WorldWideScience

Sample records for rapid particle growth

  1. Problems of rapid growth.

    Science.gov (United States)

    Kim, T D

    1980-01-01

    South Korea's export-oriented development strategy has achieved a remarkable growth record, but it has also brought 2 different problems: 1) since the country's exports accounted for about 1% of total world export volume, the 1st world has become fearful about Korea's aggressive export drive; and 2) the fact that exports account for over 30% of its total gross national product (GNP) exposes the vulnerability of South Korea's economy itself. South Korea continues to be a poor nation, although it is rated as 1 of the most rapidly growing middle income economies. A World Bank 1978 report shows Korea to be 28th of 58 middle income countries in terms of per capita GNP in 1976. Of 11 newly industrializing countries (NIC), 5 in the European continent are more advanced than the others. A recent emphasis on the basic human needs approach has tended to downgrade the concept of GNP. Korea has only an abundant labor force and is without any natural resources. Consequently, Korea utilized an export-oriented development strategy. Oil requirements are met with imports, and almost all raw materials to be processed into exportable products must be imported. To pay import bills Korea must export and earn foreign exchange. It must be emphasized that foreign trade must always be 2-way traffic. In order to export more to middle income countries like Korea, the countries of the 1st world need to ease their protectionist measures against imports from developing countries.

  2. China urges rapid growth

    Energy Technology Data Exchange (ETDEWEB)

    Hendry, S.

    1993-02-03

    This time last year China's paramount leader, Deng Xiaoping, launched the country on another bout of fast-paced economic growth and restructuring. After three years of riding out political and economic clampdown, foreign chemical companies were jerked awake by major changes in China's chemical industry. As the state becomes less involved with managing the economy, unleashing 12% gross national product growth, closer involvement with domestic factories has become attractive and essential. MCI officials say government funds will now be channeled toward clearing energy and transport bottlenecks, and chemical enterprises will be given more chance to turn a profit. They will be allowed to issue shares, seek foreign investment partners themselves, and bypass trading companies like China National Import-Export Corp. (Sinochem), the former state monopoly. Foreign analysts question whether China's finances and oil resources can support expansion. Even if they can, Cai estimates that ethylene imports will remain around the present level of 1 million tons. To further guarantee chemical supplies, China has invested in urea and polypropylene plants in the US and polystyrene plant in Hong Kong.

  3. Pulsed Holography of Rapidly Moving Dust Particles

    Science.gov (United States)

    1981-05-31

    zourse inexpensive, well corrected, and high resolving power optics is readily available. For the work reported here it Gaertner lOX eyepiece was...of the eyepiece , a theoretical 0.7 pm resolution is possIble for particles In the backI focal plane. However, bench tests sh~ow that other factors...series of " burns " produced by the pulsed laser on exposed Polaroid film, a gas laser was aligned with the pulsed beam. In the usual way this laser was

  4. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  5. Monitoring particle growth in deposition plasmas

    Science.gov (United States)

    Schlebrowski, T.; Bahre, H.; Böke, M.; Winter, J.

    2013-12-01

    Plasma-enhanced chemical vapor deposition methods are frequently used to deposit barrier layers, e.g. on polymers for food packaging. These plasmas may suffer from particle (dust) formation. We report on a flexible monitoring system for dust. It is based on scanning a 3D plasma volume for particles by laser light scattering. The lower size limit of particles detected in the presented system is 20 nm. We report on existence diagrams for obtaining dust free or dust loaded capacitively or inductively coupled rf-plasmas in C2H2 depending on pressure, flow and rf-power. We further present growth rates for dust in these plasmas and show that monodisperse particles are only obtained during the first growth cycle.

  6. Rapidity distribution of particle multiplicity in DIS at small x

    Science.gov (United States)

    Blok, B.; Dokshitzer, Yu.; Strikman, M.

    2017-11-01

    Analytical study of the rapidity distribution of the final state particles in deep inelastic scattering at small x is presented. We separate and analyze three sources of particle production: fragmentation of the quark-antiquark pair that these an impact, accompanying coherent soft gluon radiation due to octet color exchange in the t-channel, and fragmentation of gluons that form parton distribution functions. Connection to Catani-Ciafaloni-Fiorani-Marchesini (CCFM) equations and the role of gluon reggeization are also discussed.

  7. Nanoparticle growth by particle-phase chemistry

    Directory of Open Access Journals (Sweden)

    M. J. Apsokardu

    2018-02-01

    Full Text Available The ability of particle-phase chemistry to alter the molecular composition and enhance the growth rate of nanoparticles in the 2–100 nm diameter range is investigated through the use of a kinetic growth model. The molecular components included are sulfuric acid, ammonia, water, a non-volatile organic compound, and a semi-volatile organic compound. Molecular composition and growth rate are compared for particles that grow by partitioning alone vs. those that grow by a combination of partitioning and an accretion reaction in the particle phase between two organic molecules. Particle-phase chemistry causes a change in molecular composition that is particle diameter dependent, and when the reaction involves semi-volatile molecules, the particles grow faster than by partitioning alone. These effects are most pronounced for particles larger than about 20 nm in diameter. The modeling results provide a fundamental basis for understanding recent experimental measurements of the molecular composition of secondary organic aerosol showing that accretion reaction product formation increases linearly with increasing aerosol volume-to-surface-area. They also allow initial estimates of the reaction rate constants for these systems. For secondary aerosol produced by either OH oxidation of the cyclic dimethylsiloxane (D5 or ozonolysis of β-pinene, oligomerization rate constants on the order of 10−3 to 10−1 M−1 s−1 are needed to explain the experimental results. These values are consistent with previously measured rate constants for reactions of hydroperoxides and/or peroxyacids in the condensed phase.

  8. Multiple gingival pregnancy tumors with rapid growth

    Directory of Open Access Journals (Sweden)

    Wei-Lian Sun

    2014-09-01

    Full Text Available Pregnancy gingivitis is an acute form of gingivitis that affects pregnant women, with a prevalence of 30%, possibly ranging up to 100%. Sometimes, pregnancy gingivitis shows a tendency toward a localized hyperplasia called gingival pyogenic granuloma. Pregnancy tumor is a benign gingival hyperplasia with the gingiva as the most commonly involved site, but rarely it involves almost the entire gingiva. A 22-year-old woman was referred to our clinic with a chief complaint of gingival swelling that had lasted for 2 days. The lesions progressed rapidly and extensively, and almost all the gingiva was involved a week later. Generalized erythema, edema, hyperplasia, a hemorrhagic tendency, and several typical hemangiomatous masses were noted. Pregnancy was denied by the patient at the first and second visits, but was confirmed 2 weeks after the primary visit. The patient was given oral hygiene instructions. She recovered well, and the mass gradually regressed and had disappeared completely at the end of 12 weeks of pregnancy, without recurrence. The gingival lesions were finally diagnosed as multiple gingival pregnancy tumors. The patient delivered a healthy infant. An extensive and rapid growth of gingival pregnancy tumors during the early first month of pregnancy is a rare occurrence that is not familiar to dentists, gynecologists, and obstetricians. Those practitioners engaged in oral medicine and periodontology, primary care obstetrics, and gynecology should be aware of such gingival lesions to avoid misdiagnosis and overtreatment.

  9. In-Situ Imaging of Particles during Rapid Thermite Deflagrations

    Science.gov (United States)

    Grapes, Michael; Reeves, Robert; Densmore, John; Fezzaa, Kamel; van Buuren, Tony; Willey, Trevor; Sullivan, Kyle

    2017-06-01

    The dynamic behavior of rapidly deflagrating thermites is a highly complex process involving rapid decomposition, melting, and outgassing of intermediate and/or product gases. Few experimental techniques are capable of probing these phenomena in situ due to the small length and time scales associated with the reaction. Here we use a recently developed extended burn tube test, where we initiate a small pile of thermite on the closed end of a clear acrylic tube. The length of the tube is sufficient to fully contain the reaction as it proceeds and flows entrained particles down the tube. This experiment was brought to the Advanced Photon Source, and the particle formation was X-ray imaged at various positions down the tube. Several formulations, as well as formulation parameters were varied to investigate the size and morphology of the particles, as well as to look for dynamic behavior attributed to the reaction. In all cases, we see evidence of particle coalescence and condensed-phase interfacial reactions. The results improve our understanding of the procession of reactants to products in these systems. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-691140.

  10. Rapid growth of hydroxyapatite nanoparticles using ultrasonic irradiation.

    Science.gov (United States)

    Rouhani, Parvaneh; Taghavinia, Nima; Rouhani, Shohre

    2010-06-01

    A rapid, environmental friendly and low-cost method to prepare hydroxyapatite nanoparticles is proposed. In this method, hydroxyapatite is produced in a sonicated pseudo-body solution. The sonication time was found effective in the formation of the crystalline phase of nanoparticles. In our experimental condition, 15 min sonication resulted in the most pure hydroxyapatite phase. Also it was shown that growth temperature is a crucial factor and hydroxyapatite crystallizes only at 37 degrees C. The particles formed by sonication were generally smaller and more spherical than those obtained without sonication. Sonication increased the hydroxyapatite crystal growth rate up to 5.5 times compared to non-sonication condition. The comparison between the specific surface area of hydroxyapatite nanoparticles obtained by sonication and without sonication demonstrated that sonication increased the specific surface area from 63 m(2)/g to 107 m(2)/g and decreased the size of nanoparticles from 30 nm to 18 nm. Analysis on the pore structure demonstrated that the fractal structures obtained with and without sonication were considerably different. (c) 2010 Elsevier B.V. All rights reserved.

  11. A rapid ultrasound particle agglutination method for HIV antibody detection: Comparison with conventional rapid HIV tests.

    Science.gov (United States)

    Bystryak, Simon; Ossina, Natalya

    2017-11-01

    We present the results of the feasibility and preliminary studies on analytical performance of a rapid test for detection of human immunodeficiency virus (HIV) antibodies in human serum or plasma that is an important advance in detecting HIV infection. Current methods for rapid testing of antibodies against HIV are qualitative and exhibit poor sensitivity (limit of detection). In this paper, we describe an ultrasound particle agglutination (UPA) method that leads to a significant increase of the sensitivity of conventional latex agglutination tests for HIV antibody detection in human serum or plasma. The UPA method is based on the use of: 1) a dual mode ultrasound, wherein a first single-frequency mode is used to accelerate the latex agglutination process, and then a second swept-frequency mode of sonication is used to disintegrate non-specifically bound aggregates; and 2) a numerical assessment of results of the agglutination process. The numerical assessment is carried out by optical detection and analysis of moving patterns in the resonator cell during the swept-frequency mode. The single-step UPA method is rapid and more sensitive than the three commercial rapid HIV test kits analyzed in the study: analytical sensitivity of the new UPA method was found to be 510-, 115-, and 80-fold higher than that for Capillus™, Multispot™ and Uni-Gold™ Recombigen HIV antibody rapid test kits, respectively. The newly developed UPA method opens up additional possibilities for detection of a number of clinically significant markers in point-of-care settings. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Organisational Factors of Rapid Growth of Slovenian Dynamic Enterprises

    Directory of Open Access Journals (Sweden)

    Pšeničny Viljem

    2013-01-01

    Full Text Available The authors provide key findings on the internal and external environmental factors of growth that affect the rapid growth of dynamic enterprises in relation to individual key organisational factors or functions. The key organisational relationships in a growing enterprise are upgraded with previous research findings and identified key factors of rapid growth through qualitative and quantitative analysis based on the analysis of 4,511 dynamic Slovenian enterprises exhibiting growth potential. More than 250 descriptive attributes of a sample of firms from 2011 were also used for further qualitative analysis and verification of key growth factors. On the basis of the sample (the study was conducted with 131 Slovenian dynamic enterprises, the authors verify whether these factors are the same as the factors that were studied in previous researches. They also provide empirical findings on rapid growth factors in relation to individual organisational functions: administration - management - implementation (entrepreneur - manager - employees. Through factor analysis they look for the correlation strength between individual variables (attributes that best describe each factor of rapid growth and that relate to the aforementioned organisational functions in dynamic enterprises. The research findings on rapid growth factors offer companies the opportunity to consider these factors during the planning and implementation phases of their business, to choose appropriate instruments for the transition from a small fast growing firm to a professionally managed growing company, to stimulate growth and to choose an appropriate growth strategy and organisational factors in order to remain, or become, dynamic enterprises that can further contribute to the preservation, growth and development of the Slovenian economy

  13. Liquefaction of coals using ultra-fine particle, unsupported catalysts: In situ particle generation by rapid expansion of supercritical fluid solutions. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    1994-05-01

    The research conducted by Textron Defense Systems (TDS) represents a potential new and innovative concept for dispersed coal liquefaction. The technical approach is generation of ultra-fine catalyst particles from supercritical solutions by rapid expansion of either catalyst only, or mixtures of catalyst and coal material in supersaturated solvents. The process of rapid expansion of supercritical fluid solutions was developed at Battelle`s Pacific Northwest Laboratories for the intended purpose of providing a new analytical technique for characterizing supercritical fluids. The concept forming the basis of this research is that ultra-fine particles can be generated from supercritical solutions by rapid expansion of either catalyst or catalyst/coal-material mixtures in supersaturated solvents, such as carbon dioxide or water. The focal point of this technique is the rapid transfer of low vapor pressure solute (i.e., catalyst), dissolved in the supercritical fluid solvent, to the gas phase as the solution is expanded through an orifice. The expansion process is characterized by highly nonequilibrium conditions which cause the solute to undergo extremely rapid supersaturation with respect to the solvent, leading to nucleation and particle growth resulting in nanometer size catalyst particles. A supercritical expansion system was designed and built by TDS at their Haverhill facility.

  14. Growth rates during coastal and marine new particle formation in western Ireland

    Science.gov (United States)

    Ehn, Mikael; Vuollekoski, Henri; PetäJä, Tuukka; Kerminen, Veli-Matti; Vana, Marko; Aalto, Pasi; de Leeuw, Gerrit; Ceburnis, Darius; Dupuy, Regis; O'Dowd, Colin D.; Kulmala, Markku

    2010-09-01

    Growth rates of new particles during coastal and marine secondary aerosol particle formation events were studied in western Ireland, both at the Mace Head atmospheric research station and onboard the R/V Celtic Explorer as part of the Marine Aerosol Production project. Strong new particle formation events are frequently detected at Mace Head caused by the emission of precursor gases from exposed seaweed during low tide. Although these events were usually only detected as a mode of particles at a certain size, we were able to link the size of the mode to the growth time of these particles after the initial formation by combining data from several events measured between January 2006 and November 2007 with an air ion spectrometer. Typically, the early growth rates were extremely high, reaching values of several hundred nanometers per hour during the first seconds. The growth rates rapidly decreased and reached values below 1 nm h-1 within 1 h after nucleation. Our results were reproduced with box model calculations. All the obtained growth rates could be explained by the model either by varying the precursor formation time (typically a few seconds) or allowing multiple precursor vapor additions. From the ship-borne measurements, we report the first observations of purely open ocean new particle formation detected in this region. In total, four events were detected during this period, with three having a variable continental influence. An estimated average growth rate in marine conditions was 3 nm h-1 for these events.

  15. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    983–986. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at relativistic heavy-ion collider. D SILVERMYR, for the PHENIX Collaboration. Department of Physics, Lund University, Box 118, 22100 Lund, Sweden. Abstract. The particle density at mid-rapidity is an essential global variable for the characterization.

  16. Charged-particle multiplicity at mid-rapidity in Au–Au collisions at ...

    Indian Academy of Sciences (India)

    The particle density at mid-rapidity is an essential global variable for the characterization of nuclear collisions at ultra-relativistic energies. It provides information about the initial conditions and energy density reached in these collisions. The pseudorapidity densities of charged particles at mid-rapidity in Au + Au collisions at ...

  17. On Current Conversion between Particle Rapidity and Pseudorapidity Distributions in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Fu-Hu Liu

    2013-01-01

    Full Text Available In high energy collisions, one usually needs to give a conversion between the particle rapidity and pseudorapidity distributions. Currently, two equivalent conversion formulas are used in experimental and theoretical analyses. An investigation in the present work shows that the two conversions are incomplete. Then, we give a revision on the current conversion between the particle rapidity and pseudorapidity distributions.

  18. On the Nonequilibrium Interface Kinetics of Rapid Coupled Eutectic Growth

    Science.gov (United States)

    Dong, H.; Chen, Y. Z.; Shan, G. B.; Zhang, Z. R.; Liu, F.

    2017-08-01

    Nonequilibrium interface kinetics (NEIK) is expected to play an important role in coupled growth of eutectic alloys, when solidification velocity is high and intermetallic compound or topologically complex phases form in the crystallized product. In order to quantitatively evaluate the effect of NEIK on the rapid coupled eutectic growth, in this work, two nonequilibrium interface kinetic effects, i.e., atom attachment and solute trapping at the solid-liquid interface, were incorporated into the analyses of the coupled eutectic growth under the rapid solidification condition. First, a coupled growth model incorporating the preceding two nonequilibrium kinetic effects was derived. On this basis, an expression of kinetic undercooling (∆ T k), which is used to characterize the NEIK, was defined. The calculations based on the as-derived couple growth model show good agreement with the reported experimental results achieved in rapidly solidified eutectic Al-Sm alloys consisting of a solid solution phase ( α-Al) and an intermetallic compound phase (Al11Sm3). In terms of the definition of ∆ T k defined in this work, the role of NEIK in the coupled growth of the Al-Sm eutectic system was analyzed. The results show that with increasing the coupled growth velocity, ∆ T k increases continuously, and its ratio to the total undercooling reaches 0.32 at the maximum growth velocity for coupled eutectic growth. Parametric analyses on two key alloy parameters that influence ∆ T k, i.e., interface kinetic parameter ( μ i ) and solute distribution coefficient ( k e ), indicate that both μ i and k e influence the NEIK significantly and the decrease of either these two parameters enhances the NEIK effect.

  19. Aerosol fluxes and particle growth above managed grassland

    Directory of Open Access Journals (Sweden)

    E. Nemitz

    2009-08-01

    Full Text Available Particle deposition velocities (11–3000 nm diameter measured above grassland by eddy covariance during the EU GRAMINAE experiment in June 2000 averaged 0.24 and 0.03 mm s−1 to long (0.75 m and short (0.07 m grass, respectively. After fertilisation with 108 kg N ha−1 as calcium ammonium nitrate, sustained apparent upward fluxes of particles were observed. Analysis of concentrations and fluxes of potential precursor gases, including NH3, HNO3, HCl and selected VOCs, shows that condensation of HNO3 and NH3 on the surface of existing particles is responsible for this effect. A novel approach is developed to derive particle growth rates at the field scale, from a combination of measurements of vertical fluxes and particle size-distributions. For the first 9 days after fertilization, growth rates of 11 nm particles of 7.04 nm hr−1 and 1.68 nm hr−1 were derived for day and night-time conditions, respectively. This implies total NH4NO3 production rates of 1.11 and 0.44 μg m−3 h−1, respectively. The effect translates into a small error in measured ammonia fluxes (0.06% day, 0.56% night and a large error in NH4+ and NO3 aerosol fluxes of 3.6% and 10%, respectively. By converting rapidly exchanged NH3 and HNO3 into slowly depositing NH4NO3, the reaction modifies the total N budget, though this effect is small (<1% for the 10 days following fertilization, as NH3 emission dominates the net flux. It is estimated that 3.8% of the fertilizer N was volatilised as NH3, of which 0.05% re-condensed to form NH4NO3 particles within the lowest 2 m of the surface layer. This surface induced process would at least scale up to a global NH4NO3 formation of ca. 0.21 kt N yr

  20. Rapid Population Growth and its Implication for Malawi

    African Journals Online (AJOL)

    Worldwide concern has recently focused on the negative aspects of rapid population growth for the' future as regards natural and non-renewable re- sources, energy and the environment. A United. Nations sponsored international conference on. "Environment and Development" was held in Brazil. inJune 1992 to focus ...

  1. Regolith Growth and Darkening of Saturn Ring Particles

    Science.gov (United States)

    Esposito, L. W.; Elliott, J. P.

    2009-04-01

    Markov chain simulations compare the regolith growth and darkening on 1 m and 10m particles in Saturn's rings. Our results show that pollution of the larger ring particles is ten times slower, allowing the rings to be ancient and still meet strict upper limits on fractional pollution by meteoroid infall. Example UV spectra are shown. Our results indicate that regolith stirring by higher velocity collisions can mix the ring particle regolith, creating brighter haloes around strong density waves, as observed by Cassini VIMS and UVIS. Unfortunately, our incomplete knowledge of meteoritic bombardment rates, particle adhesion and size/velocity distributions do not allow an age estimate.

  2. Regolith Growth and Darkening of Saturn's Ring Particles

    Science.gov (United States)

    Esposito, L. W.; Elliott, J. P.; Albers, N.

    2008-12-01

    Markov chain simulations compare the regolith growth and darkening on 1 m and 10m particles in Saturn's rings. Our results show that pollution of the larger ring particles is ten times slower, allowing the rings to be ancient and still meet strict upper limits on fractional pollution by meteoroid infall. Example UV spectra are shown. Our results indicate that regolith stirring by higher velocity collisions can mix the ring particle regolith, creating brighter haloes around strong density waves, as observed by Cassini VIMS and UVIS. Unfortunately, our incomplete knowledge of meteoritic bombardment rates, particle adhesion and size/velocity distributions do not allow an age estimate.

  3. Economic Growth of a Rapidly Developing Economy: Theoretical Formulation

    Directory of Open Access Journals (Sweden)

    Oleg Sergeyevich Sukharev

    2016-06-01

    Full Text Available The subject matter of the article is the description of economic growth. Modern economy is characterized by a high rate of changes. These changes are the limiting parameters of modern development, which requires a modification of the basic models of growth, the substantiation of the expediency and necessity of a rapid development strategy. In a simple mathematical form, the statement of the problem of economic growth in the “green economy” is examined, in which the costs of environmental measures are not considered a priori as hampering economic development (as it is common for a number of modern neoclassical and neo-Keynesian growth models. The methodological basis of the article are the econometric approach and modelling method. The article has a theoretical character. The main hypothesis supposes that the rapid development strategy cannot make an adequate development strategy under certain conditions, but may be acceptable in other its specific conditions. In this sense, the important growth conditions are the availability of resources, the effectiveness of institutions and the current economic structure, the technological effectiveness of economy, as well as the conditions of technological development (“green economy” and the path of such development. In the article, on the theoretical level of analysis, the substantiation of the adequacy of the rapid development strategy for an economic system is given, whose goal is to achieve the standard of living of the countryleader. Based on the assumptions introduced, the period for which the rapid development strategy might be implemented and the economic lag of the country might be reduced from the country-leader is determined. The conditions that ensure the impact of innovations on the rate of economic development are summarized. The introduced range of dependencies and relations can be useful for the elaboration of the theory of innovation development and for the formation of a new

  4. Identification and quantification of particle growth channels during new particle formation

    Directory of Open Access Journals (Sweden)

    M. R. Pennington

    2013-10-01

    Full Text Available Atmospheric new particle formation (NPF is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN. While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the particles to reach the CCN size range. In this work, chemical composition measurements of 20 nm diameter particles during NPF in Hyytiälä, Finland, in March–April 2011 permit identification and quantitative assessment of important growth channels. In this work we show the following: (A sulfuric acid, a key species associated with atmospheric nucleation, accounts for less than half of particle mass growth during this time period; (B the sulfate content of a growing particle during NPF is quantitatively explained by condensation of gas-phase sulfuric acid molecules (i.e., sulfuric acid uptake is collision-limited; (C sulfuric acid condensation substantially impacts the chemical composition of preexisting nanoparticles before new particles have grown to a size sufficient to be measured; (D ammonium and sulfate concentrations are highly correlated, indicating that ammonia uptake is driven by sulfuric acid uptake; (E sulfate neutralization by ammonium does not reach the predicted thermodynamic end point, suggesting that a barrier exists for ammonia uptake; (F carbonaceous matter accounts for more than half of the particle mass growth, and its oxygen-to-carbon ratio (~ 0.5 is characteristic of freshly formed secondary organic aerosol; and (G differences in the overall growth rate from one formation event to another are caused by variations in the growth rates of all major chemical species, not just one individual species.

  5. Population priorities: the challenge of continued rapid population growth.

    Science.gov (United States)

    Turner, Adair

    2009-10-27

    Rapid population growth continues in the least developed countries. The revisionist case that rapid population could be overcome by technology, that population density was advantageous, that capital shallowing is not a vital concern and that empirical investigations had not proved a correlation between high population growth and low per capita income was both empirically and theoretically flawed. In the modern world, population density does not play the role it did in nineteenth-century Europe and rates of growth in some of today's least developed nations are four times than those in nineteenth-century Europe, and without major accumulation of capital per capita, no major economy has or is likely to make the low- to middle-income transition. Though not sufficient, capital accumulation for growth is absolutely essential to economic growth. While there are good reasons for objecting to the enforced nature of the Chinese one-child policy, we should not underestimate the positive impact which that policy has almost certainly had and will have over the next several decades on Chinese economic performance. And a valid reticence about telling developing countries that they must contain fertility should not lead us to underestimate the severely adverse impact of high fertility rates on the economic performance and prospects of many countries in Africa and the Middle East.

  6. Regional Rapid Growth in Cities and Urbanization in Thailand

    Directory of Open Access Journals (Sweden)

    Thanadorn Phuttharak

    2014-01-01

    Full Text Available This article aims to investigate the driving forces affecting regional rapid growth in Thailand, along with its impact, to understand the dynamics of urbanization and how it affects cities. The study selected UdonThani Province, Thailand, as a case study. This study collected data from academic and semi-academic documents, semi-structured interviews, participatory and non-participatory observations, and group discussion. The informants were residents within municipalities, government, and private officers related to city development, and NGOs. The results found that the driving forces affecting regional rapid growth in UdonThani province include: 1 historic events from World War II to the Cold War; 2 events during the Vietnam War; 3 Capitalist policies; and 4 the establishment of the ASEAN Economic Community (AEC. The study also found impacts of regional rapid growth in UdonThani province including 1 land use change; 2 economic and societal change; 3 road and traffic problems; and 4 waste disposal problems.

  7. Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations

    Science.gov (United States)

    Ke, Weiyao; Moreland, J. Scott; Bernhard, Jonah E.; Bass, Steffen A.

    2017-10-01

    We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p +Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

  8. Strange behavior of rapidity dependent strangeness enhancement of particles containing and not containing leading quarks

    Science.gov (United States)

    Dey, Kalyan; Bhattacharjee, B.

    2017-09-01

    Rapidity dependent strangeness enhancement factors for the identified particles have been studied with the help of a string based hadronic transport model UrQMD-3.3 (Ultra-relativistic Quantum Molecular Dynamics) at FAIR energies. A strong rapidity dependent strangeness enhancement could be observed with our generated data for Au + Au collisions at the beam energy of 30A GeV. The strangeness enhancement is found to be maximum at mid-rapidity for the particles containing leading quarks while for particles consisting of produced quarks only, the situation is seen to be otherwise. Such rapidity dependent strangeness enhancement could be traced back to the dependence of rapidity width on centrality or otherwise on the distribution of net-baryon density.

  9. Comminution of ibuprofen to produce nano-particles for rapid dissolution.

    Science.gov (United States)

    Plakkot, S; de Matas, M; York, P; Saunders, M; Sulaiman, B

    2011-08-30

    A critical problem associated with poorly soluble drugs is low and variable bioavailability derived from slow dissolution and erratic absorption. The preparation of nano-formulations has been identified as an approach to enhance the rate and extent of drug absorption for compounds demonstrating limited aqueous solubility. A new technology for the production of nano-particles using high speed, high efficiency processes that can rapidly generate nano-particles with rapid dissolution rate has been developed. Size reduction of a low melting ductile model compound was achieved in periods less than 1h. Particle size reduction of ibuprofen using this methodology resulted in production of crystalline particles with average diameter of approximately 270nm. Physical stability studies showed that the nano-suspension remained homogeneous with slight increases in mean particle size, when stored at room temperature and under refrigerated storage conditions 2-8°C for up to 2 days. Powder containing crystalline drug was prepared by spray-drying ibuprofen nano-suspensions with mannitol dissolved in the aqueous phase. Dissolution studies showed similar release rates for the nano-suspension and powder which were markedly improved compared to a commercially available drug product. Ibuprofen nano-particles could be produced rapidly with smaller sizes achieved at higher suspension concentrations. Particles produced in water with stabilisers demonstrated greatest physical stability, whilst rapid dissolution was observed for the nano-particles isolated in powder form. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Do plastic particles affect microalgal photosynthesis and growth?

    Science.gov (United States)

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Multi-particle long-range rapidity correlations from fluctuation of the fireball longitudinal shape

    OpenAIRE

    Bzdak, Adam; Bozek, Piotr

    2015-01-01

    We calculate the genuine long-range multi-particle rapidity correlation functions, $C_{n}(y_1,...,y_n)$ for $n=3,4,5,6$, originating from fluctuations of the fireball longitudinal shape. In these correlation functions any contribution from the short-range two-particle correlations, and in general up to $(n-1)$-particle in $C_n$, is suppressed. The information about the fluctuating fireball shape in rapidity is encoded in the cumulants of coefficients of the orthogonal polynomial expansion of ...

  12. Rapid evaluation of particle properties using inverse SEM simulations

    Science.gov (United States)

    Bekar, Kursat B.; Miller, Thomas M.; Patton, Bruce W.; Weber, Charles F.

    2017-09-01

    The characteristic X-rays produced by the interactions of the electron beam with the sample in a scanning electron microscope (SEM) are usually captured with a variable-energy detector, a process termed energy dispersive spectrometry (EDS). The purpose of this work is to exploit inverse simulations of SEM-EDS spectra to enable rapid determination of sample properties, particularly elemental composition. This is accomplished using penORNL, a modified version of PENELOPE, and a modified version of the traditional Levenberg-Marquardt nonlinear optimization algorithm, which together is referred to as MOZAIK-SEM. The overall conclusion of this work is that MOZAIK-SEM is a promising method for performing inverse analysis of X-ray spectra generated within a SEM. As this methodology exists now, MOZAIK-SEM has been shown to calculate the elemental composition of an unknown sample within a few percent of the actual composition.

  13. Rapid evaluation of particle properties using inverse SEM simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bekar, Kursat B [ORNL; Miller, Thomas Martin [ORNL; Patton, Bruce W [ORNL; Weber, Charles F [ORNL

    2017-01-01

    The characteristic X-rays produced by the interactions of the electron beam with the sample in a scanning electron microscope (SEM) are usually captured with a variable-energy detector, a process termed energy dispersive spectrometry (EDS). The purpose of this work is to exploit inverse simulations of SEM-EDS spectra to enable rapid determination of sample properties, particularly elemental composition. This is accomplished using penORNL, a modified version of PENELOPE, and a modified version of the traditional Levenberg Marquardt nonlinear optimization algorithm, which together is referred to as MOZAIK-SEM. The overall conclusion of this work is that MOZAIK-SEM is a promising method for performing inverse analysis of X-ray spectra generated within a SEM. As this methodology exists now, MOZAIK-SEM has been shown to calculate the elemental composition of an unknown sample within a few percent of the actual composition.

  14. Polygenic Risk, Rapid Childhood Growth, and the Development of Obesity

    Science.gov (United States)

    Belsky, Daniel W.; Moffitt, Terrie E.; Houts, Renate; Bennett, Gary G.; Biddle, Andrea K.; Blumenthal, James A.; Evans, James P.; Harrington, HonaLee; Sugden, Karen; Williams, Benjamin; Poulton, Richie; Caspi, Avshalom

    2012-01-01

    Objective To test how genomic loci identified in genome-wide association studies influence the development of obesity. Design A 38-year prospective longitudinal study of a representative birth cohort. Setting The Dunedin Multidisciplinary Health and Development Study, Dunedin, New Zealand. Participants One thousand thirty-seven male and female study members. Main Exposures We assessed genetic risk with a multilocus genetic risk score. The genetic risk score was composed of single-nucleotide polymorphisms identified in genome-wide association studies of obesity-related phenotypes. We assessed family history from parent body mass index data collected when study members were 11 years of age. Main Outcome Measures Body mass index growth curves, developmental phenotypes of obesity, and adult obesity outcomes were defined from anthropometric assessments at birth and at 12 subsequent in-person interviews through 38 years of age. Results Individuals with higher genetic risk scores were more likely to be chronically obese in adulthood. Genetic risk first manifested as rapid growth during early childhood. Genetic risk was unrelated to birth weight. After birth, children at higher genetic risk gained weight more rapidly and reached adiposity rebound earlier and at a higher body mass index. In turn, these developmental phenotypes predicted adult obesity, mediating about half the genetic effect on adult obesity risk. Genetic associations with growth and obesity risk were independent of family history, indicating that the genetic risk score could provide novel information to clinicians. Conclusions Genetic variation linked with obesity risk operates, in part, through accelerating growth in the early childhood years after birth. Etiological research and prevention strategies should target early childhood to address the obesity epidemic. PMID:22665028

  15. Computer simulation of rapid crystal growth under microgravity

    Science.gov (United States)

    Hisada, Yasuhiro; Saito, Osami; Mitachi, Koshi; Nishinaga, Tatau

    We are planning to grow a Ge single crystal under microgravity by the TR-IA rocket in 1992. The furnace temperature should be controlled so as to finish the crystal growth in a quite short time interval (about 6 min). This study deals with the computer simulation of rapid crystal growth in space to find the proper conditions for the experiment. The crystal growth process is influenced by various physical phenomena such as heat conduction, natural and Marangoni convections, phase change, and radiation from the furnace. In this study, a 2D simulation with axial symmetry is carried out, taking into account the radiation field with a specific temperature distribution of the furnace wall. The simulation program consists of four modules. The first module is applied for the calculation of the parabolic partial differential equation by using the control volume method. The second one evaluates implicitly the phase change by the enthalpy method. The third one is for computing the heat flux from surface by radiation. The last one is for calculating with the Monte Carlo method the view factors which are necessary to obtain the heat flux.

  16. Nucleation and growth of new particles in Po Valley, Italy

    Directory of Open Access Journals (Sweden)

    A. Hamed

    2007-01-01

    Full Text Available Aerosol number distribution measurements are reported at San Pietro Capofiume (SPC station (44°39' N, 11°37' E for the time period 2002–2005. The station is located in Po Valley, the largest industrial, trading and agricultural area in Italy with a high population density. New particle formation was studied based on observations of the particle size distribution, meteorological and gas phase parameters. The nucleation events were classified according to the event clarity based on the particle number concentrations, and the particle formation and growth rates. Out of a total of 769 operational days from 2002 to 2005 clear events were detected on 36% of the days whilst 33% are clearly non-event days. The event frequency was high during spring and summer months with maximum values in May and July, whereas lower frequency was observed in winter and autumn months. The average particle formation and growth rates were estimated as ~6 cm−3 s−1 and ~7 nm h−1, respectively. Such high growth and formation rates are typical for polluted areas. Temperature, wind speed, solar radiation, SO2 and O3 concentrations were on average higher on nucleation days than on non-event days, whereas relative and absolute humidity and NO2 concentration were lower; however, seasonal differences were observed. Backtrajectory analysis suggests that during majority of nucleation event days, the air masses originate from northern to eastern directions. We also study previously developed nucleation event correlations with environmental variables and show that they predict Po Valley nucleation events with variable success.

  17. Rapid black hole growth under anisotropic radiation feedback

    Science.gov (United States)

    Sugimura, Kazuyuki; Hosokawa, Takashi; Yajima, Hidenobu; Omukai, Kazuyuki

    2017-07-01

    Discovery of high-redshift (z > 6) supermassive black holes (BHs) may indicate that the rapid (or super-Eddington) gas accretion has aided their quick growth. Here, we study such rapid accretion of the primordial gas on to intermediate-mass (102-105 M⊙) BHs under anisotropic radiation feedback. We perform two-dimensional radiation hydrodynamics simulations that solve the flow structure across the Bondi radius, from far outside of the Bondi radius down to a central part that is larger than a circum-BH accretion disc. The radiation from the unresolved circum-BH disc is analytically modelled considering self-shadowing effect. We show that the flow settles into a steady state, where the flow structure consists of two distinct parts: (1) bipolar ionized outflowing regions, where the gas is pushed outward by thermal gas pressure and super-Eddington radiation pressure, and (2) an equatorial neutral inflowing region, where the gas falls towards the central BH without affected by radiation feedback. The resulting accretion rate is much higher than that in the case of isotropic radiation, far exceeding the Eddington-limited rate to reach a value slightly lower than the Bondi one. The opening angle of the equatorial inflowing region is determined by the luminosity and directional dependence of the central radiation. We find that photoevaporation from its surfaces set the critical opening angle of about 10° below which the accretion to the BH is quenched. We suggest that the shadowing effect allows even stellar-remnant BHs to grow rapidly enough to become high-redshift supermassive BHs.

  18. Measurements of the charged particle multiplicity distribution in restricted rapidity intervals

    CERN Document Server

    Buskulic, Damir; De Bonis, I; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Ariztizabal, F; Chmeissani, M; Crespo, J M; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Gaitan, V; Garrido, L; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Palla, Fabrizio; Pascual, A; Perlas, J A; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Farilla, A; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Natali, S; Nuzzo, S; Ranieri, A; Raso, G; Romano, F; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Bonvicini, G; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Engelhardt, A; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Jacobsen, R; Janot, P; Jost, B; Knobloch, J; Lehraus, Ivan; Markou, C; Martin, E B; Mato, P; Meinhard, H; Minten, Adolf G; Miquel, R; Oest, T; Palazzi, P; Pater, J R; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wiedenmann, W; Wildish, T; Witzeling, W; Wotschack, J; Ajaltouni, Ziad J; Bardadin-Otwinowska, Maria; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Saadi, F; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Kyriakis, A; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Bonneaud, G R; Brient, J C; Bourdon, P; Passalacqua, L; Rougé, A; Rumpf, M; Tanaka, R; Valassi, Andrea; Verderi, M; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Delfino, M C; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Pepé-Altarelli, M; Dorris, S J; Halley, A W; ten Have, I; Knowles, I G; Lynch, J G; Morton, W T; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Smith, M G; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Braun, O; Geweniger, C; Graefe, G; Hanke, P; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Colling, D J; Dornan, Peter J; Konstantinidis, N P; Moneta, L; Moutoussi, A; Nash, J; San Martin, G; Sedgbeer, J K; Stacey, A M; Dissertori, G; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Brodbeck, T J; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Whelan, E P; Williams, M I; Galla, A; Greene, A M; Kleinknecht, K; Quast, G; Raab, J; Renk, B; Sander, H G; Wanke, R; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Etienne, F; Thulasidas, M; Nicod, D; Payre, P; Rousseau, D; Talby, M; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Brown, D; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Settles, Ronald; Seywerd, H C J; Stierlin, U; Saint-Denis, R; Wolf, G; Alemany, R; Boucrot, J; Callot, O; Cordier, A; Courault, F; Davier, M; Duflot, L; Grivaz, J F; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Musolino, G; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Abbaneo, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Foà, L; Forti, F; Giassi, A; Giorgi, M A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Triggiani, G; Vannini, C; Verdini, P G; Walsh, J; Betteridge, A P; Blair, G A; Bryant, L M; Cerutti, F; Gao, Y; Green, M G; Johnson, D L; Medcalf, T; Mir, M; Perrodo, P; Strong, J A; Bertin, V; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Edwards, M; Maley, P; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Duarte, H; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Roussarie, A; Schuller, J P; Schwindling, J; Si Mohand, D; Trabelsi, A; Vallage, B; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Beddall, A; Booth, C N; Boswell, R; Cartwright, S L; Combley, F; Dawson, I; Köksal, A; Letho, M; Newton, W M; Rankin, C; Thompson, L F; Böhrer, A; Brandt, S; Cowan, G D; Feigl, E; Grupen, Claus; Lutters, G; Minguet-Rodríguez, J A; Rivera, F; Saraiva, P; Smolik, L; Stephan, F; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Ragusa, F; Rothberg, J E; Wasserbaech, S R; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G

    1995-01-01

    Charged particle multiplicity distributions have been measured with the ALEPH detector in restricted rapidity intervals |Y| \\leq 0.5,1.0, 1.5,2.0\\/ along the thrust axis and also without restriction on rapidity. The distribution for the full range can be parametrized by a log-normal distribution. For smaller windows one finds a more complicated structure, which is understood to arise from perturbative effects. The negative-binomial distribution fails to describe the data both with and without the restriction on rapidity. The JETSET model is found to describe all aspects of the data while the width predicted by HERWIG is in significant disagreement.

  19. Direct observation of new particle formation during ozonolysis of isoprene and ethene competing against the growth of preexisting particles

    Science.gov (United States)

    Inomata, Satoshi; Sato, Kei; Sakamoto, Yosuke; Hirokawa, Jun

    2017-12-01

    Secondary organic aerosol formation during the ozonolysis of isoprene and ethene in the presence of ammonium nitrate seed particles (surface area concentrations = (0.8-3) × 107 nm2 cm-3) was investigated using a 1 nm scanning mobility particle sizer. Based on the size distribution of formed particles, particles with a diameter smaller than the minimum diameter of the seed particles (less than ∼6 nm) formed under dry conditions, but the formation of such particles was substantially suppressed during isoprene ozonolysis and was not observed during ethane ozonolysis under humid conditions. We propose that oligomeric hydroperoxides generated by stabilized Criegee intermediates (sCIs), including C1-sCI (CH2OO), contribute to new particle formation while competing to be taken up onto preexisting particles. The OH reaction products of isoprene and ethene seem to not contribute to new particle formation; however, they are taken up onto preexisting particles and contribute to particle growth.

  20. Methods for determining particle size distribution and growth rates between 1 and 3 nm using the Particle Size Magnifier

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Kangasluoma, Juha; Franchin, Alessandro; Wimmer, Daniela; Schobesberger, Siegfried; Junninen, Heikki; Petäjä, Tuukka; Sipilä, Mikko; Mikkilä, Jyri; Vanhanen, Joonas; Worsnop, Douglas R; Kulmala, Markku

    2014-01-01

    The most important parameters describing the atmospheric new particle formation process are the particle formation and growth rates. These together determine the amount of cloud condensation nuclei attributed to secondary particle formation. Due to difficulties in detecting small neutral particles, it has previously not been possible to derive these directly from measurements in the size range below about 3 nm. The Airmodus Particle Size Magnifier has been used at the SMEAR II station in Hyytiälä, southern Finland, and during nucleation experiments in the CLOUD chamber at CERN for measuring particles as small as about 1 nm in mobility diameter. We developed several methods to determine the particle size distribution and growth rates in the size range of 1–3 nm from these data sets. Here we introduce the appearance-time method for calculating initial growth rates. The validity of the method was tested by simulations with the Ion-UHMA aerosol dynamic model.

  1. Potency of (doped) rare earth oxide particles and their constituent metals to inhibit algal growth and induce direct toxic effects.

    Science.gov (United States)

    Joonas, Elise; Aruoja, Villem; Olli, Kalle; Syvertsen-Wiig, Guttorm; Vija, Heiki; Kahru, Anne

    2017-09-01

    Use of rare earth elements (REEs) has increased rapidly in recent decades due to technological advances. It has been accompanied by recurring rare earth element anomalies in water bodies. In this work we (i) studied the effects of eight novel doped and one non-doped rare earth oxide (REO) particles (aimed to be used in solid oxide fuel cells and gas separation membranes) on algae, (ii) quantified the individual adverse effects of the elements that constitute the (doped) REO particles and (iii) attempted to find a discernible pattern to relate REO particle physicochemical characteristics to algal growth inhibitory properties. Green algae Raphidocelis subcapitata (formerly Pseudokirchneriella subcapitata) were used as a test species in two different formats: a standard OECD201 algal growth inhibition assay and the algal viability assay (a 'spot test') that avoids nutrient removal effects. In the 24h 'spot' test that demonstrated direct toxicity, algae were not viable at REE concentrations above 1mgmetal/L. 72-hour algal growth inhibition EC50 values for four REE salts (Ce, Gd, La, Pr) were between 1.2 and 1.4mg/L, whereas the EC50 for REO particles ranged from 1 to 98mg/L. The growth inhibition of REEs was presumably the result of nutrient sequestration from the algal growth medium. The adverse effects of REO particles were at least in part due to the entrapment of algae within particle agglomerates. Adverse effects due to the dissolution of constituent elements from (doped) REO particles and the size or specific surface area of particles were excluded, except for La2NiO4. However, the structure of the particles and/or the varying effects of oxide composition might have played a role in the observed effects. As the production rates of these REO particles are negligible compared to other forms of REEs, there is presumably no acute risk for aquatic unicellular algae. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Measurement of two-particle semi-inclusive rapidity distributions at the CERN ISR

    CERN Document Server

    Amendolia, S R; Bosisio, L; Braccini, Pier Luigi; Bradaschia, C; Castaldi, R; Cavasinni, V; Cerri, C; Del Prete, T; Finocchiaro, G; Foà, L; Giromini, P; Grannis, P; Green, D; Jöstlein, H; Kephart, R; Laurelli, P; Menzione, A; Ristori, L; Sanguinetti, G; Thun, R; Valdata, M

    1976-01-01

    Data are presented on the semi-inclusive distributions of rapidities of secondary particles produced in pp collisions at very high energies. The experiment was performed at the CERN Intersecting Storage Rings (ISR). The data given, at centre-of-mass energies of square root s=23 and 62 GeV, include the single-particle distributions and two-particle correlations. The semi-inclusive correlations show pronounced short-range correlation effects which have a width considerably narrower than in the case of inclusive correlations. It is shown that these short-range effects can be understood empirically in terms of three parameters whose energy and multiplicity dependence are studied. The data support the picture of multiparticle production in which clusters of small multiplicity and small dispersion are emitted with subsequent decay into hadrons. (32 refs).

  3. A combined Settling Tube-Photometer for rapid measurement of effective sediment particle size

    Science.gov (United States)

    Kuhn, Nikolaus J.; Kuhn, Brigitte; Rüegg, Hans-Rudolf; Zimmermann, Lukas

    2017-04-01

    Sediment and its movement in water is commonly described based on the size distribution of the mineral particles forming the sediment. While this approach works for coarse sand, pebbles and gravel, smaller particles often form aggregates, creating material of larger diameters than the mineral grain size distribution indicates, but lower densities than often assumed 2.65 g cm-3 of quartz. The measurement of the actual size and density of such aggregated sediment is difficult. For the assessment of sediment movement an effective particle size for the use in mathematical can be derived based on the settling velocity of sediment. Settling velocity of commonly measured in settling tubes which fractionate the sample in settling velocity classes by sampling material at the base in selected time intervals. This process takes up to several hours, requires a laboratory setting and carries the risk of either destruction of aggregates during transport or coagulation while sitting in rather still water. Measuring the velocity of settling particles in situ, or at least a rapidly after collection, could avoids these problems. In this study, a settling tube equipped with four photometers used to measure the darkening of a settling particle cloud is presented and the potential to improve the measurement of settling velocities are discussed.

  4. Rapidity distributions around mid-rapidity of strange particles in Pb-Pb collisions at 158 $A$ GeV/c

    CERN Document Server

    Antinori, F.; Badala, A.; Barbera, R.; Belogianni, A.; Bloodworth, I.J.; Bombara, M.; Bruno, G.E.; Bull, S.A.; Caliandro, R.; Campbell, M.; Carena, Wisla; Carrer, N.; Clarke, R.F.; Dainese, A.; Di Bari, D.; Di Liberto, S.; Divia, R.; Elia, D.; Evans, D.; Feofilov, G.A.; Fini, R.A.; Ganoti, P.; Ghidini, B.; Grella, G.; Helstrup, H.; Hetland, K.F.; Holme, A.K.; Jacholkowski, A.; Jones, G.T.; Jovanovic, P.; Jusko, A.; Kamermans, R.; Kinson, J.B.; Knudson, K.; Kondratiev, V.; Kralik, I.; Kravcakova, A.; Kuijer, P.; Lenti, V.; Lietava, R.; Lovhoiden, G.; Manzari, V.; Mazzoni, M.A.; Meddi, F.; Michalon, A.; Morando, M.; Norman, P.I.; Palmeri, A.; Pappalardo, G.S.; Pastircak, B.; Platt, R.J.; Quercigh, E.; Riggi, F.; Rohrich, D.; Romano, G.; Safarik, K.; Sandor, L.; Schillings, E.; Segato, G.; Sene, M.; Sene, R.; Snoeys, W.; Soramel, F.; Spyropoulou-Stassinaki, M.; Staroba, P.; Turrisi, R.; Tveter, T.S.; Urban, J.; van de Ven, P.; Vande Vyvre, P; Vascotto, A.; Vik, T.; Villalobos Baillie, O.; Vinogradov, L.; Virgili, T.; Votruba, M.F.; Vrlakova, J.; Zavada, P.

    2005-01-01

    The production at central rapidity of K0s, Lambda, Xi and Omega particles in Pb-Pb collisions at 158 A GeV/c has been measured by the NA57 experiment over a centrality range corresponding to the most central 53% of the inelastic Pb-Pb cross section. In this paper we present the rapidity distribution of each particle in the central rapidity unit as a function of the event centrality. The distributions are analyzed based on hydrodynamical models of the collisions.

  5. Gold nanoparticle growth monitored in situ using a novel fast optical single-particle spectroscopy method.

    Science.gov (United States)

    Becker, Jan; Schubert, Olaf; Sönnichsen, Carsten

    2007-06-01

    Size- and shape-dependent optical properties of gold nanorods allow monitoring their growth using a novel fast single-particle spectroscopy (fastSPS) method. FastSPS uses a spatially addressable electronic shutter based on a liquid crystal device to investigate particles randomly deposited on a substrate, orders of magnitude faster than other techniques. We use fastSPS to observe nanoparticle growth in situ on a single-particle level and extract quantitative data on nanoparticle growth.

  6. Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-02-01

    Full Text Available Organic peroxides, important species in the atmosphere, promote secondary organic aerosol (SOA aging, affect HOx radicals cycling, and cause adverse health effects. However, the formation, gas-particle partitioning, and evolution of organic peroxides are complicated and still unclear. In this study, we investigated in the laboratory the production and gas-particle partitioning of peroxides from the ozonolysis of α-pinene, which is one of the major biogenic volatile organic compounds in the atmosphere and an important precursor for SOA at a global scale. We have determined the molar yields of hydrogen peroxide (H2O2, hydromethyl hydroperoxide (HMHP, peroxyformic acid (PFA, peroxyacetic acid (PAA, and total peroxides (TPOs, including unknown peroxides and the fraction of peroxides in α-pinene/O3 SOA. Comparing the gas-phase peroxides with the particle-phase peroxides, we find that gas-particle partitioning coefficients of PFA and PAA are 104 times higher than the values from the theoretical prediction, indicating that organic peroxides play a more important role in SOA formation than previously expected. Here, the partitioning coefficients of TPO were determined to be as high as (2–3  ×  10−4 m3 µg−1. Even so, more than 80 % of the peroxides formed in the reaction remain in the gas phase. Water changes the distribution of gaseous peroxides, while it does not affect the total amount of peroxides in either the gas or the particle phase. Approx. 18 % of gaseous peroxides undergo rapid heterogeneous decomposition on SOA particles in the presence of water vapor, resulting in the additional production of H2O2. This process can partially explain the unexpectedly high H2O2 yields under wet conditions. Transformation of organic peroxides to H2O2 also preserves OH in the atmosphere, helping to improve the understanding of OH cycling.

  7. Contribution of sulfuric acid and oxidized organic compounds to particle formation and growth

    Directory of Open Access Journals (Sweden)

    F. Riccobono

    2012-10-01

    Full Text Available Lack of knowledge about the mechanisms underlying new particle formation and their subsequent growth is one of the main causes for the large uncertainty in estimating the radiative forcing of atmospheric aerosols in global models. We performed chamber experiments designed to study the contributions of sulfuric acid and organic vapors to the formation and early growth of nucleated particles. Distinct experiments in the presence of two different organic precursors (1,3,5-trimethylbenzene and α-pinene showed the ability of these compounds to reproduce the formation rates observed in the low troposphere. These results were obtained measuring the sulfuric acid concentrations with two chemical ionization mass spectrometers confirming the results of a previous study which modeled the sulfuric acid concentrations in presence of 1,3,5-trimethylbenzene.

    New analysis methods were applied to the data collected with a condensation particle counter battery and a scanning mobility particle sizer, allowing the assessment of the size resolved growth rates of freshly nucleated particles. The effect of organic vapors on particle growth was investigated by means of the growth rate enhancement factor (Γ, defined as the ratio between the measured growth rate in the presence of α-pinene and the kinetically limited growth rate of the sulfuric acid and water system. The observed Γ values indicate that the growth is already dominated by organic compounds at particle diameters of 2 nm. Both the absolute growth rates and Γ showed a strong dependence on particle size, supporting the nano-Köhler theory. Moreover, the separation of the contributions from sulfuric acid and organic compounds to particle growth reveals that the organic contribution seems to be enhanced by the sulfuric acid concentration. Finally, the size resolved growth analysis indicates that both condensation of oxidized organic compounds and reactive uptake contribute to particle growth.

  8. Communication and The Challenges of Rapid Population Growth in ...

    African Journals Online (AJOL)

    These factors include religious beliefs, customs and traditions, among others. The discourse also examined the various communication types in Africa and their appropriateness in educating Africans and their governments on the need to control high rate of population growth. Ironically, medical facilities available in African ...

  9. A rare large right atrial myxoma with rapid growth rate.

    Science.gov (United States)

    Kelly, Shawn C; Steffen, Kelly; Stys, Adam T

    2014-10-01

    Atrial myxomas are the most common benign intracavitary cardiac neoplasms. They most frequently occur in the left atrium. Right atrial tumors are rare, comprising 20 percent of myxomas achieving an incidence of 0.02 percent. Due to their rarity, right atrial tumor development and associated clinical symptoms has not been well described. The classical clinical triad for the presentation of left atrial myxomas--heart failure, embolic events, and constitutional symptoms--may not be applicable to right sided tumors. Also, natural development of myxoma is not well described, as surgical resection is the common practice. Previously ascribed growth rates of myxomas refer mostly to left atrial ones, as right atrial tumors are rare. We present a case of right atrial myxoma with growth rates exceeding those previously described.

  10. Rapid population growth and environmental degradation: ultimate versus proximate factors.

    Science.gov (United States)

    Shaw, R P

    1989-01-01

    This philosophical review of 2 arguments about responsibility for and solutions to environmental degradation concludes that both sides are correct: the ultimate and the proximal causes. Ultimate causes of pollution are defined as the technology responsible for a given type of pollution, such as burning fossil fuel; proximate causes are defined as situation-specific factors confounding the problem, such as population density or rate of growth. Commoner and others argue that developed countries with low or negative population growth rates are responsible for 80% of world pollution, primarily in polluting technologies such as automobiles, power generation, plastics, pesticides, toxic wastes, garbage, warfaring, and nuclear weapons wastes. Distortionary policies also contribute; examples are agricultural trade protection, land mismanagement, urban bias in expenditures, and institutional rigidity., Poor nations are responsible for very little pollution because poverty allows little waste or expenditures for polluting, synthetic technologies. The proximal causes of pollution include numbers and rate of growth of populations responsible for the pollution. Since change in the ultimate cause of pollution remains out of reach, altering the numbers of polluters can make a difference. Predictions are made for proportions of the world's total waste production, assuming current 1.6 tons/capita for developed countries and 0.17 tons/capita for developing countries. If developing countries grow at current rates and become more wealthy, they will be emitting half the world's waste by 2025. ON the other hand, unsustainable population growth goes along with inadequate investment in human capital: education, health, employment, infrastructure. The solution is to improve farming technologies in the 117 non-self-sufficient countries, fund development in the most unsustainable enclaves of growing countries, break institutionalized socio-political rigidity in these enclaves, and focus on

  11. Growth and wetting of water droplet condensed between micron-sized particles and substrate.

    Science.gov (United States)

    Quang, Tran Si Bui; Leong, Fong Yew; An, Hongjie; Tan, Beng Hau; Ohl, Claus-Dieter

    2016-08-04

    We study heterogeneous condensation growth of water droplets on micron-sized particles resting on a level substrate. Through numerical simulations on equilibrium droplet profiles, we find multiple wetting states towards complete wetting of the particle. Specifically, a partially wetting droplet could undergo a spontaneous transition to complete wetting during condensation growth, for contact angles above a threshold minimum. In addition, we find a competitive wetting behavior between the particle and the substrate, and interestingly, a reversal of the wetting dependence on contact angles during late stages of droplet growth. Using quasi-steady assumption, we simulate a growing droplet under a constant condensation flux, and the results are in good agreement with our experimental observations. As a geometric approximation for particle clusters, we propose and validate a pancake model, and with it, show that a particle cluster has greater wetting tendency compared to a single particle. Together, our results indicate a strong interplay between contact angle, capillarity and geometry during condensation growth.

  12. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions.

    Science.gov (United States)

    Yunker, Peter J; Lohr, Matthew A; Still, Tim; Borodin, Alexei; Durian, D J; Yodh, A G

    2013-01-18

    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

  13. ON THE RELATIVISTIC PRECESSION AND OSCILLATION FREQUENCIES OF TEST PARTICLES AROUND RAPIDLY ROTATING COMPACT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Pachon, Leonardo A. [Instituto de Fisica, Universidad de Antioquia, AA 1226 Medellin (Colombia); Rueda, Jorge A. [Dipartimento di Fisica and ICRA, Sapienza Universita di Roma, P.le Aldo Moro 5, I-00185 Rome (Italy); Valenzuela-Toledo, Cesar A., E-mail: leonardo.pachon@fisica.udea.edu.co, E-mail: jorge.rueda@icra.it, E-mail: cesar.valenzuela@correounivalle.edu.co [Departamento de Fisica, Universidad del Valle, A.A. 25360, Santiago de Cali (Colombia)

    2012-09-01

    Whether or not analytic exact vacuum (electrovacuum) solutions of the Einstein (Einstein-Maxwell) field equations can accurately describe the exterior space-time of compact stars still remains an interesting open question in relativistic astrophysics. As an attempt to establish their level of accuracy, the radii of the innermost stable circular orbits (ISCOs) of test particles given by analytic exterior space-time geometries have been compared with those given by numerical solutions for neutron stars (NSs) obeying a realistic equation of state (EOS). It has been so shown that the six-parametric solution of Pachon et al. (PRS) more accurately describes the NS ISCO radii than other analytic models do. We propose here an additional test of accuracy for analytic exterior geometries based on the comparison of orbital frequencies of neutral test particles. We compute the Keplerian, frame-dragging, and precession and oscillation frequencies of the radial and vertical motions of neutral test particles for the Kerr and PRS geometries and then compare them with the numerical values obtained by Morsink and Stella for realistic NSs. We identify the role of high-order multipole moments such as the mass quadrupole and current octupole in the determination of the orbital frequencies, especially in the rapid rotation regime. The results of this work are relevant to cast a separatrix between black hole and NS signatures and to probe the nuclear-matter EOS and NS parameters from the quasi-periodic oscillations observed in low-mass X-ray binaries.

  14. Rapid growth of left atrial myxoma after radiofrequency ablation.

    Science.gov (United States)

    Rubio Alvarez, José; Martinez de Alegria, Anxo; Sierra Quiroga, Juan; Adrio Nazar, Belen; Rubio Taboada, Carola; Martinez Comendador, José Manuel

    2013-01-01

    Atrial myxoma is the most common benign tumor of the heart, but its appearance after radiofrequency ablation is very rare. We report a case in which an asymptomatic, rapidly growing cardiac myxoma arose in the left atrium after radiofrequency ablation. Two months after the procedure, cardiovascular magnetic resonance, performed to evaluate the right ventricular anatomy, revealed a 10 × 10-mm mass (assumed to be a thrombus) attached to the patient's left atrial septum. Three months later, transthoracic echocardiography revealed a larger mass, and the patient was diagnosed with myxoma. Two days later, a 20 × 20-mm myxoma weighing 37 g was excised. To our knowledge, the appearance of an atrial myxoma after radiofrequency ablation has been reported only once before. Whether tumor development is related to such ablation or is merely a coincidence is uncertain, but myxomas have developed after other instances of cardiac trauma.

  15. Rapid removal of chloroform, carbon tetrachloride and trichloroethylene in water by aluminum-iron alloy particles.

    Science.gov (United States)

    Xu, Jie; Pu, Yuan; Yang, Xiao Jin; Wan, Pingyu; Wang, Rong; Song, Peng; Fisher, Adrian

    2017-09-05

    Water contamination with chlorinated hydrocarbons such as chloroform (CHCl3), carbon tetrachloride (CCl4) and trichloroethylene (TCE) is one of the major public health concerns. In this study, we explored the use of aluminum-iron alloys particles in millimeter scale for rapid removal of CHCl3, CCl4 and TCE from water. Three types of Al-Fe alloy particles containing 10, 20 and 58 wt% of Fe (termed as Al-Fe10, Al-Fe20 and Al-Fe58) were prepared and characterized by electrochemical polarization, X-ray diffraction and energy dispersive spectrometer. For concentrations of 30-180 μg/L CHCl3, CCl4 and TCE, a removal efficiency of 45-64% was achieved in a hydraulic contact time of less than 3 min through a column packed with 0.8-2 mm diameter of Al-Fe alloy particles. The concentration of Al and Fe ions released into water was less than 0.15 and 0.05 mg/L, respectively. Alloying Al with Fe enhances reactivity towards chlorinated hydrocarbons' degradation and the enhancement is likely the consequence of galvanic effects between different phases (Al, Fe and intermetallic Al-Fe compounds such as Al13Fe4, Fe3Al and FeAl2) and catalytic role of these intermetallic Al-Fe compounds. The results demonstrate that the use of Al-Fe alloy particles offers a viable and green option for chlorinated hydrocarbons' removal in water treatment.

  16. Surfaces Self-Assembly and Rapid Growth of Amyloid Fibrils

    Science.gov (United States)

    Lin, Yichih; Petersson, E. James; Fakhraai, Zahra

    2014-03-01

    The mechanism of surface-mediated fibrillization has been considered as a key issue in understanding the origins of the neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. In vitro, amyloid proteins fold through nucleation-elongation process. There is a critical concentration for early nucleating stage. However, some studies indicate that surfaces can modulate the fibril's formation under physiological conditions, even when the concentration is much lower than the critical concentration. Here, we use a label-free procedure to monitor the growth of fibrils across many length scales. We show that near a surface, the fibrillization process appears to bypass the nucleation step and fibrils grow through a self-assembly mechanism instead. We control and measure the pre-fibrillar morphology at different stages of this process on various surfaces. The interplay between the surface concentration and diffusion constant can help identify the detailed mechanisms of surface-mediated fibril growth, which remains largely unexplored. Our works provide a new insight in designing new probes and therapies. Supported by the National Institute On Aging of the National Institutes of Health under Award Number P30AG010124.

  17. A Novel Path Planning for Robots Based on Rapidly-Exploring Random Tree and Particle Swarm Optimizer Algorithm

    Directory of Open Access Journals (Sweden)

    Zhou Feng

    2013-09-01

    Full Text Available A based on Rapidly-exploring Random Tree(RRT and Particle Swarm Optimizer (PSO for path planning of the robot is proposed.First the grid method is built to describe the working space of the mobile robot,then the Rapidly-exploring Random Tree algorithm is used to obtain the global navigation path,and the Particle Swarm Optimizer algorithm is adopted to get the better path.Computer experiment results demonstrate that this novel algorithm can plan an optimal path rapidly in a cluttered environment.The successful obstacle avoidance is achieved,and the model is robust and performs reliably.

  18. Incorporating an extended dendritic growth model into the CAFE model for rapidly solidified non-dilute alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jie; Wang, Bo [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhao, Shunli [Research Institute, Baoshan Iron & Steel Co., Ltd, Shanghai 201900 (China); Wu, Guangxin [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Zhang, Jieyu, E-mail: zjy6162@staff.shu.edu.cn [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China); Yang, Zhiliang [State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072 (China); Shanghai Engineering Technology Research Center of Special Casting, Shanghai 201605 (China)

    2016-05-25

    We have extended the dendritic growth model first proposed by Boettinger, Coriell and Trivedi (here termed EBCT) for microstructure simulations of rapidly solidified non-dilute alloys. The temperature-dependent distribution coefficient, obtained from calculations of phase equilibria, and the continuous growth model (CGM) were adopted in the present EBCT model to describe the solute trapping behaviors. The temperature dependence of the physical properties, which were not used in previous dendritic growth models, were also considered in the present EBCT model. These extensions allow the present EBCT model to be used for microstructure simulations of non-dilute alloys. The comparison of the present EBCT model with the BCT model proves that the considerations of the distribution coefficient and physical properties are necessary for microstructure simulations, especially for small particles with high undercoolings. Finally, the EBCT model was incorporated into the cellular automaton-finite element (CAFE) model to simulate microstructures of gas-atomized ASP30 high speed steel particles that were then compared with experimental results. Both the simulated and experimental results reveal that a columnar dendritic microstructure preferentially forms in small particles and an equiaxed microstructure forms otherwise. The applications of the present EBCT model provide a convenient way to predict the microstructure of non-dilute alloys. - Highlights: • A dendritic growth model was developed considering non-equilibrium distribution coefficient. • The physical properties with temperature dependence were considered in the extended model. • The extended model can be used to non-dilute alloys and the extensions are necessary in small particles. • Microstructure of ASP30 steel was investigated using the present model and verified by experiment.

  19. Hydrothermal vents in Lake Tanganyika harbor spore-forming thermophiles with extremely rapid growth

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Prieur, Daniel

    2010-01-01

    and peptone. The optimum temperature for growth was 60 °C, while minimum and maximum temperatures were 40 and 75 °C. The pH response was alkalitolerant with optimum pH at 7.4 and 8.5 depending on the growth medium. The distinct feature of rapid proliferation and endospore formation may allow the novel...

  20. The role of low-volatility organic compounds in initial particle growth in the atmosphere

    CERN Document Server

    Tröstl, Jasmin; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-01-01

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelv...

  1. An integrated micro-chip for rapid detection of magnetic particles

    KAUST Repository

    Gooneratne, Chinthaka P.

    2012-03-09

    This paper proposes an integrated micro-chip for the manipulation and detection of magnetic particles (MPs). A conducting ring structure is used to manipulate MPs toward giant magnetoresistance(GMR) sensing elements for rapid detection. The GMRsensor is fabricated in a horseshoe shape in order to detect the majority of MPs that are trapped around the conducting structure. The GMR sensing elements are connected in a Wheatstone bridge circuit topology for optimum noise suppression. Full fabrication details of the micro-chip, characterization of the GMRsensors, and experimental results with MPs are presented in this paper. Experimental results showed that the micro-chip can detect MPs from low concentration samples after they were guided toward the GMRsensors by applying current to the conducting ring structure.

  2. Immunohistochemical evidence of rapid extracellular matrix remodeling after iron-particle irradiation of mouse mammary gland

    Science.gov (United States)

    Ehrhart, E. J.; Gillette, E. L.; Barcellos-Hoff, M. H.; Chaterjee, A. (Principal Investigator)

    1996-01-01

    High-LET radiation has unique physical and biological properties compared to sparsely ionizing radiation. Recent studies demonstrate that sparsely ionizing radiation rapidly alters the pattern of extracellular matrix expression in several tissues, but little is known about the effect of heavy-ion radiation. This study investigates densely ionizing radiation-induced changes in extracellular matrix localization in the mammary glands of adult female BALB/c mice after whole-body irradiation with 0.8 Gy 600 MeV iron particles. The basement membrane and interstitial extracellular matrix proteins of the mammary gland stroma were mapped with respect to time postirradiation using immunofluorescence. Collagen III was induced in the adipose stroma within 1 day, continued to increase through day 9 and was resolved by day 14. Immunoreactive tenascin was induced in the epithelium by day 1, was evident at the epithelial-stromal interface by day 5-9 and persisted as a condensed layer beneath the basement membrane through day 14. These findings parallel similar changes induced by gamma irradiation but demonstrate different onset and chronicity. In contrast, the integrity of epithelial basement membrane, which was unaffected by sparsely ionizing radiation, was disrupted by iron-particle irradiation. Laminin immunoreactivity was mildly irregular at 1 h postirradiation and showed discontinuities and thickening from days 1 to 9. Continuity was restored by day 14. Thus high-LET radiation, like sparsely ionizing radiation, induces rapid-remodeling of the stromal extracellular matrix but also appears to alter the integrity of the epithelial basement membrane, which is an important regulator of epithelial cell proliferation and differentiation.

  3. Rapid removal of fine particles from mine water using sequential processes of coagulation and flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.; Lee, H.J.; Shim, Y. [Korean Mine Reclamation Corporation MIRECO, Seoul (Republic of Korea)

    2010-07-01

    The processes of coagulation and flocculation using high molecular weight long-chain polymers were applied to treat mine water having fine flocs of which about 93% of the total mass was less than 3.02 {mu} m, representing the size distribution of fine particles. Six different combinations of acryl-type anionic flocculants and polyamine-type cationic coagulants were selected to conduct kinetic tests on turbidity removal in mine water. Optimization studies on the types and concentrations of the coagulant and flocculant showed that the highest rate of turbidity removal was obtained with 10 mg L{sup -1} FL-2949 (coagulant) and 12 mg L{sup -1} A333E (flocculant), which was about 14.4 and 866.7 times higher than that obtained with A333E alone and that obtained through natural precipitation by gravity, respectively. With this optimized condition, the turbidity of mine water was reduced to 0 NTU within 20 min. Zeta potential measurements were conducted to elucidate the removal mechanism of the fine particles, and they revealed that there was a strong linear relationship between the removal rate of each pair of coagulant and flocculant application and the zeta potential differences that were obtained by subtracting the zeta potential of flocculant-treated mine water from the zeta potential of coagulant-treated mine water. Accordingly, through an optimization process, coagulation-flocculation by use of polymers could be advantageous to mine water treatment, because the process rapidly removes fine particles in mine water and only requires a small-scale plant for set-up purposes owing to the short retention time in the process.

  4. Evaluation of a Rapid Immunochromatographic Treponemal Antibody Test Comparing the Treponema Pallidum Particle Agglutination Assay.

    Science.gov (United States)

    Lee, Jong-Han; Lim, Chae Seung; Lee, Min-Geol; Kim, Hyon-Suk

    2015-09-01

    In addition to conventional tests, several methods for detection of treponema-specific antibodies in clinical settings have been recently introduced. We aim to comparatively evaluate a rapid immunochromatographic test (ICT) for Treponema pallidum specific antibody (SD Bioline Syphilis 3.0) and the T. pallidum particle agglutination (TPPA) assay. In all, 132 serum samples from 78 syphilis patients and 54 syphilis-negative controls were analyzed. SD Bioline Syphilis 3.0 test (Standard Diagnostic, Inc., Yongin, Korea) was evaluated and compared to Serodia TPPA assay (Fujirebio, Inc., Tokyo, Japan). All discrepant results between the two assays were repeatedly tested and evaluated by the fluorescent treponemal antibody-absorption (FTA-ABS) assay. Test reproducibility and 95% limit of detection of SD Bioline Syphilis 3.0 were determined across three different lots for seven consecutive days in triplicate. Interference due to autoantibodies and pregnancy was also tested. Percent agreement between SD Bioline Syphilis 3.0 and TPPA assays was 99.2%. Sensitivity and specificity were 100%, respectively. In TPPA assay, test-to-test, day-to-day, and lot-to-lot variations were not identified until 1:320 titer (eightfold dilutions). There was no interference due to the presence of antinuclear antibodies or samples or pregnancy. Percent agreement of SD Syphilis 3.0 and TPPA was very good. Sensitivity and specificity were appropriate for T. pallidum antibody detection. Thus, a rapid ICT could be suitable for syphilis antibody detection. © 2014 Wiley Periodicals, Inc.

  5. Quantifying the Hygroscopic Growth of Individual Submicrometer Particles with Atomic Force Microscopy.

    Science.gov (United States)

    Morris, Holly S; Estillore, Armando D; Laskina, Olga; Grassian, Vicki H; Tivanski, Alexei V

    2016-04-05

    The water uptake behavior of atmospheric aerosol dictates their climate effects. In many studies, aerosol particles are deposited onto solid substrates to measure water uptake; however, the effects of the substrate are not well understood. Furthermore, in some cases, methods used to analyze and quantify water uptake of substrate deposited particles use a two-dimensional (2D) analysis to monitor growth by following changes in the particle diameter with relative humidity (RH). However, this 2D analysis assumes that the droplet grows equally in all directions. If particle growth is not isotropic in height and diameter, this assumption can cause inaccuracies when quantifying hygroscopic growth factors (GFs), where GF for a for a spherical particle is defined as the ratio of the particle diameter at a particular relative humidity divided by the dry particle diameter (typically about 5% RH). However, as shown here, anisotropic growth can occur in some cases. In these cases, a three-dimensional (3D) analysis of the growth is needed. This study introduces a way to quantify the hygroscopic growth of substrate deposited particles composed of model systems relevant to atmospheric aerosols using atomic force microscopy (AFM), which gives information on both the particle height and area and thus a three-dimensional view of each particle. In this study, we compare GFs of submicrometer sized particles composed of single component sodium chloride (NaCl) and malonic acid (MA), as well as binary mixtures of NaCl and MA, and NaCl and nonanoic acid (NA) determined by AFM using area (2D) equivalent diameters, similar to conventional microscopy methods, to GFs determined using volume (3D) equivalent diameter. We also compare these values to GFs determined by a hygroscopic tandem differential mobility analyzer (HTDMA; substrate free, 3D method). It was found that utilizing volume equivalent diameter for quantifying GFs with AFM agreed well with those determined by substrate-free HTDMA

  6. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Science.gov (United States)

    Stoks, Robby; De Block, Marjan

    2011-02-24

    Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  7. Using portable particle sizing instrumentation to rapidly measure the penetration of fine and ultrafine particles in unoccupied residences.

    Science.gov (United States)

    Zhao, H; Stephens, B

    2017-01-01

    Much of human exposure to particulate matter of outdoor origin occurs inside buildings, particularly in residences. The particle penetration factor through leaks in a building's exterior enclosure assembly is a key parameter that governs the infiltration of outdoor particles. However, experimental data for size-resolved particle penetration factors in real buildings, as well as penetration factors for fine particles less than 2.5 μm (PM2.5 ) and ultrafine particles less than 100 nm (UFPs), remain limited, in part because of previous limitations in instrumentation and experimental methods. Here, we report on the development and application of a modified test method that utilizes portable particle sizing instrumentation to measure size-resolved infiltration factors and envelope penetration factors for 0.01-2.5 μm particles, which are then used to estimate penetration factors for integral measures of UFPs and PM2.5 . Eleven replicate measurements were made in an unoccupied apartment unit in Chicago, IL to evaluate the accuracy and repeatability of the test procedure and solution methods. Mean estimates of size-resolved penetration factors ranged from 0.41 ± 0.14 to 0.73 ± 0.05 across the range of measured particle sizes, while mean estimates of penetration factors for integral measures of UFPs and PM2.5 were 0.67 ± 0.05 and 0.73 ± 0.05, respectively. Average relative uncertainties for all particle sizes/classes were less than 20%. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Soot Particle Inception and Growth Processes in Combustion

    Science.gov (United States)

    1992-04-01

    Comparisons along individual particle paths indicate that 38. 104 1 -0 Soot Volume 106 108 10 9 -7 Fluorecence 0a-- C4 1-11 (CH4) 10-10 II I I 0 10 20...properties from their spherical equivalents. Through a combination of transmission electron microscope and laser light scattering measurements, an

  9. Venezuelan equine encephalitis replicon particles can induce rapid protection against foot-and-mouth disease virus.

    Science.gov (United States)

    Diaz-San Segundo, Fayna; Dias, Camila C A; Moraes, Mauro P; Weiss, Marcelo; Perez-Martin, Eva; Owens, Gary; Custer, Max; Kamrud, Kurt; de los Santos, Teresa; Grubman, Marvin J

    2013-05-01

    We have previously shown that delivery of the porcine type I interferon gene (poIFN-α/β) with a replication-defective human adenovirus vector (adenovirus 5 [Ad5]) can sterilely protect swine challenged with foot-and-mouth disease virus (FMDV) 1 day later. However, the need of relatively high doses of Ad5 limits the applicability of such a control strategy in the livestock industry. Venezuelan equine encephalitis virus (VEE) empty replicon particles (VRPs) can induce rapid protection of mice against either homologous or, in some cases, heterologous virus challenge. As an alternative approach to induce rapid protection against FMDV, we have examined the ability of VRPs containing either the gene for green fluorescent protein (VRP-GFP) or poIFN-α (VRP-poIFN-α) to block FMDV replication in vitro and in vivo. Pretreatment of swine or bovine cell lines with either VRP significantly inhibited subsequent infection with FMDV as early as 6 h after treatment and for at least 120 h posttreatment. Furthermore, mice pretreated with either 10(7) or 10(8) infectious units of VRP-GFP and challenged with a lethal dose of FMDV 24 h later were protected from death. Protection was induced as early as 6 h after treatment and lasted for at least 48 h and correlated with induction of an antiviral response and production of IFN-α. By 6 h after treatment several genes were upregulated, and the number of genes and the level of induction increased at 24 h. Finally, we demonstrated that the chemokine IP-10, which is induced by IFN-α and VRP-GFP, is directly involved in protection against FMDV.

  10. Ice Particle Growth Rates Under Upper Troposphere Conditions

    Science.gov (United States)

    Peterson, Harold; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  11. Ice Particle Growth Under Conditions of the Upper Troposphere

    Science.gov (United States)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 microns, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  12. The role of low-volatility organic compounds in initial particle growth in the atmosphere.

    Science.gov (United States)

    Tröstl, Jasmin; Chuang, Wayne K; Gordon, Hamish; Heinritzi, Martin; Yan, Chao; Molteni, Ugo; Ahlm, Lars; Frege, Carla; Bianchi, Federico; Wagner, Robert; Simon, Mario; Lehtipalo, Katrianne; Williamson, Christina; Craven, Jill S; Duplissy, Jonathan; Adamov, Alexey; Almeida, Joao; Bernhammer, Anne-Kathrin; Breitenlechner, Martin; Brilke, Sophia; Dias, Antònio; Ehrhart, Sebastian; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Gysel, Martin; Hansel, Armin; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Keskinen, Helmi; Kim, Jaeseok; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lawler, Michael; Leiminger, Markus; Mathot, Serge; Möhler, Ottmar; Nieminen, Tuomo; Onnela, Antti; Petäjä, Tuukka; Piel, Felix M; Miettinen, Pasi; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Sengupta, Kamalika; Sipilä, Mikko; Smith, James N; Steiner, Gerhard; Tomè, Antònio; Virtanen, Annele; Wagner, Andrea C; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Carslaw, Kenneth S; Curtius, Joachim; Dommen, Josef; Kirkby, Jasper; Kulmala, Markku; Riipinen, Ilona; Worsnop, Douglas R; Donahue, Neil M; Baltensperger, Urs

    2016-05-26

    About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer. Although recent studies predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory), has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10(-4.5) micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10(-4.5) to 10

  13. The rapid analysis of fungal growth in the presence of inhibitory effects

    OpenAIRE

    Williams, Tyson

    2011-01-01

    For fungal contamination of foodstuffs, there are no fast, reliable, automated techniques to examine growth, nor have any predictive models been developed to describe the growth in the same way as for bacteria. Traditional plating methods can take 3 to 7 days to get adequate results depending on the fungal species utilised and well over a month for challenge testing, an unacceptable delay especially for the food industry. In this study two rapid analysis techniques were investi...

  14. Demonstrated rapid growth of a corpus callosum cavernous angioma within a short period of time.

    Science.gov (United States)

    Ozer, E; Yücesoy, K; Kalemci, O

    2005-12-01

    Cavernous angiomas are uncommon central nervous system vascular malformations. They occur in the corpus callosum very rarely. In this study we report a case of corpus callosum cavernous angioma which demonstrated rapid growth within a short period of time. Corpus callosum cavernous angiomas have distinct features regarding growth and should be treated more carefully by giving more importance to surgical removal rather than a conservative approach.

  15. Low-Temperature and Rapid Growth of Large Single-Crystalline Graphene with Ethane.

    Science.gov (United States)

    Sun, Xiao; Lin, Li; Sun, Luzhao; Zhang, Jincan; Rui, Dingran; Li, Jiayu; Wang, Mingzhan; Tan, Congwei; Kang, Ning; Wei, Di; Xu, H Q; Peng, Hailin; Liu, Zhongfan

    2017-11-10

    Future applications of graphene rely highly on the production of large-area high-quality graphene, especially large single-crystalline graphene, due to the reduction of defects caused by grain boundaries. However, current large single-crystalline graphene growing methodologies are suffering from low growth rate and as a result, industrial graphene production is always confronted by high energy consumption, which is primarily caused by high growth temperature and long growth time. Herein, a new growth condition achieved via ethane being the carbon feedstock to achieve low-temperature yet rapid growth of large single-crystalline graphene is reported. Ethane condition gives a growth rate about four times faster than methane, achieving about 420 µm min(-1) for the growth of sub-centimeter graphene single crystals at temperature about 1000 °C. In addition, the temperature threshold to obtain graphene using ethane can be reduced to 750 °C, lower than the general growth temperature threshold (about 1000 °C) with methane on copper foil. Meanwhile ethane always keeps higher graphene growth rate than methane under the same growth temperature. This study demonstrates that ethane is indeed a potential carbon source for efficient growth of large single-crystalline graphene, thus paves the way for graphene in high-end electronical and optoelectronical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Sub 2 nm Particle Characterization in Systems with Aerosol Formation and Growth

    Science.gov (United States)

    Wang, Yang

    Aerosol science and technology enable continual advances in material synthesis and atmospheric pollutant control. Among these advances, one important frontier is characterizing the initial stages of particle formation by real time measurement of particles below 2 nm in size. Sub 2 nm particles play important roles by acting as seeds for particle growth, ultimately determining the final properties of the generated particles. Tailoring nanoparticle properties requires a thorough understanding and precise control of the particle formation processes, which in turn requires characterizing nanoparticle formation from the initial stages. The knowledge on particle formation in early stages can also be applied in quantum dot synthesis and material doping. This dissertation pursued two approaches in investigating incipient particle characterization in systems with aerosol formation and growth: (1) using a high-resolution differential mobility analyzer (DMA) to measure the size distributions of sub 2 nm particles generated from high-temperature aerosol reactors, and (2) analyzing the physical and chemical pathways of aerosol formation during combustion. Part. 1. Particle size distributions reveal important information about particle formation dynamics. DMAs are widely utilized to measure particle size distributions. However, our knowledge of the initial stages of particle formation is incomplete, due to the Brownian broadening effects in conventional DMAs. The first part of this dissertation studied the applicability of high-resolution DMAs in characterizing sub 2 nm particles generated from high-temperature aerosol reactors, including a flame aerosol reactor (FLAR) and a furnace aerosol reactor (FUAR). Comparison against a conventional DMA (Nano DMA, Model 3085, TSI Inc.) demonstrated that the increased sheath flow rates and shortened residence time indeed greatly suppressed the diffusion broadening effect in a high-resolution DMA (half mini type). The incipient particle

  17. Desulfurization characteristics of rapidly hydrated sorbents with various adhesive carrier particles for a semidry CFB-FGD system.

    Science.gov (United States)

    You, Changfu; Li, Yuan

    2013-03-19

    Semidry flue gas desulfurization (FGD) experiments were conducted using rapidly hydrated sorbents with four different adhesive carrier particles: circulation ash from a circulating fluidized bed boiler (CFBB circulation ash), fly ash from the first electrical field of the electrostatic precipitator of a circulating fluidized bed boiler (CFBB ESP ash), fly ash from a chain boiler (chain boiler ash), and river sand smaller than 1 mm. The influences of various adhesive carrier particles and operating conditions on the desulfurization characteristics of the sorbents were investigated, including sprayed water, reaction temperature, and the ratio of calcium to sulfur (Ca/S). The experimental results indicated that the rapidly hydrated sorbents had better desulfurization characteristics by using adhesive carrier particles which possessed better pore, adhesion, and fluidization characteristics. The desulfurization efficiency of the system increased as the reaction temperature decreased, it improved from 35% to 90% as the mass flow rate of the sprayed water increased from 0 to 10 kg/h, and it increased from 65.6% to 82.7% as Ca/S increased from 1.0 to 2.0. Based on these findings, a new semidry circulating fluidized bed (CFB)-FGD system using rapidly hydrated sorbent was developed. Using the rapidly hydrated sorbent, this system uses a cyclone separator instead of an ESP or a bag filter to recycle the sorbent particles, thereby decreasing the system flow resistance, saving investment and operating costs of the solids collection equipment.

  18. Final Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth Rates of Freshly Nucleated Particles"

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James N. [NCAR, Boulder, CO (United States); McMurry, Peter H. [NCAR, Boulder, CO (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate. Our measurements include a self-organized, DOE-ARM funded project at the Southern Great Plains site, the New Particle Formation Study (NPFS), which took place during spring 2013. NPFS data are available to the research community on the ARM data archive, providing a unique suite observations of trace gas and aerosols that are associated with the formation and growth of atmospheric aerosol particles.

  19. Rapid Particle Patterning in Surface Deposited Micro-Droplets of Low Ionic Content via Low-Voltage Electrochemistry and Electrokinetics

    Science.gov (United States)

    Sidelman, Noam; Cohen, Moshik; Kolbe, Anke; Zalevsky, Zeev; Herrman, Andreas; Richter, Shachar

    2015-08-01

    Electrokinetic phenomena are a powerful tool used in various scientific and technological applications for the manipulation of aqueous solutions and the chemical entities within them. However, the use of DC-induced electrokinetics in miniaturized devices is highly limited. This is mainly due to unavoidable electrochemical reactions at the electrodes, which hinder successful manipulation. Here we present experimental evidence that on-chip DC manipulation of particles between closely positioned electrodes inside micro-droplets can be successfully achieved, and at low voltages. We show that such manipulation, which is considered practically impossible, can be used to rapidly concentrate and pattern particles in 2D shapes in inter-electrode locations. We show that this is made possible in low ion content dispersions, which enable low-voltage electrokinetics and an anomalous bubble-free water electrolysis. This phenomenon can serve as a powerful tool in both microflow devices and digital microfluidics for rapid pre-concentration and particle patterning.

  20. Governing Rapid Growth in Asia: State-led Development in Historical Perspective

    NARCIS (Netherlands)

    T-W. Ngo (Tak-Wing)

    2009-01-01

    textabstractRapid growth in Asia has often been explained in terms of effective policies pursued by a “developmental state”. In particular, countries in East Asia are said to be characterized by the presence of a strong state with technocratic capacity and social embeddedness. This inaugural address

  1. Nitric Acid and Benomyl Stimulate Rapid Height Growth of Longleaf Pine

    Science.gov (United States)

    A.G. Kais; R.C. Hare; J.P. Barnett

    1984-01-01

    Rapid height growth of longleaf pine seedlings, important to production of uniform, even-aged stands, can be promoted by controlling brown-spot needle blight and weed competition, and by increasing soil fertility. Root systems of container-grown longleaf pine seedlings were dip-treated in either benomyl/clay mix (10 percent a.i. benomyl) or clay control and planted...

  2. A comparison of test statistics for the recovery of rapid growth-based enumeration tests

    NARCIS (Netherlands)

    van den Heuvel, Edwin R.; IJzerman-Boon, Pieta C.

    This paper considers five test statistics for comparing the recovery of a rapid growth-based enumeration test with respect to the compendial microbiological method using a specific nonserial dilution experiment. The finite sample distributions of these test statistics are unknown, because they are

  3. Social Disruption and Rapid Community Growth: An Explication of the "Boom-Town" Hypotheses.

    Science.gov (United States)

    Thompson, James G.; And Others

    Recent case studies of social effects of rapid community growth associated with energy development in the western states have relied primarily on qualitative data with limited use of agency records, population surveys, and other secondary sources. While providing the first essential step in the orderly development of a scientific approach to…

  4. New Particle Formation and Growth from Methanesulfonic Acid, Amines, Water, and Organics

    Science.gov (United States)

    Arquero, K. D.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Particles in the atmosphere can influence visibility, negatively impact human health, and affect climate. The largest uncertainty in determining global radiative forcing is attributed to atmospheric aerosols. While new particle formation in many locations is correlated with sulfuric acid in air, neither the gas-phase binary nucleation of H2SO4-H2O nor the gas-phase ternary nucleation of H2SO4-NH3-H2O alone can fully explain observations. An additional potential particle source, based on previous studies in this laboratory, is methanesulfonic acid (MSA) with amines and water vapor. However, organics are ubiquitous in the atmosphere, with secondary organic aerosol (SOA) being a major component of particles. Organics could be involved in the initial stages of particle formation by enhancing or inhibiting nucleation from sulfuric acid or MSA, in addition to contributing to their growth to form SOA. Experiments to measure the effects of a series of organics of varying structure on particle formation and growth from MSA, amines, and water were performed in a custom-built small volume aerosol flow tube reactor. Analytical instruments and techniques include a scanning mobility particle sizer to measure particle size distributions, sampling onto a weak cation exchange resin with analysis by ion chromatography to measure amine concentrations, and filter collection and analysis by ultra-high performance liquid chromatography tandem mass spectrometry to measure MSA concentrations. Organics were measured by atmospheric pressure chemical ionization tandem mass spectrometry. The impact of these organics on the initial particle formation as well as growth will be reported. The outcome is an improved understanding of fundamental chemistry of nucleation and growth to ultimately be incorporated into climate models to better predict how particles affect the global climate budget.

  5. Rapidity-Alignment and $mrm{p}_T$ Compensation of Particle Pairs in Hadronic $Z^0$ Decays

    CERN Document Server

    Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Bellunato, T.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Brodzicka, J.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carimalo, C.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jalocha, P.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Kurowska, J.; Laforge, B.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nygren, A.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Ripp-Baudot, Isabelle; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwanda, C.; Schwering, B.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zupan, M.

    2002-01-01

    Observation is made of rapidity-alignment of \\KK and \\pp pairs which results from their asymmetric orientation in rapidity, with respect to the direction from primary quark to antiquark. The \\KK and \\pp data are consistent with predictions from the fragmentation string model. However, the \\pp data strongly disagree with the conventional implementation of the cluster model. The non-perturbative process of `gluon splitting to diquarks' has to be incorporated into the cluster model for it to agree with the data. Local conservation of \\pT between particles nearby in rapidity (i.e., \\pT compensation) is analysed with respect to the thrust direction for \\pipix, \\KKx, and \\pp pairs. In this case, the string model provides fair agreement with the data. The cluster model is incompatible with the data for all three particle pairs. The model with its central premiss of isotropically-decaying clusters predicts a \\pT correlation not seen in the data.

  6. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  7. Grain Growth in Samples of Aluminum Containing Alumina Particles

    DEFF Research Database (Denmark)

    Tweed, C. J.; Hansen, Niels; Ralph, B.

    1983-01-01

    A study of the two-dimensional and three-dimensional grain size distributions before and after grain growth treatments has been made in samples having a range of oxide contents. In order to collect statistically useful amounts of data, an automatic image analyzer was used and the resulting data w...

  8. Experimental Investigation of Nascent Soot Physical Properties and The Influence on Particle Morphology and Growth

    Science.gov (United States)

    Lieb, Sydnie Marie

    Soot released to the atmosphere is a dangerous pollutant for human health and the environment. Understanding the physical properties and surface properties of these particles is important to properly explaining the growth of soot particles in flames as well as their interactions with other particles and gases in the environment. Particles below 15 nm in diameter, nascent soot particles, dominate the early growth stages of soot formation; previously these particles were characterized as hard graphitic spheres. New evidence derived from the current dissertation work, to a large extent, challenges this prior characterization. This dissertation study begins by revisiting the use of atomic force microscope (AFM) as a tool to investigate the structural properties of nascent soot. The impact of tip artifacts, which are known to complicate measurements of features below 10 nm in diameter, are carefully considered so as to provide a concise interpretation of the morphology of nascent soot as seen by AFM. The results of the AFM morphology collaborate with earlier photo- and thermal-fragmentation particle mass spectrometry and Fourier transform infrared spectroscopy that nascent soot is not a graphitized carbon material and that they are not spherical. Furthermore, phase mode imaging is introduced as a method to investigate the physical properties of nascent soot particles in a greater detail and finer resolution. The helium ion microscope (HIM) has been identified as a useful technique for the imaging of nascent soot. Using this imaging method nascent soot particles were imaged with a high resolution that had not been obtained by prior techniques. The increased contrast provides a closer look at the nascent soot particles and further suggested that these particles are not as structurally homogeneous as previously thought. Geometric shape analysis was performed to characterize the particles in terms of sphericity, circularity, and fractal dimension. The geometric analysis

  9. Biogenic particle formation and growth in an isoprene dominated ecosystem in Missouri

    Science.gov (United States)

    Liu, Y.; Ortega, J.; Smith, J. N.; Guenther, A. B.; You, Y.; Karl, T.; Seco, R.; Turnipseed, A.; Kim, S.; Harley, P. C.; Greenberg, J.; Mikkila, J.; Lee, S.

    2012-12-01

    Forests are an important source of atmospheric aerosol particles. While many studies have shown that oxidation products of biogenic VOCs can produce secondary aerosol particles, some studies have also suggested that isoprene, the most dominant VOC from forests, can suppress new particle formation, but the mechanism behind these suppression effects is unknown. To investigate potential isoprene suppression effects related to new particle formation and possible chemical mechanisms responsible for biogenic secondary aerosol formation, we have conducted measurements of aerosol sizes and chemical analysis of VOCs in a Missouri forest during PINOT NOIR (Particle Investigations at a Northern Ozarks Tower: NOx, Oxidant, Isoprene Research) in the summer of 2012. Biogenic VOCs in this ecosystem are dominated by isoprene. Aerosol number concentrations of particles larger than 1 nm and larger than 3 nm were measured with a particle sizing magnifier (PSM) and a condensation particle counter (CPC). Aerosol sizes from 5 to 200 nm were measured with a scanning mobility particle sizing magnifier (SMPS). Key biogenic VOCs, such as isoprene and monoterpenes, were measured with a proton transfer reaction time-of-flight mass spectrometer (PTR-TOFMS), a proton transfer reaction quadrupole mass spectrometer (PTR-QMS) and gas chromatography coupled to a mass spectrometer (GC-MS). From these results, we will discuss how oxidation products of biogenic VOCs produce newly formed sub-3 nm particles and how the growth of these new particles is enhanced or suppressed by possible chemical species.

  10. Kinetic step-growth polymerization: A dissipative particle dynamics simulation study.

    Science.gov (United States)

    Xu, Dan; Ni, Chun-Yan; Zhu, You-Liang; Lu, Zhong-Yuan; Xue, Yao-Hong; Liu, Hong

    2018-01-14

    Kinetic step-growth polymerization is studied by dissipative particle dynamics coupled with our previously developed reaction algorithm on a coarse-grained level. The simulation result proves that this step-growth polymerization obeys the second-order reaction kinetics. We apply this algorithm to study the step-growth polymerization using the subunits with different flexibilities or within confinement. Good agreement of the number fraction distributions with the Flory distribution is obtained, implying that this algorithm is reasonable to describe such a kind of step-growth polymerization. This algorithm can further supply a convenient platform for simulating typical step-growth polymerization in reactive polymer systems.

  11. Rapid growth reduces cold resistance: evidence from latitudinal variation in growth rate, cold resistance and stress proteins.

    Directory of Open Access Journals (Sweden)

    Robby Stoks

    Full Text Available BACKGROUND: Physiological costs of rapid growth may contribute to the observation that organisms typically grow at submaximal rates. Although, it has been hypothesized that faster growing individuals would do worse in dealing with suboptimal temperatures, this type of cost has never been explored empirically. Furthermore, the mechanistic basis of the physiological costs of rapid growth is largely unexplored. METHODOLOGY/PRINCIPAL FINDING: Larvae of the damselfly Ischnura elegans from two univoltine northern and two multivoltine southern populations were reared at three temperatures and after emergence given a cold shock. Cold resistance, measured by chill coma recovery times in the adult stage, was lower in the southern populations. The faster larval growth rates in the southern populations contributed to this latitudinal pattern in cold resistance. In accordance with their assumed role in cold resistance, Hsp70 levels were lower in the southern populations, and faster growing larvae had lower Hsp70 levels. Yet, individual variation in Hsp70 levels did not explain variation in cold resistance. CONCLUSIONS/SIGNIFICANCE: WE PROVIDE EVIDENCE FOR A NOVEL COST OF RAPID GROWTH: reduced cold resistance. Our results indicate that the reduced cold resistance in southern populations of animals that change voltinism along the latitudinal gradient may not entirely be explained by thermal selection per se but also by the costs of time constraint-induced higher growth rates. This also illustrates that stressors imposed in the larval stage may carry over and shape fitness in the adult stage and highlights the importance of physiological costs in the evolution of life-histories at macro-scales.

  12. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    Science.gov (United States)

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  13. Multiple new-particle growth pathways observed at the US DOE Southern Great Plains field site

    Directory of Open Access Journals (Sweden)

    A. L. Hodshire

    2016-07-01

    Full Text Available New-particle formation (NPF is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available, condensation of organic vapors, uptake of organic acids through acid–base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS measurement campaign took place at the DOE Southern Great Plains (SGP facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1 growth by primarily organics, (2 growth by primarily sulfuric acid and ammonia, and (3 growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1 sulfuric-acid condensation (and subsequent salt formation with ammonia or amines, (2 near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs, and (3 organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the

  14. Measurements of crystal growth kinetics at extreme deviations from equilibrium. [Rapid solidification processing

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, M.J.

    1993-05-07

    We have measured solute trapping of Sn in Al over a wide enough range of velocities to make a quantitative test of theory. The Continuous Growth Model of Aziz is the only one-parameter model that fits the data. We have also measured the diffusive speed - the growth rate at which interfacial partitioning is in mid-transition between equilibrium partitioning and complete solute trapping - for several solutes in A1. We have found an inverse correlation between the equilibrium partition coefficient and the diffusive speed. Taken together, these results give us heretofore unprecedented predictive capability in modeling rapid solidification processing. We have also examined theoretically short-range diffusion-limited growth, characteristic of incomplete solute trapping, and interface-limited growth, characteristic of complete solute trapping, in alloy solidification and have shown that the two regimes fall naturally out of a single unified theory of solidification.

  15. Rapid Production of Micro- and Nano-particles Using Supercritical Water

    CERN Document Server

    Fang, Zhen

    2010-01-01

    This book shows how to use supercritical water (SCW) to synthesize nano- and micro- oxides, inorganic salts and metal particles and its recent advancement. Also polymer/biomass particles can be produced by using the method of precipitation of solutes from SCW. The particles can be used as catalysts for biomass conversions, materials in ceramics & electronic devices and composite materials. Particles are easily produced continuously in a flow reactor in short and long reaction times. Besides the synthesis process, the book also present studies of the properties of these materials. The size, siz

  16. Numerical Simulation of a Tumor Growth Dynamics Model Using Particle Swarm Optimization.

    Science.gov (United States)

    Wang, Zhijun; Wang, Qing

    Tumor cell growth models involve high-dimensional parameter spaces that require computationally tractable methods to solve. To address a proposed tumor growth dynamics mathematical model, an instance of the particle swarm optimization method was implemented to speed up the search process in the multi-dimensional parameter space to find optimal parameter values that fit experimental data from mice cancel cells. The fitness function, which measures the difference between calculated results and experimental data, was minimized in the numerical simulation process. The results and search efficiency of the particle swarm optimization method were compared to those from other evolutional methods such as genetic algorithms.

  17. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    Energy Technology Data Exchange (ETDEWEB)

    McMurry, Peter [Univ. of Minnesota, Minneapolis, MN (United States); Smuth, James [University Corporation for Atmospheric Research, Irvine, CA (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  18. Self-Assembled Biosensors on a Solid Interface for Rapid Detection and Growth Monitoring of Bacteria

    CERN Document Server

    Kinnunen, Paivo; Craig, Elizabeth; Brahmasandra, Sundu; McNaughton, Brandon H

    2012-01-01

    Developing rapid methods for pathogen detection and growth monitoring at low cell and analyte concentrations is an important goal, which numerous technologies are working towards solving. Rapid biosensors have already made a dramatic impact on improving patient outcomes and with continued development, these technologies may also help limit the emergence of antimicrobial resistance and reduce the ever expanding risk of foodborne illnesses. One technology that is being developed with these goals in mind is asynchronous magnetic bead rotation (AMBR) biosensors. Self-assembled AMBR biosensors have been demonstrated at water/air and water/oil interfaces, and here, for the first time, we report on self-assembled AMBR biosensors used at a solid interface. The solid interface configuration was used to measure the growth of Escherichia coli with two distinct phenomena at low cell concentrations: firstly, the AMBR rotational period decreased and secondly, the rotational period increased after several division times. Ta...

  19. Chd1 is essential for the high transcriptional output and rapid growth of the mouse epiblast

    OpenAIRE

    Guzman-Ayala, Marcela; Sachs, Michael; Koh, Fong Ming; Onodera, Courtney; Bulut-Karslioglu, Aydan; Lin, Chih-Jen; Wong, Priscilla; Nitta, Rachel; Song, Jun S.; Ramalho-Santos, Miguel

    2015-01-01

    The pluripotent mammalian epiblast undergoes unusually fast cell proliferation. This rapid growth is expected to generate a high transcriptional demand, but the underlying mechanisms remain unknown. We show here that the chromatin remodeler Chd1 is required for transcriptional output and development of the mouse epiblast. Chd1−/− embryos exhibit proliferation defects and increased apoptosis, are smaller than controls by E5.5 and fail to grow, to become patterned or to gastrulate. Removal of p...

  20. Rapid growth and childhood obesity are strongly associated with lysoPC(14:0).

    Science.gov (United States)

    Rzehak, Peter; Hellmuth, Christian; Uhl, Olaf; Kirchberg, Franca F; Peissner, Wolfgang; Harder, Ulrike; Grote, Veit; Weber, Martina; Xhonneux, Annick; Langhendries, Jean-Paul; Ferre, Natalia; Closa-Monasterolo, Ricardo; Verduci, Elvira; Riva, Enrica; Socha, Piotr; Gruszfeld, Dariusz; Koletzko, Berthold

    2014-01-01

    Despite the growing interest in the early-origins-of-later-disease hypothesis, little is known about the metabolic underpinnings linking infant weight gain and childhood obesity. To discover biomarkers reflective of weight change in the first 6 months and overweight/obesity at age 6 years via a targeted metabolomics approach. This analysis comprised 726 infants from a European multicenter randomized trial (Childhood Obesity Programme, CHOP) for whom plasma blood samples at age 6 months and anthropometric data up to the age of 6 years were available. 'Rapid growth' was defined as a positive difference in weight within the first 6 months of life standardized to WHO growth standards. Weight change was regressed on each of 168 metabolites (acylcarnitines, lysophosphatidylcholines, sphingomyelins, and amino acids). Metabolites significant after Bonferroni's correction were tested as predictors of later overweight/obesity. Among the overall 19 significant metabolites, 4 were associated with rapid growth and 15 were associated with a less-than-ideal weight change. After adjusting for feeding group, only the lysophosphatidylcholine LPCaC14:0 remained significantly associated with rapid weight gain (β = 0.18). Only LPCaC14:0 at age 6 months was predictive of overweight/obesity at age 6 years (OR 1.33; 95% CI 1.04-1.69). LPCa14:0 is strongly related to rapid growth in infancy and childhood overweight/obesity. This suggests that LPCaC14:0 levels may represent a metabolically programmed effect of infant weight gain on the later obesity risk. However, these results require confirmation by independent cohorts. © 2014 S. Karger AG, Basel.

  1. An inverse modeling procedure to determine particle growth and nucleation rates from measured aerosol size distributions

    Directory of Open Access Journals (Sweden)

    B. Verheggen

    2006-01-01

    Full Text Available Classical nucleation theory is unable to explain the ubiquity of nucleation events observed in the atmosphere. This shows a need for an empirical determination of the nucleation rate. Here we present a novel inverse modeling procedure to determine particle nucleation and growth rates based on consecutive measurements of the aerosol size distribution. The particle growth rate is determined by regression analysis of the measured change in the aerosol size distribution over time, taking into account the effects of processes such as coagulation, deposition and/or dilution. This allows the growth rate to be determined with a higher time-resolution than can be deduced from inspecting contour plots ('banana-plots''. Knowing the growth rate as a function of time enables the evaluation of the time of nucleation of measured particles of a certain size. The nucleation rate is then obtained by integrating the particle losses from time of measurement to time of nucleation. The regression analysis can also be used to determine or verify the optimum value of other parameters of interest, such as the wall loss or coagulation rate constants. As an example, the method is applied to smog chamber measurements. This program offers a powerful interpretive tool to study empirical aerosol population dynamics in general, and nucleation and growth in particular.

  2. The fate of silica based Stöber particles soaked into growth media (RPMI and M254): A DLS and ζ-potential study.

    Science.gov (United States)

    Branda, Francesco; Silvestri, Brigida; Costantini, Aniello; Luciani, Giuseppina

    2015-11-01

    Understanding the mechanisms involved in the interaction of biological systems with inorganic materials is of great importance and interest in both fundamental and applied disciplines in several different fields such as astrobiology, ecology, biology, biotechnology, engineering, and medicine. In this context, this paper investigates the interaction of biomacromolecules with submicrometric silica gel particles (NP) obtained through the Stöber method. Surprisingly, particles size reduction is observed after their dispersion into two different reconstituted growth media (RPMI and M254). This effect was related to the nature of the Stöber particles and the mechanism of their formation. The experimental results can be explained arguing that a biomacromolecule corona rapidly forms on NP incubated in both RPMI and M254 growth media. The results suggest that hydrolytic attack at incompletely condensed internal surface valence sites as well as interactions between NPs surface and the components of the growth media reverse the aggregation process, giving smaller disaggregated particles surrounded by a biomacromolecule corona. Moreover it was assessed that, at longer incubation time, the particles slightly grow probably due to interlocking of biomacromolecules in the corona. Furthermore, experimental results confirm that formation of this corona is a competitive and dynamic process. The present paper shows that the described effects (as size changes) are strongly dependent on the nature of the growth medium. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Application of CR-39 Microfilm for Rapid Discrimination Between Alpha-Particle Sources

    Directory of Open Access Journals (Sweden)

    Nidal Dwaikat

    2017-06-01

    Full Text Available This work presents a new technique for discriminating between alpha particles of different energy levels. In a first study, two groups of alpha particles emitted from radium-226 and americium-241 sources were successfully separated using a CR-39 microfilm of appropriate thickness. This thickness was adjusted by chemical etching before and after irradiation so that lower-energy particles were stopped within the detector, while higher-energy particles were revealed on the back side of the detector. The number of tracks on the front side of the microfilm represented all alpha particles incident on that side from the two sources. However, the number of tracks on the back side of the microfilm represented only the long-range alpha particles of higher energy that arrived at that side. Therefore, by subtracting the number of tracks on the back side from the number of tracks on the front side, one could easily determine the number of tracks for the short-range alpha particles of lower energy that remained embedded in the microfilm. Discrimination of the two energy levels is thus achieved in a simple, fast, and reliable process.

  4. Application of CR-39 microfilm for rapid discrimination between alpha-particle sources

    Energy Technology Data Exchange (ETDEWEB)

    Dwaikat, Nidal; Al-karmi, Anan M. [Dept. of Physics, King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia)

    2017-06-15

    This work presents a new technique for discriminating between alpha particles of different energy levels. In a first study, two groups of alpha particles emitted from radium-226 and americium-241 sources were successfully separated using a CR-39 microfilm of appropriate thickness. This thickness was adjusted by chemical etching before and after irradiation so that lower-energy particles were stopped within the detector, while higher-energy particles were revealed on the back side of the detector. The number of tracks on the front side of the microfilm represented all alpha particles incident on that side from the two sources. However, the number of tracks on the back side of the microfilm represented only the long-range alpha particles of higher energy that arrived at that side. Therefore, by subtracting the number of tracks on the back side from the number of tracks on the front side, one could easily determine the number of tracks for the short-range alpha particles of lower energy that remained embedded in the microfilm. Discrimination of the two energy levels is thus achieved in a simple, fast, and reliable process.

  5. Measurement, growth types and shrinkage of newly formed aerosol particles at an urban research platform

    Science.gov (United States)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Kovács, Boldizsár; Kristóf, Gergely

    2016-06-01

    Budapest platform for Aerosol Research and Training (BpART) was created for advancing long-term on-line atmospheric measurements and intensive aerosol sample collection campaigns in Budapest. A joint study including atmospheric chemistry or physics, meteorology, and fluid dynamics on several-year-long data sets obtained at the platform confirmed that the location represents a well-mixed, average atmospheric environment for the city centre. The air streamlines indicated that the host and neighbouring buildings together with the natural orography play an important role in the near-field dispersion processes. Details and features of the airflow structure were derived, and they can be readily utilised for further interpretations. An experimental method to determine particle diffusion losses in the differential mobility particle sizer (DMPS) system of the BpART facility was proposed. It is based on CPC-CPC (condensation particle counter) and DMPS-CPC comparisons. Growth types of nucleated particles observed in 4 years of measurements were presented and discussed specifically for cities. Arch-shaped size distribution surface plots consisting of a growth phase followed by a shrinkage phase were characterised separately since they supply information on nucleated particles. They were observed in 4.5 % of quantifiable nucleation events. The shrinkage phase took 1 h 34 min in general, and the mean shrinkage rate with standard deviation was -3.8 ± 1.0 nm h-1. The shrinkage of particles was mostly linked to changes in local atmospheric conditions, especially in global radiation and the gas-phase H2SO4 concentration through its proxy, or to atmospheric mixing in few cases. Some indirect results indicate that variations in the formation and growth rates of nucleated particles during their atmospheric transport could be a driving force of shrinkage for particles of very small sizes and on specific occasions.

  6. Growth of Ni2Si by rapid thermal annealing: Kinetics and moving species

    Science.gov (United States)

    Ma, E.; Lim, B. S.; Nicolet, M.-A.; Natan, M.

    1987-10-01

    The growth kinetics is characterized and the moving species is identified for the formation of Ni2Si by Rapid Thermal Annealing (RTA) of sequentially deposited Si and Ni films on a Si substrate. The interfacial Ni2Si layer grows as the square root of time, indicating that the suicide growth process is diffusion-limited. The activation energy is 1.25±0.2 eV in the RTA temperature range of 350 450° C. The results extend those of conventional steady-state furnace annealing quite fittingly, and a common activation energy of 1.3±0.2 eV is deduced from 225° to 450° C. The marker experiment shows that Ni is the dominant moving species during Ni2Si formation by RTA, as is the case for furnace annealing. It is concluded that the two annealing techniques induce the same growth mechanisms in Ni2Si formation.

  7. Rapid thermal chemical vapor deposition growth of nanometer-thin SiC on silicon

    Energy Technology Data Exchange (ETDEWEB)

    Steckl, A.J.; Li, J.P. (Univ. of Cincinnati, OH (United States))

    1992-08-28

    Rapid thermal chemical vapor deposition growth of [beta]-SiC ultrathin films on Si (100) was achieved using the carbonization reaction of the silicon substrate with C[sub 3]H[sub 8] gas. Growth rates of 0.5-2 nm s[sup -1] have been achieved at 1100-1300degC using C[sub 3]H[sub 8] flow rates of 7-9 standard cm[sup 3] min[sup -1]. X-ray and electron diffraction indicate single-crystal growth. Therefore nanometer-scale SiC films can be grown by controlling the reaction time to a few seconds. The activation energy at atmospheric pressure is 3.12 eV. The growth rate was found to decrease significantly at higher C[sub 3]H[sub 8] flow rates, leading to films of constant thickness beyond a certain critical reaction time. Using this regime of self-limiting growth, SiC films of 3-5 nm have been grown with relatively little sensitivity to the growth time. (orig.).

  8. Variations in Aerosol Chemical Composition during New Particle Formation and Growth Events Downwind of Seoul, Korea

    Science.gov (United States)

    Park, J.; Choi, Y.; Ghim, Y. S.

    2016-12-01

    New particle formation and growth has been characterized through various field studies using scanning mobility particle sizer (SMPS). However, there is insufficient knowledge of the variation of aerosol chemical compositions during those events. We investigated the variation of aerosol chemical composition during new particle formation and growth events downwind of Seoul. New particle formation and growth events were identified based on the evolution of the number size distribution measured by SMPS. The concentrations of inorganic ions and black carbon were measured using a particle-into-liquid sampler (PILS) coupled with an ion chromatograph (IC) and multi-angle absorption photometer (MAAP), respectively. We also measured concentrations of gaseous precursors (SO2, NO2) along with meteorological parameters using an automatic weather station. The measurements were conducted on the rooftop of a five-story building on a hill (37.34°N, 127.27°E, 167 m above sea level) at the Global Campus of Hankuk University of Foreign Studies, located about 35 km southeast of downtown Seoul. The measurement periods were from February 12 to April 1, 2015 and from April 13 to June 12, 2016. We investigated the difference in chemical compositions between event and non-event days and its association with the variations in precursor concentrations and meteorological parameters.

  9. Filtration device for rapid separation of biological particles from complex matrices

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sangil; Naraghi-Arani, Pejman; Liou, Megan

    2018-01-09

    Methods and systems for filtering of biological particles are disclosed. Filtering membranes separate adjacent chambers. Through osmotic or electrokinetic processes, flow of particles is carried out through the filtering membranes. Cells, viruses and cell waste can be filtered depending on the size of the pores of the membrane. A polymer brush can be applied to a surface of the membrane to enhance filtering and prevent fouling.

  10. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Magnetic Fields

    Science.gov (United States)

    Jauss, T.; Croell, A.; SorgenFrei, T.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    Solar cells made from directionally solidified silicon cover 57% of the photovoltaic industry's market [1]. One major issue during directional solidification of silicon is the precipitation of foreign phase particles. These particles, mainly SiC and Si3N4, are precipitated from the dissolved crucible coating, which is made of silicon nitride, and the dissolution of carbon monoxide from the furnace atmosphere. Due to their hardness and size of several hundred micrometers, those particles can lead to severe problems during the wire sawing process for wafering the ingots. Additionally, SiC particles can act as a shunt, short circuiting the solar cell. Even if the particles are too small to disturb the wafering process, they can lead to a grit structure of silicon micro grains and serve as sources for dislocations. All of this lowers the yield of solar cells and reduces the performance of cells and modules. We studied the behaviour of SiC particle depots during float-zone growth under an oxide skin, and strong static magnetic fields. For high field strengths of 3T and above and an oxide layer on the sample surface, convection is sufficiently suppressed to create a diffusive like regime, with strongly dampened convection [2, 3]. To investigate the difference between atomically rough phase boundaries and facetted growth, samples with [100] and [111] orientation were processed.

  11. A comparison of additional treatment processes to limit particle accumulation and microbial growth during drinking water distribution.

    Science.gov (United States)

    Liu, G; Lut, M C; Verberk, J Q J C; Van Dijk, J C

    2013-05-15

    Water quality changes, particle accumulation and microbial growth occurring in pilot-scale water distribution systems fed with normally treated and additional treated groundwater were monitored over a period of almost one year. The treatment processes were ranked in the following order: nanofiltration (NF) > (better than) ultrafiltration (UF) > ion exchange (IEX) for limiting particle accumulation. A different order was found for limiting overall microbial growth: NF > IEX > UF. There were strong correlations between particle load and particle accumulation, and between nutrient load and microbial growth. It was concluded that particle accumulation can be controlled by reducing the particle load in water treatment plants; and the microbial growth can be better controlled by limiting organic nutrients rather than removing biomass in water treatment plants. The major focus of this study was on microbial growth. The results demonstrated that growth occurred in all types of treated water, including the phases of bulk water, biofilm and loose deposits. Considering the growth in different phases, similar growth in bulk water was observed for all treatments; NF strongly reduced growth both in loose deposits and in biofilm; UF promoted growth in biofilm, while strongly limiting growth in loose deposits. IEX had good efficiency in between UF and NF, limiting both growths in loose deposits and in biofilm. Significant growth was found in loose deposits, suggesting that loose deposit biomass should be taken into account for growth evaluation and/or prediction. Strong correlations were found between microbial growth and pressure drop in a membrane fouling simulator which proved that a membrane fouling simulator can be a fast growth predictor (within a week). Different results obtained by adenosine triphosphate and flow cytometry cell counts revealed that ATP can accurately describe both suspended and particle-associated biomass, and flow cytometry files of TCC measurements needs

  12. GLOBAL MODELING OF NEBULAE WITH PARTICLE GROWTH, DRIFT, AND EVAPORATION FRONTS. I. METHODOLOGY AND TYPICAL RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Paul R. [Carl Sagan Center, SETI Institute, 189 N. Bernardo Avenue # 100, Mountain View, CA 94043 (United States); Cuzzi, Jeffrey N. [Ames Research Center, NASA, Mail Stop 245-3, Moffett Field, CA 94035 (United States); Morgan, Demitri A., E-mail: Paul.R.Estrada@nasa.gov [USRA, NASA Ames Research Center, Mail Stop 245-3, Moffett Field, CA 94035 (United States)

    2016-02-20

    We model particle growth in a turbulent, viscously evolving protoplanetary nebula, incorporating sticking, bouncing, fragmentation, and mass transfer at high speeds. We treat small particles using a moments method and large particles using a traditional histogram binning, including a probability distribution function of collisional velocities. The fragmentation strength of the particles depends on their composition (icy aggregates are stronger than silicate aggregates). The particle opacity, which controls the nebula thermal structure, evolves as particles grow and mass redistributes. While growing, particles drift radially due to nebula headwind drag. Particles of different compositions evaporate at “evaporation fronts” (EFs) where the midplane temperature exceeds their respective evaporation temperatures. We track the vapor and solid phases of each component, accounting for advection and radial and vertical diffusion. We present characteristic results in evolutions lasting 2 × 10{sup 5} years. In general, (1) mass is transferred from the outer to the inner nebula in significant amounts, creating radial concentrations of solids at EFs; (2) particle sizes are limited by a combination of fragmentation, bouncing, and drift; (3) “lucky” large particles never represent a significant amount of mass; and (4) restricted radial zones just outside each EF become compositionally enriched in the associated volatiles. We point out implications for millimeter to submillimeter SEDs and the inference of nebula mass, radial banding, the role of opacity on new mechanisms for generating turbulence, the enrichment of meteorites in heavy oxygen isotopes, variable and nonsolar redox conditions, the primary accretion of silicate and icy planetesimals, and the makeup of Jupiter’s core.

  13. Toward coordinated colloids: site-selective growth of titania on patchy silica particles.

    Science.gov (United States)

    Bae, Changdeuck; Kim, Hyunchul; Montero Moreno, Josep M; Yi, Gi-Ra; Shin, Hyunjung

    2015-03-23

    Rational synthesis of coordinated spherical colloids is reported by site-selective growth of secondary hemispherical patches on primary spherical particles with quasi-defined coordination numbers and positions. We clarify the importance of mass transport phenomena on the site-specific secondary nucleation/growth in nanoparticulate colloidal systems. By comparing ultrasonic and conventional agitation during patch growth, we found that enhanced mass transfer is the key to controlled, homogeneous transport of the molecular precursors in a solvent onto the nanoparticles. With chemically defined nucleation sites, the surfaces of spherical silica particles were modified for use as a new kind of colloid with patches at desired coordination positions. Our observations represent a significant breakthrough in colloidal chemistry and self-assembly.

  14. Model studies of volatile diesel exhaust particle formation: organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-02-01

    High concentration of volatile nucleation mode particles (NUP) formed in the atmosphere during exhaust cools and dilutes have hazardous health effects and impair visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulphur content (FSC), under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested; based on the measured gaseous sulphuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrierless heteromolecular homogeneous nucleation between GSA and semi-volatile organic vapour (for example adipic acid) combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur by the same organic vapour at concentrations of (1-2) ×1012cm-3. The pre-existing core and soot mode concentrations had opposite trend on the NUP formation, and maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, NUP formation was ceased if the GSA concentration was less than 1010cm-3 which suggests, based on the measurements, the usage of biofuel to prevent volatile particles in diesel exhaust.

  15. New insights from coral growth band studies in an era of rapid environmental change

    Science.gov (United States)

    Lough, Janice M.; Cooper, Timothy F.

    2011-10-01

    The rapid formation of calcium carbonate coral skeletons (calcification) fuelled by the coral-algal symbiosis is the backbone of tropical coral reef ecosystems. However, the efficacy of calcification is measurably influenced by the sea's physico-chemical environment, which is changing rapidly. Warming oceans have already led to increased frequency and severity of coral bleaching, and ocean acidification has a demonstrable potential to cause reduced rates of calcification. There is now general agreement that ocean warming and acidification are attributable to human activities increasing greenhouse gas concentrations in the atmosphere, and the large part of the extra carbon dioxide (the main greenhouse gas) that is absorbed by oceans. Certain massive corals provide historical perspectives on calcification through the presence of dateable annual density banding patterns. Each band is a page in an environmental archive that reveals past responses of growth (linear extension, skeletal density and calcification rate) and provides a basis for prediction of future of coral growth. A second major line of research focuses on the measurement of various geochemical tracers incorporated into the growth bands, allowing the reconstruction of past marine climate conditions (i.e. palaeoclimatology). Here, we focus on the structural properties of the annual density bands themselves (viz. density; linear extension), exploring their utility in providing both perspectives on the past and pointers to the future of calcification on coral reefs. We conclude that these types of coral growth records, though relatively neglected in recent years compared to the geochemical studies, remain immensely valuable aids to unravelling the consequences of anthropogenic climate change on coral reefs. Moreover, an understanding of coral growth processes is an essential pre-requisite for proper interpretation of studies of geochemical tracers in corals.

  16. Large plasma-membrane depolarization precedes rapid blue-light-induced growth inhibition in cucumber

    Science.gov (United States)

    Spalding, E. P.; Cosgrove, D. J.

    1989-01-01

    Blue-light (BL)-induced suppression of elongation of etiolated Cucumis sativus L. hypocotyls began after a 30-s lag time, which was halved by increasing the fluence rate from 10 to 100 micromoles m-2 s-1. Prior to the growth suppression, the plasma-membrane of the irradiated cells depolarized by as much as 100 mV, then returned within 2-3 min to near its initial value. The potential difference measured with surface electrodes changed with an identical time course but opposite polarity. The lag time for the change in surface potential showed an inverse dependence on fluence rate, similar to the lag for the growth inhibition. Green light and red light caused neither the electrical response nor the rapid inhibition of growth. The depolarization by BL did not propagate to nonirradiated regions and exhibited a refractory period of about 10 min following a BL pulse. Fluence-response relationships for the electrical and growth responses provide correlational evidence that the plasma-membrane depolarization reflects an event in the transduction chain of this light-growth response.

  17. Transient growth from the continuous spectrum of a high-speed rapidly-swirling jet

    Science.gov (United States)

    Samanta, Arnab; Muthiah, Gopalsamy

    2017-11-01

    We investigate the possibility for short-time transient growths involving the helical modes of a rapidly-swirling, high-speed jet that has undergone a sub-critical transition via an axisymmetric vortex breakdown. The base flow is extracted from the time-averaged measurements, consisting of the recirculation bubble and its wake. A pseudospectrum analysis complements a local normal-mode based stability analysis in identifying the continuous spectrum, which is further split into a potential and freestream spectrum, where the non-orthogonality between the former type and the existing discrete stable modes is shown to be the main origin of strong transient growths in such flows. As the swirling flow develops post the bubble collapse, this potential mode spectrum widens, increasing the importance of transient growth inside the wake region. The local transient gains calculated at the wake confirms this, where strong growths far outstrips the exponential modal growth at shorter times, especially at the higher helical orders and smaller streamwise wavenumbers. These short-time transients are likely to be a necessary first-step toward the formation of a wavemaker region at the wake of such flows, leading to their eventual spiral breakdown.

  18. Is rapid growth in Internet usage environmentally sustainable for Australia? An empirical investigation.

    Science.gov (United States)

    Salahuddin, Mohammad; Alam, Khorshed; Ozturk, Ilhan

    2016-03-01

    This study estimates the short- and long-run effects of Internet usage and economic growth on carbon dioxide (CO2) emissions using annual time series macro data for Australia for the period 1985-2012. Autoregressive distributive lag (ARDL) bounds and Gregory-Hansen structural break cointegration tests are applied. ARDL estimates indicate no significant long-run relationship between Internet usage and CO2 emissions, which implies that the rapid growth in Internet usage is still not an environmental threat for Australia. The study further indicates that higher level of economic growth is associated with lower level of CO2 emissions; however, Internet usage and economic growth have no significant short-run relationship with CO2 emissions. Financial development has both short-run and long-run significant positive association with CO2 emissions. The findings offer support in favor of energy efficiency gains and a reduction in energy intensity in Australia. However, impulse response and variance decomposition analysis suggest that Internet usage, economic growth and financial development will continue to impact CO2 emissions in the future, and as such, this study recommends that in addition to the existing measures to combat CO2 emissions, Australia needs to exploit the potential of the Internet not only to reduce its own carbon footprint but also to utilize information and communication technology (ICT)-enabled emissions abatement potential to reduce emissions in various other sectors across the economy, such as, power, renewable energy especially in solar and wind energy, agriculture, transport and service.

  19. Growth of atmospheric nano-particles by heterogeneous nucleation of organic vapor

    Science.gov (United States)

    Wang, J.; McGraw, R. L.; Kuang, C.

    2013-07-01

    Atmospheric aerosols play critical roles in air quality, public health, and visibility. In addition, they strongly influence climate by scattering solar radiation and by changing the reflectivity and lifetime of clouds. One major but still poorly understood source of atmospheric aerosols is new particle formation, which consists of the formation of thermodynamically stable clusters from trace gas molecules (homogeneous nucleation) followed by growth of these clusters to a detectable size (~3 nm). Because freshly nucleated clusters are most susceptible to loss due to high rate of coagulation with pre-existing aerosol population, the initial growth rate strongly influences the rate of new particle formation and ambient aerosol population. Whereas many field observations and modeling studies indicate that organics enhance the initial growth of the clusters and therefore new particle formation, thermodynamic considerations would suggest that the strong increase of equilibrium vapor concentration due to cluster surface curvature (Kelvin effect) may prevent ambient organics from condensing on these small clusters. Here, the contribution of organics to the initial cluster growth is described as heterogeneous nucleation of organic molecules onto these clusters. We find that the strong gradient in cluster population with respect to its size leads to positive cluster number flux. This positive flux drives the growth of clusters substantially smaller than the Kelvin diameter, conventionally considered the minimum particle size that can be grown through condensation. The conventional approach neglects the contribution from the cluster concentration gradient, and underestimates the cluster survival probabilities by a factor of up to 60 if early growth of clusters is due to both condensation of sulfuric acid and heterogeneous nucleation of organic vapors.

  20. Rapid measurement of charged particle beam profiles using a current flux grating

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Samit; Chowdhury, Abhishek; Bhattacharjee, Sudeep [Department of Physics, Indian Institute of Technology, Kanpur 208016, UP (India)

    2015-02-15

    The principle and physics issues of charged particle beam diagnostics using a current flux grating are presented. Unidirectional array of conducting channels with interstitial insulating layers of spacing d is placed in the beam path to capture flux of charge and electronically reproduce an exact beam current profile with density variation. The role of secondary electrons due to the impinging particle beam (both electron and ion) on the probe is addressed and a correction factor is introduced. A 2-dimensional profile of the electron beam is obtained by rotating the probe about the beam axis. Finally, a comparison of measured beam profile with a Gaussian is presented.

  1. RAPID OPTIMAL SPH PARTICLE DISTRIBUTIONS IN SPHERICAL GEOMETRIES FOR CREATING ASTROPHYSICAL INITIAL CONDITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Raskin, Cody; Owen, J. Michael [Lawrence Livermore National Laboratory, P.O. Box 808, L-038, Livermore, CA 94550 (United States)

    2016-04-01

    Creating spherical initial conditions in smoothed particle hydrodynamics simulations that are spherically conformal is a difficult task. Here, we describe two algorithmic methods for evenly distributing points on surfaces that when paired can be used to build three-dimensional spherical objects with optimal equipartition of volume between particles, commensurate with an arbitrary radial density function. We demonstrate the efficacy of our method against stretched lattice arrangements on the metrics of hydrodynamic stability, spherical conformity, and the harmonic power distribution of gravitational settling oscillations. We further demonstrate how our method is highly optimized for simulating multi-material spheres, such as planets with core–mantle boundaries.

  2. Prenatal exposure to traffic pollution: associations with reduced fetal growth and rapid infant weight gain.

    Science.gov (United States)

    Fleisch, Abby F; Rifas-Shiman, Sheryl L; Koutrakis, Petros; Schwartz, Joel D; Kloog, Itai; Melly, Steven; Coull, Brent A; Zanobetti, Antonella; Gillman, Matthew W; Gold, Diane R; Oken, Emily

    2015-01-01

    Prenatal air pollution exposure inhibits fetal growth, but implications for postnatal growth are unknown. We assessed weights and lengths of US infants in the Project Viva cohort at birth and 6 months. We estimated 3rd-trimester residential air pollution exposures using spatiotemporal models. We estimated neighborhood traffic density and roadway proximity at birth address using geographic information systems. We performed linear and logistic regression adjusted for sociodemographic variables, fetal growth, and gestational age at birth. Mean birth weight-for-gestational age z-score (fetal growth) was 0.17 (standard deviation [SD] = 0.97; n = 2,114), 0- to 6-month weight-for-length gain was 0.23 z-units (SD = 1.11; n = 689), and 17% had weight-for-length ≥95th percentile at 6 months of age. Infants exposed to the highest (vs. lowest) quartile of neighborhood traffic density had lower fetal growth (-0.13 units [95% confidence interval (CI) = -0.25 to -0.01]), more rapid 0- to 6-month weight-for-length gain (0.25 units [95% CI = 0.01 to 0.49]), and higher odds of weight-for-length ≥95th percentile at 6 months (1.84 [95% CI = 1.11 to 3.05]). Neighborhood traffic density was additionally associated with an infant being in both the lowest quartile of fetal growth and the highest quartile of 0- to 6-month weight-for-length gain (Q4 vs. Q1, odds ratio = 3.01 [95% CI = 1.08 to 8.44]). Roadway proximity and 3rd-trimester black carbon exposure were similarly associated with growth outcomes. For 3rd-trimester particulate matter (PM2.5), effect estimates were in the same direction, but smaller and imprecise. Infants exposed to higher traffic-related pollution in early life may exhibit more rapid postnatal weight gain in addition to reduced fetal growth.

  3. submitter The effect of acid–base clustering and ions on the growth of atmospheric nano-particles

    CERN Document Server

    Lehtipalo, Katrianne; Kontkanen, Jenni; Schobesberger, Siegfried; Jokinen, Tuija; Sarnela, Nina; Kürten, Andreas; Ehrhart, Sebastian; Franchin, Alessandro; Nieminen, Tuomo; Riccobono, Francesco; Sipilä, Mikko; Yli-Juuti, Taina; Duplissy, Jonathan; Adamov, Alexey; Ahlm, Lars; Almeida, João; Amorim, Antonio; Bianchi, Federico; Breitenlechner, Martin; Dommen, Josef; Downard, Andrew J; Dunne, Eimear M; Flagan, Richard C; Guida, Roberto; Hakala, Jani; Hansel, Armin; Jud, Werner; Kangasluoma, Juha; Kerminen, Veli-Matti; Keskinen, Helmi; Kim, Jaeseok; Kirkby, Jasper; Kupc, Agnieszka; Kupiainen-Määttä, Oona; Laaksonen, Ari; Lawler, Michael J; Leiminger, Markus; Mathot, Serge; Olenius, Tinja; Ortega, Ismael K; Onnela, Antti; Petäjä, Tuukka; Praplan, Arnaud; Rissanen, Matti P; Ruuskanen, Taina; Santos, Filipe D; Schallhart, Simon; Schnitzhofer, Ralf; Simon, Mario; Smith, James N; Tröstl, Jasmin; Tsagkogeorgas, Georgios; Tomé, António; Vaattovaara, Petri; Vehkamäki, Hanna; Vrtala, Aron E; Wagner, Paul E; Williamson, Christina; Wimmer, Daniela; Winkler, Paul M; Virtanen, Annele; Donahue, Neil M; Carslaw, Kenneth S; Baltensperger, Urs; Riipinen, Ilona; Curtius, Joachim; Worsnop, Douglas R; Kulmala, Markku

    2016-01-01

    The growth of freshly formed aerosol particles can be the bottleneck in their survival to cloud condensation nuclei. It is therefore crucial to understand how particles grow in the atmosphere. Insufficient experimental data has impeded a profound understanding of nano-particle growth under atmospheric conditions. Here we study nano-particle growth in the CLOUD (Cosmics Leaving OUtdoors Droplets) chamber, starting from the formation of molecular clusters. We present measured growth rates at sub-3 nm sizes with different atmospherically relevant concentrations of sulphuric acid, water, ammonia and dimethylamine. We find that atmospheric ions and small acid-base clusters, which are not generally accounted for in the measurement of sulphuric acid vapour, can participate in the growth process, leading to enhanced growth rates. The availability of compounds capable of stabilizing sulphuric acid clusters governs the magnitude of these effects and thus the exact growth mechanism. We bring these observations into a ...

  4. Rapid Growth of Dermatofibrosarcoma Protuberans Associated with Bilateral Adrenalectomy for Cushing’s Syndrome

    Directory of Open Access Journals (Sweden)

    Sadanori Furudate

    2011-05-01

    Full Text Available We describe a 50-year-old Japanese patient with dermatofibrosarcoma protuberans (DFSP rapidly growing after bilateral adrenalectomy for Cushing’s syndrome that reduced the serum level of cortisol from 17.1 to 0.8 mg/dl. It is known that glucocorticoids decrease the transcriptions of the COL1A1 gene and the PDGFB gene, which is under the direct control of the COL1A1 gene in most DFSP. Therefore, the hypersecretion of glucocorticoids in Cushing’s syndrome might suppress the development of DFSP. To the best of our knowledge, this is the first case of rapid growth of DFSP that may be associated with bilateral adrenalectomy for Cushing’s syndrome.

  5. RapidNano: towards 20nm Particle Detection on EUV Mask Blanks

    NARCIS (Netherlands)

    Donck, J.C.J. van der; Bussink, P.G.W.; Fritz, E.C.; Walle, P. van der

    2016-01-01

    Cleanliness is a prerequisite for obtaining economically feasible yield levels in the semiconductor industry. For the next generation of lithographic equipment, EUV lithography, the size of yield-loss inducing particles for the masks will be smaller than 20 nm. Consequently, equipment for handling

  6. Rapid search and quantitative analysis of gunshot residue particles in the SEM.

    Science.gov (United States)

    Lebiedzik, J; Johnson, D L

    2000-01-01

    Automated scanning electron microscopy coupled with image analysis and X-ray micro analysis was used to characterize a variety of gunshot residue (GSR) samples. More than 500 rounds of commercially available ammunition and six different types of hand gulls were used in the study of 17 GSR and 19 reference specimens. The individual particle X-ray composition was determined for 12 different elements. Elemental composition of GSR particles was highly variable but consistent with compounds mixed into or associated with a barium oxide matrix. When present in a specimen, GSR could be adequately characterized with automated procedures in less than an hour by restricting analyses to features larger than 2 microm. In "clean" samples, a higher resolution particle search was required to avoid reporting false negatives. Careful control of the back scattered electron signal strength threshold, by reference to a standard, was needed to ensure both time-efficient and accurate analyses. Samples collected from non-shooting subjects. active in a physical environment which contained firearms discharge residue were seen to be easily contaminated by sub-micron GSR particles.

  7. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  8. Applying a particle filtering technique for canola crop growth stage estimation in Canada

    Science.gov (United States)

    Sinha, Abhijit; Tan, Weikai; Li, Yifeng; McNairn, Heather; Jiao, Xianfeng; Hosseini, Mehdi

    2017-10-01

    Accurate crop growth stage estimation is important in precision agriculture as it facilitates improved crop management, pest and disease mitigation and resource planning. Earth observation imagery, specifically Synthetic Aperture Radar (SAR) data, can provide field level growth estimates while covering regional scales. In this paper, RADARSAT-2 quad polarization and TerraSAR-X dual polarization SAR data and ground truth growth stage data are used to model the influence of canola growth stages on SAR imagery extracted parameters. The details of the growth stage modeling work are provided, including a) the development of a new crop growth stage indicator that is continuous and suitable as the state variable in the dynamic estimation procedure; b) a selection procedure for SAR polarimetric parameters that is sensitive to both linear and nonlinear dependency between variables; and c) procedures for compensation of SAR polarimetric parameters for different beam modes. The data was collected over three crop growth seasons in Manitoba, Canada, and the growth model provides the foundation of a novel dynamic filtering framework for real-time estimation of canola growth stages using the multi-sensor and multi-mode SAR data. A description of the dynamic filtering framework that uses particle filter as the estimator is also provided in this paper.

  9. Quantitative effects of rapid heating on soot-particle sizing through analysis of two-pulse LII

    KAUST Repository

    Cenker, Emre

    2017-02-27

    During the rapid laser pulse heating and consecutive cooling in laser-induced incandescence (LII), soot particles may undergo thermal annealing and sublimation processes which lead to a permanent change in its optical properties and its primary particle size, respectively. Overall, effects of these two processes on soot and LII model-based particle sizing are investigated by measuring the two-color time-resolved (2C-TiRe) LII signal decay from in-flame soot after two consecutive laser pulses at 1064-nm wavelength. Experiments are carried out on a non-premixed laminar ethylene/air flame from a Santoro burner with both low and moderate laser fluences suitable for particle sizing. The probe volume is set to a radial position close to the flame axis where the soot particles are known to be immature or less graphitic. With the first pulse, soot is pre-heated, and the LII signal after the consecutive second pulse is used for analysis. The two-color incandescence emission technique is used for the pyrometric determination of the LII-heated peak soot temperature at the second pulse. A new LII simulation tool is developed which accounts for particle heating via absorption and annealing, and cooling via sublimation, conduction, and radiation with various existing sub-models from the literature. The same approach of using two laser pulses is implemented in the simulations. Measurements indicate that thermal annealing and associated absorption enhancement becomes important at laser fluences above 0.17 J/cm2 for the immature in-flame soot. After a heating pulse at 0.33 J/cm2, the increase of the soot absorption function is calculated as 35% using the temperature measured at the second pulse and an absorption model based on the Rayleigh approximation. Present annealing model, on the other hand, predicts graphitization of soot even in the absence of laser heating at typical flame temperatures. Recorded experimental LII signal decays and LII-heated peak soot temperature

  10. The growth mechanism of copper films coated on cenosphere particles using magnetron sputtering method

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xiaozheng; Shen Zhigang [Beijing Key Lab. For Powder Technology R and D, Beijing University of Aeronautics and Astronautics, Beijing, 100083 (China)], E-mail: shenzhg@buaa.edu.cn

    2008-11-21

    The characteristics of copper film coated on cenosphere particles using the magnetron sputtering method were investigated by field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD), field emission transmission electron microscopy (TEM) and atomic force microscopy (AFM). The FE-SEM and AFM results show that the grain sizes and root-mean-square roughness values of the copper films increase with the increase in sputtering power or deposition time and the growth of the copper films is a three-dimensional island growth mode. The angular distribution (angle of incidence) and adatom mobility are the two important factors that influence the film growth processes and the film properties. A new film growth model, which is called the variational angle distribution growth model, is proposed to explain the growth mechanism of the copper film coated on cenosphere particles in the paper. The unceasingly variational angular distribution can get rid of the physical shadowing effect of the sputtering deposition and promote a rather smooth film growth. Deposition with high adatom mobility materials creates larger diameter islands than deposition with low adatom mobility ones. Due to the all-round effect, the final distribution of grains shows a rather smooth morphology with low roughness. The XRD results show that the copper film coated on cenospheres is a face centred cubic (fcc) structure and the crystallization of the film sample increases with increasing sputtering power or sputtering time. The high resolution transmission electron microscopy result shows the nano-crystalline copper film with different crystal orientations uniformly coated on amorphous cenosphere particles.

  11. The growth mechanism of copper films coated on cenosphere particles using magnetron sputtering method

    Science.gov (United States)

    Yu, Xiaozheng; Shen, Zhigang

    2008-11-01

    The characteristics of copper film coated on cenosphere particles using the magnetron sputtering method were investigated by field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD), field emission transmission electron microscopy (TEM) and atomic force microscopy (AFM). The FE-SEM and AFM results show that the grain sizes and root-mean-square roughness values of the copper films increase with the increase in sputtering power or deposition time and the growth of the copper films is a three-dimensional island growth mode. The angular distribution (angle of incidence) and adatom mobility are the two important factors that influence the film growth processes and the film properties. A new film growth model, which is called the variational angle distribution growth model, is proposed to explain the growth mechanism of the copper film coated on cenosphere particles in the paper. The unceasingly variational angular distribution can get rid of the physical shadowing effect of the sputtering deposition and promote a rather smooth film growth. Deposition with high adatom mobility materials creates larger diameter islands than deposition with low adatom mobility ones. Due to the all-round effect, the final distribution of grains shows a rather smooth morphology with low roughness. The XRD results show that the copper film coated on cenospheres is a face centred cubic (fcc) structure and the crystallization of the film sample increases with increasing sputtering power or sputtering time. The high resolution transmission electron microscopy result shows the nano-crystalline copper film with different crystal orientations uniformly coated on amorphous cenosphere particles.

  12. Rapid transport of nano-particles having a fractional elementary charge on average in capacitively-coupled rf discharges by amplitude-modulating discharge voltage.

    Science.gov (United States)

    Shiratani, Masaharu; Koga, Kazunori; Iwashita, Shinya; Nunomura, Syota

    2008-01-01

    We have observed transport of nano-particles having, on average, a fractional elementary charge in single pulse and double pulse capacitively-coupled rf discharges both without and with an Amplitude Modulation (AM) of the discharge voltage, using a two-dimensional laser-light scattering method. Rapid transport of nano-particles towards the grounded electrode is realized using rf discharges with AM. Two important parameters for the rapid transport of nano-particles are the discharge voltage and the period of AM. An important key of the rapid transport is fast redistribution of ion current over the whole discharge region; that is, fast change of spatial distribution of forces exerted on nano-particles. The longer period of the modulation is needed for rapid transport for the larger nano-particles. The higher discharge voltage of the modulation is needed for rapid transport of nano-particles having a smaller mean charge. Local perturbation of electric potential using a probe does not bring about global rapid transport of nano-particles, whereas it leads to their local transport near the probe.

  13. Rapid chemical decontamination of infectious CJD and scrapie particles parallels treatments known to disrupt microbes and biofilms

    Science.gov (United States)

    Botsios, Sotirios; Tittman, Sarah; Manuelidis, Laura

    2015-01-01

    Neurodegenerative human CJD and sheep scrapie are diseases caused by several different transmissible encephalopathy (TSE) agents. These infectious agents provoke innate immune responses in the brain, including late-onset abnormal prion protein (PrP-res) amyloid. Agent particles that lack detectable PrP sequences by deep proteomic analysis are highly infectious. Yet these agents, and their unusual resistance to denaturation, are often evaluated by PrP amyloid disruption. To reexamine the intrinsic resistance of TSE agents to denaturation, a paradigm for less resistant viruses and microbes, we developed a rapid and reproducible high yield agent isolation procedure from cultured cells that minimized PrP amyloid and other cellular proteins. Monotypic neuronal GT1 cells infected with the FU-CJD or 22L scrapie agents do not have complex brain changes that can camouflage infectious particles and prevent their disruption, and there are only 2 reports on infectious titers of any human CJD strain treated with chemical denaturants. Infectious titers of both CJD and scrapie were reduced by >4 logs with Thiourea-urea, a treatment not previously tested. A mere 5 min exposure to 4M GdnHCl at 22°C reduced infectivity by >5 logs. Infectious 22L particles were significantly more sensitive to denaturation than FU-CJD particles. A protocol using sonication with these chemical treatments may effectively decontaminate complicated instruments, such as duodenoscopes that harbor additional virulent microbes and biofilms associated with recent iatrogenic infections. PMID:26556670

  14. Large-timestep techniques for particle-in-cell simulation of systems with applied fields that vary rapidly in space

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, A.; Grote, D.P.

    1996-10-01

    Under conditions which arise commonly in space-charge-dominated beam applications, the applied focusing, bending, and accelerating fields vary rapidly with axial position, while the self-fields (which are, on average, comparable in strength to the applied fields) vary smoothly. In such cases it is desirable to employ timesteps which advance the particles over distances greater than the characteristic scales over which the applied fields vary. Several related concepts are potentially applicable: sub-cycling of the particle advance relative to the field solution, a higher-order time-advance algorithm, force-averaging by integration along approximate orbits, and orbit-averaging. We report on our investigations into the utility of such techniques for systems typical of those encountered in accelerator studies for heavy-ion beam-driven inertial fusion.

  15. The Pinning by Particles of Low and High Angle Grain Boundaries during Grain Growth

    DEFF Research Database (Denmark)

    Tweed, C.J.; Ralph, B.; Hansen, Niels

    1984-01-01

    and coworkers. These estimates of local driving pressures have shown that they are similar for both the low and the high angle boundaries encountered in the samples. The pinning effects by particles at high angle boundaries are in general accord with the model due to Zener whilst those at low angle boundaries......A study has been made using transmission electron microscopy of the pinning of grain boundaries in aluminium during grain growth by fine dispersions of alumina particles. The boundary parameters have been determined with precision and the pinning effects measured using an approach due to Ashby...

  16. Some insights into the condensing vapors driving new particle growth to CCN sizes on the basis of hygroscopicity measurements

    Science.gov (United States)

    Wu, Z. J.; Poulain, L.; Birmili, W.; Größ, J.; Niedermeier, N.; Wang, Z. B.; Herrmann, H.; Wiedensohler, A.

    2015-11-01

    New particle formation (NPF) and growth is an important source of cloud condensation nuclei (CCN). In this study, we investigated the chemical species driving new particle growth to the CCN sizes on the basis of particle hygroscopicity measurements carried out at the research station Melpitz, Germany. Three consecutive NPF events occurred during summertime were chosen as examples to perform the study. Hygroscopicity measurements showed that the (NH4)2SO4-equivalent water-soluble fraction accounts for 20 and 16 % of 50 and 75 nm particles, respectively, during the NPF events. Numerical analysis showed that the ratios of H2SO4 condensational growth to the observed particle growth were 20 and 13 % for 50 and 75 nm newly formed particles, respectively. Aerosol mass spectrometer measurements showed that an enhanced mass fraction of sulfate and ammonium in the newly formed particles was observed when new particles grew to the sizes larger than 30 nm shortly after the particle formation period. At a later time, the secondary organic species played a key role in the particle growth. Both hygroscopicity and aerosol mass spectrometer (AMS) measurements and numerical analysis confirmed that organic compounds were major contributors driving particle growth to CCN sizes. The critical diameters at different supersaturations estimated using AMS data and κ-Köhler theory increased significantly during the later course of NPF events. This indicated that the enhanced organic mass fraction caused a reduction in CCN efficiency of newly formed particles. Our results implied that the CCN production associated with atmospheric nucleation may be overestimated if assuming that newly formed particles can serve as CCN once they grow to a fixed particle size, an assumption made in some previous studies, especially for organic-rich environments. In our study, the enhancement in CCN number concentration associated with individual NPF events were 63, 66, and 69 % for 0.1, 0.4, and 0

  17. The impact of rapid economic growth and globalization on zinc nutrition in South Korea.

    Science.gov (United States)

    Kwun, In-Sook; Do, Mi-Sook; Chung, Hae-Rang; Kim, Yang Ha; Beattie, John H

    2009-08-01

    Zn deficiency may be widespread in Asian countries such as South Korea. However, dietary habits have changed in response to rapid economic growth and globalization. Zn nutrition in South Koreans has therefore been assessed during a period (1969-1998) of unprecedented economic growth. Cross-sectional food consumption data from the Korean National Nutrition Survey Reports (KNNSR) of South Korea at four separate time points (1969, 1978, 1988 and 1998) were used to calculate Zn, Ca and phytate intakes using various food composition tables, databases and literature values. Nutrient values in local foods were cited from their analysed values. Average Zn intake was 5.8, 4.8 and 5.3 mg/d for 1969, 1978 and 1988 respectively, increasing to 7.3 mg/d in 1998 (73 % of the Korean Dietary Reference Intake). The phytate:Zn molar ratio decreased from 21 to 8 during the study period. Dietary Zn depletion due to marked decreases in cereal consumption, particularly barley which has a low Zn bioavailability, was counterbalanced by marked increases in the consumption of meat and fish, which are also Zn-rich foods. Reduced phytate consumption coincident with increased Zn intake suggests that Zn bioavailability also improved, particularly by 1998. Although total Zn intake was not greatly affected over the initial period of economic growth in South Korea (1969-1988), Zn contributions from different food sources changed markedly and both Zn intake and potential bioavailability were improved by 1998. The study may have implications for Zn nutrition in other Asian countries currently experiencing rapid economic growth.

  18. Direct measurement of particle formation and growth from the oxidation of biogenic emissions

    Directory of Open Access Journals (Sweden)

    T. M. VanReken

    2006-01-01

    Full Text Available A new facility has been developed to investigate the formation of new particles from the oxidation of volatile organic compounds emitted from vegetation. The facility consists of a biogenic emissions enclosure, an aerosol growth chamber, and the associated instrumentation. Using the facility, new particle formation events have been induced through the reaction of ozone with three different precursor gas mixtures: an α-pinene test mixture and the emissions of a Holm oak (Quercus ilex specimen and a loblolly pine (Pinus taeda specimen. The results demonstrate the variability between species in their potential to form new aerosol products. The emissions of Q. ilex specimen resulted in fewer particles than did α-pinene, although the concentration of monoterpenes was roughly equal in both experiments before the addition of ozone. Conversely, the oxidation of P. taeda specimen emissions led to the formation of more particles than either of the other two gas mixtures, despite a lower initial terpenoid concentration. These variations can be attributed to differences in the speciation of the vegetative emissions with respect to the α-pinene mixture and to each other. Specifically, the presence of β-pinene and other slower-reacting monoterpenes probably inhibited particle formation in the Q. ilex experiment, while the presence of sesquiterpenes, including β-caryophyllene, in the emissions of the P. taeda specimen were the likely cause of the more intense particle formation events observed during that experiment.

  19. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  20. Simulating Marine New Particle Formation and Growth Using the M7 Modal Aerosol Dynamics Modal

    Directory of Open Access Journals (Sweden)

    Ciaran Monahan

    2010-01-01

    Full Text Available A modal atmospheric aerosol model (M7 is evaluated in terms of predicting marine new particle formation and growth. Simulations were carried out for three different nucleation schemes involving (1 kinetic self-nucleation of OIO (2 nucleation via OIO activation by H2SO4 and (3 nucleation via OIO activation by H2SO4 plus condensation of a low-volatility organic vapour. Peak OIO and H2SO4 vapour concentrations were both limited to 6×106 molecules cm-3 at noontime while the peak organic vapour concentration was limited to 12×106 molecules cm-3. All simulations produced significant concentrations of new particles in the Aitken mode. From a base case particle concentration of 222 cm-3 at radii >15 nm, increases in concentrations to 366 cm-3 were predicted from the OIO-OIO case, 722 cm-3 for the OIO-H2SO4 case, and 1584 cm-3 for the OIO-H2SO4 case with additional condensing organic vapours. The results indicate that open ocean new particle production is feasible for clean conditions; however, new particle production becomes most significant when an additional condensable organic vapour is available to grow the newly formed particles to larger sizes. Comparison to sectional model for a typical case study demonstrated good agreement and the validity of using the modal model.

  1. Rapid detection of hendra virus using magnetic particles and quantum dots.

    Science.gov (United States)

    Lisi, Fabio; Falcaro, Paolo; Buso, Dario; Hill, Anita J; Barr, Jennifer A; Crameri, Gary; Nguyen, Tich-Lam; Wang, Lin-Fa; Mulvaney, Paul

    2012-09-01

    A proof-of-concept for the development of a fast and portable Hendra virus biosensor is presented. Hendra virus, a deadly emerging pathogen in Australia, can be co-localized, concentrated and revealed using simultaneously magnetic and luminescent functional particles. This method should be applicable for the early detection of any other virus by targeting the specific virus with the corresponding antibody. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A new method of rapid power measurement for MW-scale high-current particle beams

    Science.gov (United States)

    Xu, Yongjian; Hu, Chundong; Xie, Yuanlai; Liu, Zhimin; Xie, Yahong; Liu, Sheng; Liang, Lizheng; Jiang, Caichao; Sheng, Peng; Yu, Ling

    2015-09-01

    MW-scale high current particle beams are widely applied for plasma heating in the magnetic confinement fusion devices, in which beam power is an important indicator for efficient heating. Generally, power measurement of MW-scale high current particle beam adopts water flow calorimetry (WFC). Limited by the principles of WFC, the beam power given by WFC is an averaged value. In this article a new method of beam power for MW-scale high-current particle beams is introduced: (1) the temperature data of thermocouples embedded in the beam stopping elements were obtained using high data acquire system, (2) the surface heat flux of the beam stopping elements are calculated using heat transfer, (3) the relationships between positions and heat flux were acquired using numerical simulation, (4) the real-time power deposited on the beam stopping elements can be calculated using surface integral. The principle of measurement was described in detail and applied to the EAST neutral beam injector for demonstration. The result is compared with that measured by WFC. Comparison of the results shows good accuracy and applicability of this measuring method.

  3. Modeling the role of highly oxidized multifunctional organic molecules for the growth of new particles over the boreal forest region

    Science.gov (United States)

    Öström, Emilie; Putian, Zhou; Schurgers, Guy; Mishurov, Mikhail; Kivekäs, Niku; Lihavainen, Heikki; Ehn, Mikael; Rissanen, Matti P.; Kurtén, Theo; Boy, Michael; Swietlicki, Erik; Roldin, Pontus

    2017-07-01

    In this study, the processes behind observed new particle formation (NPF) events and subsequent organic-dominated particle growth at the Pallas Atmosphere-Ecosystem Supersite in Northern Finland are explored with the one-dimensional column trajectory model ADCHEM. The modeled sub-micron particle mass is up to ˜ 75 % composed of SOA formed from highly oxidized multifunctional organic molecules (HOMs) with low or extremely low volatility. In the model the newly formed particles with an initial diameter of 1.5 nm reach a diameter of 7 nm about 2 h earlier than what is typically observed at the station. This is an indication that the model tends to overestimate the initial particle growth. In contrast, the modeled particle growth to CCN size ranges ( > 50 nm in diameter) seems to be underestimated because the increase in the concentration of particles above 50 nm in diameter typically occurs several hours later compared to the observations. Due to the high fraction of HOMs in the modeled particles, the oxygen-to-carbon (O : C) atomic ratio of the SOA is nearly 1. This unusually high O : C and the discrepancy between the modeled and observed particle growth might be explained by the fact that the model does not consider any particle-phase reactions involving semi-volatile organic compounds with relatively low O : C. In the model simulations where condensation of low-volatility and extremely low-volatility HOMs explain most of the SOA formation, the phase state of the SOA (assumed either liquid or amorphous solid) has an insignificant impact on the evolution of the particle number size distributions. However, the modeled particle growth rates are sensitive to the method used to estimate the vapor pressures of the HOMs. Future studies should evaluate how heterogeneous reactions involving semi-volatility HOMs and other less-oxidized organic compounds can influence the SOA composition- and size-dependent particle growth.

  4. Volume growth during uniaxial tension of particle-filled elastomers at various temperatures - Experiments and modelling

    Science.gov (United States)

    Ilseng, Arne; H. Skallerud, Bjørn; H. Clausen, Arild

    2017-10-01

    A common presumption for elastomeric material behaviour is incompressibility, however, the inclusion of filler particles might give rise to matrix-particle decohesion and subsequent volume growth. In this article, the volumetric deformation accompanying uniaxial tension of particle-filled elastomeric materials at low temperatures is studied. An experimental set-up enabling full-field deformation measurements is outlined and novel data are reported on the significant volume growth accompanying uniaxial tension of two HNBR and one FKM compounds at temperatures of - 18 , 0, and 23 °C. The volumetric deformation was found to increase with reduced temperature for all compounds. To explain the observed dilatation, in situ scanning electron microscopy was used to inspect matrix-particle debonding occurring at the surface of the materials. A new constitutive model, combining the Bergström-Boyce visco-hyperelastic formulation with a Gurson flow potential function is outlined to account for the observed debonding effects in a numerical framework. The proposed model is shown to provide a good correspondence to the experimental data, including the volumetric response, for the tested FKM compound at all temperature levels.

  5. Novel ultra-rapid freezing particle engineering process for enhancement of dissolution rates of poorly water-soluble drugs.

    Science.gov (United States)

    Overhoff, Kirk A; Engstrom, Josh D; Chen, Bo; Scherzer, Brian D; Milner, Thomas E; Johnston, Keith P; Williams, Robert O

    2007-01-01

    An ultra-rapid freezing (URF) technology has been developed to produce high surface area powders composed of solid solutions of an active pharmaceutical ingredient (API) and a polymer stabilizer. A solution of API and polymer excipient(s) is spread on a cold solid surface to form a thin film that freezes in 50 ms to 1s. This study provides an understanding of how the solvent's physical properties and the thin film geometry influence the freezing rate and consequently the final physico-chemical properties of URF-processed powders. Theoretical calculations of heat transfer rates are shown to be in agreement with infrared images with 10ms resolution. Danazol (DAN)/polyvinylpyrrolidone (PVP) powders, produced from both acetonitrile (ACN) and tert-butanol (T-BUT) as the solvent, were amorphous with high surface areas (approximately 28-30 m2/g) and enhanced dissolution rates. However, differences in surface morphology were observed and attributed to the cooling rate (film thickness) as predicted by the model. Relative to spray-freezing processes that use liquid nitrogen, URF also offers fast heat transfer rates as a result of the intimate contact between the solution and cold solid surface, but without the complexity of cryogen evaporation (Leidenfrost effect). The ability to produce amorphous high surface area powders with submicron primary particles with a simple ultra-rapid freezing process is of practical interest in particle engineering to increase dissolution rates, and ultimately bioavailability.

  6. Blocking rapid ice crystal growth through nonbasal plane adsorption of antifreeze proteins.

    Science.gov (United States)

    Olijve, Luuk L C; Meister, Konrad; DeVries, Arthur L; Duman, John G; Guo, Shuaiqi; Bakker, Huib J; Voets, Ilja K

    2016-04-05

    Antifreeze proteins (AFPs) are a unique class of proteins that bind to growing ice crystal surfaces and arrest further ice growth. AFPs have gained a large interest for their use in antifreeze formulations for water-based materials, such as foods, waterborne paints, and organ transplants. Instead of commonly used colligative antifreezes such as salts and alcohols, the advantage of using AFPs as an additive is that they do not alter the physicochemical properties of the water-based material. Here, we report the first comprehensive evaluation of thermal hysteresis (TH) and ice recrystallization inhibition (IRI) activity of all major classes of AFPs using cryoscopy, sonocrystallization, and recrystallization assays. The results show that TH activities determined by cryoscopy and sonocrystallization differ markedly, and that TH and IRI activities are not correlated. The absence of a distinct correlation in antifreeze activity points to a mechanistic difference in ice growth inhibition by the different classes of AFPs: blocking fast ice growth requires rapid nonbasal plane adsorption, whereas basal plane adsorption is only relevant at long annealing times and at small undercooling. These findings clearly demonstrate that biomimetic analogs of antifreeze (glyco)proteins should be tailored to the specific requirements of the targeted application.

  7. Rapid regulation of leaf photosynthesis, carbohydrate status and leaf area expansion to maintain growth in irregular light environments

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    to maintain carbohydrate status and growth in unpredictable light environments. Our recent results show rapid regulation of photosynthesis and leaf carbohydrate status to maintain growth and light interception in dynamic light environments when campanula, rose and chrysanthemum were grown in a cost...

  8. Numerical Modeling of an RF Argon-Silane Plasma with Dust Particle Nucleation and Growth

    Science.gov (United States)

    Girshick, Steven; Agarwal, Pulkit

    2012-10-01

    We have developed a 1-D numerical model of an RF argon-silane plasma in which dust particles nucleate and grow. This model self-consistently couples a plasma module, a chemistry module and an aerosol module. The plasma module solves population balance equations for electrons and ions, the electron energy equation under the assumption of a Maxwellian velocity distribution, and Poisson's equation for the electric field. The chemistry module treats silane dissociation and reactions of silicon hydrides containing up to two silicon atoms. The aerosol module uses a sectional method to model particle size and charge distributions. The nucleation rate is equated to the rates of formation of anions containing two Si atoms, and a heterogeneous reaction model is used to model particle surface growth. Aerosol effects considered include particle charging, coagulation, and particle transport by neutral drag, ion drag, electric force, gravity and Brownian diffusion. Simulation results are shown for the case of a 13.56 MHz plasma at a pressure of 13 Pa and applied RF voltage of 100 V (amplitude), with flow through a showerhead electrode. These results show the strong coupling between the plasma and the spatiotemporal evolution of the nanoparticle cloud.

  9. Rapid and accurate detection of Escherichia coli growth by fluorescent pH-sensitive organic nanoparticles for high-throughput screening applications.

    Science.gov (United States)

    Si, Yang; Grazon, Chloé; Clavier, Gilles; Rieger, Jutta; Audibert, Jean-Frédéric; Sclavi, Bianca; Méallet-Renault, Rachel

    2016-01-15

    Rapid detection of bacterial growth is an important issue in the food industry and for medical research. Here we present a novel kind of pH-sensitive fluorescent nanoparticles (FANPs) that can be used for the rapid and accurate real-time detection of Escherichia coli growth. These organic particles are designed to be non-toxic and highly water-soluble. Here we show that the coupling of pH sensitive fluoresceinamine to the nanoparticles results in an increased sensitivity to changes in pH within a physiologically relevant range that can be used to monitor the presence of live bacteria. In addition, these FANPs do not influence bacterial growth and are stable over several hours in a complex medium and in the presence of bacteria. The use of these FANPs allows for continuous monitoring of bacterial growth via real-time detection over long time scales in small volumes and can thus be used for the screening of a large number of samples for high-throughput applications such as screening for the presence of antibiotic resistant strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at sqrt(sNN) = 2.76 TeV

    NARCIS (Netherlands)

    Aamodt, K.; Chojnacki, M.; Christakoglou, P.; de Rooij, R. S.; Grelli, A.; Kamermans, R.; Mischke, A.; Nooren, G.J.L.; Peitzmann, T.; Thomas, D.; van Leeuwen, M.; Veldhoen, M; Verweij, M.

    2010-01-01

    The first measurement of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at a centre-of-mass energy per nucleon pair sqrt(sNN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section the pseudo-rapidity density of

  11. Rapid growth in nitrogen dioxide pollution over Western China, 2005–2013

    Directory of Open Access Journals (Sweden)

    Y. Cui

    2016-05-01

    Full Text Available Western China has experienced rapid industrialization and urbanization since the implementation of the National Western Development Strategies (the "Go West" movement in 1999. This transition has affected the spatial and temporal characteristics of nitrogen dioxide (NO2 pollution. In this study, we analyze the trends and variability of tropospheric NO2 vertical column densities (VCDs from 2005 to 2013 over Western China, based on a wavelet analysis on monthly mean NO2 data derived from the Ozone Monitoring Instrument (OMI measurements. We focus on the anthropogenic NO2 by subtracting region-specific "background" values dominated by natural sources. After removing the background influences, we find significant anthropogenic NO2 growth over Western China between 2005 and 2013 (8.6 ± 0.9 % yr−1 on average, relative to 2005, with the largest increments (15 % yr−1 or more over parts of several city clusters. The NO2 pollution in most provincial-level regions rose rapidly from 2005 to 2011 but stabilized or declined afterwards. The NO2 trends were driven mainly by changes in anthropogenic emissions, as confirmed by a nested GEOS-Chem model simulation and a comparison with Chinese official emission statistics. The rate of NO2 growth during 2005–2013 reaches 11.3 ± 1.0 % yr−1 over Northwestern China, exceeding the rates over Southwestern China (5.9 ± 0.6 % yr−1 and the three well-known polluted regions in the east (5.3 ± 0.8 % yr−1 over Beijing-Tianjin-Hebei, 4.0 ± 0.6 % yr−1 over the Yangtze River Delta, and −3.3 ± 0.3 % yr−1 over the Pearl River Delta. Subsequent socioeconomic analyses suggest that the rapid NO2 growth over Northwestern China is likely related to the fast developing resource- and pollution-intensive industries along with the "Go West" movement as well as relatively weak emission controls. Further efforts should be made to alleviate NOx pollution to achieve

  12. Interaction of aerosol particles composed of protein and saltswith water vapor: hygroscopic growth and microstructural rearrangement

    Directory of Open Access Journals (Sweden)

    E. Mikhailov

    2004-01-01

    efflorescence threshold of NaCl-BSA particles decreased with increasing BSA dry mass fraction, i.e. the protein inhibited the formation of salt crystals and enhanced the stability of supersaturated solution droplets. The H-TDMA and TEM results indicate that the protein was enriched at the surface of the mixed particles and formed an envelope, which inhibits the access of water vapor to the particle core and leads to kinetic limitations of hygroscopic growth, phase transitions, and microstructural rearrangement processes. The Köhler theory calculations performed with different types of models demonstrate that the hygroscopic growth of particles composed of inorganic salts and proteins can be efficiently described with a simple volume additivity approach, provided that the correct dry solute mass equivalent diameter and composition are known. A parameterisation for the osmotic coefficient of macromolecular substances has been derived from an osmotic pressure virial equation. For its application only the density and molar mass of the substance have to be known or estimated, and it is fully compatible with traditional volume additivity models for salt mixtures.

  13. A decade of rapid change: Biocultural influences on child growth in highland Peru.

    Science.gov (United States)

    Oths, Kathryn S; Smith, Hannah N; Stein, Max J; Lazo Landivar, Rodrigo J

    2017-10-30

    In the past decade many areas of Peru have been undergoing extreme environmental, economic, and cultural change. In the highland hamlet of Chugurpampa, La Libertad, climate change has ruined harvests and led to frequent periods of migration to the coast in search of livelihood. This biocultural research examines how the changes could be affecting the growth of children who maintain residence in the highlands. Clinical records from the early 2000s were compared to those from the early 2010s. Charts were randomly selected to record anthropometric data, netting a sample of 75 children ages 0-60 months of age. Analysis of covariance was run to compare mean stature, weight, and BMI between cohorts. Percentage of children who fall below the -2 threshold for z-scores for height and weight were compared by age and cohort. A significant secular trend in growth was found, with children born more recently larger than those born a decade before. The effect is most notable in the first year of life, with the growth advantage attenuated by the age of 3 for height and age 4 for weight. While children were unlikely to be stunted from 0 to 3 years of age, 44% of the later cohort were stunted and 11% were underweight from 4 to 5 years of age. Three possible explanations for the rapid shift are entertained: more time spent on the coast during gestation and early childhood, which may attenuate the effect of hypoxia on child growth; dietary change; and increased use of biomedicine. © 2017 Wiley Periodicals, Inc.

  14. Interaction Between Second-Phase Particle Dissolution and Abnormal Grain Growth in an Austenitic Stainless Steel

    Directory of Open Access Journals (Sweden)

    J.C. Dutra

    2002-09-01

    Full Text Available The continuing development of stainless steels has resulted in complex steel compositions with substantial amounts of alloying elements. The benefits of such additions invariably come attached to unavoidable disadvantages. One of the most critical item is the potential microstructural instability of the material. Alloying elements may be in a supersaturated solid solution, in which the precipitation of carbides, nitrides, borides and intermetallic phases occurs in a wide range of temperatures. In order to dissolve the mentioned precipitates, solution annealing is commonly performed. However, at the temperature range in which this treatment is carried out, the onset of abnormal grain growth can occur. The interaction between the dissolution of these second-phase particles and the occurrence of abnormal grain growth is investigated in this work. This study also shows that the thermodynamics and the kinetics of dissolution of precipitates may be used to predict whether abnormal grain growth takes place.

  15. Degradation of Teflon(trademark) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    Science.gov (United States)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1999-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(trademark) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(trademark) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(trademark) FEP.

  16. Degradation of Teflon(tm) FEP Following Charged Particle Radiation and Rapid Thermal Cycling

    Science.gov (United States)

    Townsend, Jacqueline; Powers, Charles; Viens, Michael; Ayres-Treusdell, Mary; Munoz, Bruno

    1998-01-01

    During the Second Servicing Mission (SM2) of the Hubble Space Telescope (HST) severe degradation was observed on the outer layer of the thermal control blankets. Astronaut observations and photographs revealed large cracks in the metallized Teflon(R) FEP (fluorinated ethylene propylene), the outer layer of the multi-layer insulation (MLI), in many locations around the telescope. In an effort to understand what elements of the space environment might cause such damage, pristine Teflon(R) FEP was tested for durability to radiation and thermal cycling. Specimens were subjected to electron and proton fluences comparable to those experienced by HST and were subsequently thermal cycled in a custom-built rapid thermal cycle chamber. Tensile tests of the specimens showed that radiation followed by thermal cycling significantly reduced the ultimate strength and elongation of Teflon(R) FEP.

  17. MODELING OF INTERACTION LAYER GROWTH BETWEEN U-Mo PARTICLES AND AN Al MATRIX

    Directory of Open Access Journals (Sweden)

    YEON SOO KIM

    2013-12-01

    Full Text Available Interaction layer growth between U-Mo alloy fuel particles and Al in a dispersion fuel is a concern due to the volume expansion and other unfavorable irradiation behavior of the interaction product. To reduce interaction layer (IL growth, a small amount of Si is added to the Al. As a result, IL growth is affected by the Si content in the Al matrix. In order to predict IL growth during fabrication and irradiation, empirical models were developed. For IL growth prediction during fabrication and any follow-on heating process before irradiation, out-of-pile heating test data were used to develop kinetic correlations. Two out-of-pile correlations, one for the pure Al matrix and the other for the Al matrix with Si addition, respectively, were developed, which are Arrhenius equations that include temperature and time. For IL growth predictions during irradiation, the out-of-pile correlations were modified to include a fission-rate term to consider fission enhanced diffusion, and multiplication factors to incorporate the Si addition effect and the effect of the Mo content. The in-pile correlation is applicable for a pure Al matrix and an Al matrix with the Si content up to 8 wt%, for fuel temperatures up to 200 °C, and for Mo content in the range of 6 – 10wt%. In order to cover these ranges, in-pile data were included in modeling from various tests, such as the US RERTR-4, -5, -6, -7 and -9 tests and Korea's KOMO-4 test, that were designed to systematically examine the effects of the fission rate, temperature, Si content in Al matrix, and Mo content in U-Mo particles. A model converting the IL thickness to the IL volume fraction in the meat was also developed.

  18. Early and rapid globalization as part of innovation and growth strategies

    DEFF Research Database (Denmark)

    Zijdemans, Erik; Azimi, Zohreh; Tanev, Stoyan

    of technology start-ups as a specific growth strategy (Zijdemans & Tanev, 2014). Our research adopts a dynamic resource perspective according to which the distinction between ex-ante and ex-post value of resources (Schmidt & Keil, 2012) complements the effectual entrepreneurial approach, which is typical...... for start-ups that globalize rapidly in an environment with a high degree of uncertainty (Sarasvathy, Kumar, York, & Bhagavatula, 2014). The ex-ante valuation of resources (Schmidt & Keil, 2012) is related to the ex-post characteristics of BG firms (Tanev, 2012) resulting in a Global Value Generator (GVG......) – a framework linking the ex-ante value drivers and ex-post characteristics of BG firms. Our aim is to use the GVG to help innovative start-ups in making strategic ex-ante decisions contributing to the development of competitive global business models, complementary global resources and differentiated value...

  19. After Nearly A Decade Of Rapid Growth, Use And Complexity Of Imaging Declined, 2008-14.

    Science.gov (United States)

    Levin, David C; Parker, Laurence; Palit, Charles D; Rao, Vijay M

    2017-04-01

    Imaging is an important cost driver in health care, and its use grew rapidly in the early 2000s. Several studies toward the end of the decade suggested that a leveling off was beginning to occur. In this study we examined more recent data to determine whether the slowdown had continued. Our data sources were the nationwide Medicare Part B databases for the period 2001-14. We calculated utilization rates per 1,000 enrollees for all advanced imaging modalities. We also calculated professional component relative value unit (RVU) rates per 1,000 beneficiaries for all imaging modalities, as RVU values provide a measure of complexity of imaging services and may in some ways be a better reflection of the amount of work involved in imaging. We found that utilization rates and RVU rates grew substantially until 2008 and 2009, respectively, and then began to drop. The downward trend in both rates persisted through 2014. Federal policies appear to have achieved the desired effect of ending the rapid growth of imaging that had been seen in earlier years. Project HOPE—The People-to-People Health Foundation, Inc.

  20. A quantitative study of acoustic growth rates in a characterized Rijke burner with particle combustion

    Science.gov (United States)

    Newbold, Brian Russell

    2000-12-01

    The acoustic growth rate, frequency, and limiting amplitude of a characterized Rijke burner were quantitatively measured during the combustion of aluminum and zirconium carbide particles, which are common solid propellant additives. Extremely narrow size distributions of aluminum particles with mean diameters of 9.2, 19.0, 35.6, and 68.7 μm were tested at mass loadings up to 3% for frequencies of 800 and 1200 Hz. Large aluminum particles were ignited in the C3H8/O2 flame of a welding nozzle, mounted flush with the burner's flat, C3H8/O 2/N2 flame. Testing provided no conclusive evidence of distributed particle combustion affecting the acoustic driving in the Rijke burner. In solid propellant rockets, the distributed combustion of aluminum particles far from the propellant surface may contribute to pressure oscillations caused by acoustic combustion instability. The Rijke burner was developed as an experimental platform to investigate the phenomenon. Research into the transient acoustic response of Rijke burners is almost nonexistent; consequently, the current burner's acoustic response was quantified as a function of gas flow rate, gas composition, geometry, and burner orientation for two frequencies. Acoustic growth rate trends were explained in terms of the pulsing flame's heat release and the flame's position relative to the optimal acoustic driving point. Variations in gas flow rate, flame temperature, geometry, and exhaust temperature profile could affect a 300 s-1 change in acoustic growth rate for the conditions tested. Frequency remained approximately constant, except for acoustic mode shifts which occurred due to geometry alterations or changing gas temperatures in the burner's hot section. The Rijke burner's acoustic response was not significantly altered by the installation of the welding nozzle with its gas mixture operated near stoichiometric or fuel rich. The radial and axial temperature profiles of the gas temperatures in the burner's hot section

  1. Method for rapid optimization of recombinant GPCR protein expression and stability using virus-like particles.

    Science.gov (United States)

    Ho, Thao T; Nguyen, Jasmine T; Liu, Juping; Stanczak, Pawel; Thompson, Aaron A; Yan, Yingzhuo G; Chen, Jasmine; Allerston, Charles K; Dillard, Charles L; Xu, Hao; Shoger, Nicholas J; Cameron, Jill S; Massari, Mark E; Aertgeerts, Kathleen

    2017-05-01

    Recent innovative approaches to stabilize and crystallize GPCRs have resulted in an unprecedented breakthrough in GPCR crystal structures as well as application of the purified receptor protein in biophysical and biochemical ligand binding assays. However, the protein optimization process to enable these technologies is lengthy and requires iterative overexpression, solubilization, purification and functional analysis of tens to hundreds of protein variants. Here, we report a new and versatile method to screen in parallel hundreds of GPCR variants in HEK293 produced virus-like particles (VLPs) for protein yield, stability, functionality and ligand binding. This approach reduces the time and resources during GPCR construct optimization by eliminating lengthy protein solubilization and purification steps and by its adaptability to many binding assay formats (label or label-free detection). We exemplified the robustness of our VLP method by screening 210 GALR3-VLP variants in a radiometric agonist-based binding assay and a subset of 88 variants in a label-free antagonist-based assay. The resulting GALR3 agonist or antagonist stabilizing variants were then further used for recombinant protein expression in transfected insect cells. The final purified protein variants were successfully immobilized on a biosensor chip and used in a surface plasmon resonance binding assay. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Rapid decay of nonlinear whistler waves in two dimensions: Full particle simulation

    Science.gov (United States)

    Umeda, Takayuki; Saito, Shinji; Nariyuki, Yasuhiro

    2017-05-01

    The decay of a nonlinear, short-wavelength, and monochromatic electromagnetic whistler wave is investigated by utilizing a two-dimensional (2D) fully relativistic electromagnetic particle-in-cell code. The simulation is performed under a low-beta condition in which the plasma pressure is much lower than the magnetic pressure. It has been shown that the nonlinear (large-amplitude) parent whistler wave decays through the parametric instability in a one-dimensional (1D) system. The present study shows that there is another channel for the decay of the parent whistler wave in 2D, which is much faster than in the timescale of the parametric decay in 1D. The parent whistler wave decays into two sideband daughter whistlers propagating obliquely with respect to the ambient magnetic field with a frequency close to the parent wave and two quasi-perpendicular electromagnetic modes with a frequency close to zero via a 2D decay instability. The two sideband daughter oblique whistlers also enhance a nonlinear longitudinal electrostatic wave via a three-wave interaction as a secondary process.

  3. Model studies of volatile diesel exhaust particle formation: are organic vapours involved in nucleation and growth?

    Science.gov (United States)

    Pirjola, L.; Karl, M.; Rönkkö, T.; Arnold, F.

    2015-09-01

    A high concentration of volatile nucleation mode particles (NUP) formed in the atmosphere when the exhaust cools and dilutes has hazardous health effects and it impairs the visibility in urban areas. Nucleation mechanisms in diesel exhaust are only poorly understood. We performed model studies using two sectional aerosol dynamics process models AEROFOR and MAFOR on the formation of particles in the exhaust of a diesel engine, equipped with an oxidative after-treatment system and running with low fuel sulfur content (FSC) fuel, under laboratory sampling conditions where the dilution system mimics real-world conditions. Different nucleation mechanisms were tested. Based on the measured gaseous sulfuric acid (GSA) and non-volatile core and soot particle number concentrations of the raw exhaust, the model simulations showed that the best agreement between model predictions and measurements in terms of particle number size distribution was obtained by barrier-free heteromolecular homogeneous nucleation between the GSA and a semi-volatile organic vapour combined with the homogeneous nucleation of GSA alone. Major growth of the particles was predicted to occur due to the similar organic vapour at concentrations of (1-2) × 1012 cm-3. The pre-existing core and soot mode concentrations had an opposite trend on the NUP formation, and the maximum NUP formation was predicted if a diesel particle filter (DPF) was used. On the other hand, the model predicted that the NUP formation ceased if the GSA concentration in the raw exhaust was less than 1010 cm-3, which was the case when biofuel was used.

  4. Rapid microwave-assisted growth of silver nanoparticles on 3D graphene networks for supercapacitor application.

    Science.gov (United States)

    Khamlich, S; Khamliche, T; Dhlamini, M S; Khenfouch, M; Mothudi, B M; Maaza, M

    2017-05-01

    Silver nanoparticles (AgNPs) grown on a three dimensional (3d) graphene networks (GNs) has been successfully prepared by an efficient and rapid microwave-assisted growth process to form GNs/AgNPs nanocomposite electrode materials for supercapacitor application. The 3d nature of the used GNs offers a unique architecture, which creates an efficient conduction networks and maximum utilization of space and interface, and acts as a conductive layer for the deposited AgNPs. The electrochemical performances of the fabricated electrode were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) tests. Specifically, the optimal GNs/AgNPs nanocomposite exhibits remarkable performances with a high specific capacitance of 528Fg-1 at a current density of 1Ag-1 and excellent capacitance retention of ∼93% after 3000cycles. Moreover, this microwave-assisted growth strategy of AgNPs is simple and effective, which could be extended to the construction of other three dimensional graphene based metallic composites for energy storage and conversion applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Microbial competition in porous environments can select against rapid biofilm growth.

    Science.gov (United States)

    Coyte, Katharine Z; Tabuteau, Hervé; Gaffney, Eamonn A; Foster, Kevin R; Durham, William M

    2017-01-10

    Microbes often live in dense communities called biofilms, where competition between strains and species is fundamental to both evolution and community function. Although biofilms are commonly found in soil-like porous environments, the study of microbial interactions has largely focused on biofilms growing on flat, planar surfaces. Here, we use microfluidic experiments, mechanistic models, and game theory to study how porous media hydrodynamics can mediate competition between bacterial genotypes. Our experiments reveal a fundamental challenge faced by microbial strains that live in porous environments: cells that rapidly form biofilms tend to block their access to fluid flow and redirect resources to competitors. To understand how these dynamics influence the evolution of bacterial growth rates, we couple a model of flow-biofilm interaction with a game theory analysis. This investigation revealed that hydrodynamic interactions between competing genotypes give rise to an evolutionarily stable growth rate that stands in stark contrast with that observed in typical laboratory experiments: cells within a biofilm can outcompete other genotypes by growing more slowly. Our work reveals that hydrodynamics can profoundly affect how bacteria compete and evolve in porous environments, the habitat where most bacteria live.

  6. MOSFIRE ABSORPTION LINE SPECTROSCOPY OF z > 2 QUIESCENT GALAXIES: PROBING A PERIOD OF RAPID SIZE GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Belli, Sirio; Ellis, Richard S.; Konidaris, Nick P. [Department of Astronomy, California Institute of Technology, MS 249-17, Pasadena, CA 91125 (United States); Newman, Andrew B. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States)

    2014-06-20

    Using the MOSFIRE near-infrared multi-slit spectrograph on the Keck 1 Telescope, we have secured high signal-to-noise ratio absorption line spectra for six massive galaxies with redshift 2 < z < 2.5. Five of these galaxies lie on the red sequence and show signatures of passive stellar populations in their rest-frame optical spectra. By fitting broadened spectral templates we have determined stellar velocity dispersions and, with broad-band Hubble Space Telescope and Spitzer photometry and imaging, stellar masses and effective radii. Using this enlarged sample of galaxies, we confirm earlier suggestions that quiescent galaxies at z > 2 have small sizes and large velocity dispersions compared to local galaxies of similar stellar mass. The dynamical masses are in very good agreement with stellar masses (log M {sub *}/M {sub dyn} = –0.02 ± 0.03), although the average stellar-to-dynamical mass ratio is larger than that found at lower redshift (–0.23 ± 0.05). By assuming evolution at fixed velocity dispersion, not only do we confirm a surprisingly rapid rate of size growth but we also consider the necessary evolutionary track on the mass-size plane and find a slope α = dlog R{sub e} /dlog M {sub *} ≳ 2 inconsistent with most numerical simulations of minor mergers. Both results suggest an additional mechanism may be required to explain the size growth of early galaxies.

  7. Rapid release of growth factors regenerates force output in volumetric muscle loss injuries

    Science.gov (United States)

    Grasman, Jonathan M.; Do, Duc M.; Page, Raymond L.; Pins, George D.

    2015-01-01

    A significant challenge in the design and development of biomaterial scaffolds is to incorporate mechanical and biochemical cues to direct organized tissue growth. In this study, we investigated the effect of hepatocyte growth factor (HGF) loaded, crosslinked fibrin (EDCn-HGF) microthread scaffolds on skeletal muscle regeneration in a mouse model of volumetric muscle loss (VML). The rapid, sustained release of HGF significantly enhanced the force production of muscle tissue 60 days after injury, recovering more than 200% of the force output relative to measurements recorded immediately after injury. HGF delivery increased the number of differentiating myoblasts 14 days after injury, and supported an enhanced angiogenic response. The architectural morphology of microthread scaffolds supported the ingrowth of nascent myofibers into the wound site, in contrast to fibrin gel implants which did not support functional regeneration. Together, these data suggest that EDCn-HGF microthreads recapitulate several of the regenerative cues lost in VML injuries, promote remodeling of functional muscle tissue, and enhance the functional regeneration of skeletal muscle. Further, by strategically incorporating specific biochemical factors and precisely tuning the structural and mechanical properties of fibrin microthreads, we have developed a powerful platform technology that may enhance regeneration in other axially aligned tissues. PMID:26344363

  8. The Voronoi diagram of circles and its application to the visualization of the growth of particles

    DEFF Research Database (Denmark)

    Anton, François; Mioc, Darka; Gold, Christopher M.

    2009-01-01

    of circles can be used to model the growth of particle aggregates. We use the Poisson point process in the Voronoi diagram of circles to generate the Johnson-Mehl tesselation. The Johnson-Mehl model is a Poisson Voronoi growth model, in which nuclei are generated asynchronously using a Poisson point process......Circles are frequently used for modelling the growth of particle aggregates through the Voronoi diagram of circles, that is a special instance of the Johnson-Mehl tessellation. The Voronoi diagram of a set of sites is a decomposition of space into proximal regions. The proximal region of a site...... is the locus of points closer to that site than to any other one. Voronoi diagrams allow one to answer proximity queries after locating a query point in the Voronoi zone it belongs to. The dual graph of the Voronoi diagram is called the Delaunay graph. In this paper, we first show a necessary and sufficient...

  9. Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments

    Science.gov (United States)

    Collins, Douglas B.; Burkart, Julia; Chang, Rachel Y.-W.; Lizotte, Martine; Boivin-Rioux, Aude; Blais, Marjolaine; Mungall, Emma L.; Boyer, Matthew; Irish, Victoria E.; Massé, Guillaume; Kunkel, Daniel; Tremblay, Jean-Éric; Papakyriakou, Tim; Bertram, Allan K.; Bozem, Heiko; Gosselin, Michel; Levasseur, Maurice; Abbatt, Jonathan P. D.

    2017-11-01

    The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol-cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP) formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm) in the range of 101-104 cm-3 were observed during the two seasons, with concentrations greater than 103 cm-3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h-1 in 2016 and 2.2 h-1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h-1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere-atmosphere interactions within the Arctic marine environment to explain the production of UFP and their growth to sizes

  10. Site-specific growth of Au particles on ZnO nanopyramids under ultraviolet illumination

    KAUST Repository

    Yao, Kexin

    2011-01-01

    In this work, wurtzite ZnO nanocrystals with unique "pyramid" morphology were firstly prepared via solvothermal synthesis. It was determined that the ZnO nanopyramids are grown along the polar c-axis with the vertexes pointing to the [001] direction. When the mixture of ZnO nanopyramids and Au precursor (HAuCl4) was exposed to ultraviolet (UV) illumination, Au particles were site-specifically formed on the vertexes of ZnO nanopyramids. The obtained Au/ZnO nanocomposite showed significantly enhanced photocatalytic activity as compared to the bare ZnO nanopyramids. First-principles based calculations well explained the formation of ZnO nanopyramids as well as the site-specific growth of Au, and revealed that during the photocatalysis process the Au particles can accommodate photoelectrons and thus facilitate the charge separation. © 2011 The Royal Society of Chemistry.

  11. Formation and growth of sulfur derived particles in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Wexler, A.; Hillamo, R. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1995-12-31

    Aerosol particles modify the Earth`s radiation balance directly by scattering and absorbing solar radiation, and indirectly via their influence on cloud properties. The indirect climate forcing due to aerosols probably dominates over that of the direct forcing over global scale, and is induced primary by sulfate originating from both natural and anthropogenic sources. A large portion of the global sulfur flux is due to dimethylsulfide (DMS) released from the ocean surface, where it is produced in large quantities by various biogenic processes. DMS is believed to be the primary particulate precursor over vast oceanic regions, hence having a potential to modify aerosol climatic effects over a major portion of the Earth`s surface. The connection between marine DMS emissions and the resulting climate forcing involves several steps still not properly quantified. Among the open questions related to this system, perhaps the most critical ones are when and where the DMS-derived particles are formed in the atmosphere, and how these particles grow into sizes where they are able to alter cloud properties, such as cloud albedos, lifetimes and precipitation efficiencies, that are relevant to climate. In this work, production and growth of sulfur particles has been examined using a simple, yet realistic model that simulates the processes taking place in a remote marine boundary layer. The specific questions examined include: (1) what is the role of boundary layer dynamics in affecting the condensation nuclei (CN) and cloud condensation nuclei (CCN) production in this system, (2) what are the factors controlling the growth of fresh CN into CCN, and (3) how does the presence of boundary layer clouds interact with CN/CCN production

  12. Kinetic roughening of laser deposited polymer films: crossover from single particle character to continuous growth.

    Science.gov (United States)

    Hachenberg, Jörg; Streng, Christoph; Süske, Erik; Vauth, Sebastian; Mayr, S G; Krebs, Hans-Ulrich; Samwer, Konrad

    2004-06-18

    The crossover in kinetic roughening of thin films from a particle-character-dominated regime to continuous growth behavior has been observed in this work. This has been accomplished by atomic force microscopy investigations of pulsed laser deposited amorphous organic films with thicknesses ranging from several nanometers to more than 4 microm. The early-stage random-deposition-like processes end once a closed layer is formed, which grows without saturation on the characteristic length scales. In addition, the influence of oblique film deposition has been examined and interpreted.

  13. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    Science.gov (United States)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  14. Hygroscopic growth of sub-micrometer and one-micrometer aerosol particles measured during ACE-Asia

    Directory of Open Access Journals (Sweden)

    A. Massling

    2007-06-01

    Full Text Available Hygroscopic properties of aerosol particles in the sub-micrometer and one-micrometer size ranges were measured during the ACE-Asia study (Aerosol Characterization Experiment-Asia in spring 2001. The measurements took place off the coasts of Japan, Korea, and China. All instruments contributing to this study were deployed in a container on the forward deck of the NOAA Research Vessel Ronald H. Brown. Air masses with primarily marine influence and air masses from the Asian continent affected by both anthropogenic sources and by the transport of desert dust aerosol were encountered during the cruise.

    Results showed very different hygroscopic behavior in the sub-micrometer size range compared to the one-micrometer size range. In general, for all continentally influenced air masses, the one-micrometer particle population was characterized by two different particle groups – a nearly hydrophobic fraction with growth factors around 1.0 representative of dust particles and a sea salt fraction with hygroscopic growth factors around 2.0. The number fraction of dust particles was generally about 60% independent of long-range air mass origin.

    For sub-micrometer particles, a dominant, more hygroscopic particle fraction with growth factors between 1.5 and 1.9 (depending on dry particle size consistent with ammonium sulfate or non-neutralized sulfates as major component was always found. In marine air masses and for larger sizes within the sub-micrometer range (Dp=250 and 350 nm, a sea salt fraction with growth factors between 2.0 and 2.1 was also observed. For all other air masses, the more hygroscopic particle fraction in the sub-micrometer size range was mostly accompanied by a less hygroscopic particle fraction with growth factors between 1.20 and 1.55 depending on both the continental sources and the dry particle size. Number fractions of this particle group varied between 4 and 39% depending on dry particle size and air mass

  15. Rapid stimulation of fluid-phase endocytosis and exocytosis by insulin, insulin-like growth factor-I, and epidermal growth factor in KB cells.

    Science.gov (United States)

    Miyata, Y; Hoshi, M; Koyasu, S; Kadowaki, T; Kasuga, M; Yahara, I; Nishida, E; Sakai, H

    1988-09-01

    Effects of growth factors on fluid-phase endocytosis and exocytosis in human epidermoid carcinoma KB cells were examined by measuring horseradish peroxidase (HRP) as a marker. Insulin, insulin-like growth factor-I (IGF-I), and epidermal growth factor (EGF) promoted HRP accumulation. They also stimulated the efflux of the preloaded HRP from the cells. From these results it follows that these growth factors stimulate the influx as well as the efflux of HRP, because the accumulation rate is the sum of the influx rate and the efflux rate. The stimulation of both HRP accumulation and HRP efflux was rapidly induced within 2-4 min of the addition of growth factors and persisted for at least 60 min. The concentrations eliciting half-maximal stimulatory effects of insulin, IGF-I, and EGF were about 5 X 10(-7), 1 X 10(-9), and 5 X 10(-10) M, respectively. aIR-3 (anti-type I IGF receptor antibody) completely blocked the stimulation of HRP accumulation by IGF-I but very slightly inhibited the stimulation by insulin. The 528 IgG (anti-EGF receptor antibody) inhibited the stimulation of HRP accumulation by EGF. These results indicated that each of these growth factors stimulates the HRP accumulation mediated by the corresponding (homologous) growth factor receptors. The rapid stimulation of fluid-phase influx and efflux may constitute one of the common early cellular responses to growth factors.

  16. Describing the growth and rapid weight gain of urban Australian Aboriginal infants.

    Science.gov (United States)

    Webster, Vana; Denney-Wilson, Elizabeth; Knight, Jennifer; Comino, Elizabeth

    2013-04-01

    The aims of this paper are to describe the growth of urban Australian Aboriginal infants from birth to 24 months of age and to identify the proportion of these infants experiencing rapid weight gain (RWG) and overweight/obesity. The Gudaga Study is a longitudinal birth cohort of 159 Australian Aboriginal children born on the urban fringe of Sydney. Birthweight and length were extracted from hospital data. Children with a birthweight >1500 grams were included in the analysis (n = 157). Weight, length and head circumference were measured at 2-3 weeks and then six-monthly until 24 months of age. Age- and gender-specific Z-scores were determined from the Centers for Disease Control (CDC) 2000 growth charts for weight, length, head circumference and body mass index (BMI). The proportion of children experiencing RWG (an increase in weight-for-age Z-scores ≥0.67 between birth and 12 months) was calculated. The association between RWG and ≥85th CDC percentile for BMI at 24 months was tested using Pearson's χ². The mean weight of Gudaga infants was less than the CDC mean length-for-age at birth and 2-3 weeks of age but greater than CDC mean length-for-age and weight-for-age at 18 and 24 months of age. Overall, 42 infants (34.4%) experienced RWG, and 45 infants (36.9%) were overweight/obese at 24 months of age. A greater proportion of those who experienced RWG (61.9%) were overweight/obese at 24 months than those who did not experience RWG (23.8%). Our study suggests a concerning proportion of urban Indigenous infants experience RWG and overweight/obesity in early childhood.

  17. Effects of submicron ammonium sulfate particles on the growth and yield of komatsuna (Brassica rapa L. var. perviridis)

    Science.gov (United States)

    Motai, Akira; Nakaba, Satoshi; Lenggoro, I. Wuled; Watanabe, Makoto; Wada, Yoshiharu; Izuta, Takeshi

    2017-11-01

    The aim of this study was to determine the effects of submicron ammonium sulfate (AS) particles on komatsuna (Brassica rapa L. cv. Hakkei) plants. First, we optimized a leaf-washing method to measure the amount of AS particles deposited on the leaf surface of the plants. Then, we used this method to determine the retention time of particles deposited on the leaf surface of the plants. We also investigated the effects of AS particles on the growth and yield of the plants. Almost all the AS particles deposited on the leaf surface were removed within 1 min washing time with ultrapure water, and ion leaching from the leaf was relatively slow but continuous during the leaf-washing procedure. On the basis of these results, we determined that 1 min was a suitable washing time to remove most of the AS particles while minimizing the influence of ion leaching from the leaf. The amount of particulate SO42- deposited on the leaf surface decreased over time, probably because AS particles deposited on the leaf surface deliquesced, allowing ions such as SO42- in the deliquescence solution to be absorbed into the leaf. The plants were grown and exposed to AS particles for 16 days in naturally lit phytotrons. The daily mean increase in the concentration of SO42- in PM2.5 by the exposure to AS particles was 22.5 μg m-3 in the phytotrons. The growth and yield of the plants were significantly reduced by the exposure to AS particles. The exposure to AS particles did not affect the leaf concentrations of nitrogen and chlorophyll, but significantly reduced stomatal conductance. Therefore, stomatal closure is one of the reasons for the AS particle-induced reductions in the growth and yield of komatsuna plants.

  18. Gas dwell time control for rapid and long lifetime growth of single-walled carbon nanotube forests.

    Science.gov (United States)

    Yasuda, Satoshi; Futaba, Don N; Yamada, Takeo; Yumura, Motoo; Hata, Kenji

    2011-09-14

    The heat history (i.e., "dwell time") of the carbon source gas was demonstrated as a vital parameter for very rapid single-walled carbon nanotube (SWNT) forest growth with long lifetime. When the dwell time was raised to 7 s from the 4 s used for standard growth, the growth rate increased to 620 μm/min: a benchmark for SWNT forest growth on substrates. Importantly, the increase in growth rate was achieved without decreasing either the growth lifetime or the quality of the SWNTs. We interpret that the conversion rate of the carbon feedstock into CNTs was selectively increased (versus catalyst deactivation) by delivering a thermally decomposed carbon source with the optimum thermal history to the catalyst site.

  19. On the Growth of Ternary System HNO3/H2SO4/H2O Aerosol Particles in the Stratosphere

    Science.gov (United States)

    Hamill, Patrick; Tabazadeh, A.; Kinne, S.; Toon, O. B.; Turco, R. P.

    1996-01-01

    We present a study of the growth of ternary solution (nitric acid, sulfuric acid and water) droplets in the stratosphere. The growth mechanism is hetero-molecular condensation in which the particle is assumed to be in equilibrium with environmental water vapor. Model results are in reasonable agreement with the averaged extinction ratio obtained by the SAM II satellite system.

  20. Effect of Gravity Level on the Particle Shape and Size During Zeolite Crystal Growth

    Science.gov (United States)

    Song, Hong-Wei; Ilebusi, Olusegun J.; Sacco, Albert, Jr.

    2003-01-01

    A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model predictions compare favorably with the data of space experiment of zeolites grown in space.

  1. Laboratory Studies of the Role of Amines in Particle Formation, Growth and Climate

    Energy Technology Data Exchange (ETDEWEB)

    Finlayson-Pitts, Barbara J. [Univ. of California, Irvine, CA (United States)

    2015-02-07

    Organosulfur compounds have a variety of sources, particularly biological processes in the oceans. Their oxidation in air forms sulfur dioxide, which is further oxidized to sulfuric acid, as well as methanesulfonic acid (MSA). While sulfuric acid is a well known precursor to particles in air, MSA had not been regarded as a source of new particle formation. Laboratory studies were carried out under this project that showed MSA forms new particles quite efficiently in the presence of amines and water vapor. The data could be reproduced with a relatively simple kinetics model representing cluster formation and growth, which is promising for representing this chemistry in global climate models. The initial steps in the kinetics scheme are based on quantum chemical calculations of likely clusters. The organosulfur chemistry was introduced into an atmospheric model for southern California and used to predict the impact of going to a fossil-fuel free world in which anthropogenic emissions of SO2 are removed, but the natural processes remain.

  2. The roles of sulfuric acid in new particle formation and growth in the mega-city of Beijing

    Directory of Open Access Journals (Sweden)

    D. L. Yue

    2010-05-01

    Full Text Available Simultaneous measurements of gaseous sulfuric acid and particle number size distributions were performed to investigate aerosol nucleation and growth during CAREBeijing-2008. The analysis of the measured aerosols and sulfuric acid with an aerosol dynamic model shows the dominant role of sulfuric acid in new particle formation (NPF process but also in the subsequent growth in Beijing. Based on the data of twelve NPF events, the average formation rates (2–13 cm−3 s−1 show a linear correlation with the sulfuric acid concentrations (R2=0.85. Coagulation seems to play a significant role in reducing the number concentration of nucleation mode particles with the ratio of the coagulation loss to formation rate being 0.41±0.16. The apparent growth rates vary from 3 to 11 nm h−1. Condensation of sulfuric acid and its subsequent neutralization by ammonia and coagulation contribute to the apparent particle growth on average 45±18% and 34±17%, respectively. The 30% higher concentration of sulfate than organic compounds in particles during the seven sulfur-rich NPF events but 20% lower concentration of sulfate during the five sulfur-poor type suggest that organic compounds are an important contributor to the growth of the freshly nucleated particles, especially during the sulfur-poor cases.

  3. Monte Carlo study on abnormal growth of Goss grains in Fe-3%Si steel induced by second-phase particles

    Science.gov (United States)

    Xin, Dong-qun; He, Cheng-xu; Gong, Xue-hai; Wang, Hao; Meng, Li; Ma, Guang; Hou, Peng-fei; Zhang, Wen-kang

    2016-12-01

    The selective abnormal growth of Goss grains in magnetic sheets of Fe-3%Si (grade Hi-B) induced by second-phase particles (AlN and MnS) was studied using a modified Monte Carlo Potts model. The starting microstructures for the simulations were generated from electron backscatter diffraction (EBSD) orientation imaging maps of recrystallized samples. In the simulation, second-phase particles were assumed to be randomly distributed in the initial microstructures and the Zener drag effect of particles on Goss grain boundaries was assumed to be selectively invalid because of the unique properties of Goss grain boundaries. The simulation results suggest that normal growth of the matrix grains stagnates because of the pinning effect of particles on their boundaries. During the onset of abnormal grain growth, some Goss grains with concave boundaries in the initial microstructure grow fast abnormally and other Goss grains with convex boundaries shrink and eventually disappear.

  4. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation.

    Science.gov (United States)

    Khan, Naeem; Bano, Asghari

    2016-01-01

    The investigation evaluated the role of plant growth promoting rhizobacteria (PGPR) and Ag-nano particle on the growth and metabolism of maize irrigated with municipal wastewater (MW). Three PGPR isolated from MW were identified on the basis of 16S-rRNA gene sequence analyses as Pseudomonas sp., Pseudomonas fluorescence, and Bacillus cereus. The municipal waste water was used to irrigate the maize seeds inoculated with 3 isolated PGPR. The isolated PGPR had catalase and oxidase enzymes, solubilize insoluble bound phosphate and exhibit antifungal and antibacterial activities. The colony forming unit (cfu) of the PGPR was inhibited by Ag-nano particle, but was stimulated by the municipal wastewater. The Ag-nano particles augmented the PGPR induced increase in root area and root length. The root-shoot ratio was also changed with the Ag-nano particles. The plants irrigated with municipal wastewater had higher activities of peroxidase and catalase which were further augmented by Ag-nano particle. The Ag- nano particle application modulated level of ABA (34%), IAA (55%), and GA (82%), increased proline production (70%) and encountered oxidative stress and augmented the bioremediation potential of PGPR for Pb, Cd, and Ni. Municipal wastewater needs to be treated with PGPR and Ag nano particle prior to be used for irrigation. This aims for the better growth of the plant and enhanced bioremediation of toxic heavy metals.

  5. Rapid Formation of Black Holes in Galaxies: A Self-limiting Growth Mechanism

    Science.gov (United States)

    Li, Zhi; Sellwood, J. A.; Shen, Juntai

    2017-11-01

    We present high-quality fluid dynamical simulations of isothermal gas flows in a rotating barred potential. We show that a large quantity of gas is driven right into the nucleus of a galaxy when the model lacks a central mass concentration, but the inflow stalls at a nuclear ring in comparison simulations that include a central massive object. The radius of the nuclear gas ring increases linearly with the mass of the central object. We argue that bars drive gas right into the nucleus in the early stages of disk galaxy formation, where a nuclear star cluster and perhaps a massive black hole could be created. The process is self-limiting, however, because inflow stalls at a nuclear ring once the mass of gas and stars in the nucleus exceeds ˜1% of the disk mass, which shuts off rapid growth of the black hole. We briefly discuss the relevance of these results to the seeding of massive black holes in galaxies, the merger model for quasar evolution, and the existence of massive black holes in disk galaxies that lack a significant classical bulge.

  6. Rapid Startup and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin; Vega, Leticia

    2014-01-01

    The Membrane Aerated Bioreactor (MABR) is an attached-growth biological system for simultaneous nitrification and denitrification. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal. Implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to two weeks and that the surface area to volume ratio baseline used in the Alternative Water Processor (AWP) test was higher than what was needed to remove the organic carbon and ammonium from the system.

  7. The Seneca effect why growth is slow but collapse is rapid

    CERN Document Server

    Bardi, Ugo

    2017-01-01

    The essence of this book can be found in a line written by the ancient Roman Stoic Philosopher Lucius Annaeus Seneca: "Fortune is of sluggish growth, but ruin is rapid". This sentence summarizes the features of the phenomenon that we call "collapse," which is typically sudden and often unexpected, like the proverbial "house of cards." But why are such collapses so common, and what generates them? Several books have been published on the subject, including the well-known "Collapse" by Jared Diamond (2005), "The collapse of complex societies" by Joseph Tainter (1998) and "The Tipping Point," by Malcom Gladwell (2000). Why The Seneca Effect? This book is an ambitious attempt to pull these various strands together by describing collapse from a multi-disciplinary viewpoint. The reader will discover how collapse is a collective phenomenon that occurs in what we call today "complex systems," with a special emphasis on system dynamics and t he concept of "feedback." From this foundation, Bardi applies the...

  8. Rapidity and species dependence of particle production at largetransverse momentum for d+Au collisions at psNN = 200 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Abelev, B.I.; Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett,J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Bai,Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellingeri-Laurikainen, A.; Bellwied, R.; Benedosso, F.; Bhardwaj, S.; Bhasin, A.; Bhati, A.K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L.C.; Blyth, S.-L.; Bonner, B.E.; Botje, M.; Bouchet, J.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai,X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Castillo, J.; Catu,O.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen,H.F.; Chen, J.H.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cosentino, M.R.; Cramer, J.G.; Crawford,H.J.; Das, D.; Das, S.; Daugherity, M.; de Moura, M.M.; Dedovich, T.G.; DePhillips, M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Djawotho,P.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov,L.G.; Emelianov, V.; Engelage,J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch,E.; Fine, V.; Fisyak, Y.; Fu, J.; Gagliardi, C.A.; Gaillard, L.; Ganti,M.S.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.S.; Gorbunov, Y.G.; Gos,H.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guimaraes, K.S.F.F.; Guo,Y.; Gupta, N.; Gutierrez, T.D.; Haag, B.; Hallman, T.J.; Hamed, A.; Harris, J.W.; He, W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte,B.; Hirsch, A.; Hjort, E.; Hoffman, A.M.; Hoffmann, G.W.; Horner, M.J.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Jacobs,P.; Jacobs, W.W.; Jakl, P.; Jia, F.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kapitan, J.; Kaplan, M.; Keane, D.; Kechechyan, A.; Khodyrev, V.Yu.; Kim, B.C.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klein,S.R.; Kocoloski, A.; Koetke, D.D.; et al.

    2006-12-19

    We determine rapidity asymmetry in the production of charged pions, protons and anti-protons for large transverse momentum (p{sub T}) for d+Au collisions at {radical}s{sub NN} = 200 GeV. The rapidity asymmetry is defined as the ratio of particle yields at backward rapidity (Au beam direction or -ve rapidity) to those at forward rapidity (d beam direction or +ve rapidity). The identified hadrons are measured in the rapidity regions |y| < 0.5 and 0.5 < |y| < 1.0 for the p{sub T} range 2.5 < p{sub T} < 10 GeV/c. We observe significant rapidity asymmetry for charged pion and proton+anti-proton production in both rapidity regions. The asymmetry is larger for 0.5 < |y| < 1.0 than for |y| < 0.5 and is almost independent of particle type. The measurements are compared to various model predictions employing multiple scattering, energy loss, nuclear shadowing, saturation effects, and recombination, and also to a phenomenological parton model. We find that asymmetries are sensitive to model parameters and show model-preference. The rapidity dependence of {pi}{sup -}/{pi}{sup +} and {bar p}/p ratios in peripheral d+Au and forward neutron-tagged events are used to study the contributions of valence quarks and gluons to particle production at high p{sub T}. The results are compared to calculations based on NLO pQCD and other measurements of quark fragmentation functions.

  9. Viscosity of α-pinene secondary organic material and implications for particle growth and reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Renbaum-Wolff, Lindsay; Grayson, James W.; Bateman, Adam P.; Kuwata, Mikinori; Sellier, Mathieu; Murray, Benjamin J.; Shilling, John E.; Martin, Scot T.; Bertram, Allan K.

    2013-05-14

    Particles composed of secondary organic material (SOM) are abundant in the lower troposphere and play important roles in climate, air quality, and health. The viscosity of these particles is a fundamental property that is presently poorly quantified for conditions relevant to the lower troposphere. Using two new techniques, namely a bead-mobility technique and a poke-flow technique, in conjunction with simulations of fluid flow, we measure the viscosity of the watersoluble component of SOM produced by α-pinene ozonolysis. The viscosity is comparable to that of honey at 90% relative humidity (RH), comparable to that of peanut butter at 70% RH and greater than or comparable to that of bitumen for ≤ 30% RH, implying that the studied SOM ranges from liquid to semisolid/solid at ambient relative humidities. With the Stokes-Einstein relation, the measured viscosities further imply that the growth and evaporation of SOM by the exchange of organic molecules between the gas and condensed phases may be confined to the surface region when RH ≤ 30%, suggesting the importance of an adsorption-type mechanism for partitioning in this regime. By comparison, for RH ≥ 70% partitioning of organic molecules may effectively occur by an absorption mechanism throughout the bulk of the particle. Finally, the net uptake rates of semi-reactive atmospheric oxidants such as O3 are expected to decrease by two to five orders of magnitude for a change in RH from 90% to ≤ 30% RH, with possible implications for the rates of chemical aging of SOM particles in the atmosphere.

  10. Synthetic virus-like particles target dendritic cell lipid rafts for rapid endocytosis primarily but not exclusively by macropinocytosis.

    Directory of Open Access Journals (Sweden)

    Rajni Sharma

    Full Text Available DC employ several endocytic routes for processing antigens, driving forward adaptive immunity. Recent advances in synthetic biology have created small (20-30 nm virus-like particles based on lipopeptides containing a virus-derived coiled coil sequence coupled to synthetic B- and T-cell epitope mimetics. These self-assembling SVLP efficiently induce adaptive immunity without requirement for adjuvant. We hypothesized that the characteristics of DC interaction with SVLP would elaborate on the roles of cell membrane and intracellular compartments in the handling of a virus-like entity known for its efficacy as a vaccine. DC rapidly bind SVLP within min, co-localised with CTB and CD9, but not caveolin-1. In contrast, internalisation is a relatively slow process, delivering SVLP into the cell periphery where they are maintained for a number of hrs in association with microtubules. Although there is early association with clathrin, this is no longer seen after 10 min. Association with EEA-1(+ early endosomes is also early, but proteolytic processing appears slow, the SVLP-vesicles remaining peripheral. Association with transferrin occurs rarely, and only in the periphery, possibly signifying translocation of some SVLP for delivery to B-lymphocytes. Most SVLP co-localise with high molecular weight dextran. Uptake of both is impaired with mature DC, but there remains a residual uptake of SVLP. These results imply that DC use multiple endocytic routes for SVLP uptake, dominated by caveolin-independent, lipid raft-mediated macropinocytosis. With most SVLP-containing vesicles being retained in the periphery, not always interacting with early endosomes, this relates to slow proteolytic degradation and antigen retention by DC. The present characterization allows for a definition of how DC handle virus-like particles showing efficacious immunogenicity, elements valuable for novel vaccine design in the future.

  11. Plant Growth and Development: An Outline for a Unit Structured Around the Life Cycle of Rapid-Cycling Brassica Rapa.

    Science.gov (United States)

    Becker, Wayne M.

    This outline is intended for use in a unit of 10-12 lectures on plant growth and development at the introductory undergraduate level as part of a course on organismal biology. The series of lecture outlines is structured around the life cycle of rapid-cycling Brassica rapa (RCBr). The unit begins with three introductory lectures on general plant…

  12. Early rapid growth : no association with later cognitive functions in children born not small for gestational age

    NARCIS (Netherlands)

    Beyerlein, Andreas; Ness, Andrew R.; Streuling, Ina; Hadders-Algra, Mijna; von Kries, Ruediger

    Background: There is an association between rapid growth in early life and overweight in childhood. This adverse association needs to be balanced against potential beneficial effects on cognitive functioning observed in children who are born small for gestational age (SGA). Objective: We examined

  13. Frequent ultrafine particle formation and growth in Canadian Arctic marine and coastal environments

    Directory of Open Access Journals (Sweden)

    D. B. Collins

    2017-11-01

    Full Text Available The source strength and capability of aerosol particles in the Arctic to act as cloud condensation nuclei have important implications for understanding the indirect aerosol–cloud effect within the polar climate system. It has been shown in several Arctic regions that ultrafine particle (UFP formation and growth is a key contributor to aerosol number concentrations during the summer. This study uses aerosol number size distribution measurements from shipboard expeditions aboard the research icebreaker CCGS Amundsen in the summers of 2014 and 2016 throughout the Canadian Arctic to gain a deeper understanding of the drivers of UFP formation and growth within this marine boundary layer. UFP number concentrations (diameter > 4 nm in the range of 101–104 cm−3 were observed during the two seasons, with concentrations greater than 103 cm−3 occurring more frequently in 2016. Higher concentrations in 2016 were associated with UFP formation and growth, with events occurring on 41 % of days, while events were only observed on 6 % of days in 2014. Assessment of relevant parameters for aerosol nucleation showed that the median condensation sink in this region was approximately 1.2 h−1 in 2016 and 2.2 h−1 in 2014, which lie at the lower end of ranges observed at even the most remote stations reported in the literature. Apparent growth rates of all observed events in both expeditions averaged 4.3 ± 4.1 nm h−1, in general agreement with other recent studies at similar latitudes. Higher solar radiation, lower cloud fractions, and lower sea ice concentrations combined with differences in the developmental stage and activity of marine microbial communities within the Canadian Arctic were documented and help explain differences between the aerosol measurements made during the 2014 and 2016 expeditions. These findings help to motivate further studies of biosphere–atmosphere interactions within the Arctic marine environment to

  14. First solar system solids to proto-planets: A Rapid growth in a few million years

    Science.gov (United States)

    Goswami, Jitendranath

    2016-07-01

    First solar system solids to proto-planets: A Rapid growth in a few million years J. N. Goswami Physical Research Laboratory Ahmedabad-380009, India Collapse of a dense molecular cloud led to the formation of the proto-Sun surrounded by a high temperature gaseous nebula. The nebula settled down to the mid-plane and formation of the first solar system solids, refractory oxides and silicates, such as Corundum, Perovskite, Melilite took place, that was followed by formation of more common silicate minerals. Laboratory studies of primitive meteorites support this scenario and also provide evidence for correlated presence of several now-extinct short-lived nuclides (e.g. 41Ca, 26Al, 60Fe) at the time of formation of the first solar system solids. Presence of 60Fe in early solar system solids suggests injection of freshly synthesized nuclides from a stellar source (a supernova) into the proto-solar cloud that also triggered its collapse and led to formation of our solar system. Presence of 41Ca (half-life: 0.1Ma) in early solar system solids suggest a time scale of less than a million years for the collapse of the proto-solar cloud and formation of proto-Sun and the first solar system solids. The gradual evolution of larger solar system objects, up to planetesimals (represented by the asteroids), took place at a rapid pace within a time scale of a few million years. Some of the asteroids retain their pristine nature (e.g. parent bodies of carbonaceous chondrite), while others, underwent melting and differentiation due to internal heating. Harold Urey proposed radioactive 26Al as a possible heat source that was confirmed by experiment only in 1999. Irons and stony iron meteorites are fragments from core regions of differentiated asteroids. Extensive computer simulation studies suggest that an explosive stellar event (e.g. supernova) can indeed trigger the collapse of the proto-solar cloud and also inject freshly synthesized short-lived nuclides into it within a relatively

  15. Two-particle rapidity correlations between relativistic particles in central collisions of {sup 197}Au nuclei in emulsion at 11.6 A GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Abdurakhmanov, U.U.; Gulamov, K.G.; Navotny, V.Sh. [Fizika-Solntse Research and Production Association, Uzbek Academy of Sciences, Institute for Physics and Technology, Tashkent (Uzbekistan)

    2016-06-15

    It is shown that in central collisions of {sup 197}Au nuclei with heavy emulsion nuclei at 11.6 AGeV/c two-particles pseudorapidity correlations for produced particles in terms of correlation functions demonstrate predominantly long-range behaviour in contrast to nucleon-nucleon interactions. The experimental data are compared with calculations based on the FRITIOF-M model and the model of independent emission of particles. (orig.)

  16. Fullerenic particles for the growth of carbon nanowall-like flowers on multilayer graphene

    Science.gov (United States)

    Guermoune, Abdeladim; Hilke, Michael

    2016-04-01

    Carbon nanowalls (CNWs) are composed of stacks of planar graphene layers with open edges that grow almost vertically on a substrate. Their morphology makes them a promising material for field emission, batteries, light absorbers and enhanced detectors for electrochemical and gas sensors. However, three main challenges prevent the fast development of CNWs: the synthesis is energetically demanding, poorly transferable to suitable substrates, and the growth mechanism is not understood. Here, we present a simple method to grow carbon nanowall-like flowers on multilayer graphene through fullerenic particles using thermal CVD and copper. The hydrophobicity of the fabricated hybrid material facilitates its transfer to any substrate. Our findings can boost the understanding of the physical properties and the practical applicability of CNWs. At the same time, our work is a concrete example of the role of multilayer graphene as a platform to one-step synthesis of new transferable graphenic materials.

  17. Fullerenic particles for the growth of carbon nanowall-like flowers on multilayer graphene.

    Science.gov (United States)

    Guermoune, Abdeladim; Hilke, Michael

    2016-04-29

    Carbon nanowalls (CNWs) are composed of stacks of planar graphene layers with open edges that grow almost vertically on a substrate. Their morphology makes them a promising material for field emission, batteries, light absorbers and enhanced detectors for electrochemical and gas sensors. However, three main challenges prevent the fast development of CNWs: the synthesis is energetically demanding, poorly transferable to suitable substrates, and the growth mechanism is not understood. Here, we present a simple method to grow carbon nanowall-like flowers on multilayer graphene through fullerenic particles using thermal CVD and copper. The hydrophobicity of the fabricated hybrid material facilitates its transfer to any substrate. Our findings can boost the understanding of the physical properties and the practical applicability of CNWs. At the same time, our work is a concrete example of the role of multilayer graphene as a platform to one-step synthesis of new transferable graphenic materials.

  18. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    Science.gov (United States)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    2017-07-01

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural diverse polymers which are capable to estimate green algae growth inhibition (EC50). The model (N = 43, R 2  = 0.73, RMSE = 0.28) is a regression-based decision tree using one structural descriptor for each of three polymer classes separated based on charge. The QSAR is applicable to linear homo polymers as well as copolymers and does not require information on the size of the polymer particle or underlying core material. Highly branched polymers, non-nitrogen cationic polymers and polymeric surfactants are not included in the model and thus cannot be evaluated. The model works best for cationic and non-ionic polymers for which cellular adsorption, disruption of the cell wall and photosynthesis inhibition were the mechanisms of action. For anionic polymers, specific properties of the polymer and test characteristics need to be known for detailed assessment. The data and QSAR results for anionic polymers, when combined with molecular dynamics simulations indicated that nutrient depletion is likely the dominant mode of toxicity. Nutrient depletion in turn, is determined by the non-linear interplay between polymer charge density and backbone flexibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Rapid, bilateral changes in growth rate and curvature during gravitropism of cucumber hypocotyls: implications for mechanism of growth control

    Science.gov (United States)

    Cosgrove, D. J.

    1990-01-01

    The growth response of etiolated cucumber (Cucumis sativus L.) hypocotyls to gravitropic stimulation was examined by means of time-lapse photography and high-resolution analysis of surface expansion and curvature. In comparison with video analysis, the technique described here has five- to 20-fold better resolution; moreover, the mathematical fitting method (cubic splines) allows direct estimation of local and integrated curvature. After switching seedlings from a vertical to horizontal position, both upper and lower surfaces of the stem reacted after a lag of about 11 min with a two- to three-fold increase in surface expansion rate on the lower side and a cessation of expansion, or slight compression, on the upper surface. This growth asymmetry was initiated simultaneously along the length of the hypocotyl, on both upper and lower surfaces, and did not migrate basipetally from the apex. Later stages in the gravitropic response involved a complex reversal of the growth asymmetry, with the net result being a basipetal migration of the curved region. This secondary growth reversal may reflect oscillatory and/or self-regulatory behaviour of growing cells. With some qualifications, the kinetics and pattern of growth response are consistent with a mechanism involving hormone redistribution, although they do not prove such a mechanism. The growth kinetics require a growth mechanism which can be stimulated by two- to three-fold or completely inhibited within a few minutes.

  20. Charged-particle multiplicity density at mid-rapidity in central Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Aamodt, K; Abrahantes Quintana, A; Adamova, D; Adare, A M; Aggarwal, M M; Aglieri Rinella, G; Agocs, A G; Aguilar Salazar, S; Ahammed, Z; Ahmad Masoodi, A; Ahmad, N; Ahn, S U; Akindinov, A; Aleksandrov, D; Alessandro, B; Alfaro Molina, R; Alici, A; Alkin, A; Almaraz Avina, E; Alt, T; Altini, V; Altinpinar, S; Altsybeev, I; Andrei, C; Andronic, A; Anguelov, V; Anson, C; Anticic, T; Antinori, F; Antonioli, P; Aphecetche, L; Appelshauser, H; Arbor, N; Arcelli, S; Arend, A; Armesto, N; Arnaldi, R; Aronsson, T; Arsene, I C; Asryan, A; Augustinus, A; Averbeck, R; Awes, T C; Aysto, J; Azmi, M D; Bach, M; Badala, A; Baek, Y W; Bagnasco, S; Bailhache, R; Bala, R; Baldini-Ferroli, R; Baldisseri, A; Baldit, A; Baltasar Dos Santos Pedrosa, F; Ban, J; Barbera, R; Barile, F; Barnafoldi, G G; Barnby, L S; Barret, V; Bartke, J; Basile, M; Bastid, N; Bathen, B; Batigne, G; Batyunya, B; Baumann, C; Bearden, I G; Beck, H; Belikov, I; Bellini, F; Bellwied, R; Belmont-Moreno, E; Beole, S; Berceanu, I; Bercuci, A; Berdermann, E; Berdnikov, Y; Bergmann, C; Betev, L; Bhasin, A; Bhati, A K; Bianchi, L; Bianchi, N; Bianchin, C; Bielcik, J; Bielcikova, J; Bilandzic, A; Biolcati, E; Blanc, A; Blanco, F; Blanco, F; Blau, D; Blume, C; Boccioli, M; Bock, N; Bogdanov, A; Boggild, H; Bogolyubsky, M; Boldizsar, L; Bombara, M; Bombonati, C; Book, J; Borel, H; Borissov, A; Bortolin, C; Bose, S; Bossu, F; Botje, M; Bottger, S; Boyer, B; Braun-Munzinger, P; Bravina, L; Bregant, M; Breitner, T; Broz, M; Brun, R; Bruna, E; Bruno, G E; Budnikov, D; Buesching, H; Bugaiev, K; Busch, O; Buthelezi, Z; Caffarri, D; Cai, X; Caines, H; Calvo Villar, E; Camerini, P; Canoa Roman, V; Cara Romeo, G; Carena, F; Carena, W; Carminati, F; Casanova Diaz, A; Caselle, M; Castillo Castellanos, J; Catanescu, V; Cavicchioli, C; Cepila, J; Cerello, P; Chang, B; Chapeland, S; Charvet, J L; Chattopadhyay, S; Chattopadhyay, S; Cherney, M; Cheshkov, C; Cheynis, B; Chiavassa, E; Chibante Barroso, V; Chinellato, D D; Chochula, P; Chojnacki, M; Christakoglou, P; Christensen, C H; Christiansen, P; Chujo, T; Cicalo, C; Cifarelli, L; Cindolo, F; Cleymans, J; Coccetti, F; Coffin, J P; Coli, S; Conesa Balbastre, G; Conesa del Valle, Z; Constantin, P; Contin, G; Contreras, J G; Cormier, T M; Corrales Morales, Y; Cortes Maldonado, I; Cortese, P; Cosentino, M R; Costa, F; Cotallo, M E; Crescio, E; Crochet, P; Cuautle, E; Cunqueiro, L; D'Erasmo, G; Dainese, A; Dalsgaard, H H; Danu, A; Das, D; Das, I; Das, K; Dash, A; Dash, S; De, S; De Azevedo Moregula, A; de Barros, G O V; De Caro, A; de Cataldo, G; de Cuveland, J; De Falco, A; De Gruttola, D; De Marco, N; De Pasquale, S; De Remigis, R; de Rooij, R; Debski, P R; Del Castillo Sanchez, E; Delagrange, H; Delgado Mercado, Y; Dellacasa, G; Deloff, A; Demanov, V; Denes, E; Deppman, A; Di Bari, D; Di Giglio, C; Di Liberto, S; Di Mauro, A; Di Nezza, P; Dietel, T; Divia, R; Djuvsland, O; Dobrin, A; Dobrowolski, T; Dominguez, I; Donigus, B; Dordic, O; Driga, O; Dubey, A K; Dubuisson, J; Ducroux, L; Dupieux, P; Dutta Majumdar, A K; Dutta Majumdar, M R; Elia, D; Emschermann, D; Engel, H; Erdal, H A; Espagnon, B; Estienne, M; Esumi, S; Evans, D; Evrard, S; Eyyubova, G; Fabjan, C W; Fabris, D; Faivre, J; Falchieri, D; Fantoni, A; Fasel, M; Fearick, R; Fedunov, A; Fehlker, D; Fekete, V; Felea, D; Feofilov, G; Fernandez Tellez, A; Ferretti, A; Ferretti, R; Figiel, J; Figueredo, M A S; Filchagin, S; Fini, R; Finogeev, D; Fionda, F M; Fiore, E M; Floris, M; Foertsch, S; Foka, P; Fokin, S; Fragiacomo, E; Fragkiadakis, M; Frankenfeld, U; Fuchs, U; Furano, F; Furget, C; Fusco Girard, M; Gaardhoje, J J; Gadrat, S; Gagliardi, M; Gago, A; Gallio, M; Gangadharan, D R; Ganoti, P; Ganti, M S; Garabatos, C; Garcia-Solis, E; Garishvili, I; Gemme, R; Gerhard, J; Germain, M; Geuna, C; Gheata, A; Gheata, M; Ghidini, B; Ghosh, P; Gianotti, P; Girard, M R; Giraudo, G; Giubellino, P; Gladysz-Dziadus, E; Glassel, P; Gomez, R; Ferreiro, E G; Gonzalez Santos, H; González-Trueba, L H; González-Zamora, P; Gorbunov, S; Gotovac, S; Grabski, V; Grajcarek, R; Grelli, A; Grigoras, A; Grigoras, C; Grigoriev, V; Grigoryan, A; Grigoryan, S; Grinyov, B; Grion, N; Gros, P; Grosse-Oetringhaus, J F; Grossiord, J Y; Grosso, R; Guber, F; Guernane, R; Guerra Gutierrez, C; Guerzoni, B; Gulbrandsen, K; Gunji, T; Gupta, A; Gupta, R; Gutbrod, H; Haaland, O; Hadjidakis, C; Haiduc, M; Hamagaki, H; Hamar, G; Harris, J W; Hartig, M; Hasch, D; Hasegan, D; Hatzifotiadou, D; Hayrapetyan, A; Heide, M; Heinz, M; Helstrup, H; Herghelegiu, A; Hernandez, C; Herrera Corral, G; Herrmann, N; Hetland, K F; Hicks, B; Hille, P T; Hippolyte, B; Horaguchi, T; Hori, Y; Hristov, P; Hrivnacova, I; Huang, M; Huber, S; Humanic, T J; Hwang, D S; Ichou, R; Ilkaev, R; Ilkiv, I; Inaba, M; Incani, E; Innocenti, G M; Innocenti, P G; Ippolitov, M; Irfan, M; Ivan, C; Ivanov, A; Ivanov, M; Ivanov, V; Jacholkowski, A; Jacobs, P M; Jancurova, L; Jangal, S; Janik, R; Jena, S; Jirden, L; Jones, G T; Jones, P G; Jovanovic, P; Jung, H; Jung, W; Jusko, A; Kalcher, S; Kalinak, P; Kalisky, M; Kalliokoski, T; Kalweit, A; Kamermans, R; Kanaki, K; Kang, E; Kang, J H; Kaplin, V; Karavichev, O; Karavicheva, T; Karpechev, E; Kazantsev, A; Kebschull, U; Keidel, R; Khan, M M; Khan, S A; Khanzadeev, A; Kharlov, Y; Kileng, B; Kim, D J; Kim, D S; Kim, D W; Kim, H N; Kim, J H; Kim, J S; Kim, M; Kim, M; Kim, S; Kim, S H; Kirsch, S; Kisel, I; Kiselev, S; Kisiel, A; Klay, J L; Klein, J; Klein-Bosing, C; Kliemant, M; Klovning, A; Kluge, A; Knichel, M L; Koch, K; Kohler, M; Kolevatov, R; Kolojvari, A; Kondratiev, V; Kondratyeva, N; Konevskih, A; Kornas, E; Kottachchi Kankanamge Don, C; Kour, R; Kowalski, M; Kox, S; Koyithatta Meethaleveedu, G; Kozlov, K; Kral, J; Kralik, I; Kramer, F; Kraus, I; Krawutschke, T; Kretz, M; Krivda, M; Krizek, F; Krumbhorn, D; Krus, M; Kryshen, E; Krzewicki, M; Kucheriaev, Y; Kuhn, C; Kuijer, P G; Kurashvili, P; Kurepin, A; Kurepin, A B; Kuryakin, A; Kushpil, S; Kushpil, V; Kweon, M J; Kwon, Y; La Rocca, P; Ladron de Guevara, P; Lafage, V; Lara, C; Lardeux, A; Larsen, D T; Lazzeroni, C; Le Bornec, Y; Lea, R; Lee, K S; Lee, S C; Lefevre, F; Lehnert, J; Leistam, L; Lenhardt, M; Lenti, V; Leon Monzon, I; Leon Vargas, H; Levai, P; Li, X; Lien, J; Lietava, R; Lindal, S; Lindenstruth, V; Lippmann, C; Lisa, M A; Liu, L; Loenne, P I; Loggins, V R; Loginov, V; Lohn, S; Loizides, C; Loo, K K; Lopez, X; Lopez Noriega, M; Lopez Torres, E; Lovhoiden, G; Lu, X G; Luettig, P; Lunardon, M; Luparello, G; Luquin, L; Luzzi, C; Ma, K; Ma, R; Madagodahettige-Don, D M; Maevskaya, A; Mager, M; Mahapatra, D P; Maire, A; Mal'Kevich, D; Malaev, M; Maldonado Cervantes, I; Malinina, L; Malzacher, P; Mamonov, A; Manceau, L; Mangotra, L; Manko, V; Manso, F; Manzari, V; Mao, Y; Mares, J; Margagliotti, G V; Margotti, A; Marin, A; Markert, C; Martashvili, I; Martinengo, P; Martinez, M I; Martinez Davalos, A; Martinez Garcia, G; Martynov, Y; Masciocchi, S; Masera, M; Masoni, A; Massacrier, L; Mastromarco, M; Mastroserio, A; Matthews, Z L; Matyja, A; Mayani, D; Mayer, C; Mazza, G; Mazzoni, M A; Meddi, F; Menchaca-Rocha, A; Mendez Lorenzo, P; Menis, I; Mercado Perez, J; Meres, M; Mereu, P; Miake, Y; Midori, J; Milano, L; Milosevic, J; Mischke, A; Miskowiec, D; Mitu, C; Mlynarz, J; Mohanty, A K; Mohanty, B; Molnar, L; Montano Zetina, L; Monteno, M; Montes, E; Morando, M; Moreira De Godoy, D A; Moretto, S; Morsch, A; Muccifora, V; Mudnic, E; Muhuri, S; Muller, H; Munhoz, M G; Munoz, J; Musa, L; Musso, A; Nandi, B K; Nania, R; Nappi, E; Nattrass, C; Navach, F; Navin, S; Nayak, T K; Nazarenko, S; Nazarov, G; Nedosekin, A; Nendaz, F; Newby, J; Nicassio, M; Nielsen, B S; Niida, T; Nikolaev, S; Nikolic, V; Nikulin, S; Nikulin, V; Nilsen, B S; Nilsson, M S; Noferini, F; Nooren, G; Novitzky, N; Nyanin, A; Nyatha, A; Nygaard, C; Nystrand, J; Obayashi, H; Ochirov, A; Oeschler, H; Oh, S K; Oleniacz, J; Oppedisano, C; Ortiz Velasquez, A; Ortona, G; Oskarsson, A; Ostrowski, P; Otterlund, I; Otwinowski, J; Oyama, K; Ozawa, K; Pachmayer, Y; Pachr, M; Padilla, F; Pagano, P; Jayarathna, S P; Paic, G; Painke, F; Pajares, C; Pal, S; Pal, S K; Palaha, A; Palmeri, A; Pappalardo, G S; Park, W J; Patalakha, D I; Paticchio, V; Pavlinov, A; Pawlak, T; Peitzmann, T; Peresunko, D; Perez Lara, C E; Perini, D; Perrino, D; Peryt, W; Pesci, A; Peskov, V; Pestov, Y; Peters, A J; Petracek, V; Petran, M; Petris, M; Petrov, P; Petrovici, M; Petta, C; Piano, S; Piccotti, A; Pikna, M; Pillot, P; Pinazza, O; Pinsky, L; Pitz, N; Piuz, F; Piyarathna, D B; Platt, R; Ploskon, M; Pluta, J; Pocheptsov, T; Pochybova, S; Podesta-Lerma, P L M; Poghosyan, M G; Polak, K; Polichtchouk, B; Pop, A; Porteboeuf, S; Pospisil, V; Potukuchi, B; Prasad, S K; Preghenella, R; Prino, F; Pruneau, C A; Pshenichnov, I; Puddu, G; Pulvirenti, A; Punin, V; Putis, M; Putschke, J; Quercigh, E; Qvigstad, H; Rachevski, A; Rademakers, A; Rademakers, O; Radomski, S; Raiha, T S; Rak, J; Rakotozafindrabe, A; Ramello, L; Ramirez Reyes, A; Rammler, M; Raniwala, R; Raniwala, S; Rasanen, S S; Read, K F; Real, J; Redlich, K; Renfordt, R; Reolon, A R; Reshetin, A; Rettig, F; Revol, J P; Reygers, K; Ricaud, H; Riccati, L; Ricci, R A; Richter, M; Riedler, P; Riegler, W; Riggi, F; Rodriguez Cahuantzi, M; Rohr, D; Rohrich, D; Romita, R; Ronchetti, F; Rosinsky, P; Rosnet, P; Rossegger, S; Rossi, A; Roukoutakis, F; Rousseau, S; Roy, C; Roy, P; Rubio Montero, A J; Rui, R; Rivetti, A; Rusanov, I; Ryabinkin, E; Rybicki, A; Sadovsky, S; Safarik, K; Sahoo, R; Sahu, P K; Saini, J; Saiz, P; Sakai, S; Sakata, D; Salgado, C A; Samanta, T; Sambyal, S; Samsonov, V; Sanchez Castro, X; Sandor, L; Sandoval, A; Sano, M; Sano, S; Santo, R; Santoro, R; Sarkamo, J; Saturnini, P; Scapparone, E; Scarlassara, F; Scharenberg, R P; Schiaua, C; Schicker, R; Schmidt, C; Schmidt, H R; Schreiner, S; Schuchmann, S; Schukraft, J; Schutz, Y; Schwarz, K; Schweda, K; Scioli, G; Scomparin, E; Scott, P A; Scott, R; Segato, G; Selyuzhenkov, I; Senyukov, S; Seo, J; Serci, S; Serradilla, E; Sevcenco, A; Sgura, I; Shabratova, G; Shahoyan, R; Sharma, N; Sharma, S; Shigaki, K; Shimomura, M; Shtejer, K; Sibiriak, Y; Siciliano, M; Sicking, E; Siemiarczuk, T; Silenzi, A; Silvermyr, D; Simonetti, G; Singaraju, R; Singh, R; Singhal, V; Sinha, B C; Sinha, T; Sitar, B; Sitta, M; Skaali, T B; Skjerdal, K; Smakal, R; Smirnov, N; Snellings, R; Sogaard, C; Soloviev, A; Soltz, R; Son, H; Song, J; Song, M; Soos, C; Soramel, F; Spyropoulou-Stassinaki, M; Srivastava, B K; Stachel, J; Stan, I; Stefanek, G; Stefanini, G; Steinbeck, T; Steinpreis, M; Stenlund, E; Steyn, G; Stocco, D; Stock, R; Stokkevag, C H; Stolpovskiy, M; Strmen, P; Suaide, A A P; Subieta Vasquez, M A; Sugitate, T; Suire, C; Sukhorukov, M; Sumbera, M; Susa, T; Swoboda, D; Symons, T J M; Szanto de Toledo, A; Szarka, I; Szostak, A; Tagridis, C; Takahashi, J; Tapia Takaki, J D; Tauro, A; Tavlet, M; Tejeda Munoz, G; Telesca, A; Terrevoli, C; Thader, J; Thomas, D; Thomas, J H; Tieulent, R; Timmins, A R; Tlusty, D; Toia, A; Torii, H; Toscano, L; Tosello, F; Traczyk, T; Truesdale, D; Trzaska, W H; Tsuji, T; Tumkin, A; Turrisi, R; Turvey, A J; Tveter, T S; Ulery, J; Ullaland, K; Uras, A; Urban, J; Urciuoli, G M; Usai, G L; Vacchi, A; Vajzer, M; Vala, M; Valencia Palomo, L; Vallero, S; van der Kolk, N; van Leeuwen, M; Vande Vyvre, P; Vannucci, L; Vargas, A; Varma, R; Vasileiou, M; Vasiliev, A; Vechernin, V; Veldhoen, M; Venaruzzo, M; Vercellin, E; Vergara, S; Vernekohl, D C; Vernet, R; Verweij, M; Vickovic, L; Viesti, G; Vikhlyantsev, O; Vilakazi, Z; Villalobos Baillie, O; Vinogradov, A; Vinogradov, L; Vinogradov, Y; Virgili, T; Viyogi, Y P; Vodopyanov, A; Voloshin, K; Voloshin, S; Volpe, G; von Haller, B; Vranic, D; Ovrebekk, G; Vrlakova, J; Vulpescu, B; Vyushin, A; Wagner, B; Wagner, V; Wan, R; Wang, D; Wang, Y; Wang, Y; Watanabe, K; Wessels, J P; Westerhoff, U; Wiechula, J; Wikne, J; Wilde, M; Wilk, A; Wilk, G; Williams, M C S; Windelband, B; Xaplanteris Karampatsos, L; Yang, H; Yang, S; Yasnopolskiy, S; Yi, J; Yin, Z; Yokoyama, H; Yoo, I K; Yu, W; Yuan, X; Yushmanov, I; Zabrodin, E; Zach, C; Zampolli, C; Zaporozhets, S; Zarochentsev, A; Zavada, P; Zaviyalov, N; Zbroszczyk, H; Zelnicek, P; Zenin, A; Zgura, I; Zhalov, M; Zhang, X; Zhou, D; Zichichi, A; Zinovjev, G; Zoccarato, Y; Zynovyev, M

    2010-01-01

    The first measurement of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at a centre-of-mass energy per nucleon pair sqrt(sNN) = 2.76 TeV is presented. For an event sample corresponding to the most central 5% of the hadronic cross section the pseudo-rapidity density of primary charged particles at mid-rapidity is 1584 +- 4 (stat) +- 76 (sys.), which corresponds to 8.3 +- 0.4 (sys.) per participating nucleon pair. This represents an increase of about a factor 1.9 relative to pp collisions at similar collision energies, and about a factor 2.2 to central Au-Au collisions at sqrt(sNN) = 0.2 TeV. This measurement provides the first experimental constraint for models of nucleus-nucleus collisions at LHC energies.

  1. Rapid growth of phosphorus-rich olivine in mantle xenolith from Middle Atlas Mountains (Morocco, Africa)

    Science.gov (United States)

    Baziotis, Ioannis; Mavrogonatos, Konstantinos; Flemetakis, Stamatios; Papoutsa, Angeliki; Klemme, Stephan; Berndt, Jasper; Asimow, Paul

    2016-04-01

    Phosphorus(P)-rich zones in olivine may reflect incorporation of P in excess of equilibrium partitioning during rapid growth (e.g. Milman-Barris et al. 2008). We investigated a mantle xenolith from Middle Atlas Mountains (Morocco) by optical microscopy and electron microprobe. It contains spinel-bearing lherzolite and orthopyroxenite layers, cross-cut by veins dominated by glass and secondary phases including P-rich olivines. The host lava, presumed to be alkali basalt (El Messbahi et al. 2015), is present on the margins of the hand sample but not included in our thin section. The studied melt veins (MV) generally contain Ol+Gl+Cpx+Pl+Spl±Ap. Olivines in the MV have (Fo72.1-83.4) with 0.02-0.3 wt.% P2O5; olivines with P2O5 >0.1 wt.% are Fo75.3 -82.8. Some olivine grains are inclusion-free; others contain rounded glass inclusions or subhedral spinel or ilmenite inclusions. Olivines is generally found in contact with plagioclase and glass. Glass (5-15 vol%) has variable composition with P2O5 up to 1.52 wt.%, K2O 1.65-2.37 wt%, CaO 6.39-9.55 wt%, Na2O 0.78-6.70 wt% and SiO2 45.2-49.6 wt%. Where glass is in contact with matrix olivine, Fe-rich outer rims on olivine indicate mineral-melt reaction. In MgO variation diagrams, glass compositions display a coherent single trend for all oxides, with the exception of a discrete low-Na group. Clinopyroxene is present both as isolated subhedral to euhedral crystals within the MV and as replacive rims on matrix minerals. Very fine-grained dendritic clinopyroxene quench crystals up to 10 μm long are also present. Plagioclase occurs as prismatic, flow-oriented crystals parallel or sub-parallel to the layering. Spinel shows anhedral and euhedral shapes and occurs both as inclusions in olivine and as discrete grains associated with plagioclase and glass. Spinel in contact with glass shows a spongy outer rim and normal zonation towards Fe-rich rim compositions. Apatite is found mostly as very small crystals embedded in glass. High

  2. Measuring laves phase particle size and thermodynamic calculating its growth and coarsening behavior in P92 steels

    DEFF Research Database (Denmark)

    Yao, Bing-Yin; Zhou, Rong-Can; Fan, Chang-Xin

    2010-01-01

    The growth of Laves phase particles in three kinds of P92 steels were investigated. Laves phase particles can be easily separated and distinguished from the matrix and other particles by atom number contrast using comparisons of the backscatter electrons (BSE) images and the secondary electrons (...... attained between measurements in SEM and modeling by DICTRA. Ostwald ripening should be used for the coarsening calculation of Laves phase in P92 steels for time longer than 20000 h and 50000 h at 650°C and 600°C, respectively. © 2010 Chin. Soc. for Elec. Eng....

  3. Effect of convective flow on stable dendritic growth in rapid solidification of a binary alloy

    Science.gov (United States)

    Galenko, P. K.; Danilov, D. A.; Reuther, K.; Alexandrov, D. V.; Rettenmayr, M.; Herlach, D. M.

    2017-01-01

    A model for anisotropic growth of a dendritic crystal in a binary mixture under non-isothermal conditions is presented. A criterion for a stable growth mode is given for the dendrite tip as a function of the thermal Péclet number and the ratio between the velocities of dendrite growth and solute diffusion in the liquid bulk. Limiting cases of known criteria for anisotropic dendrite growth at low and high growth Péclet numbers are provided. The inclusion of forced convective flow extends the range of theoretical predictions, especially to low growth velocities, thus eliminating systematic discrepancies between earlier models and observed experimental data, as shown by a comparison of model predictions with measured growth velocities in Ti-55 at% Al alloys solidified under electromagnetic levitation.

  4. Rapid increase in fibroblast growth factor 21 in protein malnutrition and its impact on growth and lipid metabolism.

    Science.gov (United States)

    Ozaki, Yori; Saito, Kenji; Nakazawa, Kyoko; Konishi, Morichika; Itoh, Nobuyuki; Hakuno, Fumihiko; Takahashi, Shin-Ichiro; Kato, Hisanori; Takenaka, Asako

    2015-11-14

    Protein malnutrition promotes hepatic steatosis, decreases insulin-like growth factor (IGF)-I production and retards growth. To identify new molecules involved in such changes, we conducted DNA microarray analysis on liver samples from rats fed an isoenergetic low-protein diet for 8 h. We identified the fibroblast growth factor 21 gene (Fgf21) as one of the most strongly up-regulated genes under conditions of acute protein malnutrition (P<0·05, false-discovery rate<0·001). In addition, amino acid deprivation increased Fgf21 mRNA levels in rat liver-derived RL-34 cells (P<0·01). These results suggested that amino acid limitation directly increases Fgf21 expression. FGF21 is a polypeptide hormone that regulates glucose and lipid metabolism. FGF21 also promotes a growth hormone-resistance state and suppresses IGF-I in transgenic mice. Therefore, to determine further whether Fgf21 up-regulation causes hepatic steatosis and growth retardation after IGF-I decrease in protein malnutrition, we fed an isoenergetic low-protein diet to Fgf21-knockout (KO) mice. Fgf21-KO did not rescue growth retardation and reduced plasma IGF-I concentration in these mice. Fgf21-KO mice showed greater epididymal white adipose tissue weight and increased hepatic TAG and cholesterol levels under protein malnutrition conditions (P<0·05). Overall, the results showed that protein deprivation directly increased Fgf21 expression. However, growth retardation and decreased IGF-I were not mediated by increased FGF21 expression in protein malnutrition. Furthermore, FGF21 up-regulation rather appears to have a protective effect against obesity and hepatic steatosis in protein-malnourished animals.

  5. Cage Culture Turbidostat: a Device for Rapid Determination of Algal Growth Rate

    OpenAIRE

    Skipnes, Olav; Eide, Ingvar; Jensen, Arne

    1980-01-01

    The present cage culture turbidostat consists of a growth chamber and a control unit. The microorganisms (photoautotrophic algae) are kept in the growth chamber by porous membranes (pore size 1 to 3 μm) which retain the algae but allow efficient exchange of the growth medium. Flow rate and composition of the medium can therefore be varied independently of algal population density. A reciprocating pumping mode of the medium is introduced to obtain more gentle clearance of membranes than that p...

  6. Open Door Policy and China's Rapid Growth: Evidence from City-level Data

    OpenAIRE

    Shang-Jin Wei

    1993-01-01

    There is clear evidence that during 1980-90 more exports are positively associated with higher growth rates across Chinese cities. In comparison, in the late 1980s, the contribution to growth comes mainly from foreign investment. The contribution of foreign investment comes in the form of technological and managerial spillover across firms as opposed to an infusion of new capital. Finally, there is nothing magical about the high growth rates of Chinese coastal areas other than their effective...

  7. Electrical conductivity of Ni–YSZ composites: Degradation due to Ni particle growth

    DEFF Research Database (Denmark)

    Pihlatie, Mikko; Kaiser, Andreas; Mogensen, Mogens Bjerg

    2011-01-01

    The short-term changes in the electrical conductivity of Ni–YSZ composites (cermets) suitable for use in Solid Oxide Fuel Cells (SOFC) were measured by an in-situ 4-point DC technique. The isothermal reduction was carried out in dry, humidified or wet hydrogen at temperatures from 600 to 1000°C....... While the cermets reduced at 600°C showed a stable conductivity of 1000–1200S/cm, rapid initial conductivity loss was observed at elevated temperatures. At 1000°C the conductivity degraded nearly instantaneously to about 800S/cm, and continued to decline fast to about 400S/cm. At 850°C, the presence...... of steam did have an accelerating effect on the conductivity loss. Scanning Electron Microscopy of cermets reduced in different conditions showed increasing particle size and loss of metal-to-metal percolation in the samples reduced at higher temperatures. The short-term changes in conductivity were...

  8. Charged particle multiplicity near mid-rapidity in central Au+Au collisions at $\\sqrt{s}$ = 56 and 130 AGeV

    CERN Document Server

    Back, B B; Barton, D S; Basilev, S N; Baum, R; Betts, R R; Bialas, A; Bindel, R; Bogucki, W; Budzanowski, A; Busza, W; Carroll, A S; Ceglia, M; Chang, Y H; Chen, A E; Coghen, T; Conner, C L; Czyz, W; Dabrowski, B; Decowski, M P; Despet, M; Fita, P; Fitch, J; Friedl, M; Galuszka, K; Ganz, R E; García-Solis, E; George, N; Godlewski, J; Gomes, C; Griesmayer, E; Gulbrandsen, K H; Gushue, S; Halik, J; Halliwell, C; Haridas, P; Hayes, A; Heintzelman, G A; Henderson, C; Hollis, R; Holynski, R; Holzman, B; Johnson, E; Kane, J; Katzy, J M; Kita, W; Kotula, J; Kraner, H W; Kucewicz, W; Kulinich, P A; Law, C; Lemler, M A; Ligocki, T J; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Neal, M; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Patel, M; Pernegger, H; Plesko, M; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Ross, D; Rosenberg, L J; Ryan, J; Sanzgiri, A; Sarin, P; Sawicki, P; Scaduto, J; Shea, J; Sinacore, J; Skulski, W; Steadman, S G; Stephans, G S F; Steinberg, P; Straczek, A; Stodulski, M; Strek, M; Stopa, Z; Sukhanov, A; Surowiecka, K; Tang, J L; Teng, R; Trzupek, A; Vale, C J; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B; Zalewski, Kasper

    2000-01-01

    We present the first measurement of pseudorapidity densities of primary charged particles near mid-rapidity in Au+Au collisions at $\\sqrt{s} =$ 56 and 130 AGeV. For the most central collisions, we find the charged particle pseudorapidity density to be $dN/d\\eta |_{|\\eta|<1} = 408 \\pm 12 {(stat)} \\pm 30 {(syst)}$ at 56 AGeV and $555 \\pm 12 {(stat)} \\pm 35 {(syst)}$ at 130 AGeV, values that are higher than any previously observed in nuclear collisions. Compared to proton-antiproton collisions, our data show an increase in the pseudorapidity density per participant by more than 40% at the higher energy.

  9. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves

    NARCIS (Netherlands)

    Mirzaei, M.; Khorvash, M.; Ghorbani, G.R.; Kazemi-Bonchenari, M.; Riasi, A.; Nabipour, A.; Borne, van den J.J.G.C.

    2015-01-01

    The aim of this study was to assess the effects of particle size (PS) of alfalfa hay on growth characteristics and rumen development in dairy calves at two levels of alfalfa supplementation. Fifty newborn dairy calves (42.7 ± 2.2 kg BW) were used in a 2 × 2 factorial arrangement with the factors

  10. Colorimetry provides a rapid objective measurement of de novo hair growth rate in mice.

    Science.gov (United States)

    Tzung, Tien-Yi; Yang, Chia-Yi; Huang, Yung-Chang; Kao, Fu-Jen

    2009-11-01

    Depilated mice have been used as a test platform for hair growth-regulating agents. However, currently available assessment tools for hair growth in mice are less than ideal. Tristimulus colorimetry of the fur color of depilated agouti, albino, and black mice with L*, a*, and b* values were performed daily until the full growth of pelage. Using light-emitting diode (LED) irradiation (650 and 890 nm) with a daily dose of 3.5 J/cm(2) as hair growth regulators, the hair growth rates observed by the global assessment were compared with those derived from colorimetry. In contrast to a* and b* values, L* values changed more drastically over time in the anagen phase regardless of fur color. Unlike the inhibitory effect of 650 nm irradiation, LED of 890 nm promoted de novo hair regrowth in mice. The difference in hair growth rates detected by colorimetry paralleled the observation made by the global assessment. The L* value of fur color obtained by tristimulus colorimetry was a sensitive yet quantitative indicator of de novo hair growth, and could be used to project the hair growth rate in mice.

  11. Effect of second phase particles topology on the onset temperature of abnormal grain growth in Fe - 3%Si steels

    Directory of Open Access Journals (Sweden)

    Stoyka, V.

    2008-01-01

    Full Text Available The relations between regimes of dynamic annealing, state of secondary particles system and the onset temperature of abnormal grain growth are investigated. Two distinguish types of Fe-3%Si grain-oriented steels, after one and two stage cold rolling, were studied. The second phase particles remain unaffected in first type of steel during the heat treatment. Vice versa, the increased density of second phases was observed after annealing in the second type of the investigated materials. It is shown that start/onset of abnormal grain growth strongly depends on both volume fraction of second phase particles and annealing temperature. Texture and magnetic properties of the investigated samples are investigated within the current study.

  12. Elongated dust particles growth in a spherical glow discharge in ethanol

    Science.gov (United States)

    Fedoseev, A. V.; Sukhinin, G. I.; Sakhapov, S. Z.; Zaikovskii, A. V.; Novopashin, S. A.

    2018-01-01

    The formation of elongated dust particles in a spherical dc glow discharge in ethanol was observed for the first time. Dust particles were formed in the process of coagulation of ethanol dissociation products in the plasma of gas discharge. During the process the particles were captured into clouds in the electric potential wells of strong striations of spherical discharge. The size and the shape of dust particles are easily detected by naked eye after the illumination of the laser sheet. The description of the experimental setup and conditions, the analysis of size, shape and composition of the particles, the explanation of spatial ordering and orientation of these particles are presented.

  13. Platelet-derived growth factor-BB attenuates titanium-particle-induced osteolysis in vivo.

    Science.gov (United States)

    Ye, Chenyi; Zhang, Wei; Jiang, Shuai; Yu, Yuanbin; Zhou, Xiaoyu; Zhu, Ling; Xue, Deting; He, Rongxin

    2016-12-01

    Inflammation and osteoclastogenesis play critical roles in wear-particle-induced periprosthetic osteolysis (WPO). Platelet-derived growth factor-BB (PDGF-BB) could promote osteogenesis and inhibit inflammatory response. The aim of this study was to investigate the impact of PDGF-BB on WPO. Mice were divided into four groups, namely, sham, vehicle, low-, and high-dose PDGF-BB groups. Mice in the rhPDGF-BB groups were treated with PDGF-BB at 0.25 or 1 mg/ml/kg/day. Mice in the sham and vehicle groups received PBS daily. Two weeks after surgery, calvariae were harvested. Immunohistochemical analysis and μ-CT showed that PDGF-BB significantly reduced osteoclast formation and bone resorption. ELISA showed that rhPDGF-BB decreased the secretion of TNF-α, IL-1β, and IL-6. Western blotting revealed that rhPDGF-BB stimulated the expression of osteocalcin and osteoprotegerin. Furthermore, more VEGF and CD31 proteins were observed due to PDGF-BB by immunofluorescence. In conclusion, these findings suggest that rhPDGF-BB represents a potential treatment for WPO.

  14. Dependence of Co particle size on the growth rate in the MBE grown Co/Au superparamagnetic multilayers

    Science.gov (United States)

    Xu, J.; Howson, M. A.; Kolb, E.; Veillet, P.; Petford-Long, A.

    1999-02-01

    In this paper, we show that CoAu multilayers grown by MBE exhibit superparamagnetic properties when the Co thickness is below 4 Å. By varying the growth rate of Co layers, it was found that for the same nominal thickness (3 Å) the Co particle sizes change with the growth rate. This change is observed in the zero-field-cooled and field-cooled magnetisation measurement and is due to the change of number of nucleation sites with growth rate. This result is in good agreement with the nucleation theory for epitaxial thin films. High-resolution TEM (HREM) measurement was performed on these samples and it was found that Co grows as 2 monolayer thick islands and exhibits relative uniform distribution of particle sizes.

  15. Surface organic monolayers control the hygroscopic growth of submicrometer particles at high relative humidity.

    Science.gov (United States)

    Ruehl, Christopher R; Wilson, Kevin R

    2014-06-05

    Although many organic molecules commonly found in the atmosphere are known to be surface-active in macroscopic aqueous solutions, the impact of surface partitioning of organic molecules to a microscopic aqueous droplet interface remains unclear. Here we measure the droplet size formed, at a relative humidity (∼99.9%) just below saturation, on submicrometer particles containing an ammonium sulfate core and an organic layer of a model compound of varying thickness. The 12 model organic compounds are a series of dicarboxylic acids (C3 to C10), cis-pinonic, oleic, lauric, and myristic acids, which represent a broad range in solubility from miscible (malonic acid) to insoluble. The variation in droplet size with increasing organic aerosol fraction cannot be explained by assuming the organic material is dissolved in the bulk droplet. Instead, the wet droplet diameters exhibit a complex and nonlinear dependence on organic aerosol volume fraction, leading to hygroscopic growth that is in some cases smaller and in others larger than that predicted by bulk solubility alone. For palmitic and stearic acid, small droplets at or below the detection limit of the instrument are observed, indicating significant kinetic limitations for water uptake, which are consistent with mass accommodation coefficients on the order of 10(-4). A model based on the two-dimensional van der Waals equation of state is used to explain the complex droplet growth with organic aerosol fraction and dry diameter. The model suggests that mono- and dicarboxylic acids with limited water solubility partition to the droplet surface and reduce surface tension only after a two-dimensional condensed monolayer is formed. Two relatively soluble compounds, malonic and glutaric acid, also appear to form surface phases, which increase hygroscopicity. There is a clear alternation in the threshold for droplet growth observed for odd and even carbon number diacids, which is explained in the model by differences in the

  16. Incubation behavior of silicon nanowire growth investigated by laser-assisted rapid heating

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Sang-gil; Kim, Eunpa; Grigoropoulos, Costas P., E-mail: cgrigoro@berkeley.edu [Department of Mechanical Engineering, University of California, Berkeley, California 94720-1740 (United States); Allen, Frances I.; Minor, Andrew M. [Department of Materials Science and Engineering, University of California, Berkeley, California 94720-1740 (United States); National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Hwang, David J. [Department of Mechanical Engineering, Stony Brook University, Stony Brook, New York 11794 (United States)

    2016-08-15

    We investigate the early stage of silicon nanowire growth by the vapor-liquid-solid mechanism using laser-localized heating combined with ex-situ chemical mapping analysis by energy-filtered transmission electron microscopy. By achieving fast heating and cooling times, we can precisely determine the nucleation times for nanowire growth. We find that the silicon nanowire nucleation process occurs on a time scale of ∼10 ms, i.e., orders of magnitude faster than the times reported in investigations using furnace processes. The rate-limiting step for silicon nanowire growth at temperatures in the vicinity of the eutectic temperature is found to be the gas reaction and/or the silicon crystal growth process, whereas at higher temperatures it is the rate of silicon diffusion through the molten catalyst that dictates the nucleation kinetics.

  17. Behavior of Particle Depots in Molten Silicon During Float-Zone Growth in Strong Static Magnetic Fields

    Science.gov (United States)

    Jauss, T.; SorgenFrei, T.; Croell, A.; Azizi, M.; Reimann, C.; Friedrich, J.; Volz, M. P.

    2014-01-01

    In the photovoltaics industry, the largest market share is represented by solar cells made from multicrystalline silicon, which is grown by directional solidification. During the growth process, the silicon melt is in contact with the silicon nitride coated crucible walls and the furnace atmosphere which contains carbon monoxide. The dissolution of the crucible coating, the carbon bearing gas, and the carbon already present in the feedstock, lead to the precipitation of silicon carbide, and silicon nitride, at later stages of the growth process. The precipitation of Si3N4 and SiC particles of up to several hundred micrometers in diameter leads to severe problems during the wire sawing process for wafering the ingots. Furthermore the growth of the silicon grains can be negatively influenced by the presence of particles, which act as nucleation sources and lead to a grit structure of small grains and are sources for dislocations. If doped with Nitrogen from the dissolved crucible coating, SiC is a semi conductive material, and can act as a shunt, short circuiting parts of the solar cell. For these reasons, the incorporation of such particles needs to be avoided. In this contribution we performed model experiments in which the transport of intentionally added SiC particles and their interaction with the solid-liquid interface during float zone growth of silicon in strong steady magnetic fields was investigated. SiC particles of 7µm and 60µm size are placed in single crystal silicon [100] and [111] rods of 8mm diameter. This is achieved by drilling a hole of 2mm diameter, filling in the particles and closing the hole by melting the surface of the rod until a film of silicon covers the hole. The samples are processed under a vacuum of 1x10(exp -5) mbar or better, to prevent gas inclusions. An oxide layer to suppress Marangoni convection is applied by wet oxidation. Experiments without and with static magnetic field are carried out to investigate the influence of melt

  18. Rapid Growth of Psychology Programs in Turkey: Undergraduate Curriculum and Structural Challenges

    Science.gov (United States)

    Sümer, Nebi

    2016-01-01

    Similar to the other developing countries, undergraduate psychology programs in Turkish universities have rapidly grown in the last two decades. Although this sharp increment signifies the need for psychologists, it has also caused a number of challenges for effective teaching of psychology. The department chairs (N = 42) were interviewed with an…

  19. Undergraduate Chemistry Education in Chinese Universities: Addressing the Challenges of Rapid Growth

    Science.gov (United States)

    Gou, Xiaojun; Cao, Haishi

    2010-01-01

    In the past 30 years, university-level chemistry education in China has been experiencing significant changes because of the rapid expansion of its university education system. These changes are reflected in improvements to the existing education goals, classroom teaching methods, textbooks, teaching facilities, teacher profiles, lab activities,…

  20. Recovering from a bad start: rapid adaptation and tradeoffs to growth below a threshold density

    Directory of Open Access Journals (Sweden)

    Marx Christopher J

    2012-07-01

    Full Text Available Abstract Background Bacterial growth in well-mixed culture is often assumed to be an autonomous process only depending upon the external conditions under control of the investigator. However, increasingly there is awareness that interactions between cells in culture can lead to surprising phenomena such as density-dependence in the initiation of growth. Results Here I report the unexpected discovery of a density threshold for growth of a strain of Methylobacterium extorquens AM1 used to inoculate eight replicate populations that were evolved in methanol. Six of these populations failed to grow to the expected full density during the first couple transfers. Remarkably, the final cell number of six populations crashed to levels 60- to 400-fold smaller than their cohorts. Five of these populations recovered to full density soon after, but one population remained an order of magnitude smaller for over one hundred generations. These variable dynamics appeared to be due to a density threshold for growth that was specific to both this particular ancestral strain and to growth on methanol. When tested at full density, this population had become less fit than its ancestor. Simply increasing the initial dilution 16-fold reversed this result, revealing that this population had more than a 3-fold advantage when tested at this lower density. As this population evolved and ultimately recovered to the same final density range as the other populations this low-density advantage waned. Conclusions These results demonstrate surprisingly strong tradeoffs during adaptation to growth at low absolute densities that manifest over just a 16-fold change in density. Capturing laboratory examples of transitions to and from growth at low density may help us understand the physiological and evolutionary forces that have led to the unusual properties of natural bacteria that have specialized to low-density environments such as the open ocean.

  1. Particle size distributions in Arctic polar stratospheric clouds, growth and freezing of sulfuric acid droplets, and implications for cloud formation

    Science.gov (United States)

    Dye, James E.; Baumgardner, D.; Gandrud, B. W.; Kawa, S. R.; Kelly, K. K.; Loewenstein, M.; Ferry, G. V.; Chan, K. R.; Gary, B. L.

    1992-01-01

    The paper uses particle size and volume measurements obtained with the forward scattering spectrometer probe model 300 during January and February 1989 in the Airborne Arctic Stratospheric Experiment to investigate processes important in the formation and growth of polar stratospheric cloud (PSC) particles. It is suggested on the basis of comparisons of the observations with expected sulfuric acid droplet deliquescence that in the Arctic a major fraction of the sulfuric acid droplets remain liquid until temperatures at least as low as 193 K. It is proposed that homogeneous freezing of the sulfuric acid droplets might occur near 190 K and might play a role in the formation of PSCs.

  2. Influence of Activated Carbon Particles on Intermetallic Compound Growth Mechanism in Sn-Cu-Ni Composite Solder

    Directory of Open Access Journals (Sweden)

    Ramli M.I.I.

    2016-01-01

    Full Text Available The influence of Activated Carbon (AC particles on mechanical properties of Sn-Cu-Ni-xAC solder joint was investigated. Five different Activated Carbon (AC percentage addition (0 wt. %, 0.25 wt. %, 0.5 wt. %, 0.75 wt. %, and 1.0 wt. % were prepared via powder metallurgy (PM technique. Interfacial IMC thickness measurement and shear strength results showed that with thinner IMC layer (by increasing amount of wt.% of AC, the higher the shear strength of the joint. It is believed that the AC particles suppresses the interfacial IMC growth and thus improves the shear strength.

  3. Interdiffusion and growth of chromium silicide at the interface of Cr/Si(As) system during rapid thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Benkherbache, H. [Universite de M' Sila, (28000) M' Sila (Algeria); Merabet, A., E-mail: merabet_abdelali@yahoo.f [Laboratoire Physique et Mecanique des Materiaux Metalliques, Departement d' O.M.P., Faculte des Sciences de l' Ingenieur, Universite de Setif, (19000) Setif (Algeria)

    2010-02-26

    In this work, the solid-state reaction between a thin film of chromium and silicon has been studied using Rutherford backscattering spectroscopy, X-ray diffraction and the sheet resistance measurements. The thickness of 100 nm chromium layer has been deposited by electronic bombardment on Si (100) substrates, part of them had previously been implanted with arsenic ions of 10{sup 15} at/cm{sup 2} doses and an energy of 100 keV. The samples were heat treated under rapid thermal annealing at 500 {sup o}C for time intervals ranging from 15 to 60 s. The rapid thermal annealing leads to a reaction at the interface Cr/Si inducing the formation and the growth of the unique silicide CrSi{sub 2}, but no other phase can be detected. For samples implanted with arsenic, the saturation value of the sheet resistance is approximately 1.5 times higher than for the non-implanted case.

  4. A drop in the pond: the effect of rapid mass-loss on the dynamics and interaction rate of collisionless particles

    Science.gov (United States)

    Penoyre, Zephyr; Haiman, Zoltán

    2018-01-01

    In symmetric gravitating systems experiencing rapid mass-loss, particle orbits change almost instantaneously, which can lead to the development of a sharply contoured density profile, including singular caustics for collisionless systems. This framework can be used to model a variety of dynamical systems, such as accretion discs following a massive black hole merger and dwarf galaxies following violent early star formation feedback. Particle interactions in the high-density peaks seem a promising source of observable signatures of these mass-loss events (i.e. a possible EM counterpart for black hole mergers or strong gamma-ray emission from dark matter annihilation around young galaxies), because the interaction rate depends on the square of the density. We study post-mass-loss density profiles, both analytic and numerical, in idealized cases and present arguments and methods to extend to any general system. An analytic derivation is presented for particles on Keplerian orbits responding to a drop in the central mass. We argue that this case, with initially circular orbits, gives the most sharply contoured profile possible. We find that despite the presence of a set of singular caustics, the total particle interaction rate is reduced compared to the unperturbed system; this is a result of the overall expansion of the system dominating over the steep caustics. Finally, we argue that this result holds more generally, and the loss of central mass decreases the particle interaction rate in any physical system.

  5. Measurement of charm and beauty production at central rapidity versus charged-particle multiplicity in proton-proton collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Diozcora Vargas Trevino, Aurora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-09-22

    Prompt D meson and non-prompt J/$\\psi$ yields are studied as a function of the multiplicity of charged particles produced in inelastic proton-proton collisions at a centre-of-mass energy of $\\sqrt{s}=7$ TeV. The results are reported as a ratio between yields in a given multiplicity interval normalised to the multiplicity-integrated ones (relative yields). They are shown as a function of the multiplicity of charged particles normalised to the average value for inelastic collisions (relative charged-particle multiplicity). D$^0$, D$^+$ and D$^{*+}$ mesons are measured in five $p_{\\rm T}$ intervals from 1 to 20 GeV/$c$ and for $|y|1.3$ GeV/$c$ and $|y|0$. The fraction of non-prompt J/$\\psi$ in the inclusive J/$\\psi$ yields shows no dependence on the charged-particle multiplicity at central rapidity. Charm and beauty hadron relative yields exhibit a similar increase with increasing charged-particle multiplicity. The measurements are compared to PYTHIA 8, EPOS 3 and percolation calculations.

  6. Flow cytometry is a promising and rapid method for differentiating between freely suspended Escherichia coli and E. coli attached to clay particles.

    Science.gov (United States)

    Liang, X; Soupir, M L; Rigby, S; Jarboe, L R; Zhang, W

    2014-12-01

    A standard procedure does not exist to distinguish between attached and unattached micro-organisms. In this study, we compared two methods to quantify between Escherichia coli attached to clay particles and E. coli freely suspended in solution: flow cytometry (attachment assay and viability assay) and settling (or centrifugation followed by settling). Methods were tested using three environmental strains collected from swine facilities (A, B and C) and one purchased modified pathogenic strain (ATCC 43888); four clay particles: Hectorite, Kaolinite, Ca-Montmorillonite, Montmorillonite K-10; and a range of surface area ratios (particle surface area to E. coli surface area). When comparing the two methods, the per cent attached obtained from the flow cytometry was lower, but not significantly different from the per cent attached obtained from the settling method for all conditions except when the particle was Hectorite or Montmorillonite K-10; when the strain was C; and when the surface area ratio was below 100. Differences between the methods are likely because traditional culture-based methods cannot detect the viable but nonculturable (VBNC) population, whereas flow cytometry can detect the fraction of VBNC with intact membranes. Our results indicate that flow cytometry is a rapid and culture-independent method for differentiating between attached and unattached micro-organisms. Flow cytometry is useful for laboratory-based studies of micro-organism-particle interactions. © 2014 The Society for Applied Microbiology.

  7. Rapid growth of black holes in massive star-forming galaxies.

    Science.gov (United States)

    Alexander, D M; Smail, I; Bauer, F E; Chapman, S C; Blain, A W; Brandt, W N; Ivison, R J

    2005-04-07

    The tight relationship between the masses of black holes and galaxy spheroids in nearby galaxies implies a causal connection between the growth of these two components. Optically luminous quasars host the most prodigious accreting black holes in the Universe, and can account for greater than or approximately equal to 30 per cent of the total cosmological black-hole growth. As typical quasars are not, however, undergoing intense star formation and already host massive black holes (> 10(8)M(o), where M(o) is the solar mass), there must have been an earlier pre-quasar phase when these black holes grew (mass range approximately (10(6)-10(8))M(o)). The likely signature of this earlier stage is simultaneous black-hole growth and star formation in distant (redshift z > 1; >8 billion light years away) luminous galaxies. Here we report ultra-deep X-ray observations of distant star-forming galaxies that are bright at submillimetre wavelengths. We find that the black holes in these galaxies are growing almost continuously throughout periods of intense star formation. This activity appears to be more tightly associated with these galaxies than any other coeval galaxy populations. We show that the black-hole growth from these galaxies is consistent with that expected for the pre-quasar phase.

  8. SOCIAL INEQUALITY IN CHINA AS A RESULT OF THE RAPID ECONOMIC GROWTH

    Directory of Open Access Journals (Sweden)

    Вероника Игоревна Шехурдина

    2013-12-01

    Full Text Available Since the period of openness in China, laid the foundation for more than 30 years ago, he has made remarkable progress in increasing incomes and reducing absolute poverty. However, they are caused by rising inequality. It should be noted that the rise in inequality was seen almost everywhere in the world over the past two decades. Growing dissatisfaction with the quality of economic growth is often seen in favor of certain groups more than the general population. This is clearly reflected in the growth of inequality between different groups - the rich are getting richer faster than the poor. The economic literature attributes this mainly to globalization, technological change, skills-based, and reduce the "power" of the workers. Growth model, which accompanies the last three decades to China, included a trade-off between high growth (and subsequent reduction of absolute poverty and worsening inequality. The government of China has recognized this problem and taken active steps to reduce the gap incomes and standards of living in the city and rural areas, which have already brought the first results.DOI: http://dx.doi.org/10.12731/2218-7405-2013-10-16

  9. RAPID COMMUNICATION: Nerve growth factor influences cleavage rate and embryo development in sheep.

    Science.gov (United States)

    Crispo, M; Dos Santos-Neto, P C; Vilariño, M; Mulet, A P; de León, A; Barbeito, L; Menchaca, A

    2016-10-01

    Recent information about Nerve growth factor (NGF), a protein traditionally associated to the nervous system that regulates survival and maturation of developing neurons, suggests that it may exert action also on different levels in the reproductive system. The aim of this study was to evaluate the effect of NGF added during in vitro oocyte maturation, fertilization or in vitro embryo development in sheep. Nerve growth factor was supplemented to the culture medium at 0, 100, or 1,000 ng/mL, during either in vitro maturation (Exp. 1), in vitro fertilization (Exp. 2), or in vitro culture (Exp. 3). In addition, NGF mRNA expression was determined in cumulus cells and oocytes. Nerve growth factor induced early cleavage when added during oocyte maturation or fertilization, improved embryo development when added during fertilization, and had no significant effect when added during embryo culture. In general, the effect was more evident with 100 rather than 1,000 ng/mL (P growth factor on oocyte maturation and mainly on the fertilization process.

  10. Role of the reaction of stabilized Criegee intermediates with peroxy radicals in particle formation and growth in air.

    Science.gov (United States)

    Zhao, Yue; Wingen, Lisa M; Perraud, Véronique; Greaves, John; Finlayson-Pitts, Barbara J

    2015-05-21

    Ozonolysis of alkenes is an important source of secondary organic aerosol (SOA) in the atmosphere. However, the mechanisms by which stabilized Criegee intermediates (SCI) react to form and grow the particles, and in particular the contributions from oligomers, are not well understood. In this study, ozonolysis of trans-3-hexene (C6H12), as a proxy for small alkenes, was investigated with an emphasis on the mechanisms of particle formation and growth. Ozonolysis experiments were carried out both in static Teflon chambers (18-20 min reaction times) and in a glass flow reactor (24 s reaction time) in the absence and presence of OH or SCI scavengers, and under different relative humidity (RH) conditions. The chemical composition of polydisperse and size-selected SOA particles was probed using different mass spectrometric techniques and infrared spectroscopy. Oligomers having SCI as the chain unit are found to be the dominant components of such SOA particles. The formation mechanism for these oligomers suggested by our results follows the sequential addition of SCI to organic peroxy (RO2) radicals, in agreement with previous studies by Moortgat and coworkers. Smaller particles are shown to have a relatively greater contribution from longer oligomers. Higher O/C ratios are observed in smaller particles and are similar to those of oligomers resulting from RO2 + nSCI, supporting a significant role for longer oligomers in particle nucleation and early growth. Under atmospherically relevant RH of 30-80%, water vapor suppresses oligomer formation through scavenging SCI, but also enhances particle nucleation. Under humid conditions, or in the presence of formic or hydrochloric acid as SCI scavengers, peroxyhemiacetals are formed by the acid-catalyzed particle phase reaction between oligomers from RO2 + nSCI and a trans-3-hexene derived carbonyl product. In contrast to the ozonolysis of trans-3-hexene, oligomerization involving RO2 + nSCI does not appear to be prevalent in the

  11. Tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of musa (banana and plantain)

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, N.; De Langhe, E.

    1985-01-01

    A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions is presented in this paper. Shoot-tip cultures of Musa cultivars (both banana and plantain) are induced by culturing small excised shoot apices on modified MS semisolid medium supplemented with various concentrations and combinations of auxins and cytokinins. The effects of cytokinin concentration in the medium as well as the genotypic configuration of the cultivars on the rate of shoot-bud proliferation have been tested. The established shoot-tip cultures grown on modified MS semisolid medium supplemented with IAA (0.18 mg/l) and Ba (2.30 mg/l) have been successfully stored at 15/sup 0/ C with 1000 lux light intensity up to 13-17 months depending on the cultivar. The cultivars tested in the present investigation seem to vary in their ability to withstand minimal growth temperature. 20 references.

  12. Rapid growth of a Eurasian haplotype of Phragmites australis in a restored brackish marsh in Louisiana, USA

    Science.gov (United States)

    Howard, R.J.; Travis, S.E.; Sikes, B.A.

    2008-01-01

    While numerous studies have documented patterns of invasion by non-indigenous plant species, few have considered the invasive properties of non-native genotypes of native species. Characteristics associated with specific genotypes, such as tolerance to disturbance, may mistakenly be applied to an entire species in the absence of genetic information, which consequently may affect management decisions. We report here on the incidence and growth of an introduced lineage of Phragmites australis in the Gulf of Mexico coastal zone of Louisiana. P. australis was collected from nine separate locations for inclusion in a series of growth experiments. Chloroplast DNA analysis indicated that specimens collected from four locations in the Mississippi River Delta represented the introduced Eurasian haplotype; the remainder represented the gulf coast haplotype. Three distinct genotypes, or clones, were identified within each haplotype via analysis using amplified fragment length polymorphisms, which also revealed reduced genetic diversity of the gulf coast clones compared to the Eurasian clones. Clones of each haplotype were planted along with three other native macrophytes at similar densities in a restored brackish marsh and monitored for growth. After 14 months, the Eurasian haplotype had spread vegetatively to cover about 82% of the experimental plots, more than four times the coverage (18%) of the gulf coast haplotype. Thus, the use of P. australis plantings for wetland restoration should consider the genetic lineage of plants used since our results indicate the potential of the Eurasian haplotype to grow rapidly at newly restored sites. This rapid growth may limit the establishment of more slowly growing native species. ?? 2007 Springer Science+Business Media B.V.

  13. Rapid and Sustained Nuclear-Cytoplasmic ERK Oscillations Induced by Epidermal Growth Factor

    Energy Technology Data Exchange (ETDEWEB)

    Shankaran, Harish; Ippolito, Danielle L.; Chrisler, William B.; Resat, Haluk; Bollinger, Nikki; Opresko, Lee K.; Wiley, H. S.

    2009-12-01

    Mathematical modeling has predicted that ERK activity should oscillate in response to cell stimulation, but this has never been observed. To explore this inconsistency, we expressed an ERK1-GFP fusion protein in mammary epithelial cells. Following EGF stimulation, we observed rapid and continuous ERK oscillations between the nucleus and cytoplasm with a periodicity of approximately 15 minutes. These oscillations were remarkably persistent (>45 cycles), displayed an asymmetric waveform, and were highly dependent on cell density, essentially disappearing at confluency. We conclude that the ERK pathway is an intrinsic oscillator. Although the functional implications of the observed oscillations are uncertain, this property can be used to continuously monitor ERK activity in single cells.

  14. Spontaneous hemorrhage simulating rapid growth of a benign subperiosteal plexiform neurofibroma

    Energy Technology Data Exchange (ETDEWEB)

    Blitman, Netta M. [Albert Einstein College of Medicine, Department of Radiology, Children' s Hospital at Montefiore, Montefiore Medical Center, Bronx, NY (United States); Albert Einstein College of Medicine, Children' s Hospital at Montefiore, Department of Radiology, Bronx, NY (United States); Levsky, Jeffrey M.; Thornhill, Beverly A. [Albert Einstein College of Medicine, Department of Radiology, Children' s Hospital at Montefiore, Montefiore Medical Center, Bronx, NY (United States); Villanueva-Siles, Esperanza [Albert Einstein College of Medicine, Department of Surgical Pathology, Children' s Hospital at Montefiore, Montefiore Medical Center, Bronx, NY (United States)

    2007-09-15

    Spontaneous subperiosteal hemorrhage is a rare complication of von Recklinghausen's disease. There are few reports describing the MR imaging characteristics of this entity. Our case is unique among these as an underlying plexiform neurofibroma was visualized by MR imaging. We present a 12-year-old child with neurofibromatosis 1 who presented with a rapidly enlarging mass of the fibula. Surgery and pathology revealed subperiosteal hemorrhage into a benign, plexiform neurofibroma. The MR imaging features, pathogenesis and clinical implications of this entity are discussed. Recognition of this disease process and differentiating it from malignant transformation can prevent unnecessary surgery. (orig.)

  15. Does Rapid and Sustained Economic Growth Lead to Convergence in Health Resources: The Case of China From 1980 to 2010.

    Science.gov (United States)

    Liang, Di; Zhang, Donglan; Huang, Jiayan; Schweitzer, Stuart

    2016-01-01

    China's rapid and sustained economic growth offers an opportunity to ask whether the advantages of growth diffuse throughout an economy, or remain localized in areas where the growth has been the greatest. A critical policy area in China has been the health system, and health inequality has become an issue that has led the government to broaden national health insurance programs. This study investigates whether health system resources and performance have converged over the past 30 years across China's 31 provinces. To examine geographic variation of health system resources and performance at the provincial level, we measure the degree of sigma convergence and beta convergence in indicators of health system resources (structure), health services utilization (process), and outcome. All data are from officially published sources: the China Health Statistics Year Book and the China Statistics Year Book. Sigma convergence is found for resource indicators, whereas it is not observed for either process or outcome indicators, indicating that disparities only narrowed in health system resources. Beta convergence is found in most indicators, except for 2 procedure indicators, reflecting that provinces with poorer resources were catching up. Convergence found in this study probably reflects the mixed outcome of government input, and market forces. Thus, left alone, the equitable distribution of health care resources may not occur naturally during a period of economic growth. Governmental and societal efforts are needed to reduce geographic health variation and promote health equity. © The Author(s) 2016.

  16. Evaluation of the use of conductimetry for the rapid and precise measurement of Salmonella spp. growth rates.

    Science.gov (United States)

    Sherry, A E; Patterson, M F; Kilpatrick, D; Madden, R H

    2006-10-01

    The growth rates of 14 Salmonella serovars in tryptone soy broth plus yeast extract (TSBYE) were estimated using conventional plating techniques and indirect conductimetry using a Don Whitley RABIT system. Both methods gave identical results for the maximum specific growth rate (mumax) P>0.05. However, using the conductimetric method, mumax for a single serovar was determined in less than 7 h, whereas the conventional method required an additional 24 h. In addition, the conductimetric method was considerably more precise, much less labour-intensive and required the use of considerably less consumables. Using conductimetry, a trained operator could accurately determine mumax for 24 serovars in 3 working days, but only one serovar using the conventional plate counting technique. Hence, the use of conductimetry can markedly increase the precision and accuracy of mumax determinations by allowing a very significant increase in the number of results obtained and in their precision. The data generated will allow the development of better mathematical growth models. The method can also be used to compare growth media and conditions and hence rapidly optimise detection protocols for this pathogen.

  17. Rapid growth of seed black holes in the early universe by supra-exponential accretion.

    Science.gov (United States)

    Alexander, Tal; Natarajan, Priyamvada

    2014-09-12

    Mass accretion by black holes (BHs) is typically capped at the Eddington rate, when radiation's push balances gravity's pull. However, even exponential growth at the Eddington-limited e-folding time t(E) ~ few × 0.01 billion years is too slow to grow stellar-mass BH seeds into the supermassive luminous quasars that are observed when the universe is 1 billion years old. We propose a dynamical mechanism that can trigger supra-exponential accretion in the early universe, when a BH seed is bound in a star cluster fed by the ubiquitous dense cold gas flows. The high gas opacity traps the accretion radiation, while the low-mass BH's random motions suppress the formation of a slowly draining accretion disk. Supra-exponential growth can thus explain the puzzling emergence of supermassive BHs that power luminous quasars so soon after the Big Bang. Copyright © 2014, American Association for the Advancement of Science.

  18. Rapid and highly efficient growth of graphene on copper by chemical vapor deposition of ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Lisi, Nicola, E-mail: nicola.lisi@enea.it [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Buonocore, Francesco; Dikonimos, Theodoros; Leoni, Enrico [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy); Faggio, Giuliana; Messina, Giacomo [Dipartimento di Ingegneria dell' Informazione, delle Infrastrutture e dell' Energia Sostenibile (DIIES), Università “Mediterranea” di Reggio Calabria, 89122 Reggio Calabria (Italy); Morandi, Vittorio; Ortolani, Luca [CNR-IMM Bologna, Via Gobetti 101, 40129 Bologna (Italy); Capasso, Andrea [ENEA, Materials Technology Unit, Surface Technology Laboratory, Casaccia Research Centre, Via Anguillarese 301, 00123 Rome (Italy)

    2014-11-28

    The growth of graphene by chemical vapor deposition on metal foils is a promising technique to deliver large-area films with high electron mobility. Nowadays, the chemical vapor deposition of hydrocarbons on copper is the most investigated synthesis method, although many other carbon precursors and metal substrates are used too. Among these, ethanol is a safe and inexpensive precursor that seems to offer favorable synthesis kinetics. We explored the growth of graphene on copper from ethanol, focusing on processes of short duration (up to one min). We investigated the produced films by electron microscopy, Raman and X-ray photoemission spectroscopy. A graphene film with high crystalline quality was found to cover the entire copper catalyst substrate in just 20 s, making ethanol appear as a more efficient carbon feedstock than methane and other commonly used precursors. - Highlights: • Graphene films were grown by fast chemical vapor deposition of ethanol on copper. • High-temperature/short-time growth produced highly crystalline graphene. • The copper substrate was entirely covered by a graphene film in just 20 s. • Addition of H{sub 2} had a negligible effect on the crystalline quality.

  19. Hyperon and negative particle production at central rapidity in proton-Beryllium interactions at 158 GeV/c

    Energy Technology Data Exchange (ETDEWEB)

    Antinori, F.; Bakke, H.; Beusch, W.; Bloodworth, I.J.; Caliandro, R.; Carrer, N.; Di Bari, D.; Di Liberto, S.; Elia, D.; Evans, D.; Fanebust, K.; Fini, R.A.; Ftacnik, J.; Ghidini, B.; Grella, G.; Helstrup, H.; Holme, A.K.; Huss, D.; Jacholkowski, A.; Jones, G.T.; Kinson, J.B.; Knudson, K.; Kralik, I.; Lenti, V.; Lietava, R.; Loconsole, R.A.; Loevhoeiden, G.; Manzari, V.; Mazzoni, M.A.; Meddi, F.; Michalon, A.; Michalon-Mentzer, M.E.; Morando, M.; Norman, P.I.; Pastircak, B.; Quercigh, E.; Romano, G.; Safarik, K.; Sandor, L.; Segato, G.; Staroba, P.; Thompson, M.; Thorsteinsen, T.F.; Torrieri, G.D.; Tveter, T.S.; Urban, J.; Villalobos Baillie, O.; Virgili, T.; Votruba, M.F.; Zavada, P

    1999-12-27

    A study of the strangeness enhancement in Lead-Lead collisions with respect to proton-induced reactions is being carried out at the CERN SPS by the WA97 experiment: up to now, data from proton-Lead collisions have been used as a reference sample. In this paper we report on a study of particle production in proton-Beryllium collisions. These collisions are expected to constitute a better reference sample than p-Pb, because of the lighter target. The analysis of hyperon and negative particle production is presented and the results are compared with those previously obtained from Pb-Pb and p-Pb collisions.

  20. Rapid quantitative and qualitative analysis of biofilm production by Staphylococcus epidermidis under static growth conditions.

    Science.gov (United States)

    Waters, Elaine M; McCarthy, Hannah; Hogan, Siobhan; Zapotoczna, Marta; O'Neill, Eoghan; O'Gara, James P

    2014-01-01

    Rapid screening of biofilm forming capacity by Staphylococcus epidermidis is possible using in vitro assays with 96-well plates. This method first developed by Christensen et al. in 1985 is fast and does not require specialized instruments. Thus, laboratories with standard microbiology infrastructure and a 96-well plate reader can easily use this technique to generate data on the biofilm phenotypes of multiple S. epidermidis strains and clinical isolates. Furthermore, this method can be adapted to gain insights into biofilm regulation and the characteristics of biofilms produced by different S. epidermidis isolates. Although this assay is extremely useful for showing whether individual strains are biofilm-positive or biofilm-negative and distinguishing between form weak, moderate or strong biofilm, it is important to acknowledge that the absolute levels of biofilm produced by an individual strain can vary significantly between experiments meaning that strict adherence to the protocol used is of paramount importance. Furthermore, measuring biofilm under static conditions does not generally reflect in vivo conditions in which bacteria are often subjected to shear stresses under flow conditions. Hence, the biofilm characteristics of some strains are dramatically different under flow and static conditions. Nevertheless, rapid measurement of biofilm production under static conditions is a useful tool in the analysis of the S. epidermidis biofilm phenotype.

  1. Rapid Growth of Lung Nodules due to Combined Pulmonary Vasculitis, Silicoanthracosis, and Chondrocalcinosis

    Directory of Open Access Journals (Sweden)

    Wolfgang Jungraithmayr

    2016-01-01

    Full Text Available Background. Silicoanthracosis is a pneumoconiosis due to occupational inhalation of silica and carbon dusts. Clinically, it can be associated with vasculitis or rheumatoid arthritis. In association with these diseases, silicoanthracosis can present within the lung with multiple pulmonary nodules which, as a differential diagnosis, can mimic metastatic disease or multiple abscesses. Case Presentation. We present the case of a 62-year old former pit worker with pulmonary nodules, chondrocalcinosis due to calcium pyrophosphate deposition (CPPD, and a history of renal cancer. Within a short period of time, pulmonary nodules grew rapidly. Thoracoscopically, the resected lung specimen revealed silicoanthracosis associated with small-to-medium-size vasculitis in the presence of antineutrophil cytoplasmatic autoantibodies (c-ANCA. Conclusion. Pulmonary silicoanthracotic lesions on the base of ANCA-associated vasculitis and CPPD arthritis can rapidly grow. A mutual correlation between silicoanthracosis, ANCA-associated vasculitis, and CPPD seems possible. Apart from this, consideration of metastatic disease should be obligatory in patients with a history of cancer at the same time being immunosuppressed.

  2. The dynamics of nucleation and growth of a particle in the ternary alloy melt with anisotropic surface tension.

    Science.gov (United States)

    Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min

    2017-08-28

    The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.

  3. Thin film growth by 3D multi-particle diffusion limited aggregation model: Anomalous roughening and fractal analysis

    Science.gov (United States)

    Nasehnejad, Maryam; Nabiyouni, G.; Gholipour Shahraki, Mehran

    2018-03-01

    In this study a 3D multi-particle diffusion limited aggregation method is employed to simulate growth of rough surfaces with fractal behavior in electrodeposition process. A deposition model is used in which the radial motion of the particles with probability P, competes with random motions with probability 1 - P. Thin films growth is simulated for different values of probability P (related to the electric field) and thickness of the layer(related to the number of deposited particles). The influence of these parameters on morphology, kinetic of roughening and the fractal dimension of the simulated surfaces has been investigated. The results show that the surface roughness increases with increasing the deposition time and scaling exponents exhibit a complex behavior which is called as anomalous scaling. It seems that in electrodeposition process, radial motion of the particles toward the growing seeds may be an important mechanism leading to anomalous scaling. The results also indicate that the larger values of probability P, results in smoother topography with more densely packed structure. We have suggested a dynamic scaling ansatz for interface width has a function of deposition time, scan length and probability. Two different methods are employed to evaluate the fractal dimension of the simulated surfaces which are "cube counting" and "roughness" methods. The results of both methods show that by increasing the probability P or decreasing the deposition time, the fractal dimension of the simulated surfaces is increased. All gained values for fractal dimensions are close to 2.5 in the diffusion limited aggregation model.

  4. Synthesis, characterization, and growth mechanism of α-Cr2O3 monodispersed particles

    CSIR Research Space (South Africa)

    Khamlich, S

    2011-06-01

    Full Text Available no apparent effect on the structure of the obtained uniform fine (in the range of micron–nano-level)-spherical particles of α-Cr2O3. The use of SEM demonstrated that aging had a clear influence on the size and the particles size distribution. Accordingly...

  5. Grid dependent noise and entropy growth in anisotropic 3d particle-in-cell simulation of high intensity beams

    Directory of Open Access Journals (Sweden)

    I. Hofmann

    2014-12-01

    Full Text Available The numerical noise inherent to particle-in-cell (PIC simulation of 3d anisotropic high intensity bunched beams in periodic focusing is compared with the analytical model by Struckmeier [Part. Accel. 45, 229 (1994]. The latter assumes that entropy growth can be related to Markov type stochastic processes due to temperature anisotropy and the artificial “collisions” caused by using macro-particles and calculating the space charge effect. The PIC simulations are carried out with the tracewin code widely used for high intensity beam simulation. The resulting noise can lead to growth of the six-dimensional rms emittance. The logarithm of the latter is shown to qualify as rms-based entropy. We confirm the dependence of this growth on the bunch temperature anisotropy as predicted by Struckmeier. However, we also find a grid and focusing dependent component of noise not predicted by Struckmeier. Although commonalities exist with well-established models for collision effects in PIC-simulation of extended plasmas, a distinctive feature is the presence of a periodic focusing potential, wherein the beam one-component plasma extends only over relatively few Debye lengths. Our findings are applied in particular to noise in high current linac beam simulation, where they help for optimization of the balance between the number of simulation particles and the grid resolution.

  6. Ambient observations of dimers from terpene oxidation in the gas phase: Implications for new particle formation and growth

    Science.gov (United States)

    Mohr, Claudia; Lopez-Hilfiker, Felipe D.; Yli-Juuti, Taina; Heitto, Arto; Lutz, Anna; Hallquist, Mattias; D'Ambro, Emma L.; Rissanen, Matti P.; Hao, Liqing; Schobesberger, Siegfried; Kulmala, Markku; Mauldin, Roy L.; Makkonen, Ulla; Sipilä, Mikko; Petäjä, Tuukka; Thornton, Joel A.

    2017-03-01

    We present ambient observations of dimeric monoterpene oxidation products (C16-20HyO6-9) in gas and particle phases in the boreal forest in Finland in spring 2013 and 2014, detected with a chemical ionization mass spectrometer with a filter inlet for gases and aerosols employing acetate and iodide as reagent ions. These are among the first online dual-phase observations of such dimers in the atmosphere. Estimated saturation concentrations of 10-15 to 10-6 µg m-3 (based on observed thermal desorptions and group-contribution methods) and measured gas-phase concentrations of 10-3 to 10-2 µg m-3 ( 106-107 molecules cm-3) corroborate a gas-phase formation mechanism. Regular new particle formation (NPF) events allowed insights into the potential role dimers may play for atmospheric NPF and growth. The observationally constrained Model for Acid-Base chemistry in NAnoparticle Growth indicates a contribution of 5% to early stage particle growth from the 60 gaseous dimer compounds.

  7. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In2Se3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In2Se3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In2Se3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In2Se3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In2Se3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In2Se3 vapor and produce the high uniformity In2Se3 nanowires. The in situ annealing TEM is used to realize the effect of heating rate on Au nanoparticle

  8. Contribution from biogenic organic compounds to particle growth during the 2010 BEACHON-ROCS campaign in a Colorado temperate needleleaf forest

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, L.; Gierens, R.; Sogachev, A.; Mogensen, D.; Ortega, J.; Smith, J. N.; Harley, P. C.; Prenni, A. J.; Levin, E. J. T.; Turnipseed, A.; Rusanen, A.; Smolander, S.; Guenther, A. B.; Kulmala, M.; Karl, T.; Boy, M.

    2015-01-01

    New particle formation (NPF) is an important atmospheric phenomenon. During an NPF event, particles first form by nucleation and then grow further in size. The growth step is crucial because it controls the number of particles that can become cloud condensation nuclei. Among various physical and chemical processes contributing to particle growth, condensation by organic vapors has been suggested as important. In order to better understand the influence of biogenic emissions on particle growth, we carried out modeling studies of NPF events during the BEACHON-ROCS (Bio–hydro–atmosphere interactions of Energy, Aerosol, Carbon, H2O, Organics & Nitrogen – Rocky Mountain Organic Carbon Study) campaign at Manitou Experimental Forest Observatory in Colorado, USA. The site is representative of the semi-arid western USA. With the latest Criegee intermediate reaction rates implemented in the chemistry scheme, the model underestimates sulfuric acid concentration by 50 %, suggesting either missing sources of atmospheric sulfuric acid or an overestimated sink term. The results emphasize the contribution from biogenic volatile organic compound emissions to particle growth by demonstrating the effects of the oxidation products of monoterpenes and 2-Methyl-3-buten-2-ol (MBO). Monoterpene oxidation products are shown to influence the nighttime particle loadings significantly, while their concentrations are insufficient to grow the particles during the day. The growth of ultrafine particles in the daytime appears to be closely related to the OH oxidation products of MBO.

  9. Rapid growth of zinc oxide nanobars in presence of electric field by physical vapor deposition

    Science.gov (United States)

    Jouya, Mehraban; Taromian, Fahime; Siami, Simin

    2018-01-01

    In this contribution, electric field has some effects to increase growth for specific time duration on zinc oxide (ZnO) nanobars. First, the zinc (Zn) thin film has been prepared by 235,000 V/m electric field assisted physical vapor deposition (PVD) at vacuum of 1.33 × 10-5 mbar. Second, strong electric field of 134,000 V/m has been used in ambient for growing ZnO nanobars in term of the time include 2.5 and 10 h. The performances of the ZnO nanostructure in absence and presence of electric field have been determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of XRD analysis showed that ZnO has a hexagonal bars structure and a strongly preferred (101) orientation which is strongest than without applying electric field. SEM analysis revealed that physical vapored ZnO thin film in presence of electric field are densely packed with uniform morphological, thinner and denser in distribution. Electric field effect for ZnO growth in 2.5 h is better than it in the 2.5 h without electric field but by passing the time the media influence has good power almost as same as electric field. Through this electric field in PVD, the compact and uniform Zn film has been achieved which is less diameter than ordinary PVD method. Finally, we carry out a series of experiments to grow different-orientation ZnO nanobars with less than 100 nm in diameter, which are the time saving process in base of PVD ever reported. Therefore, the significant conclusion in usage electric field is reducing time of growth.

  10. Fertility in Alberta in a Context of Rapid Economic Growth, 1997-2007

    Directory of Open Access Journals (Sweden)

    Frank Trovato

    2010-12-01

    Full Text Available Historically, birth rates in Alberta have followed closely the trajectory of change experienced by the other Canadian provinces. Its total fertility rate fell during the low point of the 1930s; it increased during the post-War baby boom in the 1950s and sixties, and thereafter fell to subreplacement levels beginning in the mid 1970s. In recent years, especially since the early 2000s, the birth rate in Alberta has unexpectedly increased, such that by 2007, it had reached 1.90 children per woman - not far from the 2.1 level needed for generational replacement in the long term. During this same period both national and provincial fertility rates fluctuated at levels below those of Alberta (except Saskatchewan and Manitoba, whose rates have been higher. In this study, I examine the historical pattern of fertility change in Alberta, noting similarities and differences with the other provinces. I then look at the association of selected macro level factors (marriage, unemployment, wages, female labour force participation with change in total and parity-specific birth rates between 1997 and 2007, a period of unprecedented economic growth in Alberta. The statistical results show that although marriage is not significantly correlated with change in fertility rates, male and female wages and female labour force participation all show associations consistent with a procyclical interpretation of fertility change - that is, periods of economic growth are conducive to fertility increase whereas bad economic times are associated with reduced fertility.

  11. Monitoring of Water Spectral Pattern Reveals Differences in Probiotics Growth When Used for Rapid Bacteria Selection.

    Directory of Open Access Journals (Sweden)

    Aleksandar Slavchev

    Full Text Available Development of efficient screening method coupled with cell functionality evaluation is highly needed in contemporary microbiology. The presented novel concept and fast non-destructive method brings in to play the water spectral pattern of the solution as a molecular fingerprint of the cell culture system. To elucidate the concept, NIR spectroscopy with Aquaphotomics were applied to monitor the growth of sixteen Lactobacillus bulgaricus one Lactobacillus pentosus and one Lactobacillus gasseri bacteria strains. Their growth rate, maximal optical density, low pH and bile tolerances were measured and further used as a reference data for analysis of the simultaneously acquired spectral data. The acquired spectral data in the region of 1100-1850nm was subjected to various multivariate data analyses - PCA, OPLS-DA, PLSR. The results showed high accuracy of bacteria strains classification according to their probiotic strength. Most informative spectral fingerprints covered the first overtone of water, emphasizing the relation of water molecular system to cell functionality.

  12. Rapid population growth. Effects on the social infrastructures of southern Africa.

    Science.gov (United States)

    Smith, J D

    1995-01-01

    Southern Africa's high rate of population growth and widespread poverty have serious implications for the region's social infrastructure. Large increases in the school-age population have undermined efforts to improve the quality of education since all resources are directed toward expansion of availability. To achieve a teacher-pupil ratio of 1:40 at the primary level and 1:35 at the secondary level, an estimated additional 50,000 classrooms would be required. Also jeopardized by high fertility is access to health services, safe water, and sanitation. In Mozambique, for example, where only 30% of the population has access to health services, the under-five years mortality rate is 297/1000 live births and the physician-population ratio is 1:37,970. Substandard housing, homelessness, congestion, deteriorating public services, pollution, and crime dominate urban areas. The single most effective intervention to reduce population growth in Southern Africa is female education. Women without a secondary education bear an average of seven children; if 40% of women attend secondary school, this drops to three children. Thus, governments must make gender equality a central focus of development planning and ensure that women are participants in this process. Property and inheritance laws that serve to increase the economic need for early marriage should be eliminated. Public health programs, including family planning, must be expanded. Finally, women's organizations should be strengthened and urged to foster female empowerment.

  13. Fertility in Alberta in a Context of Rapid Economic Growth, 1997-2007

    Directory of Open Access Journals (Sweden)

    Frank Trovato

    2010-01-01

    Full Text Available Historically, birth rates in Alberta have followed closely the trajectory of change experienced by the other Canadian provinces. Its total fertility rate fell during the low point of the 1930s; it increased during the post-War baby boom in the 1950s and sixties, and thereafter fell to sub-replacement levels beginning in the mid 1970s. In recent years, especially since the early 2000s, the birth rate in Alberta has unexpectedly increased, such that by 2007, it had reached 1.90 children per woman---not far from the 2.1 level needed for generational replacement in the long term. During this same period both national and provincial fertility rates fluctuated at levels below those of Alberta (except Saskatchewan and Manitoba, whose rates have been higher. In this study, I examine the historical pattern of fertility change in Alberta, noting similarities and differences with the other provinces. I then look at the association of selected macro level factors (marriage, unemployment, wages, female labour force participation with change in total and parity-specific birth rates between 1997 and 2007, a period of unprecedented economic growth in Alberta. The statistical results show that although marriage is not significantly correlated with change in fertility rates, male and female wages and female labour force participation all show associations consistent with a procyclical interpretation of fertility change --- that is, periods of economic growth are conducive to fertility increase whereas bad economic times lead to reduced fertility.

  14. Flow Cytometry for rapid characterization of colloidal particles of various types in process waters; Floedescytometri foer snabb karaktaerisering av kolloidala partiklar av olika typ i bakvatten - MPKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Degerth, R.; Holmbom, B. [Aabo Akademi, Turku (Finland)

    1998-12-31

    Since more than ten years Flow Cytometry (FCM) has been used for characterization of blood cells and bacteria and has become indispensable for medical and biological use. FCM is able to count thousands of particles per second and simultaneously determine their the type and size ending up in a statistically significant report within less than a minute. The principle of FCM is based on a light excitation of a `lined up` particle stream and a multi-channel determination of scatter and fluorescence. This rapid technology has so far not been used in a greater extent within process industry, except for counting bacteria in milk and beer. BASF of Germany has developed and patented a single-channel fluorescence counter for determination of resin droplets in the process waters of paper making. The FCM, however, is a far more effective and reliable method, being able not only to detect resin droplets but also bacteria, live or dead, as well as other occurring particles. We know we are able to determine bacteria, we have seen resin and we aim to show that FCM is able to give a comprehensive view of the colloidal contents of process waters in paper mills by exploring means to selectively stain the different types of particles. (orig.) 3 refs. CACTUS Research Programme

  15. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  16. Rapidly induced chemical defenses in maize stems and their effects on short-term growth of Ostrinia nubilalis.

    Science.gov (United States)

    Dafoe, Nicole J; Huffaker, Alisa; Vaughan, Martha M; Duehl, Adrian J; Teal, Peter E; Schmelz, Eric A

    2011-09-01

    Plants damaged by insect herbivory often respond by inducing a suite of defenses that can negatively affect an insect's growth and fecundity. Ostrinia nubilalis (European corn borer, ECB) is one of the most devastating insect pests of maize, and in the current study, we examined the early biochemical changes that occur in maize stems in response to ECB herbivory and how these rapidly induced defenses influence the growth of ECB. We measured the quantities of known maize defense compounds, benzoxazinoids and the kauralexin class of diterpenoid phytoalexins. ECB herbivory resulted in decreased levels of the benzoxazinoid, 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (DIMBOA-Glc), and a corresponding increase in 2-(2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one)-β-D-glucopyranose (HDMBOA-Glc). Total quantities of benzoxazinoids and kauralexins were increased as early as 24 h after the initiation of ECB feeding. The plant hormones, jasmonic acid (JA) and ethylene (ET), and the transcripts encoding their key biosynthetic enzymes also accumulated in response to ECB herbivory, consistent with a role in defense regulation. The combined pharmacological application of JA and the ET precursor, 1-aminocyclopropane-1-carboxylic acid to stem internode tissue likewise resulted in changes in benzoxazinoids similar to that observed with ECB damage. Despite the fact that maize actively mounts a defense response to ECB stem feeding, no differences in percent weight gain were observed between ECB larvae that fed upon non-wounded control tissues compared to tissues obtained from plants previously subjected to 24 h ECB stem herbivory. These rapid defense responses in maize stems do not appear to negatively impact ECB growth, thus suggesting that ECB have adapted to these induced biochemical changes.

  17. Growth of viscoelastic wings and the reduction of particle mobility in a viscoelastic shear flow

    Science.gov (United States)

    Murch, William L.; Krishnan, Sreenath; Shaqfeh, Eric S. G.; Iaccarino, Gianluca

    2017-10-01

    The motion of a rigid spherical particle in a sheared polymeric fluid is studied via experiments and numerical simulations. We study particle mobility in highly elastic fluids, where the deformation due to the sphere's movement and the shear flow both result in significant stretching of the polymer. The shear flow is imposed in a plane perpendicular to the sphere's movement, resulting in regions of high polymer tension in the wake of the sphere that can extend well into the shear flow and gradient directions. We observe that these viscoelastic wake structures, resembling wings, are linked to an increase in the form drag, providing a mechanism for a dramatic decrease in the particle mobility.

  18. Exploring features and opportunities of rapid-growth wine firms in Chile

    Directory of Open Access Journals (Sweden)

    Jorge J. Román

    2017-04-01

    Full Text Available While much has been studied regarding the wine industry in Spain and France, little has been studied in developing countries. The aim of this work is to study the characteristics of dynamic wine firms in Chile. This paper presents qualitative research and reports six cases of wine companies, where several variables are analyzed according to Barringer, Jones and Neubaum framework. These variables include prior experience, founders’ knowledge regarding large company management, the use of strategic-planning systems and the use of new technology in the majority of its production. The results of this research could prove insightful for wine entrepreneurs looking to enhance their growth, based on greater differentiation and innovation, and not only on being competitive in pricing.

  19. Rapid gut growth but persistent delay in digestive function in the postnatal period of preterm pigs

    DEFF Research Database (Denmark)

    Hansen, Carl Frederik; Thymann, Thomas; Andersen, Anders Daniel

    2016-01-01

    BACKGROUND: Preterm infants often tolerate full enteral nutrition few weeks after birth but it is not known how this is related to gut maturation. Using pigs as models, we hypothesized that intestinal structure and digestive function are similar in preterm and term individuals at 3-4 weeks after...... volume remained reduced in preterm pigs until 26 d although plasma glucagon-like peptide 2 (GLP-2) and glucose-dependent insulin-trophic peptide (GIP) levels were increased. Preterm pigs also showed reduced hexose absorptive capacity and brush-border enzyme (sucrase, maltase) activities at 26 d, relative...... to term pigs. CONCLUSION: Intestinal structure shows a remarkable growth adaptation in the first week after preterm birth, especially with enteral nutrition, while some digestive functions remain immature until at least 3-4 weeks. It is important to identify feeding regimens that stimulate intestinal...

  20. Method for rapid, controllable growth and thickness, of epitaxial silicon films

    Science.gov (United States)

    Wang, Qi [Littleton, CO; Stradins, Paul [Golden, CO; Teplin, Charles [Boulder, CO; Branz, Howard M [Boulder, CO

    2009-10-13

    A method of producing epitaxial silicon films on a c-Si wafer substrate using hot wire chemical vapor deposition by controlling the rate of silicon deposition in a temperature range that spans the transition from a monohydride to a hydrogen free silicon surface in a vacuum, to obtain phase-pure epitaxial silicon film of increased thickness is disclosed. The method includes placing a c-Si substrate in a HWCVD reactor chamber. The method also includes supplying a gas containing silicon at a sufficient rate into the reaction chamber to interact with the substrate to deposit a layer containing silicon thereon at a predefined growth rate to obtain phase-pure epitaxial silicon film of increased thickness.

  1. Rapid enzyme production and mycelial growth in solid-state fermentation using the non-airflow box.

    Science.gov (United States)

    Ito, Kazunari; Gomi, Katsuya; Kariyama, Masahiro; Miyake, Tsuyoshi

    2013-11-01

    Solid-state fermentation (SSF) has become an attractive alternative to submerged fermentation (SMF) for the production of enzymes, organic acids, and secondary metabolites, while there are many problems during the culture of SSF. We recently created a SSF system using a non-airflow box (NAB) in order to resolve the problems, which enabled the uniform culture in the whole substrate and high yield of many enzymes. In this paper, further characterization of SSF using the NAB was carried out to obtain other advantages. The NAB culture under the fixed environmental condition exhibited a rapid increase in enzyme production at earlier phase during the culture compared with conventional SSF. Total mycelial growth also exhibited the same trend as enzyme production. Thus, the increase in the rate of the enzyme production was thought to mainly be attributed to that of the growth. To support it, it was suggested that the NAB culture resulted in most optimal water activity for the growth just at the log phase. In addition, the NAB culture was able to achieve high reproducibility of enzyme production, derived from uniform condition of the substrate during the culture. The results indicate that the NAB culture has many benefits for SSF. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. A Universally Applicable and Rapid Method for Measuring the Growth of Streptomyces and Other Filamentous Microorganisms by Methylene Blue Adsorption-Desorption

    Science.gov (United States)

    Fischer, Marco

    2013-01-01

    Quantitative assessment of growth of filamentous microorganisms, such as streptomycetes, is generally restricted to determination of dry weight. Here, we describe a straightforward methylene blue-based sorption assay to monitor microbial growth quantitatively, simply, and rapidly. The assay is equally applicable to unicellular and filamentous bacterial and eukaryotic microorganisms. PMID:23666340

  3. A Universally Applicable and Rapid Method for Measuring the Growth of Streptomyces and Other Filamentous Microorganisms by Methylene Blue Adsorption-Desorption

    OpenAIRE

    Fischer, Marco; Sawers, R. Gary

    2013-01-01

    Quantitative assessment of growth of filamentous microorganisms, such as streptomycetes, is generally restricted to determination of dry weight. Here, we describe a straightforward methylene blue-based sorption assay to monitor microbial growth quantitatively, simply, and rapidly. The assay is equally applicable to unicellular and filamentous bacterial and eukaryotic microorganisms.

  4. A universally applicable and rapid method for measuring the growth of streptomyces and other filamentous microorganisms by methylene blue adsorption-desorption.

    Science.gov (United States)

    Fischer, Marco; Sawers, R Gary

    2013-07-01

    Quantitative assessment of growth of filamentous microorganisms, such as streptomycetes, is generally restricted to determination of dry weight. Here, we describe a straightforward methylene blue-based sorption assay to monitor microbial growth quantitatively, simply, and rapidly. The assay is equally applicable to unicellular and filamentous bacterial and eukaryotic microorganisms.

  5. Rapid Population Growth and Human Carrying Capacity: Two Perspectives. World Bank Staff Working Papers No. 690 and Population and Development Series No. 15.

    Science.gov (United States)

    Mahar, Dennis J., Ed.; And Others

    Two perspectives on carrying capacity and population growth are examined. The first perspective, "Carrying Capacity and Rapid Population Growth: Definition, Cases, and Consequences" (Robert Muscat), explores the possible meanings of the idea of carrying capacity under developing country conditions, looks at historical and present-day cases of…

  6. Nucleation and growth of sub-3 nm particles in the polluted urban atmosphere of a megacity in China

    Directory of Open Access Journals (Sweden)

    H. Yu

    2016-03-01

    Full Text Available Particle size distribution down to 1.4 nm was measured in the urban atmosphere of Nanjing, China, in spring, summer, and winter during 2014–2015. Sub-3 nm particle event, which is equivalent to nucleation event, occurred on 42 out of total 90 observation days, but new particles could grow to cloud condensation nuclei (CCN-active sizes on only 9 days. In summer, infrequent nucleation was limited by both unfavorable meteorological conditions (high temperature and relative humidity – RH and reduced anthropogenic precursor availability due to strict emission control measures during the 2014 Youth Olympic Games in Nanjing. The limiting factors for nucleation in winter and spring were meteorological conditions (radiation, temperature, and RH and condensation sink, but for the further growth of sub-3 nm particles to CCN-active sizes, anthropogenic precursors again became limiting factors. Nucleation events were strong in the polluted urban atmosphere. Initial J1.4 at the onset and peak J1.4 at the noontime could be up to 2.1 × 102 and 2.5 × 103 cm−3 s−1, respectively, during the eight nucleation events selected from different seasons. Time-dependent J1.4 usually showed good linear correlations with a sulfuric acid proxy for every single event (R2 = 0.56–0.86, excluding a day with significant nocturnal nucleation, but the correlation among all eight events deteriorated (R2 =  0.17 due to temperature or season change. We observed that new particle growth rate (GR did not increase monotonically with particle size, but had a local maximum up to 25 nm h−1 between 1 and 3 nm. The existence of local maxima GR in sub-3 nm size range, though sensitive to measurement uncertainties, gives new insight into cluster dynamics in polluted environments. In this study such growth rate behavior was interpreted as the solvation effect of organic activating vapor in newly formed inorganic nuclei.

  7. Rapid economic growth leads to boost in NO2 pollution over India, as seen from space

    Science.gov (United States)

    Hilboll, Andreas; Richter, Andreas; Burrows, John P.

    2016-04-01

    Over the past decades, the Indian economy has been growing at an exceptional pace. This growth was induced and accompanied by a strong increase of the Indian population. Consequently, traffic, electricity consumption, and industrial production have soared over the past decades, leading to a strong increase in fuel consumption and thus pollutant emissions. Nitrogen oxides (NO+NO2) are a major component of anthropogenic air pollution, playing key part in reaction cycles leading to the formation of tropospheric ozone. They are mainly emitted by the combustion of fossil fuels; other sources include production by lightning, biomass burning, and microbial activity in soils. Since the mid-1990s, space-borne measurements of tropospheric nitrogen dioxide (NO2) have been conducted by the GOME, SCIAMACHY, GOME-2, and OMI instruments. These instruments perform hyperspectral measurements of scattered and reflected sunlight. Their measurements are then analyzed using differential optical absorption spectroscopy (DOAS) to yield vertically integrated columnar trace gas abundances. Here, we will present the results of 20 years of NO2 measurements over the Indian subcontinent. After showing the spatial distribution of NO2 pollution over India, we will present time series for individual states and urban agglomerations. These time series will then be related to various indicators of economic development. Finally, we will highlight several instances where single industrial pollution sources and their development can clearly be identified from the NO2 maps and estimate their NO2 emissions.

  8. Biofunctionalization of scaffold material with nano-scaled diamond particles physisorbed with angiogenic factors enhances vessel growth after implantation.

    Science.gov (United States)

    Schimke, Magdalena M; Stigler, Robert; Wu, Xujun; Waag, Thilo; Buschmann, Peter; Kern, Johann; Untergasser, Gerold; Rasse, Michael; Steinmüller-Nethl, Doris; Krueger, Anke; Lepperdinger, Günter

    2016-04-01

    Biofunctionalized scaffold facilitates complete healing of large defects. Biological constraints are induction and ingrowth of vessels. Angiogenic growth factors such as vascular endothelial growth factor or angiopoietin-1 can be bound to nano-scaled diamond particles. Corresponding bioactivities need to be examined after biofunctionalization. We therefore determined the physisorptive capacity of distinctly manufactured, differently sized nDP and the corresponding activities of bound factors. The properties of biofunctionalized nDPs were investigated on cultivated human mesenchymal stem cells and on the developing chicken embryo chorio-allantoic membrane. Eventually porous bone substitution material was coated with nDP to generate an interface that allows biofactor physisorption. Angiopoietin-1 was applied shortly before scaffold implantation into an osseous defect in sheep calvaria. Biofunctionalized scaffolds exhibited significantly increased rates of angiogenesis already one month after implantation. Conclusively, nDP can be used to ease functionalization of synthetic biomaterials. With the advances in nanotechnology, many nano-sized materials have been used in the biomedical field. This is also true for nano-diamond particles (nDP). In this article, the authors investigated the physical properties of functionalized nano-diamond particles in both in-vitro and in-vivo settings. The positive findings would help improve understanding of these nanomaterials in regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Rapid Start-up and Loading of an Attached Growth, Simultaneous Nitrification/Denitrification Membrane Aerated Bioreactor

    Science.gov (United States)

    Meyer, Caitlin E.; Pensinger, Stuart; Pickering, Karen D.; Barta, Daniel; Shull, Sarah A.; Vega, Letticia M.; Christenson, Dylan; Jackson, W. Andrew

    2015-01-01

    Membrane aerated bioreactors (MABR) are attached-growth biological systems used for simultaneous nitrification and denitrification to reclaim water from waste. This design is an innovative approach to common terrestrial wastewater treatments for nitrogen and carbon removal and implementing a biologically-based water treatment system for long-duration human exploration is an attractive, low energy alternative to physiochemical processes. Two obstacles to implementing such a system are (1) the "start-up" duration from inoculation to steady-state operations and (2) the amount of surface area needed for the biological activity to occur. The Advanced Water Recovery Systems (AWRS) team at JSC explored these two issues through two tests; a rapid inoculation study and a wastewater loading study. Results from these tests demonstrate that the duration from inoculation to steady state can be reduced to under two weeks, and that despite low ammonium removal rates, the MABRs are oversized.

  10. Cluster-cluster aggregation with particle replication and chemotaxy: a simple model for the growth of animal cells in culture

    Science.gov (United States)

    Alves, S. G.; Martins, M. L.

    2010-09-01

    Aggregation of animal cells in culture comprises a series of motility, collision and adhesion processes of basic relevance for tissue engineering, bioseparations, oncology research and in vitro drug testing. In the present paper, a cluster-cluster aggregation model with stochastic particle replication and chemotactically driven motility is investigated as a model for the growth of animal cells in culture. The focus is on the scaling laws governing the aggregation kinetics. Our simulations reveal that in the absence of chemotaxy the mean cluster size and the total number of clusters scale in time as stretched exponentials dependent on the particle replication rate. Also, the dynamical cluster size distribution functions are represented by a scaling relation in which the scaling function involves a stretched exponential of the time. The introduction of chemoattraction among the particles leads to distribution functions decaying as power laws with exponents that decrease in time. The fractal dimensions and size distributions of the simulated clusters are qualitatively discussed in terms of those determined experimentally for several normal and tumoral cell lines growing in culture. It is shown that particle replication and chemotaxy account for the simplest cluster size distributions of cellular aggregates observed in culture.

  11. Study of real time detection and size distribution measurement of ultrafine aerosol with a particle growth system (PGS)

    Energy Technology Data Exchange (ETDEWEB)

    Rebours, A.

    1994-06-29

    First, the theoretical knowledge on condensation phenomena of a supersaturated vapor in a cylindrical duct where an ultrafine aerosol of nanometers size is flowing, is recalled. Then, a Particle Growth-System (PGS) of original design is developed: the aerosol is confined in a region with a uniform vapor supersaturation profile. When imperfectly filtered atmospheric air is used as source of condensation nuclei, the produced droplets are found to be monodisperse. Therefore, our PGS offers a simple method of calibrating Optical Particle Counters because the size distribution of theses droplets is controlled. After an experimental study validated by a theoretical model, we establish that, under certain supersaturation conditions, the droplet size in our PGS is a function of ultrafine particle size on which the vapor condenses. Furthermore, when the sampled aerosol is constituted of an ultrafine fraction and a fine fraction, we show that the size distribution of the droplets that come out from the PGS is bimodal too. Finally, a simple redesign of our fluids inlet system should reduce particles losses in the PGS due to brownian diffusion and, in that manner improve their detection. (author). 72 refs., 46 figs., 8 tabs., 4 appends.

  12. A method for rapid production of heteromultimeric protein complexes in plants: assembly of protective bluetongue virus-like particles.

    Science.gov (United States)

    Thuenemann, Eva C; Meyers, Ann E; Verwey, Jeanette; Rybicki, Edward P; Lomonossoff, George P

    2013-09-01

    Plant expression systems based on nonreplicating virus-based vectors can be used for the simultaneous expression of multiple genes within the same cell. They therefore have great potential for the production of heteromultimeric protein complexes. This work describes the efficient plant-based production and assembly of Bluetongue virus-like particles (VLPs), requiring the simultaneous expression of four distinct proteins in varying amounts. Such particles have the potential to serve as a safe and effective vaccine against Bluetongue virus (BTV), which causes high mortality rates in ruminants and thus has a severe effect on the livestock trade. Here, VLPs produced and assembled in Nicotiana benthamiana using the cowpea mosaic virus-based HyperTrans (CPMV-HT) and associated pEAQ plant transient expression vector system were shown to elicit a strong antibody response in sheep. Furthermore, they provided protective immunity against a challenge with a South African BTV-8 field isolate. The results show that transient expression can be used to produce immunologically relevant complex heteromultimeric structures in plants in a matter of days. The results have implications beyond the realm of veterinary vaccines and could be applied to the production of VLPs for human use or the coexpression of multiple enzymes for the manipulation of metabolic pathways. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  13. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  14. Characterization and modeling of illite crystal particles and growth mechanisms in a zoned hydrothermal deposit, Lake City, Colorado

    Science.gov (United States)

    Bove, D.J.; Eberl, D.D.; McCarty, D.K.; Meeker, G.P.

    2002-01-01

    Mean thickness measurements and crystal-thickness distributions (CTDs) of illite particles vary systematically with changes in hydrothermal alteration type, fracture density, and attendant mineralization in a large acid-sulfate/Mo-porphyry hydrothermal system at Red Mountain, near Lake City, Colorado. The hydrothermal illites characterize an extensive zone of quartz-sericite-pyrite alteration beneath two deeply rooted bodies of magmatic-related, quartz-alunite altered rock. Nineteen illites from a 3000 ft vertical drill hole were analyzed by XRD using the PVP-10 intercalation method and the computer program MudMaster (Bertaut-Warren-Averbach technique). Mean crystallite thicknesses, as determined from 001 reflections, range from 5-7 nanometers (nm) at depths from 0-1700 ft, then sharply increase to 10-16 nm at depths between 1800-2100 ft, and decrease again to 4-5 nm below this level. The interval of largest particle thickness correlates strongly with the zone of most intense quartz-sericite-pyrite alteration (QSP) and attendant high-density stockwork fracturing, and with the highest concentrations of Mo within the drill core. CTD shapes for the illite particles fall into two main categories: asymptotic and lognormal. The shapes of the CTDs are dependent on conditions of illite formation. The asymptotic CTDs correspond to a nucleation and growth mechanism, whereas surface-controlled growth was the dominant mechanism for the lognormal CTDs. Lognormal CTDs coincide with major through-going fractures or stockwork zones, whereas asymptotic CTDs are present in wallrock distal to these intense fracture zones. The increase in illite particle size and the associated zone of intense QSP alteration and stockwork veining was related by proximity to the dacitic magma(s), which supplied both reactants and heat to the hydrothermal system. However, no changes in illite polytype, which in other studies reflect temperature transitions, were observed within this interval.

  15. Photosynthetic activity and proteomic analysis highlights the utilization of atmospheric CO2 by Ulva prolifera (Chlorophyta) for rapid growth.

    Science.gov (United States)

    Huan, Li; Gu, Wenhui; Gao, Shan; Wang, Guangce

    2016-12-01

    Free-floating Ulva prolifera is one of the causative species of green tides. When green tides occur, massive mats of floating U. prolifera thalli accumulate rapidly in surface waters with daily growth rates as high as 56%. The upper thalli of the mats experience environmental changes such as the change in carbon source, high salinity, and desiccation. In this study, the photosynthetic performances of PSI and PSII in U. prolifera thalli exposed to different atmospheric carbon dioxide (CO2 ) levels were measured. Changes in photosynthesis within salinity treatments and dehydration under different CO2 concentrations were also analyzed. The results showed that PSII activity was enhanced as CO2 increased, suggesting that CO2 assimilation was enhanced and U. prolifera thalli can utilize CO2 in the atmosphere directly, even when under moderate stress. In addition, changes in the proteome of U. prolifera in response to salt stress were investigated. Stress-tolerance proteins appeared to have an important role in the response to salinity stress, whereas the abundance of proteins related to metabolism showed no significant change under low salinity treatments. These findings may be one of the main reasons for the extremely high growth rate of free-floating U. prolifera when green tides occur. © 2016 Phycological Society of America.

  16. The Chemical Deposition Method for the Decoration of Palladium Particles on Carbon Nanofibers with Rapid Conductivity Changes

    Directory of Open Access Journals (Sweden)

    Hoik Lee

    2016-11-01

    Full Text Available Palladium (Pd metal is well-known for hydrogen sensing material due to its high sensitivity and selectivity toward hydrogen, and is able to detect hydrogen at near room temperature. In this work, palladium-doped carbon nanofibers (Pd/CNFs were successfully produced in a facile manner via electrospinning. Well-organized and uniformly distributed Pd was observed in microscopic images of the resultant nanofibers. Hydrogen causes an increment in the volume of Pd due to the ability of hydrogen atoms to occupy the octahedral interstitial positions within its face centered cubic lattice structure, resulting in the resistance transition of Pd/CNFs. The resistance variation was around 400%, and it responded rapidly within 1 min, even in 5% hydrogen atmosphere conditions at room temperature. This fibrous hybrid material platform will open a new and practical route and stimulate further researches on the development of hydrogen sensing materials with rapid response, even to low concentrations of hydrogen in an atmosphere.

  17. Quantitative structure-activity relationships for green algae growth inhibition by polymer particles.

    NARCIS (Netherlands)

    Nolte, Tom M; Peijnenburg, Willie J G M; Hendriks, A Jan; van de Meent, Dik

    After use and disposal of chemical products, many types of polymer particles end up in the aquatic environment with potential toxic effects to primary producers like green algae. In this study, we have developed Quantitative Structure-Activity Relationships (QSARs) for a set of highly structural

  18. Crack Initiation and Growth Behavior of Cold-Sprayed Ni Particles on IN718 Alloy

    Science.gov (United States)

    Cavaliere, P.; Silvello, A.

    2017-04-01

    Cold spray processing parameters, governing particle velocity and impact energy, are analyzed in the present paper for pure Ni sprayed on IN718 substrates. Finite element modeling (FEM) was used to calculate the particle impact velocity and temperature as a function of gas temperature and pressure and particle density and dimensions. Experimental evidence underlines the possibility of performing repairing through cold spray thanks to the good level of adhesion achievable by employing optimal combinations of materials and spray processing parameters. In the present paper, the potential repairing of cracked superalloys sheets, by employing cold spray technology, is presented. 30° surface V-notched IN718 panels have been repaired by using pure Ni cold-sprayed powders. The bending behavior of the repaired sheets was analyzed by FEM and mechanical testing in order to compare the properties with those belonging to the unrepaired panels. Simulations and mechanical results showed a reduction in the stress intensity factor, a modification of the crack initiation site and a crack retardation in the repaired structures if compared with the unrepaired ones. The K factor was quantified; the resistance of repaired panels was increased of more than eight times in the case of repairing with Ni cold spray particles. Geometrical and mechanical properties of the coating-substrate interfaces, such as adhesion strength and residual stresses influencing the coatings behavior, were largely analyzed.

  19. Single-dose immunization with virus replicon particles confers rapid robust protection against Rift Valley fever virus challenge.

    Science.gov (United States)

    Dodd, Kimberly A; Bird, Brian H; Metcalfe, Maureen G; Nichol, Stuart T; Albariño, César G

    2012-04-01

    Rift Valley fever virus (RVFV) causes outbreaks of severe disease in people and livestock throughout Africa and the Arabian Peninsula. The potential for RVFV introduction outside the area of endemicity highlights the need for fast-acting, safe, and efficacious vaccines. Here, we demonstrate a robust system for the reverse genetics generation of a RVF virus replicon particle (VRP(RVF)) vaccine candidate. Using a mouse model, we show that VRP(RVF) immunization provides the optimal balance of safety and single-dose robust efficacy. VRP(RVF) can actively synthesize viral RNA and proteins but lacks structural glycoprotein genes, preventing spread within immunized individuals and reducing the risk of vaccine-induced pathogenicity. VRP(RVF) proved to be completely safe following intracranial inoculation of suckling mice, a stringent test of vaccine safety. Single-dose subcutaneous immunization with VRP(RVF), although it is highly attenuated, completely protected mice against a virulent RVFV challenge dose which was 100,000-fold greater than the 50% lethal dose (LD(50)). Robust protection from lethal challenge was observed by 24 h postvaccination, with 100% protection induced in as little as 96 h. We show that a single subcutaneous VRP(RVF) immunization initiated a systemic antiviral state followed by an enhanced adaptive response. These data contrast sharply with the much-reduced survivability and immune responses observed among animals immunized with nonreplicating viral particles, indicating that replication, even if confined to the initially infected cells, contributes substantially to protective efficacy at early and late time points postimmunization. These data demonstrate that replicon vaccines successfully bridge the gap between safety and efficacy and provide insights into the kinetics of antiviral protection from RVFV infection.

  20. Texture control and growth mechanism of WSe{sub 2} film prepared by rapid selenization of W film

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hongchao [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Chongyi Zhangyuan Tungsten Industry Corporation Limited, Ganzhou 341300 (China); Gao, Di; Li, Kun; Pang, Mengde; Xie, Senlin [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Liu, Rutie, E-mail: llrrtt@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); Zou, Jianpeng [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China)

    2017-02-01

    Highlights: • We present a highly efficient method for preparing WSe{sub 2} film by rapid selenization. • The W film phase composition has little effect on WSe{sub 2} film orientation. • W film density is a critical factor that influences the WSe{sub 2} orientation. • A growth model was proposed for two kinds of WSe{sub 2} film textures. - Abstract: The tungsten diselenide (WSe{sub 2}) films with different orientation present unique properties suitable for specific applications, such as WSe{sub 2} with a C-axis⊥substrate for optoelectronics and WSe{sub 2} with a C-axis // substrate for electrocatalysts. Orientation control of WSe{sub 2} is essential for realizing the practical applications. In this letter, a WSe{sub 2} film has been prepared via rapid selenization of a magnetron-sputtered tungsten (W) film. The influence of the magnetron-sputtered W film on WSe{sub 2} film growth was studied systematically. Scanning electron microscopy, X-ray diffractometry and high-resolution transmission electron microscopy were used to evaluate the morphology, microstructure and phase composition of the W and WSe{sub 2} films. The substrate temperature has a significant effect on the W film phase composition, but little effect on the WSe{sub 2} film orientation. The WSe{sub 2} orientation can be controlled by changing the W film microstructure. A dense W film that is deposited at low pressure is conducive to the formation of WSe{sub 2} with a C-axis⊥substrate, whereas a porous W film deposited at high pressure favors the formation of WSe{sub 2} with a C-axis // substrate. A growth model for the WSe{sub 2} film with different texture has been proposed based on the experimental results. The direction of selenium (Se) vapor diffusion differs at the top and side surfaces. This is a key factor for the preparation of anisotropic WSe{sub 2} films. Highly oriented WSe{sub 2} films with a C-axis⊥substrate grow from the dense W film deposited at low pressure because Se vapor

  1. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Science.gov (United States)

    Malizia, Agustina; Easdale, Tomás A; Grau, H Ricardo

    2013-01-01

    Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1) y(-1)) and basal area by 6% (0.13 m(2) ha(-1) y(-1)). Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis) into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species), rainfall or temperature increase (no increase in evergreen or deciduous species, respectively). However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  2. Rapid structural and compositional change in an old-growth subtropical forest: using plant traits to identify probable drivers.

    Directory of Open Access Journals (Sweden)

    Agustina Malizia

    Full Text Available Recent studies have shown directional changes in old-growth tropical forests, but changes are complex and diverse, and their drivers unclear. Here, we report rapid net structural and compositional changes in an old-growth subtropical forest and we assess the functional nature of these changes to test hypothetical drivers including recovery from past disturbances, reduction in ungulate browsing, CO2 fertilization, and increases in rainfall and temperature. The study relies on 15 years of demographic monitoring within 8 ha of subtropical montane forest in Argentina. Between 1992 and 2007, stem density markedly increased by 50% (12 stems ha(-1 y(-1 and basal area by 6% (0.13 m(2 ha(-1 y(-1. Increased stem density resulted from enhanced recruitment of understory treelets (Piper tucumanum, Eugenia uniflora, Allophylus edulis into small size classes. Among 27 common tree species, net population growth was negatively correlated with maximum tree size and longevity, and positively correlated with leaf size and leaf nutrient content, especially so when initial population size was controlled for. Changes were inconsistent with predictions derived from past disturbances (no increase in shade-tolerant or long-lived late-succesional species, rainfall or temperature increase (no increase in evergreen or deciduous species, respectively. However, the increase in nutrient-rich soft-leaved species was consistent with exclusion of large herbivores two decades before monitoring started; and CO2 fertilization could help explain the disproportionate increase in small stems. Reductions in populations of large vertebrates have been observed in many otherwise undisturbed tropical forests, and our results suggest they can have important structural and functional repercussions in these forests.

  3. Irreversible volume growth in polymer-bonded powder systems: effects of crystalline anisotropy, particle size distribution, and binder strength

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A; Gee, R H; Hoffman, D; Fried, L E

    2007-08-22

    Pressed-powdered crystallites of intrinsically anisotropic materials have been shown to undergo irreversible volume expansion when subjected to repeated cycles of heating and cooling. We develop a coarse-grained (micron-scale) interaction Hamiltonian for this system and perform molecular dynamics simulations, which quantitatively reproduce the experimentally observed irreversible growth. The functional form and values of the interaction parameters at the coarse-grained level are motivated by our knowledge at the atomic/molecular scale, and allows a simple way to incorporate the effect of polymeric binder. We demonstrate that irreversible growth happens only in the presence of intrinsic crystalline anisotropy of the powder material, is mediated by particles much smaller than the average crystallite size, and can be significantly reduced in the presence of high-strength polymeric binder with elevated glass transition temperatures.

  4. Aerosol-CFD modelling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    OpenAIRE

    L. Huang; S. L. Gong; M. Gordon; J. Liggio; R. M. Staebler; C. A. Stroud; G. Lu; C. Mihele; J. R. Brook; C. Q. Jia

    2014-01-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFP; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion and dynamics of UFPs, an aerosol dynamics-CFD coupled model is developed and validated against field measurements. A unique approach of applying periodic boundary condition...

  5. Modeling of urban growth using cellular automata (CA) optimized by Particle Swarm Optimization (PSO)

    Science.gov (United States)

    Khalilnia, M. H.; Ghaemirad, T.; Abbaspour, R. A.

    2013-09-01

    In this paper, two satellite images of Tehran, the capital city of Iran, which were taken by TM and ETM+ for years 1988 and 2010 are used as the base information layers to study the changes in urban patterns of this metropolis. The patterns of urban growth for the city of Tehran are extracted in a period of twelve years using cellular automata setting the logistic regression functions as transition functions. Furthermore, the weighting coefficients of parameters affecting the urban growth, i.e. distance from urban centers, distance from rural centers, distance from agricultural centers, and neighborhood effects were selected using PSO. In order to evaluate the results of the prediction, the percent correct match index is calculated. According to the results, by combining optimization techniques with cellular automata model, the urban growth patterns can be predicted with accuracy up to 75 %.

  6. Ratios of charged antiparticles to particles near mid-rapidity in Au+Au collisions at sqrt(s_NN) = 130 GeV

    CERN Document Server

    Back, B B; Barton, D S; Betts, R R; Bindel, R; Budzanowski, A; Busza, W; Carroll, A; Decowski, M P; García, E; George, N; Gulbrandsen, K H; Gushue, S; Halliwell, C; Heintzelman, G A; Henderson, C; Holynski, R; Hofman, D J; Holzman, B; Johnson, E; Kane, J; Katzy, J M; Khan, N A; Kucewicz, W; Kulinich, P A; Lin, W T; Manly, S L; McLeod, D; Michalowski, J; Mignerey, A C; Mülmenstädt, J; Nouicer, R; Olszewski, A; Pak, R; Park, I C; Pernegger, H; Reed, C; Remsberg, L P; Reuter, M; Roland, C; Roland, G; Rosenberg, L J; Sarin, P; Sawicki, P; Skulski, W; Steadman, S G; Stephans, G S F; Steinberg, P; Stodulski, M; Sukhanov, A; Tang, J L; Teng, R; Trzupek, A; Vale, C J; van Nieuwenhuizen, G J; Verdier, R; Wadsworth, B; Wolfs, F L H; Wosiek, B; Wozniak, K; Wuosmaa, A H; Wyslouch, B

    2001-01-01

    We have measured the ratios of antiparticles to particles for charged pions, kaons and protons near mid-rapidity in central Au+Au collisions at sqrt(s_NN) = 130 GeV. For protons, we observe pbar/p = 0.60 +/- 0.04 (stat.) +/- 0.06 (syst.) in the transverse momentum range 0.15 < p_T < 1.0 GeV/c. This leads to an estimate of the baryo-chemical potential mu_B of 45 MeV, a factor of 5-6 smaller than in central Pb+Pb collisions at sqrt(s_NN) = 17.2 GeV.

  7. Magnetic Nanoparticles-Loaded Physarum polycephalum: Directed Growth and Particles Distribution.

    Science.gov (United States)

    Dimonte, Alice; Cifarelli, Angelica; Berzina, Tatiana; Chiesi, Valentina; Ferro, Patrizia; Besagni, Tullo; Albertini, Franca; Adamatzky, Andrew; Erokhin, Victor

    2015-12-01

    Slime mold Physarum polycephalum is a single cell visible by an unaided eye. The slime mold optimizes its network of protoplasmic tubes to minimize expose to repellents and maximize expose to attractants and to make efficient transportation of nutrients. These properties of P. polycephalum, together with simplicity of its handling and culturing, make it a priceless substrate for designing novel sensing, computing and actuating architectures in living amorphous biological substrate. We demonstrate that, by loading Physarum with magnetic particles and positioning it in a magnetic field, we can, in principle, impose analog control procedures to precisely route active growing zones of slime mold and shape topology of its protoplasmic networks.

  8. Carbon mediated reduction of silicon dioxide and growth of copper silicide particles in uniform width channels

    DEFF Research Database (Denmark)

    Pizzocchero, Filippo; Bøggild, Peter; Booth, Tim

    2013-01-01

    We show that surface arc-discharge deposited carbon plays a critical intermediary role in the breakdown of thermally grown oxide diffusion barriers of 90 nm on a silicon wafer at 1035°C in an Ar/H2 atmosphere, resulting in the formation of epitaxial copper silicide particles in ≈ 10 μm wide...... channels, which are aligned with the intersections of the (100) surface of the wafer and the {110} planes on an oxidized silicon wafer, as well as endotaxial copper silicide nanoparticles within the wafer bulk. We apply energy dispersive x-ray spectroscopy, in combination with scanning and transmission...

  9. KMCThinFilm: A C++ Framework for the Rapid Development of Lattice Kinetic Monte Carlo (kMC) Simulations of Thin Film Growth

    Science.gov (United States)

    2015-09-01

    196–201. 44. Kratzer P. Monte Carlo and kinetic Monte Carlo methods–a tutorial. In: Grotendorst J, Attig N, Blügel S, Marx D, editors. Multiscale...Monte Carlo (kMC) Simulations of Thin Film Growth by James J Ramsey Approved for public release; distribution is...Research Laboratory KMCThinFilm: A C++ Framework for the Rapid Development of Lattice Kinetic Monte Carlo (kMC) Simulations of Thin Film Growth by

  10. Comparative proteomic analysis of egg white proteins during the rapid embryonic growth period by combinatorial peptide ligand libraries.

    Science.gov (United States)

    Liu, Yijun; Qiu, Ning; Ma, Meihu

    2015-10-01

    Egg white proteins provide essential nutrients and antimicrobial protection during embryonic development. Although various biological functions of major egg white proteins have been investigated via embryogenesis, understanding of global changes in low-abundance proteins has been limited. In the current study, a proteomic analysis of low-abundance egg white proteins was conducted using combinatorial peptide ligand libraries (CPLL), two-dimensional gel electrophoresis (2-DE), and matrix-assisted laser desorption/ionization-time-of-flight with two mass analyzers for tandem mass spectrometry (MALDI-TOF MS/MS) during the rapid embryonic growth period. Significant increases in the relative abundance of 88 protein spots (P ≤ 0.05), of which 47 spots were found to correspond to 10 proteins from 8 protein families were identified over 16 d incubation. During this developmental process, the protein concentration increased and the amount of albumin solid material decreased in the residual egg white. Clusterin precursors were observed over a wide range of pH values and the tenp protein increased continuously during embryonic development. Low-abundance proteins were identified in a comparison of optimal incubation conditions to the altered conditions of 2 control groups to better understand the function of these proteins in egg whites. Collectively, these findings provide insight into the supportive role of the egg white during embryonic development, enabling a broader understanding of chick embryogenesis. © 2015 Poultry Science Association Inc.

  11. The rapid growth of a pleomorphic adenoma of the parotid gland in the third trimester of pregnancy

    Directory of Open Access Journals (Sweden)

    Upile Tahwinder

    2011-04-01

    Full Text Available Abstract Introduction We report a case highlighting the multidisciplinary management of a giant pleomorphic adenoma of the parotid gland that showed rapid growth in the third trimester of pregnancy. Case presentation A 43-year-old Caucasian woman presented in her 32nd week of gestation with a tumor of the parotid gland. Ultrasonography of her neck showed a parotid lesion of 40 × 30 × 27.5 mm. A follow-up magnetic resonance imaging scan of the neck four weeks later revealed that the tumor had grown to 70 × 60 × 60 mm, reaching the parapharyngeal space with marked obstruction of the oropharynx of about 50%. After discussing the case with our multidisciplinary tumor board and the gynecologists it was decided to deliver the baby by caesarean section in the 38th week of gestation, and then to perform a surgical resection of the tumor. Conclusion Indications for early surgical intervention of similar cases should be discussed on an individual patient basis in a multidisciplinary setting.

  12. Rapid growth of black holes accompanied with hot or warm outflows exposed to anisotropic super-Eddington radiation

    Science.gov (United States)

    Takeo, Eishun; Inayoshi, Kohei; Ohsuga, Ken; Takahashi, Hiroyuki R.; Mineshige, Shin

    2018-02-01

    We perform two-dimensional radiation hydrodynamical simulations of accretion flows onto a black hole (BH) with a mass of 10^3≤M_BH/M_⊙ ⪉ 10^6 in order to study rapid growth of BHs in the early Universe. For spherically symmetric flows, hyper-Eddington accretion from outside the Bondi radius can occur unimpeded by radiation feedback when M_BH ≳ 10^4 M_⊙ (n_∞/10^5 cm^{-3})^{-1}(T_∞/10^4 K)^{3/2}, where the density and temperature of ambient gas are initially set to n∞ = 105 cm-3 and T∞ = 104 K. Here, we study accretion flows exposed to anisotropic radiation from a nuclear accretion disk with a luminosity higher than the Eddington value (LEdd) due to collimation towards the bipolar directions. We find that, unlike the spherically symmetric case, even less massive BHs with MBH radiating region due to the non-radial gas motions. Because of efficient recombination by hydrogen, the entire flow settles in neutral and warm gas with T ≃ 8000 K. The BH is fed at a rate of ˜5 × 104 LEdd/c2 (a half of the inflow rate from the Bondi radius). Moreover, radiation momentum absorbed by neutral hydrogen produces warm outflows towards the bipolar directions at ˜10 % of the BH feeding rate and with a velocity several times higher than the escaping value.

  13. Measuring and modeling the hygroscopic growth of two humic substances in mixed aerosol particles of atmospheric relevance

    Directory of Open Access Journals (Sweden)

    I. R. Zamora

    2013-09-01

    Full Text Available The hygroscopic growth of atmospheric particles affects atmospheric chemistry and Earth's climate. Water-soluble organic carbon (WSOC constitutes a significant fraction of the dry submicron mass of atmospheric aerosols, thus affecting their water uptake properties. Although the WSOC fraction is comprised of many compounds, a set of model substances can be used to describe its behavior. For this study, mixtures of Nordic aquatic fulvic acid reference (NAFA and Fluka humic acid (HA, with various combinations of inorganic salts (sodium chloride and ammonium sulfate and other representative organic compounds (levoglucosan and succinic acid, were studied. We measured the equilibrium water vapor pressure over bulk solutions of these mixtures as a function of temperature and solute concentration. New water activity (aw parameterizations and hygroscopic growth curves at 25 °C were calculated from these data for particles of equivalent composition. We examined the effect of temperature on the water activity and found a maximum variation of 9% in the 0–30 °C range, and 2% in the 20–30 °C range. Five two-component mixtures were studied to understand the effect of adding a humic substance (HS, such as NAFA and HA, to an inorganic salt or a saccharide. The deliquescence point at 25 °C for HS-inorganic mixtures did not change significantly from that of the pure inorganic species. However, the hygroscopic growth of HA / inorganic mixtures was lower than that exhibited by the pure salt, in proportion to the added mass of HA. The addition of NAFA to a highly soluble solute (ammonium sulfate, sodium chloride or levoglucosan in water had the same effect as the addition of HA to the inorganic species for most of the water activity range studied. Yet, the water uptake of these NAFA mixtures transitioned to match the growth of the pure salt or saccharide at high aw values. The remaining four mixtures were based on chemical composition data for different

  14. Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells

    Science.gov (United States)

    Wittig, Anja; Gehrke, Helge; Del Favero, Giorgia; Fritz, Eva-Maria; Al-Rawi, Marco; Diabaté, Silvia; Weiss, Carsten; Sami, Haider; Ogris, Manfred; Marko, Doris

    2017-01-01

    Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR) and mitogen-activated protein kinases (MAPK) signaling pathways—both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs) were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the concentration

  15. Amorphous Silica Particles Relevant in Food Industry Influence Cellular Growth and Associated Signaling Pathways in Human Gastric Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Anja Wittig

    2017-01-01

    Full Text Available Nanostructured silica particles are commonly used in biomedical and biotechnical fields, as well as, in cosmetics and food industry. Thus, their environmental and health impacts are of great interest and effects after oral uptake are only rarely investigated. In the present study, the toxicological effects of commercially available nano-scaled silica with a nominal primary diameter of 12 nm were investigated on the human gastric carcinoma cell line GXF251L. Besides the analysis of cytotoxic and proliferative effects and the comparison with effects of particles with a nominal primary diameter of 200 nm, emphasis was also given to their influence on the cellular epidermal growth factor receptor (EGFR and mitogen-activated protein kinases (MAPK signaling pathways—both of them deeply involved in the regulation of cellular processes like cell cycle progression, differentiation or proliferation. The investigated silica nanoparticles (NPs were found to stimulate cell proliferation as measured by microscopy and the sulforhodamine B assay. In accordance, the nuclear level of the proliferation marker Ki-67 was enhanced in a concentration-dependent manner. At high particle concentrations also necrosis was induced. Finally, silica NPs affected the EGFR and MAPK pathways at various levels dependent on concentration and time. However, classical activation of the EGFR, to be reflected by enhanced levels of phosphorylation, could be excluded as major trigger of the proliferative stimulus. After 45 min of incubation the level of phosphorylated EGFR did not increase, whereas enhanced levels of total EGFR protein were observed. These results indicate interference with the complex homeostasis of the EGFR protein, whereby up to 24 h no impact on the transcription level was detected. In addition, downstream on the level of the MAP kinases ERK1/2 short term incubation appeared to affect total protein levels without clear increase in phosphorylation. Depending on the

  16. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    Science.gov (United States)

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Experimental setup for the growth of solid crystals of inert gases for particle detection

    Science.gov (United States)

    Guarise, M.; Braggio, C.; Calabrese, R.; Carugno, G.; Dainelli, A.; Khanbekyan, A.; Luppi, E.; Mariotti, E.; Poggi, M.; Tomassetti, L.

    2017-11-01

    Low energy threshold detectors are necessary in many frontier fields of the experimental physics. In this work, we present a novel detection approach based on pure or doped matrices of inert gases solidified at cryogenic temperatures. The small energy release of the incident particle can be transferred directly (in pure crystals) or through a laser-driven ionization (in doped materials) to the electrons of the medium that are then converted into free electrons. The charge collection process of the electrons that consists in their drift within the crystal and their extraction through the solid-vacuum interface gives rise to an electric signal that we exploit for preliminary tests of charge collection and crystal quality. Such tests are carried out in different matrices of neon and methane using an UV-assisted apparatus for electron injection in crystals.

  18. Discovery of Transition Rules for Cellular Automata Using Artificial Bee Colony and Particle Swarm Optimization Algorithms in Urban Growth Modeling

    Directory of Open Access Journals (Sweden)

    Fereydoun Naghibi

    2016-12-01

    Full Text Available This paper presents an advanced method in urban growth modeling to discover transition rules of cellular automata (CA using the artificial bee colony (ABC optimization algorithm. Also, comparisons between the simulation results of CA models optimized by the ABC algorithm and the particle swarm optimization algorithms (PSO as intelligent approaches were performed to evaluate the potential of the proposed methods. According to previous studies, swarm intelligence algorithms for solving optimization problems such as discovering transition rules of CA in land use change/urban growth modeling can produce reasonable results. Modeling of urban growth as a dynamic process is not straightforward because of the existence of nonlinearity and heterogeneity among effective involved variables which can cause a number of challenges for traditional CA. ABC algorithm, the new powerful swarm based optimization algorithms, can be used to capture optimized transition rules of CA. This paper has proposed a methodology based on remote sensing data for modeling urban growth with CA calibrated by the ABC algorithm. The performance of ABC-CA, PSO-CA, and CA-logistic models in land use change detection is tested for the city of Urmia, Iran, between 2004 and 2014. Validations of the models based on statistical measures such as overall accuracy, figure of merit, and total operating characteristic were made. We showed that the overall accuracy of the ABC-CA model was 89%, which was 1.5% and 6.2% higher than those of the PSO-CA and CA-logistic model, respectively. Moreover, the allocation disagreement (simulation error of the simulation results for the ABC-CA, PSO-CA, and CA-logistic models are 11%, 12.5%, and 17.2%, respectively. Finally, for all evaluation indices including running time, convergence capability, flexibility, statistical measurements, and the produced spatial patterns, the ABC-CA model performance showed relative improvement and therefore its superiority was

  19. Rapid growth and genetic diversity retention in an isolated reintroduced black bear population in the central appalachians

    Science.gov (United States)

    Murphy, Sean M.; Cox, John J.; Clark, Joseph D.; Augustine, Benjamin J.; Hast, John T.; Gibbs, Dan; Strunk, Michael; Dobey, Steven

    2015-01-01

    Animal reintroductions are important tools of wildlife management to restore species to their historical range, and they can also create unique opportunities to study population dynamics and genetics from founder events. We used non-invasive hair sampling in a systematic, closed-population capture-mark-recapture (CMR) study design at the Big South Fork (BSF) area in Kentucky during 2010 and Tennessee during 2012 to estimate the demographic and genetic characteristics of the black bear (Ursus americanus) population that resulted from a reintroduced founding population of 18 bears in 1998. We estimated 38 (95% CI: 31–66) and 190 (95% CI: 170–219) bears on the Kentucky and Tennessee study areas, respectively. Based on the Tennessee abundance estimate alone, the mean annual growth rate was 18.3% (95% CI: 17.4–19.5%) from 1998 to 2012. We also compared the genetic characteristics of bears sampled during 2010–2012 to bears in the population during 2000–2002, 2–4 years following reintroduction, and to the source population. We found that the level of genetic diversity since reintroduction as indicated by expected heterozygosity (HE) remained relatively constant (HE(source, 2004) = 0.763, HE(BSF, 2000–2002) = 0.729, HE(BSF, 2010–2012) = 0.712) and the effective number of breeders (NB) remained low but had increased since reintroduction in the absence of sufficient immigration (NB(BSF, 2000–2002) = 12, NB(BSF, 2010–2012)  = 35). This bear population appears to be genetically isolated, but contrary to our expectations, we did not find evidence of genetic diversity loss or other deleterious genetic effects typically observed from small founder groups. We attribute that to high initial genetic diversity in the founder group combined with overlapping generations and rapid population growth. Although the population remains relatively small, the reintroduction using a small founder group appears to be demographically and genetically

  20. Particle propagation, wave growth and energy dissipation in a flaring flux tube

    Science.gov (United States)

    White, S. M.; Melrose, D. B.; Dulk, G. A.

    1986-01-01

    Wave amplification by downgoing particles in a common flare model is investigated. The flare is assumed to occur at the top of a coronal magnetic flux loop, and results in the heating of plasma in the flaring region. The hot electrons propagate down the legs of the flux tube towards increasing magnetic field. It is simple to demonstrate that the velocity distributions which result in this model are unstable to both beam instabilities and cyclotron maser action. An explanation is presented for the propagation effects on the distribution, and the properties of the resulting amplified waves are explored, concentrating on cyclotron maser action, which has properties (emission in the z mode below the local gyrofrequency) quite different from maser action by other distributions considered in the context of solar flares. The z mode waves will be damped in the coronal plasma surrounding the flaring flux tube and lead to heating there. This process may be important in the overall energy budget of the flare. The downgoing maser is compared with the loss cone maser, which is more likely to produce observable bursts.

  1. Role of the excess monomer in the growth of urea and formaldehyde resin deposit particles.

    Science.gov (United States)

    Hao, Zhixian; Guo, Yuqing; Mansuer, Mulati; Zhu, Junfu; Zhu, Zhirong

    2014-09-15

    The role of excess monomer (i.e., Urea (U) or Formaldehyde (F)) in UF precipitation reaction was investigated at 28°C. The maximum output of the UF resin deposit was found around the U:F molar ratio 1.0:1.0 and this output decreased if excessive urea (or formaldehyde) was used in the reaction system. The excess monomer was considered to decrease the polymerization degree of UF resin deposit and increased the bonding saturation of its copolymerization monomer as well as the solubility of the UF resin deposit. The Influence of the excess monomer on the lamellar crystallinity of the resultant deposit, involving the polymerization degree and bonding saturation of the monomer, was examined. Three different dynamic regions containing excess monomers were revealed according to the behaviors of the deposit nucleation. The density and water absorption of the UF resin particles were finally demonstrated relative to the dynamic regions in their nucleation reactions. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Galaxy interactions trigger rapid black hole growth: An unprecedented view from the Hyper Suprime-Cam survey

    Science.gov (United States)

    Goulding, Andy D.; Greene, Jenny E.; Bezanson, Rachel; Greco, Johnny; Johnson, Sean; Leauthaud, Alexie; Matsuoka, Yoshiki; Medezinski, Elinor; Price-Whelan, Adrian M.

    2018-01-01

    Collisions and interactions between gas-rich galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and possibly serving as a mechanism for fueling supermassive black holes (BHs). Harnessing the exquisite spatial resolution (˜0{^''.}5) afforded by the first ˜170 deg2 of the Hyper Suprime-Cam (HSC) survey, we present our new constraints on the importance of galaxy-galaxy major mergers (1 : 4) in growing BHs throughout the last ˜8 Gyr. Utilizing mid-infrared observations in the WISE all-sky survey, we robustly select active galactic nuclei (AGN) and mass-matched control galaxy samples, totaling ˜140000 spectroscopically confirmed systems at i < 22 mag. We identify galaxy interaction signatures using a novel machine-learning random forest decision tree technique allowing us to select statistically significant samples of major mergers, minor mergers / irregular systems, and non-interacting galaxies. We use these samples to show that galaxies undergoing mergers are a factor of ˜2-7 more likely to contain luminous obscured AGN than non-interacting galaxies, and this is independent of both stellar mass and redshift to z < 0.9. Furthermore, based on our comparison of AGN fractions in mass-matched samples, we determine that the most luminous AGN population (LAGN ≳ 1045 erg s-1) systematically reside in merging systems over non-interacting galaxies. Our findings show that galaxy-galaxy interactions do, on average, trigger luminous AGN activity substantially more often than in secularly evolving non-interacting galaxies, and we further suggest that the BH growth rate may be closely tied to the dynamical time of the merger system.

  3. Galaxy interactions trigger rapid black hole growth: An unprecedented view from the Hyper Suprime-Cam survey

    Science.gov (United States)

    Goulding, Andy D.; Greene, Jenny E.; Bezanson, Rachel; Greco, Johnny; Johnson, Sean; Leauthaud, Alexie; Matsuoka, Yoshiki; Medezinski, Elinor; Price-Whelan, Adrian M.

    2017-12-01

    Collisions and interactions between gas-rich galaxies are thought to be pivotal stages in their formation and evolution, causing the rapid production of new stars, and possibly serving as a mechanism for fueling supermassive black holes (BHs). Harnessing the exquisite spatial resolution (˜0{^''.}5) afforded by the first ˜170 deg2 of the Hyper Suprime-Cam (HSC) survey, we present our new constraints on the importance of galaxy-galaxy major mergers (1 : 4) in growing BHs throughout the last ˜8 Gyr. Utilizing mid-infrared observations in the WISE all-sky survey, we robustly select active galactic nuclei (AGN) and mass-matched control galaxy samples, totaling ˜140000 spectroscopically confirmed systems at i forest decision tree technique allowing us to select statistically significant samples of major mergers, minor mergers / irregular systems, and non-interacting galaxies. We use these samples to show that galaxies undergoing mergers are a factor of ˜2-7 more likely to contain luminous obscured AGN than non-interacting galaxies, and this is independent of both stellar mass and redshift to z based on our comparison of AGN fractions in mass-matched samples, we determine that the most luminous AGN population (LAGN ≳ 1045 erg s-1) systematically reside in merging systems over non-interacting galaxies. Our findings show that galaxy-galaxy interactions do, on average, trigger luminous AGN activity substantially more often than in secularly evolving non-interacting galaxies, and we further suggest that the BH growth rate may be closely tied to the dynamical time of the merger system.

  4. Growth Mechanism of Lipid-Based Nanodiscs -- a Model Membrane for Studying Kinetics of Particle Coalescence

    Science.gov (United States)

    Nieh, Mu-Ping; Dizon, Anthony; Li, Ming; Hu, Andrew; Fan, Tai-Hsi

    2012-02-01

    Lipid-based nanodiscs composed of long- and short- chain lipids [namely, dimyristoyl phosphatidylcholine (DMPC), dimyristoyl phosphatidylglycerol (DMPG) and dihexanoyl phosphatidylcholine (DHPC)] constantly form at high lipid concentrations and at low temperatures (i.e., below the melting transition temperature of DMPC, TM). The initial size of these nanodiscs (at high total lipid concentration, CL> 20 wt.%) is relatively uniform and of similar dimension (according to dynamic light scattering and small angle neutron scattering experiments), seemingly independent of thermal history. Upon dilution, the nanodiscs slowly coalesce and grow in size with time irreversibly. Our preliminary result shows that the growth rate strongly depends on several parameters such as charge density, CL and temperature. We have also found that the nanodisc coalescence is a reaction limit instead of diffusion limit process through a time-resolved study.

  5. Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on particle formation and growth

    Science.gov (United States)

    Chu, Biwu; Zhang, Xiao; Liu, Yongchun; He, Hong; Sun, Yele; Jiang, Jingkun; Li, Junhua; Hao, Jiming

    2016-11-01

    The effects of SO2 and NH3 on secondary organic aerosol formation have rarely been investigated together, while the interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain. Here we studied the effects of SO2 and NH3 on secondary aerosol formation in the photooxidation system of toluene/NOx in the presence or absence of Al2O3 seed aerosols in a 2 m3 smog chamber. The presence of SO2 increased new particle formation and particle growth significantly, regardless of whether NH3 was present. Sulfate, organic aerosol, nitrate, and ammonium were all found to increase linearly with increasing SO2 concentrations. The increases in these four species were more obvious under NH3-rich conditions, and the generation of nitrate, ammonium, and organic aerosol increased more significantly than sulfate with respect to SO2 concentration, while sulfate was the most sensitive species under NH3-poor conditions. The synergistic effects between SO2 and NH3 in the heterogeneous process contributed greatly to secondary aerosol formation. Specifically, the generation of NH4NO3 was found to be highly dependent on the surface area concentration of suspended particles, and increased most significantly with SO2 concentration among the four species under NH3-rich conditions. Meanwhile, the absorbed NH3 might provide a liquid surface layer for the absorption and subsequent reaction of SO2 and organic products and, therefore, enhance sulfate and secondary organic aerosol (SOA) formation. This effect mainly occurred in the heterogeneous process and resulted in a significantly higher growth rate of seed aerosols compared to without NH3. By applying positive matrix factorisation (PMF) analysis to the AMS data, two factors were identified for the generated SOA. One factor, assigned to less-oxidised organic aerosol and some oligomers, increased with increasing SO2 under NH3-poor conditions, mainly due to the well-known acid catalytic effect of

  6. Centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV

    CERN Document Server

    Aamodt, Kenneth; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agocs, Andras Gabor; Aguilar Salazar, Saul; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad Masoodi, A; Ahn, Sang Un; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, S; Bailhache, Raphaelle Marie; Bala, Renu; Baldini Ferroli, Rinaldo; Baldisseri, Alberto; Baldit, Alain; Ban, Jaroslav; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdermann, Eleni; Berdnikov, Yaroslav; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biolcati, Emanuele; Blanc, Aurelien Joseph; Blanco, F; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Nicolas; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Bombonati, Carlo; Book, Julian; Borel, Herve; Bortolin, Claudio; Bose, Suvendu Nath; Bossu, Francesco; Botje, Michiel; Bottger, Stefan; Boyer, Bruno Alexandre; Braun-Munzinger, Peter; Bravina, Larisa; Bregant, Marco; Breitner, Timo Gunther; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Caselle, Michele; Castillo Castellanos, Javier Ernesto; Catanescu, Vasile; Cavicchioli, Costanza; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Sukalyan; Chattopadhyay, Subhasis; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chiavassa, Emilio; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Coccetti, Fabrizio; Coffin, Jean-Pierre Michel; Coli, S; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Constantin, Paul; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cuautle, Eleazar; Cunqueiro, Leticia; D'Erasmo, Ginevra; Dainese, Andrea; Dalsgaard, Hans Hjersing; Danu, Andrea; Das, Debasish; Das, Indranil; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Azevedo Moregula, Andrea; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; De Remigis, R; de Rooij, Raoul Stefan; Delagrange, Hugues; Delgado Mercado, Ydalia; Dellacasa, Giuseppe; Deloff, Andrzej; Demanov, Vyacheslav; Denes, Ervin; Deppman, Airton; Di Bari, Domenico; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Dietel, Thomas; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Dominguez, Isabel; Donigus, Benjamin; Dordic, Olja; Dryha, Olha; Dubey, Anand Kumar; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Dutta Majumdar, Mihir Ranjan; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erdal, Hege Austrheim; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evrard, Sebastien; Eyyubova, Gyulnara; Fabjan, Christian; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fearick, Roger Worsley; Fedunov, Anatoly; Fehlker, Dominik; Fekete, Vladimir; Felea, Daniel; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Ferretti, Roberta; Figueredo, Marcel; Filchagin, Sergey; Fini, Rosa Anna; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Fragkiadakis, Michail; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furano, Fabrizio; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gadrat, Sebastien Gabriel; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Ganoti, Paraskevi; Garabatos, Jose; Gemme, Roberto; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Girard, Martin Robert; Giraudo, G; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Santos, Humberto; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Gotovac, Sven; Grabski, Varlen; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerra Gutierrez, Cesar; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Gutbrod, Hans; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Hartig, Matthias; Hasch, Delia; Hasegan, Dumitru; Hatzifotiadou, Despoina; Hayrapetyan, Arsen; Heide, Markus Ansgar; Heinz, Mark Thomas; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Hernandez, C; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hetland, Kristin Fanebust; Hicks, Bernard; Hille, Per Thomas; Hippolyte, Boris; Horaguchi, Takuma; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Huber, Sebastian Bernd; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Gian Michele; Innocenti, Pier Giorgio; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Andrey; Ivanov, Marian; Ivanov, Vladimir; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jancurova, Lucia; Jangal, Swensy Gwladys; Janik, Rudolf; Jayarathna, S P; Jena, Satyajit; Jirden, Lennart; Jones, Goronwy Tudor; Jones, Peter Graham; Jovanovic, P.; Jung, Hyung Taik; Jung, Won Woong; Jusko, Anton; Kalcher, Sebastian; Kalinak, Peter; Kalisky, Matus; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kamermans, Rene; Kanaki, Kalliopi; Kang, Eunggil; Kang, Ju Hwan; Kaplin, Vladimir; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Dong Jo; Kim, Dong Soo; Kim, Do Won; Kim, Hyang Nam; Kim, Jonghyun; Kim, Jin Sook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Seon Hee; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Klovning, Arne; Kluge, Alexander; Knichel, Michael Linus; Koch, Kathrin; Kohler, Markus; Kolevatov, Rodion; Kolojvari, Anatoly; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kornas, Ewelina; Kottachchi Kankanamge Don, Chamath; Kour, Ravjeet; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kozlov, Konstantin; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kraus, Ingrid Christine; Krawutschke, Tobias; Kretz, Matthias; Krivda, Marian; Krumbhorn, Dirk Uwe Wilhelm; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucheriaev, Yury; Kuhn, Christian Claude; Kuijer, Paul; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kweon, Min Jung; Kwon, Youngil; La Rocca, Paola; Ladron de Guevara, Pedro; Lafage, Vincent Claude; Lara, Camilo Ernesto; Larsen, Dag Toppe; Lazzeroni, Cristina; Le Bornec, Yves; Lea, Ramona; Lee, Ki Sang; Lee, Sung Chul; Lefevre, Frederic; Lehnert, Joerg Walter; Leistam, Lars; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon Monzon, Ildefonso; Leon Vargas, Hermes; Levai, Peter; Li, Xiaomei; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Liu, Lijiao; Loggins, Vera; Loginov, Vitaly; Lohn, Stefan Bernhard; Lohner, Daniel; Loizides, C; Lopez, Xavier Bernard; Lopez Noriega, Mercedes; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luparello, Grazia; Luquin, Lionel; Luzzi, Cinzia; Ma, Ke; Ma, Rongrong; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Mal'Kevich, Dmitry; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Martashvili, Irakli; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Davalos, Arnulfo; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastromarco, Mario; Mastroserio, Annalisa; Matthews, Zoe Louise; Matyja, Adam Tomasz; Mayani, Daniel; Mazza, G; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mendez Lorenzo, Patricia; Mercado Perez, Jorge; Mereu, P; Miake, Yasuo; Midori, Jumpei; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Muller, Hans; Munhoz, Marcelo; Munoz, Jose Lorenzo; Musa, Luciano; Musso, Alfredo; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Navach, Franco; Navin, Sparsh; Nayak, Tapan Kumar; Nazarenko, Sergey; Nazarov, Gleb; Nedosekin, Alexander; Nendaz, Fabien; Newby, Jason Robert; Nicassio, Maria; Nielsen, Borge Svane; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nooren, Gerardus; Novitzky, Norbert; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Obayashi, Hideyuki; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oleniacz, Janusz; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Ortona, Giacomo; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otterlund, Ingvar; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, S; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Pappalardo, Giuseppe; Park, Woo Jin; Paticchio, Vincenzo; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perini, Diego; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Peskov, Vladimir; Pestov, Yury; Peters, Andreas Joachim; Petracek, Vojtech; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Piccotti, Anna; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piuz, Francois; Piyarathna, Danthasinghe; Platt, Richard John; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Pop, Amalia; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Pulvirenti, Alberto; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Quercigh, Emanuele; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rademakers, Ornella; Radomski, Sylwester; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Ramirez Reyes, Abdiel; Rammler, Markus; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Ricaud, Helene; Riccati, Lodovico; Ricci, Renato Angelo; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, A; Rodriguez Cahuantzi, Mario; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosinsky, Peter; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roukoutakis, Filimon; Rousseau, Sylvain Jean Henry; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Rusanov, Ivan Rusalinov; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saiz, Pablo; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Samanta, Tapas; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sano, Satoshi; Santo, Rainer; Santoro, Romualdo; Sarkamo, Juho Jaako; Saturnini, Pierre; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schreiner, Steffen; Schuchmann, Simone; Schukraft, Jurgen; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Shigaki, Kenta; Shimomura, Maya; Shtejer, Katherin; Sibiriak, Yury; Siciliano, Melinda; Sicking, Eva; Siemiarczuk, Teodor; Silenzi, Alessandro; Silvermyr, David Olle Rickard; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Sinha, Bikash; Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soloviev, Andrey; Soltz, Ron Ariel; Son, Hyungsuk; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Emil; Stefanek, Grzegorz; Stefanini, Giorgio; Steinbeck, Timm Morten; Stenlund, Evert Anders; Steyn, Gideon Francois; Stocco, Diego; Stock, Reinhard; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Sumbera, Michal; Susa, Tatjana; Swoboda, Detlef; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szostak, Artur Krzysztof; Tagridis, Christos; Takahashi, Jun; Tapia Takaki, Daniel Jesus; Tauro, Arturo; Tavlet, Marc; Tejeda Munoz, Guillermo; Telesca, Adriana; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Thomas, Jim; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Tosello, Flavio; Traczyk, Tomasz; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tumkin, Alexandr; Turrisi, Rosario; Turvey, Andrew John; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Uras, Antonio; Urban, Jozef; Urciuoli, Guido Marie; Usai, Gianluca; Vacchi, A; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; van der Kolk, Naomi; van Leeuwen, Marco; Vande Vyvre, Pierre; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Vikhlyantsev, Oleg; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vranic, Danilo; Øvrebekk, G; Vrlakova, Janka; Vulpescu, Bogdan; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Dong; Wang, Yifei; Wang, Yaping; Watanabe, Kengo; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Alexander; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Yang, Hongyan; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yuan, Xianbao; Yushmanov, Igor; Zabrodin, Evgeny; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zenin, Anton; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Xiaoming; Zhou, Daicui; Zhu, Xiangrong; Zichichi, Antonino; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo

    2011-01-01

    The centrality dependence of the charged-particle multiplicity density at mid-rapidity in Pb-Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV is presented. The charged-particle density normalized per participating nucleon pair increases by about a factor 2 from peripheral (70-80%) to central (0-5%) collisions. The centrality dependence is found to be similar to that observed at lower collision energies. The data are compared with models based on different mechanisms for particle production in nuclear collisions.

  7. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in sNN=5.02 TeV p+Pb collisions measured by the ATLAS experiment

    Directory of Open Access Journals (Sweden)

    G. Aad

    2016-12-01

    Full Text Available Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using p+Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of sNN=5.02TeV. Charged particles are reconstructed over pseudorapidity |η|<2.3 and transverse momentum between 0.1 GeV and 22 GeV in a dataset corresponding to an integrated luminosity of 1 μb−1. The results are presented in the form of charged-particle nuclear modification factors, where the p+Pb charged-particle multiplicities are compared between central and peripheral p+Pb collisions as well as to charged-particle cross sections measured in pp collisions. The p+Pb collision centrality is characterized by the total transverse energy measured in −4.9<η<−3.1, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the p+Pb collision are carried out using the Glauber model and two Glauber–Gribov colour-fluctuation extensions to the Glauber model. The values of the nuclear modification factors are found to vary significantly as a function of rapidity and transverse momentum. A broad peak is observed for all centralities and rapidities in the nuclear modification factors for charged-particle transverse momentum values around 3 GeV. The magnitude of the peak increases for more central collisions as well as rapidity ranges closer to the direction of the outgoing lead nucleus.

  8. Rapid QM/MM approach for biomolecular systems under periodic boundary conditions: Combination of the density-functional tight-binding theory and particle mesh Ewald method.

    Science.gov (United States)

    Nishizawa, Hiroaki; Okumura, Hisashi

    2016-12-05

    A quantum mechanical/molecular mechanical (QM/MM) approach based on the density-functional tight-binding (DFTB) theory is a useful tool for analyzing chemical reaction systems in detail. In this study, an efficient QM/MM method is developed by the combination of the DFTB/MM and particle mesh Ewald (PME) methods. Because the Fock matrix, which is required in the DFTB calculation, is analytically obtained by the PME method, the Coulomb energy is accurately and rapidly computed. For assessing the performance of this method, DFTB/MM calculations and molecular dynamics simulation are conducted for a system consisting of two amyloid-β(1-16) peptides and a zinc ion in explicit water under periodic boundary conditions. As compared with that of the conventional Ewald summation method, the computational cost of the Coulomb energy by utilizing the present approach is drastically reduced, i.e., 166.5 times faster. Furthermore, the deviation of the electronic energy is less than 10-6 Eh. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Microbiological evaluation of a new growth-based approach for rapid detection of methicillin-resistant Staphylococcus aureus

    NARCIS (Netherlands)

    von Eiff, Christof; Maas, Dominik; Sander, Gunnar; Friedrich, Alexander W; Peters, Georg; Becker, Karsten

    OBJECTIVES: Recently, a rapid screening tool for methicillin-resistant Staphylococcus aureus (MRSA) has been introduced that applies a novel detection technology allowing the rapid presence or absence of MRSA to be determined from an enrichment broth after only a few hours of incubation. To evaluate

  10. Hf-W-Th evidence for rapid growth of Mars and its status as a planetary embryo.

    Science.gov (United States)

    Dauphas, N; Pourmand, A

    2011-05-26

    Terrestrial planets are thought to have formed through collisions between large planetary embryos of diameter ∼1,000-5,000 km. For Earth, the last of these collisions involved an impact by a Mars-size embryo that formed the Moon 50-150 million years (Myr) after the birth of the Solar System. Although model simulations of the growth of terrestrial planets can reproduce the mass and dynamical parameters of the Earth and Venus, they fall short of explaining the small size of Mars. One possibility is that Mars was a planetary embryo that escaped collision and merging with other embryos. To assess this idea, it is crucial to know Mars' accretion timescale, which can be investigated using the (182)Hf-(182)W decay system in shergottite-nakhlite-chassignite meteorites. Nevertheless, this timescale remains poorly constrained owing to a large uncertainty associated with the Hf/W ratio of the Martian mantle and as a result, contradicting timescales have been reported that range between 0 and 15 Myr (refs 6-10). Here we show that Mars accreted very rapidly and reached about half of its present size in only 1.8(+0.9)(-1.0) Myr or less, which is consistent with a stranded planetary embryo origin. We have found a well-defined correlation between the Th/Hf and (176)Hf/(177)Hf ratios in chondrites that reflects remobilization of Lu and Th during parent-body processes. Using this relationship, we estimate the Hf/W ratio in Mars' mantle to be 3.51 ± 0.45. This value is much more precise than previous estimates, which ranged between 2.6 and 5.0 (ref. 6), and lifts the large uncertainty that plagued previous estimates of the age of Mars. Our results also demonstrate that Mars grew before dissipation of the nebular gas when ∼100-km planetesimals, such as the parent bodies of chondrites, were still being formed. Mars' accretion occurred early enough to allow establishment of a magma ocean powered by decay of (26)Al.

  11. Results of Pulse-Scaling Experiments on Rapid-Growth DKDP Triplers Using the Optical Sciences Laser at 351 nm

    Energy Technology Data Exchange (ETDEWEB)

    Runkel, M; Burnham, A K; Milam, D; Sell, W; Feit, M; Rubenchik, A

    2000-12-11

    Results are reported from recently performed bulk-damage, pulse-scaling experiments on DKDP tripler samples taken from NIF-size, rapid-growth boule BD7. The tests were performed on LLNL's Optical Sciences Laser. A matrix of samples was exposed to single shots at 351 mn (3 {omega}) with average fluences from 4 to 8 J/cm{sup 2} for pulse durations of 1, 3 and 10 ns. The damage sites were scatter-mapped after testing to determine the damage evolution as a function of local beam fluence. The average bulk damage microcavity (pinpoint) density varied nearly linearly with fluence with peak values of approximately 16,000 pp/mm{sup 3} at 1 ns, 10,000 pp/mm{sup 3} at 3 ns and 400 pp/mm{sup 3} at 10 ns for fluences in the 8-10 J/cm{sup 2} range. The average size of a pinpoint was 10(+14,-9) {micro}m at 1 ns, 37 {+-} 20 {micro}m at 3 ns and {approx} 110 {micro}m at 10 ns, although all pulse durations produced pinpoints with a wide distribution of sizes. Analysis of the pinpoint density data yielded pulse-scaling behavior of t{sup 0.35}. Significant planar cracking around the pinpoint as was observed for the 10 ns case but not for the 1 and 3 ns pulses. Crack formation around pinpoints has also been observed frequently for Zeus ADT tests at {approx}8 ns. The high pinpoint densities also lead to significant eruption of near-surface bulk damage. Measurements of the damage site area for surface and bulk gave ratios (A{sub surf}/A{sub bulk}) of 2:1 at 1 ns, 7:1 at 3 ns and 110:1 at 10 ns. Maximum aperture averaged transmission losses on the order 15 percent have been measured by photometry for the worst damage at 1 and 3 ns for beam fluences in the 8-10 J/cm{sup 2} range. Analysis of this data yielded a pulse-scaling behavior of t{sup 0.25} for the obscured area. It was also determined that the crystals used in this test would survive unconditioned exposure to 4 J/cm{sup 2} shots on the NIF laser and still meet the obscuration requirement of 0.1%.

  12. Spontaneous growth of whiskers from an interlayer of Mo sub 2 C beneath a diamond particle deposited in a combustion-flame

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Katsuyuki; Komatsu, Shojiro; Ishigaki, Takamasa; Matsumoto, Seiichiro; Moriyoshi, Yusuke (National Inst. for Research in Inorganic Materials, Tsukuba, Ibaraki (Japan))

    1992-02-01

    When diamond particles deposited on a molybdenum substrate in a C{sub 2}H{sub -}O{sub 2} combustion-flame were kept for one year in the ambient atmosphere at room temperature, spontaneous whisker growth from an interlayer of Mo{sub 2}C beneath the diamond particles took place. The whiskers were clarified by electron probe micro-analysis (EPMA) and transmission electron microscopy (TEM) in a polycrystal composed of MoO{sub 2}, MoOC, and Mo{sub 2}C. The growth mechanism of them is discussed from two different points of view as follows: One is that the oxidation of an interlayer of Mo{sub 2}C beneath a diamond particle effectively reduces the surface free energy between the interlayer and diamond particle; consequently, the whisker can grow by using a screw dislocation. The other is that the internal stress existing between a diamond particle and an Mo{sub 2}C interlayer provides a very reactive zone where the growth of whisker takes place through the oxidation of Mo{sub 2}C. (orig.).

  13. Growth performance and total tract nutrient digestion for Holstein heifers limit-fed diets high in distillers grains with different forage particle sizes

    Science.gov (United States)

    This study evaluated dairy heifer growth performance and total tract nutrient digestion when fed diets high in dried distillers grains with solubles (DDGS) with different forage particle size. An 8-wk randomized complete block design study was conducted utilizing twenty-two Holstein heifers (123 ±...

  14. Size and composition measurements of background aerosol and new particle growth in a Finnish forest during QUEST 2 using an Aerodyne Aerosol Mass Spectrometer

    Directory of Open Access Journals (Sweden)

    J. D. Allan

    2006-01-01

    Full Text Available The study of the growth of nucleation-mode particles is important, as this prevents their loss through diffusion and allows them to reach sizes where they may become effective cloud condensation nuclei. Hyytiälä, a forested site in southern Finland, frequently experiences particle nucleation events during the spring and autumn, where particles first appear during the morning and continue to grow for several hours afterwards. As part of the QUEST 2 intensive field campaign during March and April 2003, an Aerodyne Aerosol Mass Spectrometer (AMS was deployed alongside other aerosol instrumentation to study the particulate composition and dynamics of growth events and characterise the background aerosol. Despite the small mass concentrations, the AMS was able to distinguish the grown particles in the <100 nm regime several hours after an event and confirm that the particles were principally organic in composition. The AMS was also able to derive a mass spectral fingerprint for the organic species present, and found that it was consistent between events and independent of the mean particle diameter during non-polluted cases, implying the same species were also condensing onto the accumulation mode. The results were compared with those from offline analyses such as GC-MS and were consistent with the hypothesis that the main components were alkanes from plant waxes and the oxidation products of terpenes.

  15. Determination of rice canopy growth based on high resolution satellite images: a case study using RapidEye imagery in Korea

    Directory of Open Access Journals (Sweden)

    Mijeong Kim

    2016-10-01

    Full Text Available Processing to correct atmospheric effects and classify all constituent pixels in a remote sensing image is required before the image is used to monitor plant growth. The raw image contains artifacts due to atmospheric conditions at the time of acquisition. This study sought to distinguish the canopy growth of paddy rice using RapidEye (BlackBridge, Berlin, Germany satellite data and investigate practical image correction and classification methods. The RapidEye images were taken over experimental fields of paddy rice at Chonnam National University (CNU, Gwangju, and at TaeAn, Choongcheongnam-do, Korea. The CNU RapidEye images were used to evaluate the atmospheric correction methods. Atmospheric correction of the RapidEye images was performed using three different methods, QUick Atmospheric Correction (QUAC, Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH, and Atmospheric and Topographic Correction (ATCOR. To minimize errors in utilizing observed growth and yield estimation of paddy rice, the paddy fields were classified using a supervised classification method and normalized difference vegetation index (NDVI thresholds, using the NDVI time-series features of the paddy fields. The results of the atmospheric correction using ATCOR on the satellite images were favorable, which correspond to those from reference UAV images. Meanwhile, the classification method using the NDVI threshold accurately classified the same pixels from each of the time-series images. We have demonstrated that the image correction and classification methods investigated here should be applicable to high resolution satellite images used in monitoring other crop growth conditions.

  16. Studies of second phase particles in different zirconium alloys using extractive carbon replica and an electrolytic anodic dissolution procedure [rapid communication

    Science.gov (United States)

    Toffolon-Masclet, Caroline; Brachet, Jean-Christophe; Jago, Gilles

    2002-10-01

    Zirconium alloys are widely studied for applications as cladding tubes and structural components of PWR fuel assemblies. Due to their influence on some of the alloys properties (corrosion resistance, irradiation growth, …), the crystallographic structure and the chemical stoichiometry of the second phase particles (SPP) precipitated in these alloys have to be well established. The aim of this paper is to present the results obtained using two methods of SPP extractions. The first one, the extractive carbon replica method, allowed us to determine the chemical composition of SPP in different zirconium alloys: Zr-Sn-Fe-Cr (Zircaloy-4 ®), Zr-Sn-Fe-Cr-(V,Mo), Zr-Nb and Zr-Nb-Fe alloys. The second one, an anodic dissolution procedure of the matrix, is an interesting way of isolating SPP from the surrounding α-Zr matrix, giving access to a precise determination of the crystallographic structure and lattice parameters of the SPP by X-ray diffraction. This procedure was validated for Zy-4 by comparing the SPP size distribution obtained by extraction with that directly measured on a massive Zy-4 alloy (i.e. the SPP size distributions were the same for both measurements).

  17. Rapid removal of ultra-high-concentration p-nitrophenol in aqueous solution by microwave-enhanced Fe/Cu bimetallic particle (MW-Fe/Cu) system.

    Science.gov (United States)

    Ren, Yi; Zhou, Jinfan; Pan, Zhicheng; Lai, Bo; Yuan, Donghai

    2017-10-10

    Ultra-high-concentration PNP-contained wastewaters are produced sometimes due to the wide application of this nitrophenolic compound in the chemical industry. However, there is a lack of appropriate technologies to rapidly pretreat the ultra-high-concentration wastewater. Therefore, a new microwave-enhanced Fe/Cu bimetallic particles (MW-Fe/Cu) system was developed to rapidly remove ultra-high-concentration PNP. First, the priority of the determinative parameters was obtained by orthogonal experiment. Based on this result, the effects of initial pH, microwave power, Fe/Cu dosage and initial PNP concentration on PNP removal were optimized thoroughly. Under the optimal conditions (i.e. initial pH = 1.0, MW power = 385 W, Fe/Cu dosage = 30 g/L and initial PNP concentration = 4000 mg/L), four control treatment systems (i.e. MW-Fe(0), heating-Fe/Cu, MW alone and Fe/Cu alone system) were set up to compare with the MW-Fe/Cu system. The results suggest that high PNP removal (more than 99% with 2.5 min, k1/k2 = 1.18/6.91 min(-1)) and COD removal (26.6% with 5 min treatment) could be obtained by the MW-Fe/Cu system, which were much superior to those obtained using the MW-Fe(0) (k1/k2 = 0.62/2.21 min(-1)) and the heating-Fe/Cu system (k1/k2 = 0.53/1.52 min(-1)). Finally, the determination of the intermediates of PNP degradation by HPLC indicated that the MW assistance process did not change the degradation pathway of PNP. This concludes that the new MW-Fe/Cu system was the promising technology for pretreatment of wastewater containing ultra-high-concentration toxic and refractory pollutants at a fairly short treatment time.

  18. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer via p53/PRC1 pathway.

    Science.gov (United States)

    Ye, Bai-Liang; Zheng, Ru; Ruan, Xiao-Jiao; Zheng, Zhi-Hai; Cai, Hua-Jie

    2018-01-01

    Nano-particles have been widely used in target-specific drug delivery system and showed advantages in cancers treatment. This study aims to evaluate the effect of chitosan coated doxorubicin nano-particles drug delivery system in liver cancer. The chitosan nano-particles were prepared by using the ionic gelation method. The characterizations of the nano-particles were determined by transmission electron microscopy. The cytotoxicity was detected by MTT assay, and the endocytosis, cell apoptosis and cell cycle were examined by flow cytometry. The protein level was analyzed with western blot. The dual luciferase reporter assay was performed to assess the interaction between p53 and the promoter of PRC1, and chromatin immune-precipitation was used to verify the binding between them. The FA-CS-DOX nano-particles were irregular and spherical particles around 30-40 nm, with uniform size and no adhesion. No significant difference was noted in doxorubicin release rate between CS-DOX and FA-CS-DOX. FA-CS-DOX nano-particles showed stronger cytotoxicity than CS-DOX. FA-CS-DOX nano-particles promoted the apoptosis and arrested cell cycle at G2/M phase, and they up-regulated p53. FA-CS-DOX nano-particles inhibited cell survival through p53/PRC1 pathway. Chitosan-coated doxorubicin nano-particles drug delivery system inhibits cell growth of liver cancer by promoting apoptosis and arresting cell cycle at G2/M phase through p53/PRC1 pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Rapid Economic Growth and Natural Gas Consumption Nexus: Looking forward from Perspective of 11th Malaysian Plan

    Science.gov (United States)

    Bekhet, H. A.; Yasmin, T.

    2016-03-01

    The present study investigates the relationship between economic growth and energy consumption by incorporating CO2 emissions, natural gas consumption and population in Malaysia. Annual data and F-bound test and granger causality have applied to test the existence of long run relationship between the series. The results show that variables are cointegrated for long run relationship. The results also indicate that natural gas consumption is an important contributing factor to energy demand and hence economic growth in case of Malaysia. The causality analysis highlights that the feedback hypothesis exists between economic growth and energy consumption. While, conservative hypothesis is validated between natural gas consumption and economic growth which implies that economic growth will push natural gas consumption policies in future. This study opens up new direction for policy makers to formulate a comprehensive natural gas policy to sustain environment for long span of time in case to achieve 11th MP targets.

  20. Effects of supplementation level and particle size of alfalfa hay on growth characteristics and rumen development in dairy calves.

    Science.gov (United States)

    Mirzaei, M; Khorvash, M; Ghorbani, G R; Kazemi-Bonchenari, M; Riasi, A; Nabipour, A; van den Borne, J J G C

    2015-06-01

    The aim of this study was to assess the effects of particle size (PS) of alfalfa hay on growth characteristics and rumen development in dairy calves at two levels of alfalfa supplementation. Fifty newborn dairy calves (42.7 ± 2.2 kg BW) were used in a 2 × 2 factorial arrangement with the factors supplementation level (low, 8%; or high, 16% on DM basis) and PS (medium, 2.92 mm; or long, 5.04 mm as geometrical means) of alfalfa hay. In addition, a control group without alfalfa hay was used. Hence, treatments were: control (C); low level with medium PS (LM); low level with long PS (LL); high level with medium PS (HM) or high level with long PS (HL). Growth performance of alfalfa-fed calves did not differ from control calves, but alfalfa supplementation decreased corneum thickness of the rumen wall. In alfalfa-fed calves, post-weaning starter intake was greater for LL calves than for LM calves. During the entire rearing period, starter intake was 26-32% higher for LL and HM calves than for LM calves. Pre-weaning average daily gain was higher for LL and HM calves than for HL calves, but this effect was not persistent over the entire rearing period. Final body weight decreased from 86 to 79 kg when the level of long PS alfalfa hay increased from 8 to 16%, but increased from 78 to 87 kg when the level of medium PS alfalfa increased from 8 to 16%. Regardless of PS and level, morphometric characteristics of rumen wall were generally similar among alfalfa feeding groups, but corneum thickness decreased from 8.7 to 6.1 μm with greater PS at the low level. These results indicate that adequate, but not excessive, physical stimulation is required for appropriate rumen development and growth performance of dairy calves. Journal of Animal Physiology and Animal Nutrition © 2014 Blackwell Verlag GmbH.

  1. Low birthweight or rapid catch-up growth: which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis.

    Science.gov (United States)

    Kelishadi, Roya; Haghdoost, Ali Akbar; Jamshidi, Fahimeh; Aliramezany, Maryam; Moosazadeh, Mahmood

    2015-05-01

    The effects of birthweight (the Barker hypothesis) and growth trajectory in early life on the incidence of cardiovascular disease (CVD) and its risk factors in later life have been investigated in a number of studies. To undertake a systematic review and cryptanalysis of the association of low birthweight (LBW) and the postnatal growth trajectory with CVD and its risk factors. English-language publications in PubMed, ISI Web of Science and Scopus were searched. Initially, two independent reviewers identified relevant papers in several steps and the quality of papers was then determined by a validated quality-appraisal checklist. By applying maximum sensitivity, 7259 paper were identified, 382 of which were duplicates and 1273 were considered to be relevant to the topic. Then, after title and abstract review, 628 irrelevant papers were excluded; 26 papers were added after reference-checking. Then, 250 other papers were deleted after full text review. Finally, 39 relevant papers remained and were entered into the systematic review. Overall, 79·6% of all CVD risk factors reported in primary studies of the rapid catch-up growth hypothesis were statistically significant, whereas the corresponding figure was 58·5% for the effects of LBW (Barker hypothesis). This systematic review highlights the importance of low birthweight in increasing the risk of CVD and its risk factors in later life. The results support rapid postnatal catch-up growth of LBW neonates as a more important factor than LBW alone in CVD and its risk factors.

  2. Transport of Nutrients Determines Growth in Tissue Culture; Why apple shoots grow rapidly and tulip shoots grow slowly

    NARCIS (Netherlands)

    Klerk, de G.J.M.

    2015-01-01

    Tulip growth in vitro is seriously impaired by inferior transport in the shoots. As a result, tulip cannot be micropropagated commercially using conventional means. In contrast, apple shoots show high transport and are easily micropropagated.

  3. How to make rapid eye movements “rapid”: the role of growth factors for muscle contractile properties

    Science.gov (United States)

    Li, Tian; Feng, Cheng-Yuan

    2011-01-01

    Different muscle functions require different muscle contraction properties. Saccade-generating extraocular muscles (EOMs) are the fastest muscles in the human body, significantly faster than limb skeletal muscles. Muscle contraction speed is subjected to plasticity, i.e., contraction speed can be adjusted to serve different demands, but little is known about the molecular mechanisms that control contraction speed. Therefore, we examined whether myogenic growth factors modulate contractile properties, including twitch contraction time (onset of force to peak force) and half relaxation time (peak force to half relaxation). We examined effects of three muscle-derived growth factors: insulin-like growth factor 1 (IGF1), cardiotrophin-1 (CT1), and glial cell line-derived neurotrophic factor (GDNF). In gain-of-function experiments, CT1 or GDNF injected into the orbit shortened contraction time, and IGF1 or CT1 shortened half relaxation time. In loss-of-function experiments with binding proteins or neutralizing antibodies, elimination of endogenous IGFs prolonged both contraction time and half relaxation time, while eliminating endogenous GDNF prolonged contraction time, with no effect on half relaxation time. Elimination of endogenous IGFs or CT1, but not GDNF, significantly reduced contractile force. Thus, IGF1, CT1, and GDNF have partially overlapping but not identical effects on muscle contractile properties. Expression of these three growth factors was measured in chicken and/or rat EOMs by real-time PCR. The “fast” EOMs express significantly more message encoding these growth factors and their receptors than skeletal muscles with slower contractile properties. Taken together, these findings indicate that EOM contractile kinetics is regulated by the amount of myogenic growth factors available to the muscle. PMID:21279379

  4. Paraneoplastic precocious puberty and excessively rapid somatic growth associated with pediatric malignant hepatic tumor: 1 report of 2 cases

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ok Hwa; Bahk, Yong Whee [Cathalic University College of Medicine, Seoul (Korea, Republic of)

    1990-04-15

    Sexual precocity in a 28-months-old boy and markedly accelerated skeletal growth with large body in a 5 years and 5 months-old-girl are reported. The former resulted from human chorionic gonadotropin-producing hepatoblastoma and the latter from cerebral gigantism associated with hepatoma. These two different disorders are discussed on the common basis of rare association of malignant hepatic tumors with precocious sexual and / or somatic growth. The clinical manifestations, chemical abnormalities, and the radiologic findings are presented with a brief review of the literature.

  5. Transverse momentum, rapidity, and centrality dependence of inclusive charged-particle production in $\\sqrt{s_{NN}}=5.02$ TeV p+Pb collisions measured by the ATLAS experiment

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Cerio, Benjamin; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duffield, Emily Marie; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dumancic, Mirta; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Grohs, Johannes Philipp; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Kentaro, Kawade; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosenthal, Oliver; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turgeman, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tyndel, Mike; Ucchielli, Giulia; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Wenxiao; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2016-12-10

    Measurements of the per-event charged-particle yield as a function of the charged-particle transverse momentum and rapidity are performed using $p+$Pb collision data collected by the ATLAS experiment at the LHC at a centre-of-mass energy of $\\sqrt{s_{NN}}=5.02$ TeV. Charged particles are reconstructed over pseudorapidity $|\\eta|<2.3$ and transverse momentum between $0.1$ GeV and $22$ GeV in a dataset corresponding to an integrated luminosity of $1$ $\\mu b^{-1}$. The results are presented in the form of charged-particle nuclear modification factors, where the $p+$Pb charged-particle multiplicities are compared between central and peripheral $p+$Pb collisions as well as to charged-particle cross sections measured in pp collisions. The $p+$Pb collision centrality is characterized by the total transverse energy measured in $-4.9<\\eta<-3.1$, which is in the direction of the outgoing lead beam. Three different estimations of the number of nucleons participating in the $p+$Pb collision are carried out usi...

  6. Determination of crystal growth rates during rapid solidification of polycrystalline aluminum by nano-scale spatio-temporal resolution in situ transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zweiacker, K., E-mail: Kai@zweiacker.org; Liu, C.; Wiezorek, J. M. K. [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, 648 Benedum Hall, 3700 OHara Street, Pittsburgh, Pennsylvania 15261 (United States); McKeown, J. T.; LaGrange, T.; Reed, B. W.; Campbell, G. H. [Materials Science Division, Physical and Life Science Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94551 (United States)

    2016-08-07

    In situ investigations of rapid solidification in polycrystalline Al thin films were conducted using nano-scale spatio-temporal resolution dynamic transmission electron microscopy. Differences in crystal growth rates and asymmetries in melt pool development were observed as the heat extraction geometry was varied by controlling the proximity of the laser-pulse irradiation and the associated induced melt pools to the edge of the transmission electron microscopy support grid, which acts as a large heat sink. Experimental parameters have been established to maximize the reproducibility of the material response to the laser-pulse-related heating and to ensure that observations of the dynamical behavior of the metal are free from artifacts, leading to accurate interpretations and quantifiable measurements with improved precision. Interface migration rate measurements revealed solidification velocities that increased consistently from ∼1.3 m s{sup −1} to ∼2.5 m s{sup −1} during the rapid solidification process of the Al thin films. Under the influence of an additional large heat sink, increased crystal growth rates as high as 3.3 m s{sup −1} have been measured. The in situ experiments also provided evidence for development of a partially melted, two-phase region prior to the onset of rapid solidification facilitated crystal growth. Using the experimental observations and associated measurements as benchmarks, finite-element modeling based calculations of the melt pool evolution after pulsed laser irradiation have been performed to obtain estimates of the temperature evolution in the thin films.

  7. Study of Secondary Phase Particle Dissolution and Austenite Grain Growth on Heating Fine-Grained High-Strength IF-Steel

    Science.gov (United States)

    Jia, Hong-bin; Zhang, Hong-mei; Sun, Cheng-qian

    2016-09-01

    Dissolution of particles of second phase and growth of austenite grains in high-strength fine-grained IF-steel (0.0057% C, 0.0023% N) on heating is studied. Metallographic analysis of flat steel specimens cut from plates prepared by hot and cold rolling is performed. Steel structure is studied after holding for 10 - 60 min at different temperatures and water quenching. The quenching parameters at which the microalloying elements (Ti, Nb) dissolve completely with retention of fine-grained austenite are determined. Amathematical model of austenite grain growth is developed by nonlinear regression analysis of experimental data.

  8. Influence of C60 co-deposition on the growth kinetics of diindenoperylene-From rapid roughening to layer-by-layer growth in blended organic films

    Science.gov (United States)

    Lorch, C.; Novák, J.; Banerjee, R.; Weimer, S.; Dieterle, J.; Frank, C.; Hinderhofer, A.; Gerlach, A.; Carla, F.; Schreiber, F.

    2017-02-01

    We investigated the growth of the two phase-separating materials diindenoperylene (DIP) and buckminsterfullerene C60 with different mixing ratio in real-time and in situ by X-ray scattering experiments. We found that at room temperature, mixtures with an excess of DIP show a growth mode which is very close to the perfect layer-by-layer limit with DIP crystallites forming over the entire film thickness. An unexpected increase in the island size is observed for these mixtures as a function of film thickness. On the other hand, equimolar and C60 dominated mixtures grow with poor crystallinity but form very smooth films. Additionally, it is observed that higher substrate temperatures lead to an increase in the length scale of phase separation with film thickness.

  9. The Effects of Zinc and Iron Oxide Nano-Particles on The Growth and Ion Content of Two Corn Cultivars in Different Soil Salinity

    Directory of Open Access Journals (Sweden)

    2014-07-01

    Full Text Available This study was conducted in order to evaluate the effects of foliar application of nano-particles and ordinary bulk materials of zinc and iron oxide was studied in two corn genotypes (S.C 704 and seed mass in different soil salinity (0,75,150 mM NaCl. The experiment was arranged as factorial in a randomized complete block design with four replications. The results showed that in saline condition Leaf area, shoot and root dry matter, photochemical efficiency, the concentration of K, Fe and Zn in shoot decreased and that of Na and the Na/K ratio increased under saline condition. The interactions of salinity and genotype were significant on leaf area, shoot and root dry matter, Na/K ratio and photochemical efficiency. The application of nano-particles of iron and zinc oxide increased shoot dry matter to a greater degree as compared with ordinary bulk materials. Under saline condition, the application of iron oxide in the form of nano-particles had higher effect on iron uptake by corn plants. However, with an increase in salinity level the superiority of nano form decreased. The application of Nano-particles of iron and zinc as compared to ordinary bulk materials was more effective in alleviating the negative effects of salt stress on the accumulation of zinc in tested plants. This was not evidence in terms of iron accumulation. The results from this experiment showed that the application of nano-particles of iron and zinc promoted plant growth to a greater degree in comparison to ordinary materials of these nutrients. However, the application of nano particles had no advantage in alleviating the effects of salinity on plant growth.

  10. On the dry deposition of submicron particles

    Energy Technology Data Exchange (ETDEWEB)

    Wesely, M. L.

    1999-10-08

    The air-surface exchange of particles can have a strong role in determining the amount, size, and chemical composition of particles in the troposphere. Here the authors consider only dry processes (deposition processes not directly aided by precipitation) and mostly address particles less than about 2 {micro}m in diameter (often referred to as submicron particles because most of such particles are less than 1 {micro}m in diameter). The processes that control the dry exchange of particulate material between the atmosphere and the surface of the Earth are numerous, highly varied, and sometimes poorly understood. As a result, determining which of the surface processes to parameterize or simulate in modeling the tropospheric mass budget of a particulate substance can be a significant challenge. Dry deposition, for example, can be controlled by a combination of Brownian diffusion, impaction, interception, and gravitational settling, depending on the size of the particles, the roughness of the surface on both micrometeorological and microscopic scales, the geometrical structure of vegetative canopies, and other surface characteristics such as wetness. Particles can be added to the lower atmosphere by resuspension from land surfaces and sea spray. The roles of rapid gas-to-particle conversion and growth or shrinkage of particles as a result of water condensation or evaporation in the lower few meters of the atmosphere can also have a significant impact on particle concentrations in the lower atmosphere. Here, a few micrometeorological observations and inferences on particle air-surface exchange are briefly addressed.

  11. Contribution of food availability to the more rapid growth of the scallop, Euvola ziczac (Pteroida, Pectinidae in bottom than in suspended culture

    Directory of Open Access Journals (Sweden)

    Patrick Hunauld

    2005-09-01

    Full Text Available We conducted a 5-month experiment at Turpialito in the Golfo de Cariaco, Venezuela, to examine whether the previously reported more rapid growth of scallop Euvola ziczac in bottom compared to suspended culture can be attributed to more abundant or higher quality food resources near the sediment/water interface. The various body components (shell, muscle, digestive gland, gonad and remaining tissues increased in size at a much greater rate for scallops maintained on the bottom, in partly buried cages at 5 m in depth, than in cages suspended at the same depth in the water column. Furthermore, survival was greater on the bottom. Food abundance and quality were examined by analyzing the seston collected in sediment traps at the sediment/water interface in the vicinity of the bottom cages and next to the suspended cages. Phytoplankton abundance (chlorophyll a and the proportion of various fatty acids in the lipid fraction of the seston were similar on the bottom and in suspension. However, sestonic protein, lipid and carbohydrate levels, and the estimated energetic content of the seston, were higher on the bottom than in suspension, and probably contributed to the greater growth on the bottom. As the increase in the energetic content of the seston on the bottom compared to in suspension was less than the increase in growth (biomass on the bottom compared to in suspension, and the evidence showed in previous studies above the negative influence of fouling and wave action in suspended culture, we conclude that the more rapid growth of Euvola ziczac in bottom than suspended culture is principally due to stress relative to suspended culture system. Rev. Biol. Trop. 53(3-4: 455-461. Epub 2005 Oct 3.

  12. Rapid and large-scale synthesis of Co3O4 octahedron particles with very high catalytic activity, good supercapacitance and unique magnetic property

    CSIR Research Space (South Africa)

    Chowdhury, M

    2015-12-01

    Full Text Available Scarcity of rapid and large scale synthesis of functional materials, hinders the progress from laboratory scale to commercial applications. In this study, we report a rapid and large scale synthesis of Co(Sub3)O(sub4) octahedron micron size (1.3 µm...

  13. Diversity as valued and troubled: social identities and demographic categories in understandings of rapid urban growth in Vanuatu.

    Science.gov (United States)

    Widmer, Alexandra

    2013-01-01

    This paper deals with the simultaneous mainstreaming and diversification of ni-Vanuatu social categories associated with the ways in which population growth is understood as a possible crisis in both demographic knowledge and everyday ni-Vanuatu knowledge. The author is interested in understanding the downplaying but primarily the amplification of difference with respect to place, generation and gender identities. The relationship between reproduction, social reproduction and the multiple meanings of modernity is at issue. In the expert knowledge of demography that proffers advice for the ni-Vanuatu state, it is the lack of modern development - in the form of adequate biomedical birth control, western education, and the equality of women - that is the implicit cause of population growth. Yet, many ni-Vanuatu see population growth as tied to the troubles that arise from the dilution of traditional social forms: there is too much modernity. In both demographic and ni-Vanuatu everyday narrations of the potential population crisis, diversification and mainstreaming take place and vulnerabilities are produced.

  14. A rapid discrimination of authentic and unauthentic Radix Angelicae Sinensis growth regions by electronic nose coupled with multivariate statistical analyses.

    Science.gov (United States)

    Liu, Jie; Wang, Weixin; Yang, Yaojun; Yan, Yuning; Wang, Wenyi; Wu, Haozhong; Ren, Zihe

    2014-10-27

    Radix Angelicae Sinensis, known as Danggui in China, is an effective and wide applied material in Traditional Chinese Medicine (TCM) and it is used in more than 80 composite formulae. Danggui from Minxian County, Gansu Province is the best in quality. To rapidly and nondestructively discriminate Danggui from the authentic region of origin from that from an unauthentic region, an electronic nose coupled with multivariate statistical analyses was developed. Two different feature extraction methods were used to ensure the authentic region and unauthentic region of Danggui origin could be discriminated. One feature extraction method is to capture the average value of the maximum response of the electronic nose sensors (feature extraction method 1). The other one is to combine the maximum response of the sensors with their inter-ratios (feature extraction method 2). Multivariate statistical analyses, including principal component analysis (PCA), soft independent modeling of class analogy (SIMCA), and hierarchical clustering analysis (HCA) were employed. Nineteen samples were analyzed by PCA, SIMCA and HCA. Then the remaining samples (GZM1, SH) were projected onto the SIMCA model to validate the models. The results indicated that, in the use of feature extraction method 2, Danggui from Yunnan Province and Danggui from Gansu Province could be successfully discriminated using the electronic nose coupled with PCA, SIMCA and HCA, which suggested that the electronic-nose system could be used as a simple and rapid technique for the discrimination of Danggui between authentic and unauthentic region of origin.

  15. A Molecular Dynamics Study on the Constraint Conditions of the Particle Growth Process in Laser Synthesis of Nanopowders

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2012-01-01

    Full Text Available Laser-induced chemical vapor deposition (LICVD is a nanopowder synthesis method in which the nanoparticles of a synthetic product undergo nucleation, growth, and agglomeration. The growth process is crucial because it directly determines the growth rate and final size of nanoparticles. In this paper, the nanoparticle growth process is analyzed through a molecular dynamics study, and the process is divided into five steps. In addition, this study explains the microscopic heat and mass transfer processes that occur in the surrounding space and on the particulate surface. Three constraint conditions that may restrict the growth process, namely, transfer constraint, surface constraint, and temperature constraint conditions, are proposed and modeled. To calculate the final diameter and the nanoparticle growth rate, formulae for the constraint conditions are developed. The behavior of four gases in the particulate growth zone is discussed in detail.

  16. Social and environmental determinants of child health in Mongolia across years of rapid economic growth: 2000-2010.

    Science.gov (United States)

    Joshi, Nehal; Bolorhon, Bolormaa; Narula, Indermohan; Zhu, Shihua; Manaseki-Hollan, Semira

    2017-10-30

    To understand the effect of economic growth on health, we investigated the trend in socio-economic and regional determinants of child health in Mongolia. This Central Asian country had the fastest economic growth amongst low and middle-income countries (LMICs) from 2000 to 2010 and a healthcare system in transition. Data was from Mongolian multiple indicator cluster surveys (MICS) in 2000, 2005 and 2010. Child nutrition/growth was measured by height-for-age z-score (HAZ), weight-for-age z-score (WAZ), prevalence of stunted (HAZ < -2) and underweight (WAZ < -2) children. Access to health care was measured by prevalence of fully immunised children <5 years. Multivariate multi-level logistic mixed modelling was used to estimate the effect of socio-economic and environmental health determinants on each outcome in each year; 2000, 2005 and 2010. T-tests were used to measure significant change in HAZ and WAZ over the decade. Overall, from 2000 to 2010, there was a significant improvement (p < 0.001) in all three outcomes, but the effect of socio-economic factors increased on both stunting and weight. In 2000, region was a significant determinant: children living in three provinces were significantly more likely to be stunted and less likely to be immunised than Ulaanbaatar, but this was not significant by 2010. By 2010, none of the factors were significant determinants of immunisation in children. In 2000, economic status had no effect on stunting (OR = 0.91; 95%CI:0.49,1.66), however by 2010, children in the poorest economic quintile were 4 times more likely to be stunted than the richest (OR = 0.24; 95% CI:0.13,0.45; p < 0.001). The effect of maternal education on stunting prevalence continued over the 10 years, in both 2000 and 2010 children were twice as likely to be stunted if their mother had no education compared to university education (2000 OR = 0.45; 95% CI:0.28,0.73, p < 0.01,2010 OR =0.55; 95% CI:0.35,0.87, p < 0.05). Economic growth in

  17. Low-Temperature Rapid Fabrication of ZnO Nanowire UV Sensor Array by Laser-Induced Local Hydrothermal Growth

    Directory of Open Access Journals (Sweden)

    Sukjoon Hong

    2013-01-01

    Full Text Available We demonstrate ZnO nanowire based UV sensor by laser-induced hydrothermal growth of ZnO nanowire. By inducing a localized temperature rise using focused laser, ZnO nanowire array at ~15 μm size consists of individual nanowires with ~8 μm length and 200~400 nm diameter is readily synthesized on gold electrode within 30 min at the desired position. The laser-induced growth process is consecutively applied on two different points to bridge the micron gap between the electrodes. The resultant photoconductive ZnO NW interconnections display 2~3 orders increase in the current upon the UV exposure at a fixed voltage bias. It is also confirmed that the amount of photocurrent can be easily adjusted by changing the number of ZnO NW array junctions. The device exhibits clear response to the repeated UV illumination, suggesting that this process can be usefully applied for the facile fabrication of low-cost UV sensor array.

  18. Rapid burst of H2O2 by plant growth regulators increases intracellular Ca2+ amounts and modulates CD4+ T cell activation.

    Science.gov (United States)

    Ahmed, Asma; Mukherjee, Sambuddho; Deobagkar, Mukta; Naik, Tanushree; Nandi, Dipankar

    2010-11-01

    The identification of small molecules that affect T cell activation is an important area of research. Three molecules that regulate plant growth and differentiation, but not their structurally similar analogs, were identified to enhance primary mouse CD4(+) T cell activation in conjunction with soluble anti-CD3 stimulation: Indoleacetic acid (natural plant auxin), 1-Napthaleneacetic acid (synthetic plant auxin) and 2,4-Dichlorophenoxyacetic acid (synthetic plant auxin and herbicide). These effects are distinct in comparison to Curcumin, the well known phenolic immunomodulator, which lowers T cell activation. An investigation into the mechanisms of action of the three plant growth regulators revealed a rapid induction of reactive oxygen species (ROS), mainly comprising H(2)O(2). In addition, these three molecules synergize with soluble anti-CD3 signaling to enhance intracellular Ca(2+) concentrations [Ca(2+)](i), leading to greater T cell activation, e.g. induction of CD25 and IL-2. Enhanced production of TNFα and IFNγ by CD4(+) T cells is also observed upon plant growth regulator treatment with soluble anti-CD3. Interestingly, maximal IL-2 production and CD4(+) T cell cycle progression are observed upon activation with soluble anti-CD3 and phorbol 12-myristate 13-acetate (PMA), a phorbol ester. Additionally, stimulation with PMA and Ionomcyin (a Ca(2+) ionophore), which activates T cells by circumventing the TCR, and plant growth regulators also demonstrated the role of the strength of signal (SOS): T cell cycle progression is enhanced with gentle activation conditions but decreased with strong activation conditions. This study demonstrates the direct effects of three plant growth regulators on CD4(+) T cell activation and cycling. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Glass formation and unusual hygroscopic growth of iodic acid solution droplets with relevance for iodine mediated particle formation in the marine boundary layer

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-09-01

    Full Text Available Iodine oxide particles are known to nucleate in the marine boundary layer where gas phase molecular iodine and organoiodine species are produced by macroalgae. These ultra-fine particles may then grow through the condensation of other materials to sizes where they may serve as cloud condensation nuclei. There has been some debate over the chemical identity of the initially nucleated particles. In laboratory simulations, hygroscopic measurements have been used to infer that they are composed of insoluble I2O4, while elemental analysis of laboratory generated particles suggests soluble I2O5 or its hydrated form iodic acid, HIO3 (I2O5·H2O. In this paper we explore the response of super-micron sized aqueous iodic acid solution droplets to varying humidity using both Raman microscopy and single particle electrodynamic traps. These measurements reveal that the propensity of an iodic acid solution droplet to crystallise is negligible on drying to ~0% relative humidity (RH. On applying mechanical pressure to these droplets they shatter in a manner consistent with an ultra-viscous liquid or a brittle glass. Water retention in amorphous material at low RH is important for understanding the hygroscopic growth of aerosol particles and uptake of other condensable material. Subsequent water uptake between 10 and 20% RH causes their viscosity to reduce sufficiently that the cracked droplets flow and merge. The persistence of iodic acid solution in an amorphous state, rather than a crystalline state, suggests they will more readily accommodate other condensable material and are therefore more likely to grow to sizes where they may serve as cloud condensation nuclei. On increasing the humidity to ~90% the mass of the droplets only increases by ~20% with a corresponding increase in radius of only 6%, which is remarkably small for a highly soluble material. We suggest that the

  20. Orthopedic treatment of Class III malocclusion with rapid maxillary expansion combined with a face mask: a cephalometric assessment of craniofacial growth patterns

    Directory of Open Access Journals (Sweden)

    Daniella Torres Tagawa

    2012-06-01

    Full Text Available OBJECTIVE: The aim of this prospective study was to assess potential changes in the cephalometric craniofacial growth pattern of 17 children presenting Angle Class III malocclusion treated with a Haas-type expander combined with a face mask. METHODS: Lateral cephalometric radiographs were taken at beginning (T1 and immediately after removal of the appliances (T2, average of 11 months of treatment. Linear and angular measurements were used to evaluate the cranial base, dentoskeletal changes and facial growth pattern. RESULTS: The length of the anterior cranial base experienced a reduction while the posterior cranial base assumed a more vertical position at T1. Some maxillary movement occurred, there was no rotation of the palatal plane, there was a slight clockwise rotation of the mandible, although not significant. The ANB angle increased, thereby improving the relationship between the jaws; dentoalveolar compensation was more evident in the lower incisors. Five out of 12 cases (29.41% showed the following changes: In one case the pattern became more horizontal and in four cases more vertical. CONCLUSIONS: It was concluded after a short-term assessment that treatment with rapid maxillary expansion (RME associated with a face mask was effective in the correction of Class III malocclusion despite the changes in facial growth pattern observed in a few cases.

  1. Theoretical and Experimental Study of Chemical Transformations of a Methane-Hydrogen-Coal Particles Mixture in a Rapid-Compression Machine

    Science.gov (United States)

    Fedorov, A. V.; Tropin, D. A.; Penyazkov, O. G.; Leshchevich, V. V.; Shimchenko, S. Yu.

    2017-07-01

    Results of an experimental and numerical study of the ignition of a stoichiometric methane-air mixture in the presence of coal particles of diameters 20-52 μm in the range of temperatures 850-1150 K and pressures 1.5-2.0 MPa are presented. It has been found that the particles begin to burn at a temperature of the oxidizing medium above 850 K. At a temperature above 1000 K, burning particles reduce the time and limiting temperature of ignition of the methane-air mixture. A comparison has been made of the calculated data on ignition-delay times of coal in an air-coal mixture and on ignition-delay times of methane and coal in a methane-air-coal mixture with the experimental data. A satisfactory agreement is shown between the data on ignition-delay times of coal and ignition-delay times of methane in all the mixtures in question.

  2. The nutrition transition in amazonia: rapid economic change and its impact on growth and development in Ribeirinhos.

    Science.gov (United States)

    Piperata, Barbara A; Spence, Jennifer E; Da-Gloria, Pedro; Hubbe, Mark

    2011-09-01

    The goal of this longitudinal study was to assess the impact of economic change and increased market integration on subsistence strategies, living conditions, growth, and nutritional status of Ribeirinhos living in the rural Amazon, Brazil. Data on weight, height, skinfolds, and circumferences, as well as data on economic strategies and living conditions were collected from 469 individuals in 2002 and 429 in 2009. Of these, 204 individuals were measured on both occasions. Independent and paired t-tests were used to identify changes in nutritional status over time in the larger sample and smaller, longitudinal subsample, respectively. Multiple linear regressions were used to examine the relationship between changes in economic/living conditions and nutritional status in the longitudinal subsample. Results indicate modest improvements in linear growth (HAZ) and among male children the observed increase was related to enrollment in the Brazilian conditional cash transfer program, Bolsa Família (P = 0.03). In terms of short-term measures of nutritional status, we found a significant increase in ZTSF and a reduction in ZUMA in most age/sex groups. Among subadults, there was a negative relationship between ZUMA and access to electricity (P = 0.01) and positive relationship between ZUMA and the sale of the açaí fruit (P = 0.04). Significant changes in weight and BMI (P economic strategies and lifestyle, changes in nutritional status were modest which may be explained by increased food insecurity documented during this early stage of transition. 2010 Wiley-Liss, Inc.

  3. Remodelling of the palatal dome following rapid maxillary expansion (RME): laser scan-quantifications during a low growth period.

    Science.gov (United States)

    Muchitsch, A P; Winsauer, H; Wendl, B; Pichelmayer, M; Kuljuh, E; Szalay, A; Muchitsch, M

    2012-02-01

    To evaluate changes in the palatal vault after rapid maxillary expansion (RME) with bonded splint appliances. The sample comprised 24 children (12 boys and 12 girls) with mixed dentition (mean age 8.3 years; range 6.4-10.4 years). Following expansion, the splint appliance was used as a retainer for 6 months and then removed. Study casts were taken before RME (T0) and when the appliance was removed (T1). Then, 3D laser scans were taken to build complete 3D jaw models. Frontal cross sections were constructed at 53-63, 55-65 and 16-26, exported as coordinates, and finite element calculated to quantify their area, width and height. Maxillary length was also determined. Paired t-tests indicated statistically significant increases in the average palatal width (T1-T0=6.53-6.79 mm) and cross-sectional area (T1-T0=20.39-21.39 mm2) after RME (p0.99 (pmaxillary expansion distinctly increased mean palatal widths and cross-sectional areas. However, palatal height (55-65) and maxillary length decreased to a small extent. © 2012 John Wiley & Sons A/S.

  4. A CENSUS OF BROAD-LINE ACTIVE GALACTIC NUCLEI IN NEARBY GALAXIES: COEVAL STAR FORMATION AND RAPID BLACK HOLE GROWTH

    Energy Technology Data Exchange (ETDEWEB)

    Trump, Jonathan R.; Fang, Jerome J.; Faber, S. M.; Koo, David C.; Kocevski, Dale D. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Hsu, Alexander D. [The Harker School, 500 Saratoga Avenue, San Jose, CA 95129 (United States)

    2013-02-15

    We present the first quantified, statistical map of broad-line active galactic nucleus (AGN) frequency with host galaxy color and stellar mass in nearby (0.01 < z < 0.11) galaxies. Aperture photometry and z-band concentration measurements from the Sloan Digital Sky Survey are used to disentangle AGN and galaxy emission, resulting in estimates of uncontaminated galaxy rest-frame color, luminosity, and stellar mass. Broad-line AGNs are distributed throughout the blue cloud and green valley at a given stellar mass, and are much rarer in quiescent (red sequence) galaxies. This is in contrast to the published host galaxy properties of weaker narrow-line AGNs, indicating that broad-line AGNs occur during a different phase in galaxy evolution. More luminous broad-line AGNs have bluer host galaxies, even at fixed mass, suggesting that the same processes that fuel nuclear activity also efficiently form stars. The data favor processes that simultaneously fuel both star formation activity and rapid supermassive black hole accretion. If AGNs cause feedback on their host galaxies in the nearby universe, the evidence of galaxy-wide quenching must be delayed until after the broad-line AGN phase.

  5. In situ controlled rapid growth of novel high activity TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites

    Directory of Open Access Journals (Sweden)

    Jilin Wang

    2017-10-01

    Full Text Available In this work, a reaction coupling self-propagating high-temperature synthesis (RC-SHS method was developed for the in situ controlled synthesis of novel, high activity TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites using TiO2, Mg, B2O3, KBH4 and NH4NO3 as raw materials. The as-synthesized samples were characterized using X-ray diffraction (XRD, scanning electron microscope (SEM, X-ray energy dispersive spectroscopy (EDX, transition electron microscopy (TEM, high-resolution TEM (HRTEM and selected-area electron diffraction (SAED. The obtained TiB2/TiN hierarchical/heterostructured nanocomposites demonstrated an average particle size of 100–500 nm, and every particle surface was covered by many multibranched, tapered nanorods with diameters in the range of 10–40 nm and lengths of 50–200 nm. In addition, the tapered nanorod presents a rough surface with abundant exposed atoms. The internal and external components of the nanorods were TiB2 and TiN, respectively. Additionally, a thermogravimetric and differential scanning calorimetry analyzer (TG-DSC comparison analysis indicated that the as-synthesized samples presented better chemical activity than that of commercial TiB2 powders. Finally, the possible chemical reactions as well as the proposed growth mechanism of the TiB2/(TiB2–TiN hierarchical/heterostructured nanocomposites were further discussed.

  6. Effects of Surface Modification of Nanodiamond Particles for Nucleation Enhancement during Its Film Growth by Microwave Plasma Jet Chemical Vapour Deposition Technique

    Directory of Open Access Journals (Sweden)

    Chii-Ruey Lin

    2014-01-01

    Full Text Available The seedings of the substrate with a suspension of nanodiamond particles (NDPs were widely used as nucleation seeds to enhance the growth of nanostructured diamond films. The formation of agglomerates in the suspension of NDPs, however, may have adverse impact on the initial growth period. Therefore, this paper was aimed at the surface modification of the NDPs to enhance the diamond nucleation for the growth of nanocrystalline diamond films which could be used in photovoltaic applications. Hydrogen plasma, thermal, and surfactant treatment techniques were employed to improve the dispersion characteristics of detonation nanodiamond particles in aqueous media. The seeding of silicon substrate was then carried out with an optimized spin-coating method. The results of both Fourier transform infrared spectroscopy and dynamic light scattering measurements demonstrated that plasma treated diamond nanoparticles possessed polar surface functional groups and attained high dispersion in methanol. The nanocrystalline diamond films deposited by microwave plasma jet chemical vapour deposition exhibited extremely fine grain and high smooth surfaces (~6.4 nm rms on the whole film. These results indeed open up a prospect of nanocrystalline diamond films in solar cell applications.

  7. Evaluation of in-line spatial filter velocimetry as PAT monitoring tool for particle growth during fluid bed granulation.

    Science.gov (United States)

    Burggraeve, A; Van Den Kerkhof, T; Hellings, M; Remon, J P; Vervaet, C; De Beer, T

    2010-09-01

    In this study, the feasibility of spatial filter velocimetry (SFV) as process analytical technology tool for the in-line monitoring of the particle size distribution during top spray fluidized bed granulation was examined. The influence of several process (inlet air temperature during spraying and drying) and formulation variables (HPMC and Tween 20 concentration) upon the particle size distribution during processing, and the end product particle size distribution, tapped density and Hausner ratio was examined using a design of experiments (DOE) (2-level full factorial design, 19 experiments). The trend in end granule particle size distributions of all DOE batches measured with in-line SFV was similar to the off-line laser diffraction (LD) data. Analysis of the DOE results showed that mainly the HPMC concentration and slightly the inlet air temperature during drying had a positive effect on the average end granule size. The in-line SFV particle size data, obtained every 10s during processing, further allowed to explain and better understand the (in)significance of the studied DOE variables, which was not possible based on the LD data as this technique only supplied end granule size information. The variation in tapped density and Hausner ratio among the end granules of the different DOE batches could be explained by their difference in average end granule size. Univariate, multivariate PLS and multiway N-PLS models were built to relate these end granule properties to the in-line-measured particle size distribution. The multivariate PLS tapped density model and the multiway N-PLS Hausner ratio model showed the highest R(2) values in combination with the lowest RMSEE values (R(2) of 82% with an RMSEE of 0.0279 for tapped density and an R(2) of 52% with an RMSEE of 0.0268 for Hausner ratio, respectively). 2010 Elsevier B.V. All rights reserved.

  8. Insights on Sources, Growth, and Phase Partitioning of Atmospheric Particles from Hourly Measurements of Organic Marker Compounds

    Science.gov (United States)

    Williams, B.; Goldstein, A.; Kreisberg, N.; Hering, S.; Docherty, K.; Jimenez, J.; Shields, L.; Qin, X.; Prather, K.; Ziemann, P.

    2007-12-01

    Atmospheric aerosols have adverse affects on human health and have direct and indirect affects on the global radiation balance. In order to implement particle concentration control strategies, we must first understand particle origins. Atmospheric aerosols have both primary sources such as combustion processes and secondary sources such as photochemically driven gas to particle phase partitioning. By monitoring changes in the molecular composition of the organic fraction of atmospheric aerosols, these various sources can be differentiated. Thermal desorption Aerosol Gas chromatography (TAG) is a new in-situ instrument capable of identifying and quantifying organic aerosol chemical composition with one hour time resolution. TAG is fully automated, offering around the clock measurements to determine diurnal, weekly, and seasonal patterns in organic aerosol composition, hence, determining aerosol sources and transformation processes. We report results from ambient measurements made in Southern California during the summer and fall of 2005 as part of the Study of Organic Aerosol at Riverside (SOAR). We use hourly measurements of over 300 individual organic compounds to define both primary and secondary particle sources. The particle sources defined include primary anthropogenic sources such as vehicle emissions, meat cooking, biomass burning, pesticide use, herbicide use, along with primary biogenic sources such as plant emissions and plant waxes. We also explore secondary particle sources (i.e. SOA) formed as a result of the oxidation of biogenic and anthropogenic precursor gases. Comparisons are made between TAG-defined sources and aerosol sources defined using Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS) and Aerosol Mass Spectrometer (AMS) data. In addition to source apportionment results, we present seasonal changes in ambient phase partitioning of organic compounds as a function of carbon number for multiple compound classes.

  9. Hepatocyte growth factor is a potent trigger of neutrophil adhesion through rapid activation of lymphocyte function-associated antigen-1.

    Science.gov (United States)

    Mine, S; Tanaka, Y; Suematu, M; Aso, M; Fujisaki, T; Yamada, S; Eto, S

    1998-11-01

    Recruitment of neutrophils into tissue occurs in several pathologic processes such as inflammation, atherosclerosis, thrombosis, and ischemia. In inflammation, the adherence of neutrophils to the endothelium depends on neutrophil integrins. Integrin-mediated adhesion is tightly regulated, ie, integrins do not function if neutrophils are not triggered by certain activation stimuli. We investigated the role of hepatocyte growth factor (HGF) in the adhesion of neutrophils to endothelial cells in inflammation. Our results showed that (a) HGF induced not only lymphocyte function-associated antigen-1 (LFA-1)-mediated adhesion of neutrophils to endothelial cells but also transmigration of neutrophils in a concentration-dependent manner; (b) HGF functionally transformed neutrophil integrin LFA-1 to active form and reduced surface L-selectin expression level; (c) HGF induced F-actin polymerization and cytoskeletal rearrangement within seconds; (d) genistein, a tyrosine kinase inhibitor, as well as wortmannin, a phosphoinositide 3 (PI 3)-kinase inhibitor, inhibited both F-actin polymerization and LFA-1-mediated adhesion of neutrophils to endothelial cells; and (e) neutrophils in cutaneous inflamed tissue highly expressed HGF and serum levels of HGF were elevated in patients with Behçet's disease, which is associated with neutrophilic vasculitis and marked neutrophil accumulation. Our results indicate that HGF plays a pivotal role in integrin-mediated adhesion and transmigration of neutrophils to sites of acute inflammation through cytoskeletal rearrangement activated by tyrosine kinase and PI 3-kinase signaling.

  10. Better to light a candle than curse the darkness: illuminating spatial localization and temporal dynamics of rapid microbial growth in the rhizosphere

    Directory of Open Access Journals (Sweden)

    Patrick M Herron

    2013-09-01

    Full Text Available The rhizosphere is a hotbed of microbial activity in ecosystems, fueled by carbon compounds from plant roots. Basic questions about the location and dynamics of plant-spurred microbial growth in the rhizosphere are difficult to answer with standard, destructive soil assays mixing a multitude of microbe-scale microenvironments in a single, often sieved, sample. Soil microbial biosensors designed with the luxCDABE reporter genes fused to a promoter of interest enable continuous imaging of the microbial perception of (and response to environmental conditions in soil. We used the common soil bacterium Pseudomonas putida KT2440 as host to plasmid pZKH2 containing a fusion between the strong constituitive promoter nptII and luxCDABE (coding for light-emitting proteins from Vibrio fischeri. Experiments in liquid media demonstrated that high light production by KT2440/pZKH2 was associated with rapid microbial growth supported by high carbon availability. We applied the biosensors in microcosms filled with non-sterile soil in which corn (Zea mays L., black poplar (Populus nigra L. or tomato (Solanum lycopersicum L. was growing. We detected minimal light production from microbiosensors in the bulk soil, but biosensors reported continuously from around roots for as long as six days. For corn, peaks of luminescence were detected 1-4 and 20-35 mm along the root axis behind growing root tips, with the location of maximum light production moving farther back from the tip as root growth rate increased. For poplar, luminescence around mature roots increased and decreased on a coordinated diel rhythm, but was not bright near root tips. For tomato, luminescence was dynamic, but did not exhibit a diel rhythm, appearing in acropetal waves along roots. KT2440/pZKH2 revealed that root tips are not always the only, or even the dominant, hotspots for rhizosphere microbial growth, and carbon availability is highly variable in space and time around roots.

  11. Collagen-embedded hydroxylapatite-beta-tricalcium phosphate-silicon dioxide bone substitute granules assist rapid vascularization and promote cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Ghanaati, Shahram M; Thimm, Benjamin W; Unger, Ronald E; Orth, Carina; Barbeck, Mike; Kirkpatrick, C James [Institute of Pathology, Johannes Gutenberg-University Mainz, Langenbeckstr.1, 55101 Mainz (Germany); Kohler, Thomas; Mueller, Ralph, E-mail: ghanaati@uni-mainz.d [Institute for Biomechanics, ETH Zuerich, Wolfgang-Pauli-Str.10, 8093 Zuerich (Switzerland)

    2010-04-15

    In the present study we assessed the biocompatibility in vitro and in vivo of a low-temperature sol-gel-manufactured SiO{sub 2}-based bone graft substitute. Human primary osteoblasts and the osteoblastic cell line, MG63, cultured on the SiO{sub 2} biomatrix in monoculture retained their osteoblastic morphology and cellular functionality in vitro. The effect of the biomaterial in vivo and its vascularization potential was tested subcutaneously in Wistar rats and demonstrated both rapid vascularization and good integration within the peri-implant tissue. Scaffold degradation was progressive during the first month after implantation, with tartrate-resistant acid phosphatase-positive macrophages being present and promoting scaffold degradation from an early stage. This manuscript describes successful osteoblastic growth promotion in vitro and a promising biomaterial integration and vasculogenesis in vivo for a possible therapeutic application of this biomatrix in future clinical studies.

  12. Effect of conservation and maturity of primary growth grass/clover on chewing activity and fecal particle size in heifers

    DEFF Research Database (Denmark)

    Koch, Anne-Katrine Skovsted; Nørgaard, Peder; Weisbjerg, Martin Riis

    2013-01-01

    and eating and summarized into min per day. Feces were sampled 3 times daily and machine washed in nylon bags of 0.01 mm pore size. Feces particulate matter was freeze dried and divided into small (0-1.0 mm) and large (>1.0 mm) particle fractions by dry sieving. Data was analyzed by the MIXED procedure...

  13. A rapid, accurate and robust particle-based assay for the simultaneous screening of plasma samples for the presence of five different anti-cytokine autoantibodies

    DEFF Research Database (Denmark)

    Guldager, Daniel Kring Rasmussen; von Stemann, Jakob Hjorth; Larsen, Rune

    2015-01-01

    PURPOSE: To establish and validate a rapid, cost-effective and accurate screening assay for the simultaneous testing of human naturally occurring anti-cytokine autoantibodies (c-aAb) targeting interleukin-1α (IL-1α), interleukin-6 (IL-6), interleukin-10 (IL-10), granulocyte-macrophage colony...

  14. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    Science.gov (United States)

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  15. Safe communities in China as a strategy for injury prevention and safety promotion programmes in the era of rapid economic growth.

    Science.gov (United States)

    Wang, Shu-Mei; Dalal, Koustuv

    2013-02-01

    Due to its rapid economic development, China is facing a huge health, social, and economic burden resulting from injuries. The study's objective was to examine Safe Communities in China as a strategy for injury prevention and safety promotion programmes in the era of rapid economic growth. Literature searches in English and Chinese, which included grey literature, were performed on the Chinese Journal Full-text Search System and Medline, using the words "Safe Community", "injury", "economics", and "prevention". The results showed that the existing 35 recognized members of the International Safe Community Network have not placed due emphasis on suicide prevention, which is one of the leading problems in both rural and urban China. A few groups, such as children, the elderly, cyclists, and pedestrians, have received due emphasis, while other vulnerable groups, such as migrant workers, motorcyclists, students, players, and farmers have not received the necessary attention from the Safe Community perspective. As the evidence describes, Safe Communities in China can be a very effective strategy for injury prevention, but four aspects need to be strengthened in the future: (1) establish and strengthen the policy and regulations in terms of injury prevention at the national level; (2) create a system to involve professional organizations and personnel in projects; (3) consider the economic development status of different parts of China; and (4) intentional injury prevention should receive greater attention.

  16. The development of silk fibroin scaffolds using an indirect rapid prototyping approach: morphological analysis and cell growth monitoring by spectral-domain optical coherence tomography.

    Science.gov (United States)

    Liu, M J J; Chou, S M; Chua, C K; Tay, B C M; Ng, B K

    2013-02-01

    To date, naturally derived biomaterials are rarely used in advanced tissue engineering (TE) methods despite their superior biocompatibility. This is because these native materials, which consist mainly of proteins and polysaccharides, do not possess the ability to withstand harsh processing conditions. Unlike synthetic polymers, natural materials degrade and decompose rapidly in the presence of chemical solvents and high temperature, respectively. Thus, the fabrication of tissue scaffolds using natural biomaterials is often carried out using conventional techniques, where the efficiency in mass transport of nutrients and removal of waste products within the construct is compromised. The present study identified silk fibroin (SF) protein as a suitable material for the application of rapid prototyping (RP) or additive manufacturing (AM) technology. Using the indirect RP method, via the use of a mould, SF tissue scaffolds with both macro- and micro-morphological features can be produced and qualitatively examined by spectral-domain optical coherence tomography (SD-OCT). The advanced imaging technique showed the ability to differentiate the cells and SF material by producing high contrasting images, therefore suggesting the method as a feasible alternative to the histological analysis of cell growth within tissue scaffolds. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.

  17. Redundancy and molecular evolution: the rapid Induction of bone formation by the mammalian transforming growth factor-β3 isoform

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2016-09-01

    Full Text Available The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin, a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins’ genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in Papio ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of Bone

  18. Rapid determination of parabens in seafood sauces by high-performance liquid chromatography: A practical comparison of core-shell particles and sub-2 μm fully porous particles.

    Science.gov (United States)

    Ye, Jing; Cao, Xiaoji; Cheng, Zhuo; Qin, Ye; Lu, Yanbin

    2015-12-01

    In this work, the chromatographic performance of superficially porous particles (Halo core-shell C18 column, 50 mm × 2.1 mm, 2.7 μm) was compared with that of sub-2 μm fully porous particles (Acquity BEH C18 , 50 mm × 2.1 mm, 1.7 μm). Four parabens, methylparaben, ethylparaben, propylparaben, and butylparaben, were used as representative compounds for calculating the plate heights in a wide flow rate range and analyzed on the basis of the Van Deemter and Knox equations. Theoretical Poppe plots were constructed for each column to compare their kinetic performance. Both phases gave similar minimum plate heights when using nonreduced coordinates. Meanwhile, the flat C-term of the core-shell column provided the possibilities for applying high flow rates without significant loss in efficiency. The low backpressure of core-shell particles allowed this kind of column, especially compatible with conventional high-performance liquid chromatography systems. Based on these factors, a simple high-performance liquid chromatography method was established and validated for the determination of parabens in various seafood sauces using the Halo core-shell C18 column for separation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Particle size of calcium carbonate does not affect apparent and standardized total tract digestibility of calcium, retention of calcium, or growth performance of growing pigs.

    Science.gov (United States)

    Merriman, L A; Stein, H H

    2016-09-01

    Two experiments were conducted to evaluate particle size of calcium carbonate used in diets fed to growing pigs. Experiment 1 was conducted to determine apparent total tract digestibility (ATTD), standardized total tract digestibility (STTD), and retention of Ca among diets containing calcium carbonate produced to different particle sizes, and Exp. 2 was conducted to determine if growth performance of weanling pigs is affected by particle size of calcium carbonate. In Exp. 1, 4 diets based on corn and potato protein isolate were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P, but the calcium carbonate used in the diets was ground to 4 different particle sizes (200, 500, 700, or 1,125 μm). A Ca-free diet was formulated to determine basal endogenous losses of Ca. In Exp. 2, 4 diets were based on corn and soybean meal and the only difference among diets was that each diet contained calcium carbonate ground to the 4 particle sizes used in Exp. 1. In Exp. 1, 40 barrows (15.42 ± 0.70 kg initial BW) were allotted to the 5 diets with 8 replicate pigs per diet using a randomized complete block design, and in Exp. 2, 128 pigs with an initial BW of 9.61 ± 0.09 kg were randomly allotted to 4 experimental diets. Results of Exp. 1 indicated that basal endogenous losses of Ca were 0.329 g/kg DMI. The ATTD of Ca was 70.0 ± 3.2, 74.3 ± 2.7, 70.0 ± 2.9, and 72.1 ± 2.7 and the STTD of Ca was 74.2 ± 3.2, 78.5 ± 2.7, 74.1 ± 2.9, and 76.2 ± 2.7 for calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. Retention of Ca was 67.4 ± 3.1, 70.4 ± 2.6, 63.9 ± 2.8, and 67.2 ± 2.2 for diets containing calcium carbonate ground to 200, 500, 700, or 1,125 μm, respectively. There were no differences among diets for ATTD of Ca, STTD of Ca, or retention of Ca. The ATTD of P was 64.5 ± 1.7, 66.8 ± 2.6, 64.2 ± 3.0, and 63.2 ± 1.7% and retention of P was 61.4 ± 1.4, 63.8 ± 2.8, 61.9 ± 2.8, and 60.9 ± 1.5 for diets containing calcium

  20. Aerosol–computational fluid dynamics modeling of ultrafine and black carbon particle emission, dilution, and growth near roadways

    OpenAIRE

    Huang, L.; Gong, S. L.; Gordon, M.; Liggio, J.; Staebler, R.; Stroud, C. A.; Lu, G.; Mihele, C.; Brook, J. R.; Jia, C. Q.

    2014-01-01

    Many studies have shown that on-road vehicle emissions are the dominant source of ultrafine particles (UFPs; diameter < 100 nm) in urban areas and near-roadway environments. In order to advance our knowledge on the complex interactions and competition among atmospheric dilution, dispersion, and dynamics of UFPs, an aerosol dynamics–computational fluid dynamics (CFD) coupled model is developed and validated against field measurements. A unique approach of applying periodic bo...

  1. Arabidopsis Small Rubber Particle Protein Homolog SRPs Play Dual Roles as Positive Factors for Tissue Growth and Development and in Drought Stress Responses.

    Science.gov (United States)

    Kim, Eun Yu; Park, Ki Youl; Seo, Young Sam; Kim, Woo Taek

    2016-04-01

    Lipid droplets (LDs) act as repositories for fatty acids and sterols, which are used for various cellular processes such as energy production and membrane and hormone synthesis. LD-associated proteins play important roles in seed development and germination, but their functions in postgermination growth are not well understood. Arabidopsis (Arabidopsis thaliana) contains three SRP homologs (SRP1, SRP2, and SRP3) that share sequence identities with small rubber particle proteins of the rubber tree (Hevea brasiliensis). In this report, the possible cellular roles of SRPs in postgermination growth and the drought tolerance response were investigated. Arabidopsis SRPs appeared to be LD-associated proteins and displayed polymerization properties in vivo and in vitro. SRP-overexpressing transgenic Arabidopsis plants (35S:SRP1, 35S:SRP2, and 35S:SRP3) exhibited higher vegetative and reproductive growth and markedly better tolerance to drought stress than wild-type Arabidopsis. In addition, constitutive over-expression of SRPs resulted in increased numbers of large LDs in postgermination seedlings. In contrast, single (srp1, 35S:SRP2-RNAi, and srp3) and triple (35S:SRP2-RNAi/srp1srp3) loss-of-function mutant lines exhibited the opposite phenotypes. Our results suggest that Arabidopsis SRPs play dual roles as positive factors in postgermination growth and the drought stress tolerance response. The possible relationships between LD-associated proteins and the drought stress response are discussed. © 2016 American Society of Plant Biologists. All Rights Reserved.

  2. Sodium hyaluronate-CNTF gelatinous particles promote axonal growth, neurogenesis and functional recovery after spinal cord injury.

    Science.gov (United States)

    Wang, N; Zhang, S; Zhang, A F; Yang, Z Y; Li, X G

    2014-07-01

    Currently, effective therapeutic strategy for spinal cord injury (SCI) is not clinically available. To establish a better method that may help repair the injured spinal cord, sodium hyaluronate-ciliary neurotrophic factor (CNTF) gelatinous particles were generated. A segment of spinal cord tissue was excised to form a 2.5-mm-long cavity at thoracic level in an adult rat, and sodium hyaluronate-CNTF gelatinous particles were implanted into the lesion cavity. The recovery of the injured spinal cord was evaluated by immunohistochemistry, nerve tracing, electrophysiological test and Basso-Beattie-Bresnahan locomotor rating scale. Open-field locomotion of the sodium hyaluronate-CNTF rats was significantly enhanced up to 12 weeks postoperation. Together with the evidence of enhanced cortical motor evoked potentials and cortical somatosensory evoked potentials in the sodium hyaluronate-CNTF group, these findings suggested a powerful functional recovery component. Immunohistochemical analyses suggested that the functional recovery might be attributable partly to an increase in axonal regrowth as well as in replenishment of β-tubulin-III-positive neuron-like cells. Sodium hyaluronate-CNTF gelatinous particles may provide an effective method for treating SCI.

  3. Space-Confined Growth of Defect-Rich Molybdenum Disulfide Nanosheets Within Graphene: Application in The Removal of Smoke Particles and Toxic Volatiles.

    Science.gov (United States)

    Wang, Dong; Xing, Weiyi; Song, Lei; Hu, Yuan

    2016-12-21

    In this work, molybdenum disulfide/reduced graphene oxide (MoS2/RGO) hybrids are synthesized by a spatially confined reaction to insert the growth of defect-rich MoS2 nanosheets within graphene to enable incorporation into the polymer matrix for the application in the removal of smoke particles and toxic volatiles. The steady-state tube furnace result demonstrates that MoS2/RGO hybrid could considerably reduce the yield of CO and smoke particles. The TG-IR coupling technique was utilized to identify species of toxic volatiles including aromatic compounds, CO, and hydrocarbons and to investigate the removal effect of MoS2/RGO hybrids on reducing toxic volatiles. The removal of smoke particles and toxic volatiles was attributed to the adsorption capacity derived from edges sites of MoS2 and the honeycomb lattice of graphene, as well as the inhibition of nanobarrier resulting from two-dimensional structure. The work will offer a strategy for fabricating graphene-based hybrids by the space-confined synthesis and exploiting the application of space-confined graphene-based hybrid.

  4. Effect of corn particle size and inclusion of organic acid in the diet on growth performance and gastrointestinal structure in young chicks

    Directory of Open Access Journals (Sweden)

    Baldassare Fronte

    2013-12-01

    Full Text Available The effect of 3 corn particle sizes (dgw: 375, 1117, and 2402 µm combined with or without organic acids (0.3 g/kg of Galliacid S® was investigated on broilers from Day 1 to Day 21; 540 1-day old Ross 708 males were raised in 36 pens (3x2 factorial design, 6 blocks each. We measured: body weight, feed intake, feed conversion ratio, liver weight, pH weight and height of empty gizzard, pH and length of intestine and caeca, height and width of ileal villi, crypt depth/gland diameter, total bacteria count. Different corn particle sizes and organic acid supplements only affected feed intake (Days 14 and 21, feed conversion ratio (Day 14, villus height, and crypt depth. On Day 21, fine milling had negative effects on body weights compared with larger feed particle size (816 vs 848 and 844 g; acidic additive had a positive effect on broiler growth (859 vs 813 g. Length of small intestinal villi and crypt depth were affected by both particle size and organic acids (fine to coarse small intestinal villi: 1869a, 1401c, and 1039d µm in non-acidified; 1708b, 1535c, and 942e µm in acidified. Fine to coarse crypt depth: 102ab, 98b; 65c µm in non-acidified; 106a, 70c, and 66c µm in acidified. No difference was observed in total bacteria counts of the gut in relation to the different treatments. Use of organic acids during starter phase is useful, especially when the milling process is inappropriate.

  5. Spatiotemporal changes in both asset value and GDP associated with seismic exposure in China in the context of rapid economic growth from 1990 to 2010

    Science.gov (United States)

    Wu, Jidong; Wang, Cailin; He, Xin; Wang, Xu; Li, Ning

    2017-03-01

    Accurate exposure estimation is essential for seismic risk assessment. Recent rapid urbanization and economic growth in China have led to massive spatiotemporal changes in both the asset value and GDP exposed to seismic hazards. Using available GDP data, the asset value dataset produced by Wu et al (2014a) and spatial disaggregation technology, gridded maps of GDP and asset value are overlaid with the latest seismic map to investigate spatiotemporal changes in economic exposure in the most seismically hazardous areas (MSHAs) in China in 1990, 2000 and 2010. We found that 15.4% of China’s asset value and 14.1% of China’s GDP were located in MSHAs in 2010, and the asset value and GDP exposed to MSHAs reached 15.9 trillion CNY and 6.2 trillion CNY, respectively, with average annual rates of increase of 14.4% and 11.3% over the two decades. The evidence of increased exposure provides valuable information regarding whom or what risk managers should give the most attention based on the economic exposure changes in earthquake-prone areas of China. Notably, the North China seismic belt, which is associated with the largest economic exposure to earthquakes and a rapidly increasing rate of economic exposure compared to those in other seismic belts, and the Qinghai-Tibet seismic belt, which has the highest earthquake occurrence, are two seismic belts of interest. A more detailed study is required to determine the relationship between increased economic exposure and earthquake disaster losses combined with hazard level and vulnerability.

  6. Growth of copper nano particles in erio nite matrix;Crecimiento de nanoparticulas de cobre en matriz de erionita

    Energy Technology Data Exchange (ETDEWEB)

    Chavez R, F.; Zamorano U, R. [Instituto Politecnico Nacional, Escuela Superior de Fisica y Matematicas, Departamento de Fisica, Unidad Profesional Adolfo Lopez Mateos, Zacatenco, 07738 Mexico D. F. (Mexico); Petranovskii, V., E-mail: fchavez@esfm.ipn.m [UNAM, Centro de Nanociencias y Nanotecnologia, Apdo. Postal 14, 22800 Ensenada, Baja California (Mexico)

    2010-07-01

    Unreduced and reduced in hydrogen flow copper exchanged synthetic erio nite, with a SiO{sub 2}/Al{sub 2}O{sub 3} molar ratio of 7.7, have been characterized by X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, and electron spin resonance spectroscopy. The X-ray diffraction patterns show that the reduction process does not change the zeolite structure, besides the reduced form at 450 grades C present diffraction lines assigned to copper metallic particles. The diffuse reflectance spectroscopy measurements have detected isolated Cu{sup 2+} ions as well as plasma resonance peak of copper metallic nanoparticles. The spin resonance spectroscopy simulation analysis of the spectra measured at 20 grades C indicates the presence of two different Cu{sup 2+} ions sites localized in the erio nite matrix. Up to 450 grades C only one type of sites take place in the reduction process, participating in Cu metal clusters and Cu metal nano particles formation, keeping the Cu{sup 2+} ions of the second site intact. (Author)

  7. Particle counter as a tool to control pre-hydrolyzed coagulant dosing and rapid filtration efficiency in a conventional treatment system.

    Science.gov (United States)

    Gumińska, Jolanta; Kłos, Marcin

    2015-01-01

    Filtration efficiency in a conventional water treatment system was analyzed in the context of pre-hydrolyzed coagulant overdosing. Two commercial coagulants of different aluminum speciation were tested. A study was carried out at a water treatment plant supplied with raw water of variable quality. The lack of stability of water quality caused many problems with maintaining the optimal coagulant dose. The achieved results show that the type of coagulant had a very strong influence on the effectiveness of filtration resulting from the application of an improper coagulant dose. The overdosing of high basicity coagulant (PAC85) caused a significant increase of fine particles in the outflow from the sedimentation tanks, which could not be retained in the filter bed due to high surface charge and the small size of hydrolysis products. When using a coagulant of lower basicity (PAC70), it was much easier to control the dose of coagulant and to adjust it to the changing water quality.

  8. Role of net baryon density on rapidity width of identified particles from the lowest energies available at the CERN Super Proton Synchrotron to those at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Hussain, Nur; Bhattacharjee, Buddhadeb

    2017-08-01

    Widths of the rapidity distributions of various identified hadrons generated with the UrQMD-3.4 event generator at all the Super Proton Synchrotron (SPS) energies have been presented and compared with the existing experimental results. An increase in the width of the rapidity distribution of Λ could be seen with both Monte Carlo (MC) and experimental data for the studied energies. Using MC data, the study has been extended to Relativistic Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC) energies. A similar jump, as observed in the plot of rapidity width versus rest mass at Alternating Gradient Synchrotron (AGS) and all SPS energies, persists even at RHIC and LHC energies, confirming its universal nature from AGS to the highest LHC energies. Such observation indicates that pair production may not be the only mechanism of particle production at the highest LHC energies. However, with MC data, the separate mass scaling for mesons and baryons is found to exist even at the top LHC energy.

  9. Potential of RapidEye and WorldView-2 Satellite Data for Improving Rice Nitrogen Status Monitoring at Different Growth Stages

    Directory of Open Access Journals (Sweden)

    Shanyu Huang

    2017-03-01

    Full Text Available For in-season site-specific nitrogen (N management of rice to be successful, it is crucially important to diagnose rice N status efficiently across large areas within a short time frame. In recent studies, the FORMOSAT-2 satellite images with traditional blue (B, green (G, red (R, and near-infrared (NIR wavebands have been used to estimate rice N status due to its high spatial resolution, daily revisit capability, and relatively lower cost. This study aimed to evaluate the potential improvements of RapidEye and WorldView-2 data over FORMOSAT-2 for rice N status monitoring, as the former two sensors provide additional wavelengths besides the traditional four wavebands. Ten site-year N rate experiments were conducted in Jiansanjiang, Heilongjiang Province of Northeast China from 2008 to 2011. Plant samples and field hyperspectral data were collected at three growth stages: panicle initiation (PI, stem elongation (SE, and heading (HE. The canopy-scale hyperspectral data were upscaled to simulate the satellite bands. Vegetation index (VI analysis, stepwise multiple linear regression (SMLR, and partial least squares regression (PLSR were performed to derive plant N status indicators. The results indicated that the best-performed VIs calculated from the simulated RapidEye and WorldView-2 bands, especially those based on the red edge (RE bands, explained significantly more variability for above ground biomass (AGB, plant N uptake (PNU, and nitrogen nutrition index (NNI estimations than their FORMOSAT-2-based counterparts did, especially at the PI and SE stages. The SMLR and PLSR models based on the WorldView-2 bands generally had the best performance, followed by the ones based on the RapidEye bands. The SMLR results revealed that both the NIR and RE bands were important for N status estimation. In particular, the NIR1 band (760–900 nm from RapidEye or 770–895 nm from WorldView-2 was most important for estimating all the N status indicators. The RE

  10. Development of a rapid method for the analysis of synthetic growth promoters in bovine muscle using liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Malone, E M; Elliott, C T; Kennedy, D G; Regan, L

    2009-04-01

    A rapid liquid chromatography tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the simultaneous identification, confirmation and quantitation of thirteen synthetic growth promoters in bovine muscle. The method was validated in accordance with the criteria defined in Commission Decision 2002/657/EC. A value of 1mugkg(-1) was chosen as the required performance level (RPL) for all analytes. The growth promoters investigated were alpha and beta trenbolone, 16-beta-OH stanozolol, methylboldenone, fluoxymesterone, methyltestosterone, medroxyprogesterone acetate, megestrol acetate, melengestrol acetate, dexamethasone, flumethasone, dienestrol and hexestrol. The method involved enzymatic hydrolysis, purification by solid phase extraction followed by analysis by UPLC-MS/MS using electrospray ionization operated in both positive and negative polarities with a total run time of 14 min. The decision limit (CCalpha) values obtained, ranged from 0.09 to 0.19 microgkg(-1) and the detection capability (CCbeta) values obtained, ranged from 0.15 to 0.32 microgkg(-1). The results of the inter-assay study, which was performed by fortifying bovine muscle samples (n=18) on three separate days, show the accuracy calculated for the various analytes to range between 98% and 102%. The precision of the method, expressed as R.S.D. values for the inter-assay variation of each analyte at the three levels of fortification (1, 1.5 and 2.0 microgkg(-1)), ranged between 3.1% and 5.8%. A Day 4 assay was carried out to examine variations due to different animals and different muscle types.

  11. Changes in Underlying Determinants Explain Rapid Increases in Child Linear Growth in Alive & Thrive Study Areas between 2010 and 2014 in Bangladesh and Vietnam.

    Science.gov (United States)

    Nguyen, Phuong Hong; Headey, Derek; Frongillo, Edward A; Tran, Lan Mai; Rawat, Rahul; Ruel, Marie T; Menon, Purnima

    2017-03-01

    Background: Child linear growth sometimes improves in both intervention and comparison groups in evaluations of nutrition interventions, possibly because of spillover intervention effects to nonintervention areas or improvements in underlying determinants of nutritional change in both areas.Objective: We aimed to understand what changes in underlying socioeconomic characteristics and behavioral factors are important in explaining improvements in child linear growth.Methods: Baseline (2010) and endline (2014) surveys from the Alive & Thrive impact evaluation were used to identify the underlying determinants of height-for-age z scores (HAZs) among children aged 24-48 mo in Bangladesh (n = 4311) and 24-59 mo in Vietnam (n = 4002). Oaxaca-Blinder regression decompositions were used to examine which underlying determinants contributed to HAZ changes over time.Results: HAZs improved significantly between 2010 and 2014 in Bangladesh (∼0.18 SDs) and Vietnam (0.25 SDs). Underlying determinants improved substantially over time and were larger in Vietnam than in Bangladesh. Multiple regression models revealed significant associations between changes in HAZs and socioeconomic status (SES), food security, maternal education, hygiene, and birth weight in both countries. Changes in HAZs were significantly associated with maternal nutrition knowledge and child dietary diversity in Bangladesh, and with prenatal visits in Vietnam. Improvements in maternal nutrition knowledge in Bangladesh accounted for 20% of the total HAZ change, followed by maternal education (13%), SES (12%), hygiene (10%), and food security (9%). HAZ improvements in Vietnam were accounted for by changes in SES (26%), prenatal visits (25%), hygiene (19%), child birth weight (10%), and maternal education (7%). The decomposition models in both countries performed well, explaining >75% of the HAZ changes.Conclusions: Decomposition is a useful and simple technique for analyzing nonintervention drivers of

  12. Inhibition of cervical cancer cell growth by human papillomavirus virus-like particles packaged with human papillomavirus oncoprotein short hairpin RNAs.

    Science.gov (United States)

    Bousarghin, Latifa; Touze, Antoine; Gaud, Guillaume; Iochmann, Sophie; Alvarez, Eva; Reverdiau, Pascale; Gaitan, Julien; Jourdan, Marie-Lise; Sizaret, Pierre-Yves; Coursaget, Pierre L

    2009-02-01

    Overexpression of human papillomavirus (HPV E6 and HPV E7) oncogenes in human cervical cells results in the development of cancer, and E6 and E7 proteins are therefore targets for preventing cervical cancer progression. Here, we describe the silencing of E6 and E7 expression in cervical carcinoma cells by RNA interference. In order to increase the efficacy of the RNA interference, HPV pseudovirions coding for a short hairpin RNA (shRNA) sequence were produced. The results indicated the degradation of E6 and E7 mRNAs when shRNA against E6 or E7 were delivered by pseudovirions in HPV-positive cells (CaSki and TC1 cells). E6 silencing resulted in the accumulation of cellular p53 and reduced cell viability. More significant cell death was observed when E7 expression was suppressed. Silencing E6 and E7 and the consequences for cancer cell growth were also investigated in vivo in mice using the capacity of murine TC1 cells expressing HPV-16 E6 and E7 oncogenes to induce fast-growing tumors. Treatment with lentiviruses and HPV virus-like particle vectors coding for an E7 shRNA sequence both resulted in dramatic inhibition of tumor growth. These results show the ability of pseudovirion-delivered shRNA to produce specific gene suppression and provide an effective means of reducing HPV-positive tumor growth.

  13. Changing pattern of premature mortality burden over 6 years of rapid growth of the economy in suburban south-west China: 1998-2003.

    Science.gov (United States)

    Cai, Le; Chongsuvivatwong, Virasakdi; Geater, Alan

    2008-05-01

    This study was conducted in Kunming, the capital of Yunnan, a poor province in south-west China experiencing rapid economic growth. The study examined the short-term trend in premature mortality burden from common causes of death in a suburban region between 1998 and 2003. Years of life lost (YLL) per 1000 population and mortality rate per 100,000 population were calculated from medical death certificates, and broken down by cause of death, sex and year without age weighting but with a discounting rate of 3%. Non-communicable diseases contributed over 80% of all causes of YLL, with a slightly increasing trend. The combined rate for communicable, maternal, prenatal and nutritional deficiencies declined from 4.7 to 2.4 per 1000 population. Remarkably, declining trends in YLL were also seen for chronic obstructive pulmonary disease, drug use and road traffic accidents, whereas increasing trends were seen for ischaemic heart disease (IHD) and liver cancer (males). The YLL rate for stroke, self-inflicted injuries, lung cancer and stomach cancer fluctuated over time. The region should focus on further control of IHD and liver cancer.

  14. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    Science.gov (United States)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  15. Non-cytotoxic organic-inorganic hybrid bioscaffolds: An efficient bedding for rapid growth of bone-like apatite and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    John, Lukasz, E-mail: lukasz.john@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland); Baltrukiewicz, Marta; Sobota, Piotr [Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland); Brykner, Renata; Cwynar-Zajac, Lucja [Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego, 50-368 Wroclaw (Poland); Dziegiel, Piotr [Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego, 50-368 Wroclaw (Poland); Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego, 61-781 Poznan (Poland)

    2012-10-01

    Synthesis and characterization of organic-inorganic macroporous hybrid scaffolds were investigated. The materials were prepared by combining 2-hydroxyethylmethacrylate (HEMA) and triethoxyvinylsilane (TEVS) chemically modified by Ca{sup 2+} and PO{sub 4}{sup 3-} ions via sol-gel route. In this study we have constructed a sugar-based cracks-free three-dimensional (3D) network with interconnected porous architecture within the range of 150-300 {mu}m and rough topography. The obtained results revealed that both topography and composition of prepared materials allow rapid growth of the bone-like apatite (HAp) layer on their surface after soaking in biological medium. Preliminary studies have shown that hybrids covered by HAp are non-cytotoxic and allow cell proliferation that make them a promising scaffolds in the field of bone regenerative medicine. The materials were mainly characterized by powder X-ray diffraction analysis (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and transmission electron microscopy-energy-dispersive spectroscopy (TEM-EDS). Highlights: Black-Right-Pointing-Pointer Sol-gel derived biomaterials. Black-Right-Pointing-Pointer 3D organic-inorganic hybrid composites for bone tissue engineering. Black-Right-Pointing-Pointer Sugar-templated cracks-free macroporous scaffolds. Black-Right-Pointing-Pointer 2-hydroxyethylmethacrylate/triethoxyvinylsilane blend doped with calcium and phosphate ions. Black-Right-Pointing-Pointer Non-cytotoxic bedding for fibroblasts proliferation.

  16. Do rapid BMI growth in childhood and early-onset obesity offer cardiometabolic protection to obese adults in mid-life?

    DEFF Research Database (Denmark)

    Howe, Laura D; Zimmermann, Esther; Weiss, Ram

    2014-01-01

    -onset obesity may be associated with MHO. We aimed to assess whether body mass index (BMI) in childhood and early-onset obesity are associated with MHO. SETTING: General population longitudinal cohort study, Denmark. PARTICIPANTS: From 362 200 young men (mean age 20) examined for Danish national service between...... 1943 and 1977, all obese men (BMI ≥31 kg/m(2), N=1930) were identified along with a random 1% sample of the others (N=3601). Our analysis includes 2392 of these men attending a research clinic in mid-life (mean age 42). For 613 of these men, data on childhood BMI are available. We summarised childhood...... that rapid BMI growth in childhood or early-onset obesity was associated with either MHO or the MANW phenotype, for example, among obese men in mid-life, the OR for MHO comparing early-onset obesity with non-early-onset obesity was 0.97 (95% CI 0.85 to 1.10). CONCLUSIONS: We found no robust evidence...

  17. Perspective on how laser-ablated particles grow in liquids

    Science.gov (United States)

    Zhang, DongShi; Liu, Jun; Liang, ChangHao

    2017-07-01

    Laser ablation in liquids has emerged as a new branch of nanoscience for developing various nanomaterials with different shapes. However, how to design and control nanomaterial growth is still a challenge due to the unique chemical-physical process chain correlated with nanomaterial nucleation and growth, including plasma phase (generation and rapid quenching), gas (bubble) phase, and liquid phase. In this review, through summarizing the literature about this topic and comparing with the well-established particle growth mechanisms of the conventional wet chemistry technique, our perspective on the possible nanoparticle growth mechanisms or routes is presented, aiming at shedding light on how laser-ablated particles grow in liquids. From the microscopic viewpoint, the nanoparticle growth contains six mechanisms, including LaMer-like growth, coalescence, Ostwald ripening, particle (oriented) attachment, adsorbate-induced growth and reaction-induced growth. For each microscopic growth mechanism, the vivid growth scenes of some representative nanomaterials recorded by TEM and SEM measurements are displayed. Afterwards, the scenes from the macroscopic viewpoint for the large submicro- and micro-scale nanospheres and anisotropic nanostructures formation and evolution from one nanostructure into another one are presented. The panorama of how diverse nanomaterials grow during and after laser ablation in liquids shown in this review is intended to offer a overview for researchers to search for the possible mechanisms correlated to their synthesized nanomaterials, and more expectation is desired to better design and tailor the morphology of the nanocrystals synthesized by LAL technique.

  18. Mathematical Modeling of the Growth and Coarsening of Ice Particles in the Context of High Pressure Shift Freezing Processes

    KAUST Repository

    Smith, N. A. S.

    2013-07-25

    High pressure shift freezing (HPSF) has been proven more beneficial for ice crystal size and shape than traditional (at atmospheric pressure) freezing.1-3 A model for growth and coarsening of ice crystals inside a frozen food sample (either at atmospheric or high pressure) is developed, and some numerical experiments are given, with which the model is validated by using experimental data. To the best of our knowledge, this is the first model suited for freezing crystallization in the context of high pressure. © 2013 American Chemical Society.

  19. In normal rat, intraventricularly administered insulin-like growth factor-1 is rapidly cleared from CSF with limited distribution into brain

    Directory of Open Access Journals (Sweden)

    Gorevic Peter D

    2005-07-01

    Full Text Available Abstract Background Putatively active drugs are often intraventricularly administered to gain direct access to brain and circumvent the blood-brain barrier. A few studies on the normal central nervous system (CNS have shown, however, that the distribution of materials after intraventricular injections is much more limited than presumed and their exit from cerebrospinal fluid (CSF is more rapid than generally believed. In this study, we report the intracranial distribution and the clearance from CSF and adjacent CNS tissue of radiolabeled insulin-like growth factor-1 after injection into one lateral ventricle of the normal rat brain. Methods Under barbiturate anesthesia, 125I-labeled insulin-like growth factor-1 (IGF-1 was injected into one lateral ventricle of normal Sprague-Dawley rats. The subsequent distribution of IGF-1 through the cerebrospinal fluid (CSF system and into brain, cerebral blood vessels, and systemic blood was measured over time by gamma counting and quantitative autoradiography (QAR. Results Within 5 min of infusion, IGF-1 had spread from the infused lateral ventricle into and through the third and fourth ventricles. At this time, 25% of the infused IGF-1 had disappeared from the CSF-brain-meningeal system; the half time of this loss was 12 min. The plasma concentration of cleared IGF-1 was, however, very low from 2 to 9 min and only began to rise markedly after 20 min. This delay between loss and gain plus the lack of radiotracer in the cortical subarachnoid space suggested that much of the IGF-1 was cleared into blood via the cranial and/or spinal nerve roots and their associated lymphatic systems rather than periventricular tissue and arachnoid villi. Less than 10% of the injected radioactivity remained in the CSF-brain system after 180 min. The CSF and arteries and arterioles within the subarachnoid cisterns were labeled with IGF-1 within 10 min. Between 60 and 180 min, most of the radioactivity within the cranium was

  20. Particle-assisted GaxIn1xP nanowire growth for designed bandgap structures

    DEFF Research Database (Denmark)

    Jacobsson, D.; Persson, Johan Mikael; Kriegner, D.

    2012-01-01

    Non-tapered vertically straight GaxIn1−xP nanowires were grown in a compositional range from Ga0.2In0.8P to pure GaP in particle-assisted mode by controlling the trimethylindium, trimethylgallium and hydrogen chloride flows in metal–organic vapor phase epitaxy. X-ray energy dispersive spectroscop...... sample area, i.e., including edge effects during growth. The non-capped nanowires emit room temperature photoluminescence strongly in the energy range of 1.43–2.16 eV, correlated with the bandgap expected from the material composition....... in transmission electron microscopy revealed homogeneous radial material composition in single nanowires, whereas variations in the material composition were found along the nanowires. High-resolution x-ray diffraction indicates a variation of the material composition on the order of about 19% measuring an entire...

  1. Effects of particle size and drying methods of corn on growth performance, digestibility and haematological and immunological characteristics of weaned piglets.

    Science.gov (United States)

    Huang, Chang; Zang, Jianjun; Song, Peixia; Fan, Peixin; Chen, Jingshu; Liu, Dewen; He, Pingli; Ma, Xi

    2015-01-01

    The objective of this study was to evaluate the effects of particle size and drying methods of corn on growth performance of weaned piglets. Crossbreed weaned piglets (n = 192; Duroc × Landrace × Large White) were assigned to one of four treatments (2 × 2 factorial arrangement). All piglets were fed corn-soybean meal diets and treatments were (1) hot air-dried and coarsely ground corn, (2) hot air-dried and finely ground corn, (3) sun-dried and coarsely ground corn and (4) sun-dried and finely ground corn. The results showed that finely ground corn (FGC) improved the performance of piglets. Additionally, the apparent total tract digestibility (ATTD) of gross energy (GE) and ether extract (EE) were increased by FGC, but the drying methods did not affect the performance of piglets or ATTD. Furthermore, smaller particle size significantly decreased the intestinal permeability, which was also not influenced by drying methods. FGC increased the total number of white blood cells, but not other blood parameters. Finally, the level of serum interleukin-1 was decreased by fine grinding and that of serum tumour necrosis factor α was decreased by sun drying. Conversely, these characteristics of weaned piglets can hardly have been affected either by the corn drying method or its interaction with grinding methods.

  2. Rapid degradation of phenol by ultrasound-dispersed nano-metallic particles (NMPs) in the presence of hydrogen peroxide: A possible mechanism for phenol degradation in water.

    Science.gov (United States)

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-06-15

    The present study was carried out to investigate the degradation of phenol by ultrasonically dispersed nano-metallic particles (NMPs) in an aqueous solution of phenol. Leaching liquor from automobile shredder residue (ASR) was used to obtain the NMPs. The prepared NMPs were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), and by X-ray diffraction (XRD). The SEM images show that the diameters of the NMPs were less than 50 nm. An SEM-EDX elemental analysis reveals that Fe was the most commonly found element (weight %) in the NMPs. The FTIR and XRD peaks indicate the presence of metals oxides on the surfaces of the NMPs. The results of the XPS analysis indicate that various elements (e.g., C, O, Zn, Cu, Mn, Fe) are present on the surfaces of the NMPs. The effects of the NMP dose, the initial solution pH, and of different concentrations of phenol and H2O2 on the phenol degradation characteristics were evaluated. The results of this study demonstrate that phenol degradation can be improved by increasing the amount of NMPs, whereas it is reduced with an increase in the phenol concentration. The degradation of phenol by ultrasonically dispersed NMPs followed the pseudo-first-order kinetics. The probable mechanism of phenol degradation by ultrasonically dispersed NMPs was the oxidation of phenol caused by the hydroxyl radicals produced during the reaction between H2O2 and the NMPs during the ultrasonication process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution — ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  4. Particle density fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Aggarwal, M.M.; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefiev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Buesching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishcuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Loehner, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Mohanty, B.; Morrison, D.; Mukhopadhayay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.-R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soederstroem, K.; Sood, G.; Soerensen, S.P.; Stankus, P.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; Eijinhoven, N. van; Niewenhuizen, G.J. van; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.; Voeroes, S.; Wyslouch, B.; Young, G.R

    2003-03-10

    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.

  5. Particle density fluctuations

    CERN Document Server

    Mohanty, Bedangadas; Ahammed, Z.; Angelis, A.L.S.; Antonenko, V.; Arefev, V.; Astakhov, V.; Avdeitchikov, V.; Awes, T.C.; Baba, P.V.K.S.; Badyal, S.K.; Bathe, S.; Batiounia, B.; Bernier, T.; Bhalla, K.B.; Bhatia, V.S.; Blume, C.; Bucher, D.; Busching, H.; Carlen, L.; Chattopadhyay, S.; Das, A.C.; Decowski, M.P.; Donni, P.; Dubey, A.K.; Dutta Majumdar, M.R.; Enosawa, K.; Fokin, S.; Frolov, V.; Ganti, M.S.; Garpman, S.; Gavrishchuk, O.; Geurts, F.J.M.; Glasow, R.; Guskov, B.; Gustafsson, H.A.; Gutbrod, H.H.; Hrivnacova, I.; Ippolitov, M.; Kalechofsky, H.; Kamermans, R.; Karadjev, K.; Karpio, K.; Kolb, B.W.; Kosarev, I.; Koutcheryaev, I.; Kugler, A.; Kulinich, P.; Kurata, M.; Lebedev, A.; Lohne, H.; Mahapatra, D.P.; Manko, V.; Martin, M.; Miake, Y.; Mishra, G.C.; Morrison, D.; Mukhopadhyay, D.S.; Naef, H.; Nandi, B.K.; Nayak, S.K.; Nayak, T.K.; Nianine, A.; Nikitine, V.; Nikolaev, S.; Nishimura, S.; Nomokov, P.; Nystrand, J.; Oskarsson, A.; Otterlund, I.; Phatak, S.C.; Pavliouk, S.; Peitzmann, T.; Petracek, V.; Plasil, F.; Purschke, M.L.; Rak, J.; Raniwala, R.; Raniwala, S.; Rao, N.K.; Retiere, F.; Reygers, K.; Roland, G.; Rosselet, L.; Roufanov, I.; Rubio, J.M.; Sambyal, S.S.; Santo, R.; Sato, S.; Schlagheck, H.; Schmidt, H.R.; Schutz, Y.; Shabratova, G.; Sibiriak, I.; Siemiarczuk, T.; Sinha, B.C.; Slavine, N.; Soderstrom, K.; Sood, G.; Sorensen, S.P.; Stankus, P.; Stefanek, G.; Steinberg, P.; Stenlund, E.; Sumbera, M.; Svensson, T.; Trivedi, M.D.; Tsvetkov, A.; Tykarski, L.; Urbahn, J.; van Eijndhoven, N.; van Nieuwenhuizen, G.J.; Vinogradov, A.; Viyogi, Y.P.; Vodopianov, A.S.; Voros, S.; Wyslouch, B.; Young, G.R.; Mohanty, Bedangadas

    2003-01-01

    Event-by-event fluctuations in the multiplicities of charged particles and photons at SPS energies are discussed. Fluctuations are studied by controlling the centrality of the reaction and rapidity acceptance of the detectors. Results are also presented on the event-by-event study of correlations between the multiplicity of charged particles and photons to search for DCC-like signals.

  6. Evidence for abrasion and enhanced growth of Ulva lactuca L. in the presence of colliery waste particles

    Energy Technology Data Exchange (ETDEWEB)

    Hyslop, B.T.; Davies, M.S. [University of Sunderland, Sunderland (United Kingdom). Northumbrian Water Ecology Centre

    1998-12-01

    Previous studies have highlighted a reduction in occurrence and biomass of Ulva lactuca L. (Chlorophyceae) on shores where inputs of colliery waste occur. It was postulated that this was owing to an abrasive effect of colliery waste on macroalgal fronds. To test this, individual U. lactuca plants were exposed to colliery waste (three different grain size categories: {lt} 500 {mu}m, 500-2000 {mu}m, and 0-2000 {mu}m) in both shaken (turbulent) and still conditions in the laboratory. Over an 8-day period, U. lactuca plants lost weight when colliery waste was present and gained weight when no colliery waste was present. The results suggest that `large` grains of colliery waste act as a physical abrading agent on macroalgae when in turbulent conditions, and may be responsible for lowering of species richness of macroalgae where colliery waste inputs occur. However, by contrast, colliery waste in still conditions promotes the growth of U. lactuca, suggesting that, for example, rock pool flora may benefit from its presence.

  7. Combined in situ small and wide angle X-ray scattering studies of TiO2 nano-particle annealing to 1023 K

    DEFF Research Database (Denmark)

    Kehres, Jan; Andreasen, Jens Wenzel; Krebs, Frederik C

    2010-01-01

    -1023 K. Aggregates formed by the titanium dioxide particles exhibit a continuous growth as a function of temperature. The particle size determined with SAXS and the crystallite size refined from WAXS show a correlated growth at temperatures above 673 K, where the decomposition of the surfactant...... is expected. At temperatures above 823 K, the particle and crystallite sizes increase rapidly. An increasing discrepancy between particle and crystallite size indicates growth of a shell structure on the single-crystalline core of the particles. This was confirmed by high-resolution transmission electron...... microscopy studies of the sample. Transmission electron microscopy shows a transformation from a rod to a spherical particle shape; the WAXS data indicate that the shape change occurs in a temperature interval of 773-923 K. The highly crystalline titanium dioxide particles remain in the metastable anatase...

  8. Gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p inhibit growth of EBV-positive nasopharyngeal carcinoma.

    Science.gov (United States)

    Cai, Longmei; Li, Jinbang; Zhang, Xiaona; Lu, Yaoyong; Wang, Jianguo; Lyu, Xiaoming; Chen, Yuxiang; Liu, Jinkun; Cai, Hongbing; Wang, Ying; Li, Xin

    2015-04-10

    Epstein-Barr virus (EBV) infection is a major etiological factor for nasopharyngeal carcinoma (NPC). Several EBV-encoded BART miRNAs have been associated with viral latency, immune escape, cell survival, cell proliferation and apoptosis. Here, we report that EBV-miR-BART7-3p, an EBV-encoded BART miRNA highly expressed in NPC, was correlated with cell-cycle progression in vitro and increased tumor formation in vivo. This viral miRNA stimulated the PTEN/PI3K/Akt pathway and induced c-Myc and c-Jun. Knockdown of PTEN mimicked EBV-miR-BART7-3p-induced tumorigenic phenotype. Based on these results, we conducted a therapeutic experiment by using gold nano-particles (AuNPs) carrying anti-EBV-miR-BART7-3p. Silencing of EBV-miR-BART7-3p reduced tumor growth in animal model. We conclude that EBV-miR-BART7-3p favors carcinogenesis, representing a potential target for miRNA-based therapy.

  9. Directed flow of charged particles at mid-rapidity relative to the spectator plane in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV

    CERN Document Server

    Abelev, Betty; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sul-Ah; Ahn, Sang Un; Aimo, Ilaria; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, Francesco; Blanco, F; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Bock, Friederike Bock; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cruz Albino, Rigoberto; Cuautle, Eleazar; Cunqueiro, Leticia; Czopowicz, Tobiasz Roman; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Das, Kushal; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Elia, Domenico; Elwood, Brian Gerard; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanuel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Goerlich, Lidia; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoriev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Harton, Austin; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Vladimir; Ivanov, Marian; Ivanov, Andrey; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Mohisin Mohammed; Khan, Palash; Khan, Kamal Hussain; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Jin Sook; Kim, Beomkyu; Kim, Taesoo; Kim, Dong Jo; Kim, Se Yong; Kim, Mimae; Kim, Do Won; Kim, Jonghyun; Kim, Minwoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kompaniets, Mikhail; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Graham Richard; Lee, Sung Chul; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazumder, Rakesh; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nasar, Mahmoud; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Vladimir; Nikulin, Sergey; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rivetti, Angelo; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rogochaya, Elena; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Pradip Kumar; Roy, Christelle Sophie; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Natasha; Sharma, Satish; Sharma, Rohni; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Tinku; Sinha, Bikash; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Spacek, Michal; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Ter-Minasyan, Astkhik; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Hoorne, Jacobus Willem; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wagner, Jan; Wang, Yaping; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wielanek, Daniel; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy; Williams, Crispin; Winn, Michael Winn; Windelband, Bernd Stefan; Xiang, Changzhou; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Shiming; Yang, Ping; Yano, Satoshi; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Yonghong; Zhang, Xiaoming; Zhang, Fan; Zhang, Haitao; Zhou, You; Zhou, Fengchu; Zhou, Daicui; Zhu, Hongsheng; Zhu, Xiangrong; Zhu, Jianlin; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-12-06

    The directed flow of charged particles at midrapidity is measured in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV relative to the collision plane defined by the spectator nucleons. Both, the rapidity odd ($v_1^{odd}$) and even ($v_1^{even}$) directed flow components are reported. The $v_1^{odd}$ component has a negative slope as a function of pseudorapidity similar to that observed at the highest RHIC energy, but with about a three times smaller magnitude. The $v_1^{even}$ component is found to be non-zero and independent of pseudorapidity. Both components show little dependence on the collision centrality and change sign at transverse momenta around 1.2-1.7 GeV/c for midcentral collisions. The shape of $v_1^{even}$ as a function of transverse momentum and a vanishing transverse momentum shift along the spectator deflection for $v_1^{even}$ are consistent with dipole-like initial density fluctuations in the overlap zone of the nuclei.

  10. Rapid Screening Method for Compounds That Affect the Growth and Germination of Candida albicans, Using a Real-Time PCR Thermocycler

    NARCIS (Netherlands)

    Jarosz, Lucja M.; Krom, Bastiaan P.

    2011-01-01

    We propose a screening method for compounds affecting growth and germination in Candida albicans using a real-time PCR thermocycler to quantify green fluorescent protein (GFP) fluorescence. Using P(ACT1)-GFP and P(HWP1)-GFP reporter strains, the effects of a wide range of compounds on growth and

  11. 210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world's largest cold-water coral reef

    Directory of Open Access Journals (Sweden)

    N. Tisnérat-Laborde

    2012-03-01

    Full Text Available Here we show the use of the 210Pb-226Ra excess method to determine the growth rate of two corals from the world's largest known cold-water coral reef, Røst Reef, north of the Arctic circle off Norway. Colonies of each of the two species that build the reef, Lophelia pertusa and Madrepora oculata, were collected alive at 350 m depth using a submersible. Pb and Ra isotopes were measured along the major growth axis of both specimens using low level alpha and gamma spectrometry and trace element compositions were studied. 210Pb and 226Ra differ in the way they are incorporated into coral skeletons. Hence, to assess growth rates, we considered the exponential decrease of initially incorporated 210Pb, as well as the increase in 210Pb from the decay of 226Ra and contamination with 210Pb associated with Mn-Fe coatings that we were unable to remove completely from the oldest parts of the skeletons. 226Ra activity was similar in both coral species, so, assuming constant uptake of 210Pb through time, we used the 210Pb-226Ra chronology to calculate growth rates. The 45.5 cm long branch of M. oculata was 31 yr with an average linear growth rate of 14.4 ± 1.1 mm yr−1 (2.6 polyps per year. Despite cleaning, a correction for Mn-Fe oxide contamination was required for the oldest part of the colony; this correction corroborated our radiocarbon date of 40 yr and a mean growth rate of 2 polyps yr−1. This rate is similar to the one obtained in aquarium experiments under optimal growth conditions. For the 80 cm-long L. pertusa colony, metal-oxide contamination remained in both the middle and basal part of the coral skeleton despite cleaning, inhibiting similar age and growth rate estimates. The youngest part of the colony was free of metal oxides and this 15 cm section had an estimated a growth rate of 8 mm yr−1, with high uncertainty (~1 polyp every two to three years. We are less certain of this 210Pb growth rate estimate which is within the lowermost

  12. Dynamics of Seedling Growth Acclimation towards Altered Light Conditions Can Be Quantified via GROWSCREEN: A Setup and Procedure Designed for Rapid Optical Phenotyping of Different Plant Species

    National Research Council Canada - National Science Library

    Achim Walter; Hanno Scharr; Frank Gilmer; Rainer Zierer; Kerstin A. Nagel; Michaela Ernst; Anika Wiese; Olivia Virnich; Maja M. Christ; Beate Uhlig; Sybille Jünger; Uli Schurr

    2007-01-01

    Using a novel setup, we assessed how fast growth of Nicotiana tabacum seedlings responds to alterations in the light regime and investigated whether starch-free mutants of Arabidopsis thaliana show...

  13. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating

    Directory of Open Access Journals (Sweden)

    Viktor Chikan

    2016-05-01

    Full Text Available Traditional hot-injection (HI syntheses of colloidal nanoparticles (NPs allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale, which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials.

  14. Morphologies and growth mechanisms of the eutectic particles in as-cast Al-Mg-Sc alloy; Morphologien und Wachstumsmechanismen eutektischer Partikel in Al-Mg-Sc-Legierung im Gusszustand

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Dejiang; Zhou, Shi' ang; Li, Heng [Hefei Univ. of Technology (China); Zhang, Zhen; Wu, Yucheng [Laboratories of Nonferrous Metal Material and Processing Engineering of Anhui Province, Hefei (China); Li, Ming [Anhui Jianghuai Automobile Co., Ltd, Hefei (China)

    2017-04-15

    Primary particles with faceted cubic morphology were produced in as-cast Al-Mg alloy due to the addition of Sc. The cross-section of the particles revealed some eutectic structure composed of multilayer of 'Al{sub 3}Sc + α-Al + Al{sub 3}Sc..'. At the cooling rate of 200 - 300 K/s, Al{sub 3}Sc primary phase nucleated initially on oxides within the melt and developed to a cubic structure with a 'cellular-dendritic' mode of growth. The formation of α-Al structural shells was attributed as a reason for the segregation of Mg-rich lamellar dendrites at later stages. A growth mechanism for multilayer structure was proposed using the results presented.

  15. The alpha-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria.

    Science.gov (United States)

    Tarkka, Mika T; Schrey, Silvia; Nehls, Uwe

    2006-05-01

    The apical extension of hyphae is of central importance for extensive spread of fungal mycelium in forest soils and for effective ectomycorrhiza development. Since the tubulin cytoskeleton is known to be important for fungal tip growth, we have investigated the expression of an alpha-tubulin gene from the ectomycorrhizal basidiomycete Amanita muscaria (AmTuba1). The phylogenetic analysis of protein sequences revealed the existence of two subgroups of alpha-tubulins in homobasidiomycetes, clearly distinguishable by defined amino acids. AmTuba1 belongs to subgroup1. The AmTuba1 transcript level is related to mycelial growth rate. Growth induction of carbohydrate starved (non-growing) hyphae resulted in an enhanced AmTuba1 expression as soon as hyphal growth started, reaching a maximum at highest mycelial growth rate. Bacterium-induced hyphal elongation also leads to increased AmTuba1 transcript levels. In mature A. muscaria/P. abies ectomycorrhizas, where fungal hyphae are highly branched, and slowly growing, AmTuba1 expression were even lower than in carbohydrate-starved mycelium, indicating a further down-regulation of gene expression in symbiosis. In conclusion, our analyses show that the AmTuba1 gene can be used as a marker for active apical extension in fly agaric, and that alpha-tubulin proteins are promising tools for the classification of fungi.

  16. Polygamous particles

    OpenAIRE

    Wu, Kun-Ta; Feng, Lang; Sha, Ruojie; Dreyfus, Rémi; Grosberg, Alexander Y.; Seeman, Nadrian C.; Chaikin, Paul M.

    2012-01-01

    DNA is increasingly used as an important tool in programming the self-assembly of micrometer- and nanometer-scale particles. This is largely due to the highly specific thermoreversible interaction of cDNA strands, which, when placed on different particles, have been used to bind precise pairs in aggregates and crystals. However, DNA functionalized particles will only reach their true potential for particle assembly when each particle can address and bind to many different kinds of particles. ...

  17. Size-resolved aerosol emission factors and new particle formation/growth activity occurring in Mexico City during the MILAGRO 2006 Campaign

    Directory of Open Access Journals (Sweden)

    A. J. Kalafut-Pettibone

    2011-09-01

    Full Text Available Measurements of the aerosol size distribution from 11 nm to 2.5 microns were made in Mexico City in March 2006, during the MILAGRO (Megacity Initiative: Local and Global Research Observations field campaign. Observations at the urban supersite, referred to as T0, could often be characterized by morning conditions with high particle mass concentrations, low mixing heights, and highly correlated particle number and CO2 concentrations, indicative that particle number is controlled by primary emissions. Average size-resolved and total number- and volume-based emission factors for combustion sources impacting T0 have been determined using a comparison of peak sizes in particle number and CO2 concentration. Peaks are determined by subtracting the measured concentration from a calculated baseline concentration time series. The number emission and volume emission factors for particles from 11 nm to 494 nm are 1.56 × 1015 particles, and 9.48 × 1011 cubic microns per kg of carbon, respectively. The uncertainty of the number emission factor is approximately plus or minus 50 %. The mode of the number emission factor was between 25 and 32 nm, while the mode of the volume factor was between 0.25 and 0.32 microns. These emission factors are reported as log normal model parameters and are compared with multiple emission factors from the literature. In Mexico City in the afternoon, the CO2 concentration drops during ventilation of the polluted layer, and the coupling between CO2 and particle number breaks down, especially during new particle formation events when particle number is no longer controlled by primary emissions. Using measurements of particle number and CO2 taken aboard the NASA DC-8, the determined primary emission factor was applied to the Mexico City Metropolitan Area (MCMA plume to quantify the degree of secondary particle formation in the plume; the primary emission

  18. Size-resolved aerosol emission factors and new particle formation/growth activity occurring in Mexico City during the MILAGRO 2006 Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Kalafut-Pettibone A. J.; Wang J.; Eichinger, W. E.; Clarke, A.; Vay, S. A.; Blake, D. R.; Stanier, C. O.

    2011-09-01

    Measurements of the aerosol size distribution from 11 nm to 2.5 microns were made in Mexico City in March 2006, during the MILAGRO (Megacity Initiative: Local and Global Research Observations) field campaign. Observations at the urban supersite, referred to as T0, could often be characterized by morning conditions with high particle mass concentrations, low mixing heights, and highly correlated particle number and CO{sub 2} concentrations, indicative that particle number is controlled by primary emissions. Average size-resolved and total number- and volume-based emission factors for combustion sources impacting T0 have been determined using a comparison of peak sizes in particle number and CO{sub 2} concentration. Peaks are determined by subtracting the measured concentration from a calculated baseline concentration time series. The number emission and volume emission factors for particles from 11 nm to 494 nm are 1.56 x 10{sup 15} particles, and 9.48 x 10{sup 11} cubic microns per kg of carbon, respectively. The uncertainty of the number emission factor is approximately plus or minus 50 %. The mode of the number emission factor was between 25 and 32 nm, while the mode of the volume factor was between 0.25 and 0.32 microns. These emission factors are reported as log normal model parameters and are compared with multiple emission factors from the literature. In Mexico City in the afternoon, the CO{sub 2} concentration drops during ventilation of the polluted layer, and the coupling between CO{sub 2} and particle number breaks down, especially during new particle formation events when particle number is no longer controlled by primary emissions. Using measurements of particle number and CO{sub 2} taken aboard the NASA DC-8, the determined primary emission factor was applied to the Mexico City Metropolitan Area (MCMA) plume to quantify the degree of secondary particle formation in the plume; the primary emission factor accounts for less than 50 % of the total particle

  19. Use of Adaptive Laboratory Evolution To Discover Key Mutations Enabling Rapid Growth of Escherichia coli K-12 MG1655 on Glucose Minimal Medium

    DEFF Research Database (Denmark)

    LaCroix, Ryan A.; Sandberg, Troy E.; O'Brien, Edward J.

    2015-01-01

    often mutated: the global transcription gene rpoB, an 82-bp deletion between the metabolic pyrE gene and rph, and an IS element between the DNA structural gene hns and tdk. Model-derived classification of gene expression revealed a number of processes important for increased growth that were missed...

  20. Rapid adjustment in chrysanthemum carbohydrate turnover and growth activity to a change in time-of-day application of light and daylength

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig; Poiré, Richard; Ottosen, Carl-Otto

    2012-01-01

    diurnally-regulated parameters related to growth. In this study, chrysanthemum plants were exposed to a change in the time-of-day application of light followed by short days or long days with a night interruption of light. We observed a clear shift in the diel cycle of sucrose turnover and relative leaf...

  1. MALDI-ToF mass spectrometry coupled with multivariate pattern recognition analysis for the rapid biomarker profiling of Escherichia coli in different growth phases.

    Science.gov (United States)

    Momo, Remi A; Povey, Jane F; Smales, C Mark; O'Malley, Christopher J; Montague, Gary A; Martin, Elaine B

    2013-10-01

    Matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-ToF MS) has been exploited extensively in the field of microbiology for the characterisation of bacterial species, the detection of biomarkers for early disease diagnosis and bacterial identification. Here, the multivariate data analysis technique of partial least squares-discriminant analysis (PLS-DA) was applied to 'intact cell' MALDI-ToF MS data obtained from Escherichia coli cell samples to determine if such an approach could be used to distinguish between, and characterise, different growth phases. PLS-DA is a technique that has the potential to extract systematic variation from large and noisy data sets by identifying a lower-dimensional subspace that contains latent information. The application of PLS-DA to the MALDI-ToF data obtained from cells at different stages of growth resulted in the successful classification of the samples according to the growth phase of the bacteria cultures. A further outcome of the analysis was that it was possible to identify the mass-to-charge (m/z) ratio peaks or ion signals that contributed to the classification of the samples. The Swiss-Prot/TrEMBL database and primary literature were then used to provisionally assign a small number of these m/z ion signals to proteins, and these tentative assignments revealed that the major contributors from the exponential phase were ribosomal proteins. Additional assignments were possible for the stationary phase and the decline phase cultures where the proteins identified were consistent with previously observed biological interpretation. In summary, the results show that MALDI-ToF MS, PLS-DA and a protein database search can be used in combination to discriminate between 'intact cell' E. coli cell samples in different growth phases and thus could potentially be used as a tool in process development in the bioprocessing industry to enhance cell growth and cell engineering strategies.

  2. Microstructural Development in Al-Si Powder During Rapid Solidification

    Energy Technology Data Exchange (ETDEWEB)

    Genau, Amber Lynn [Iowa State Univ., Ames, IA (United States)

    2004-01-01

    Powder metallurgy has become an increasingly important form of metal processing because of its ability to produce materials with superior mechanical properties. These properties are due in part to the unique and often desirable microstructures which arise as a result of the extreme levels of undercooling achieved, especially in the finest size powder, and the subsequent rapid solidification which occurs. A better understanding of the fundamental processes of nucleation and growth is required to further exploit the potential of rapid solidification processing. Aluminum-silicon, an alloy of significant industrial importance, was chosen as a model for simple eutectic systems displaying an unfaceted/faceted interface and skewed coupled eutectic growth zone, Al-Si powder produced by high pressure gas atomization was studied to determine the relationship between microstructure and alloy composition as a function of powder size and atomization gas. Critical experimental measurements of hypereutectic (Si-rich) compositions were used to determine undercooling and interface velocity, based on the theoretical models which are available. Solidification conditions were analyzed as a function of particle diameter and distance from nucleation site. A revised microstructural map is proposed which allows the prediction of particle morphology based on temperature and composition. It is hoped that this work, by providing enhanced understanding of the processes which govern the development of the solidification morphology of gas atomized powder, will eventually allow for better control of processing conditions so that particle microstructures can be optimized for specific applications.

  3. Smoothed Particle Hydrodynamic Simulator

    Energy Technology Data Exchange (ETDEWEB)

    2016-10-05

    This code is a highly modular framework for developing smoothed particle hydrodynamic (SPH) simulations running on parallel platforms. The compartmentalization of the code allows for rapid development of new SPH applications and modifications of existing algorithms. The compartmentalization also allows changes in one part of the code used by many applications to instantly be made available to all applications.

  4. Liquid phase separation and rapid dendritic growth of highly undercooled ternary Fe62.5Cu27.5Sn10 alloy

    Science.gov (United States)

    Xia, Z. C.; Wang, W. L.; Luo, S. B.; Wei, B.

    2015-02-01

    The phase separation and dendritic growth characteristics of undercooled liquid Fe62.5Cu27.5Sn10 alloy have been investigated by glass fluxing and drop tube techniques. Three critical bulk undercoolings of microstructure evolution are experimentally determined as 7, 65, and 142 K. Equilibrium peritectic solidification proceeds in the small undercooling regime below 7 K. Metastable liquid phase separation takes place if bulk undercooling increases above 65 K. Remarkable macroscopic phase separation is induced providing that bulk undercooling overtakes the third threshold of 142 K. With the continuous increase of bulk undercooling, the solidified microstructure initially appears as well-branched dendrites, then displays microscale segregation morphology, and finally evolves into macrosegregation patterns. If alloy undercooling is smaller than 142 K, the dendritic growth velocity of γFe phase varies with undercooling according to a power function relationship. Once bulk undercooling exceeds 142 K, its dendritic growth velocity increases exponentially with undercooling, which reaches 30.4 m/s at the maximum undercooling of 360 K (0.21TL). As a comparative study, the liquid phase separation of Fe62.5Cu27.5Sn10 alloy droplets is also explored under the free fall condition. Theoretical calculations reveal that the thermal and solutal Marangoni migrations are the dynamic mechanisms responsible for the development of core-shell structure.

  5. Adiabatic Betatron deceleration of ionospheric charged particles: a new explanation for (i) the rapid outflow of ionospheric O ions, and for (ii) the increase of plasma mass density observed in magnetospheric flux tubes during main phases of geomagnetic s

    Science.gov (United States)

    Lemaire, Joseph; Pierrard, Viviane; Darrouzet, Fabien

    2013-04-01

    Using European arrays of magnetometers and the cross-phase analysis to determine magnetic field line resonance frequencies, it has been found by Kale et al. (2009) that the plasma mass density within plasmaspheric flux tubes increased rapidly after the SSC of the Hallowe'en 2003 geomagnetic storms. These observations tend to confirm other independent experimental results, suggesting that heavy ion up-flow from the ionosphere is responsible for the observed plasma density increases during main phases of geomagnetic storms. The aim of our contribution is to point out that, during main phases, reversible Betatron effect induced by the increase of the southward Dst-magnetic field component (|Δ Bz|), diminishes slightly the perpendicular kinetic energy (W?) of charged particles spiraling along field lines. Furthermore, due to the conservation of the first adiabatic invariant (μ = Wm/ Bm) the mirror points of all ionospheric ions and electrons are lifted up to higher altitudes i.e. where the mirror point magnetic field (Bm) is slightly smaller. Note that the change of the mirror point altitude is given by: Δ hm = -1/3 (RE + hm) Δ Bm / Bm. It is independent of the ion species and it does not depend of their kinetic energy. The change of kinetic energy is determined by: Δ Wm = Wm Δ Bm / Bm. Both of these equations have been verified numerically by Lemaire et al. (2005; doi: 10.1016/S0273-1177(03)00099-1) using trajectory calculations in a simple time-dependant B-field model: i.e. the Earth's magnetic dipole, plus an increasing southward B-field component: i.e. the Dst magnetic field whose intensity becomes more and more negative during the main phase of magnetic storms. They showed that a variation of Bz (or Dst) by more than - 50 nT significantly increases the mirror point altitudes by more than 100 km which is about equal to scale height of the plasma density in the topside ionosphere where particles are almost collisionless (see Fig. 2 in Lemaire et al., 2005

  6. The agglomeration, coalescence and sliding of nanoparticles, leading to the rapid sintering of zirconia nanoceramics.

    Science.gov (United States)

    Kocjan, Andraž; Logar, Manca; Shen, Zhijian

    2017-05-31

    Conventional sintering is a time- and energy-consuming process used for the densification of consolidated particles facilitated by atomic diffusion at high temperatures. Nanoparticles, with their increased surface free energy, can promote sintering; however, size reduction also promotes agglomeration, so hampering particle packing and complete densification. Here we show how the ordered agglomeration of zirconia primary crystallites into secondary particle assemblies ensures their homogeneous packing, while also preserving the high surface energy to higher temperatures, increasing the sintering activity. When exposed to intense electromagnetic radiation, providing rapid heating, the assembled crystallites are subjected to further agglomeration, coalescence and sliding, leading to rapid densification in the absence of extensive diffusional processes, cancelling out the grain growth during the initial sintering stages and providing a zirconia nanoceramic in only 2 minutes at 1300 °C.

  7. Sustaining protein synthesis in the absence of rapid cell division: an investigation of plasmid-encoded protein expression in Escherichia coli during very slow growth.

    Science.gov (United States)

    Flickinger, M C; Rouse, M P

    1993-01-01

    The minimum growth rate capable of supporting plasmid-encoded gene expression is determined using continuous cultures of Escherichia coli MZ9387 at dilution rates (D) as low as 5% of the maximum specific growth rate. Expression from a low copy number plasmid, pMPR166, encoding cyanase under the control of P(lac) is investigated in order to study plasmid-encoded gene expression under conditions approaching starvation. Plasmid copy number was stabilized by selection in the presence of 500 micrograms/mL chloramphenicol by constitutive expression of chloramphenicol acetyl transferase (CAT). Plasmid retention was determined by dot-blot hybridization and chloramphenicol resistance. The contribution of plasmid maintenance and cyanase expression to the maximum cell yield (Y'x/s) and the maintenance coefficient (ms) was determined for MZ9387 and MZ9387:pMPR166 under uninduced and IPTG-induced conditions. The values of Y'x/s and ms for non-plasmid-bearing cultures were 0.56 g of cell dry mass (DCM)/g of glucose and 0.26 g of glucose/g of DCM.h, respectively. The cell yield for plasmid-bearing cultures under uninduced conditions (Y 0'x/s) was 0.28 g of DCM/g of glucose, with m0s = 0.08 g of glucose/g of DCM.h. These values decreased following induction of cyanase expression. Glucose consumption in the presence of IPTG was linearly related to the growth rate at D cyanase expression alters metabolism and glucose consumption. The fraction of plasmid-free cells decreased with decreasing Damköhler number (Da). These data confirm the usefulness of Da for predicting the relationship between plasmid-free and plasmid-bearing cells where plasmids are stabilized by concentrations of antibiotic greater than the minimum plasmid-free host cell growth inhibitory concentration. Specific cyanase expression increased as the dilution rate decreased to D = 0.15 h-1. Between D = 0.15 h-1 and D = 0.14 h-1, expression decreased 7-fold. At very low dilution rates (D < or = 0.06 h-1), nonseptated

  8. Studies in Phylogeny, Development of Rapid IdentificationMethods, Antifungal Susceptibility, and Growth Rates of Clinical Strains of Sporothrix schenckii Complex in Japan.

    Science.gov (United States)

    Suzuki, Rumi; Yikelamu, Alimu; Tanaka, Reiko; Igawa, Ken; Yokozeki, Hiroo; Yaguchi, Takashi

    2016-01-01

    Sporotrichosis is a fungal infection caused by the Sporothrix species, which have distinct virulence profiles and geographic distributions. We performed a phylogenetic study in strains morphologically identified as Sporothrix schenckii from clinical specimens in Japan, which were preserved at the Medical Mycology Research Center, Chiba University. In addition, we examined the in vitro antifungal susceptibility and growth rate to evaluate their physiological features. Three hundred strains were examined using sequence analysis of the partial calmodulin gene, or polymerase chain reaction(PCR)method using newly designed species-specific primers; 291 strains were Sporothrix globosa and 9 strains were S. schenckii sensu stricto (in narrow sense, s. s.). S. globosa strains were further clustered into two subclades, and S. schenckii s. s. strains were divided into three subclades. In 38 strains of S. globosa for which antifungal profiles were determined, 4 strains (11%) showed high minimal inhibitory concentration (MIC) value for itraconazole. All tested strains of S. schenckii s. s. and S. globosa showed low sensitivity for amphotericin B. These antifungals are used for treatment of sporotrichosis when infection is severe. S. schenckii s. s. grew better than S. globosa; wherein S. globosa showed restricted growth at 35℃ and did not grow at 37℃. Our molecular data showed that S. globosa is the main causal agent of sporotrichosis in Japan. It is important to determine the antifungal profiles of each case, in addition to accurate species-level identification, to strategize the therapy for sporotrichosis.

  9. A super-agonist of growth hormone-releasing hormone causes rapid improvement of nutritional status in patients with chronic kidney disease.

    Science.gov (United States)

    Niemczyk, Stanisław; Sikorska, Hanna; Wiecek, Andrzej; Zukowska-Szczechowska, Ewa; Załecka, Klaudia; Gorczyńska, Joanna; Kubik, Małgorzata; Czerwieńska, Beata; Gosek, Katarzyna; Veldhuis, Johannes D; Wagner, David A; Gaudreau, Pierrette; Hakonen, Tiina; Kay, Sam Wai Kit; Jouhikainen, Taneli; Schaefer, Franz

    2010-03-01

    Chronic kidney disease is frequently associated with protein-energy wasting related to chronic inflammation and a resistance to anabolic hormones such as insulin and growth hormone (GH). In this study, we determined whether a new GH-releasing hormone super-agonist (AKL-0707) improved the anabolism and nutritional status of nondialyzed patients with stage 4-5 chronic kidney disease randomized to twice daily injections of the super-agonist or placebo. After 28 days, this treatment significantly increased 24-h GH secretion by almost 400%, without altering the frequency or rhythmicity of secretory bursts or fractional pulsatile GH release, and doubled the serum insulin-like growth factor-1 level. There was a significant change in the Subjective Global Assessment from 'mildly to moderately malnourished' to 'well-nourished' in 6 of 9 patients receiving AKL-0707 but in none of 10 placebo-treated patients. By dual-energy X-ray absorptiometry, both the mean fat-free mass and the body mineral content increased, but fat mass decreased, all significantly. In the AKL-0707-treated group, both serum urea and normalized protein equivalent of nitrogen appearance significantly decreased with no change in dietary protein intake, indicating a protein anabolic effect of treatment. Thus, our study shows that stimulation of endogenous GH secretion by AKL-0707 overcomes uremic catabolism of patients with advanced chronic kidney disease.

  10. Ultrafine Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  11. Transitional particle syntax: on the rise of the verb-particle-object order in Middle English

    NARCIS (Netherlands)

    Elenbaas, M.B.

    2004-01-01

    In the transition from Old to Middle English, particle-verb combinations were rapidly transformed into verb-particle combinations, in which particles are invariably postverbal (Hiltunen 1983). Data from the early Middle English period show that particles immediately following the verb, (1a), far

  12. Particle detectors

    CERN Multimedia

    CERN. Geneva

    1999-01-01

    Introduction, interaction of radiation with matter measurement of momentum of charged particles, of energy of e/gamma, hadrons, identification of particles. Design of HEP detectors. Principle of operation and performance of tracking sub-detectors, calorimeters and muon system.

  13. Stochastic Laplacian growth.

    Science.gov (United States)

    Alekseev, Oleg; Mineev-Weinstein, Mark

    2016-12-01

    A point source on a plane constantly emits particles which rapidly diffuse and then stick to a growing cluster. The growth probability of a cluster is presented as a sum over all possible scenarios leading to the same final shape. The classical point for the action, defined as a minus logarithm of the growth probability, describes the most probable scenario and reproduces the Laplacian growth equation, which embraces numerous fundamental free boundary dynamics in nonequilibrium physics. For nonclassical scenarios we introduce virtual point sources, in which presence the action becomes the Kullback-Leibler entropy. Strikingly, this entropy is shown to be the sum of electrostatic energies of layers grown per elementary time unit. Hence the growth probability of the presented nonequilibrium process obeys the Gibbs-Boltzmann statistics, which, as a rule, is not applied out from equilibrium. Each layer's probability is expressed as a product of simple factors in an auxiliary complex plane after a properly chosen conformal map. The action at this plane is a sum of Robin functions, which solve the Liouville equation. At the end we establish connections of our theory with the τ function of the integrable Toda hierarchy and with the Liouville theory for noncritical quantum strings.

  14. Single-Particle Laboratory Studies of Heterogeneous H2O and HCl Processing on Clean and H2SO4-Coated Aluminum Oxide Particles

    Science.gov (United States)

    Hunter, A. J.; Sonnenfroh, D. M.; Rawlins, W. T.

    2001-12-01

    Aluminum oxide particles exhausted from solid rocket motors may affect tropospheric and stratospheric radiative balance through nucleation and growth of water ice clouds, both locally in launch corridors and globally. These particles also are active toward chemisorption of HCl and dissociative chemisorption of CFCs. Plume particle surfaces are likely to contain H2SO4, possibly altering their activities toward uptake and chemical processing of HCl and HNO3. We have investigated activities of different types of aluminum oxide particles for uptake of gas-phase H2O and HCl, using a single-particle electrodynamic levitation apparatus. The particle types investigated were clean and H2SO4-treated alpha-Al2O3 and gamma-Al2O3. We also investigated metastable Al2O3 particles formed by rapid cooling from molten particles in a shock tube, analogous to particle processing in a rocket exhaust nozzle. Particles were treated with H2SO4 by vapor deposition in an oven. The kinetic measurements consisted of independent, simultaneous observations of mass uptake and particle size increase upon exposure of single levitated particles to fixed concentrations of H2O or HCl in slowly flowing gas mixtures at 1 atm. Alpha and gamma Al2O3 were essentially inert toward H2O and HCl uptake, however they readily adsorbed monolayer-equivalent levels of H2SO4 vapor. H2SO4-coated and metastable particles were active toward H2O and HCl uptake. The measured uptake efficiencies imply fast reaction rates within rocket exhaust plumes, potentially leading to CCN behavior as well as heterogeneous chlorine activation by these particles. This research was supported by the Air Force Office of Scientific Research.

  15. Rapid Urban Growth in the Kathmandu Valley, Nepal: Monitoring Land Use Land Cover Dynamics of a Himalayan City with Landsat Imageries

    Directory of Open Access Journals (Sweden)

    <