liquid phases. Since the late 194...

  11. Advanced powder metallurgy aluminum alloys via rapid solidification technology, phase 2

    Science.gov (United States)

    Ray, Ranjan; Jha, Sunil C.

    1987-01-01

    Marko's rapid solidification technology was applied to processing high strength aluminum alloys. Four classes of alloys, namely, Al-Li based (class 1), 2124 type (class 2), high temperature Al-Fe-Mo (class 3), and PM X7091 type (class 4) alloy, were produced as melt-spun ribbons. The ribbons were pulverized, cold compacted, hot-degassed, and consolidated through single or double stage extrusion. The mechanical properties of all four classes of alloys were measured at room and elevated temperatures and their microstructures were investigated optically and through electron microscopy. The microstructure of class 1 Al-Li-Mg alloy was predominantly unrecrystallized due to Zr addition. Yield strengths to the order of 50 Ksi were obtained, but tensile elongation in most cases remained below 2 percent. The class 2 alloys were modified composition of 2124 aluminum alloy, through addition of 0.6 weight percent Zr and 1 weight percent Ni. Nickel addition gave rise to a fine dispersion of intermetallic particles resisting coarsening during elevated temperature exposure. The class 2 alloy showed good combination of tensile strength and ductility and retained high strength after 1000 hour exposure at 177 C. The class 3 Al-Fe-Mo alloy showed high strength and good ductility both at room and high temperatures. The yield and tensile strength of class 4 alloy exceeded those of the commercial 7075 aluminum alloy.

  12. Computationally rapid method of estimating signal-to-noise ratio for phased array image reconstructions.

    Science.gov (United States)

    Wiens, Curtis N; Kisch, Shawn J; Willig-Onwuachi, Jacob D; McKenzie, Charles A

    2011-10-01

    Measuring signal-to-noise ratio (SNR) for parallel MRI reconstructions is difficult due to spatially dependent noise amplification. Existing approaches for measuring parallel MRI SNR are limited because they are not applicable to all reconstructions, require significant computation time, or rely on repeated image acquisitions. A new SNR estimation approach is proposed, a hybrid of the repeated image acquisitions method detailed in the National Electrical Manufacturers Association (NEMA) standard and the Monte Carlo based pseudo-multiple replica method, in which the difference between images reconstructed from the unaltered acquired data and that same data reconstructed after the addition of calibrated pseudo-noise is used to estimate the noise in the parallel MRI image reconstruction. This new noise estimation method can be used to rapidly compute the pixel-wise SNR of the image generated from any parallel MRI reconstruction of a single acquisition. SNR maps calculated with the new method are validated against existing SNR calculation techniques. Copyright © 2011 Wiley-Liss, Inc.

  13. Rapid characterisation of vegetation structure to predict refugia and climate change impacts across a global biodiversity hotspot

    NARCIS (Netherlands)

    Schut, A.G.T.; Wardell-Johnson, G.W.; Yates, C.J.; Keppel, G.; Baran, I.; Franklin, S.E.; Hopper, S.D.; Niel, Van K.P.; Mucina, L.; Byrne, M.

    2014-01-01

    Identification of refugia is an increasingly important adaptation strategy in conservation planning under rapid anthropogenic climate change. Granite outcrops (GOs) provide extraordinary diversity, including a wide range of taxa, vegetation types and habitats in the Southwest Australian Floristic

  14. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers

    Directory of Open Access Journals (Sweden)

    Konrad J. Wessels

    2016-10-01

    Full Text Available The paper evaluated the Landsat Automated Land Cover Update Mapping (LALCUM system designed to rapidly update a land cover map to a desired nominal year using a pre-existing reference land cover map. The system uses the Iteratively Reweighted Multivariate Alteration Detection (IRMAD to identify areas of change and no change. The system then automatically generates large amounts of training samples (n > 1 million in the no-change areas as input to an optimized Random Forest classifier. Experiments were conducted in the KwaZulu-Natal Province of South Africa using a reference land cover map from 2008, a change mask between 2008 and 2011 and Landsat ETM+ data for 2011. The entire system took 9.5 h to process. We expected that the use of the change mask would improve classification accuracy by reducing the number of mislabeled training data caused by land cover change between 2008 and 2011. However, this was not the case due to exceptional robustness of Random Forest classifier to mislabeled training samples. The system achieved an overall accuracy of 65%–67% using 22 detailed classes and 72%–74% using 12 aggregated national classes. “Water”, “Plantations”, “Plantations—clearfelled”, “Orchards—trees”, “Sugarcane”, “Built-up/dense settlement”, “Cultivation—Irrigated” and “Forest (indigenous” had user’s accuracies above 70%. Other detailed classes (e.g., “Low density settlements”, “Mines and Quarries”, and “Cultivation, subsistence, drylands” which are required for operational, provincial-scale land use planning and are usually mapped using manual image interpretation, could not be mapped using Landsat spectral data alone. However, the system was able to map the 12 national classes, at a sufficiently high level of accuracy for national scale land cover monitoring. This update approach and the highly automated, scalable LALCUM system can improve the efficiency and update rate of regional land

  15. Enhancement of Lipase Enzyme Activity in Non-Aqueous Media through a Rapid Three Phase Partitioning and Microwave Irradiation

    Directory of Open Access Journals (Sweden)

    N. Saifuddin

    2008-01-01

    Full Text Available Three phase partitioning is fast developing as a novel bio-separation strategy with a wide range of applications including enzyme stability and enhancement of its catalytic activity. pH tuning of enzyme is now well known for use in non-aqueous systems. Tuned enzyme was prepared using a rapid drying technique of microwave dehydration (time required around 15 minutes. Further enhancement was achieved by three phase partitioning (TPP method. With optimal condition of ammonium sulphate and t-butanol, the protein appeared as an interfacial precipitate between upper t-butanol and lower aqueous phases. In this study we report the results on the lipase which has been subjected to pH tuning and TPP, which clearly indicate the remarkable increase in the initial rate of transesterification by 3.8 times. Microwave irradiation was found to increase the initial reaction rates by further 1.6 times, hence giving a combined increase in activity of about 5.4 times. Hence it is shown that microwave irradiation can be used in conjunction with other strategies (like pH tuning and TPP for enhancing initial reaction rates.

  16. Matching time and spatial scales of rapid solidification: dynamic TEM experiments coupled to CALPHAD-informed phase-field simulations

    Science.gov (United States)

    Perron, Aurelien; Roehling, John D.; Turchi, Patrice E. A.; Fattebert, Jean-Luc; McKeown, Joseph T.

    2018-01-01

    A combination of dynamic transmission electron microscopy (DTEM) experiments and CALPHAD-informed phase-field simulations was used to study rapid solidification in Cu–Ni thin-film alloys. Experiments—conducted in the DTEM—consisted of in situ laser melting and determination of the solidification kinetics by monitoring the solid–liquid interface and the overall microstructure evolution (time-resolved measurements) during the solidification process. Modelling of the Cu–Ni alloy microstructure evolution was based on a phase-field model that included realistic Gibbs energies and diffusion coefficients from the CALPHAD framework (thermodynamic and mobility databases). DTEM and post mortem experiments highlighted the formation of microsegregation-free columnar grains with interface velocities varying from ∼0.1 to ∼0.6 m s‑1. After an ‘incubation’ time, the velocity of the planar solid–liquid interface accelerated until solidification was complete. In addition, a decrease of the temperature gradient induced a decrease in the interface velocity. The modelling strategy permitted the simulation (in 1D and 2D) of the solidification process from the initially diffusion-controlled to the nearly partitionless regimes. Finally, results of DTEM experiments and phase-field simulations (grain morphology, solute distribution, and solid–liquid interface velocity) were consistent at similar time (μs) and spatial scales (μm).

  17. Personality Change in the Preclinical Phase of Alzheimer Disease.

    Science.gov (United States)

    Terracciano, Antonio; An, Yang; Sutin, Angelina R; Thambisetty, Madhav; Resnick, Susan M

    2017-12-01

    Changes in behavior and personality are 1 criterion for the diagnosis of dementia. It is unclear, however, whether such changes begin before the clinical onset of the disease. To determine whether increases in neuroticism, declines in conscientiousness, and changes in other personality traits occur before the onset of mild cognitive impairment or dementia. A cohort of 2046 community-dwelling older adults who volunteered to participate in the Baltimore Longitudinal Study of Aging were included. The study examined personality and clinical assessments obtained between 1980 and July 13, 2016, from participants with no cognitive impairment at first assessment who were followed up for as long as 36 years (mean [SD], 12.05 [9.54] years). The self-report personality scales were not considered during consensus diagnostic conferences. Change in self-rated personality traits assessed in the preclinical phase of Alzheimer disease and other dementias with the Revised NEO Personality Inventory, a 240-item questionnaire that assesses 30 facets, 6 for each of the 5 major dimensions: neuroticism, extraversion, openness, agreeableness, and conscientiousness. Of the 2046 participants, 931 [45.5%] were women; mean (SD) age at first assessment was 62.56 (14.63) years. During 24 569 person-years, mild cognitive impairment was diagnosed in 104 (5.1%) individuals, and all-cause dementia was diagnosed in 255 (12.5%) participants, including 194 (9.5%) with Alzheimer disease. Multilevel modeling that accounted for age, sex, race, and educational level found significant differences on the intercept of several traits: individuals who developed dementia scored higher on neuroticism (β = 2.83; 95% CI, 1.44 to 4.22; P Alzheimer disease groups (eg, neuroticism: β = 0.00; 95% CI, -0.08 to 0.08; P = .91; conscientiousness: β = -0.06; 95% CI, -0.16 to 0.04; P = .24). Slopes for individuals who developed mild cognitive impairment (eg, neuroticism: β = 0.00; 95% CI, -0

  18. Rapid changes in corticospinal excitability during force field adaptation of human walking

    DEFF Research Database (Denmark)

    Barthélemy, Dorothy; Alain, S; Grey, Michael James

    2012-01-01

    Force field adaptation of locomotor muscle activity is one way of studying the ability of the motor control networks in the brain and spinal cord to adapt in a flexible way to changes in the environment. Here, we investigate whether the corticospinal tract is involved in this adaptation. We...... measured changes in motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) in the tibialis anterior (TA) muscle before, during, and after subjects adapted to a force field applied to the ankle joint during treadmill walking. When the force field assisted dorsiflexion during...... the swing phase of the step cycle, subjects adapted by decreasing TA EMG activity. In contrast, when the force field resisted dorsiflexion, they increased TA EMG activity. After the force field was removed, normal EMG activity gradually returned over the next 5 min of walking. TA MEPs elicited in the early...

  19. Cone-beam computed tomography evaluation of dentoskeletal changes after asymmetric rapid maxillary expansion.

    Science.gov (United States)

    Baka, Zeliha Muge; Akin, Mehmet; Ucar, Faruk Izzet; Ileri, Zehra

    2015-01-01

    The aims of this study were to quantitatively evaluate the changes in arch widths and buccolingual inclinations of the posterior teeth after asymmetric rapid maxillary expansion (ARME) and to compare the measurements between the crossbite and the noncrossbite sides with cone-beam computed tomography (CBCT). From our clinic archives, we selected the CBCT records of 30 patients with unilateral skeletal crossbite (13 boys, 14.2 ± 1.3 years old; 17 girls, 13.8 ± 1.3 years old) who underwent ARME treatment. A modified acrylic bonded rapid maxillary expansion appliance including an occlusal locking mechanism was used in all patients. CBCT records had been taken before ARME treatment and after a 3-month retention period. Fourteen angular and 80 linear measurements were taken for the maxilla and the mandible. Frontally clipped CBCT images were used for the evaluation. Paired sample and independent sample t tests were used for statistical comparisons. Comparisons of the before-treatment and after-retention measurements showed that the arch widths and buccolingual inclinations of the posterior teeth increased significantly on the crossbite side of the maxilla and on the noncrossbite side of the mandible (P ARME treatment, the crossbite side of the maxilla and the noncrossbite side of the mandible were more affected than were the opposite sides. Copyright © 2015. Published by Elsevier Inc.

  20. Rapid 2D phase-contrast magnetic resonance angiography reconstruction algorithm via compressed sensing

    Science.gov (United States)

    Lee, Dong-Hoon; Hong, Cheol-Pyo; Lee, Man-Woo; Han, Bong-Soo

    2013-09-01

    Phase-contrast magnetic resonance angiography (PC MRA) is an excellent technique for visualization of venous vessels. However, the scan time of PC MRA is long compared with there of other MRA techniques. Recently, the potential of compressed sensing (CS) reconstruction to reduce the scan time in MR image acquisition using a sparse sampling dataset has become an active field of study. In this study, we propose a combination method to apply the CS reconstruction method to 2D PC MRA. This work was performed to enable faster 2D PC MRA imaging acquisition and to demonstrate its feasibility. We used a 0.32 T MR imaging (MRI) system and a total variation (TV)-based CS reconstruction algorithm. To validate the usefulness of our proposed reconstruction method, we used visual assessment for reconstructed images, and we measured the quantitative information for sampling rates from 12.5 to 75.0%. Based on our results, when the sampling ratio is increased, images reconstructed with the CS method have a similar level of image quality to fully sampled reconstruction images. The signal to noise ratio (SNR) and the contrast-to-noise ratio (CNR) were also closer to the reference values when the sampling ratio was increased. We confirmed the feasibility of 2D PC MRA with the CS reconstruction method. Our results provide evidence that this method can improve the time resolution of 2D PC MRA.

  1. Rapid, single-phase extraction of glucosylsphingosine from plasma: A universal screening and monitoring tool.

    Science.gov (United States)

    Fuller, Maria; Szer, Jeff; Stark, Samantha; Fletcher, Janice M

    2015-10-23

    Glucosylsphingosine (GluSph) has emerged as a biomarker for the inherited metabolic disorder, Gaucher disease (GD). We developed a simple laboratory test to measure plasma GluSph and show that elevated GluSph is diagnostic for GD as well as informing on disease burden for monitoring patients on treatment. GluSph was measured from a single-phase total lipid extraction of 0.01 mL of plasma by liquid chromatography-electrospray ionisation-tandem mass spectrometry and concentrations extrapolated from a seven point standard curve (0.04 to 20 pmoL). A total of 1464 samples were tested and longitudinal assessment of an additional 20 GD patients. All patients with GD had elevated GluSph compared to unaffected controls and 16 other metabolic disorders. GluSph was also slightly elevated in three patients with Krabbe disease but not at concentrations to confuse a GD diagnosis. GluSph correlated with chitotriosidase in the majority of GD patients on treatment who were informative for this marker. GluSph can be easily measured from 0.01 mL of plasma and is useful as a diagnostic marker for GD with the current platform suited to high-throughput screening. It outperforms other GD biomarkers for biochemical monitoring of patients receiving enzyme replacement therapy for all individuals. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Using Bayesian Belief Network (BBN) modelling for Rapid Source Term Prediction. RASTEP Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Knochenhauer, M.; Swaling, V.H.; Alfheim, P. [Scandpower AB, Sundbyberg (Sweden)

    2012-09-15

    The project is connected to the development of RASTEP, a computerized source term prediction tool aimed at providing a basis for improving off-site emergency management. RASTEP uses Bayesian belief networks (BBN) to model severe accident progression in a nuclear power plant in combination with pre-calculated source terms (i.e., amount, timing, and pathway of released radio-nuclides). The output is a set of possible source terms with associated probabilities. In the NKS project, a number of complex issues associated with the integration of probabilistic and deterministic analyses are addressed. This includes issues related to the method for estimating source terms, signal validation, and sensitivity analysis. One major task within Phase 1 of the project addressed the problem of how to make the source term module flexible enough to give reliable and valid output throughout the accident scenario. Of the alternatives evaluated, it is recommended that RASTEP is connected to a fast running source term prediction code, e.g., MARS, with a possibility of updating source terms based on real-time observations. (Author)

  3. Rapid change in the ciprofloxacin resistance pattern among Neisseria gonorrhoeae strains in Nuuk, Greenland

    DEFF Research Database (Denmark)

    Skjerbæk Rolskov, Anne; Bjorn-Mortensen, Karen; Mulvad, Gert

    2015-01-01

    ProbeTec). Monitoring of GC antibiotic susceptibility by culture was introduced in Nuuk in 2012. Until 2014, no cases of ciprofloxacin-resistant GC strains were reported. In this paper, we report the finding of ciprofloxacin-resistant GC and describe the most recent incidence of GC infections...... (9%) were positive, respectively. From January to August, 6 (15%) cultures from Nuuk were ciprofloxacin resistant while in September and October, 26 (59%) were ciprofloxacin resistant (presistance. GC incidence in Nuuk...... was 3,017 per 100,000 inhabitants per year, compared to 2,491 per 100,000 inhabitants per year in the rest of Greenland. CONCLUSION: Within a short period, a rapid and dramatic change in ciprofloxacin susceptibility among GC strains isolated in Nuuk was documented and recommendation for first line...

  4. Tracking Change in rapid and eXtreme Development: A Challenge to SCM-tools?

    DEFF Research Database (Denmark)

    Christensen, Henrik Bærbak

    2001-01-01

    Software configuration management (SCM) has proved to be an invaluable part of developing and maintaining high quality software. The benefits are not for free however: SCM tool operations often divert your attention from your development task, sometimes you have to endure a long waiting time while...... the tool does its job, change descriptions must be memorised until your next check-in, etc. This kind of overhead and disruption does not fit well with fast-paced development processes like rapid prototyping, explorative programming, and eXtreme Programming that favour creativity, speed, and communication...... more that managerial rigour. In the cost/benefit equation the balance may tip in favour of not using any SCM tool or only using a fraction of its potential. We think SCM has something to offer such projects, and present some proposals that may allow SCM tools to better suit the characteristics of fast...

  5. Comparison between rapid and mixed maxillary expansion through an assessment of arch changes on dental casts.

    Science.gov (United States)

    Grassia, Vincenzo; d'Apuzzo, Fabrizia; Jamilian, Abdolreza; Femiano, Felice; Favero, Lorenzo; Perillo, Letizia

    2015-01-01

    Aim of this retrospective observational study was to compare upper and lower dental changes in patients treated with Rapid Maxillary Expansion (RME) and Mixed Maxillary Expansion (MME), assessed by dental cast analysis. Treatment groups consisted of 42 patients: the RME group (n = 21) consisted of 13 female and 8 male subjects with the mean age of 8.8 years ± 1.37 at T0 and 9.6 years ± 1.45 at T1; the MME group (n = 21) consisted of 12 female and 9 male patients with a mean age of 8.9 years ± 2.34 at T0 and 10.5 years ± 2.08 at T1. The upper and lower arch analysis was performed on four dental bilateral landmarks, on upper and lower casts; also upper and lower arch depths were measured. The groups were compared using independent sample t-test to estimate dental changes in upper and lower arches. Before expansion treatment (T0), the groups were similar for all examined variables (p>0.05). In both RME and MME group, significant increments in all the variables for maxillary and mandibular arch widths were observed after treatment. No significant differences in maxillary and mandibular arch depths were observed at the end of treatment in both groups. An evaluation of the changes after RME and MME (T1) showed statistically significant differences in mandibular arch depth (plip bumper effects" observed in the MME protocol.

  6. Morphologic changes of the palate after rapid maxillary expansion: a 3-dimensional computed tomography evaluation.

    Science.gov (United States)

    Phatouros, Andriana; Goonewardene, Mithran S

    2008-07-01

    The purpose of this retrospective study was to estimate the area change of the palate after rapid maxillary expansion (RME) in the early mixed dentition stage by using a 3-dimensional (3D) helical computed tomography (CT) scanning technique. In addition, linear changes in the maxillary arch were evaluated. The treated sample consisted of 43 children (mean age, 9 years 1 month) treated with a bonded RME appliance. The untreated control group consisted of 7 children (mean age, 9 years 3 months). Pretreatment and posttreatment dental casts were evaluated by using 3D helical CT scanning procedures. The Student t test was used to compare the linear, area, and angular differences between the treatment times. RME produced clinically significant increases in interdental widths across the canines, the deciduous first molars, and the permanent first molars in the maxillary arch. Significant increases in cross-sectional area were observed across the permanent first molars (15.3 mm(2)). There was marked variability in the buccal tipping of the permanent first molars. Three-dimensional helical CT scanning is an accurate and cost-effective method of assessing dental cast morphologic changes. It can also provide fast and accurate data acquisition and subsequent analysis.

  7. Geometric structure and information change in phase transitions.

    Science.gov (United States)

    Kim, Eun-Jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L, which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD| and D^{-1/2} in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  8. Geometric structure and information change in phase transitions

    Science.gov (United States)

    Kim, Eun-jin; Hollerbach, Rainer

    2017-06-01

    We propose a toy model for a cyclic order-disorder transition and introduce a geometric methodology to understand stochastic processes involved in transitions. Specifically, our model consists of a pair of forward and backward processes (FPs and BPs) for the emergence and disappearance of a structure in a stochastic environment. We calculate time-dependent probability density functions (PDFs) and the information length L , which is the total number of different states that a system undergoes during the transition. Time-dependent PDFs during transient relaxation exhibit strikingly different behavior in FPs and BPs. In particular, FPs driven by instability undergo the broadening of the PDF with a large increase in fluctuations before the transition to the ordered state accompanied by narrowing the PDF width. During this stage, we identify an interesting geodesic solution accompanied by the self-regulation between the growth and nonlinear damping where the time scale τ of information change is constant in time, independent of the strength of the stochastic noise. In comparison, BPs are mainly driven by the macroscopic motion due to the movement of the PDF peak. The total information length L between initial and final states is much larger in BPs than in FPs, increasing linearly with the deviation γ of a control parameter from the critical state in BPs while increasing logarithmically with γ in FPs. L scales as |lnD | and D-1 /2 in FPs and BPs, respectively, where D measures the strength of the stochastic forcing. These differing scalings with γ and D suggest a great utility of L in capturing different underlying processes, specifically, diffusion vs advection in phase transition by geometry. We discuss physical origins of these scalings and comment on implications of our results for bistable systems undergoing repeated order-disorder transitions (e.g., fitness).

  9. New insights from coral growth band studies in an era of rapid environmental change

    Science.gov (United States)

    Lough, Janice M.; Cooper, Timothy F.

    2011-10-01

    The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.

  10. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    Science.gov (United States)

    Mochida, Takemi; Gomi, Hiroaki; Kashino, Makio

    2010-11-08

    There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context-dependent effects of feedback alteration suggest that the sensory error detection works in a

  11. Rapid change in articulatory lip movement induced by preceding auditory feedback during production of bilabial plosives.

    Directory of Open Access Journals (Sweden)

    Takemi Mochida

    Full Text Available BACKGROUND: There has been plentiful evidence of kinesthetically induced rapid compensation for unanticipated perturbation in speech articulatory movements. However, the role of auditory information in stabilizing articulation has been little studied except for the control of voice fundamental frequency, voice amplitude and vowel formant frequencies. Although the influence of auditory information on the articulatory control process is evident in unintended speech errors caused by delayed auditory feedback, the direct and immediate effect of auditory alteration on the movements of articulators has not been clarified. METHODOLOGY/PRINCIPAL FINDINGS: This work examined whether temporal changes in the auditory feedback of bilabial plosives immediately affects the subsequent lip movement. We conducted experiments with an auditory feedback alteration system that enabled us to replace or block speech sounds in real time. Participants were asked to produce the syllable /pa/ repeatedly at a constant rate. During the repetition, normal auditory feedback was interrupted, and one of three pre-recorded syllables /pa/, /Φa/, or /pi/, spoken by the same participant, was presented once at a different timing from the anticipated production onset, while no feedback was presented for subsequent repetitions. Comparisons of the labial distance trajectories under altered and normal feedback conditions indicated that the movement quickened during the short period immediately after the alteration onset, when /pa/ was presented 50 ms before the expected timing. Such change was not significant under other feedback conditions we tested. CONCLUSIONS/SIGNIFICANCE: The earlier articulation rapidly induced by the progressive auditory input suggests that a compensatory mechanism helps to maintain a constant speech rate by detecting errors between the internally predicted and actually provided auditory information associated with self movement. The timing- and context

  12. Interannual Change Detection of Mediterranean Seagrasses Using RapidEye Image Time Series

    Directory of Open Access Journals (Sweden)

    Dimosthenis Traganos

    2018-02-01

    Full Text Available Recent research studies have highlighted the decrease in the coverage of Mediterranean seagrasses due to mainly anthropogenic activities. The lack of data on the distribution of these significant aquatic plants complicates the quantification of their decreasing tendency. While Mediterranean seagrasses are declining, satellite remote sensing technology is growing at an unprecedented pace, resulting in a wealth of spaceborne image time series. Here, we exploit recent advances in high spatial resolution sensors and machine learning to study Mediterranean seagrasses. We process a multispectral RapidEye time series between 2011 and 2016 to detect interannual seagrass dynamics in 888 submerged hectares of the Thermaikos Gulf, NW Aegean Sea, Greece (eastern Mediterranean Sea. We assess the extent change of two Mediterranean seagrass species, the dominant Posidonia oceanica and Cymodocea nodosa, following atmospheric and analytical water column correction, as well as machine learning classification, using Random Forests, of the RapidEye time series. Prior corrections are necessary to untangle the initially weak signal of the submerged seagrass habitats from satellite imagery. The central results of this study show that P. oceanica seagrass area has declined by 4.1%, with a trend of −11.2 ha/yr, while C. nodosa seagrass area has increased by 17.7% with a trend of +18 ha/yr throughout the 5-year study period. Trends of change in spatial distribution of seagrasses in the Thermaikos Gulf site are in line with reported trends in the Mediterranean. Our presented methodology could be a time- and cost-effective method toward the quantitative ecological assessment of seagrass dynamics elsewhere in the future. From small meadows to whole coastlines, knowledge of aquatic plant dynamics could resolve decline or growth trends and accurately highlight key units for future restoration, management, and conservation.

  13. Continuous positive airway pressure (CPAP) changes in bariatric surgery patients undergoing rapid weight loss.

    Science.gov (United States)

    Lankford, D Alan; Proctor, Charles D; Richard, Robert

    2005-03-01

    Obstructive sleep apnea (OSA) is a common condition in morbidly obese patients, with the reported prevalence ranging from 12-78%. There is increasing recognition of the need to diagnose and treat/manage OSA both preoperatively and postoperatively. Nasal CPAP is the preferred treatment of OSA; however, weight loss is associated with a reduction in required pressures. We evaluated the CPAP pressure requirements in a group of patients undergoing rapid weight loss following Roux-en-Y gastric bypass. 15 patients who had been diagnosed with OSA before surgery were retrospectively evaluated. All patients had demonstrated compliance on home CPAP therapy, were minimally 3 months post-surgery and had follow-up reports that their CPAP was less effective. We obtained data on age, sex, weight, BMI, and apnea/hypopnea index (AHI). Optimal CPAP pressure was obtained initially through attended in-laboratory complex polysomnography. Follow-up CPAP pressure was obtained using an auto-titrating PAP device at home. These data were used to evaluate the pressure changes that accompanied weight loss. This group of patients had lost an average of 44.5 +/- 19.4 kg. Four patients had achieved their goal weight. Their starting CPAP pressures averaged 11 +/- 3.0 cm H2O, with a range of 7-18 cm H2O. Follow-up CPAP pressures averaged 9 +/- 2.7 cm H2O, with a range of 4-12 cm H2O, representing an overall reduction of 18%. The subgroup of patients who had achieved goal weight had a pressure reduction of 22% (9 +/- 2.0 to 7 +/- 1.0 cm H2O). CPAP pressure requirements change considerably in bariatric surgery patients undergoing rapid weight loss. Auto-titrating PAP devices have promise for facilitating the management of CPAP therapy during this time. Consideration should also be given to the use of autotitrating PAP units as the treatment of choice in these patients.

  14. Rapid T1 quantification based on 3D phase sensitive inversion recovery.

    Science.gov (United States)

    Warntjes, Marcel J B; Kihlberg, Johan; Engvall, Jan

    2010-08-17

    In Contrast Enhanced Magnetic Resonance Imaging fibrotic myocardium can be distinguished from healthy tissue using the difference in the longitudinal T1 relaxation after administration of Gadolinium, the so-called Late Gd Enhancement. The purpose of this work was to measure the myocardial absolute T1 post-Gd from a single breath-hold 3D Phase Sensitivity Inversion Recovery sequence (PSIR). Equations were derived to take the acquisition and saturation effects on the magnetization into account. The accuracy of the method was investigated on phantoms and using simulations. The method was applied to a group of patients with suspected myocardial infarction where the absolute difference in relaxation of healthy and fibrotic myocardium was measured at about 15 minutes post-contrast. The evolution of the absolute R1 relaxation rate (1/T1) over time after contrast injection was followed for one patient and compared to T1 mapping using Look-Locker. Based on the T1 maps synthetic LGE images were reconstructed and compared to the conventional LGE images. The fitting algorithm is robust against variation in acquisition flip angle, the inversion delay time and cardiac arrhythmia. The observed relaxation rate of the myocardium is 1.2 s-1, increasing to 6 - 7 s-1 after contrast injection and decreasing to 2 - 2.5 s-1 for healthy myocardium and to 3.5 - 4 s-1 for fibrotic myocardium. Synthesized images based on the T1 maps correspond very well to actual LGE images. The method provides a robust quantification of post-Gd T1 relaxation for a complete cardiac volume within a single breath-hold.

  15. An invasive species induces rapid adaptive change in a native predator: cane toads and black snakes in Australia.

    Science.gov (United States)

    Phillips, Ben L; Shine, Richard

    2006-06-22

    Rapid environmental change due to human activities has increased rates of extinction, but some species may be able to adapt rapidly enough to deal with such changes. Our studies of feeding behaviour and physiological resistance to toxins reveal surprisingly rapid adaptive responses in Australian black snakes (Pseudechis porphyriacus) following the invasion of a lethally toxic prey item, the cane toad (Bufo marinus). Snakes from toad-exposed localities showed increased resistance to toad toxin and a decreased preference for toads as prey. Separate laboratory experiments suggest that these changes are not attributable to learning (we were unable to teach naive snakes to avoid toxic prey) or to acquired resistance (repeated sub-lethal doses did not enhance resistance). These results strongly suggest that black snake behaviour and physiology have evolved in response to the presence of toads, and have done so rapidly. Toads were brought to Australia in 1935, so these evolved responses have occurred in fewer than 23 snake generations.

  16. Rapid automated W-phase slip inversion for the Illapel great earthquake (2015, Mw = 8.3)

    Science.gov (United States)

    Benavente, Roberto; Cummins, Phil R.; Dettmer, Jan

    2016-03-01

    We perform rapid W-phase finite fault inversion for the 2015 Illapel great earthquake (Mw = 8.3). To evaluate the performance of the inversion in a near real time context, we divide seismic stations into four groups. The groups consider stations up to epicentral distances of 30°, 50°, 75°, and 90°, respectively. The results for the first group could have been available within 25 min after the origin time and the results for the last group within 1 h. The four results consistently show a peak slip of ˜10 m near the trench with trench perpendicular rake which is consistent with the tsunami genesis of the event. The slip location is similar to that in the preliminary U.S. Geological Survey solution. The inversion is automated and provides meaningful results within 25 min after the event. This makes the method particularly suited to emergency management and early warning at regional and teletsunami distances.

  17. A design handbook for phase change thermal control and energy storage devices. [selected paraffins

    Science.gov (United States)

    Humphries, W. R.; Griggs, E. I.

    1977-01-01

    Comprehensive survey is given of the thermal aspects of phase change material devices. Fundamental mechanisms of heat transfer within the phase change device are discussed. Performance in zero-g and one-g fields are examined as it relates to such a device. Computer models for phase change materials, with metal fillers, undergoing conductive and convective processes are detailed. Using these models, extensive parametric data are presented for a hypothetical configuration with a rectangular phase change housing, using straight fins as the filler, and paraffin as the phase change material. These data are generated over a range of realistic sizes, material properties, and thermal boundary conditions. A number of illustrative examples are given to demonstrate use of the parametric data. Also, a complete listing of phase change material property data are reproduced herein as an aid to the reader.

  18. Two-dimensional time-resolved x-ray diffraction study of dual phase rapid solidification in steels

    Science.gov (United States)

    Yonemura, Mitsuharu; Osuki, Takahiro; Terasaki, Hidenori; Komizo, Yuichi; Sato, Masugu; Toyokawa, Hidenori; Nozaki, Akiko

    2010-01-01

    The high intensity heat source used for fusion welding creates steep thermal gradients of 100 °C/s from 1800 °C. Further, the influence of preferred orientation is important for the observation of a directional solidification that follows the dendrite growth along the ⟨100⟩ direction toward the moving heat source. In the present study, we observed the rapid solidification of weld metal at a time resolution of 0.01-0.1 s by a two-dimensional time-resolved x-ray diffraction (2DTRXRD) system for real welding. The diffraction rings were dynamically observed by 2DTRXRD with synchrotron energy of 18 keV while the arc passes over the irradiation area of the x-rays. The arc power output was 10 V-150 A, and the scan speed of the arc was 1.0 mm/s. The temperature rise in instruments was suppressed by a water-cooled copper plate under the specimen. Further, the temperature distribution of the weld metal was measured by a thermocouple and correlated with the diffraction patterns. Consequently, solidification and solid phase transformation of low carbon steels and stainless steels were observed during rapid cooling by 2DTRXRD. In the low carbon steel, the microstructure is formed in a two step process, (i) formation of crystallites and (ii) increase of crystallinity. In stainless steel, the irregular interface layer of δ/γ in the quenched metal after solidification is expected to show the easy movement of dendrites at a lower temperature. In carbide precipitation stainless steel, it is easy for NbC to grow on δ phase with a little undercooling. Further, a mistlike pattern, which differs from the halo pattern, in the fusion zone gave some indication of the possibilities to observe the nucleation and the early solidification by 2DTRXRD.

  19. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A decade of rapid change: Biocultural influences on child growth in highland Peru.

    Science.gov (United States)

    Oths, Kathryn S; Smith, Hannah N; Stein, Max J; Lazo Landivar, Rodrigo J

    2017-10-30

    In the past decade many areas of Peru have been undergoing extreme environmental, economic, and cultural change. In the highland hamlet of Chugurpampa, La Libertad, climate change has ruined harvests and led to frequent periods of migration to the coast in search of livelihood. This biocultural research examines how the changes could be affecting the growth of children who maintain residence in the highlands. Clinical records from the early 2000s were compared to those from the early 2010s. Charts were randomly selected to record anthropometric data, netting a sample of 75 children ages 0-60 months of age. Analysis of covariance was run to compare mean stature, weight, and BMI between cohorts. Percentage of children who fall below the -2 threshold for z-scores for height and weight were compared by age and cohort. A significant secular trend in growth was found, with children born more recently larger than those born a decade before. The effect is most notable in the first year of life, with the growth advantage attenuated by the age of 3 for height and age 4 for weight. While children were unlikely to be stunted from 0 to 3 years of age, 44% of the later cohort were stunted and 11% were underweight from 4 to 5 years of age. Three possible explanations for the rapid shift are entertained: more time spent on the coast during gestation and early childhood, which may attenuate the effect of hypoxia on child growth; dietary change; and increased use of biomedicine. © 2017 Wiley Periodicals, Inc.

  1. Energy Saving Potentials of Phase Change Materials Applied to Lightweight Building Envelopes

    Directory of Open Access Journals (Sweden)

    Yoon-Bok Seong

    2013-10-01

    Full Text Available Phase change materials (PCMs have been considered as an innovative technology that can reduce the peak loads and heating, ventilating and air conditioning (HVAC energy consumption in buildings. Basically they are substances capable of storing or releasing thermal energy as latent heat. Because the amount of latent heat absorbed or released is much larger than the sensible heat, the application of PCMs in buildings has significant potential to reduce energy consumption. However, because each PCM has its own phase change temperature, which is the temperature at which latent heat is absorbed or released, it is important to use an appropriate PCM for the purpose of building envelope design. Therefore, this paper aims to investigate the energy saving potentials in buildings when various PCMs with different phase change temperatures are applied to a lightweight building envelope by analyzing the thermal load characteristics. As results, the annual heating load increased at every phase change temperature, but the peak heating load decreased by 3.19% with heptadecane (phase change temperature 21 °C, and the lowest indoor temperature increased by 0.86 °C with heptadecane (phase change temperature 21 °C. The annual cooling load decreased by 1.05% with dodecanol (phase change temperature 24 °C, the peak cooling load decreased by 1.30% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.50 °C with octadecane (phase change temperature 29 °C. When the night ventilation was applied to the building HVAC system for better passive cooling performance, the annual cooling load decreased by 9.28% with dodecanol (phase change temperature 24 °C, the peak load decreased by 11.33% with octadecane (phase change temperature 29 °C, and the highest indoor temperature dropped by 0.85 °C with octadecane (phase change temperature 29 °C.

  2. Tunable broadband near-infrared absorber based on ultrathin phase-change material

    Science.gov (United States)

    Hu, Er-Tao; Gu, Tong; Guo, Shuai; Zang, Kai-Yan; Tu, Hua-Tian; Yu, Ke-Han; Wei, Wei; Zheng, Yu-Xiang; Wang, Song-You; Zhang, Rong-Jun; Lee, Young-Pak; Chen, Liang-Yao

    2017-11-01

    In this work, a tunable broadband near-infrared light absorber was designed and fabricated with a simple and lithography free approach by introducing an ultrathin phase-change material Ge2Sb2Te5 (GST) layer into the metal-dielectric multilayered film structure with the structure parameters as that: SiO2 (72.7 nm)/Ge2Sb2Te5 (6.0 nm)/SiO2 (70.2 nm)/Cu (>100.0 nm). The film structure exhibits a modulation depth of ∼72.6% and an extinction ratio of ∼8.8 dB at the wavelength of 1410 nm. The high light absorption (95%) of the proposed film structure at the wavelength of 450 nm in both of the amorphous and crystalline phase of GST, indicates that the intensity of the reflectance in the infrared region can be rapidly tuned by the blue laser pulses. The proposed planar layered film structure with layer thickness as the only controllable parameter and large reflectivity tuning range shows the potential for practical applications in near-infrared light modulation and absorption.

  3. Flexible Infrared Responsive Multi-Walled Carbon Nanotube/Form-Stable Phase Change Material Nanocomposites.

    Science.gov (United States)

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-09-30

    Flexible infrared (IR)-responsive materials, such as polymer nanocomposites, that exhibit high levels of IR responses and short response times are highly desirable for various IR sensing applications. However, the IR-induced photoresponses of carbon nanotube (CNT)/polymer nanocomposites are typically limited to 25%. Herein, we report on a family of unique nanocomposite films consisting of multi-walled carbon nanotubes (MWCNTs) uniformly distributed in a form-stable phase change material (PCM) that exhibited rapid, dramatic, reversible, and cyclic IR-regulated responses in air. The 3 wt % MWCNT/PCM nanocomposite films demonstrated cyclic, IR-regulated on/off electrical conductivity ratios of 11.6 ± 0.6 and 570.0 ± 70.5 times at IR powers of 7.3 and 23.6 mW/mm(2), respectively. The excellent performances exhibited by the MWCNT/PCM nanocomposite films were largely attributed to the IR-regulated cyclic and reversible form-stable phase transitions occurring in the PCM matrix due to MWCNT's excellent photoabsorption and thermal conversion capabilities, which subsequently affected the thickness of the interfacial PCM between adjacent conductive MWCNTs and thus the electron tunneling efficiency between the MWCNTs. Our findings suggest that these unique MWCNT/PCM nanocomposites offer promising new options for high-performance and flexible optoelectronic devices, including thermal imaging, IR sensing, and optical communication.

  4. Late Quaternary Biosiliceous Laminated Marine Sediments From Antarctica: Seasonality During a Period of Rapid Climate Change

    Science.gov (United States)

    Pike, J.; Stickley, C. E.; Maddison, E. J.; Leventer, A.; Brachfeld, S.; Domack, E. W.; Dunbar, R. B.; Manley, P. L.; McClennen, C.

    2004-12-01

    The Antarctic ice sheet plays a key role in global oceanic and atmosphere systems. One of the most dynamic regions of the continent is the Antarctic Peninsula (AP) where ecological and cryospheric systems respond rapidly to climate change, such as the last deglaciation ( ˜12-13 kyr BP). Here, deglacial laminated diatom-rich marine sediments are well known, e.g., Palmer Deep (64° S 64° W; ODP Hole 1098A) comprising a distinctive 3 m thick sequence of deglacial `couplet' laminations. The East Antarctic margin (EAM), however, has received less attention than the West Antarctic margin (WAM) in palaeoceanographic studies yet its role in deep ocean circulation and, therefore, the global ocean system is significant. Recent sediment cores recovered from EAM sites during NSF Polar Programs-funded cruise NBP0101 in February and March 2001 (e.g. Mertz Drift \\{66° S 143° E\\}, Svenner Channel \\{69° S 77° E\\} in Prydz Bay, Nielsen Basin \\{67° S 66° E\\} and Iceberg Alley \\{67° S 63° E\\}), reveal that a similar sedimentary facies was deposited along the EAM, in similar geomorphological settings to Palmer Deep, during the same timeframe. These rich sediment archives reveal clues about circum-Antarctic palaeoceanographic change during the last deglaciation, a time of both high silica flux and rapid climate change. Microfabrics and diatom assemblages from scanning electron microscope backscattered and secondary electron imagery analysis of coeval deglacial varves from Palmer Deep (WAM), Mertz-Ninnis Trough and Iceberg Alley (EAM) are presented and compared. The varves from these localities are characterised by laminae to thin beds of orange-brown diatom ooze up to ˜8cm thick alternating with blue-grey diatom-bearing terrigenous sediments up to ˜4cm thick. The orange-brown oozes are dominated by resting spores and vegetative valves of Hyalochaete Chaetoceros spp., resulting from spring sedimentation associated with stratified surface waters promoting exceptionally

  5. The Impact of Rapid Climate Change on Prehistoric Societies during the Holocene in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    Bernhard Weninger

    2009-12-01

    Full Text Available In this paper we explore the impact of Rapid Climate Change (RCC on prehistoric communities in the Eastern Mediterranean during the Early and Middle Holocene. Our focus is on the social implications of the four major climate cold anomalies that have recently been identified as key time-windows for global RCC (Mayewski et al. 2004. These cooling anomalies are well-dated, with Greenland ice-core resolution, due to synchronicity between warm/cold foraminifera ratios in Mediterranean core LC21 as a proxy for surface water temperature, and Greenland GISP2 non sea-salt (nss [K+] ions as a proxy for the intensification of the Siberian High and for polar air outbreaks in the northeast Mediterranean (Rohling et al. 2002. Building on these synchronisms, the GISP2 agemodel supplies the following precise time-intervals for archaeological RCC research: (i 8.6–8.0 ka, (ii 6.0–5.2 ka, (iii 4.2–4.0 ka and (iv 3.1–2.9 ka calBP. For each of these RCC time intervals, based on detailed 14C-based chronological studies, we investigate contemporaneous cultural developments. From our studies it follows that RCC-related climatic deterioration is a major factor underlying social change, although always at work within a wide spectrum of social, cultural, economic and religious factors.

  6. Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study.

    Science.gov (United States)

    Baratieri, Carolina; Alves, Matheus; Bolognese, Ana Maria; Nojima, Matilde C G; Nojima, Lincoln I

    2014-01-01

    To assess skeletal and dental changes immediately after rapid maxillary expansion (RME) in Class II Division 1 malocclusion patients and after a retention period, using cone beam computed tomography (CBCT) imaging. Seventeen children with Class II, Division 1 malocclusion and maxillary skeletal transverse deficiency underwent RME following the Haas protocol. CBCT were taken before treatment (T1), at the end of the active expansion phase (T2) and after a retention period of 6 months (T3). The scanned images were measured anteroposteriorly (SNA, SNB, ANB, overjet and MR) and vertically (N-ANS, ANS-Me, N-Me and overbite). Significant differences were identified immediately after RME as the maxilla moved forward, the mandible moved downward, overjet increased and overbite decreased. During the retention period, the maxilla relapsed backwards and the mandible was displaced forward, leaving patients with an overall increase in anterior facial height. RME treatment allowed more anterior than inferior positioning of the mandible during the retention period, thus significantly improving Class II dental relationship in 75% of the patients evaluated.

  7. Changes in skeletal and dental relationship in Class II Division I malocclusion after rapid maxillary expansion: a prospective study

    Directory of Open Access Journals (Sweden)

    Carolina Baratieri

    2014-06-01

    Full Text Available OBJECTIVE: To assess skeletal and dental changes immediately after rapid maxillary expansion (RME in Class II Division 1 malocclusion patients and after a retention period, using cone beam computed tomography (CBCT imaging. METHODS: Seventeen children with Class II, Division 1 malocclusion and maxillary skeletal transverse deficiency underwent RME following the Haas protocol. CBCT were taken before treatment (T1, at the end of the active expansion phase (T2 and after a retention period of 6 months (T3. The scanned images were measured anteroposteriorly (SNA, SNB, ANB, overjet and MR and vertically (N-ANS, ANS-Me, N-Me and overbite. RESULTS: Significant differences were identified immediately after RME as the maxilla moved forward, the mandible moved downward, overjet increased and overbite decreased. During the retention period, the maxilla relapsed backwards and the mandible was displaced forward, leaving patients with an overall increase in anterior facial height. CONCLUSION: RME treatment allowed more anterior than inferior positioning of the mandible during the retention period, thus significantly improving Class II dental relationship in 75% of the patients evaluated.

  8. Rapid change in drift of the Australian plate records collision with Ontong Java plateau.

    Science.gov (United States)

    Knesel, Kurt M; Cohen, Benjamin E; Vasconcelos, Paulo M; Thiede, David S

    2008-08-07

    The subduction of oceanic plateaux, which contain extraordinarily thick basaltic crust and are the marine counterparts of continental flood-basalt provinces, is an important factor in many current models of plate motion and provides a potential mechanism for triggering plate reorganization. To evaluate such models, it is essential to decipher the history of the collision between the largest and thickest of the world's oceanic plateaux, the Ontong Java plateau, and the Australian plate, but this has been hindered by poor constraints for the arrival of the plateau at the Melanesian trench. Here we present (40)Ar-(39)Ar geochronological data on hotspot volcanoes in eastern Australian that reveal a strong link between collision of the Greenland-sized Ontong Java plateau with the Melanesian arc and motion of the Australian plate. The new ages define a short-lived period of reduced northward plate motion between 26 and 23 Myr ago, coincident with an eastward offset in the contemporaneous tracks of seamount chains in the Tasman Sea east of Australia. These features record a brief westward deflection of the Australian plate as the plateau entered and choked the Melanesian trench 26 Myr ago. From 23 Myr ago, Australia returned to a rapid northerly trajectory at roughly the same time that southwest-directed subduction began along the Trobriand trough. The timing and brevity of this collisional event correlate well with offsets in hotspot seamount tracks on the Pacific plate, including the archetypal Hawaiian chain, and thus provide strong evidence that immense oceanic plateaux, like the Ontong Java, can contribute to initiating rapid change in plate boundaries and motions on a global scale.

  9. Subchondral Bone Plate Changes More Rapidly than Trabecular Bone in Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Zaitunnatakhin Zamli

    2016-09-01

    Full Text Available Osteoarthritis (OA is the most common joint disorder, characterised by focal loss of cartilage and increased subchondral bone remodelling at early OA stages of the disease. We have investigated the temporal and the spatial relationship between bone remodelling in subchondral bone plate (Sbp and trabecular bone (Tb in Dunkin Hartley (DH, develop OA early and the Bristol Strain 2 (BS2, control which develop OA late guinea pigs. Right tibias were dissected from six male animals of each strain, at 10, 16, 24 and 30 weeks of age. Micro-computed tomography was used to quantify the growth plate thickness (GpTh, subchondral bone plate thickness (SbpTh and trabecular bone thickness (TbTh, and bone mineral density (BMD in both Sbp and Tb. The rate of change was calculated for 10–16 weeks, 16–24 weeks and 24–30 weeks. The rate of changes in Sbp and Tb thickness at the earliest time interval (10–16 weeks were significantly greater in DH guinea pigs than in the growth-matched control strain (BS2. The magnitude of these differences was greater in the medial side than the lateral side (DH: 22.7 and 14.75 µm/week, BS2: 5.63 and 6.67 µm/week, respectively. Similarly, changes in the BMD at the earliest time interval was greater in the DH strain than the BS2, again more pronounced in the disease prone medial compartment (DH: 0.0698 and 0.0372 g/cm3/week, BS2: 0.00457 and 0.00772 g/cm3/week, respectively. These changes observed preceded microscopic and cellular signs of disease as previously reported. The rapid early changes in SbpTh, TbTh, Sbp BMD and Tb BMD in the disease prone DH guinea pigs compared with the BS2 control strain suggest a link to early OA pathology. This is corroborated by the greater relative changes in subchondral bone in the medial compared with the lateral compartment.

  10. Age-hardenability and related microstructural changes during and after phase transformation in an Au-Ag-Cu-based dental alloy

    Directory of Open Access Journals (Sweden)

    Hyung-Il Kim

    2012-01-01

    Full Text Available The aim of this study was to clarify how the microstructural changes during and after phase transformation determine the age-hardenability of an Au-Ag-Cu-based dental alloy. The rapid increase in hardness in the initial stage was the result of rapid atomic diffusion by spinodal decomposition into metastable Ag-rich' and Cu-rich' phases. The constant hardening after apparent initial hardening was the result of a subsequent transformation of the metastable Ag-rich' and Cu-rich' phases to the stable Ag-rich α1phase and AuCu I phase through the metastable AuCu I' phase. During the increase in hardness, fine block-like structure with high coherency formed in the grain interior, which changed to a fine cross-hatched structure. A relatively coarse lamellar structure composed of Ag-rich α1and AuCu I phases grew from the grain boundaries, initiating softening before the grain interior reached its maximum hardness. As a result, the spinodal decomposition attributed to rapid hardening by forming the fine block-like structure, and the subsequent ordering into AuCu I, which is a famous hardening mechanism, weakened its hardening effect by accelerating the lamellar-forming grain boundary reaction.

  11. Age-hardenability and related microstructural changes during and after phase transformation in an Au-Ag-Cu-based dental alloy

    Directory of Open Access Journals (Sweden)

    Hyung-Il Kim

    2013-02-01

    Full Text Available The aim of this study was to clarify how the microstructural changes during and after phase transformation determine the age-hardenability of an Au-Ag-Cu-based dental alloy. The rapid increase in hardness in the initial stage was the result of rapid atomic diffusion by spinodal decomposition into metastable Ag-rich' and Cu-rich' phases. The constant hardening after apparent initial hardening was the result of a subsequent transformation of the metastable Ag-rich' and Cu-rich' phases to the stable Ag-rich α1phase and AuCu I phase through the metastable AuCu I' phase. During the increase in hardness, fine block-like structure with high coherency formed in the grain interior, which changed to a fine cross-hatched structure. A relatively coarse lamellar structure composed of Ag-rich α1and AuCu I phases grew from the grain boundaries, initiating softening before the grain interior reached its maximum hardness. As a result, the spinodal decomposition attributed to rapid hardening by forming the fine block-like structure, and the subsequent ordering into AuCu I, which is a famous hardening mechanism, weakened its hardening effect by accelerating the lamellar-forming grain boundary reaction.

  12. Rapid Environmental Change Drives Increased Land Use by an Arctic Marine Predator.

    Directory of Open Access Journals (Sweden)

    Todd C Atwood

    Full Text Available In the Arctic Ocean's southern Beaufort Sea (SB, the length of the sea ice melt season (i.e., period between the onset of sea ice break-up in summer and freeze-up in fall has increased substantially since the late 1990s. Historically, polar bears (Ursus maritimus of the SB have mostly remained on the sea ice year-round (except for those that came ashore to den, but recent changes in the extent and phenology of sea ice habitat have coincided with evidence that use of terrestrial habitat is increasing. We characterized the spatial behavior of polar bears spending summer and fall on land along Alaska's north coast to better understand the nexus between rapid environmental change and increased use of terrestrial habitat. We found that the percentage of radiocollared adult females from the SB subpopulation coming ashore has tripled over 15 years. Moreover, we detected trends of earlier arrival on shore, increased length of stay, and later departure back to sea ice, all of which were related to declines in the availability of sea ice habitat over the continental shelf and changes to sea ice phenology. Since the late 1990s, the mean duration of the open-water season in the SB increased by 36 days, and the mean length of stay on shore increased by 31 days. While on shore, the distribution of polar bears was influenced by the availability of scavenge subsidies in the form of subsistence-harvested bowhead whale (Balaena mysticetus remains aggregated at sites along the coast. The declining spatio-temporal availability of sea ice habitat and increased availability of human-provisioned resources are likely to result in increased use of land. Increased residency on land is cause for concern given that, while there, bears may be exposed to a greater array of risk factors including those associated with increased human activities.

  13. Rapid changes in cell physiology as a result of acute thermal stress house sparrows, Passer domesticus.

    Science.gov (United States)

    Jimenez, Ana G; Williams, Joseph B

    2014-12-01

    Given that our climate is rapidly changing, Physiological Ecologists have the critical task of identifying characteristics of species that make them either resilient or susceptible to changes in their natural air temperature regime. Because climate change models suggest that heat events will become more common, and in some places more extreme, it is important to consider how extreme heat events might affect the physiology of a species. The implications of more frequent heat wave events for birds have only recently begun to be addressed, however, the impact of these events on the cellular physiology of a species is difficult to assess. We have developed a novel approach using dermal fibroblasts to explore how short-term thermal stress at the whole animal level might affect cellular rates of metabolism. House sparrows, Passer domesticus were separated into a "control group" and a "heat shocked" group, the latter acclimated to 43°C for 24h. We determined the plasticity of cellular thermal responses by assigning a "recovery group" that was heat shocked as above, but then returned to room temperature for 24h. Primary dermal fibroblasts were grown from skin of all treatment groups and the pectoralis muscle was collected. We found that glycolysis (ECAR) and oxygen consumption rates (OCR), measured using a Seahorse XF 96 analyzer, were significantly higher in the fibroblasts from the heat shocked group of House sparrows compared with their control counterparts. Additionally, muscle fiber diameters decreased and, in turn, Na(+)-K(+)-ATPase maximal activity in the muscle significantly increased in heat shocked sparrows compared with birds in the control group. All of these physiological alterations due to short-term heat exposure were reversible within 24h of recovery at room temperature. These results show that acute exposure to heat stress significantly alters the cellular physiology of sparrows, but that this species is plastic enough to recover from such a thermal

  14. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    Science.gov (United States)

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb4-SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb2Se3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb4-SbSe thin film.

  15. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world.

    Science.gov (United States)

    Jenkyns, Hugh C

    2003-09-15

    The best-documented example of rapid climate change that characterized the so-called 'greenhouse world' took place at the time of the Palaeocene-Eocene boundary: introduction of isotopically light carbon into the ocean-atmosphere system, accompanied by global warming of 5-8 degrees C across a range of latitudes, took place over a few thousand years. Dissociation, release and oxidation of gas hydrates from continental-margin sites and the consequent rapid global warming from the input of greenhouses gases are generally credited with causing the abrupt negative excursions in carbon- and oxygen-isotope ratios. The isotopic anomalies, as recorded in foraminifera, propagated downwards from the shallowest levels of the ocean, implying that considerable quantities of methane survived upward transit through the water column to oxidize in the atmosphere. In the Mesozoic Era, a number of similar events have been recognized, of which those at the Triassic-Jurassic boundary, in the early Toarcian (Jurassic) and in the early Aptian (Cretaceous) currently carry the best documentation for dramatic rises in temperature. In these three examples, and in other less well-documented cases, the lack of a definitive time-scale for the intervals in question hinders calculation of the rate of environmental change. However, comparison with the Palaeocene-Eocene thermal maximum (PETM) suggests that these older examples could have been similarly rapid. In both the early Toarcian and early Aptian cases, the negative carbon-isotope excursion precedes global excess carbon burial across a range of marine environments, a phenomenon that defines these intervals as oceanic anoxic events (OAEs). Osmium-isotope ratios ((187)Os/(188)Os) for both the early Toarcian OAE and the PETM show an excursion to more radiogenic values, demonstrating an increase in weathering and erosion of continental crust consonant with elevated temperatures. The more highly buffered strontium-isotope system ((87)Sr/(86)Sr

  16. Three dimensional evaluation of alveolar bone changes in response to different rapid palatal expansion activation rates

    Directory of Open Access Journals (Sweden)

    Brian LaBlonde

    Full Text Available ABSTRACT Introduction: The aim of this multi-center retrospective study was to quantify the changes in alveolar bone height and thickness after using two different rapid palatal expansion (RPE activation protocols, and to determine whether a more rapid rate of expansion is likely to cause more adverse effects, such as alveolar tipping, dental tipping, fenestration and dehiscence of anchorage teeth. Methods: The sample consisted of pre- and post-expansion records from 40 subjects (age 8-15 years who underwent RPE using a 4-banded Hyrax appliance as part of their orthodontic treatment to correct posterior buccal crossbites. Subjects were divided into two groups according to their RPE activation rates (0.5 mm/day and 0.8 mm/day; n = 20 each group. Three-dimensional images for all included subjects were evaluated using Dolphin Imaging Software 11.7 Premium. Maxillary base width, buccal and palatal cortical bone thickness, alveolar bone height, and root angulation and length were measured. Significance of the changes in the measurements was evaluated using Wilcoxon signed-rank test and comparisons between groups were done using ANOVA. Significance was defined at p ≤ 0.05. Results: RPE activation rates of 0.5 mm per day (Group 1 and 0.8 mm per day (Group 2 caused significant increase in arch width following treatment; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Buccal alveolar height and width decreased significantly in both groups. Both treatment protocols resulted in significant increases in buccal-lingual angulation of teeth; however, Group 2 showed greater increases compared to Group 1 (p < 0.01. Conclusion: Both activation rates are associated with significant increase in intra-arch widths. However, 0.8 mm/day resulted in greater increases. The 0.8 mm/day activation rate also resulted in more increased dental tipping and decreased buccal alveolar bone thickness over 0.5 mm/day.

  17. Dental arch changes associated with rapid maxillary expansion: A retrospective model analysis study

    Directory of Open Access Journals (Sweden)

    Ivor M D′Souza

    2015-01-01

    Full Text Available Introduction: Transverse deficiency of the maxilla is a common clinical problem in orthodontics and dentofacial orthopedics. Transverse maxillary deficiency, isolated or associated with other dentofacial deformities, results in esthetic and functional impairment giving rise to several clinical manifestations such as asymmetrical facial growth, positional and functional mandibular deviations, altered dentofacial esthetics, adverse periodontal responses, unstable dental tipping, and other functional problems. Orthopedic maxillary expansion is the preferred treatment approach to increase the maxillary transverse dimension in young patients by splitting of the mid palatal suture. This orthopedic procedure has lately been subject of renewed interest in orthodontic treatment mechanics because of its potential for increasing arch perimeter to alleviate crowding in the maxillary arch without adversely affecting facial profile. Hence, the present investigation was conducted to establish a correlation between transverse expansion and changes in the arch perimeter, arch width and arch length. Methods: For this purpose, 10 subjects (five males, five females were selected who had been treated by rapid maxillary expansion (RME using hyrax rapid palatal expander followed by fixed mechanotherapy (PEA. Pretreatment (T1, postexpansion (T2, and posttreatment (T3 dental models were compared for dental changes brought about by RME treatment and its stability at the end of fixed mechanotherapy. After model measurements were made, the changes between T1-T2, T2-T3 and T1-T3 were determined for each patient. The mean difference between T1-T2, T2-T3 and T1-T3 were compared to assess the effects of RME on dental arch measurements. Results are expressed as mean ± standard deviation and are compared by repeated measures analysis of variance followed by a post-hoc test. Arch perimeter changes are correlated with changes in arch widths at the canine, premolar and molar

  18. High speed, high temperature electrical characterization of phase change materials: metastable phases, crystallization dynamics, and resistance drift.

    Science.gov (United States)

    Dirisaglik, Faruk; Bakan, Gokhan; Jurado, Zoila; Muneer, Sadid; Akbulut, Mustafa; Rarey, Jonathan; Sullivan, Lindsay; Wennberg, Maren; King, Adrienne; Zhang, Lingyi; Nowak, Rebecca; Lam, Chung; Silva, Helena; Gokirmak, Ali

    2015-10-28

    During the fast switching in Ge2Sb2Te5 phase change memory devices, both the amorphous and fcc crystalline phases remain metastable beyond the fcc and hexagonal transition temperatures respectively. In this work, the metastable electrical properties together with crystallization times and resistance drift behaviour of GST are studied using a high-speed, device-level characterization technique in the temperature range of 300 K to 675 K.

  19. The African Climate Change Fellowship Program Phase III | CRDI ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    -design and offer fellowships based on four research themes: climate change and water, climate change and gender, climate change and green growth, and economic analysis of adaptation; and, -incorporate the fellowship program into the offerings of the Institute of Resource Assessment at the University of Dar es Salaam ...

  20. Understanding the rapid summer warming and changes in temperature extremes since the mid-1990s over Western Europe

    OpenAIRE

    Dong, Buwen; Sutton, Rowan T.; Shaffrey, Len; Buwen Dong

    2017-01-01

    Analysis of observations indicates that there was a rapid increase in summer (June-August, JJA) mean surface air temperature (SAT) since the mid-1990s over Western Europe. Accompanying this rapid warming are significant increases in summer mean daily maximum temperature, daily minimum temperature, annual hottest day temperature and warmest night temperature, and an increase in frequency of summer days and tropical nights, while the change in the diurnal temperature range (DTR) is small. This ...

  1. Non-invasive temperature measurement by using phase changes in electromagnetic waves in a cavity resonator.

    Science.gov (United States)

    Ishihara, Yasutoshi; Ohwada, Hiroshi

    2011-01-01

    To improve the efficacy of hyperthermia treatment, a novel method of non-invasive measurement of changes in body temperature is proposed. The proposed method is based on phase changes with temperature in electromagnetic waves in a heating applicator and the temperature dependence of the dielectric constant. An image of the temperature change inside a body is reconstructed by applying a computed tomography algorithm. This method can be combined easily with a heating applicator based on a cavity resonator and can be used to treat cancer effectively while non-invasively monitoring the heating effect. In this paper the phase change distributions of electromagnetic waves with temperature changes are measured experimentally, and the accuracy of reconstruction is discussed. The phase change distribution is reconstructed by using a prototype system with a rectangular aluminum cavity resonator that can be rotated 360° around an axis of rotation. To make measurements without disturbing the electromagnetic field distribution, an optical electric field sensor is used. The phase change distribution is reconstructed from 4-projection data by using a simple back-projection algorithm. The paper demonstrates that the phase change distribution can be reconstructed. The difference between phase changes obtained experimentally and by numerical analysis is about 20% and is related mainly to the limited signal detection sensitivity of electromagnetic waves. A temperature change inside an object can be reconstructed from the measured phase changes in a cavity resonator.

  2. A multiple-proxy approach to understanding rapid Holocene climate change in Southeast Greenland

    Science.gov (United States)

    Davin, S. H.; Bradley, R. S.; Balascio, N. L.; de Wet, G.

    2012-12-01

    The susceptibility of the Arctic to climate change has made it an excellent workshop for paleoclimatological research. Although there have been previous studies concerning climate variability carried out in the Arctic, there remains a critical dearth of knowledge due the limited number of high-resolution Holocene climate-proxy records available from this region. This gap skews our understanding of observed and predicted climate change, and fuels uncertainty both in the realms of science and policy. This study takes a comprehensive approach to tracking Holocene climate variability in the vicinity of Tasiilaq, Southeast Greenland using a ~5.6 m sediment core from Lower Sermilik Lake. An age-depth model for the core has been established using 8 radiocarbon dates, the oldest of which was taken at 4 m down core and has been been dated to approximately 6.2 kyr BP. The bottom meter of the core below the final radiocarbon date contains a transition from cobbles and coarse sand to organic-rich laminations, indicating the termination of direct glacial influence and therefore likely marking the end of the last glacial period in this region. The remainder of the core is similarly organic-rich, with light-to-dark brown laminations ranging from 0.5 -1 cm in thickness and riddled with turbidites. Using this core in tandem with findings from an on-site assessment of the geomorphic history of the locale we attempt to assess and infer the rapid climatic shifts associated with the Holocene on a sub-centennial scale. Such changes include the termination of the last glacial period, the Mid-Holocene Climatic Optimum, the Neoglacial Period, the Medieval Climatic Optimum, and the Little Ice Age. A multiple proxy approach including magnetic susceptibility, bulk organic geochemistry, elemental profiles acquired by XRF scanning, grain-size, and spectral data will be used to characterize the sediment and infer paleoclimate conditions. Additionally, percent biogenic silica by weight has been

  3. Prevention and Control of Cardiovascular Disease in the Rapidly Changing Economy of China.

    Science.gov (United States)

    Wu, Yangfeng; Benjamin, Emelia J; MacMahon, Stephen

    2016-06-14

    With one-fifth of the world's total population, China's prevention and control of cardiovascular disease (CVD) may affect the success of worldwide efforts to achieve sustainable CVD reduction. Understanding China's current cardiovascular epidemic requires awareness of the economic development in the past decades. The rapid economic transformations (industrialization, marketization, urbanization, globalization, and informationalization) contributed to the aging demography, unhealthy lifestyles, and environmental changes. The latter have predisposed to increasing cardiovascular risk factors and the CVD pandemic. Rising CVD rates have had a major economic impact, which has challenged the healthcare system and the whole society. With recognition of the importance of health, initial political steps and national actions have been taken to address the CVD epidemic. Looking to the future, we recommend that 4 priorities should be taken: pursue multisectorial government and nongovernment strategies targeting the underlying causes of CVD (the whole-of-government and whole-of-society policy); give priority to prevention; reform the healthcare system to fit the nature of noncommunicable diseases; and conduct research for evidence-based, low-cost, simple, sustainable, and scalable interventions. By pursuing the 4 priorities, the pandemic of CVD and other major noncommunicable diseases in China will be reversed and the global sustainable development goal achieved. © 2016 American Heart Association, Inc.

  4. Dental and skeletal changes following surgically assisted rapid maxillary anterior-posterior expansion.

    Science.gov (United States)

    Ho, Cheng-Ting; Lo, Lun-Jou; Liou, Eric J W; Huang, Chiung Shing

    2008-01-01

    Lengthening the maxillary dental arch as a treatment approach for patients with maxillary deficiency and dental crowding is seldom reported. The purpose of this study was to assess dental and skeletal changes in the maxilla in the correction of maxillary deficiency associated with a retruded maxillary arch using a surgically assisted rapid maxillary anterior-posterior expansion appliance. Predistraction and postraction lateral cephalometric and periapical radiographs and maxillary dental casts of six young adolescents (four boys, two girls, mean age 11 years, 2 months) were examined. These patients received a maxillary anterior segmental osteotomy and distraction osteogenesis with an anteroposteriorly oriented Hyrax expansion appliance based on the biological principles of bone distraction. The retruded dental arch and dental crowding were successfully corrected. Significant forward movement of the point anterior nasal spine, point A, central incisors and first premolars was noted. The maxillary dental arch depth increased an average of 4.2 mm while the arch width remained unchanged. In total, 11.5 mm of dental space was created in the maxillary arch which was sufficient to resolve dental crowding. New bone formation along the distraction site was observed three months after distraction. The use of maxillary anterior segmental osteotomy combined with a Hyrax expansion distraction appliance was effective in arch lengthening and creation of dental space. An overcorrection in this interdental distraction osteogenesis could be a good treatment option for children with maxillary deficiency combined with crowded maxillary dentition.

  5. Rapid changes in genetic architecture of behavioural syndromes following colonization of a novel environment.

    Science.gov (United States)

    Karlsson Green, K; Eroukhmanoff, F; Harris, S; Pettersson, L B; Svensson, E I

    2016-01-01

    Behavioural syndromes, that is correlated behaviours, may be a result from adaptive correlational selection, but in a new environmental setting, the trait correlation might act as an evolutionary constraint. However, knowledge about the quantitative genetic basis of behavioural syndromes, and the stability and evolvability of genetic correlations under different ecological conditions, is limited. We investigated the quantitative genetic basis of correlated behaviours in the freshwater isopod Asellus aquaticus. In some Swedish lakes, A. aquaticus has recently colonized a novel habitat and diverged into two ecotypes, presumably due to habitat-specific selection from predation. Using a common garden approach and animal model analyses, we estimated quantitative genetic parameters for behavioural traits and compared the genetic architecture between the ecotypes. We report that the genetic covariance structure of the behavioural traits has been altered in the novel ecotype, demonstrating divergence in behavioural correlations. Thus, our study confirms that genetic correlations behind behaviours can change rapidly in response to novel selective environments. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  6. Rapid morphological oscillation of mitochondrion-rich cell in estuarine mudskipper following salinity changes.

    Science.gov (United States)

    Sakamoto, T; Yokota, S; Ando, M

    2000-05-01

    Morphological changes in the chloride cells or mitochondrion-rich (MR) cells in the skin under the pectoral fin of the estuarine mudskipper (Periophthalmus modestus) were examined in relation to intertidal salinity oscillation in river mouth. MR cells were distinguished between those in contact with the water (cells labeled with both mitochondrial probe DASPEI and Concanavalin-A, an apical surface marker of MR cells) and those that are not (DASPEI-positive only). After transfer of the fish from seawater to freshwater, no difference in the total MR cell density was observed, but the subpopulation of MR cells that are Concanavalin-A-positive decreased dramatically within 30 min. After 6 hr in freshwater, the fish were returned to seawater; the number of Con-A-positive MR cells increased to the initial levels rapidly. Thus, in seawater, mudskippers seem to open the apical crypts of the MR cells to secrete salt; in freshwater, they close the crypt of the MR cells tentatively, and tolerate hypotonicity until the rising tide. This unique response of chloride cells may also be seen in gills of other estuarine species.

  7. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Kurtz, Sarah [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Repins, Ingrid L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Hacke, Peter L [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Jordan, Dirk [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kempe, Michael D [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Whitfield, Kent [Underwriters Laboratories; Phillips, Nancy [DuPont; Sample, Tony [European Commission; Monokroussos, Christos [TUV Rheinland; Hsi, Edward [Swiss RE; Wohlgemuth, John [PowerMark Corporation; Seidel, Peter [First Solar; Jahn, Ulrike [TUV Rheinland; Tanahashi, Tadanori [National Institute of Advanced Industrial Science and Technology; Chen, Yingnan [China General Certification Center; Jaeckel, Bengt [Underwriters Laboratories; Yamamichi, Masaaki [RTS Corporation

    2017-10-05

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured acceleration factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.

  8. Solid state phase change materials for thermal energy storage in passive solar heated buildings

    Science.gov (United States)

    Benson, D. K.; Christensen, C.

    1983-11-01

    A set of solid state phase change materials was evaluated for possible use in passive solar thermal energy storage systems. The most promising materials are organic solid solutions of pentaerythritol, pentaglycerine and neopentyl glycol. Solid solution mixtures of these compounds can be tailored so that they exhibit solid-to-solid phase transformations at any desired temperature within the range from less than 25 deg to 188 deg. Thermophysical properties such as thermal conductivity, density and volumetric expansion were measured. Computer simulations were used to predict the performance of various Trombe wall designs incorporating solid state phase change materials. Optimum performance was found to be sensitive to the choice of phase change temperatures and to the thermal conductivity of the phase change material. A molecular mechanism of the solid state phase transition is proposed and supported by infrared spectroscopic evidence.

  9. Volumetric upper airway changes after rapid maxillary expansion: a systematic review and meta-analysis.

    Science.gov (United States)

    Buck, Lloyd M; Dalci, Oyku; Darendeliler, M Ali; Papageorgiou, Spyridon N; Papadopoulou, Alexandra K

    2017-10-01

    Although Rapid Maxillary Expansion (RME) has been used for over a century, its effect on upper airways has not yet adequately been assessed in an evidence-based manner. To investigate the volumetric changes in the upper airway spaces following RME in growing subjects by means of acoustic rhinometry, three-dimensional radiography and digital photogrammetry. Literature search of electronic databases and additional manual searches up to February 2016. Randomized clinical trials, prospective or retrospective controlled clinical trials and cohort clinical studies of at least eight patients, where the RME appliance was left in place for retention, and a maximum follow-up of 8 months post-expansion. After duplicate data extraction and assessment of the risk of bias, the mean differences and 95 per cent confidence intervals (CIs) of upper airway volume changes were calculated with random-effects meta-analyses, followed by subgroup analyses, meta-regressions, and sensitivity analyses. Twenty studies were eligible for qualitative synthesis, of which 17 (3 controlled clinical studies and 14 cohort studies) were used in quantitative analysis. As far as total airway volume is concerned patients treated with RME showed a significant increase post-expansion (5 studies; increase from baseline: 1218.3mm3; 95 per cent CI: 702.0 to 1734.6mm3), which did not seem to considerably diminish after the retention period (11 studies; increase from baseline: 1143.9mm3; 95 per cent CI: 696.9 to 1590.9mm3). However, the overall quality of evidence was judged as very low, due to methodological limitations of the included studies, absence of untreated control groups, and inconsistency among studies. RME seems to be associated with an increase in the nasal cavity volume in the short and in the long term. However, additional well-conducted prospective controlled clinical studies are needed to confirm the present findings. None. Australian Society of Orthodontics Foundation for Research and

  10. Performance of a Rapid and Simple HIV Testing Algorithm in a Multicenter Phase III Microbicide Clinical Trial▿

    Science.gov (United States)

    Crucitti, Tania; Taylor, Doug; Beelaert, Greet; Fransen, Katrien; Van Damme, Lut

    2011-01-01

    A multitest sequential algorithm based on rapid and simple (R/S) assays was applied for the diagnosis of HIV infection among participants in a phase 3 microbicide effectiveness trial. HIV testing was performed on finger-prick blood samples obtained from patients after their enrollment in the trial. The specimens were tested in a serial procedure using three different rapid tests (Determine HIV-1/2 [Abbott], SD Bioline HIV-1/2 3.0 [Standard Diagnostics], and Uni-Gold HIV [Trinity Biotech]). In the event of discordant results between the Determine HIV-1/2 and SD Bioline HIV-1/2 3.0 tests, the third assay (Uni-Gold HIV) determined the final outcome. When the final outcome was positive, a second specimen was collected and tested with the same algorithm, only if a positive result was obtained with this sample the participant was informed of her positive serostatus. A total of 5,734 postenrollment specimens obtained from 1,398 women were tested. Forty-six women tested positive according to the testing algorithm performed on the first collected specimen. Confirmatory testing results obtained at the ITM confirmed that 42 women were truly infected. Two of four initial false positives tested negative upon analysis of a second blood specimen. The other two tested false positive twice using specimens collected the same day. A high percentage of specimens reactive with the Determine HIV-1/2 assay was only observed at the study site in Kampala. This result did not appear to be associated with pregnancy or malaria infection. We conclude that HIV testing algorithms, including only R/S assays, are suitable for use in clinical trials, provided that adequate quality assurance procedures are in place. PMID:21752945

  11. Performance of a rapid and simple HIV testing algorithm in a multicenter phase III microbicide clinical trial.

    Science.gov (United States)

    Crucitti, Tania; Taylor, Doug; Beelaert, Greet; Fransen, Katrien; Van Damme, Lut

    2011-09-01

    A multitest sequential algorithm based on rapid and simple (R/S) assays was applied for the diagnosis of HIV infection among participants in a phase 3 microbicide effectiveness trial. HIV testing was performed on finger-prick blood samples obtained from patients after their enrollment in the trial. The specimens were tested in a serial procedure using three different rapid tests (Determine HIV-1/2 [Abbott], SD Bioline HIV-1/2 3.0 [Standard Diagnostics], and Uni-Gold HIV [Trinity Biotech]). In the event of discordant results between the Determine HIV-1/2 and SD Bioline HIV-1/2 3.0 tests, the third assay (Uni-Gold HIV) determined the final outcome. When the final outcome was positive, a second specimen was collected and tested with the same algorithm, only if a positive result was obtained with this sample the participant was informed of her positive serostatus. A total of 5,734 postenrollment specimens obtained from 1,398 women were tested. Forty-six women tested positive according to the testing algorithm performed on the first collected specimen. Confirmatory testing results obtained at the ITM confirmed that 42 women were truly infected. Two of four initial false positives tested negative upon analysis of a second blood specimen. The other two tested false positive twice using specimens collected the same day. A high percentage of specimens reactive with the Determine HIV-1/2 assay was only observed at the study site in Kampala. This result did not appear to be associated with pregnancy or malaria infection. We conclude that HIV testing algorithms, including only R/S assays, are suitable for use in clinical trials, provided that adequate quality assurance procedures are in place.

  12. Speci﬿c contact resistance of phase change materials to metal electrode

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha A.A.; Wolters, Robertus A.M.

    2010-01-01

    For phase change random access memory (PCRAM) cells, it is important to know the contact resistance of phase change materials (PCMs) to metal electrodes at the contacts. In this letter, we report the systematic determination of the speci﬿c contact resistance (Ͽc ) of doped Sb2Te and Ge2Sb2Te5 to TiW

  13. Bias dependent specic contact resistance of phase change material to metal contacts

    NARCIS (Netherlands)

    Roy, Deepu; in 't Zandt, Micha; Wolters, Robertus A.M.

    2010-01-01

    Knowledge of contact resistance of phase change materials (PCM) to metal electrodes is important for scaling, device modeling and optimization of phase change random access memory (PCRAM) cells. In this article, we report the systematic determination of the speci_c contact resistance (_c) with

  14. Crystallization Kinetics of GeSbTe Phase-Change Nanoparticles Resolved by Ultrafast Calorimetry

    NARCIS (Netherlands)

    Chen, Bin; Brink, ten Gert; Palasantzas, Georgios; Kooi, Bart J.

    2017-01-01

    Although nanostructured phase-change materials (PCMs) are considered as the building blocks of next-generation phase-change memory and other emerging optoelectronic applications, the kinetics of the crystallization, the central property in switching, remains ambiguous in the high-temperature regime.

  15. Program For Finite-Element Analyses Of Phase-Change Fluids

    Science.gov (United States)

    Viterna, L. A.

    1995-01-01

    PHASTRAN analyzes heat-transfer and flow behaviors of materials undergoing phase changes. Many phase changes operate over range of accelerations or effective gravitational fields. To analyze such thermal systems, it is necessary to obtain simultaneous solutions for equations of conservation of energy, momentum, and mass, and for equation of state. Written in APL2.

  16. Is the use of ergonomic measures associated with behavioural change phases?

    NARCIS (Netherlands)

    van der Molen, Henk F.; Sluiter, Judith K.; Frings-Dresen, Monique H. W.

    2006-01-01

    The aim of this study was to test the hypothesis that the absolute number of completed behavioural change phases (ABP) and the sequentially ordered number of completed behavioural change phases (SBP) are positively associated with the use of ergonomic measures by two groups of stakeholders in

  17. Theoretical potential for low energy consumption phase change memory utilizing electrostatically-induced structural phase transitions in 2D materials

    Science.gov (United States)

    Rehn, Daniel A.; Li, Yao; Pop, Eric; Reed, Evan J.

    2018-01-01

    Structural phase-change materials are of great importance for applications in information storage devices. Thermally driven structural phase transitions are employed in phase-change memory to achieve lower programming voltages and potentially lower energy consumption than mainstream nonvolatile memory technologies. However, the waste heat generated by such thermal mechanisms is often not optimized, and could present a limiting factor to widespread use. The potential for electrostatically driven structural phase transitions has recently been predicted and subsequently reported in some two-dimensional materials, providing an athermal mechanism to dynamically control properties of these materials in a nonvolatile fashion while achieving potentially lower energy consumption. In this work, we employ DFT-based calculations to make theoretical comparisons of the energy required to drive electrostatically-induced and thermally-induced phase transitions. Determining theoretical limits in monolayer MoTe2 and thin films of Ge2Sb2Te5, we find that the energy consumption per unit volume of the electrostatically driven phase transition in monolayer MoTe2 at room temperature is 9% of the adiabatic lower limit of the thermally driven phase transition in Ge2Sb2Te5. Furthermore, experimentally reported phase change energy consumption of Ge2Sb2Te5 is 100-10,000 times larger than the adiabatic lower limit due to waste heat flow out of the material, leaving the possibility for energy consumption in monolayer MoTe2-based devices to be orders of magnitude smaller than Ge2Sb2Te5-based devices.

  18. DNA microarray-based solid-phase RT-PCR for rapid detection and identification of influenza virus type A and subtypes H5 and H7

    DEFF Research Database (Denmark)

    Yi, Sun; Dhumpa, Raghuram; Bang, Dang Duong

    2011-01-01

    Endemic of avian influenza virus (AIV) in Asia and epizootics in some European regions have caused considerable public concern on a possible pandemic of AIV. A rapid method for virus detection and effective surveillance in wild avian, poultry production as well as in humans is required....... In this article, a DNA microarray-based solid-phase polymerase chain reaction (PCR) approach has been developed for rapid detection of influenza virus type A and for simultaneous identification of pathogenic virus subtypes H5 and H7. This solid-phase RT-PCR method combined reverse-transcription amplification...

  19. Rapid, low level determination of silver(I) in drinking water by colorimetric-solid-phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Matteo P.; Porter, Marc D.; Fritz, James S

    2003-04-15

    A rapid, highly sensitive two-step procedure for the trace analysis of silver(I) is described. The method is based on: (1) the solid-phase extraction (SPE) of silver(I) from a water sample onto a disk impregnated with a silver-selective colorimetric reagent, and (2) the determination of the amount of complexed analyte extracted by the disk by diffuse reflectance spectroscopy (DRS). This method, called colorimetric-solid-phase extraction (C-SPE), was recently shown effective in determining low concentrations (0.1-5.0 mg/ml) of iodine and iodide in drinking water. This report extends C-SPE to the trace ({approx}4 {mu}g/l) level monitoring of silver(I) which is a biocide used on the International Space Station (ISS). The determination relies on the manually driven passage of a water sample through a polystyrene-divinylbenzene disk that has been impregnated with the colorimetric reagent 5-(p-dimethylaminobenzylidene) rhodanine (DMABR) and with an additive such as a semi-volatile alcohol (1,2-decanediol) or nonionic surfactant (Brij 30). The amount of concentrated silver(I) is then determined in a few seconds by using a hand-held diffuse reflectance spectrometer, with a total sample workup and readout time of {approx}60 s. Importantly, the additive induces the uptake of water by the disk, which creates a local environment conducive to silver(I) complexation at an extremely high concentration factor ({approx}800). There is no detectable reaction between silver(I) and impregnated DMABR in the absence of the additive. This strategy represents an intriguing new dimension for C-SPE in which additives, directly loaded in the disk material, provide a means to manipulate the reactivity of the impregnated reagent.

  20. New Phase of Internationalization of Higher Education and Institutional Change

    Science.gov (United States)

    Wadhwa, Rashim

    2016-01-01

    Internationalization of higher education has undergone significant change in the current scenario. The approach to traditional internationalization which was based on international co-operation and rarely a profit making activity were at the center of traditional internationalization has changed significantly from the last two decades. Emergence…

  1. The African Climate Change Fellowship Program Phase III | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Climate change and climate variability are significantly impeding development in Africa. The Economic Commission for Africa argues that scientists and policymakers must learn to better manage climate risks and to integrate climate change considerations into future development strategies. To do so, scientists and ...

  2. Stakeholder perspectives on triage in wildlife monitoring in a rapidly changing Arctic

    Directory of Open Access Journals (Sweden)

    Helen C Wheeler

    2016-11-01

    Full Text Available Monitoring activities provide a core contribution to wildlife conservation in the Arctic. Effective monitoring which allows changes in population status to be detected early, provides opportunities to mitigate pressures driving declines. Monitoring triage involves decisions about how and where to prioritise activities in species and ecosystem based monitoring. In particular, monitoring triage examines whether to divert resources away from species where there is high likelihood of extinction in the near-future in favour of species where monitoring activities may produce greater conservation benefits. As a place facing both rapid change with a high likelihood of population extinctions, and serious logistic and financial challenges for field data acquisition, the Arctic provides a good context in which to examine attitudes toward triage in monitoring.For effective decision-making to emerge from monitoring, multiple stakeholders must be involved in defining aims and priorities. We conducted semi-structured interviews with stakeholders in arctic wildlife monitoring (either contributing to observation and recording of wildlife, using information from wildlife observation and recording, or using wildlife as a resource to elicit their perspectives on triage in wildlife monitoring in the Arctic.The majority (56% of our 23 participants were predominantly in opposition to triage, 26% were in support of triage and 17% were undecided. Representatives of Indigenous organisations were more likely to be opposed to triage than scientists and those involved in decision-making showed greatest support for triage amongst the scientist participants. Responses to the concept of triage included that: 1 The species-focussed approach associated with triage did not match their more systems-based view (5 participants, 2 Important information is generated through monitoring threatened species which advances understanding of the drivers of change, responses and ecosystem

  3. Highly stable phase change material emulsions fabricated by interfacial assembly of amphiphilic block copolymers during phase inversion.

    Science.gov (United States)

    Park, Hanhee; Han, Dong Wan; Kim, Jin Woong

    2015-03-10

    This study introduced a robust and promising approach to fabricate highly stable phase change material (PCM) emulsions consisting of n-tetradecane as a dispersed phase and a mixture of meso-2,3-butanediol (m-BDO) and water as a continuous phase. We showed that amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers assembled to form a flexible but tough polymer membrane at the interface during phase inversion from water-in-oil emulsion to oil-in-water emulsion, thus remarkably improving the emulsion stability. Although the incorporation of m-BDO into the emulsion lowered the phase changing enthalpy, it provided a useful means to elevate the melting temperature of the emulsions near to 15 °C. Interestingly, supercooling was commonly observed in our PCM emulsions. We attributed this to the fact that the PCM molecules confined in submicron-scale droplets could not effectively nucleate to grow molecular crystals. Moreover, the presence of m-BDO in the continuous phase rather dominated the heat emission of the emulsion system during freezing, which made the supercooling more favorable.

  4. Vegetative phase change in sweet corn populations: Genetics and relationship with agronomic traits (vegetative phase change in open-pollinated sweet corn).

    OpenAIRE

    Abedon, B. G.; Revilla Temiño, Pedro; Tracy, W. F.

    1996-01-01

    Vegetative development in maize can be divided into juvenile and adult phases, each, with distinct anatomy and physiology. Transition from juvenile to adult vegetative growth may have some adaptive value since adult leaves have increased photosynthetic rates, xeromorphism, and resistance to certain insects and diseases. Variation in the timing of this transition (i.e., the node(s) at which phase change occurs) may be associated with agronomic performance. Our objectives were to investigate th...

  5. Microwave assisted extraction-solid phase extraction for high-efficient and rapid analysis of monosaccharides in plants.

    Science.gov (United States)

    Zhang, Ying; Li, Hai-Fang; Ma, Yuan; Jin, Yan; Kong, Guanghui; Lin, Jin-Ming

    2014-11-01

    Monosaccharides are the fundamental composition units of saccharides which are a common source of energy for metabolism. An effective and simple method consisting of microwave assisted extraction (MAE), solid phase extraction (SPE) and high performance liquid chromatography-refractive index detector (HPLC-RID) was developed for rapid detection of monosaccharides in plants. The MAE was applied to break down the structure of the plant cells and release the monosaccharides, while the SPE procedure was adopted to purify the extract before analysis. Finally, the HPLC-RID was employed to separate and analyze the monosaccharides with amino column. As a result, the extraction time was reduced to 17 min, which was nearly 85 times faster than soxhlet extraction. The recoveries of arabinose, xylose, fructose and glucose were 85.01%, 87.79%, 103.17%, and 101.24%, with excellent relative standard deviations (RSDs) of 1.94%, 1.13%, 0.60% and 1.67%, respectively. The proposed method was demonstrated to be efficient and time-saving, and had been applied to analyze monosaccharides in tobacco and tea successfully. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Rapid Separation of Elemental Species by Fast Multicapillary Gas Chromatography with Multichannel Optical Spectrometry Detection following Headspace Solid Phase Microextraction

    Directory of Open Access Journals (Sweden)

    Jacek Giersz

    2015-05-01

    Full Text Available A method for conducting fast and efficient gas chromatography based on short multicapillaries in straight alignment combined with atomic emission detection was developed for field analysis. The strategy enables for speciation analysis of organometallic compounds. The analytes are simultaneously ethylated and preconcentrated on a solid phase microextraction (SPME fiber placed in the headspace over the sample for 25 min. The ethylated species are then completely separated and selectively quantified within 25 s under isothermal conditions. A new miniaturized speciation analyzer has been constructed and evaluated. The system consists of a GC injection port and a lab-made miniaturized GC unit directly coupled with miniaturized plasma excitation source. The emitted light is transferred via optical fiber and registered with a miniaturized charged coupled device (CCD based spectrometer. Working parameters for multicapillary column gas chromatography with atomic emission detector, including carrier gas flow rate, desorption temperature, and GC column temperature, were optimized to achieve good separation of analytes. Basic investigations of the fundamental properties of 5 cm-long multicapillary column, to evaluate its potential and limitations as a rapid separation unit, are presented. The adaptation of the technique for use with a SPME system and with a multichannel element-selective plasma-emission detector is highlighted.

  7. Fluvial response to the last Holocene rapid climate change in the Northwestern Mediterranean coastlands

    Science.gov (United States)

    Degeai, Jean-Philippe; Devillers, Benoît; Blanchemanche, Philippe; Dezileau, Laurent; Oueslati, Hamza; Tillier, Margaux; Bohbot, Hervé

    2017-05-01

    The variability of fluvial activity in the Northwestern Mediterranean coastal lowlands and its relationship with modes of climate change were analysed from the late 9th to the 18th centuries CE. Geochemical analyses were undertaken from a lagoonal sequence and surrounding sediments in order to track the fluvial inputs into the lagoon. An index based on the K/S and Rb/S ratios was used to evidence the main periods of fluvial activity. This index reveals that the Medieval Climate Anomaly (MCA) was a drier period characterized by a lower fluvial activity, while the Little Ice Age (LIA) was a wetter period with an increase of the river dynamics. Three periods of higher than average fluvial activity were evidenced at the end of the first millennium CE (ca. 900-950 cal yr CE), in the first half of the second millennium CE (ca. 1150-1550 cal yr CE), and during the 1600s-1700s CE (ca. 1650-1800 cal yr CE). The comparison of these fluvial periods with other records of riverine or lacustrine floods in Spain, Italy, and South of France seems to indicate a general increase in fluvial and flood patterns in the Northwestern Mediterranean in response to the climate change from the MCA to the LIA, although some episodes of flooding are not found in all records. Besides, the phases of higher than average fluvial dynamics are in good agreement with the North Atlantic cold events evidenced from records of ice-rafted debris. The evolution of fluvial activity in the Northwestern Mediterranean coastlands during the last millennium could have been driven by atmospheric and oceanic circulation patterns.

  8. Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.

    Science.gov (United States)

    Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V

    2016-12-13

    The Ge2Sb2Te5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge2Sb2Te5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge2Sb2Te5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge2Sb2Te5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.

  9. Biology of three Malacostraca (Decapoda) in a Mediterranean lagoon with particular emphasis on the effect of rapid environmental changes on the activity (catchability) of the species

    Science.gov (United States)

    Crivelli, A. J.

    1982-12-01

    The activity of three Malacostraca (Decapoda), Crangon crangon, Carcinus aestuarii and Paleamon squilla, was studied following rapid environmental changes in a Mediterranean lagoon linked temporarily with the sea. Nekton was sampled every 2-3 days using fixed fyke nets. A canonical analysis and a stepwise multiple regression were computed to determine which factor(s) can predict or account for the catch of these three decapods. In spite of rapid environmental changes no exceptional mortality was observed in each of the three species. Temperature is the environmental factor with major impact on the activity of C. crangon. Activity of P. squilla is controlled by water depth. At a depth of less than 20 cm two factors, salinity and phase of the moon, have a significant influence on the activity of this species. At depths deeper than 20 cm the activity is inhibited. There is only a weak relationship between the catch of C. aestuarii and salinity. Additional data on the life cycle of these species are given. The limitations of a monthly sampling period are discussed and the need for more short-term, consecutive sampling periods is stressed in order to understand the dynamics of systems with rapid environmental fluctuations.

  10. Graphene Aerogel Templated Fabrication of Phase Change Microspheres as Thermal Buffers in Microelectronic Devices.

    Science.gov (United States)

    Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong

    2017-11-16

    Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.

  11. Diverse multi-decadal changes in streamflow within a rapidly urbanizing region

    Science.gov (United States)

    Diem, Jeremy E.; Hill, T. Chee; Milligan, Richard A.

    2018-01-01

    The impact of urbanization on streamflow depends on a variety of factors (e.g., climate, initial land cover, inter-basin transfers, water withdrawals, wastewater effluent, etc.). The purpose of this study is to examine trends in streamflow from 1986 to 2015 in a range of watersheds within the rapidly urbanizing Atlanta, GA metropolitan area. This study compares eight watersheds over three decades, while minimizing the influence of inter-annual precipitation variability. Population and land-cover data were used to analyze changes over approximately twenty years within the watersheds. Precipitation totals for the watersheds were estimated using precipitation totals at nearby weather stations. Multiple streamflow variables, such as annual streamflow, frequencies of high-flow days (HFDs), flashiness, and precipitation-adjusted streamflow, for the eight streams were calculated using daily streamflow data. Variables were tested for significant trends from 1986 to 2015 and significant differences between 1986-2000 and 2001-2015. Flashiness increased for all streams without municipal water withdrawals, and the four watersheds with the largest increase in developed land had significant increases in flashiness. Significant positive trends in precipitation-adjusted mean annual streamflow and HFDs occurred for the two watersheds (Big Creek and Suwanee Creek) that experienced the largest increases in development, and these were the only watersheds that went from majority forest land in 1986 to majority developed land in 2015. With a disproportionate increase in HFD occurrence during summer, Big Creek and Suwannee Creek also had a reduction in intra-annual variability of HFD occurrence. Watersheds that were already substantially developed at the beginning of the period and did not have wastewater discharge had declining streamflow. The most urbanized watershed (Peachtree Creek) had a significant decrease in streamflow, and a possible cause of the decrease was increasing

  12. Transcranial Random Noise Stimulation (tRNS Shapes the Processing of Rapidly Changing Auditory Information

    Directory of Open Access Journals (Sweden)

    Katharina S. Rufener

    2017-06-01

    Full Text Available Neural oscillations in the gamma range are the dominant rhythmic activation pattern in the human auditory cortex. These gamma oscillations are functionally relevant for the processing of rapidly changing acoustic information in both speech and non-speech sounds. Accordingly, there is a tight link between the temporal resolution ability of the auditory system and inherent neural gamma oscillations. Transcranial random noise stimulation (tRNS has been demonstrated to specifically increase gamma oscillation in the human auditory cortex. However, neither the physiological mechanisms of tRNS nor the behavioral consequences of this intervention are completely understood. In the present study we stimulated the human auditory cortex bilaterally with tRNS while EEG was continuously measured. Modulations in the participants’ temporal and spectral resolution ability were investigated by means of a gap detection task and a pitch discrimination task. Compared to sham, auditory tRNS increased the detection rate for near-threshold stimuli in the temporal domain only, while no such effect was present for the discrimination of spectral features. Behavioral findings were paralleled by reduced peak latencies of the P50 and N1 component of the auditory event-related potentials (ERP indicating an impact on early sensory processing. The facilitating effect of tRNS was limited to the processing of near-threshold stimuli while stimuli clearly below and above the individual perception threshold were not affected by tRNS. This non-linear relationship between the signal-to-noise level of the presented stimuli and the effect of stimulation further qualifies stochastic resonance (SR as the underlying mechanism of tRNS on auditory processing. Our results demonstrate a tRNS related improvement in acoustic perception of time critical auditory information and, thus, provide further indices that auditory tRNS can amplify the resonance frequency of the auditory system.

  13. Traps as treats: a traditional sticky rice snack persisting in rapidly changing Asian kitchens.

    Science.gov (United States)

    Schwallier, Rachel; de Boer, Hugo J; Visser, Natasja; van Vugt, Rogier R; Gravendeel, Barbara

    2015-03-24

    An accessory to modern developing economies includes a shift from traditional, laborious lifestyles and cuisine to more sedentary careers, recreation and convenience-based foodstuffs. Similar changes in the developed western world have led to harmful health consequences. Minimization of this effect in current transitional cultures could be met by placing value on the maintenance of heritage-rich food. Vitally important to this is the preservation and dissemination of knowledge of these traditional foods. Here, we investigate the history and functionality of a traditional rice snack cooked in Nepenthes pitchers, one of the most iconic and recognizable plants in the rapidly growing economic environment of Southeast Asia. Social media was combined with traditional ethnobotanical surveys to conduct investigations throughout Malaysian Borneo. Interviews were conducted with 25 market customers, vendors and participants from various ethnical groups with an in-depth knowledge of glutinous rice cooked in pitcher plants. The acidity of pitcher fluid was measured during experimental cooking to analyze possible chemical avenues that might contribute to rice stickiness. Participants identifying the snack were almost all (96%) from indigenous Bidayuh or Kadazandusun tribal decent. They prepare glutinous rice inside pitcher traps for tradition, vessel functionality and because they thought it added fragrance and taste to the rice. The pH and chemical activity of traps analyzed suggest there is no corresponding effect on rice consistency. Harvest of pitchers does not appear to decrease the number of plants in local populations. The tradition of cooking glutinous rice snacks in pitcher plants, or peruik kera in Malay, likely carries from a time when cooking vessels were more limited, and persists only faintly in tribal culture today because of value placed on maintaining cultural heritage. Social media proved a valuable tool in our research for locating research areas and in

  14. Extremely rapid directional change during Matuyama-Brunhes geomagnetic polarity reversal

    Science.gov (United States)

    Sagnotti, Leonardo; Scardia, Giancarlo; Giaccio, Biagio; Liddicoat, Joseph C.; Nomade, Sebastien; Renne, Paul R.; Sprain, Courtney J.

    2014-11-01

    We report a palaeomagnetic investigation of the last full geomagnetic field reversal, the Matuyama-Brunhes (M-B) transition, as preserved in a continuous sequence of exposed lacustrine sediments in the Apennines of Central Italy. The palaeomagnetic record provides the most direct evidence for the tempo of transitional field behaviour yet obtained for the M-B transition. 40Ar/39Ar dating of tephra layers bracketing the M-B transition provides high-accuracy age constraints and indicates a mean sediment accumulation rate of about 0.2 mm yr-1 during the transition. Two relative palaeointensity (RPI) minima are present in the M-B transition. During the terminus of the upper RPI minimum, a directional change of about 180 ° occurred at an extremely fast rate, estimated to be less than 2 ° per year, with no intermediate virtual geomagnetic poles (VGPs) documented during the transit from the southern to northern hemisphere. Thus, the entry into the Brunhes Normal Chron as represented by the palaeomagnetic directions and VGPs developed in a time interval comparable to the duration of an average human life, which is an order of magnitude more rapid than suggested by current models. The reported investigation therefore provides high-resolution integrated palaeomagnetic and radioisotopic data that document the fine details of the anatomy and tempo of the M-B transition in Central Italy that in turn are crucial for a better understanding of Earth's magnetic field, and for the development of more sophisticated models that are able to describe its global structure and behaviour.

  15. Rapid Changes in CB1 Receptor Availability in Cannabis Dependent Males after Abstinence from Cannabis.

    Science.gov (United States)

    D'Souza, Deepak Cyril; Cortes-Briones, Jose A; Ranganathan, Mohini; Thurnauer, Halle; Creatura, Gina; Surti, Toral; Planeta, Beata; Neumeister, Alexander; Pittman, Brian; Normandin, Marc; Kapinos, Michael; Ropchan, Jim; Huang, Yiyun; Carson, Richard E; Skosnik, Patrick D

    2016-01-01

    The widespread use of cannabis, the increasing legalization of "medical" cannabis, the increasing potency of cannabis and the growing recreational use of synthetic cannabinoid 1 receptor (CB1R) full agonists underscores the importance of elucidating the effects of cannabinoids on the CB1R system. Exposure to cannabinoids is known to result in CB1R downregulation. However, the precise time course of changes in CB1R availability in cannabis dependent subjects (CDs) following short and intermediate term abstinence has not been determined. Using High Resolution Research Tomography (HRRT) and [(11)C]OMAR, CB1R availability as indexed by the volume of distribution (VT) [(11)C]OMAR was measured in male CDs (n=11) and matched healthy controls (HCs) (n=19). CDs were scanned at baseline (while they were neither intoxicated nor in withdrawal), and after 2 days and 28 days of monitored abstinence. HCs were scanned at baseline and a subset (n=4) was rescanned 28 days later. Compared to HCs, [(11)C]OMAR VT was 15% lower in CDs (effect size Cohen's d=-1.11) at baseline in almost all brain regions. However, these group differences in CB1R availability were no longer evident after just 2 days of monitored abstinence from cannabis. There was a robust negative correlation between CB1R availability and withdrawal symptoms after 2 days of abstinence. Finally, there were no significant group differences in CB1R availability in CDs after 28 days of abstinence. Cannabis dependence is associated with CB1R downregulation, which begins to reverse surprisingly rapidly upon termination of cannabis use and may continue to increase over time.

  16. Competition for cognitive resources during rapid serial processing: changes across childhood

    Directory of Open Access Journals (Sweden)

    Sabine eHeim

    2011-01-01

    Full Text Available The ability to direct cognitive resources to target objects despite distraction by competing information plays an important role for the development of mental aptitudes and skills. We examined developmental changes of this ability in a cross-sectional design, using the attentional blink (AB paradigm. The AB is a pronounced impairment of T2 report, which occurs when a first (T1 and second target (T2 embedded in a rapid stimulus sequence are separated by at least one distractor and occur within 500 ms of each other. Two groups of children (6 to 7 year-olds and 10 to 11 year-olds; ns = 21 and 24, respectively were asked to identify green targets in two AB tasks: one using non-linguistic symbols and the other letters or words. The temporal distance or stimulus-onset asynchrony (SOA between T1 and T2 varied between no intervening distractor (Lag 1, 116-ms SOA and up to 7 intervening distractors (Lag 8, 928-ms SOA. In the symbol task, younger children linearly increased T2 identification with increasing lag. Older children, however, displayed a hook-shaped pattern as typically seen in adults, with lowest identification reports in T2 symbols at the critical blink interval (Lag 2, 232-ms SOA, and a slight performance gain for the Lag-1 condition. In the verbal task, the older group again exhibited a prominent drop in T2 identification at Lag 2, whereas the younger group showed a more alleviated and temporally diffuse AB impairment. Taken together, this pattern of results suggests that the control of attention allocation and/or working memory consolidation of targets among distractors represents a cognitive skill that emerges during primary school age.

  17. The New Phase of the Global Policy on Climate Change

    Directory of Open Access Journals (Sweden)

    Paul Calanter

    2012-05-01

    Full Text Available Climate change, a phenomenon that occurs worldwide, is one of the great challenges of our times.The scientific community has repeatedly drawn policy makers attention to the imperative need to adopt ofpreventive, mitigation and adaptation measures to what constitutes a threat to the normal course of life onEarth. Adoption and entry into force of the Kyoto Protocol, with its ratification by Russia, in February 2005represented a major step forward in the global struggle against climate change. In this moment, however, theconclusion in 2012 of the commitment period for reducing emissions of greenhouse gases provided by theProtocol, and the brokenness of this period, put in front of the international community the need for furtherpolicy measures to prevent and combating climate change and its effects.

  18. Organizational Adaptation to the Rapidly Changing External Environment: A Case Study of Strategic Marketing at Notre Dame College in Ohio

    Science.gov (United States)

    Brown, Shawn M.

    2012-01-01

    This thesis examined the role of strategic marketing in organizational adaptation to a rapidly changing and competitive external environment among institutions of higher education. Colleges and universities adapt to external pressures as open systems operating within a broader external environment (Bess & Dee, 2008; Keller, 1983). How does…

  19. Sn-Sb-Se based binary and ternary alloys for phase change memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyung-Min

    2008-10-28

    In this work, the effect of replacing Ge by Sn and Te by Se was studied for a systematic understanding and prediction of new potential candidates for phase change random access memories applications. The temperature dependence of the electrical/structural properties and crystallization kinetics of the Sn-Se based binary and Sn-Sb-Se based ternary alloys were determined and compared with those of the GeTe and Ge-Sb-Te system. The temperature dependence of electrical and structural properties were investigated by van der Pauw measurements, X-ray diffraction, X-ray reflectometry. By varying the heating rate, the Kissinger analysis has been used to determine the combined activation barrier for crystallization. To screen the kinetics of crystallization, a static laser tester was employed. In case of binary alloys of the type Sn{sub x}Se{sub 1-x}, the most interesting candidate is SnSe{sub 2} since it crystallizes into a single crystalline phase and has high electrical contrast and reasonably high activation energy for crystallization. In addition, the SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloy system also might be sufficient for data retention due to their higher transition temperature and activation energy for crystallization in comparison to GeTe-Sb{sub 2}Te{sub 3} system. Furthermore, SnSe{sub 2}-Sb{sub 2}Se{sub 3} pseudobinary alloys have a higher crystalline resistivity. The desired rapid crystallization speed can be obtained for Sn{sub 1}Sb{sub 2}Se{sub 5} and Sn{sub 2}Sb{sub 2}Se{sub 7} alloys. (orig.)

  20. Autobiographical memory and structural brain changes in chronic phase TBI.

    Science.gov (United States)

    Esopenko, Carrie; Levine, Brian

    2017-04-01

    Traumatic brain injury (TBI) is associated with a range of neuropsychological deficits, including attention, memory, and executive functioning attributable to diffuse axonal injury (DAI) with accompanying focal frontal and temporal damage. Although the memory deficit of TBI has been well characterized with laboratory tests, comparatively little research has examined retrograde autobiographical memory (AM) at the chronic phase of TBI, with no prior studies of unselected patients drawn directly from hospital admissions for trauma. Moreover, little is known about the effects of TBI on canonical episodic and non-episodic (e.g., semantic) AM processes. In the present study, we assessed the effects of chronic-phase TBI on AM in patients with focal and DAI spanning the range of TBI severity. Patients and socioeconomic- and age-matched controls were administered the Autobiographical Interview (AI) (Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002) a widely used method for dissociating episodic and semantic elements of AM, along with tests of neuropsychological and functional outcome. Measures of episodic and non-episodic AM were compared with regional brain volumes derived from high-resolution structural magnetic resonance imaging (MRI). Severe TBI (but not mild or moderate TBI) was associated with reduced recall of episodic autobiographical details and increased recall of non-episodic details relative to healthy comparison participants. There were no significant associations between AM performance and neuropsychological or functional outcome measures. Within the full TBI sample, autobiographical episodic memory was associated with reduced volume distributed across temporal, parietal, and prefrontal regions considered to be part of the brain's AM network. These results suggest that TBI-related distributed volume loss affects episodic autobiographical recollection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Fully-implicit orthogonal reconstructed Discontinuous Galerkin method for fluid dynamics with phase change

    Science.gov (United States)

    Nourgaliev, R.; Luo, H.; Weston, B.; Anderson, A.; Schofield, S.; Dunn, T.; Delplanque, J.-P.

    2016-01-01

    A new reconstructed Discontinuous Galerkin (rDG) method, based on orthogonal basis/test functions, is developed for fluid flows on unstructured meshes. Orthogonality of basis functions is essential for enabling robust and efficient fully-implicit Newton-Krylov based time integration. The method is designed for generic partial differential equations, including transient, hyperbolic, parabolic or elliptic operators, which are attributed to many multiphysics problems. We demonstrate the method's capabilities for solving compressible fluid-solid systems (in the low Mach number limit), with phase change (melting/solidification), as motivated by applications in Additive Manufacturing (AM). We focus on the method's accuracy (in both space and time), as well as robustness and solvability of the system of linear equations involved in the linearization steps of Newton-based methods. The performance of the developed method is investigated for highly-stiff problems with melting/solidification, emphasizing the advantages from tight coupling of mass, momentum and energy conservation equations, as well as orthogonality of basis functions, which leads to better conditioning of the underlying (approximate) Jacobian matrices, and rapid convergence of the Krylov-based linear solver.

  2. Development of sunlight-driven eutectic phase change material nanocomposite for applications in solar water heating

    Directory of Open Access Journals (Sweden)

    S. Shankara Narayanan

    2017-09-01

    Full Text Available Organic phase change materials (PCMs have been utilized as latent heat energy storage medium for effective thermal management. In this work, a PCM nanocomposite, consisting of a mixture of two organic PCMs (referred to as eutectic gel PCM and minimal amount (0.5 wt% of nanographite (NG as a supporting material, was prepared. Differential scanning calorimeter was used to determine the melting temperature and latent heat of pristine PCM, paraffin (61.5 °C and 161.5 J/g, eutectic gel PCM (54 °C and 158 J/g and eutectic gel PCM nanocomposite (53.5 °C and 155 J/g. The prepared PCM nanocomposites exhibited enhanced thermal conductivity and ultrafast thermal charging characteristics. The nanocomposites were employed for two different applications: (i providing hot water using an indigenously fabricated solar water heating (SWH system and (ii solar rechargeable glove that can be rapidly warmed and used. Experimental results on SWH system show that the use of PCM nanocomposites helps to increase the charging rate of PCM while reducing the discharging rate of heat by PCM to water, thus enhancing the maximum utilization of solar energy and hence improving the efficiency of the SWH system. The experimental results on solar rechargeable glove revealed that the glove has the ability to retain the temperature up to 3 hours.

  3. Comparison of thermistor linearization techniques for accurate temperature measurement in phase change materials

    Energy Technology Data Exchange (ETDEWEB)

    Stankovic, S B; Kyriacou, P A, E-mail: p.kyriacou@city.ac.uk [School of Engineering and Mathematical Sciences, City University London, Northampton Square, London EC1V 0HB (United Kingdom)

    2011-08-17

    Alternate energy technologies are developing rapidly in the recent years. A significant part of this trend is the development of different phase change materials (PCMs). Proper utilization of PCMs requires accurate thermal characterization. There are several methodologies used in this field. This paper stresses the importance of accurate temperature measurements during the implementation of T-history method. Since the temperature sensor size is also important thermistors have been selected as the sensing modality. Two thermistor linearization techniques, one based on Wheatstone bridge and the other based on simple serial-parallel resistor connection, are compared in terms of achievable temperature accuracy through consideration of both, nonlinearity and self-heating errors. Proper calibration was performed before T-history measurement of RT21 (RUBITHERM (registered) GmbH) PCM. Measurement results suggest that the utilization of serial-parallel resistor connection gives better accuracy (less than {+-}0.1 deg. C) in comparison with the Wheatstone bridge based configuration (up to {+-}1.5 deg. C).

  4. An on-line normal-phase high performance liquid chromatography method for the rapid detection of radical scavengers in non-polar food matrixes

    NARCIS (Netherlands)

    Zhang, Q.; van der Klift, E.J.C.; Janssen, H.-G.; van Beek, T.A.

    2009-01-01

    An on-line method for the rapid pinpointing of radical scavengers in non-polar mixtures like vegetable oils was developed. To avoid problems with dissolving the sample, normal-phase chromatography on bare silica gel was used with mixtures of hexane and methyl tert-butyl ether as the eluent. The high

  5. Thermophysical properties and behavioral characteristics of phase-change materials

    Energy Technology Data Exchange (ETDEWEB)

    Cantor, S

    1977-01-01

    The primary and near-term objective of the project is to compile a handbook of compounds and mixtures that melt in the range of 90 to 250/sup 0/C and which are suitable for isothermal heat storage. Organic compounds have been screened according to bulk price, thermal stability, and safety. Compounds were selected for further consideration if they cost less than $1.10/kg and if encyclopedia articles or handbooks indicated that they were reasonably stable chemically and were not toxic or otherwise hazardous. Of seven compounds thus selected, four (urea, phthalimide, adipic acid, phthalic anhydride) have been examined by DSC and other methods. The differential scanning calorimeter was used with two fairly well-characterized PCM's to test its applicability for rapidly evaluating thermal decomposition and supercooling. With Na/sub 2/SO/sub 4/ . 10H/sub 2/O, DSC data indicated (a) decrease in heat of transition with thermal cycling, and (b) considerable supercooling; with 3 to 6 percent borax added, supercooling was greatly lessened but not entirely eliminated. Measurements with paraffin wax showed that this material does not supercool nor does it degrade in thermal performance with cycling. The DSC results with these two materials confirmed (and extended) thermal performance characteristics obtained by other means. However, studies of supercooling in urea and in phthalimide suggested that DSC techniques may magnify the extent of supercooling at elevated temperatures.

  6. Phase-Change Aminopyridines as Carbon Dioxide Capture Solvents

    Energy Technology Data Exchange (ETDEWEB)

    Malhotra, Deepika [Energy Processes and Materials; Page, Jordan P. [Energy Processes and Materials; Bowden, Mark E. [Energy Processes and Materials; Karkamkar, Abhijeet [Energy Processes and Materials; Heldebrant, David J. [Energy Processes and Materials; Glezakou, Vassiliki-Alexandra [Energy Processes and Materials; Rousseau, Roger [Energy Processes and Materials; Koech, Phillip K. [Energy Processes and Materials

    2017-06-22

    Carbon dioxide is the main atmospheric greenhouse gas released from industrial point sources. In order to mitigate adverse environmental effects of these emissions, carbon capture, storage and utilization is required. To this end, several CO2 capture technologies are being developed for application in carbon capture, which include aqueous amines and water-lean solvents. Herein we report new aminopyridine solvents with the potential for CO2 capture from coal-fired power plants. These four solvents 2-picolylamine, 3-picolylamine, 4-picolylamine and N’-(pyridin-4-ylmethyl)ethane-1,2-diamine are liquids that rapidly bind CO2 to form crystalline solids at standard room temperature and pressure. These solvents have displayed high CO2 capture capacity (11 - 20 wt%) and can be regenerated at temperatures in the range of 120 - 150 C. The advantage of these primary aminopyridine solvents is that crystalline salt product can be separated, making it possible to regenerate only the CO2-rich solid ultimately resulting in reduced energy penalty.

  7. MR Diffusion Tensor Imaging Detects Rapid Microstructural Changes in Amygdala and Hippocampus Following Fear Conditioning in Mice

    Science.gov (United States)

    Ding, Abby Y.; Li, Qi; Zhou, Iris Y.; Ma, Samantha J.; Tong, Gehua; McAlonan, Grainne M.; Wu, Ed X.

    2013-01-01

    Background Following fear conditioning (FC), ex vivo evidence suggests that early dynamics of cellular and molecular plasticity in amygdala and hippocampal circuits mediate responses to fear. Such altered dynamics in fear circuits are thought to be etiologically related to anxiety disorders including posttraumatic stress disorder (PTSD). Consistent with this, neuroimaging studies of individuals with established PTSD in the months after trauma have revealed changes in brain regions responsible for processing fear. However, whether early changes in fear circuits can be captured in vivo is not known. Methods We hypothesized that in vivo magnetic resonance diffusion tensor imaging (DTI) would be sensitive to rapid microstructural changes elicited by FC in an experimental mouse PTSD model. We employed a repeated measures paired design to compare in vivo DTI measurements before, one hour after, and one day after FC-exposed mice (n = 18). Results Using voxel-wise repeated measures analysis, fractional anisotropy (FA) significantly increased then decreased in amygdala, decreased then increased in hippocampus, and was increasing in cingulum and adjacent gray matter one hour and one day post-FC respectively. These findings demonstrate that DTI is sensitive to early changes in brain microstructure following FC, and that FC elicits distinct, rapid in vivo responses in amygdala and hippocampus. Conclusions Our results indicate that DTI can detect rapid microstructural changes in brain regions known to mediate fear conditioning in vivo. DTI indices could be explored as a translational tool to capture potential early biological changes in individuals at risk for developing PTSD. PMID:23382811

  8. [Effect of high-temperature phase change material on the performance of infrared decoy].

    Science.gov (United States)

    Wu, Ting-Ting; Chen, Xin; Han, Ai-Jun; Ye, Ming-Quan; Zhao, Min-Chun

    2013-10-01

    The impact of the high-temperature phase change material on conventional infrared decoy's combustion performance and infrared radiation characteristics was studied. The selected high-temperature phase change materials did not reduce infrared radiation in the 3-5 microm or 8-14 microm band of infrared decoy, while extended the burning time, and reduced the burning rate of the grain, thus prolonged the effective interference time of IR decoy. The results show the phase change material is effective infrared decoy functional additives.

  9. Resource management and operations in southwest South Dakota: Climate change scenario planning workshop summary January 20-21, 2016, Rapid City, SD

    Science.gov (United States)

    Fisichelli, Nicholas A.; Schuurman, Gregor W.; Symstad, Amy J.; Ray, Andrea; Miller, Brian; Cross, Molly; Rowland, Erika

    2016-01-01

    The Scaling Climate Change Adaptation in the Northern Great Plains through Regional Climate Summaries and Local Qualitative-Quantitative Scenario Planning Workshops project synthesizes climate data into 3-5 distinct but plausible climate summaries for the northern Great Plains region; crafts quantitative summaries of these climate futures for two focal areas; and applies these local summaries by developing climate-resource-management scenarios through participatory workshops and, where possible, simulation models. The two focal areas are central North Dakota and southwest South Dakota (Figure 1). The primary objective of this project is to help resource managers and scientists in a focal area use scenario planning to make management and planning decisions based on assessments of critical future uncertainties.This report summarizes project work for public and tribal lands in the southwest South Dakota grasslands focal area, with an emphasis on Badlands National Park and Buffalo Gap National Grassland. The report explains scenario planning as an adaptation tool in general, then describes how it was applied to the focal area in three phases. Priority resource management and climate uncertainties were identified in the orientation phase. Local climate summaries for relevant, divergent, and challenging climate scenarios were developed in the second phase. In the final phase, a two-day scenario planning workshop held January 20-21, 2016 in Rapid City, South Dakota, featured scenario development and implications, testing management decisions, and methods for operationalizing scenario planning outcomes.

  10. Structural properties of the metastable state of phase change materials investigated by synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Merkelbach, Philipp; Eijk, Julia van; Wuttig, Matthias [I. Phys. Institut (IA), RWTH Aachen, 52056 Aachen (Germany); Braun, Carolin [Institut fuer Anorg. Chemie, CAU Kiel, 24098 Kiel (Germany)

    2008-07-01

    Phase change alloys are among the most promising materials for novel data storage devices. Since several years Phase Change Materials based on Ge-Sb-Te- alloys have been used in optical data storage solutions like rewriteable CDs and DVDs. Recently these alloys have been explored as potential candidates for fast nonvolatile electrical data storage devices in Phase Change Random Access Memory (PCRAM). Besides attracting considerable interest from the commercial point of view phase change materials are very interesting also due to their remarkable physical properties. They have the ability to be reversibly switched within a few nanoseconds between the amorphous and the crystalline phase, while changing their physical properties such as optical reflectivity and electrical resistivity significantly. Even though the electronic properties show a drastical contrast such fast transitions can only be caused by small atomic rearrangements. This behavior calls for a deeper understanding of the structural properties of the alloys. We have performed powder diffraction measurements of the crystal phase of various GeSbTe alloys, to determine the structural similarities and differences of several alloys. Understanding the crystal structure of phase change materials is a key to a deeper insight into the properties of these promising materials.

  11. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  12. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  13. Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications

    Science.gov (United States)

    Coso, Dusan

    experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and

  14. Experimental Studies of Phase Change and Microencapsulated Phase Change Materials in a Cold Storage/Transportation System with Solar Driven Cooling Cycle

    Directory of Open Access Journals (Sweden)

    Lin Zheng

    2017-11-01

    Full Text Available The paper presents the different properties of phase change material (PCM and Microencapsulated phase change material (MEPCM employed to cold storage/transportation system with a solar-driven cooling cycle. Differential Scanning Calorimeter (DSC tests have been performed to analyze the materials enthalpy, melting temperature range, and temperature range of solidification. KD2 Pro is used to test the thermal conductivities of phase change materials slurry and the results were used to compare the materials heat transfer performance. The slurry flow characteristics of MEPCM slurry also have been tested. Furthermore, in order to analyze the improvement effect on stability, the stability of MEPCM slurry with different surfactants have been tested. The researches of the PCM and MEPCM thermal properties revealed a more prospective application for phase change materials in energy storage/transportation systems. The study aims to find the most suitable chilling medium to further optimize the design of the cold storage/transportation systems with solar driven cooling cycles.

  15. Graphene/phase change material nanocomposites: light-driven, reversible electrical resistivity regulation via form-stable phase transitions.

    Science.gov (United States)

    Wang, Yunming; Mi, Hongyi; Zheng, Qifeng; Ma, Zhenqiang; Gong, Shaoqin

    2015-02-04

    Innovative photoresponsive materials are needed to address the complexity of optical control systems. Here, we report a new type of photoresponsive nanomaterial composed of graphene and a form-stable phase change material (PCM) that exhibited a 3 orders of magnitude change in electrical resistivity upon light illumination while retaining its overall original solid form at the macroscopic level. This dramatic change in electrical resistivity also occurred reversibly through the on/off control of light illumination. This was attributed to the reversible phase transition (i.e., melting/recrystallization) behavior of the microscopic crystalline domains present in the form-stable PCM. The reversible phase transition observed in the graphene/PCM nanocomposite was induced by a reversible temperature change through the on/off control of light illumination because graphene can effectively absorb light energy and convert it to thermal energy. In addition, this graphene/PCM nanocomposite also possessed excellent mechanical properties. Such photoresponsive materials have many potential applications, including flexible electronics.

  16. Using an aqueous two-phase polymer-salt system to rapidly concentrate viruses for improving the detection limit of the lateral-flow immunoassay.

    Science.gov (United States)

    Jue, Erik; Yamanishi, Cameron D; Chiu, Ricky Y T; Wu, Benjamin M; Kamei, Daniel T

    2014-12-01

    The development of point-of-need (PON) diagnostics for viruses has the potential to prevent pandemics and protects against biological warfare threats. Here we discuss the approach of using aqueous two-phase systems (ATPSs) to concentrate biomolecules prior to the lateral-flow immunoassay (LFA) for improved viral detection. In this paper, we developed a rapid PON detection assay as an extension to our previous proof-of-concept studies which used a micellar ATPS. We present our investigation of a more rapid polymer-salt ATPS that can drastically improve the assay time, and show that the phase containing the concentrated biomolecule can be extracted prior to macroscopic phase separation equilibrium without affecting the measured biomolecule concentration in that phase. We could therefore significantly decrease the time of the diagnostic assay with an early extraction time of just 30 min. Using this rapid ATPS, the model virus bacteriophage M13 was concentrated between approximately 2 and 10-fold by altering the volume ratio between the two phases. As the extracted virus-rich phase contained a high salt concentration which destabilized the colloidal gold indicator used in LFA, we decorated the gold nanoprobes with polyethylene glycol (PEG) to provide steric stabilization, and used these nanoprobes to demonstrate a 10-fold improvement in the LFA detection limit. Lastly, a MATLAB script was used to quantify the LFA results with and without the pre-concentration step. This approach of combining a rapid ATPS with LFA has great potential for PON applications, especially as greater concentration-fold improvements can be achieved by further varying the volume ratio. Biotechnol. Bioeng. 2014;111: 2499-2507. © 2014 Wiley Periodicals, Inc. © 2014 Wiley Periodicals, Inc.

  17. Effects of intermetallic phases on the electrochemical properties of rapidly-solidified Si-Cr alloys for rechargeable Li-ion batteries

    Science.gov (United States)

    Ha, Jeong Ae; Jo, In Joo; Park, Won-Wook; Sohn, Keun Yong

    2016-09-01

    The microstructures and the electrochemical properties of rapidly-solidified Si-Cr alloys of various compositions were investigated in order to elucidate the effects of intermetallic phases on the cyclic energy capacity of the materials. Rapidly-solidified ribbons of the alloys were prepared by using a melt-spinning process, which is one of the most efficient rapid-solidification processes. The ribbons were fragmented by using a ball-milling process to produce powders of the alloys. To examine the electrochemical characteristics of the alloys, we mixed each of the alloy powders with Ketjenblack®, a conductive material, and a binder dissolved in deionized water and used it to form electrodes. The electrolyte used was 1.5-M LiPF6 dissolved in ethyl carbonate/dimethyl carbonate/fluoroethylene carbonate. The microstructures and the phases of the alloys were analyzed by using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction analyses. The obtained results showed that the microstructures of the rapidly-solidified Si-Cr alloys were composed of Si and CrSi2 phases. Fine Si particles with diameters of 50 - 100 nm were observed in an eutectic constituent while the sizes of the primary Si and CrSi2 phases were relatively larger at 500 - 900 nm. The specific energy capacities ( C) of the Si-Cr alloys decreased linearly with increasing volume fraction ( f) of the CrSi2 phase as follows: C = -1,667 f + 1,978 after the 50th cycle. The Columbic efficiency after the 3rd cycle increased slightly with increasing volume fraction of the CrSi2 phase; this was effective in improving the cycling capacity of the Si particles.

  18. An optoelectronic framework enabled by low-dimensional phase-change films

    Science.gov (United States)

    Hosseini, Peiman; Wright, C. David; Bhaskaran, Harish

    2014-07-01

    The development of materials whose refractive index can be optically transformed as desired, such as chalcogenide-based phase-change materials, has revolutionized the media and data storage industries by providing inexpensive, high-speed, portable and reliable platforms able to store vast quantities of data. Phase-change materials switch between two solid states--amorphous and crystalline--in response to a stimulus, such as heat, with an associated change in the physical properties of the material, including optical absorption, electrical conductance and Young's modulus. The initial applications of these materials (particularly the germanium antimony tellurium alloy Ge2Sb2Te5) exploited the reversible change in their optical properties in rewritable optical data storage technologies. More recently, the change in their electrical conductivity has also been extensively studied in the development of non-volatile phase-change memories. Here we show that by combining the optical and electronic property modulation of such materials, display and data visualization applications that go beyond data storage can be created. Using extremely thin phase-change materials and transparent conductors, we demonstrate electrically induced stable colour changes in both reflective and semi-transparent modes. Further, we show how a pixelated approach can be used in displays on both rigid and flexible films. This optoelectronic framework using low-dimensional phase-change materials has many likely applications, such as ultrafast, entirely solid-state displays with nanometre-scale pixels, semi-transparent `smart' glasses, `smart' contact lenses and artificial retina devices.

  19. Spectral changes induced by a phase modulator acting as a time lens

    Energy Technology Data Exchange (ETDEWEB)

    Plansinis, B. W. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics.; Donaldson, W. R. [Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics; Agrawal, G. P. [Univ. of Rochester, Rochester, NY (United States). Inst. of Optics; Univ. of Rochester, Rochester, NY (United States). Lab. for Laser Energetics.

    2015-07-06

    We show both numerically and experimentally that a phase modulator, acting as a time lens in the Fourier-lens configuration, can induce spectral broadening, narrowing, or shifts, depending on the phase of the modulator cycle. These spectral effects depend on the maximum phase shift that can be imposed by the modulator. In our numerical simulations, pulse spectrum could be compressed by a factor of 8 for a 30 rad phase shift. Experimentally, spectral shifts over a 1.35 nm range and spectral narrowing and broadening by a factor of 2 were demonstrated using a lithium niobate phase modulator with a maximum phase shift of 16 rad at a 10 GHz modulation frequency. All spectral changes were accomplished without employing optical nonlinear effects such as self- or cross-phase modulation.

  20. Complex interfaces in "phase-change" contrast agents.

    Science.gov (United States)

    Capece, Sabrina; Domenici, Fabio; Brasili, Francesco; Oddo, Letizia; Cerroni, Barbara; Bedini, Angelico; Bordi, Federico; Chiessi, Ester; Paradossi, Gaio

    2016-03-28

    In this paper we report on the study of the interface of hybrid shell droplets encapsulating decafluoropentane (DFP), which exhibit interesting potentialities for ultrasound (US) imaging. The fabrication of the droplets is based on the deposition of a dextran methacrylate layer onto the surface of surfactants. The droplets have been stabilized against coalescence by UV curing, introducing crosslinks in the polymer layer and transforming the shell into an elastomeric membrane with a thickness of about 300 nm with viscoelastic behaviour. US irradiation induces the evaporation of the DFP core of the droplets transforming the particles into microbubbles (MBs). The presence of a robust crosslinked polymer shell introduces an unusual stability of the droplets also during the core phase transition and allows the recovery of the initial droplet state after a few minutes from switching off US. The interfacial tension of the droplets has been investigated by two approaches, the pendant drop method and an indirect method, based on the determination of the liquid ↔ gas transition point of DFP confined in the droplet core. The re-condensation process has been followed by capturing images of single MBs by confocal microscopy. The time evolution of MB relaxation to droplets was analysed in terms of a modified Church model to account for the structural complexity of the MB shell, i.e. a crosslinked polymer layer over a layer of surfactants. In this way the microrheology parameters of the shell were determined. In a previous paper (Chem. Commun., 2013, 49, 5763-5765) we showed that these systems could be used as ultrasound contrast agents (UCAs). In this work we substantiate this view assessing some key features offered by the viscoelastic nature of the droplet shell.

  1. Rapid quantitation of fluoxetine and norfluoxetine in serum by micro-disc solid-phase extraction with high-performance liquid chromatography-ultraviolet absorbance detection.

    Science.gov (United States)

    Li, Kong M; Thompson, Murray R; McGregor, Iain S

    2004-05-25

    A rapid, robust and sensitive method for the extraction and quantitative analysis of serum fluoxetine (FLX) and norfluoxetine (N-FLX) using a solid-phase extraction (SPE) column and high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection was developed and validated. The sample clean-up step was performed by simple micro-disc mixed-mode (non-polar and strong cation exchange (SCX)) SPE cartridges. Separation of analytes and internal standard (IS) clomipramine (CLO) from endogenous matrix interference was achieved using a Waters Symmetry C(8) (150 mm x 2.1 mm i.d., 5 microm) reversed-phase narrow bore column. The relative retention times were 8.5, 9.6 and 10.5 min for FLX, N-FLX and CLO, respectively with a low isocratic flow rate of 0.3 ml/min. Chromatographic run time was completed in 15 min and peak area ratios of analytes to IS were used for regression analysis of the calibration curve. The latter was linear from 10 to 4000 nmol/l using 0.5 ml sample volume of serum. The average recovery was 95.5% for FLX and 96.9% for N-FLX. The lowest limit of quantitation (LLOQ) for serum FLX and N-FLX was 10 nmol/l (on-column amount of 200 fmol). The method described was used to analyse serum samples obtained from rats given chronic FLX treatment and to examine the relationship between steady state serum drug concentrations and neurochemical changes in several brain regions.

  2. Ultrafast dynamics of the acoustic vaporization of phase-change microdroplets

    NARCIS (Netherlands)

    Shpak, O.; Kokhuis, T.J.A.; Luan, Y.; Lohse, Detlef; de Jong, N.; Fowlkes, B.; Fabilli, M.; Versluis, Andreas Michel

    2013-01-01

    Acoustically sensitive emulsions are a promising tool for medical applications such as localized drug delivery. The physical mechanisms underlying the ultrasound-triggered nucleation and subsequent vaporization of these phase-change emulsions are largely unexplored. Here, the acoustic vaporization

  3. Computational and Mathematical Model with Phase Change and Metal Addition Applied to GMAW

    National Research Council Canada - National Science Library

    dos Santos Maia Neto, Alfredo; Gonçalves de Souza, Marcelo; Alves Figueira Júnior, Edson; Borges, Valério Luiz; Carvalho, Solidônio Rodrigues de

    2017-01-01

      This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature...

  4. Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate

    Science.gov (United States)

    Information about the SFBWQP Estuary 2100 Project, Phase 1: Resilient Watersheds for a Changing Climate , part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  5. Effects of phase changes on reflection and their wavelength dependence in optical profilometry.

    Science.gov (United States)

    Doi, T; Toyoda, K; Tanimura, Y

    1997-10-01

    The method as well as an appropriate instrumentation for measuring phase changes of reflected light is described. The phase changes on samples of Au, Al, Ag, and Cr evaporated films are measured for five wavelengths (lambda) from 442 to 633 nm, with respect to the phase change at the glass-air interface, where it should be zero. The measured results for the Au film are in fairly good agreement with values calculated by use of optical constants from a handbook or the complex refractive index measured by an ellipsometer. The phase changes for Al and Ag films are different from calculated values by ~5 degrees or a shift length of 4.4 nm at lambda = 633 nm, while those of the Cr film show large shifts as high as 16 degrees or a shift length of 9.8 nm at lambda = 442 nm.

  6. Some aspects of the computer simulation of conduction heat transfer and phase change processes

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, A. D.

    1982-04-01

    Various aspects of phase change processes in materials are discussd including computer modeling, validation of results and sensitivity. In addition, the possible incorporation of cognitive activities in computational heat transfer is examined.

  7. Phase Change Material Coating on Autoclaved Aerated Lightweight Concrete for Cooling Load Reduction

    National Research Council Canada - National Science Library

    Chantana PUNLEK; Somchai MANEEWAN; Atthakorn THONGTHA

    2017-01-01

    ...) by the application of phase change material (PCM) as a coating. The dynamics of heat transfer and the cooling load of air conditioning system in the two tested houses with different wall materials...

  8. Experimental investigations on the cooling of a motorcycle helmet with phase change material (PCM)

    National Research Council Canada - National Science Library

    Fok S.C; Tan F.L; Sua C.C

    2011-01-01

    .... This paper examines the use of phase change material (PCM) to cool a motorcycle helmet and presents the experimental investigations on the influences of the simulated solar radiation, wind speed, and heat generation rate on the cooling system...

  9. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Chen; Lingling, Xu; Hongbo, Shang; Zhibin, Zhang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m. (author)

  10. Microencapsulation of butyl stearate as a phase change material by interfacial polycondensation in a polyurea system

    Energy Technology Data Exchange (ETDEWEB)

    Chen Liang [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)], E-mail: doseng_1982@hotmail.com; Xu Lingling; Shang Hongbo; Zhang Zhibin [College of Material Science and Engineering, Nanjing University of Technology, Nanjing 210009 (China)

    2009-03-15

    For the last 20 years, microencapsulated phase change materials (MicroPCMs), which combine microencapsulation technology and phase change material, have been attracted more and more interest. By overcoming some limitations of the PCMs, the MicroPCMs improve the efficiency of PCMs and make it possible to apply PCMs in many areas. In this experiment, polyurea microcapsules containing phase change materials were prepared using interfacial polycondensation method. Toluene-2,4-diisocyanate (TDI) and ethylenediamine (EDA) were chosen as monomers. Butyl stearate was employed as a core material. The MicroPCMs' properties have been characterized by dry weight analysis, differential scanning calorimetry, Fourier transform IR spectra analysis and optical microscopy. The results show that the MicroPCMs were synthesized successfully and that, the phase change temperature was about 29 deg. C, the latent heat of fusion was about 80 J g{sup -1}, the particle diameter was 20-35 {mu}m.

  11. Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes

    National Research Council Canada - National Science Library

    Feng Xiong; Albert D. Liao; David Estrada; Eric Pop

    2011-01-01

    Phase-change materials (PCMs) are promising candidates for nonvolatile data storage and reconfigurable electronics, but high programming currents have presented a challenge to realize low-power operation...

  12. Phase Change Permeation Technology for Environmental Control & Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will explore a recent advancement in Phase Change Permeation™ technology to enable improved (1) water recovery from urine/brine for Environmental...

  13. Thermally induced phase transitions and morphological changes in organoclays.

    Science.gov (United States)

    Gelfer, M; Burger, C; Fadeev, A; Sics, I; Chu, B; Hsiao, B S; Heintz, A; Kojo, K; Hsu, S L; Si, M; Rafailovich, M

    2004-04-27

    Thermal transitions and morphological changes in Cloisite organoclays were investigated by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier transform infrared (FTIR) spectroscopy, and in situ simultaneous small-angle X-ray scattering (SAXS) and wide-angle X-ray diffraction (WAXD) over the temperature range of 30-260 degrees C. On the basis of DSC and FTIR results, the surfactant component in organoclays was found to undergo a melting-like order-disorder transition between 35 and 50 degrees C. The transition temperatures of the DSC peaks (Ttr) in the organoclays varied slightly with the surfactant content; however, they were significantly lower than the melting temperature of the free surfactant (dimethyldihydrotallowammonium chloride; Tm = 70 degrees C). FTIR results indicated that within the vicinity of Ttr, the gauche content increased significantly in the conformation of surfactant molecules, while WAXD results did not show any change in three-dimensional ordering. Multiple scattering peaks were observed in SAXS profiles. In the SAXS data acquired below Ttr, the second scattering peak was found to occur at an angle lower than twice that of the first peak position (i.e., nonequidistant scattering maxima). In the data acquired above Ttr, the second peak was found to shift toward the equidistant position (the most drastic shift was seen in the system with the highest surfactant content). Using a novel SAXS modeling technique, we suggest that the appearance of nonequidistant SAXS maxima could result from a bimodal layer thickness distribution of the organic layers in organoclays. The occurrence of the equidistant scattering profile above Ttr could be explained by the conversion of the bimodal distribution to the unimodal distribution, indicating a redistribution of the surfactant that is nonbounded to the clay surface. At temperatures above 190 degrees C, the scattering maxima gradually broadened and became nonequidistant again but

  14. Extended lattice Boltzmann method for numerical simulation of thermal phase change in two-phase fluid flow.

    Science.gov (United States)

    Safari, Hesameddin; Rahimian, Mohammad Hassan; Krafczyk, Manfred

    2013-07-01

    In this article, a method based on the multiphase lattice Boltzmann framework is presented which is applicable to liquid-vapor phase-change phenomena. Both liquid and vapor phases are assumed to be incompressible. For phase changes occurring at the phase interface, the divergence-free condition of the velocity field is no longer satisfied due to the gas volume generated by vaporization or fluid volume generated by condensation. Thus, we extend a previous model by a suitable equation to account for the finite divergence of the velocity field within the interface region. Furthermore, the convective Cahn-Hilliard equation is extended to take into account vaporization effects. In a first step, a D1Q3 LB model is constructed and validated against the analytical solution of a one-dimensional Stefan problem for different density ratios. Finally the model is extended to two dimensions (D2Q9) to simulate droplet evaporation. We demonstrate that the results obtained by this approach are in good agreement with theory.

  15. Impact of global warming on ENSO phase change

    Directory of Open Access Journals (Sweden)

    W. Cabos Narvaez

    2006-01-01

    Full Text Available We compare the physical mechanisms involved in the generation and decay of ENSO events in a control (present day conditions and Scenario (Is92a, IPCC 1996 simulations performed with the coupled ocean-atmosphere GCM ECHAM4-OPYC3. A clustering technique which objectively discriminates common features in the evolution of the Tropical Pacific Heat Content anomalies leading to the peak of ENSO events allows us to group into a few classes the ENSO events occurring in 240 years of data in the control and scenario runs. In both simulations, the composites of the groups show differences in the generation and development of ENSO. We present the changes in the statistics of the groups and explore the possible mechanisms involved.

  16. Repeated injections of D-Amphetamine evoke rapid and dynamic changesin phase synchrony between the prefrontal cortex and hippocampus

    Directory of Open Access Journals (Sweden)

    SUNGWOO eAHN

    2013-07-01

    Full Text Available Repeated drug use evokes a number of persistent alterations in oscillatory power and synchrony. How synchronous activity in cortico-hippocampal circuits is progressively modified with repeated drug exposure, however, remains to be characterized. Drugs of abuse induce both short-term and long-term adaptations in cortical and hippocampal circuits and these changes are likely important for the expression of the altered behavioral and neurobiological phenotype associated with addiction. The present study explores how the initial (up to one hour pharmacological response to D-Amphetamine (AMPH is altered with repeated injections in the rat. The methods employed herein allow for the progressive changes in synchronized dynamics with repeated intermittent AMPH exposure to be characterized over short time scales (minutes. Specifically, we examined the temporal variations of phase-locking strength in delta and theta bands within the prefrontal cortex (PFC and between PFC and hippocampus (HC shortly after drug injection. After the first injection of AMPH synchrony increased within the PFC in the delta band, which was followed, by an increase in theta synchrony between the PFC and HC several minutes later. This relationship switched after repeated AMPH injections, where increases in theta synchrony between the PFC and HC preceded increases in delta synchrony in the PFC. The time-course of increases in synchronous activity were negatively correlated between the PFC delta and the PFC-HC theta. Collectively these data highlight the potential role of PFC-HC circuits in the development of addiction and outline dynamic changes in the time-course that cortico-hippocampal circuits become synchronized with repeated AMPH exposure.

  17. Microchannel Heat Sink with Micro Encapsulated Phase Change Material (MEPCM) Slurry

    Science.gov (United States)

    2009-05-31

    latent heat associated with the solid- liquid phase change. The PCM in the microcapsules can be selected to melt and freeze at the desired temperature... microcapsule concentration or by reducing the duct radius. There are very limited experimental investigations on heat transfer of MEPCM slurry. Goel et al...sink design that contains a 3D micro/nano network and liquid fluid mixed with nanosize phase change materials (NPCMs). Hao and Tao [17] developed a

  18. The fabrication of a programmable via using phase-change material in CMOS-compatible technology.

    Science.gov (United States)

    Chen, Kuan-Neng; Krusin-Elbaum, Lia

    2010-04-02

    We demonstrate an energy-efficient programmable via concept using indirectly heated phase-change material. This via structure has maximum phase-change volume to achieve a minimum on resistance for high performance logic applications. Process development and material investigations for this device structure are reported. The device concept is successfully demonstrated in a standard CMOS-compatible technology capable of multiple cycles between on/off states for reconfigurable applications.

  19. Rapid land cover map updates using change detection and robust random forest classifiers

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2016-01-01

    Full Text Available The paper evaluated the Landsat Automated Land Cover Update Mapping (LALCUM) system designed to rapidly update a land cover map to a desired nominal year using a pre-existing reference land cover map. The system uses the Iteratively Reweighted...

  20. Tropical rodents change rapidly germinating seeds into long-term food supplies

    NARCIS (Netherlands)

    Jansen, P.A.; Bongers, F.J.J.M.; Prins, H.H.T.

    2006-01-01

    Seed-hoarding vertebrates may survive yearly periods of food scarcity by storing seeds during the preceding fruiting season. It is poorly understood why rodents creating long-term reserves, especially those in the tropics, incorporate seeds from plant species that germinate rapidly and hence seem

  1. Assessing surface albedo change and its induced radiation budget under rapid urbanization with Landsat and GLASS data

    Science.gov (United States)

    Hu, Yonghong; Jia, Gensuo; Pohl, Christine; Zhang, Xiaoxuan; van Genderen, John

    2016-02-01

    Radiative forcing (RF) induced by land use (mainly surface albedo) change is still not well understood in climate change science, especially the effects of changes in urban albedo due to rapid urbanization on the urban radiation budget. In this study, a modified RF derivation approach based on Landsat images was used to quantify changes in the solar radiation budget induced by variations in surface albedo in Beijing from 2001 to 2009. Field radiation records from a Beijing meteorological station were used to identify changes in RF at the local level. There has been rapid urban expansion over the last decade, with the urban land area increasing at about 3.3 % annually from 2001 to 2009. This has modified three-dimensional urban surface properties, resulting in lower albedo due to complex building configurations of urban centers and higher albedo on flat surfaces of suburban areas and cropland. There was greater solar radiation (6.93 × 108 W) in the urban center in 2009 than in 2001. However, large cropland and urban fringe areas caused less solar radiation absorption. RF increased with distance from the urban center (less than 14 km) and with greater urbanization, with the greatest value being 0.41 W/m2. The solar radiation budget in urban areas was believed to be mainly influenced by urban structural changes in the horizontal and vertical directions. Overall, the results presented herein indicate that cumulative urbanization impacts on the natural radiation budget could evolve into an important driver of local climate change.

  2. A replicated climate change field experiment reveals rapid evolutionary response in an ecologically important soil invertebrate

    DEFF Research Database (Denmark)

    Bataillon, Thomas; Galtier, Nicolas; Bernard, Aurelien

    2016-01-01

    associated to changes in soil temperature and soil moisture. This shows an evolutionaryresponse to realistic climate change happening over short-time scale, and calls for incorporating evolution into modelspredicting future response of species to climate change. It also shows that designed climate change...... experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response.......Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out innatural field conditions. We examined the evolutionary response...

  3. Qualitative observation of reversible phase change in astrochemical ethanethiol ices using infrared spectroscopy

    CERN Document Server

    Pavithraa, S; Gorai, P; Lo, J -I; Das, A; Sekhar, B N Raja; Pradeep, T; Cheng, B -M; Mason, N J; Sivaraman, B

    2016-01-01

    Here we report the first evidence for a reversible phase change in an ethanethiol ice prepared under astrochemical conditions. InfraRed (IR) spectroscopy was used to monitor the morphology of the ice using the S-H stretching vibration, a characteristic vibration of thiol molecules. The deposited sample was able to switch between amorphous and crystalline phases repeatedly under temperature cycles between 10 K and 130 K with subsequent loss of molecules in every phase change. Such an effect is dependent upon the original thickness of the ice. Further work on quantitative analysis is to be carried out in due course whereas here we are reporting the first results obtained.

  4. An Implicit Mixed Enthalpy-Temperature Method For Phase-Change Problems

    DEFF Research Database (Denmark)

    Krabbenhoft, Kristian; Damkilde, Lars; Nazem, M.

    2007-01-01

    Abstract A finite element procedure for phase-change problems is presented. Enthalpy and temperature are interpolated separately and subsequently linked via the appropriate relation in the nodes of the mesh during the solution phase. A novel technique is here used where, depending...... on the characteristics of the problem, either temperature or enthalpy may be considered as primary variable. The resulting algorithm is both efficient and robust and is further easy to implement and generalize to arbitrary finite elements. The capabilities of the method are illustrated by the solution both isothermal...... and nonisothermal phase-change problems....

  5. Transfers in two-phase medium with or without phase change; Transferts en milieu diphasique avec ou sans changement de phase

    Energy Technology Data Exchange (ETDEWEB)

    Sartre, V.; Lallemand, M. [Institut National des Sciences Appliquees (INSA), Centre de Thermique de Lyon, UMR CNRS 5008, 69 - Villeurbanne (France); Facchini, B. [Dipartimento di Energetica S. Stecco, Firenze (Italy)] (and others)

    2000-07-01

    This congress, on thermology, took place at Lyon in France, the 15-17 may 2000 with a presentation of 143 papers on the recent researches and specialized discussions. The talks published in this book are sorted out in ten thema. One of the thema concerns the transfers in two-phase medium with or without phase change. Twenty one talks are presented. They cover many domains as the heat transfer processes and the heat exchangers, studies on stationary states in thermosyphons, particles size influence on fluidized beds and also the domain of refrigerating fluids for the thermal energy storage. (A.L.B.)

  6. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens.

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-06-10

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m(-2) and 1.5 kW m(-2), respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs.

  7. Refraction-Assisted Solar Thermoelectric Generator based on Phase-Change Lens

    Science.gov (United States)

    Kim, Myoung-Soo; Kim, Min-Ki; Jo, Sung-Eun; Joo, Chulmin; Kim, Yong-Jun

    2016-01-01

    Solar thermoelectric generators (STEGs), which are used for various applications, (particularly small size electronic devices), have optical concentration systems for high energy conversion efficiency. In this study, a refraction-assisted STEG (R-STEG) is designed based on phase-change materials. As the phase-change material (PCM) changes phase from solid to liquid, its refractive index and transmittance also change, resulting in changes in the refraction of the sunlight transmitted through it, and concentration of solar energy in the phase-change lens. This innovative design facilitates double focusing the solar energy through the optical lens and a phase-change lens. This mechanism resulted in the peak energy conversion efficiencies of the R-STEG being 60% and 86% higher than those of the typical STEG at solar intensities of 1 kW m−2 and 1.5 kW m−2, respectively. In addition, the energy stored in PCM can help to generate steady electrical energy when the solar energy was removed. This work presents significant progress regarding the optical characteristic of PCM and optical concentration systems of STEGs. PMID:27283350

  8. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins. ...

  9. Modeling of a Two-Phase Jet Pump with Phase Change, Shocks and Temperature-Dependent Properties

    Science.gov (United States)

    Sherif, S. A.

    1998-01-01

    One of the primary motivations behind this work is the attempt to understand the physics of a two-phase jet pump which constitutes part of a flow boiling test facility at NASA-Marshall. The flow boiling apparatus is intended to provide data necessary to design highly efficient two-phase thermal control systems for aerospace applications. The facility will also be capable of testing alternative refrigerants and evaluate their performance using various heat exchangers with enhanced surfaces. The test facility is also intended for use in evaluating single-phase performance of systems currently using CFC refrigerants. Literature dealing with jet pumps is abundant and covers a very wide array of application areas. Example application areas include vacuum pumps which are used in the food industry, power station work, and the chemical industry; ejector systems which have applications in the aircraft industry as cabin ventilators and for purposes of jet thrust augmentation; jet pumps which are used in the oil industry for oil well pumping; and steam-jet ejector refrigeration, to just name a few. Examples of work relevant to this investigation includes those of Fairuzov and Bredikhin (1995). While past researchers have been able to model the two-phase flow jet pump using the one-dimensional assumption with no shock waves and no phase change, there is no research known to the author apart from that of Anand (1992) who was able to account for condensation shocks. Thus, one of the objectives of this work is to model the dynamics of fluid interaction between a two-phase primary fluid and a subcooled liquid secondary fluid which is being injected employing atomizing spray injectors. The model developed accounts for phase transformations due to expansion, compression, and mixing. It also accounts for shock waves developing in the different parts of the jet pump as well as temperature and pressure dependencies of the fluid properties for both the primary two-phase mixture and the

  10. Rapid transformation of two libraries using Kotter?s Eight Steps of Change

    OpenAIRE

    Wheeler, Terrie R.; Holmes, Kristi L.

    2017-01-01

    Background Two new directors were each charged by their institutions to catalyze transformational change in their libraries and to develop dynamic and evolving information ecosystems ready for the information challenges of the future. The directors approached this transformational change using a strategic, forward-looking approach. Results This paper presents examples of actions that served as catalysts for change at the two libraries using Kotter?s Eight Steps of Change as a framework. Small...

  11. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins. ...... species assemblage in responses to recent climate change. Even among the most mobile species and without anthropogenic barriers to dispersal, these pollinators have been unable to extend their ranges as fast as required to keep pace with climate change....

  12. Automating Phase Change Lines and Their Labels Using Microsoft Excel(R).

    Science.gov (United States)

    Deochand, Neil

    2017-09-01

    Many researchers have rallied against drawn in graphical elements and offered ways to avoid them, especially regarding the insertion of phase change lines (Deochand, Costello, & Fuqua, 2015; Dubuque, 2015; Vanselow & Bourret, 2012). However, few have offered a solution to automating the phase labels, which are often utilized in behavior analytic graphical displays (Deochand et al., 2015). Despite the fact that Microsoft Excel® is extensively utilized by behavior analysts, solutions to resolve issues in our graphing practices are not always apparent or user-friendly. Considering the insertion of phase change lines and their labels constitute a repetitious and laborious endeavor, any minimization in the steps to accomplish these graphical elements could offer substantial time-savings to the field. The purpose of this report is to provide an updated way (and templates in the supplemental materials) to add phase change lines with their respective labels, which stay embedded to the graph when they are moved or updated.

  13. Role of an encapsulating layer for reducing resistance drift in phase change random access memory

    Directory of Open Access Journals (Sweden)

    Bo Jin

    2014-12-01

    Full Text Available Phase change random access memory (PCRAM devices exhibit a steady increase in resistance in the amorphous phase upon aging and this resistance drift phenomenon directly affects the device reliability. A stress relaxation model is used here to study the effect of a device encapsulating layer material in addressing the resistance drift phenomenon in PCRAM. The resistance drift can be increased or decreased depending on the biaxial moduli of the phase change material (YPCM and the encapsulating layer material (YELM according to the stress relationship between them in the drift regime. The proposed model suggests that the resistance drift can be effectively reduced by selecting a proper material as an encapsulating layer. Moreover, our model explains that reducing the size of the phase change material (PCM while fully reset and reducing the amorphous/crystalline ratio in PCM help to improve the resistance drift, and thus opens an avenue for highly reliable multilevel PCRAM applications.

  14. Molar changes with cervical headgear alone or in combination with rapid maxillary expansion.

    Science.gov (United States)

    Marchiori Farret, Marcel; de Lima, Eduardo Martinelli S; Pereira Araújo, Vanessa; Deon Rizzatto, Susana Maria; Macedo de Menezes, Luciane; Lima Grossi, Marcio

    2008-09-01

    To test the hypothesis that there is no difference in the distal movement of the maxillary first permanent molars when cervical headgear is used alone or in combination with rapid maxillary expansion. The sample was composed of 36 subjects (aged 9 to 13 years), treated in the Faculty of Dentistry, Pontifícia Universidade Cat;aaolica, Rio Grande do Sul, Brazil. The individuals were in good health and in their pubertal growth period. All had Class II division 1 malocclusion. The patients were divided into two groups: group 1 (22 subjects), Class II, with a normal transverse maxilla treated with cervical traction headgear (HG) 400 g 12 h/d, and group 2 (14 subjects), Class II maxillary transverse deficiency treated with rapid maxillary expansion plus cervical traction headgear (RME + HG). An additional group 3 (17 subjects) served as a control group and included individuals with the same characteristics. All subjects had two lateral cephalograms: initial (T1) and progress (T2), taken 6 months later. Differences between T1 and T2 were compared with the Student's t-test, and three groups were compared by the analysis of variance and Tukey multiple comparison test. Results showed greater distal tipping and greater distal movement of the first permanent molars in group 1 (HG) than in group 2 (RME + HG), P .05). The hypothesis was rejected. Cervical traction headgear alone produced greater distal movement effects in maxillary first permanent molars when compared with rapid maxillary expansion associated with cervical headgear.

  15. A Biphasic Change of Regional Blood Volume in the Frontal Cortex during Non-Rapid Eye Movement Sleep: A Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Zhang, Zhongxing; Khatami, Ramin

    2015-08-01

    Current knowledge on hemodynamics in sleep is limited because available techniques do not allow continuous recordings and mainly focus on cerebral blood flow while neglecting other important parameters, such as blood volume (BV) and vasomotor activity. Observational study. Continuous measures of hemodynamics over the left forehead and biceps were performed using near-infrared spectroscopy (NIRS) during nocturnal polysomnography in 16 healthy participants in sleep laboratory. Temporal dynamics and mean values of cerebral and muscular oxygenated hemoglobin (HbO2), deoxygenated hemoglobin (HHb), and BV during different sleep stages were compared. A biphasic change of cerebral BV was observed which contrasted a monotonic increase of muscular BV during non-rapid eye movement sleep. A significant decrement in cerebral HbO2 and BV accompanied by an increase of HHb was recorded at sleep onset (Phase I). Prior to slow wave sleep (SWS) HbO2 and BV turned to increase whereas HHb began to decrease in subsequent Phase II suggested increased brain perfusion during SWS. The cerebral HbO2 slope correlated to BV slope in Phase I and II, but it only correlated to HHb slope in Phase II. The occurrence time of inflection points correlated to SWS latencies. Initial decrease of brain perfusion with decreased blood volume (BV) and oxygenated hemoglobin (HbO2) together with increasing muscular BV fit thermoregulation process at sleep onset. The uncorrelated and correlated slopes of HbO2 and deoxygenated hemoglobin indicate different mechanisms underlying the biphasic hemodynamic process in light sleep and slow wave sleep (SWS). In SWS, changes in vasomotor activity (i.e., increased vasodilatation) may mediate increasing cerebral and muscular BV. © 2015 Associated Professional Sleep Societies, LLC.

  16. Selective aluminum dissolution as a means to observe the microstructure of nanocrystalline intermetallic phases from Al-Fe-Cr-Ti-Ce rapidly solidified alloy.

    Science.gov (United States)

    Michalcová, Alena; Vojtěch, Dalibor; Novák, Pavel

    2013-02-01

    Rapidly solidified aluminum alloys are promising materials with very fine microstructure. The microscopy observation of these materials is complicated due to overlay of fcc-Al matrix and different intermetallic phases. A possible way to solve this problem is to dissolve the Al matrix. By this process powder formed by single intermetallic phase particles is obtained. In this paper a new aqueous based dissolving agent for Al-based alloy is presented. The influence of oxidation agent (FeCl(3)) concentration on quality of extraction process was studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Rapid analysis of time series data to identify changes in electricity consumption patterns in UK secondary schools

    Energy Technology Data Exchange (ETDEWEB)

    Stuart, Graeme; Fleming, Paul; Ferreira, Vasco [Institute of Energy and Sustainable Development, De Montfort University, The Gateway, Leicester, LE1 9BH (United Kingdom); Harris, Peter [Cheriton Technology Management Ltd., Cambridge (United Kingdom)

    2007-04-15

    This paper presents a methodology for energy professionals to identify potential electricity saving opportunities in buildings from the analysis of half-hourly electricity consumption data. The technique recommended in UK government good practice guidance for use with monthly gas data has been applied to half-hourly electricity data from 37 secondary schools. The technique monitors consumption over time, identifying any changes in patterns and quantifying their effects. It has the advantage of being both high resolution and quick to employ. The analysis produces results that allow energy professionals to rapidly detect changes in electricity consumption. (author)

  18. Automatic change detection in RapidEye data using the combined MAD and kernel MAF methods

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Hecheltjen, Antje; Thonfeld, Frank

    2010-01-01

    The IR-MAD components show changes for a large part of the entire subset. Especially phenological changes in the agricultural fields surrounding the open pit are predominant. As opposed to this, kMAF components focus more on changes in the open-cast mine (and changes due to the two clouds...... and their shadows, not visible in the zoom). Ground data were available from bucket-wheel excavators on the extraction side (to the northwest in the open pit) in terms of elevation data for both dates. No ground data were available for changes due to backfill (southeastern part of the open pit) or changes due...... to mining machines other than the bucket-wheels....

  19. Research progress in carbon dioxide capture using phase-change absorbents

    Directory of Open Access Journals (Sweden)

    Yangyang BIAN

    2017-10-01

    Full Text Available The emission of CO2 gas by human industrial activity is the main factor that contributes to global warming, while the CO2 capture, storage and utilization (CCUS are the most effective technical direction to achieve carbon reduction and fight against global warming. In commonly used CO2 capture technologies, the main technical difficulty in the use of aqueous solutions of organic amine absorbent for CO2 capture is that the renewable energy consumption is high. How to reduce the energy consumption has the direct bearing on the CCUS technology's future development. Phase-change absorbents have excellent absorption characteristics in absorbing CO2, and can be separated into liquid-liquid or liquid-solid two-phase. One of the two-phase is enriched by CO2, which presents a significant advantage in reducing energy consumption. Through analysis of the structure of energy consumption of CO2 removal process using the traditional organic amine solutions, the research status of CO2 phase change absorption system on carbon capture is reviewed. The phase transformation research trends and development prospects of the absorbents are provided, which is to explore the phase transformation mechanism of phase change absorbents, and to solve the problems of the composition and process stability; to research catalytic regenerative technologies of new type absorbents, heat resistant enzyme and solid acid such as microcapsules and polar oscillations.

  20. Dual Phase Change Thermal Diodes for Enhanced Rectification Ratios: Theory and Experiment

    KAUST Repository

    Cottrill, Anton L.

    2018-01-15

    Thermal diodes are materials that allow for the preferential directional transport of heat and are highly promising devices for energy conservation, energy harvesting, and information processing applications. One form of a thermal diode consists of the junction between a phase change and phase invariant material, with rectification ratios that scale with the square root of the ratio of thermal conductivities of the two phases. In this work, the authors introduce and analyse the concept of a Dual Phase Change Thermal Diode (DPCTD) as the junction of two phase change materials with similar phase boundary temperatures but opposite temperature coefficients of thermal conductivity. Such systems possess a significantly enhanced optimal scaling of the rectification ratio as the square root of the product of the thermal conductivity ratios. Furthermore, the authors experimentally design and fabricate an ambient DPCTD enabled by the junction of an octadecane-impregnated polystyrene foam, polymerized using a high internal phase emulsion template (PFH-O) and a poly(N-isopropylacrylamide) (PNIPAM) aqueous solution. The DPCTD shows a significantly enhanced thermal rectification ratio both experimentally (2.6) and theoretically (2.6) as compared with ideal thermal diodes composed only of the constituent materials.