WorldWideScience

Sample records for rapid oxidative dehairing

  1. Rapid Solidification of Magnetic Oxides

    Science.gov (United States)

    Kalonji, G.; Deguire, M. R.

    1985-01-01

    The enhanced control over microstructural evolution inherent in rapid solidification processing techniques are exploited to create novel ceramic magnetic materials. The great sensitivity of magnetic properties to local structure provides a powerful probe both for the study of structure and of microscopic solidification mechanisms. The first system studied is the SrO-Fe2O3 binary, which contains the commercially important hard magnetic compound strontium hexaferrite. The products were analyzed by transmission electron microscopy, Mossbauer spectroscopy, magnetic measurements, and differential thermal analysis. As-quenched ribbons contain high concentrations of super-paramagnetic particles, 80 to 250 Angstroms in diameter, in a glassy matrix. This suggests the possibility of crystallizing monodomain strontium hexaferrite during subsequent heat treatment, with a resulting increase in coercivity over conventionally processed ferrite magnets. That magnetic properties can be controlled in solidification processing by varying the quench rate is demonstrated.

  2. Enhanced production of alkaline protease by a mutant of Bacillus licheniformis N-2 for dehairing

    Directory of Open Access Journals (Sweden)

    Muhammad Nadeem

    2010-10-01

    Full Text Available The purpose of the present investigations was to improve the yield of alkaline protease for leather dehairing by subjecting the indigenous proteolytic strain Bacillus licheniformis N-2 to various mutagenic treatments viz. UV irradiations, NTG (N-methyl-N-nitro-N-nitrosoguinidine and MMS (methyl methane sulfonate. After screening on skim milk agar plates, a total of nine positive mutants were selected for shake flask experiments. Among these, the best proteolytic mutant designated as UV-9 showed 1.4 fold higher alkaline protease activity in preoptimized growth medium than the parent strain. The fermentation profile and kinetic parameters such u(h-1, Yp/s, Yp/x, Yx/s, q s, Qs, q p and Qp also indicated the superiority of the selected mutant UV-9 for alkaline protease production over the parent strain and rest of the mutants. The dehairing capability of mutant UV-9 alkaline protease was analyzed by soaking goat skin pieces for different time intervals (3-15 h at 40 º C. A complete dehairing without degradation of collagen was achieved after 12 h, indicating its commercial exploitation in leather industry.

  3. Latex peptidases of Calotropis procera for dehairing of leather as an alternative to environmentally toxic sodium sulfide treatment.

    Science.gov (United States)

    Lopéz, Laura M I; Viana, Carolina A; Errasti, María E; Garro, María L; Martegani, José E; Mazzilli, Germán A; Freitas, Cléverson D T; Araújo, Ídila M S; da Silva, Rafaela O; Ramos, Márcio V

    2017-06-17

    Dehairing of crude leather is a critical stage performed at the beginning of its processing to obtain industrially useful pieces. Tanneries traditionally apply a chemical process based on sodium sulfide. Since this chemical reactive is environmentally toxic and inefficiently recycled, innovative protocols for reducing or eliminating its use in leather depilation are welcomed. Therefore, latex peptidases from Calotropis procera (CpLP) and Cryptostegia grandiflora (CgLP) were assayed for this purpose. Enzyme activity on substrates representative of skin such as hide powder azure (UHPA), elastin (UE), azocollagen (UAZOCOL), keratin (UK), and epidermis (UEP) was determined, while depilation activity was assayed on cow hide. Only CpLP was active against keratin (13.4 UK) and only CgLP was active against elastin (0.12 UE). CpLP (93.0 UHPA, 403.6 UAZOCOL, 36.3 UEP) showed higher activity against the other substrates than CgLP (47.6 UHPA, 261.5 UAZOCOL, 8.5 UEP). In pilot assays, CpLP (0.05% w/v with sodium sulfite 0.6% w/v as activator) released hairs from cow hide pieces. Macroscopic and microscopic analyses of the hide revealed that the dehairing process was complete and the leather structure was preserved. The proteolytic system of C. procera is a suitable bioresources to be exploited by tanneries.

  4. RAPID MEASUREMENTS OF NEPTUNIUM OXIDATION STATES USING CHROMATOGRAPHIC RESINS

    Energy Technology Data Exchange (ETDEWEB)

    Diprete, D; C Diprete, C; Mira Malek, M; Eddie Kyser, E

    2009-03-24

    The Savannah River Site's (SRS) H-Canyon facility uses ceric ammonium nitrate (CAN) to separate impure neptunium (Np) from a high sulfate feed stream. The material is processed using a two-pass solvent extraction purification which relies on CAN to oxidize neptunium to Np(VI) during the first pass prior to extraction. Spectrophotometric oxidation-state analyses normally used to validate successful oxidation to Np(VI) prior to extraction were compromised by this feed stream matrix. Therefore, a rapid chromatographic method to validate successful Np oxidation was developed using Eichrom Industries TRU and TEVA{reg_sign} resins. The method was validated and subsequently transferred to existing operations in the process analytical laboratories.

  5. Rapid optical determination of topological insulator nanoplate thickness and oxidation

    Directory of Open Access Journals (Sweden)

    Fan Yang

    2017-01-01

    Full Text Available The stability of 2D antimony telluride (Sb2Te3 nanoplates in ambient conditions is elucidated. These materials exhibit an anisotropic oxidation mode, and CVD synthesized samples oxidize at a much faster rate than exfoliated samples investigated in previous studies. Optical measurement techniques are introduced to rapidly measure the oxidation modes and thickness of 2D materials. Auger characterization were conducted to confirm that oxygen replaces tellurium as opposed to antimony under ambient conditions. No surface morphology evolution was detected in AFM before and after exposure to air. These techniques were employed to determine the origin of the thickness dependent color change effect in Sb2Te3. It is concluded that this effect is a combination of refractive index change due to oxidation and Fresnel effects.

  6. Oxidation kinetics of Si and SiGe by dry rapid thermal oxidation, in-situ steam generation oxidation and dry furnace oxidation

    Science.gov (United States)

    Rozé, Fabien; Gourhant, Olivier; Blanquet, Elisabeth; Bertin, François; Juhel, Marc; Abbate, Francesco; Pribat, Clément; Duru, Romain

    2017-06-01

    The fabrication of ultrathin compressively strained SiGe-On-Insulator layers by the condensation technique is likely a key milestone towards low-power and high performances FD-SOI logic devices. However, the SiGe condensation technique still requires challenges to be solved for an optimized use in an industrial environment. SiGe oxidation kinetics, upon which the condensation technique is founded, has still not reached a consensus in spite of various studies which gave insights into the matter. This paper aims to bridge the gaps between these studies by covering various oxidation processes relevant to today's technological needs with a new and quantitative analysis methodology. We thus address oxidation kinetics of SiGe with three Ge concentrations (0%, 10%, and 30%) by means of dry rapid thermal oxidation, in-situ steam generation oxidation, and dry furnace oxidation. Oxide thicknesses in the 50 Å to 150 Å range grown with oxidation temperatures between 850 and 1100 °C were targeted. The present work shows first that for all investigated processes, oxidation follows a parabolic regime even for thin oxides, which indicates a diffusion-limited oxidation regime. We also observe that, for all investigated processes, the SiGe oxidation rate is systematically higher than that of Si. The amplitude of the variation of oxidation kinetics of SiGe with respect to Si is found to be strongly dependent on the process type. Second, a new quantitative analysis methodology of oxidation kinetics is introduced. This methodology allows us to highlight the dependence of oxidation kinetics on the Ge concentration at the oxidation interface, which is modulated by the pile-up mechanism. Our results show that the oxidation rate increases with the Ge concentration at the oxidation interface.

  7. Molecular cloning, sequence and structural analysis of dehairing Mn(2+) dependent alkaline serine protease (MASPT) of Bacillus pumilus TMS55.

    Science.gov (United States)

    Ibrahim, Kalibulla Syed; Muniyandi, Jeyaraj; Pandian, Shunmugiah Karutha

    2011-10-01

    Leather industries release a large amount of pollution-causing chemicals which creates one of the major industrial pollutions. The development of enzyme based processes as a potent alternative to pollution-causing chemicals is useful to overcome this issue. Proteases are enzymes which have extensive applications in leather processing and in several bioremediation processes due to their high alkaline protease activity and dehairing efficacy. In the present study, we report cloning, characterization of a Mn2+ dependent alkaline serine protease gene (MASPT) of Bacillus pumilus TMS55. The gene encoding the protease from B. pumilus TMS55 was cloned and its nucleotide sequence was determined. This gene has an open reading frame (ORF) of 1,149 bp that encodes a polypeptide of 383 amino acid residues. Our analysis showed that this polypeptide is composed of 29 residues N-terminal signal peptide, a propeptide of 79 residues and a mature protein of 275 amino acids. We performed bioinformatics analysis to compare MASPT enzyme with other proteases. Homology modeling was employed to model three dimensional structure for MASPT. Structural analysis showed that MASPT structure is composed of nine α-helices and nine β-strands. It has 3 catalytic residues and 14 metal binding residues. Docking analysis showed that residues S223, A260, N263, T328 and S329 interact with Mn2+. This study allows initial inferences about the structure of the protease and will allow the rational design of its derivatives for structure-function studies and also for further improvement of the enzyme.

  8. Oxidation of multiple methionine residues impairs rapid sodium channel inactivation

    Science.gov (United States)

    Kassmann, Mario; Hansel, Alfred; Leipold, Enrico; Birkenbeil, Jan; Lu, Song-Qing; Hoshi, Toshinori; Heinemann, Stefan H.

    2010-01-01

    Reactive oxygen species (ROS) readily oxidize the sulfur-containing amino acids cysteine and methionine (Met). The impact of Met oxidation on the fast inactivation of the skeletal muscle sodium channel NaV1.4 expressed in human embryonic kidney cells was studied by applying the Met-preferring oxidant chloramine-T (ChT) or by irradiating the ROS-producing dye Lucifer Yellow in the patch pipettes. Both interventions dramatically slowed down inactivation of the sodium channels. Replacement of Met in the Ile-Phe-Met inactivation motif with Leu (M1305L) strongly attenuated the oxidizing effect on inactivation but did not eliminate it completely. Mutagenesis of conserved Met residues in the intracellular linkers connecting the membrane-spanning segments of the channel (M1469L and M1470L) also markedly diminished the oxidation sensitivity of the channel, while that of other conserved Met residues (442, 1139, 1154, 1316) were without any noticeable effect. The results of mutagenesis of results, assays of other NaV channel isoforms (NaV1.2, NaV1.5, NaV1.7) and the kinetics of the oxidation-induced removal of inactivation collectively indicate that multiple Met target residues need to be oxidized to completely impair inactivation. This arrangement using multiple Met residues confers a finely graded oxidative modulation of NaV channels and allows organisms to adapt to a variety of oxidative stress conditions, such as ischemic reperfusion. PMID:18369661

  9. Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments

    NARCIS (Netherlands)

    Cuypers, M.P.; Grotenhuis, J.T.C.; Joziasse, J.; Rulkens, W.H.

    2000-01-01

    Persulfate oxidation was validated as a method to predict polycyclic aromatic hydrocarbon (PAH) bioavailability in soils and sediments. It was demonstrated for 14 field contaminated soils and sediments that residual PAH concentrations after a short (3 h) persulfate oxidation correspond well to

  10. Rapid heterogeneous oxidation of organic coatings on submicron aerosols

    Science.gov (United States)

    Lim, C. Y.; Browne, E. C.; Sugrue, R. A.; Kroll, J. H.

    2017-03-01

    Laboratory studies have found that heterogeneous oxidation can affect the composition and loading of atmospheric organic aerosol particles over time scales of several days, but most studies have examined pure organic particles only. In this study, in order to probe the reactivity of organic species confined near the particle surface, the rates and products of the OH-initiated oxidation of pure squalane particles are compared to oxidation of thin coatings of squalane on ammonium sulfate particles. The squalane reaction rate constant shows a linear dependence on the organic surface area-to-volume ratio, with rate constants for coated particles up to 10 times larger than for pure particles. Changes in the carbon oxidation state and fraction of particulate carbon remaining show similar enhancements, implying that heterogeneous oxidation may exhibit a stronger effect on the loadings and properties of organic aerosol than previously estimated from laboratory studies.

  11. RAPID ARSENITE OXIDATION BY THERMUS AQUATICUS AND THERMUS THERMOPHILUS: FIELD AND LABORATORY INVESTIGATIONS. (R826189)

    Science.gov (United States)

    Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed ...

  12. Rapid mixing chemical oxidative polymerization: an easy route to ...

    Indian Academy of Sciences (India)

    Administrator

    (catalyst)-coated silicon wafer was used as the substrate. After placing the substrate in the furnace of the .... monomer. This type of interaction is evident from Raman analysis (red shift in C=N Raman band corresponding to. PANI). Remaining aniline molecules get dispersed in the aq. HCl suspension. At the moment of rapid ...

  13. Rapid Deposition of Oxidized Biogenic Compounds to a Temperate Forest

    Science.gov (United States)

    Nguyen, Tran B.; Crounse, John D.; Teng, Alex P.; St. Clair, Jason M.; Paulot, Fabien; Wolfe, Glenn M.; Wennberg, Paul O.

    2015-01-01

    We report fluxes and dry deposition velocities for 16 atmospheric compounds above a southeastern United States forest, including: hydrogen peroxide (H2O2), nitric acid (HNO3), hydrogen cyanide (HCN), hydroxymethyl hydroperoxide, peroxyacetic acid, organic hydroxy nitrates, and other multifunctional species derived from the oxidation of isoprene and monoterpenes. The data suggest that dry deposition is the dominant daytime sink for small, saturated oxygenates. Greater than 6 wt %C emitted as isoprene by the forest was returned by dry deposition of its oxidized products. Peroxides account for a large fraction of the oxidant flux, possibly eclipsing ozone in more pristine regions. The measured organic nitrates comprise a sizable portion (15%) of the oxidized nitrogen input into the canopy, with HNO3 making up the balance. We observe that water-soluble compounds (e.g., strong acids and hydroperoxides) deposit with low surface resistance whereas compounds with moderate solubility (e.g., organic nitrates and hydroxycarbonyls) or poor solubility (e.g., HCN) exhibited reduced uptake at the surface of plants. To first order, the relative deposition velocities of water-soluble compounds are constrained by their molecular diffusivity. From resistance modeling, we infer a substantial emission flux of formic acid at the canopy level (approx. 1 nmol m(exp.-2)·s(exp.-1)). GEOS-Chem, awidely used atmospheric chemical transport model, currently underestimates dry deposition for most molecules studied in this work. Reconciling GEOS-Chem deposition velocities with observations resulted in up to a 45% decrease in the simulated surface concentration of trace gases.

  14. Rapid degradation of zinc oxide nanoparticles by phosphate ions

    Directory of Open Access Journals (Sweden)

    Rudolf Herrmann

    2014-11-01

    Full Text Available Zinc oxide nanoparticles are highly sensitive towards phosphate ions even at pH 7. Buffer solutions and cell culture media containing phosphate ions are able to destroy ZnO nanoparticles within a time span from less than one hour to one day. The driving force of the reaction is the formation of zinc phosphate of very low solubility. The morphology of the zinc oxide particles has only a minor influence on the kinetics of this reaction. Surface properties related to different production methods and the presence and absence of labelling with a perylene fluorescent dye are more important. Particles prepared under acidic conditions are more resistant than those obtained in basic or neutral reaction medium. Surprisingly, the presence of a SiO2 coating does not impede the degradation of the ZnO core. In contrast to phosphate ions, β-glycerophosphate does not damage the ZnO nanoparticles. These findings should be taken into account when assessing the biological effects or the toxicology of zinc oxide nanoparticles.

  15. Transfer RNAs Mediate the Rapid Adaptation of Escherichia coli to Oxidative Stress

    Science.gov (United States)

    Du, Gaofei; Sun, Xuesong; He, Qing-Yu; Zhang, Gong

    2015-01-01

    Translational systems can respond promptly to sudden environmental changes to provide rapid adaptations to environmental stress. Unlike the well-studied translational responses to oxidative stress in eukaryotic systems, little is known regarding how prokaryotes respond rapidly to oxidative stress in terms of translation. In this study, we measured protein synthesis from the entire Escherichia coli proteome and found that protein synthesis was severely slowed down under oxidative stress. With unchanged translation initiation, this slowdown was caused by decreased translation elongation speed. We further confirmed by tRNA sequencing and qRT-PCR that this deceleration was caused by a global, enzymatic downregulation of almost all tRNA species shortly after exposure to oxidative agents. Elevation in tRNA levels accelerated translation and protected E. coli against oxidative stress caused by hydrogen peroxide and the antibiotic ciprofloxacin. Our results showed that the global regulation of tRNAs mediates the rapid adjustment of the E. coli translation system for prompt adaptation to oxidative stress. PMID:26090660

  16. Discovery and description of complete ammonium oxidizers in groundwater-fed rapid sand filters

    DEFF Research Database (Denmark)

    Palomo, Alejandro

    . The identified population genomes contained capabilities to oxidize ammonium, nitrite, methane, hydrogen sulfide, iron and manganese as well as to assimilate organic compounds. A composite population genome was assigned to Nitrospira. This genus had previously been found in multiple rapid sand filters...... at an unexplained high abundance. Nitrospira spp. are known to perform the second step of nitrification: oxidation of nitrite to nitrate. The two-step nitrification process disclosed at the end of the 19th century was assumed to be carried out by two different functional groups, ammonia oxidizing prokaryotes...... and nitrite oxidizing bacteria. Strikingly, the Nitrospira composite population genome not only contained the genes to oxidize nitrite to nitrate, but also the genetic potential to execute the first step of nitrification. Exhaustive bioinformatics investigation ruled out the possibility of genomic...

  17. Rapid and Sensitive Determination of Lipid Oxidation Using the Reagent Kit Based on Spectrophotometry (FOODLABfat System

    Directory of Open Access Journals (Sweden)

    Chang Woo Kwon

    2016-01-01

    Full Text Available The reliability and availability of FOODLABfat system for determining acid value (AV and peroxide value (POV were assessed during the hydrolytic rancidification and lipid oxidation of edible oils. This reagent kit based on spectrophotometry was compared to the official methods (ISO 660 and 3960 protocols based on manual titration employing the standard mixture for the simulated oxidation models and edible oils during the thermally induced oxidation at 180°C. The linear regression line of standard mixture and the significant difference of thermally oxidized time course study determined between them showed high correlations (R2=0.998 and p<0.05 in both AVs and POVs. Considering ISO protocols with a probability of human error in manual titration, the rapidness and simplicity of the reagent kit based on spectrophotometry make it a promising alternative to monitor the lipid oxidation of edible oils and lipid-containing foods.

  18. Effect of TEMPO-oxidization and rapid cooling on thermo-structural properties of nanocellulose.

    Science.gov (United States)

    Mhd Haniffa, Mhd Abd Cader; Ching, Yern Chee; Chuah, Cheng Hock; Yong Ching, Kuan; Nazri, Nik; Abdullah, Luqman Chuah; Nai-Shang, Liou

    2017-10-01

    Recently, surface functionality and thermal property of the green nanomaterials have received wide attention in numerous applications. In this study, microcrystalline cellulose (MCC) was used to prepare the nanocrystalline celluloses (NCCs) using acid hydrolysis method. The NCCs was treated with TEMPO [(2,2,6,6-tetramethylpiperidin-1-yl)oxy radical]-oxidation to prepare TEMPO-oxidized NCCs. Cellulose nanofibrils (CNFs) also prepared from MCC using TEMPO-oxidation. The effects of rapid cooling and chemical treatments on the thermo-structural property studies of the prepared nanocelluloses were investigated through FTIR, thermogravimetric analysis-derivative thermogravimetric (TGA-DTG), and XRD. A posteriori knowledge of the FTIR and TGA-DTG analysis revealed that the rapid cooling treatment enhanced the hydrogen bond energy and thermal stability of the TEMPO-oxidized NCC compared to other nanocelluloses. XRD analysis exhibits the effect of rapid cooling on pseudo 2I helical conformation. This was the first investigation performed on the effect of rapid cooling on structural properties of the nanocellulose. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Homogeneous, heterogeneous and biological oxidation of iron(II) in rapid sand filtration

    NARCIS (Netherlands)

    Beek, van C.G.E.M.; Hiemstra, T.; Hofs, B.; Nederlof, M.M.; Paassen, van J.A.M.; Reijnen, G.K.

    2012-01-01

    Homogeneous, heterogeneous and biological oxidation may precipitate iron(II) as iron(III) hydroxides. In this paper we evaluate the conditions under which each of these processes is dominant in rapid sand filtration (RSF). It is demonstrated that in the presence of iron(III) hydroxide precipitates

  20. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations

    Science.gov (United States)

    Gihring, T.M.; Druschel, G.K.; McCleskey, R.B.; Hamers, R.J.; Banfield, J.F.

    2001-01-01

    Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed conserved total arsenic transport and rapid arsenite oxidation occurring within the drainage channel. This environment was heavily colonized by Thermus aquaticus. In laboratory experiments, arsenite oxidation by cultures of Thermus aquaticus YT1 (previously isolated from Yellowstone National Park) and Thermus thermophilus HB8 was accelerated by a factor of over 100 relative to abiotic controls. Thermus aquaticus and Thermus thermophilus may therefore play a large and previously unrecognized role in determining arsenic speciation and bioavailability in thermal environments.

  1. Rapid synthesis of tin oxide nanostructures by microwave-assisted thermal oxidation for sensor applications

    Science.gov (United States)

    Phadungdhitidhada, S.; Ruankham, P.; Gardchareon, A.; Wongratanaphisan, D.; Choopun, S.

    2017-09-01

    In the present work nanostructures of tin oxides were synthesized by a microwave-assisted thermal oxidation. Tin precursor powder was loaded into a cylindrical quartz tube and further radiated in a microwave oven. The as-synthesized products were characterized by scanning electron microscope, transmission electron microscope, and x-ray diffractometer. The results showed that two different morphologies of SnO2 microwires (MWs) and nanoparticles (NPs) were obtained in one minute of microwave radiation under atmospheric ambient. A few tens of the SnO2 MWs with the length of 10-50 µm were found. Some parts of the MWs were decorated with the SnO2 NPs. However, most of the products were SnO2 NPs with the diameter ranging from 30-200 nm. Preparation under loosely closed system lead to mixed phase SnO-SnO2 NPs with diameter of 30-200 nm. The single-phase of SnO2 could be obtained by mixing the Sn precursor powders with CuO2. The products were mostly found to be SnO2 nanowires (NWs) and MWs. The diameter of SnO2 NWs was less than 50 nm. The SnO2 NPs, MWs, and NWs were in the cassiterite rutile structure phase. The SnO NPs was in the tetragonal structure phase. The growth direction of the SnO2 NWs was observed in (1 1 0) and (2 2 1) direction. The ethanol sensor performance of these tin oxide nanostructures showed that the SnO-SnO2 NPs exhibited extremely high sensitivity. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  2. Ammonia oxidizers in a pilot-scale multilayer rapid infiltration system for domestic wastewater treatment.

    Directory of Open Access Journals (Sweden)

    Yingli Lian

    Full Text Available A pilot-scale multilayer rapid infiltration system (MRIS for domestic wastewater treatment was established and efficient removal of ammonia and chemical oxygen demand (COD was achieved in this study. The microbial community composition and abundance of ammonia oxidizers were investigated. Efficient biofilms of ammonia oxidizers in the stationary phase (packing material was formed successfully in the MRIS without special inoculation. DGGE and phylogenetic analyses revealed that proteobacteria dominated in the MRIS. Relative abundance of ammonia-oxidizing archaea (AOA and ammonia-oxidizing bacteria (AOB showed contrary tendency. In the flowing phase (water effluent, AOA diversity was significantly correlated with the concentration of dissolve oxygen (DO, NO3-N and NH3-N. AOB abundance was significantly correlated with the concentration of DO and chemical oxygen demand (COD. NH3-N and COD were identified as the key factors to shape AOB community structure, while no variable significantly correlated with that of AOA. AOA might play an important role in the MRIS. This study could reveal key environmental factors affecting the community composition and abundance of ammonia oxidizers in the MRIS.

  3. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    Science.gov (United States)

    Osborne, Elizabeth A.; Atkins, Tonya M.; Gilbert, Dustin A.; Kauzlarich, Susan M.; Liu, Kai; Louie, Angelique Y.

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  4. Rapid and effective oxidative pretreatment of woody biomass at mild reaction conditions and low oxidant loadings.

    Science.gov (United States)

    Li, Zhenglun; Chen, Charles H; Hegg, Eric L; Hodge, David B

    2013-08-26

    One route for producing cellulosic biofuels is by the fermentation of lignocellulose-derived sugars generated from a pretreatment that can be effectively coupled with an enzymatic hydrolysis of the plant cell wall. While woody biomass exhibits a number of positive agronomic and logistical attributes, these feedstocks are significantly more recalcitrant to chemical pretreatments than herbaceous feedstocks, requiring higher chemical and energy inputs to achieve high sugar yields from enzymatic hydrolysis. We previously discovered that alkaline hydrogen peroxide (AHP) pretreatment catalyzed by copper(II) 2,2΄-bipyridine complexes significantly improves subsequent enzymatic glucose and xylose release from hybrid poplar heartwood and sapwood relative to uncatalyzed AHP pretreatment at modest reaction conditions (room temperature and atmospheric pressure). In the present work, the reaction conditions for this catalyzed AHP pretreatment were investigated in more detail with the aim of better characterizing the relationship between pretreatment conditions and subsequent enzymatic sugar release. We found that for a wide range of pretreatment conditions, the catalyzed pretreatment resulted in significantly higher glucose and xylose enzymatic hydrolysis yields (as high as 80% for both glucose and xylose) relative to uncatalyzed pretreatment (up to 40% for glucose and 50% for xylose). We identified that the extent of improvement in glucan and xylan yield using this catalyzed pretreatment approach was a function of pretreatment conditions that included H2O2 loading on biomass, catalyst concentration, solids concentration, and pretreatment duration. Based on these results, several important improvements in pretreatment and hydrolysis conditions were identified that may have a positive economic impact for a process employing a catalyzed oxidative pretreatment. These improvements include identifying that: (1) substantially lower H2O2 loadings can be used that may result in up to

  5. De-hairing protease production by an isolated Bacillus cereus strain AT under solid-state fermentation using cow dung: Biosynthesis and properties.

    Science.gov (United States)

    Vijayaraghavan, Ponnuswamy; Lazarus, Sophia; Vincent, Samuel Gnana Prakash

    2014-01-01

    Agro-industrial residues and cow dung were used as the substrate for the production of alkaline protease by Bacillus cereus strain AT. The bacterial strain Bacillus cereus strain AT produced a high level of protease using cow dung substrate (4813 ± 62 U g(-1)). Physiological fermentation factors such as the incubation time (72 h), the pH (9), the moisture content (120%), and the inoculum level (6%) played a vital role in the enzyme bioprocess. The enzyme production improved with the supplementation of maltose and yeast extract as carbon and nitrogen sources, respectively. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zymogram analysis of the purified protease indicated an estimated molecular mass of 46 kDa. The protease enzyme was stable over a temperature range of 40-50 °C and pH 6-9, with maximum activity at 50 °C and pH 8. Among the divalent ions tested, Ca(2+), Na(+) and Mg(2+) showed activities of 107 ± 0.7%, 103.5 ± 1.3%, and 104.6 ± 0.9, respectively. The enzyme showed stability in the presence of surfactants such as sodium dodecyl sulfate and on various commercially available detergents. The crude enzyme effectively de-haired goat hides within 18 h of incubation at 30 °C. The enzymatic properties of this protease suggest its suitable application as an additive in detergent formulation and also in leather processing. Based on the laboratory results, the use of cow dung for producing and extracting enzyme is not cumbersome and is easy to scale up. Considering its cheap cost and availability, cow dung is an ideal substrate for enzyme bioprocess in an industrial point of view.

  6. Rapid quantitation of thermal oxidation products in fats and oils by 1H-NMR spectroscopy.

    Science.gov (United States)

    Yang, C M; Grey, A A; Archer, M C; Bruce, W R

    1998-01-01

    This work describes the application of high-resolution proton nuclear magnetic resonance (1H-NMR) spectroscopy to the study of the thermal peroxidation of beef tallow and corn oil under standardized conditions. The approach provides a rapid, quantitative method for determining the degree of oxidation of unsaturated fatty acids in animal and vegetable fats and oils by quantitating the decreasing intensities of 1H-NMR peaks for allylic and olefinic protons in unsaturated fatty acid chains of triglycerides and the increasing peak intensities of hydroperoxide and saturated and alpha, beta-unsaturated aldehydic protons in relation to the less labile protons in the triglyceride molecule. Two-dimensional correlation spectroscopy analysis of highly oxidized beef tallow (180 degrees C for 24 h) suggested that the unsaturated aldehydes that persisted were apparently associated with carboxy groups.

  7. A rapid microwave-assisted solvothermal approach to lower-valent transition metal oxides.

    Science.gov (United States)

    Moorhead-Rosenberg, Zachary; Harrison, Katharine L; Turner, Travis; Manthiram, Arumugam

    2013-11-18

    A green, rapid microwave-assisted solvothermal process using tetraethylene glycol (TEG) as a reducing agent has been explored as a soft-chemistry route for the preparation of various lower-valent transition metal oxides. To demonstrate the feasibility of the approach, lower-valent binary oxides such as V4O9, Mn3O4 or MnO, CoO, and Cu2O have been obtained within a short reaction time of 30 min by reducing, respectively, V2O5, MnO2, Co3O4, and CuO with TEG at LaCoO3, LaNiO3, and La4Ni3O10. The oxidation state of the transition metal ions and the oxygen content in these ternary oxides could be tuned by precisely controlling the reaction temperatures from 160 to 300 °C. The products have been characterized by X-ray powder diffraction and iodometric titration. The versatility of this novel technique is demonstrated by the facile synthesis of V4O9, which has only been produced recently in single-phase form.

  8. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    Science.gov (United States)

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A.; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-04-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30-40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures.

  9. Rapid thermal cycling of metal-supported solid oxide fuel cellmembranes

    Energy Technology Data Exchange (ETDEWEB)

    Matus, Yuriy B.; De Jonghe, Lutgard C.; Jacobson, Craig P.; Visco, Steven J.

    2004-01-02

    Solid oxide fuel cell (SOFC) membranes were developed in which zirconia-based electrolyte thin films were supported by a composite metal/ceramic electrode, and were subjected to rapid thermal cycling between 200 and 800 C. The effects of this cycling on membrane performance were evaluated. The membranes, not yet optimized for performance, showed a peak power density of 350mW/cm2at 900 C in laboratory-sized SOFCs that was not affected by the thermal cycling. This resistance to cycling degradation is attributed to the close matching of thermal expansion coefficient of the cermet support electrode with that of the zirconia electrolyte.

  10. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    Science.gov (United States)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  11. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment

    Science.gov (United States)

    Wang, Xinghao; Huang, Qingguo; Lu, Junhe; Wang, Liansheng; Wang, Zunyao

    2015-01-01

    Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters. PMID:26430733

  12. Rapid Removal of Tetrabromobisphenol A by Ozonation in Water: Oxidation Products, Reaction Pathways and Toxicity Assessment.

    Directory of Open Access Journals (Sweden)

    Ruijuan Qu

    Full Text Available Tetrabromobisphenol A (TBBPA is one of the most widely used brominated flame retardants and has attracted more and more attention. In this work, the parent TBBPA with an initial concentration of 100 mg/L was completely removed after 6 min of ozonation at pH 8.0, and alkaline conditions favored a more rapid removal than acidic and neutral conditions. The presence of typical anions and humic acid did not significantly affect the degradation of TBBPA. The quenching test using isopropanol indicated that direct ozone oxidation played a dominant role during this process. Seventeen reaction intermediates and products were identified using an electrospray time-of-flight mass spectrometer. Notably, the generation of 2,4,6-tribromophenol was first observed in the degradation process of TBBPA. The evolution of reaction products showed that ozonation is an efficient treatment for removal of both TBBPA and intermediates. Sequential transformation of organic bromine to bromide and bromate was confirmed by ion chromatography analysis. Two primary reaction pathways that involve cleavage of central carbon atom and benzene ring cleavage concomitant with debromination were thus proposed and further justified by calculations of frontier electron densities. Furthermore, the total organic carbon data suggested a low mineralization rate, even after the complete removal of TBBPA. Meanwhile, the acute aqueous toxicity of reaction solutions to Photobacterium Phosphoreum and Daphnia magna was rapidly decreased during ozonation. In addition, no obvious difference in the attenuation of TBBPA was found by ozone oxidation using different water matrices, and the effectiveness in natural waters further demonstrates that ozonation can be adopted as a promising technique to treat TBBPA-contaminated waters.

  13. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles.

    Science.gov (United States)

    Wong, Ray M; Gilbert, Dustin A; Liu, Kai; Louie, Angelique Y

    2012-04-24

    Research into developing dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise recently due to the potential to combine the high resolution of MRI and the high sensitivity of PET. Current synthesis techniques for developing multimodal probes is largely hindered in part by prolonged reaction times during radioisotope incorporation--leading to a weakening of the radioactivity. Along with a time-efficient synthesis, the resulting products must fit within a critical size range (between 20 and 100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis technique to grow dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for coprecipitation of dextran-coated iron oxide nanoparticles require refluxing for 2 h and result in approximately 50 nm diameter particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles with 5 min of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu and demonstrate the successful incorporation of (64)Cu into these particles with the aim of future use for dual-mode MR/PET imaging.

  14. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    Science.gov (United States)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  15. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  16. Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide.

    Science.gov (United States)

    Ingham, Colin J; Boonstra, Sjoukje; Levels, Suzanne; de Lange, Marit; Meis, Jacques F; Schneeberger, Peter M

    2012-01-01

    Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide (PAO) support combined with microscopy offers a route to more rapid results. Microcolonies of Candida species grown on PAO were stained with the fluorogenic dyes Fun-1 and Calcofluor White and then imaged by fluorescence microscopy. Images were captured by a charge-coupled device camera and processed by publicly available software. By this method, the growth of yeasts could be detected and quantified within 2 h. Microcolony imaging was then used to assess the susceptibility of the yeasts to amphotericin B, anidulafungin and caspofungin (3.5 h culture), and voriconazole and itraconazole (7 h culture). Overall, the results showed good agreement with EUCAST (86.5% agreement; n = 170) and E-test (85.9% agreement; n = 170). The closest agreement to standard tests was found when testing susceptibility to amphotericin B and echinocandins (88.2 to 91.2%) and the least good for the triazoles (79.4 to 82.4%). Furthermore, large datasets on population variation could be rapidly obtained. An analysis of microcolonies revealed subtle effects of antimycotics on resistant strains and below the MIC of sensitive strains, particularly an increase in population heterogeneity and cell density-dependent effects of triazoles. Additionally, the method could be adapted to strain identification via germ tube extension. We suggest PAO culture is a rapid and versatile method that may be usefully adapted to clinical mycology and has research applications.

  17. Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide.

    Directory of Open Access Journals (Sweden)

    Colin J Ingham

    Full Text Available BACKGROUND: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide (PAO support combined with microscopy offers a route to more rapid results. METHODS: Microcolonies of Candida species grown on PAO were stained with the fluorogenic dyes Fun-1 and Calcofluor White and then imaged by fluorescence microscopy. Images were captured by a charge-coupled device camera and processed by publicly available software. By this method, the growth of yeasts could be detected and quantified within 2 h. Microcolony imaging was then used to assess the susceptibility of the yeasts to amphotericin B, anidulafungin and caspofungin (3.5 h culture, and voriconazole and itraconazole (7 h culture. SIGNIFICANCE: Overall, the results showed good agreement with EUCAST (86.5% agreement; n = 170 and E-test (85.9% agreement; n = 170. The closest agreement to standard tests was found when testing susceptibility to amphotericin B and echinocandins (88.2 to 91.2% and the least good for the triazoles (79.4 to 82.4%. Furthermore, large datasets on population variation could be rapidly obtained. An analysis of microcolonies revealed subtle effects of antimycotics on resistant strains and below the MIC of sensitive strains, particularly an increase in population heterogeneity and cell density-dependent effects of triazoles. Additionally, the method could be adapted to strain identification via germ tube extension. We suggest PAO culture is a rapid and versatile method that may be usefully adapted to clinical mycology and has research applications.

  18. The Impact of Rapid Weight Loss on Oxidative Stress Markers and the Expression of the Metabolic Syndrome in Obese Individuals

    Directory of Open Access Journals (Sweden)

    Eva Tumova

    2013-01-01

    Full Text Available Objective. Obesity is linked with a state of increased oxidative stress, which plays an important role in the etiology of atherosclerosis and type 2 diabetes mellitus. The aim of our study was to evaluate the effect of rapid weight loss on oxidative stress markers in obese individuals with metabolic syndrome (MetS. Design and Methods. We measured oxidative stress markers in 40 obese subjects with metabolic syndrome (MetS+, 40 obese subjects without metabolic syndrome (MetS−, and 20 lean controls (LC at baseline and after three months of very low caloric diet. Results. Oxidized low density lipoprotein (ox-LDL levels decreased by 12% in MetS+ subjects, associated with a reduction in total cholesterol (TC, even after adjustment for age and sex. Lipoprotein associated phospholipase A2 (Lp-PLA2 activity decreased by 4.7% in MetS+ subjects, associated with a drop in LDL-cholesterol (LDL-C, TC, and insulin levels. Multivariate logistic regression analysis showed that a model including ox-LDL, LpPLA2 activity, and myeloperoxidase (MPO improved prediction of MetS status among obese individuals compared to each oxidative stress marker alone. Conclusions. Oxidative stress markers were predictive of MetS in obese subjects, suggesting a higher oxidative stress. Rapid weight loss resulted in a decline in oxidative stress markers, especially in MetS+ patients.

  19. NANOSIZED MAGNESIUM OXIDE AS CATALYST FOR THE RAPID AND GREEN SYNTHESIS OF SUBSTITUTED 2-AMINO-2-CHROMENES

    Science.gov (United States)

    A nanosized magnesium oxide catalyzed three-component condensation reaction of aldehyde, malononitrile and ¿-naphthol proceeded rapidly in water/PEG to afford corresponding 2-amino-2-chromenes in high yields at room temperature. The greener protocol was found to be fairly general...

  20. Rapid and Sensitive Determination of Lipid Oxidation Using the Reagent Kit Based on Spectrophotometry (FOODLABfat System)

    OpenAIRE

    Kwon, Chang Woo; Park, Kyung-Min; Park, Jeong Woong; Lee, JaeHwan; Choi, Seung Jun; Chang, Pahn-Shick

    2016-01-01

    The reliability and availability of FOODLABfat system for determining acid value (AV) and peroxide value (POV) were assessed during the hydrolytic rancidification and lipid oxidation of edible oils. This reagent kit based on spectrophotometry was compared to the official methods (ISO 660 and 3960 protocols) based on manual titration employing the standard mixture for the simulated oxidation models and edible oils during the thermally induced oxidation at 180°C. The linear regression line of s...

  1. Rapid screening of N-oxides of chemical warfare agents degradation products by ESI-tandem mass spectrometry.

    Science.gov (United States)

    Sridhar, L; Karthikraj, R; Lakshmi, V V S; Raju, N Prasada; Prabhakar, S

    2014-08-01

    Rapid detection and identification of chemical warfare agents and related precursors/degradation products in various environmental matrices is of paramount importance for verification of standards set by the chemical weapons convention (CWC). Nitrogen mustards, N,N-dialkylaminoethyl-2-chlorides, N,N-dialkylaminoethanols, N-alkyldiethanolamines, and triethanolamine, which are listed CWC scheduled chemicals, are prone to undergo N-oxidation in environmental matrices or during decontamination process. Thus, screening of the oxidized products of these compounds is also an important task in the verification process because the presence of these products reveals alleged use of nitrogen mustards or precursors of VX compounds. The N-oxides of aminoethanols and aminoethylchlorides easily produce [M + H](+) ions under electrospray ionization conditions, and their collision-induced dissociation spectra include a specific neutral loss of 48 u (OH + CH2OH) and 66 u (OH + CH2Cl), respectively. Based on this specific fragmentation, a rapid screening method was developed for screening of the N-oxides by applying neutral loss scan technique. The method was validated and the applicability of the method was demonstrated by analyzing positive and negative samples. The method was useful in the detection of N-oxides of aminoethanols and aminoethylchlorides in environmental matrices at trace levels (LOD, up to 500 ppb), even in the presence of complex masking agents, without the use of time-consuming sample preparation methods and chromatographic steps. This method is advantageous for the off-site verification program and also for participation in official proficiency tests conducted by the Organization for the Prohibition of Chemical Weapons (OPCW), the Netherlands. The structure of N-oxides can be confirmed by the MS/MS experiments on the detected peaks. A liquid chromatography-mass spectrometry (LC-MS) method was developed for the separation of isomeric N-oxides of aminoethanols and

  2. Iron Oxide Films Prepared by Rapid Thermal Processing for Solar Energy Conversion

    DEFF Research Database (Denmark)

    Wickman, B.; da Silva Fanta, Alice Bastos; Burrows, Andrew

    2017-01-01

    Hematite is a promising and extensively investigated material for various photoelectrochemical (PEC) processes for energy conversion and storage, in particular for oxidation reactions. Thermal treatments during synthesis of hematite are found to affect the performance of hematite electrodes...

  3. Rapid formation of isoprene photo-oxidation products observed in Amazonia

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-10-01

    Full Text Available Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e.g. isoprene leads to the formation of oxygenated VOCs (OVOCs. The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian Aerosol Characterization Experiment (AMAZE-08 we show that the production of certain OVOCs (e.g. hydroxyacetone from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. Recently reported fast secondary production could explain 50% of the observed discrepancy with the remaining part possibly produced via a novel primary production channel, which has been proposed theoretically. The observations of OVOCs are also used to test a recently proposed HOx recycling mechanism via degradation of isoprene peroxy radicals. If generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in uncertainties of modelled OH reactivity, potentially explaining a fraction of the missing OH sink over forests which has previously been largely attributed to a missing source of primary biogenic VOCs.

  4. Rapid Access to β-Trifluoromethyl-Substituted Ketones: Harnessing Inductive Effects in Wacker-Type Oxidations of Internal Alkenes

    KAUST Repository

    Lerch, Michael M.

    2014-07-18

    We present a practical trifluoromethyl-directed Wacker-type oxidation of internal alkenes that enables rapid access to β-trifluoromethyl-substituted ketones. Allylic trifluoromethyl-substituted alkenes bearing a wide range of functional groups can be oxidized in high yield and regioselectivity. The distance dependence of the regioselectivity was established by systematic variation of the number of methylene units between the double bond and the trifluoromethyl group. The regioselectivity enforced by traditional directing groups could even be reversed by introduction of a competing trifluoromethyl group. Besides being a new powerful synthetic method to prepare fluorinated molecules, this work directly probes the role of inductive effects on nucleopalladation events. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rapid susceptibility testing and microcolony analysis of Candida spp. cultured and imaged on porous aluminum oxide.

    NARCIS (Netherlands)

    Ingham, C.J.; Boonstra, S.; Levels, S.; Lange, Marit de; Meis, J.F.G.M.; Schneeberger, P.M.

    2012-01-01

    BACKGROUND: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide

  6. Rapid Susceptibility Testing and Microcolony Analysis of Candida spp. Cultured and Imaged on Porous Aluminum Oxide

    NARCIS (Netherlands)

    Ingham, C.J.; Boonstra, S.; Levels, S.; Lange, H.J.; Meis, J.F.; Schneeberger, P.M.

    2012-01-01

    Background: Acquired resistance to antifungal agents now supports the introduction of susceptibility testing for species-drug combinations for which this was previously thought unnecessary. For pathogenic yeasts, conventional phenotypic testing needs at least 24 h. Culture on a porous aluminum oxide

  7. Regioselective Wacker Oxidation of Internal Alkenes: Rapid Access to Functionalized Ketones Facilitated by Cross-Metathesis

    KAUST Repository

    Morandi, Bill

    2013-07-26

    Wacka wacka: The title reaction makes use of a wide range of directing groups (DG) to enable the highly regioselective oxidation of alkenes, and occurs predictably at the distal position. Both E and Z alkenes afford valuable functionalized ketones and cross-metathesis was shown to facilitate the preparation of the starting materials. BQ=benzoquinone.

  8. Graphene oxide-mediated rapid dechlorination of carbon tetrachloride by green rust

    DEFF Research Database (Denmark)

    Huang, Li-Zhi; Hansen, Hans Christian B.; Daasbjerg, Kim

    2017-01-01

    Graphene-based nanomaterials can mediate environmentally relevant abiotic redox reactions of chlorinated aliphatic hydrocarbons. In this study as low amounts as ∼0.007 % of graphene oxide (GO) was found to catalyze the reduction of carbon tetrachloride by layered Fe(II)-Fe(III) hydroxide (Green...

  9. Oxidative Stress Induced by Polymyxin E Is Involved in Rapid Killing of Paenibacillus polymyxa

    Directory of Open Access Journals (Sweden)

    Zhiliang Yu

    2017-01-01

    Full Text Available Historically, the colistin has been thought to kill bacteria through membrane lysis. Here, we present an alternative mechanism that colistin induces rapid Paenibacillus polymyxa death through reactive oxygen species production. This significantly augments our understanding of the mechanism of colistin action, which is critical knowledge toward the yield development of colistin in the future.

  10. Rapid determination of lipid peroxidation using a novel pyridoxamine-participating ferrous oxidation-sulfosalicylic acid spectrophotometric method.

    Science.gov (United States)

    Chen, Jingnan; Cai, Danqian; Zhang, Yu

    2016-11-15

    A novel method is developed to rapidly analyze lipid peroxidation in edible oils and fatty foods at room temperature, which is called the pyridoxamine-participating ferrous oxidation-sulfosalicylic acid (PFOS) method. The PFOS method evaluates the lipid peroxide value colorimetrically via detecting the pyridoxamine-mediated pigment produced by 5-sulfosalicylic acid and Fe(3+) at 500nm, while the latter is converted from Fe(2+) in the presence of lipid peroxides. The optimized formulation was ethanol (70%, v/v), Fe(2+) (4mmol/L), 5-sulfosalicylic acid (40mmol/L) and pyridoxamine (18mmol/L). The limit of quantitation is 0.087mmol Fe(3+)/L with acceptable reproducibility. In addition, current method has a significant linear correlation with both conventional thiobarbituric acid (R(2)=0.9999) and ferric thiocyanate assays (R(2)=0.9675). This method offers a rapid technique for evaluating lipid peroxidation without heating and sophisticated instrumental procedures. Besides, current method provides a new option to evaluate the lipid peroxidation state and improve the reproducibility of ferrous-oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms

    Science.gov (United States)

    Lovley, D.R.; Woodward, J.C.; Chapelle, F.H.

    1996-01-01

    Fe(III) chelated to such compounds as EDTA, N-methyliminodiacetie acid, ethanol diglycine, humic acids, and phosphates stimulated benzene oxidation coupled to Fe(III) reduction in anaerobic sediments from a petroleum- contaminated aquifer as effectively as or more effectively than nitrilotriacetic acid did in a previously demonstrated stimulation experiment. These results indicate that many forms of chelated Fe(III) might be applicable to aquifer remediation.

  12. RAPID COMMUNICATION: Impact of contemporary light sources on oxidation of fresh ground beef.

    Science.gov (United States)

    Cooper, J V; Wiegand, B R; Koc, A B; Schumacher, L; Grün, I; Lorenzen, C L

    2016-10-01

    Meat color is considered one of the driving factors in consumer purchasing decisions. The objective of this study was to determine the impact of 2 different lighting sources on color and lipid oxidation of ground beef patties in a controlled environment. USDA Select top rounds ( = 20) were processed to produce ground beef at 2 different fat levels (5 and 25%) and made into patties (113.4 g). Patties were packaged with oxygen permeable polyvinyl chloride, assigned to one of three lighting treatments (low UV fluorescent [FLO], light emitting diode [LED], and no light [DRK, negative control]), and placed within deli cases at 5°C. Patty removal for evaluation occurred on retail display d 1, 3, 5, and 7. Objective color measurements were obtained using a HunterLab MiniScan 45/0 LAV. These values were utilized to determine myoglobin redox forms as a measure of myoglobin oxidation. Additionally, thiobarbituric acid reactive substances (TBARS) were measured to indicate lipid oxidation. Objective color measurement for a* (redness), decreased for all light treatments by retail display day ( LED > FLO. Conversely, metmyoglobin values increased daily ( LED > DRK. TBARS values increased by day for each fat percentage ( discoloration and metmyoglobin formation in ground beef patties LED lighting may lead to increased meat quality shelf life in a retail setting.

  13. Aligned carbon nanotube, graphene and graphite oxide thin films via substrate-directed rapid interfacial deposition.

    Science.gov (United States)

    D'Arcy, Julio M; Tran, Henry D; Stieg, Adam Z; Gimzewski, James K; Kaner, Richard B

    2012-05-21

    A procedure for depositing thin films of carbon nanostructures is described that overcomes the limitations typically associated with solution based methods. Transparent and conductively continuous carbon coatings can be grown on virtually any type of substrate within seconds. Interfacial surface tension gradients result in directional fluid flow and film spreading at the water/oil interface. Transparent films of carbon nanostructures are produced including aligned ropes of single-walled carbon nanotubes and assemblies of single sheets of chemically converted graphene and graphite oxide. Process scale-up, layer-by-layer deposition, and a simple method for coating non-activated hydrophobic surfaces are demonstrated.

  14. Stable isotope probing and dynamic loading experiments provide insight into the ecophysiology of novel ammonia oxidizers in rapid gravity sand filters

    DEFF Research Database (Denmark)

    Fowler, Jane; Palomo, Alejandro; Gülay, Arda

    Nitrification is often the dominant microbial process in rapid gravity sand filters (RSF), used to treat aerated groundwater to produce drinking water. RSFs harbor diverse microbial communities including a range of ammonia oxidizing clades; Betaproteobacteria (Nitrosomonas, Nitrosospira), Archaea......, diverse potentially ammonia oxidizing heterotrophs and abundant Nitrospira spp., recently shown to comprise both canonical nitrite oxidizing as well as complete ammonium oxidizing (comammox) types. We examined the contributions of the different ammonia oxidizers to in situ ammonia oxidation, and aimed...... to elucidate the differences in ecophysiology between the ammonia oxidizing clades that enable them to co-exist in this unique environment. Experiments were conducted using sand columns designed and operated to mimic the conditions in the full-scale parent RSF. RNA and DNA stable isotope probing based on 13C...

  15. A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method

    Science.gov (United States)

    Najafi, Navid; Rozati, S. M.

    2018-03-01

    Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.

  16. A Rapid Deposition of Fluorine Doped Zinc Oxide Using the Atmospheric Pressure Chemical Vapour Deposition Method

    Science.gov (United States)

    Najafi, Navid; Rozati, S. M.

    2017-12-01

    Fluorine-doped zinc oxide (FZO) (ZnO:F) thin films were manufactured by atmospheric pressure chemical vapor deposition (APCVD) on glass substrates using zinc acetate dihydrate [C4H6O4Zn·2H2O, ZnAc] and ammonium fluoride (NH4F) as the source of fluorine with deposition duration of only 120 s for each sample. The effects of different amounts of fluorine as the dopant on the structural, electrical and optical properties of FZO thin films were investigated. The results show a polycrystalline structure at higher temperatures compared to amorphous structure at lower temperatures. The x-ray diffraction patterns of the polycrystalline films were identified as a hexagonal wurtzite structure of zinc oxide (ZnO) with the (002) preferred orientation. Also, the sheet resistance decreased from 17.8 MΩ/□ to 28.9 KΩ/□ for temperatures 325°C to 450°C, respectively. In order to further decrease the sheet resistance of the undoped ZnO thin films, fluorine was added using NH4F as the precursor, and again a drastic change in sheet resistance of only 17.7 Ω/□ was obtained. Based on the field emission scanning electron microscopy images, the fluorine concentration in CVD source is an important factor affecting the grain size and modifies electrical parameters. Ultraviolet-visible measurements revealed reduction of transparency of the layers with increasing fluorine as the dopant.

  17. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi 2 Se 3

    KAUST Repository

    Kong, Desheng

    2011-06-28

    Bismuth selenide (Bi2Se3) is a topological insulator with metallic surface states (SS) residing in a large bulk bandgap. In experiments, synthesized Bi2Se3 is often heavily n-type doped due to selenium vacancies. Furthermore, it is discovered from experiments on bulk single crystals that Bi2Se3 gets additional n-type doping after exposure to the atmosphere, thereby reducing the relative contribution of SS in total conductivity. In this article, transport measurements on Bi2Se3 nanoribbons provide additional evidence of such environmental doping process. Systematic surface composition analyses by X-ray photoelectron spectroscopy reveal fast formation and continuous growth of native oxide on Bi2Se3 under ambient conditions. In addition to n-type doping at the surface, such surface oxidation is likely the material origin of the degradation of topological SS. Appropriate surface passivation or encapsulation may be required to probe topological SS of Bi2Se3 by transport measurements. © 2011 American Chemical Society.

  18. A new rapid chemical route to prepare reduced graphene oxide using copper metal nanoparticles.

    Science.gov (United States)

    Wu, Tao; Gao, Jianping; Xu, Xiaoyang; Wang, Wei; Gao, Chunjuan; Qiu, Haixia

    2013-05-31

    Copper metal nanoparticles were used as a reducing agent to reduce graphene oxide (GO). The reaction was complete in about 10 min and did not involve the use of any toxic reagents or acids that are typically used in the reduction of GO by Zn and Fe powders. The high reduction activity of the Cu nanoparticles, compared to Cu powder, may be the result of the formation of Cu₂O nanoparticles. The effect of the mass ratio of the metal to GO for this reduction was also investigated. The reduction of the GO was verified by ultraviolet-visible absorption spectroscopy, x-ray diffraction, thermogravimetric analysis, Raman spectroscopy, x-ray photoelectron spectroscopy and transmission electron microscopy. After reduction, Cu₂O supported on reduced GO was formed and showed superior catalytic ability for the degradation of a model dye pollutant, methylene blue.

  19. Rapid dehalogenation of pesticides and organics at the interface of reduced graphene oxide-silver nanocomposite.

    Science.gov (United States)

    Koushik, Dibyashree; Sen Gupta, Soujit; Maliyekkal, Shihabudheen M; Pradeep, T

    2016-05-05

    This paper reports dehalogenation of various organohalides, especially aliphatic halocarbons and pesticides at reduced graphene oxide-silver nanocomposite (RGO@Ag). Several pesticides as well as chlorinated and fluorinated alkyl halides were chosen for this purpose. The composite and the products of degradation were characterized thoroughly by means of various microscopic and spectroscopic techniques. A sequential two-step mechanism involving dehalogenation of the target pollutants by silver nanoparticles followed by adsorption of the degraded compounds onto RGO was revealed. The composite showed unusual adsorption capacity, as high as 1534 mg/g, which facilitated the complete removal of the pollutants. Irrespective of the pollutants tested, a pseudo-second-order rate equation best described the adsorption kinetics. The affinity of the composite manifested chemical differences. The high adsorption capacity and re-usability makes the composite an excellent substrate for purification of water. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  1. Gold Decorated Graphene for Rapid Dye Reduction and Efficient Electro Catalytic Oxidation of Ethanol

    Science.gov (United States)

    Siddhardha, R. S.; Kumar v, Lakshman; Kaniyoor, A.; Podila, R.; Kumar, V. S.; Venkataramaniah, K.; Ramaprabhu, S.; Rao, A.; Ramamurthy, S. S.; Clemson University Team; Sri Sathya Sai Institute of Higher Learning Team; IITMadras Team

    2013-03-01

    A well known disadvantage in fabrication of metal-graphene composite is the use of surfactants that strongly adsorb on the surface and reduce the performance of the catalyst. Here, we demonstrate a novel one pot synthesis of gold nanoparticles (AuNPs) by laser ablation of gold strip and simultaneous decoration of these on functionalized graphene derivatives. Not only the impregnation of AuNPs was linker free, but also the synthesis by itself was surfactant free. This resulted in in-situ decoration of pristine AuNPs on functionalized graphene derivatives. These materials were well characterized and tested for catalytic applications pertaining to dye reduction and electrooxidation. The catalytic reduction rates are 1.4 x 102 and 9.4x102 times faster for Rhodamine B and Methylene Blue dyes respectively, compared to earlier reports. The enhanced rate involves synergistic interplay of electronic relay between AuNPs and the dye, also charge transfer between the graphene system and dye. In addition, the onset potential for ethanol oxidation was found to be more negative ~ 100 mV, an indication of its promising application in direct ethanol fuel cells.

  2. Rapid atmospheric pressure plasma jet processed reduced graphene oxide counter electrodes for dye-sensitized solar cells.

    Science.gov (United States)

    Liu, Hsiao-Wei; Liang, Sheng-Ping; Wu, Ting-Jui; Chang, Haoming; Kao, Peng-Kai; Hsu, Cheng-Che; Chen, Jian-Zhang; Chou, Pi-Tai; Cheng, I-Chun

    2014-09-10

    In this work, we present the use of reduced graphene oxide (rGO) as the counter electrode materials in dye-sensitized solar cells (DSSCs). rGO was first deposited on a fluorine-doped tin oxide glass substrate by screen-printing, followed by post-treatment to remove excessive organic additives. We investigated the effect of atmospheric pressure plasma jet (APPJ) treatment on the DSSC performance. A power conversion efficiency of 5.19% was reached when DSSCs with an rGO counter electrode were treated by APPJs in the ambient air for a few seconds. For comparison, it requires a conventional calcination process at 400 °C for 15 min to obtain comparable efficiency. Scanning electron micrographs show that the APPJ treatment modifies the rGO structure, which may reduce its conductivity in part but simultaneously greatly enhances its catalytic activity. Combined with the rapid removal of organic additives by the highly reactive APPJ, DSSCs with APPJ-treated rGO counter electrode show comparable efficiencies to furnace-calcined rGO counter electrodes with greatly reduced process time. This ultrashort process time renders an estimated energy consumption per unit area of 1.1 kJ/cm(2), which is only one-third of that consumed in a conventional furnace calcination process. This new methodology thus saves energy, cost, and time, which is greatly beneficial to future mass production.

  3. Rapid growth of zinc oxide nanobars in presence of electric field by physical vapor deposition

    Science.gov (United States)

    Jouya, Mehraban; Taromian, Fahime; Siami, Simin

    2018-01-01

    In this contribution, electric field has some effects to increase growth for specific time duration on zinc oxide (ZnO) nanobars. First, the zinc (Zn) thin film has been prepared by 235,000 V/m electric field assisted physical vapor deposition (PVD) at vacuum of 1.33 × 10-5 mbar. Second, strong electric field of 134,000 V/m has been used in ambient for growing ZnO nanobars in term of the time include 2.5 and 10 h. The performances of the ZnO nanostructure in absence and presence of electric field have been determined by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The results of XRD analysis showed that ZnO has a hexagonal bars structure and a strongly preferred (101) orientation which is strongest than without applying electric field. SEM analysis revealed that physical vapored ZnO thin film in presence of electric field are densely packed with uniform morphological, thinner and denser in distribution. Electric field effect for ZnO growth in 2.5 h is better than it in the 2.5 h without electric field but by passing the time the media influence has good power almost as same as electric field. Through this electric field in PVD, the compact and uniform Zn film has been achieved which is less diameter than ordinary PVD method. Finally, we carry out a series of experiments to grow different-orientation ZnO nanobars with less than 100 nm in diameter, which are the time saving process in base of PVD ever reported. Therefore, the significant conclusion in usage electric field is reducing time of growth.

  4. Enhanced Al and Zn removal from coal-mine drainage during rapid oxidation and precipitation of Fe oxides at near-neutral pH

    Science.gov (United States)

    Burrows, Jill E.; Cravotta, Charles A.; Peters, Stephen C.

    2017-01-01

    Net-alkaline, anoxic coal-mine drainage containing ∼20 mg/L FeII and ∼0.05 mg/L Al and Zn was subjected to parallel batch experiments: control, aeration (Aer 1 12.6 mL/s; Aer 2 16.8 mL/s; Aer 3 25.0 mL/s), and hydrogen peroxide (H2O2) to test the hypothesis that aeration increases pH, FeII oxidation, hydrous FeIII oxide (HFO) formation, and trace-metal removal through adsorption and coprecipitation with HFO. During 5.5-hr field experiments, pH increased from 6.4 to 6.7, 7.1, 7.6, and 8.1 for the control, Aer 1, Aer 2, and Aer 3, respectively, but decreased to 6.3 for the H2O2 treatment. Aeration accelerated removal of dissolved CO2, Fe, Al, and Zn. In Aer 3, dissolved Al was completely removed within 1 h, but increased to ∼20% of the initial concentration after 2.5 h when pH exceeded 7.5. H2O2 promoted rapid removal of all dissolved Fe and Al, and 13% of dissolved Zn.Kinetic modeling with PHREEQC simulated effects of aeration on pH, CO2, Fe, Zn, and Al. Aeration enhanced Zn adsorption by increasing pH and HFO formation while decreasing aqueous CO2 available to form ZnCO30 and Zn(CO3)22− at high pH. Al concentrations were inconsistent with solubility control by Al minerals or Al-containing HFO, but could be simulated by adsorption on HFO at pH oxidation with pH adjustment to ∼7.5 could be effective for treating high-Fe and moderate-Zn concentrations, whereas chemical oxidation without pH adjustment may be effective for treating high-Fe and moderate-Al concentrations.

  5. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Yunfeng [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Qin, Zongyi, E-mail: phqin@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Yannan; Cheng, Miao; Qian, Pengfei [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China); Wang, Qian, E-mail: drwangqian23@163.com [Department of Orthopaedics, Shanghai First People' s Hospital, Shanghai Jiaotong University, 100 Haining Road, Hongkou District, Shanghai 200080 (China); Zhu, Meifang [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, and College of Material Science and Engineering, Donghua University, Shanghai 201620 (China)

    2015-12-01

    Graphical abstract: - Highlights: • Anchoring superparamagnetic iron oxide on the surface of cellulose nanospheres as magnetically recyclable nanocatalys. • Achieving highly efficient Fenton-like reaction on the surface of composite nanospheres for rapid removal of textile dye. • Reaching nearly 98.0% degradation of Navy blue within 5 min under mild condition. - Abstract: Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe{sub 3}O{sub 4}) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H{sub 2}O{sub 2}, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  6. A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli.

    Science.gov (United States)

    Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan

    2017-11-16

    A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm(-1) °C(-1). Upon irradiation with 60 mW cm(-2) infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s(-1). Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm(-1) upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.

  7. Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast‐growing methane‐oxidizing bacteria

    Science.gov (United States)

    Hoefman, Sven; van der Ha, David; De Vos, Paul; Boon, Nico; Heylen, Kim

    2012-01-01

    Summary Methane‐oxidizing bacteria (MOB) have a large potential as a microbial sink for the greenhouse gas methane as well as for biotechnological purposes. However, their application in biotechnology has so far been hampered, in part due to the relative slow growth rate of the available strains. To enable the availability of novel strains, this study compares the isolation of MOB by conventional dilution plating with miniaturized extinction culturing, both performed after an initial enrichment step. The extinction approach rendered 22 MOB isolates from four environmental samples, while no MOB could be isolated by plating. In most cases, extinction culturing immediately yielded MOB monocultures making laborious purification redundant. Both type I (Methylomonas spp.) and type II (Methylosinus sp.) MOB were isolated. The isolated methanotrophic diversity represented at least 11 different strains and several novel species based on 16S rRNA gene sequence dissimilarity. These strains possessed the particulate (100%) and soluble (64%) methane monooxygenase gene. Also, 73% of the strains could be linked to a highly active fast‐growing mixed MOB community. In conclusion, miniaturized extinction culturing was more efficient in rapidly isolating numerous MOB requiring little effort and fewer materials, compared with the more widely applied plating procedure. This miniaturized approach allowed straightforward isolation and could be very useful for subsequent screening of desired characteristics, in view of their future biotechnological potential. PMID:22070783

  8. Rapid oxidation of ring methyl groups is the primary mechanism of biotransformation of gemfibrozil by the fungus Cunninghamella elegans.

    Science.gov (United States)

    Kang, Su-Il; Kang, Seo-Young; Kanaly, Robert A; Lee, Eunjung; Lim, Yoongho; Hur, Hor-Gil

    2009-06-01

    The hypolipidemic agent gemfibrozil (GEM), which has been studied for its metabolism in humans and animals, was investigated to elucidate its primary metabolism by Cunninghamella elegans. The fungus produced ten metabolites (FM1-FM9 and FM6') from the biotransformation of GEM. Based on LC/MS/MS and NMR analyses, a major metabolite, FM7, was identified as 2'-hydroxymethyl GEM. FM6 was considered to be 5'-hydroxymethyl GEM, after comparison of results LC/MS, LC/MS/MS, and UV absorption spectra to FM7. The combined concentration of FM6 and FM7 was found to increase up to 0.83 mM by day 2, and then decreased gradually with incubation time, followed by a noticeable increase in the biotransformation product, FM1, up to 0.86 mM by day 15. NMR analyses confirmed that FM1 was 2',5'-dihydroxymethyl GEM. Further minor oxidations of the aromatic ring and carboxylic acid intermediates were also detected. Based upon these findings, the major fungal metabolic pathway for GEM is likely to occur via production of 2',5'-dihydroxymethyl GEM from 2'-hydroxymethyl GEM. These relatively rapid and diverse biotransformations of GEM by C. elegans suggest that depending upon conditions, it may also follow a similar biodegradation fate when released into the natural environment.

  9. Preparation of Janus Particles and Alternating Current Electrokinetic Measurements with a Rapidly Fabricated Indium Tin Oxide Electrode Array.

    Science.gov (United States)

    Chen, Yu-Liang; Jiang, Hong-Ren

    2017-06-23

    This article provides a simple method to prepare partially or fully coated metallic particles and to perform the rapid fabrication of electrode arrays, which can facilitate electrical experiments in microfluidic devices. Janus particles are asymmetric particles that contain two different surface properties on their two sides. To prepare Janus particles, a monolayer of silica particles is prepared by a drying process. Gold (Au) is deposited on one side of each particle using a sputtering device. The fully coated metallic particles are completed after the second coating process. To analyze the electrical surface properties of Janus particles, alternating current (AC) electrokinetic measurements, such as dielectrophoresis (DEP) and electrorotation (EROT)- which require specifically designed electrode arrays in the experimental device- are performed. However, traditional methods to fabricate electrode arrays, such as the photolithographic technique, require a series of complicated procedures. Here, we introduce a flexible method to fabricate a designed electrode array. An indium tin oxide (ITO) glass is patterned by a fiber laser marking machine (1,064 nm, 20 W, 90 to 120 ns pulse-width, and 20 to 80 kHz pulse repetition frequency) to create a four-phase electrode array. To generate the four-phase electric field, the electrodes are connected to a 2-channel function generator and to two invertors. The phase shift between the adjacent electrodes is set at either 90° (for EROT) or 180° (for DEP). Representative results of AC electrokinetic measurements with a four-phase ITO electrode array are presented.

  10. Rapid in situ generation of two patterned chemoselective surface chemistries from a single hydroxy-terminated surface using controlled microfluidic oxidation.

    Science.gov (United States)

    Pulsipher, Abigail; Westcott, Nathan P; Luo, Wei; Yousaf, Muhammad N

    2009-06-10

    In this work, we develop a new, rapid and inexpensive method to generate spatially controlled aldehyde and carboxylic acid surface groups by microfluidic oxidation of 11-hydroxyundecylphosphonic acid self-assembled monolayers (SAMs) on indium tin oxide (ITO) surfaces. SAMs are activated and patterned using a reversibly sealable, elastomeric polydimethylsiloxane cassette, fabricated with preformed micropatterns by soft lithography. By flowing the mild oxidant pyridinium chlorochromate through the microchannels, only selected areas of the SAM are chemically altered. This microfluidic oxidation strategy allows for ligand immobilization by two chemistries originating from a single SAM composition. ITO is robust, conductive, and transparent, making it an ideal platform for studying interfacial interactions. We display spatial control over the immobilization of a variety of ligands on ITO and characterize the resulting oxime and amide linkages by electrochemistry, X-ray photoelectron spectroscopy, contact angle, fluorescence microscopy, and atomic force microscopy. This general method may be used with many other materials to rapidly generate patterned and tailored surfaces for studies ranging from molecular electronics to biospecific cell-based assays and biomolecular microarrays.

  11. Rapid dimerization of quercetin through an oxidative mechanism in the presence of serum albumin decreases its ability to induce cytotoxicity in MDA-MB-231 cells

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Anh; Bortolazzo, Anthony [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States); White, J. Brandon, E-mail: Brandon.White@sjsu.edu [Department of Biological Sciences, San Jose State University, San Jose, CA 95192-0100 (United States)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Quercetin cannot be detected intracellularly despite killing MDA-MB-231 cells. Black-Right-Pointing-Pointer Quercetin forms a heterodimer through oxidation in media with serum. Black-Right-Pointing-Pointer The quercetin heterodimer does not kill MDA-MB-231 cells. Black-Right-Pointing-Pointer Ascorbic acid stabilizes quercetin increasing cell death in quercetin treated cells. Black-Right-Pointing-Pointer Quercetin, and not a modified form, is responsible for apoptosis and cell death. -- Abstract: Quercetin is a member of the flavonoid family and has been previously shown to have a variety of anti-cancer activities. We and others have reported anti-proliferation, cell cycle arrest, and induction of apoptosis of cancer cells after treatment with quercetin. Quercetin has also been shown to undergo oxidation. However, it is unclear if quercetin or one of its oxidized forms is responsible for cell death. Here we report that quercetin rapidly oxidized in cell culture media to form a dimer. The quercetin dimer is identical to a dimer that is naturally produced by onions. The quercetin dimer and quercetin-3-O-glucopyranoside are unable to cross the cell membrane and do not kill MDA-MB-231 cells. Finally, supplementing the media with ascorbic acid increases quercetin's ability to induce cell death probably by reduction oxidative dimerization. Our results suggest that an unmodified quercetin is the compound that elicits cell death.

  12. 3,5-Diiodo-L-thyronine administration to hypothyroid rats rapidly enhances fatty acid oxidation rate and bioenergetic parameters in liver cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Cavallo

    Full Text Available Growing evidence shows that, among triiodothyronine derivatives, 3,5 diiodo-L-thyronine (T(2 plays an important role in energy metabolism and fat storage. In the present study, short-term effects of T(2 administration to hypothyroid rats on fatty acid oxidation rate and bioenergetic parameters were investigated. Within 1 h following T(2 injection, state 3 and state 4 respiration rates, which were reduced in hypothyroid mitochondria, were noticeably increased particularly in succinate- with respect to glutamate/malate-energized mitochondria. Maximal respiratory activity, observed when glutamate/malate/succinate were simultaneously present in the respiratory medium, was significantly stimulated by T(2 treatment. A T(2-induced increase in respiratory rates was also observed when palmitoyl-CoA or L-palmitoylcarnitine were used as substrates. No significant change in respiratory control index and ADP/O ratio was observed. The activities of the mitochondrial respiratory chain complexes, especially Complex II, were increased in T(2-treated rats. In the latter, Complex V activities, assayed in both ATP synthesis and hydrolysis direction, were enhanced. The rate of fatty acid oxidation, followed by conversion of [(14C]palmitate to CO(2 and ketone bodies, was higher in hepatocytes isolated from T(2-treated rats. This increase occurs in parallel with the raise in the activity of carnitine palmitoyltransferase-I, the rate limiting enzyme of fatty acid β-oxidation, assayed in situ in digitonin-permeabilized hepatocytes. Overall, these results indicate that T(2 rapidly increases the ability of mitochondria to import and oxidize fatty acids. An emerging idea in the literature is the ability of T(2 to reduce adiposity and dyslipidemia and to prevent the development in liver steatosis. The results of the present study, showing a rapid T(2-induced increase in the ability of mitochondria to import and oxidize fatty acids, may contribute to understand the

  13. UV Sensing Properties of ZnO Nanowires Grown on Glass by Rapid Thermal Oxidation of Zinc Films

    Science.gov (United States)

    Mihailova, I.; Gerbreders, V.; Sļedevskis, Ē.; Bulanovs, A.; Paškevičs, V.

    2014-08-01

    The nanostructured ZnO thin films were successfully synthesized by rapid thermal oxidation of metallic zinc films without catalysts or additives. On the surface of thin films the formation of ZnO nanowires was observed. In the work, the optical and electrical parameters and photoresponses of the obtained ZnO thin films were investigated. Nanostructured thin films of the type have a promising potential for the use in optoelectronics, sensor technique and biomedical sciences Šī darba galvenais mērķis bija izpētīt UV fotodetektora izgatavošanas iespējamību uz nanostrukturētu ZnO plāno kārtiņu bāzes, kas sintezētas termiski oksidējot Zn plānās kārtiņas. Termiskās oksidēšanas rezultātā tika novērota adatveidīgu ZnO nanostruktūru formēšanās uz kārtiņu virsmas. Izpētītas iegūto paraugu optiskās un elektriskās īpašības, kā arī fotoreakcija. Tika konstatēts, ka iegūto nanostrukturēto ZnO kārtiņu elektriskā vadītspēja ir ārkārtīgi jutīga pret UV starojumu, taču, apstarojot ar redzamo gaismu, strāva paliek gandrīz nemainīga. Kārtiņu elektriskās vadītspējas fotoreakcija ir atkarīga arī no nanostruktūru daudzuma uz virsmas. Visaugstākā UV fotovadītspēja tika novērota paraugam ar vislielāko ZnO nanoadatu koncentrāciju. UV gaismas inducētais vadītspējas pieaugums ļauj ZnO nanoadatas reversīvi pārslēgt starp stāvokļiem "ieslēgts" un "izslēgts". Līdz ar to, šīs fotojutīgās nanoadatas var tikt izmantotas UV gaismas detektoros un optiskajos slēdžos. Šādas nanostrukturētas plānās kārtiņas var tikt pielietotas arī ķīmiskajos un bioloģiskajos sensoros, pjezoelektriskajās ierīcēs, saules elementos utt. Turklāt, šādu nanostrukturēto ZnO plāno kārtiņu sintēzes process ir salīdzinoši lēts un vienkāršs, dodot iespēju liela mēroga produkcijas ražošanai

  14. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    National Research Council Canada - National Science Library

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm...

  15. Rapid Selective Circumneutral Degradation of Phenolic Pollutants Using Peroxymonosulfate-Iodide Metal-Free Oxidation: Role of Iodine Atoms.

    Science.gov (United States)

    Feng, Yong; Lee, Po-Heng; Wu, Deli; Shih, Kaimin

    2017-02-21

    The development of environmentally friendly, oxidation-selective advanced oxidation processes (AOPs) for water decontamination is important for resource recovery, carbon dioxide abatement, and cost savings. In this study, we developed an innovative AOP using a combination of peroxymonosulfate (PMS) and iodide ions (I(-)) for the selective removal of phenolic pollutants from aqueous solutions. The results showed that nearly 100% degradation of phenol, bisphenol A, and hydroquinone was achieved after reaction for 4 min in the presence of 65 μM PMS and 50 μM I(-). PMS-I(-) oxidation had a wide effective pH range, with the best performance achieved under circumneutral conditions. The ratio between [PMS] and [I(-)] influenced the degradation, and the optimal ratio was approximately 1.00 for the degradation of the phenols. Neither sulfate nor hydroxyl radicals were found to be the active species in PMS-I(-) oxidation. Instead, we found evidence that iodide atoms were the dominant oxidants. In addition, both Cl(-) and Br(-) also promoted the degradation of phenol in PMS solution. The results of this work may promote the application of reactive halogen species in water treatment.

  16. Dummy-surface molecularly imprinted polymers on magnetic graphene oxide for rapid and selective quantification of acrylamide in heat-processed (including fried) foods.

    Science.gov (United States)

    Ning, Fangjian; Qiu, Tingting; Wang, Qi; Peng, Hailong; Li, Yanbin; Wu, Xiaqing; Zhang, Zhong; Chen, Linxin; Xiong, Hua

    2017-04-15

    Novel nano-sized dummy-surface molecularly imprinted polymers (DSMIPs) on a magnetic graphene oxide (GO-Fe3O4) surface were developed as substrates, using propionamide as a dummy template molecule for the selective recognition and rapid pre-concentration and removal of acrylamide (AM) from food samples. These products showed rapid kinetics, high binding capacity (adsorption at 3.68mg·g-1), and selectivity (imprinting factor α 2.83); the adsorption processes followed the Langmuir-Freundlich isotherm and pseudo-second-order kinetic models. Excellent recognition selectivity toward acrylamide was achieved compared to structural analogs, such as propionic and acrylic acids (selectivity factor β 2.33, and 2.20, respectively). Moreover, DSMIPs-GO-Fe3O4 was used to quantify acrylamide in food samples, yielding satisfactory recovery (86.7-94.3%) and low relative standard deviation (acrylamide from food samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. The rapid formation of tin oxide pillared laponite by microwave heating: Characterisation by tin-119 Mössbauer spectroscopy, X-ray photoelectron spectroscopy and nuclear magnetic resonance

    Science.gov (United States)

    Berry, Frank J.; Ashcroft, R. Claire; Beevers, Martin S.; Bond, Stephen P.; Gelders, Andrew; Lawrence, Monique A. M.; McWhinnie, William R.

    1992-04-01

    The intercalation of organotin-compounds into laponite and the formation of tin(IV) oxide pillars is rapidly achieved when performed in a microwave oven.119Sn Mössbauer- and x-ray- photoelectron-spectroscopy suggest that Ph3SnCl and Ph2SnCl2 undergo hydrolysis on the surface once sorbed. The treatment of Ph3SnCl/laponite with microwave radiation also induces the formation of a metallic phase which contains both tin and magnesium.

  18. C-H oxidation and chelation of a dipyrromethane mediated rapid colorimetric naked-eye Cu(ii) chemosensor.

    Science.gov (United States)

    Rajmohan, Rajamani; Ayaz Ahmed, Khan Behlol; Sangeetha, Sampathkumar; Anbazhagan, Veerappan; Vairaprakash, Pothiappan

    2017-09-08

    Copper(ii) ion mediated C-H oxidation of dipyrromethanes (DPMs) to the corresponding dipyrrins followed by complexation invoked the selective sensing of copper(ii) ions in aqueous solutions. On the addition of copper, the colour of the DPM solution instantaneously changes from yellow to pink with the detection limit of 0.104 μM measured by absorption spectroscopy, whereas visible colour changes could be observed by the naked eye for concentrations as low as 3 μM.

  19. A simple Cr(VI)–S(IV)–O{sub 2} system for rapid and simultaneous reduction of Cr(VI) and oxidative degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Yanan; Yang, Shaojie [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079 (China); Zhou, Danna, E-mail: zdncug@163.com [Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan 430074 (China); Wu, Feng [Department of Environmental Science, Hubei Key Lab of Biomass Resource Chemistry and Environmental Biotechnology, School of Resources and Environmental Science, Wuhan University, 430079 (China)

    2016-04-15

    Highlights: • Rapid and simultaneous reduction of Cr(VI) and degradation of organic pollutants occur. • Oxysulfur radicals generated in Cr(VI)–S(IV)–O{sub 2} system oxidize the organic pollutants. • Acidic pH facilitates the reactions from both directions of reduction and oxidation. • Degradation potential of aromatic amines depends on the substituted groups. • Cr(VI)–S(IV)–O{sub 2} system is promising for “waste control by waste”. - Abstract: Hexavalent chromium (Cr(VI)), a heavy-metal contaminant, can be easily reduced to less toxic trivalent chromium (Cr(III)) by sulfite ions (S(IV)). However, S(IV) has not drawn as much attention as the ferrous ion has. We report herein a novel Cr(VI)–S(IV)–O{sub 2} system containing sulfite ions that rapidly and simultaneously reduces Cr(VI) and oxidize organic pollutants in the presence of oxygen in aqueous solutions. This Cr(VI)–S(IV)-O{sub 2} system contains the initiator Cr(VI), the reductant S(IV), and the oxidant O{sub 2}, which produce oxysulfur radicals (mainly SO{sub 4}·{sup −} and SO{sub 5}·{sup −}) and hydroxyl radicals (OH·). The Cr(VI)/S(IV) molar ratio, pH, and oxygen content play important roles in the entire reaction system. Acidic conditions (pH 3.0) facilitated degradation of organic compounds and reduction of Cr(VI) as well. In addition, experiments of rapid degradation of several kinds of organic pollutants such as azo dye (acid orange 7, AO7), aniline, phenol, bisphenol A etc were also conducted. Preliminary results show that the removal rates of the analogs of phenols or aromatic amines in this Cr(VI)–S(IV)–O{sub 2} system have a relationship with the electronic parameters (Hammett constant, σ) of the substituted groups. Thus, the Cr(VI)–S(IV)–O{sub 2} system, provides an excellent strategy of “waste control by waste” for removing multiple industrial contaminants.

  20. Rapid rates of aerobic methane oxidation at the feather edge of gas hydrate stability in the waters of Hudson Canyon, US Atlantic Margin

    Science.gov (United States)

    Leonte, Mihai; Kessler, John D.; Kellermann, Matthias Y.; Arrington, Eleanor C.; Valentine, David L.; Sylva, Sean P.

    2017-05-01

    Aerobic oxidation is an important methane sink in seawater overlying gas seeps. Recent surveys have identified active methane seeps in the waters of Hudson Canyon, US Atlantic Margin near the updip limit of methane clathrate hydrate stability. The close proximity of these seeps to the upper stability limit of methane hydrates suggests that changing bottom water temperatures may influence the release rate of methane into the overlying water column. In order to assess the significance of aerobic methane oxidation in limiting the atmospheric expression of methane released from Hudson Canyon, the total extent of methane oxidized along with integrated oxidation rates were quantified. These calculations were performed by combining the measurements of the natural levels of methane concentrations, stable carbon isotopes, and water current velocities into kinetic isotope models yielding rates ranging from 22.8 ± 17 to 116 ± 76 nM/day with an average of 62.7 ± 37 nM/day. Furthermore, an average of 63% of methane released into the water column from an average depth of 515 m was oxidized before leaving this relatively small study area (6.5 km2). Results from the kinetic isotope model were compared to previously-published but concurrently-sampled ex situ measurements of oxidation potential performed using 13C-labeled methane. Ex situ rates were substantially lower, ranging from 0.1 to 22.5 nM/day with an average of 5.6 ± 2.3 nM/day, the discrepancy likely due to the inherent differences between these two techniques. Collectively, the results reveal exceptionally-rapid methane oxidation, with turnover times for methane as low as 0.3-3.7 days, indicating that methane released to the water column is removed quantitatively within the greater extent of Hudson Canyon. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text. The red line represents the original Rayleigh model output, Eq. (1), detailed in the text.

  1. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    OpenAIRE

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fuse...

  2. Graphene oxide based electrochemical label free immunosensor for rapid and highly sensitive determination of tumor marker HSP70.

    Science.gov (United States)

    Özcan, Burcu; Sezgintürk, Mustafa Kemal

    2016-11-01

    In this study, it is aimed to design a label free immunosensor for determination of HSP70 (heat shock protein 70). Glassy carbon electrode was used as a working electrode. Graphene oxide was covered on the working electrode surface. AntiHSP70 as a biorecognition element of the biosensor was covalently immobilized onto the graphene oxide layer by using EDC/NHS chemistry. The immobilization of antiHSP70 and binding of HSP70 protein onto the electrode surface were monitored by cyclic voltammetry and electrochemical impedance spectroscopy. Single frequency technique was also utilized to monitor binding characterization of HSP70 and antiHSP70. Surface morphology was defined by using scanning electron microscopy. All important fabrication steps of the biosensor were optimized to prepare an ultrasensitive biosensor. Under optimum conditions, analytical studies such as linearity, repeatability, and reproducibility were also experienced. A linear detection range of HSP70 was determined between 12 and 144fg/mL. Moreover, Kramer's Kronig transform was applied on impedance data. Finally, the biosensor was applied with real human blood serum samples and hopeful results were obtained. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Rapid isolation of a facultative anaerobic electrochemically active bacterium capable of oxidizing acetate for electrogenesis and azo dyes reduction.

    Science.gov (United States)

    Shen, Nan; Yuan, Shi-Jie; Wu, Chao; Cheng, Yuan-Yuan; Song, Xiang-Ning; Li, Wen-Wei; Tong, Zhong-Hua; Yu, Han-Qing

    2014-05-01

    In this study, 27 strains of electrochemically active bacteria (EAB) were rapidly isolated and their capabilities of extracellular electron transfer were identified using a photometric method based on WO3 nanoclusters. These strains caused color change of WO3 from white to blue in a 24-well agar plate within 40 h. Most of the isolated EAB strains belonged to the genera of Aeromonas and Shewanella. One isolate, Pantoea agglomerans S5-44, was identified as an EAB that can utilize acetate as the carbon source to produce electricity and reduce azo dyes under anaerobic conditions. The results confirmed the capability of P. agglomerans S5-44 for extracellular electron transfer. The isolation of this acetate-utilizing, facultative EBA reveals the metabolic diversity of environmental bacteria. Such strains have great potential for environmental applications, especially at interfaces of aerobic and anaerobic environments, where acetate is the main available carbon source.

  4. Bimodal effect of hydrogen peroxide and oxidative events in nitrite-induced rapid root abscission by the water fern Azolla pinnata

    Directory of Open Access Journals (Sweden)

    Michael F Cohen

    2015-07-01

    Full Text Available In the genus Azolla rapid abscission of roots from floating fronds occurs within minutes in response to a variety of stresses, including exposure to nitrite. We found that hydrogen peroxide, though itself not an inducer of root abscission, modulates nitrite-induced root abscission by Azolla pinnata in a dose-dependent manner, with 2 mM H2O2 significantly diminishing the responsiveness to 2 mM NaNO2, and 10 mM H2O2 slightly enhancing it. Hypoxia, which has been found in other plants to result in autogenic production of H2O2, dramatically stimulated root abscission of A. pinnata in response to nitrite, especially for plants previously cultivated in medium containing 5 mM KNO3 compared to plants cultivated under N2-fixing conditions without combined nitrogen. Plants, including Azolla, produce the small signaling molecule nitric oxide (NO from nitrite using nitrate reductase. We found Azolla plants to display dose-dependent root abscission in response to the NO donor spermine NONOate. Treatment of plants with the thiol-modifying agents S-methyl methanethiosulfonate or glutathione inhibited the nitrite-induced root abscission response. Synchrotron radiation-based Fourier transform infrared (SR-FTIR spectromicroscopy revealed higher levels of carbonylation in the abscission zone of dropped roots, indicative of reaction products of polysaccharides with potent free radical oxidants. We hypothesize that metabolic products of nitrite and NO react with H2O2 in the apoplast leading to free-radical-mediated cleavage of structural polysaccharides and consequent rapid root abscission.

  5. Pulse-Driven Capacitive Lead Ion Detection with Reduced Graphene Oxide Field-Effect Transistor Integrated with an Analyzing Device for Rapid Water Quality Monitoring.

    Science.gov (United States)

    Maity, Arnab; Sui, Xiaoyu; Tarman, Chad R; Pu, Haihui; Chang, Jingbo; Zhou, Guihua; Ren, Ren; Mao, Shun; Chen, Junhong

    2017-11-22

    Rapid and real-time detection of heavy metals in water with a portable microsystem is a growing demand in the field of environmental monitoring, food safety, and future cyber-physical infrastructure. Here, we report a novel ultrasensitive pulse-driven capacitance-based lead ion sensor using self-assembled graphene oxide (GO) monolayer deposition strategy to recognize the heavy metal ions in water. The overall field-effect transistor (FET) structure consists of a thermally reduced graphene oxide (rGO) channel with a thin layer of Al 2 O 3 passivation as a top gate combined with sputtered gold nanoparticles that link with the glutathione (GSH) probe to attract Pb 2+ ions in water. Using a preprogrammed microcontroller, chemo-capacitance based detection of lead ions has been demonstrated with this FET sensor. With a rapid response (∼1-2 s) and negligible signal drift, a limit of detection (LOD) lead ions 1 order of magnitude higher than that of interfering ions) can be achieved for Pb 2+ measurements. The overall assay time (∼10 s) for background water stabilization followed by lead ion testing and calculation is much shorter than common FET resistance/current measurements (∼minutes) and other conventional methods, such as optical and inductively coupled plasma methods (∼hours). An approximate linear operational range (5-20 ppb) around 15 ppb (the maximum contaminant limit by US Environmental Protection Agency (EPA) for lead in drinking water) makes it especially suitable for drinking water quality monitoring. The validity of the pulse method is confirmed by quantifying Pb 2+ in various real water samples such as tap, lake, and river water with an accuracy ∼75%. This capacitance measurement strategy is promising and can be readily extended to various FET-based sensor devices for other targets.

  6. Superparamagnetic iron oxide coated on the surface of cellulose nanospheres for the rapid removal of textile dye under mild condition

    Science.gov (United States)

    Qin, Yunfeng; Qin, Zongyi; Liu, Yannan; Cheng, Miao; Qian, Pengfei; Wang, Qian; Zhu, Meifang

    2015-12-01

    Magnetic composite nanoparticles (MNPs) were prepared by anchoring iron oxide (Fe3O4) on the surface of carboxyl cellulose nanospheres through a facile chemical co-precipitation method. The as-prepared MNPs were characterized by atomic force microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, wide-angle X-ray diffraction measurement, thermal gravity analysis and vibrating sample magnetometry. These MNPs were of a generally spherical shape with a narrow size distribution, and exhibited superparamagnetic behaviors with high saturation magnetization. High efficient removal of Navy blue in aqueous solution was demonstrated at room temperature in a Fenton-like system containing the MNPs and H2O2, which benefited from small particle size, large surface area, high chemical activity, and good dispersibility of the MNPs. The removal efficiency of Navy blue induced by the MNPs prepared at a weight ratio of cellulose to iron of 1:2 were 90.6% at the first minute of the degradation reaction, and 98.0% for 5 min. Furthermore, these MNPs could be efficiently recycled and reused by using an external magnetic field. The approach presented in this paper promotes the use of renewable natural resources as templates for the preparation and stabilization of various inorganic nanomaterials for the purpose of catalysis, magnetic resonance imaging, biomedical and other potential applications.

  7. Preparation of SERS-active substrates based on graphene oxide/silver nanocomposites for rapid zdetection of l-Theanine.

    Science.gov (United States)

    Zheng, Huajun; Ni, Dejiang; Yu, Zhi; Liang, Pei

    2017-02-15

    A kind of graphene oxide/silver (GO/Ag) nanocomposites with high Surface enhanced Raman scattering (SERS) activity were fabricated via a facile and green liquid phase reduction method. The synthesized materials were characterized in detail using various microscopic and spectroscopic techniques. In this method, the GO sheets worked as a holder which makes silver nanoparticles (AgNPs) aggregate to a particular morphology, and under a suitable dosage of silver ions, well-dispersed AgNPs on the surface of GO were obtained, which could generate more "hot spots" of SERS. Moreover, SERS technique based on the obtained GO/Ag nanocomposites was used as an effective way to detect l-Theanine. The detection limit was estimated to be as low as 10(-7)M, and a multivariate linear regression model for the concentration of l-Theanine was established. The optimal fitting equation is Y=5.6765+0.0307X1458-0.0267X1251. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method.

    Directory of Open Access Journals (Sweden)

    Michelle Jeung-Eun Lee

    2010-03-01

    Full Text Available Recent advances in nanotechnology have led to the development of biocompatible nanoparticles for in vivo molecular imaging and targeted therapy. Many nanoparticles have undesirable tissue distribution or unacceptably low serum half-lives. Pharmacokinetic (PK and biodistribution studies can help inform decisions determining particle size, coatings, or other features early in nanoparticle development. Unfortunately, these studies are rarely done in a timely fashion because many nanotechnology labs lack the resources and expertise to synthesize radioactive nanoparticles and evaluate them in mice.To address this problem, we developed an economical, radioactivity-free method for assessing serum half-life and tissue distribution of nanoparticles in mice. Iron oxide nanoparticles coated with chitosan and polyethylene glycol that utilize chlorotoxin as a targeting molecule have a serum half-life of 7-8 hours and the particles remain stable for extended periods of time in physiologic fluids and in vivo. Nanoparticles preferentially distribute to spleen and liver, presumably due to reticuloendothelial uptake. Other organs have very low levels of nanoparticles, which is ideal for imaging most cancers in the future. No acute toxicity was attributed to the nanoparticles.We report here a simple near-infrared fluorescence based methodology to assess PK properties of nanoparticles in order to integrate pharmacokinetic data into early nanoparticle design and synthesis. The nanoparticles tested demonstrate properties that are excellent for future clinical imaging strategies and potentially suitable for targeted therapy.

  9. Rapid imaging of misfit dislocations in SiGe/Si in cross-section and through oxide layers using electron channeling contrast

    Science.gov (United States)

    Mukherjee, Kunal; Wacaser, Brent A.; Bedell, Stephen W.; Sadana, Devendra K.

    2017-06-01

    Electron channeling contrast imaging (ECCI) is emerging as a technique for rapid and high-resolution characterization of individual crystalline defects in a scanning electron microscope. However, the application of ECCI to semiconductor materials has been limited to bare samples in plan-view geometry. In this paper, two modalities of this technique are demonstrated with relevance to semiconductor manufacturing and failure analysis: (1) The use of ECCI to reveal misfit dislocation defects along a cleaved cross-section of a SiGe compositionally graded buffer grown on Si and (2) plan-view imaging of misfit dislocations in metamorphic SiGe/Si layers covered by amorphous oxide layers, where the partial loss of contrast due to the oxide layers is quantified and the effect of the beam accelerating voltage is studied. These results demonstrate the power of ECCI in inspecting crystallographic defects non-destructively over large areas, which is highly desirable for substrate quality control in manufacturing of products based on crystalline materials.

  10. Heat waves imposed during early pod development in soybean (Glycine max) cause significant yield loss despite a rapid recovery from oxidative stress.

    Science.gov (United States)

    Siebers, Matthew H; Yendrek, Craig R; Drag, David; Locke, Anna M; Rios Acosta, Lorena; Leakey, Andrew D B; Ainsworth, Elizabeth A; Bernacchi, Carl J; Ort, Donald R

    2015-08-01

    Heat waves already have a large impact on crops and are predicted to become more intense and more frequent in the future. In this study, heat waves were imposed on soybean using infrared heating technology in a fully open-air field experiment. Five separate heat waves were applied to field-grown soybean (Glycine max) in central Illinois, three in 2010 and two in 2011. Thirty years of historical weather data from Illinois were analyzed to determine the length and intensity of a regionally realistic heat wave resulting in experimental heat wave treatments during which day and night canopy temperatures were elevated 6 °C above ambient for 3 days. Heat waves were applied during early or late reproductive stages to determine whether and when heat waves had an impact on carbon metabolism and seed yield. By the third day of each heat wave, net photosynthesis (A), specific leaf weight (SLW), and leaf total nonstructural carbohydrate concentration (TNC) were decreased, while leaf oxidative stress was increased. However, A, SLW, TNC, and measures of oxidative stress were no different than the control ca. 12 h after the heat waves ended, indicating rapid physiological recovery from the high-temperature stress. That end of season seed yield was reduced (~10%) only when heat waves were applied during early pod developmental stages indicates the yield loss had more to do with direct impacts of the heat waves on reproductive process than on photosynthesis. Soybean was unable to mitigate yield loss after heat waves given during late reproductive stages. This study shows that short high-temperature stress events that reduce photosynthesis and increase oxidative stress resulted in significant losses to soybean production in the Midwest, U.S. The study also suggests that to mitigate heat wave-induced yield loss, soybean needs improved reproductive and photosynthetic tolerance to high but increasingly common temperatures. Published 2015. This article is a U.S. Government work and is

  11. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vahdatkhah, Parisa [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Madaah Hosseini, Hamid Reza, E-mail: Madaah@sharif.ir [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Khodaei, Azin [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Montazerabadi, Ali Reza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Irajirad, Rasoul [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Oghabian, Mohamad Ali [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Delavari, Hamid H., E-mail: Hamid.delavari@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, Tehran, PO Box 14115-143 (Iran, Islamic Republic of)

    2015-05-12

    Highlights: • A rapid microwave-assisted polyol process used to synthesize Gd{sub 2}O{sub 3} nanoparticles. • In situ surface modification of ultrasmall Gd{sub 2}O{sub 3}NPs with PVP has been performed. • Gd{sub 2}O{sub 3}NPs shows considerable increasing of relaxivity in comparison to Gd-chelates. • PVP-covered Gd{sub 2}O{sub 3}NPs show appropriate stability for approximately 15 days. • Spectrophotometric indicates the leaching of free Gd ions not occurred versus time. - Abstract: Synthesis of polyvinyl pyrrolidone (PVP) coated ultrasmall Gd{sub 2}O{sub 3} nanoparticles (NPs) with enhanced T{sub 1}-weighted signal intensity and r{sub 2}/r{sub 1} ratio close to unity is performed by a microwave-assisted polyol process. PVP coated Gd{sub 2}O{sub 3}NPs with spherical shape and uniform size of 2.5 ± 0.5 nm have been synthesized below 5 min and structure and morphology confirmed by HRTEM, XRD and FTIR. The longitudinal (r{sub 1}) and transversal relaxation (r{sub 2}) of Gd{sub 2}O{sub 3}NPs is measured by a 3 T MRI scanner. The results showed considerable increasing of relaxivity for Gd{sub 2}O{sub 3}NPs in comparison to gadolinium chelates which are commonly used for clinical magnetic resonance imaging. In addition, a mechanism for Gd{sub 2}O{sub 3}NPs formation and in situ surface modification of PVP-grafted Gd{sub 2}O{sub 3}NPs is proposed.

  12. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    Science.gov (United States)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  13. 1-1-12 one-step wash-in scheme for desflurane-nitrous oxide low-flow anesthesia: rapid and predictable induction.

    Science.gov (United States)

    Sathitkarnmanee, Thepakorn; Tribuddharat, Sirirat; Suttinarakorn, Chakthip; Nonlhaopol, Duangthida; Thananun, Maneerat; Somdee, Wilawan; Theerapongpakdee, Sunchai

    2014-01-01

    We propose a 1-1-12 wash-in scheme for desflurane-nitrous oxide (N2O) low-flow anesthesia. The objective of our study was to determine the time to achieve alveolar concentration of desflurane (FAD) at 1, 2, 3, 4, 5, and 6%. We enrolled 106 patients scheduled for elective surgery under general anesthesia. After induction and intubation, wash-in was started with a fresh gas flow (FGF) of N2O : O2 1 : 1 L min(-1) and vaporizer concentration of desflurane (FD) of 12%. Ventilation was controlled to maintain PACO2 at 30-35 mmHg. The FAD rose rapidly from 0 to 4% in 2 min in a linear manner in 0.5 min increments. An FAD of 6% was achieved in 4 min in a linear fashion from FAD of 4% but in 1 min increments. An FAD of 1 to 6% occurred at 0.6, 1, 1.5, 2, 3, and 4 min. Heart rate during wash-in showed a statistically, albeit not clinically, significant pattern of increase. By contrast, blood pressure slightly decreased during this period. We developed a 1-1-12 wash-in scheme using a FGF of N2O : O2 1 : 1 L min(-1) and FD of 12% for desflurane-nitrous oxide low-flow anesthesia. A respective FAD of 1, 2, 3, 4, 5, and 6% can be expected at 0.6, 1, 1.5, 2, 3, and 4 min.

  14. 1-1-12 One-Step Wash-In Scheme for Desflurane-Nitrous Oxide Low-Flow Anesthesia: Rapid and Predictable Induction

    Directory of Open Access Journals (Sweden)

    Thepakorn Sathitkarnmanee

    2014-01-01

    Full Text Available Background. We propose a 1-1-12 wash-in scheme for desflurane-nitrous oxide (N2O low-flow anesthesia. The objective of our study was to determine the time to achieve alveolar concentration of desflurane (FAD at 1, 2, 3, 4, 5, and 6%. Methods. We enrolled 106 patients scheduled for elective surgery under general anesthesia. After induction and intubation, wash-in was started with a fresh gas flow (FGF of N2O : O2 1 : 1 L min−1 and vaporizer concentration of desflurane (FD of 12%. Ventilation was controlled to maintain PACO2 at 30–35 mmHg. Results. The FAD rose rapidly from 0 to 4% in 2 min in a linear manner in 0.5 min increments. An FAD of 6% was achieved in 4 min in a linear fashion from FAD of 4% but in 1 min increments. An FAD of 1 to 6% occurred at 0.6, 1, 1.5, 2, 3, and 4 min. Heart rate during wash-in showed a statistically, albeit not clinically, significant pattern of increase. By contrast, blood pressure slightly decreased during this period. Conclusions. We developed a 1-1-12 wash-in scheme using a FGF of N2O : O2 1 : 1 L min−1 and FD of 12% for desflurane-nitrous oxide low-flow anesthesia. A respective FAD of 1, 2, 3, 4, 5, and 6% can be expected at 0.6, 1, 1.5, 2, 3, and 4 min.

  15. Cisapride a green analytical reagent for rapid and sensitive determination of bromate in drinking water, bread and flour additives by oxidative coupling spectrophotometric methods

    Science.gov (United States)

    Al Okab, Riyad Ahmed

    2013-02-01

    Green analytical methods using Cisapride (CPE) as green analytical reagent was investigated in this work. Rapid, simple, and sensitive spectrophotometric methods for the determination of bromate in water sample, bread and flour additives were developed. The proposed methods based on the oxidative coupling between phenoxazine and Cisapride in the presence of bromate to form red colored product with max at 520 nm. Phenoxazine and Cisapride and its reaction products were found to be environmentally friendly under the optimum experimental condition. The method obeys beers law in concentration range 0.11-4.00 g ml-1 and molar absorptivity 1.41 × 104 L mol-1 cm-1. All variables have been optimized and the presented reaction sequences were applied to the analysis of bromate in water, bread and flour additive samples. The performance of these method was evaluated in terms of Student's t-test and variance ratio F-test to find out the significance of proposed methods over the reference method. The combination of pharmaceutical drugs reagents with low concentration create some unique green chemical analyses.

  16. Quantification of Gas-Wall Partitioning in Teflon Environmental Chambers Using Rapid Bursts of Low-Volatility Oxidized Species Generated in Situ.

    Science.gov (United States)

    Krechmer, Jordan E; Pagonis, Demetrios; Ziemann, Paul J; Jimenez, Jose L

    2016-06-07

    Partitioning of gas-phase organic compounds to the walls of Teflon environmental chambers is a recently reported phenomenon than can affect the yields of reaction products and secondary organic aerosol (SOA) measured in laboratory experiments. Reported time scales for reaching gas-wall partitioning (GWP) equilibrium (τGWE) differ by up to 3 orders of magnitude, however, leading to predicted effects that vary from substantial to negligible. A new technique is demonstrated here in which semi- and low-volatility oxidized organic compounds (saturation concentration c* < 100 μg m(-3)) were photochemically generated in rapid bursts in situ in an 8 m(3) environmental chamber, and then their decay in the absence of aerosol was measured using a high-resolution chemical ionization mass spectrometer (CIMS) equipped with an "inlet-less" NO3(-) ion source. Measured τGWE were 7-13 min (rel. std. dev. 33%) for all compounds. The fraction of each compound that partitioned to the walls at equilibrium follows absorptive partitioning theory with an equivalent wall mass concentration in the range 0.3-10 mg m(-3). Measurements using a CIMS equipped with a standard ion-molecule reaction region showed large biases due to the contact of compounds with walls. On the basis of these results, a set of parameters is proposed for modeling GWP in chamber experiments.

  17. Rapid thermal reduced graphene oxide/Pt-TiO2 nanotube arrays for enhanced visible-light-driven photocatalytic reduction of CO2

    Science.gov (United States)

    Sim, Lan Ching; Leong, Kah Hon; Saravanan, Pichiah; Ibrahim, Shaliza

    2015-12-01

    In this study, a complicate natural photosynthesis process was prototyped through a photocatalysis process by reducing CO2 to light hydrocarbon, CH4. The composite photocatalyst employed for this study utilized Pt nanoparticles (Pt NPs) and rapid thermal reduced graphene oxide (RGO) deposited over the surface of the TiO2 nanotube arrays (TNTs). The existence and contribution of both Pt NPs and RGO in the composite was confirmed through various analytical techniques including XRD, HRTEM, FESEM, Raman, FTIR, XPS, UV-DRS and photoluminescence (PL) analysis. The TNTs in the composite exhibited pure anatase phase. The absorption bands at around 450 nm obtained from UV-DRS spectrum supported the existence of LSPR phenomenon of Pt NPs. The promising lower work function of RGO promoted the electrons transfer from TNTs to RGO efficiently. The successful depositions of Pt and RGO onto the surface of TNTs contributed for the improved photocatalytic activity (total CH4 yield of 10.96 μmol m-2) in the reduction of CO2 over TNTs and Pt-TNTs. Both of RGO and Pt NPs are equally important to exert a significant impact on the improvement of CH4 production rates.

  18. Rapid synthesis of an electron-deficient t-BuPHOX ligand: cross-coupling of aryl bromides with secondary phosphine oxides

    KAUST Repository

    McDougal, Nolan T.

    2010-10-01

    Herein an efficient and direct copper-catalyzed coupling of oxazoline-containing aryl bromides with electron-deficient secondary phosphine oxides is reported. The resulting tertiary phosphine oxides can be reduced to prepare a range of PHOX ligands. The presented strategy is a useful alternative to known methods for constructing PHOX derivatives.

  19. Rapid assessment of oxidation via middle-down LCMS correlates with methionine side-chain solvent-accessible surface area for 121 clinical stage monoclonal antibodies.

    Science.gov (United States)

    Yang, Rong; Jain, Tushar; Lynaugh, Heather; Nobrega, R Paul; Lu, Xiaojun; Boland, Todd; Burnina, Irina; Sun, Tingwan; Caffry, Isabelle; Brown, Michael; Zhi, Xiaoyong; Lilov, Asparouh; Xu, Yingda

    Susceptibility of methionine to oxidation is an important concern for chemical stability during the development of a monoclonal antibody (mAb) therapeutic. To minimize downstream risks, leading candidates are usually screened under forced oxidation conditions to identify oxidation-labile molecules. Here we report results of forced oxidation on a large set of in-house expressed and purified mAbs with variable region sequences corresponding to 121 clinical stage mAbs. These mAb samples were treated with 0.1% H2O2 for 24 hours before enzymatic cleavage below the hinge, followed by reduction of inter-chain disulfide bonds for the detection of the light chain, Fab portion of heavy chain (Fd) and Fc by liquid chromatography-mass spectrometry. This high-throughput, middle-down approach allows detection of oxidation site(s) at the resolution of 3 distinct segments. The experimental oxidation data correlates well with theoretical predictions based on the solvent-accessible surface area of the methionine side-chains within these segments. These results validate the use of upstream computational modeling to predict mAb oxidation susceptibility at the sequence level.

  20. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid.

    Science.gov (United States)

    Sun, Zhoumin; Fu, Haiying; Deng, Liu; Wang, Jianxiu

    2013-01-25

    In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through π-π stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H(2)O(2) reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H(2)O(2) of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 μM. The application of this modified electrode in blood and urine UA exhibited a good performance. The robust and advanced hybrid materials might hold great promise in biosensing, energy conversion, and biomedical and electronic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Redox-active thionine-graphene oxide hybrid nanosheet: One-pot, rapid synthesis, and application as a sensing platform for uric acid

    Energy Technology Data Exchange (ETDEWEB)

    Sun Zhoumin; Fu Haiying [Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China); Deng Liu, E-mail: dengliu@csu.edu.cn [Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China); Wang Jianxiu [Key Laboratory of Resources Chemistry of Nonferrous Metals, Ministry of Education, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan (China)

    2013-01-25

    Highlights: Black-Right-Pointing-Pointer A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs). Black-Right-Pointing-Pointer T-GOs serve as a biocompatible matrix for enzyme assembly and a mediator. Black-Right-Pointing-Pointer A simple and effective sensor for assay of uric acid at physiological levels. Black-Right-Pointing-Pointer Demonstrate further application of GOs for biosensors and other fields. - Abstract: In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through {pi}-{pi} stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H{sub 2}O{sub 2} reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H{sub 2}O{sub 2} of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 {mu}M. The application

  2. Rapid and facile preparation of zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide by microwave-solvothermal technique and its catalytic activity in heterogeneous photo-Fenton reaction

    Energy Technology Data Exchange (ETDEWEB)

    Anchieta, Chayene G.; Severo, Eric C.; Rigo, Caroline; Mazutti, Marcio A. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Kuhn, Raquel C., E-mail: raquelckuhn@yahoo.com.br [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Muller, Edson I.; Flores, Erico M.M. [Department of Chemistry, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil); Moreira, Regina F.P.M. [Department of Chemical Engineering and Food Engineering, Federal University of Santa Catarina, 88040-970, Florianópolis (Brazil); Foletto, Edson L. [Department of Chemical Engineering, Federal University of Santa Maria, 97105-900, Santa Maria (Brazil)

    2015-06-15

    In this work zinc ferrite (ZnFe{sub 2}O{sub 4}) oxide was rapidly and easily prepared by microwave-solvothermal route and its catalytic property in photo-Fenton reaction was evaluated. The effects of microwave heating time and power on the properties of produced particles were investigated. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and nitrogen adsorption–desorption isotherms were the techniques used for characterizing the solid products. The synthesized material was tested as a catalyst in the degradation of the textile dye molecule by the heterogeneous photo-Fenton process. Characterization results showed that the microwave heating time and power have significant influences on the formation of the phase spinel as well as on its physical properties. The reaction results showed that the ZnFe{sub 2}O{sub 4} oxide has good photocatalytic activity, which can be attributed to high surface area and pore volume, and large pore size. The ZnFe{sub 2}O{sub 4} oxide produced by the microwave irradiation exhibited promising photocatalytic activity for the removal of textile dye, reaching nearly 100% of decolorization at 40 min and 60% of mineralization at 240 min. Therefore, ZnFe{sub 2}O{sub 4} particles rapidly prepared by the microwave route have the potential for use in treatment of textile wastewater by the heterogeneous photo-Fenton process. - Highlights: • ZnFe{sub 2}O{sub 4} was synthesized by microwave-solvothermal method. • ZnFe{sub 2}O{sub 4} was prepared by different microwave heating times and powers. • ZnFe{sub 2}O{sub 4} was used as heterogeneous photo-Fenton catalyst. • Degradation of Procion red dye using heterogeneous photo-Fenton process. • ZnFe{sub 2}O{sub 4} was highly efficient to degrade textile dye under visible light.

  3. A sensitive, selective and rapid determination of lead(II) ions in real-life samples using an electrochemically reduced graphene oxide-graphite reinforced carbon electrode.

    Science.gov (United States)

    Hamsawahini, Kunashegaran; Sathishkumar, Palanivel; Ahamad, Rahmalan; Yusoff, Abdull Rahim Mohd

    2015-11-01

    In this study, a sensitive and cost-effective electrochemically reduced graphene oxide (ErGO) on graphite reinforced carbon (GRC) was developed for the detection of lead (Pb(II)) ions present in the real-life samples. A film of graphene oxide (GO) was drop-casted on GRC and their electrochemical properties were investigated using cyclic voltammetry (CV), amperometry and square wave voltammetry (SWV). Factors influencing the detection of Pb(II) ions, such as grades of GRC, constant applied cathodic potential (CACP), concentration of hydrochloric acid and drop-casting drying time were optimised. GO is irreversibly reduced in the range of -0.7 V to -1.6 V vs Ag/AgCl (3 M) in acidic condition. The results showed that the reduction behaviour of GO contributed to the high sensitivity of Pb(II) ions detection even at nanomolar level. The ErGO-GRC showed the detection limit of 0.5 nM and linear range of 3-15 nM in HCl (1 M). The developed electrode has potential to be a good candidate for the determination of Pb(II) ions in different aqueous system. The proposed method gives a good recovery rate of Pb(II) ions in real-life water samples such as tap water and river water. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Rapid liquid chromatography-tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils.

    Science.gov (United States)

    Gabbanini, Simone; Matera, Riccardo; Valvassori, Alice; Valgimigli, Luca

    2015-04-15

    A novel method for the UHPLC-MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337→154 showed LOD=10.9 nM, average accuracy of 101% and precision ranging 2.5-4.0% RSD intra-day (2.7-4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Rapid synthesis of water-dispersible superparamagnetic iron oxide nanoparticles by a microwave-assisted route for safe labeling of endothelial progenitor cells.

    Science.gov (United States)

    Carenza, Elisa; Barceló, Verónica; Morancho, Anna; Montaner, Joan; Rosell, Anna; Roig, Anna

    2014-08-01

    We synthesize highly crystalline citrate-coated iron oxide superparamagnetic nanoparticles that are stable and readily dispersible in water by an extremely fast microwave-assisted route and investigate the uptake of magnetic nanoparticles by endothelial cells. Nanoparticles form large aggregates when added to complete endothelial cell medium. The size of the aggregates was controlled by adjusting the ionic strength of the medium. The internalization of nanoparticles into endothelial cells was then investigated by transmission electron microscopy, magnetometry and chemical analysis, together with cell viability assays. Interestingly, a sevenfold more efficient uptake was found for systems with larger nanoparticle aggregates, which also showed significantly higher magnetic resonance imaging effectiveness without compromising cell viability and functionality. We are thus presenting an example of a straightforward microwave synthesis of citrate-coated iron oxide nanoparticles for safe endothelial progenitor cell labeling and good magnetic resonance cell imaging with potential application for magnetic cell guidance and in vivo cell tracking. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Rapid liquid chromatography–tandem mass spectrometry analysis of 4-hydroxynonenal for the assessment of oxidative degradation and safety of vegetable oils

    Energy Technology Data Exchange (ETDEWEB)

    Gabbanini, Simone; Matera, Riccardo [BeC S.r.l., R& D Division, Via C. Monteverdi 49, 47122 Forlì (Italy); Valvassori, Alice [University of Bologna, Department of Chemistry “G. Ciamician”, Via S. Giacomo 11, 40126 Bologna (Italy); Valgimigli, Luca, E-mail: luca.valgimigli@unibo.it [University of Bologna, Department of Chemistry “G. Ciamician”, Via S. Giacomo 11, 40126 Bologna (Italy)

    2015-04-15

    Highlights: • A novel method for the UPLC–MS/MS analysis of 4-HNE is described. • The method allows complete analysis of a vegetable oil in 21 min with LOD ≤ 7 ng g{sup −1}. • Excellent recovery from lipid matrices without deuterium-labeled internal standards. • Requires straightforward sample manipulation and routine equipment. • Allows fast, reliable, cost-effective assessment of safety and quality of oils. - Abstract: A novel method for the UHPLC–MS/MS analysis of (E)-4-hydroxynonenal (4-HNE) is described. The method is based on derivatization of 4-HNE with pentafluorophenylhydrazine (1) or 4-trifluoromethylphenylhydrazine (2) in acetonitrile in the presence of trifluoroacetic acid as catalyst at room temperature and allows complete analysis of one sample of vegetable oil in only 21 min, including sample preparation and chromatography. The method involving hydrazine 1, implemented in an ion trap instrument with analysis of the transition m/z 337 → 154 showed LOD = 10.9 nM, average accuracy of 101% and precision ranging 2.5–4.0% RSD intra-day (2.7–4.1% RSD inter-day), with 4-HNE standard solutions. Average recovery from lipid matrices was 96.3% from vaseline oil, 91.3% from sweet almond oil and 105.3% from olive oil. The method was tested on the assessment of safety and oxidative degradation of seven samples of dietary oil (soybean, mixed seeds, corn, peanut, sunflower, olive) and six cosmetic-grade oils (avocado, blackcurrant, apricot kernel, echium, sesame, wheat germ) and effectively detected increased 4-HNE levels in response to chemical (Fenton reaction), photochemical, or thermal stress and aging, aimed at mimicking typical oxidation associated with storage or industrial processing. The method is a convenient, cost-effective and reliable tool to assess quality and safety of vegetable oils.

  7. Energy Band Diagram near the Interface of Aluminum Oxide on p-Si Fabricated by Atomic Layer Deposition without/with Rapid Thermal Cycle Annealing Determined by Capacitance-Voltage Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, N. [Department of Electrical Engineering, Kyoto University, Kyoto (Japan); Cesar, I.; Lamers, M.; Romijn, I.; Bakker, K.; Olson, C.; Oosterling Saynova, D.; Komatsu, Y.; Weeber, A. [ECN Solar Energy, Petten (Netherlands); Verbake, F.; Wiggers, M. [Philips Research, Eindhoven (Netherlands)

    2012-07-01

    We evaluated the fixed charge (Qf) and the interface state density (Dit) from the capacitance-voltage (C-V) measurement before and after rapid thermal cycle annealing (RTCA) using p-type silicon in which the passivation was performed with aluminum oxide (Al2O3) film by atomic layer deposition (ALD). From C-V measurement we obtained the surface potential (VS), accumulation and depletion width, and as a result, energy band diagrams were produced. It was determined that a barrier height of approximately 100 mV was induced by fixed negative charges in the Al2O3 layer near the interface to the p-type Si substrate. The field effect of the Al2O3 passivation layer created by RTCA strongly remains without depending on the gate voltage (VG)

  8. Rapid identification of synthetic colorants in food samples by using indium oxide nanoparticle-functionalized porous polymer monolith coupled with HPLC-MS/MS.

    Science.gov (United States)

    Qi, Ruifang; Zhou, Xiao; Li, Xiqian; Ma, Jiutong; Lu, Chunmei; Mu, Jun; Zhang, Xuguang; Jia, Qiong

    2014-12-07

    A synthetic protocol for the preparation of an indium oxide nanoparticle-functionalized poly(methacrylic acid-glycidyl methacrylate-ethylene dimethacrylate-ethanediamine) monolithic column is reported. Various techniques, including scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermal gravimetric analysis-derivative thermogravimetric analysis were employed to characterize the synthesized monolith. The modified monolithic column was coupled with high performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) for determining synthetic colorants in various food samples. Under optimized conditions, good linearity was obtained for all the targets with squared regression coefficients greater than 0.9982. The limits of detection (S/N = 3) for 12 synthetic colorants were in the range of 0.012-2.97 μg kg(-1). The intra-day and inter-day relative standard deviations, ranging from 2.7% to 8.5%, were within the acceptable range. The developed method was successfully applied to the determination of synthetic colorants in food samples (candy, milk, jelly, jam, canned food, juice, and carbonated drink). Target recoveries at different spiked levels ranged from 73.5% to 112.1% with relative standard deviations of less than 10.3%.

  9. Rapid and efficient visible light photocatalytic dye degradation using AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) complex oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vijayaraghavan, T. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Suriyaraj, S.P.; Selvakumar, R. [Nanobiotechnology Laboratory, PSG Institute of Advanced Studies, Coimbatore 641004 (India); Venkateswaran, R. [PSG Institute of Advanced Studies, Coimbatore 641004 (India); Ashok, Anuradha, E-mail: anu@psgias.ac.in [PSG Institute of Advanced Studies, Coimbatore 641004 (India)

    2016-08-15

    Highlights: • Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca and Sr) were synthesized by sol–gel method. • Visible light photocatalytic activity of these ferrites were studied using congo red dye degradation. • BaFe{sub 2}O{sub 4} exhibited the best photocatalytic activity under visible light (xenon lamp) irradiation; CaFe{sub 2}O{sub 4} was the best photocatalyst under natural sun light irradiation. - Abstract: Photocatalytic activity of spinel type complex oxides has been investigated in this study. Alkaline earth ferrites AFe{sub 2}O{sub 4} (A = Ba, Ca, Sr) were synthesized by sol–gel method. Structural characterizations reveal that the synthesized ferrites have orthorhombic crystal structures with different space groups and cell dimensions when they have different alkaline earth metals in their A site. All the synthesized ferrites exhibited their bandgap in the range 2.14–2.19 eV. Their photocatalytic activities were studied using congo red dye under sunlight and xenon lamp radiation. The substitution of Ba, Ca and Sr at A site of these ferrites had varying impact on dye degradation process. Under xenon lamp irradiation, BaFe{sub 2}O{sub 4} exhibited the highest percentage of dye degradation (92% after 75 min). However, CaFe{sub 2}O{sub 4} showed the fastest degradation of the dye (70% within 15 min). In the absence of irradiation, SrFe{sub 2}O{sub 4} showed the highest dye adsorption (44% after 75 min).

  10. Rapid Prototyping

    Science.gov (United States)

    1999-01-01

    Javelin, a Lone Peak Engineering Inc. Company has introduced the SteamRoller(TM) System as a commercial product. The system was designed by Javelin during a Phase II NASA funded small commercial product. The purpose of the invention was to allow automated-feed of flexible ceramic tapes to the Laminated Object Manufacturing rapid prototyping equipment. The ceramic material that Javelin was working with during the Phase II project is silicon nitride. This engineered ceramic material is of interest for space-based component.

  11. Rapid synthesis of Fe-doped CuO-Ce0.8Zr0.2O2 catalysts for CO preferential oxidation in H2-rich streams: Effect of iron source and the ratio of Fe/Cu

    Science.gov (United States)

    Wang, Jing; Han, Caiyun; Gao, Xiaoya; Lu, Jichang; Wan, Gengpin; He, Dedong; Chen, Ran; Chen, Kezhen; He, Sufang; Luo, Yongming

    2017-03-01

    A facile route (urea grind combustion method) is described for the rapid synthesis of Fe-doped Cu-Ce-Zr catalysts within 30 min through simple grinding and combustion. The effects of iron source and Fe/Cu mass ratio on the performances of the catalysts for CO preferential oxidation (CO-PROX) are evaluated. The influences of H2O, CO2, and their mixture on the activity as well as stability of the catalysts are also investigated. The samples are characterized by XRD, N2 adsorption-desorption, H2-TPR, TEM, Raman and XPS. Fe(NO3)3 is found to be superior to FeCl3 and Fe2(SO4)3 as the iron source for Fe-CuCZ catalyst. Among the different synthesized catalysts, 1/10Fe(N)-CuCZ is found to be the most active catalyst, indicating that the optimal Fe/Cu mass ratio is 1/10. The influences of H2O, CO2, and H2O + CO2 on the catalytic performance of 1/10Fe(N)-CuCZ are in the order of CO2 catalytic activity and excellent stability even in the presence of H2O and CO2. The excellent catalytic performance can be attributed to the synergy between the highly dispersed copper species and ceria, as well as the formation of more oxygen vacancies and reduced copper species.

  12. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  13. Mechanisms of Action of Escapin, a Bactericidal Agent in the Ink Secretion of the Sea Hare Aplysia californica: Rapid and Long-Lasting DNA Condensation and Involvement of the OxyR-Regulated Oxidative Stress Pathway

    Science.gov (United States)

    Ko, Ko-Chun; Tai, Phang C.

    2012-01-01

    The marine snail Aplysia californica produces escapin, an l-amino acid oxidase, in its defensive ink. Escapin uses l-lysine to produce diverse products called escapin intermediate products of l-lysine (EIP-K), including α-amino-ε-caproic acid, Δ1-piperidine-2-carboxylic acid, and Δ2-piperidine-2-carboxylic acid. EIP-K and H2O2 together, but neither alone, is a powerful bactericide. Here, we report bactericidal mechanisms of escapin products on Escherichia coli. We show that EIP-K and H2O2 together cause rapid and long-lasting DNA condensation: 2-min treatment causes significant DNA condensation and killing, and 10-min treatment causes maximal effect, lasting at least 70 h. We isolated two mutants resistant to EIP-K plus H2O2, both having a single missense mutation in the oxidation regulatory gene, oxyR. A complementation assay showed that the mutated gene, oxyR(A233V), renders resistance to EIP-K plus H2O2, and a gene dosage effect leads to reduction of resistance for strains carrying wild-type oxyR. Temperature stress with EIP-K does not produce the bactericidal effect, suggesting the effect is due to a specific response to oxidative stress. The null mutant for any single DNA-binding protein—Dps, H-NS, Hup, Him, or MukB—was not resistant to EIP-K plus H2O2, suggesting that no single DNA-binding protein is necessary to mediate this bactericidal effect, but allowing for the possibility that EIP-K plus H2O2 could function through a combination of DNA-binding proteins. The bactericidal effect of EIP-K plus H2O2 was eliminated by the ferrous ion chelator 1,10-phenanthroline, and it was reduced by the hydroxyl radical scavenger thiourea, suggesting hydroxyl radicals mediate the effects of EIP-K plus H2O2. PMID:22232273

  14. Rapid mineralocorticoid receptor trafficking.

    Science.gov (United States)

    Gekle, M; Bretschneider, M; Meinel, S; Ruhs, S; Grossmann, C

    2014-03-01

    The mineralocorticoid receptor (MR) is a ligand-dependent transcription factor that physiologically regulates water-electrolyte homeostasis and controls blood pressure. The MR can also elicit inflammatory and remodeling processes in the cardiovascular system and the kidneys, which require the presence of additional pathological factors like for example nitrosative stress. However, the underlying molecular mechanism(s) for pathophysiological MR effects remain(s) elusive. The inactive MR is located in the cytosol associated with chaperone molecules including HSP90. After ligand binding, the MR monomer rapidly translocates into the nucleus while still being associated to HSP90 and after dissociation from HSP90 binds to hormone-response-elements called glucocorticoid response elements (GREs) as a dimer. There are indications that rapid MR trafficking is modulated in the presence of high salt, oxidative or nitrosative stress, hypothetically by induction or posttranslational modifications. Additionally, glucocorticoids and the enzyme 11beta hydroxysteroid dehydrogenase may also influence MR activation. Because MR trafficking and its modulation by micro-milieu factors influence MR cellular localization, it is not only relevant for genomic but also for nongenomic MR effects. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Rapid Prototyping Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The ARDEC Rapid Prototyping (RP) Laboratory was established in December 1992 to provide low cost RP capabilities to the ARDEC engineering community. The Stratasys,...

  16. Rapid and effective sample cleanup based on graphene oxide-encapsulated core–shell magnetic microspheres for determination of fifteen trace environmental phenols in seafood by liquid chromatography–tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Sheng-Dong; Chen, Xiao-Hong [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Shen, Hao-Yu [Ningbo Institute of Technology, Zhejiang University, Ningbo, Zhejiang 315100 (China); Li, Xiao-Ping [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Cai, Mei-Qiang [School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018 (China); Zhao, Yong-Gang [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China); Jin, Mi-Cong, E-mail: jmcjc@163.com [Key Laboratory of Health Risk Appraisal for Trace Toxic Chemicals of Zhejiang Province, Ningbo Municipal Center for Disease Control and Prevention, Ningbo, Zhejiang 315010 (China); Ningbo Key Laboratory of Poison Research and Control, Ningbo Municipal Center for Disease Control and Prevention, Ningbo 315010 (China)

    2016-05-05

    In this study, graphene oxide-encapsulated core–shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach between positive charged poly(diallyldimethylammonium) chloride (PDDA)-modified Fe{sub 3}O{sub 4}@SiO{sub 2} and negative charged GO sheets via electrostatic interaction. The as-prepared GOE-CS-MM was carefully characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibrating sample magnetometer analysis (VSM), and X-ray photoelectron spectroscopy (XPS), and was used as a cleanup adsorbent in magnetic solid-phase extraction (MSPE) for determination of 15 trace-level environmental phenols in seafood coupled to liquid chromatography–tandem mass spectrometry (LC–MS/MS). The obtained results showed that the GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. The cleanup mechanisms were investigated and referred to π–π stacking interaction and hydrogen bond between GOE-CS-MM and impurities in the extracts. Moreover, the extraction and cleanup conditions of GOE-CS-MM toward phenols were optimized in detail. Under the optimized conditions, the limits of detection (LODs) were found to be 0.003–0.06 μg kg{sup −1}, and satisfactory recovery values of 84.8–103.1% were obtained for the tested seafood samples. It was confirmed that the developed method is simple, fast, sensitive, and accurate for the determination of 15 trace environmental phenols in seafood samples. - Highlights: • Novel graphene oxide-encapsulated core-shell magnetic microspheres (GOE-CS-MM) were fabricated by a self-assemble approach. • The as-prepared material GOE-CS-MM exhibited excellent cleanup efficiency and could availably reduce the matrix effect. • The cleanup mechanisms refer to π–π stacking interaction and hydrogen bond. • The developed MSPE–LC–MS/MS method was simple, fast, sensitive and accurate.

  17. Rapid Airplane Parametric Input Design (RAPID)

    Science.gov (United States)

    Smith, Robert E.

    1995-01-01

    RAPID is a methodology and software system to define a class of airplane configurations and directly evaluate surface grids, volume grids, and grid sensitivity on and about the configurations. A distinguishing characteristic which separates RAPID from other airplane surface modellers is that the output grids and grid sensitivity are directly applicable in CFD analysis. A small set of design parameters and grid control parameters govern the process which is incorporated into interactive software for 'real time' visual analysis and into batch software for the application of optimization technology. The computed surface grids and volume grids are suitable for a wide range of Computational Fluid Dynamics (CFD) simulation. The general airplane configuration has wing, fuselage, horizontal tail, and vertical tail components. The double-delta wing and tail components are manifested by solving a fourth order partial differential equation (PDE) subject to Dirichlet and Neumann boundary conditions. The design parameters are incorporated into the boundary conditions and therefore govern the shapes of the surfaces. The PDE solution yields a smooth transition between boundaries. Surface grids suitable for CFD calculation are created by establishing an H-type topology about the configuration and incorporating grid spacing functions in the PDE equation for the lifting components and the fuselage definition equations. User specified grid parameters govern the location and degree of grid concentration. A two-block volume grid about a configuration is calculated using the Control Point Form (CPF) technique. The interactive software, which runs on Silicon Graphics IRIS workstations, allows design parameters to be continuously varied and the resulting surface grid to be observed in real time. The batch software computes both the surface and volume grids and also computes the sensitivity of the output grid with respect to the input design parameters by applying the precompiler tool

  18. Nanostructured Metal Oxides Based Enzymatic Electrochemical Biosensors

    OpenAIRE

    Ansari, Anees A.; Alhoshan, M.; Alsalhi, M.S.; Aldwayyan, A.S.

    2010-01-01

    The unique electrocatalytic properties of the metal oxides and the ease of metal oxide nanostructured fabrication make them extremely interesting materials for electrochemical enzymatic biosensor applications. The application of nanostructured metal oxides in such sensing devices has taken off rapidly and will surely continue to expand. This article provides a review on current research status of electrochemical enzymatic biosensors based on various new types of nanostructured metal oxides su...

  19. Rapid shallow breathing

    Science.gov (United States)

    ... the smallest air passages of the lungs in children ( bronchiolitis ) Pneumonia or other lung infection Transient tachypnea of the newborn Anxiety and panic Other serious lung disease Home Care Rapid, shallow breathing should not be treated at home. It is ...

  20. Rapid Strep Test

    Science.gov (United States)

    ... worse than normal. Your first thoughts turn to strep throat. A rapid strep test in your doctor’s office ... your suspicions.Viruses cause most sore throats. However, strep throat is an infection caused by the Group A ...

  1. RAPID3? Aptly named!

    Science.gov (United States)

    Berthelot, J-M

    2014-01-01

    The RAPID3 score is the sum of three 0-10 patient self-report scores: pain, functional impairment on MDHAQ, and patient global estimate. It requires 5 seconds for scoring and can be used in all rheumatologic conditions, although it has mostly been used in rheumatoid arthritis where cutoffs for low disease activity (12/30) have been set. A RAPID3 score of ≤ 3/30 with 1 or 0 swollen joints (RAPID3 ≤ 3 + ≤ SJ1) provides remission criteria comparable to Boolean, SDAI, CDAI, and DAS28 remission criteria, in far less time than a formal joint count. RAPID3 performs as well as the DAS28 in separating active drugs from placebos in clinical trials. RAPID3 also predicts subsequent structural disease progression. RAPID3 can be determined at short intervals at home, allowing the determination of the area under the curve of disease activity between two visits and flare detection. However, RAPID3 should not be seen as a substitute for DAS28 and face to face visits in routine care. Monitoring patient status with only self-report information without a rheumatologist's advice (including joints and physical examination, and consideration of imaging and laboratory tests) may indeed be as undesirable for most patients than joint examination without a patient questionnaire. Conversely, combining the RAPID3 and the DAS28 may consist in faster or more sensitive confirmation that a medication is effective. Similarly, better enquiring of most important concerns of patients (pain, functional status and overall opinion on their disorder) should reinforces patients' confidence in their rheumatologist and treatments.

  2. Catalytic oxidation using nitrous oxide

    Directory of Open Access Journals (Sweden)

    Juan Carlos Beltran-Prieto

    2017-01-01

    Full Text Available Nitrous oxide is a very inert gas used generally as oxidant as it offers some advantage compared with other oxidants such as O2 but a considerably higher temperature (> 526 °C is often required. For particular cases such as the oxidation of sugar alcohols, especially for the oxidation of primary alcohols to aldehydes, N2O has the advantage over O2 of a higher reaction selectivity. In the present paper we present the modelling of oxidation reaction of sugar alcohols using an oxidizing agent in low concentrations, which is important to suppress subsequent oxidation reactions due to the very low residual concentrations of the oxidizing agent. For orientation experiments we chose nitrous oxide generated by thermal decomposition of ammonium nitrate. Kinetic modeling of the reaction was performed after determination of the differential equations that describe the system under study.

  3. Rapid small lot manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Harrigan, R.W.

    1998-05-09

    The direct connection of information, captured in forms such as CAD databases, to the factory floor is enabling a revolution in manufacturing. Rapid response to very dynamic market conditions is becoming the norm rather than the exception. In order to provide economical rapid fabrication of small numbers of variable products, one must design with manufacturing constraints in mind. In addition, flexible manufacturing systems must be programmed automatically to reduce the time for product change over in the factory and eliminate human errors. Sensor based machine control is needed to adapt idealized, model based machine programs to uncontrolled variables such as the condition of raw materials and fabrication tolerances.

  4. Rapid Cycling and Its Treatment

    Science.gov (United States)

    ... Announcements Public Service Announcements Partnering with DBSA Rapid Cycling and its Treatment What is bipolar disorder? Bipolar ... to Depression and Manic Depression . What is rapid cycling? Rapid cycling is defined as four or more ...

  5. Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides.

    Science.gov (United States)

    Dreyer, Daniel R; Jia, Hong-Peng; Todd, Alexander D; Geng, Jianxin; Bielawski, Christopher W

    2011-11-07

    The selective oxidation of thiols to disulfides and sulfides to sulfoxides using graphite oxide (GO), a heterogeneous carbocatalyst obtained from low cost, commercial starting materials is described. The aforementioned oxidation reactions were found to proceed rapidly (as short as 10 min in some cases) and in good yield (51-100%) (19 examples). No over-oxidation of the substrates was observed, and GO's heterogeneous nature facilitated isolation and purification of the target products.

  6. Rapid manufacturing for microfluidics

    CSIR Research Space (South Africa)

    Land, K

    2012-10-01

    Full Text Available . Microfluidics is at the forefront of developing solutions for drug discovery, diagnostics (from glucose tests to malaria and TB testing) and environmental diagnostics (E-coli monitoring of drinking water). In order to quickly implement new designs, a rapid...

  7. Rapid Prototyping in PVS

    Science.gov (United States)

    Munoz, Cesar A.; Butler, Ricky (Technical Monitor)

    2003-01-01

    PVSio is a conservative extension to the PVS prelude library that provides basic input/output capabilities to the PVS ground evaluator. It supports rapid prototyping in PVS by enhancing the specification language with built-in constructs for string manipulation, floating point arithmetic, and input/output operations.

  8. Rapid Prototyping Reconsidered

    Science.gov (United States)

    Desrosier, James

    2011-01-01

    Continuing educators need additional strategies for developing new programming that can both reduce the time to market and lower the cost of development. Rapid prototyping, a time-compression technique adapted from the high technology industry, represents one such strategy that merits renewed evaluation. Although in higher education rapid…

  9. Oxide fiber targets at ISOLDE

    DEFF Research Database (Denmark)

    Köster, U.; Bergmann, U.C.; Carminati, D.

    2003-01-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxide fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some...... contact points. The experience with various oxide fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils......, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process...

  10. Rapid manufacturing facilitated customisation

    OpenAIRE

    Tuck, Christopher John; Hague, Richard; Ruffo, Massimiliano; Ransley, Michelle; Adams, Paul Russell

    2008-01-01

    Abstract This paper describes the production of body-fitting customised seat profiles utilising the following digital methods: three dimensional laser scanning, reverse engineering and Rapid Manufacturing (RM). The seat profiles have been manufactured in order to influence the comfort characteristics of an existing ejector seat manufactured by Martin Baker Aircraft Ltd. The seat, known as Navy Aircrew Common Ejection Seat (NACES), was originally designed with a generic profile. ...

  11. Rapid Detection of Pathogens

    Energy Technology Data Exchange (ETDEWEB)

    David Perlin

    2005-08-14

    Pathogen identification is a crucial first defense against bioterrorism. A major emphasis of our national biodefense strategy is to establish fast, accurate and sensitive assays for diagnosis of infectious diseases agents. Such assays will ensure early and appropriate treatment of infected patients. Rapid diagnostics can also support infection control measures, which monitor and limit the spread of infectious diseases agents. Many select agents are highly transmissible in the early stages of disease, and it is critical to identify infected patients and limit the risk to the remainder of the population and to stem potential panic in the general population. Nucleic acid-based molecular approaches for identification overcome many of the deficiencies associated with conventional culture methods by exploiting both large- and small-scale genomic differences between organisms. PCR-based amplification of highly conserved ribosomal RNA (rRNA) genes, intergenic sequences, and specific toxin genes is currently the most reliable approach for bacterial, fungal and many viral pathogenic agents. When combined with fluorescence-based oligonucleotide detection systems, this approach provides real-time, quantitative, high fidelity analysis capable of single nucleotide allelic discrimination (4). These probe systems offer rapid turn around time (<2 h) and are suitable for high throughput, automated multiplex operations that are critical for clinical diagnostic laboratories. In this pilot program, we have used molecular beacon technology invented at the Public health Research Institute to develop a new generation of molecular probes to rapidly detect important agents of infectious diseases. We have also developed protocols to rapidly extract nucleic acids from a variety of clinical specimen including and blood and tissue to for detection in the molecular assays. This work represented a cooperative research development program between the Kramer-Tyagi/Perlin labs on probe development

  12. Tiber Personal Rapid Transit

    Directory of Open Access Journals (Sweden)

    Diego Carlo D'agostino

    2011-02-01

    Full Text Available The project “Tiber Personal Rapid Transit” have been presented by the author at the Rome City Vision Competition1 2010, an ideas competition, which challenges architects, engineers, designers, students and creatives individuals to develop visionary urban proposals with the intention of stimulating and supporting the contemporary city, in this case Rome. The Tiber PRT proposal tries to answer the competition questions with the definition of a provocative idea: a Personal Rapid transit System on the Tiber river banks. The project is located in the central section of the Tiber river and aims at the renewal of the river banks with the insertion of a Personal Rapid Transit infrastructure. The project area include the riverbank of Tiber from Rome Transtevere RFI station to Piazza del Popolo, an area where main touristic and leisure attractions are located. The intervention area is actually no used by the city users and residents and constitute itself a strong barrier in the heart of the historic city.

  13. RNA oxidation

    DEFF Research Database (Denmark)

    Kjaer, L. K.; Cejvanovic, V.; Henriken, T.

    2015-01-01

    RNA modification has attracted increasing interest as it is realized that epitranscriptomics is important in disease development. In type 2 diabetes we have suggested that high urinary excretion of 8-oxo-2'-Guanosine (8oxoGuo), as a measure of global RNA oxidation, is associated with poor survival.......9 significant hazard ratio for death compared with the quartile with the lowest 8oxoGuo excretion when adjusted for age, sex, BMI, smoker status, s-HbA1c, urine protein excretion and s-cholesterol. We conclude that it is now established that RNA oxidation is an independent risk factor for death in type 2...... diabetes. In agreement with our previous finding, DNA oxidation did not show any prognostic value. RNA oxidation represents oxidative stress intracellularly, presumably predominantly in the cytosol. The mechanism of RNA oxidation is not clear, but hypothesized to result from mitochondrial dysfunction...

  14. Method for rapidly determining a pulp kappa number using spectrophotometry

    Science.gov (United States)

    Chai, Xin-Sheng; Zhu, Jun Yong

    2002-01-01

    A system and method for rapidly determining the pulp kappa number through direct measurement of the potassium permanganate concentration in a pulp-permanganate solution using spectrophotometry. Specifically, the present invention uses strong acidification to carry out the pulp-permanganate oxidation reaction in the pulp-permanganate solution to prevent the precipitation of manganese dioxide (MnO.sub.2). Consequently, spectral interference from the precipitated MnO.sub.2 is eliminated and the oxidation reaction becomes dominant. The spectral intensity of the oxidation reaction is then analyzed to determine the pulp kappa number.

  15. [Nitric oxide].

    Science.gov (United States)

    Rovira, I

    1995-01-01

    Nitric oxide was identified as the relaxing factor derived from the endothelium in 1987. Nitric oxide synthesis allows the vascular system to maintain a state of vasodilation, thereby regulating arterial pressure. Nitric oxide is also found in platelets, where it inhibits adhesion and aggregation; in the immune system, where it is responsible for the cytotoxic action of macrophages; and in the nervous system, where it acts as neurotransmitter. A deficit in endogenous synthesis of nitric oxide contributes to such conditions as essential arterial hypertension, pulmonary hypertension and heart disease. An excess of nitrous oxide induced by endotoxins and cytokinins, meanwhile, is believed to be responsible for hypotension in septic shock and for hyperdynamic circulatory state in cirrhosis of the liver. Nitric oxide has also been implicated in the rejection of transplanted organs and in cell damage after reperfusion. Inhaled nitrous oxide gas reduces pulmonary hypertension without triggering systemic hypotension in both experimental and clinical conditions. It also produces selective vasodilation when used to ventilate specific pulmonary areas, thereby improving the ventilation/perfusion ratio and, hence, oxygenation. Nitric oxide inhalation is effective in pulmonary hypertension-coincident with chronic obstructive lung disease, in persistent neonatal pulmonary hypertension and in pulmonary hypertension with congenital or acquired heart disease. Likewise, it reduces intrapulmonary shunt in acute respiratory failure and improves gas exchange. Under experimental conditions nitric oxide acts as a bronchodilator, although it seems to be less effective for this purpose in clinical use.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Rapidly variable relatvistic absorption

    Science.gov (United States)

    Parker, M.; Pinto, C.; Fabian, A.; Lohfink, A.; Buisson, D.; Alston, W.; Jiang, J.

    2017-10-01

    I will present results from the 1.5Ms XMM-Newton observing campaign on the most X-ray variable AGN, IRAS 13224-3809. We find a series of nine absorption lines with a velocity of 0.24c from an ultra-fast outflow. For the first time, we are able to see extremely rapid variability of the UFO features, and can link this to the X-ray variability from the inner accretion disk. We find a clear flux dependence of the outflow features, suggesting that the wind is ionized by increasing X-ray emission.

  17. Rapid prototype and test

    Energy Technology Data Exchange (ETDEWEB)

    Gregory, D.L.; Hansche, B.D.

    1996-06-01

    In order to support advanced manufacturing, Sandia has acquired the capability to produce plastic prototypes using stereolithography. Currently, these prototypes are used mainly to verify part geometry and ``fit and form`` checks. This project investigates methods for rapidly testing these plastic prototypes, and inferring from prototype test data actual metal part performance and behavior. Performances examined include static load/stress response, and structural dynamic (modal) and vibration behavior. The integration of advanced non-contacting measurement techniques including scanning laser velocimetry, laser holography, and thermoelasticity into testing of these prototypes is described. Photoelastic properties of the epoxy prototypes to reveal full field stress/strain fields are also explored.

  18. Right-Rapid-Rough

    Science.gov (United States)

    Lawrence, Craig

    2003-01-01

    IDEO (pronounced 'eye-dee-oh') is an international design, engineering, and innovation firm that has developed thousands of products and services for clients across a wide range of industries. Its process and culture attracted the attention of academics, businesses, and journalists around the world, and are the subject of a bestselling book, The Art of Innovation by Tom Kelley. One of the keys to IDEO's success is its use of prototyping as a tool for rapid innovation. This story covers some of IDEO's projects, and gives reasons for why they were successful.

  19. Rapid cycling of reactive nitrogen in the marine boundary layer.

    Science.gov (United States)

    Ye, Chunxiang; Zhou, Xianliang; Pu, Dennis; Stutz, Jochen; Festa, James; Spolaor, Max; Tsai, Catalina; Cantrell, Christopher; Mauldin, Roy L; Campos, Teresa; Weinheimer, Andrew; Hornbrook, Rebecca S; Apel, Eric C; Guenther, Alex; Kaser, Lisa; Yuan, Bin; Karl, Thomas; Haggerty, Julie; Hall, Samuel; Ullmann, Kirk; Smith, James N; Ortega, John; Knote, Christoph

    2016-04-28

    Nitrogen oxides are essential for the formation of secondary atmospheric aerosols and of atmospheric oxidants such as ozone and the hydroxyl radical, which controls the self-cleansing capacity of the atmosphere. Nitric acid, a major oxidation product of nitrogen oxides, has traditionally been considered to be a permanent sink of nitrogen oxides. However, model studies predict higher ratios of nitric acid to nitrogen oxides in the troposphere than are observed. A 'renoxification' process that recycles nitric acid into nitrogen oxides has been proposed to reconcile observations with model studies, but the mechanisms responsible for this process remain uncertain. Here we present data from an aircraft measurement campaign over the North Atlantic Ocean and find evidence for rapid recycling of nitric acid to nitrous acid and nitrogen oxides in the clean marine boundary layer via particulate nitrate photolysis. Laboratory experiments further demonstrate the photolysis of particulate nitrate collected on filters at a rate more than two orders of magnitude greater than that of gaseous nitric acid, with nitrous acid as the main product. Box model calculations based on the Master Chemical Mechanism suggest that particulate nitrate photolysis mainly sustains the observed levels of nitrous acid and nitrogen oxides at midday under typical marine boundary layer conditions. Given that oceans account for more than 70 per cent of Earth's surface, we propose that particulate nitrate photolysis could be a substantial tropospheric nitrogen oxide source. Recycling of nitrogen oxides in remote oceanic regions with minimal direct nitrogen oxide emissions could increase the formation of tropospheric oxidants and secondary atmospheric aerosols on a global scale.

  20. Rapid response manufacturing (RRM)

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-02-18

    US industry is fighting to maintain its competitive edge in the global market place. Today markets fluctuate rapidly. Companies, to survive, have to be able to respond with quick-to-market, improved, high quality, cost efficient products. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies. The RRM project was established to leverage the expertise and resources of US private industries and federal agencies to develop, integrate, and deploy new technologies that meet critical needs for effective product realization. The RRM program addressed a needed change in the US Manufacturing infrastructure that will ensure US competitiveness in world market typified by mass customization. This project provided the effort needed to define, develop and establish a customizable infrastructure for rapid response product development design and manufacturing. A major project achievement was the development of a broad-based framework for automating and integrating the product and process design and manufacturing activities involved with machined parts. This was accomplished by coordinating and extending the application of feature-based product modeling, knowledge-based systems, integrated data management, and direct manufacturing technologies in a cooperative integrated computing environment. Key technological advancements include a product model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering environment, knowledge-based software aids for design and process planning, and new production technologies to make products directly from design application software.

  1. A rapid and convergent synthesis of the integrastatin core

    KAUST Repository

    Tadross, Pamela M.

    2011-01-01

    The tetracyclic core of the integrastatin natural products has been prepared in a convergent and rapid manner. Our strategy relies upon a palladium(ii)-catalyzed oxidative cyclization to form the central [3.3.1]-dioxabicycle of the natural product core. Overall, the core has been completed in only 4 linear steps from known compounds. © 2011 The Royal Society of Chemistry.

  2. Rapid Refresh (RAP) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  3. Rapid Refresh (RAP) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Refresh (RAP) numerical weather model took the place of the Rapid Update Cycle (RUC) on May 1, 2012. Run by the National Centers for Environmental...

  4. Protein oxidation and peroxidation

    DEFF Research Database (Denmark)

    Davies, Michael Jonathan

    2016-01-01

    and chain reactions with alcohols and carbonyls as major products; the latter are commonly used markers of protein damage. Direct oxidation of cysteine (and less commonly) methionine residues is a major reaction; this is typically faster than with H2O2, and results in altered protein activity and function....... Unlike H2O2, which is rapidly removed by protective enzymes, protein peroxides are only slowly removed, and catabolism is a major fate. Although turnover of modified proteins by proteasomal and lysosomal enzymes, and other proteases (e.g. mitochondrial Lon), can be efficient, protein hydroperoxides...

  5. Rapid chemical separations

    CERN Document Server

    Trautmann, N

    1976-01-01

    A survey is given on the progress of fast chemical separation procedures during the last few years. Fast, discontinuous separation techniques are illustrated by a procedure for niobium. The use of such techniques for the chemical characterization of the heaviest known elements is described. Other rapid separation methods from aqueous solutions are summarized. The application of the high speed liquid chromatography to the separation of chemically similar elements is outlined. The use of the gas jet recoil transport method for nuclear reaction products and its combination with a continuous solvent extraction technique and with a thermochromatographic separation is presented. Different separation methods in the gas phase are briefly discussed and the attachment of a thermochromatographic technique to an on-line mass separator is shown. (45 refs).

  6. Anodic oxidation

    CERN Document Server

    Ross, Sidney D; Rudd, Eric J; Blomquist, Alfred T; Wasserman, Harry H

    2013-01-01

    Anodic Oxidation covers the application of the concept, principles, and methods of electrochemistry to organic reactions. This book is composed of two parts encompassing 12 chapters that consider the mechanism of anodic oxidation. Part I surveys the theory and methods of electrochemistry as applied to organic reactions. These parts also present the mathematical equations to describe the kinetics of electrode reactions using both polarographic and steady-state conditions. Part II examines the anodic oxidation of organic substrates by the functional group initially attacked. This part particular

  7. Nitric oxide production and nitric oxide synthase expression in acute human renal allograft rejection

    NARCIS (Netherlands)

    Albrecht, EWJA; van Goor, H; Tiebosch, ATMG; Moshage, H; Tegzess, Adam; Stegeman, CA

    2000-01-01

    Background Nitric oxide (NO) is produced by nitric oxide synthases (NOS), which are either constitutively expressed in the kidney or inducible, in resident and infiltrating cells during inflammation and allograft rejection. NO is rapidly degraded to the stable end products nitrite and nitrate, which

  8. Magnesium Oxide

    Science.gov (United States)

    Magnesium is an element your body needs to function normally. Magnesium oxide may be used for different reasons. Some people use it as ... daily depending on which brand is used and what condition you have. Follow the directions on the ...

  9. Building a rapid response team.

    Science.gov (United States)

    Halvorsen, Lisa; Garolis, Salomeja; Wallace-Scroggs, Allyson; Stenstrom, Judy; Maunder, Richard

    2007-01-01

    The use of rapid response teams is a relatively new approach for decreasing or eliminating codes in acute care hospitals. Based on the principles of a code team for cardiac and/or respiratory arrest in non-critical care units, the rapid response teams have specially trained nursing, respiratory, and medical personnel to respond to calls from general care units to assess and manage decompensating or rapidly changing patients before their conditions escalate to a full code situation. This article describes the processes used to develop a rapid response team, clinical indicators for triggering a rapid response team call, topics addressed in an educational program for the rapid response team members, and methods for evaluating effectiveness of the rapid response team.

  10. Problems of rapid growth.

    Science.gov (United States)

    Kim, T D

    1980-01-01

    South Korea's export-oriented development strategy has achieved a remarkable growth record, but it has also brought 2 different problems: 1) since the country's exports accounted for about 1% of total world export volume, the 1st world has become fearful about Korea's aggressive export drive; and 2) the fact that exports account for over 30% of its total gross national product (GNP) exposes the vulnerability of South Korea's economy itself. South Korea continues to be a poor nation, although it is rated as 1 of the most rapidly growing middle income economies. A World Bank 1978 report shows Korea to be 28th of 58 middle income countries in terms of per capita GNP in 1976. Of 11 newly industrializing countries (NIC), 5 in the European continent are more advanced than the others. A recent emphasis on the basic human needs approach has tended to downgrade the concept of GNP. Korea has only an abundant labor force and is without any natural resources. Consequently, Korea utilized an export-oriented development strategy. Oil requirements are met with imports, and almost all raw materials to be processed into exportable products must be imported. To pay import bills Korea must export and earn foreign exchange. It must be emphasized that foreign trade must always be 2-way traffic. In order to export more to middle income countries like Korea, the countries of the 1st world need to ease their protectionist measures against imports from developing countries.

  11. Rapid Polymer Sequencer

    Science.gov (United States)

    Stolc, Viktor (Inventor); Brock, Matthew W (Inventor)

    2013-01-01

    Method and system for rapid and accurate determination of each of a sequence of unknown polymer components, such as nucleic acid components. A self-assembling monolayer of a selected substance is optionally provided on an interior surface of a pipette tip, and the interior surface is immersed in a selected liquid. A selected electrical field is impressed in a longitudinal direction, or in a transverse direction, in the tip region, a polymer sequence is passed through the tip region, and a change in an electrical current signal is measured as each polymer component passes through the tip region. Each of the measured changes in electrical current signals is compared with a database of reference electrical change signals, with each reference signal corresponding to an identified polymer component, to identify the unknown polymer component with a reference polymer component. The nanopore preferably has a pore inner diameter of no more than about 40 nm and is prepared by heating and pulling a very small section of a glass tubing.

  12. Rapidly rotating red giants

    Science.gov (United States)

    Gehan, Charlotte; Mosser, Benoît; Michel, Eric

    2017-10-01

    Stellar oscillations give seismic information on the internal properties of stars. Red giants are targets of interest since they present mixed modes, wich behave as pressure modes in the convective envelope and as gravity modes in the radiative core. Mixed modes thus directly probe red giant cores, and allow in particular the study of their mean core rotation. The high-quality data obtained by CoRoT and Kepler satellites represent an unprecedented perspective to obtain thousands of measurements of red giant core rotation, in order to improve our understanding of stellar physics in deep stellar interiors. We developed an automated method to obtain such core rotation measurements and validated it for stars on the red giant branch. In this work, we particularly focus on the specific application of this method to red giants having a rapid core rotation. They show complex spectra where it is tricky to disentangle rotational splittings from mixed-mode period spacings. We demonstrate that the method based on the identification of mode crossings is precise and efficient. The determination of the mean core rotation directly derives from the precise measurement of the asymptotic period spacing ΔΠ1 and of the frequency at which the crossing of the rotational components is observed.

  13. Rapid Decolorization of Cobalamin

    Directory of Open Access Journals (Sweden)

    Falah H. Hussein

    2012-01-01

    Full Text Available The photocatalytic decolorization of cobalamin was carried out in aqueous solution of different types of catalysts including ZnO, TiO2 (Degussa P25, TiO2 (Hombikat UV100, TiO2 (Millennium PC105, and TiO2 (Koronose 2073 by using UVA source of irradiation. The effect of various parameters such as photocatalyst amount, cobalamin concentration, type of catalyst, pH of aqueous solution, light intensity, addition of H2O2, flow rate of O2, type of current gas, and temperature on photocatalytic oxidation was investigated. The results indicated that the photocatalytic decolorization of cobalamin was well described by pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. The effect of temperature on the efficiency of photodecolorization of cobalamin was also studied in the range 278–298 K. The activation energy was calculated according to Arrhenius plot and was found equal to  kJ·mol−1 for ZnO and  kJ·mol−1 for TiO2 (Degussa P25. The results of the total organic carbon (TOC analysis indicate that the rate of decolorization of dye was faster than the total mineralization. Decolorization and mineralization of cobalamin in the absence of light and/or catalyst were performed to demonstrate that the presence of light and catalyst is essential for the decolorization of this cobalamin. The results show that the activity of different types of catalysts used in this study was of the sequence: ZnO > TiO2 (Degussa P25 > TiO2 (Hombikat UV100 > TiO2 (Millennium PC105 > TiO2 (Koronose 2073.

  14. Rapid mixing kinetic techniques.

    Science.gov (United States)

    Martin, Stephen R; Schilstra, Maria J

    2013-01-01

    Almost all of the elementary steps in a biochemical reaction scheme are either unimolecular or bimolecular processes that frequently occur on sub-second, often sub-millisecond, time scales. The traditional approach in kinetic studies is to mix two or more reagents and monitor the changes in concentrations with time. Conventional spectrophotometers cannot generally be used to study reactions that are complete within less than about 20 s, as it takes that amount of time to manually mix the reagents and activate the instrument. Rapid mixing techniques, which generally achieve mixing in less than 2 ms, overcome this limitation. This chapter is concerned with the use of these techniques in the study of reactions which reach equilibrium; the application of these methods to the study of enzyme kinetics is described in several excellent texts (Cornish-Bowden, Fundamentals of enzyme kinetics. Portland Press, 1995; Gutfreund, Kinetics for the life sciences. Receptors, transmitters and catalysis. Cambridge University Press, 1995).There are various ways to monitor changes in concentration of reactants, intermediates and products after mixing, but the most common way is to use changes in optical signals (absorbance or fluorescence) which often accompany reactions. Although absorbance can sometimes be used, fluorescence is often preferred because of its greater sensitivity, particularly in monitoring conformational changes. Such methods are continuous with good time resolution but they seldom permit the direct determination of the concentrations of individual species. Alternatively, samples may be taken from the reaction volume, mixed with a chemical quenching agent to stop the reaction, and their contents assessed by techniques such as HPLC. These methods can directly determine the concentrations of different species, but are discontinuous and have a limited time resolution.

  15. Oxygen Activation and Photoelectrochemical Oxidation on Oxide Surfaces

    Science.gov (United States)

    2013-12-04

    partial reduction to RuIII–O+ followed by rapid protonation, further reduction to RuII-OH2 2+, and cross-surface comproportionation, resulting in narrow...toluene, ethylbenzene, and cumene. Oxidation of hydrocarbons has a direct relation to fuel cell development and conversion of natural gas to liquid fuels...Since the hydrocarbons were not miscible with aqueous solutions, a new solvent system composed of propylene carbonate (PC) and 1 % water by volume

  16. Rapid Active Sampling Package

    Science.gov (United States)

    Peters, Gregory

    2010-01-01

    A field-deployable, battery-powered Rapid Active Sampling Package (RASP), originally designed for sampling strong materials during lunar and planetary missions, shows strong utility for terrestrial geological use. The technology is proving to be simple and effective for sampling and processing materials of strength. Although this originally was intended for planetary and lunar applications, the RASP is very useful as a powered hand tool for geologists and the mining industry to quickly sample and process rocks in the field on Earth. The RASP allows geologists to surgically acquire samples of rock for later laboratory analysis. This tool, roughly the size of a wrench, allows the user to cut away swaths of weathering rinds, revealing pristine rock surfaces for observation and subsequent sampling with the same tool. RASPing deeper (.3.5 cm) exposes single rock strata in-situ. Where a geologist fs hammer can only expose unweathered layers of rock, the RASP can do the same, and then has the added ability to capture and process samples into powder with particle sizes less than 150 microns, making it easier for XRD/XRF (x-ray diffraction/x-ray fluorescence). The tool uses a rotating rasp bit (or two counter-rotating bits) that resides inside or above the catch container. The container has an open slot to allow the bit to extend outside the container and to allow cuttings to enter and be caught. When the slot and rasp bit are in contact with a substrate, the bit is plunged into it in a matter of seconds to reach pristine rock. A user in the field may sample a rock multiple times at multiple depths in minutes, instead of having to cut out huge, heavy rock samples for transport back to a lab for analysis. Because of the speed and accuracy of the RASP, hundreds of samples can be taken in one day. RASP-acquired samples are small and easily carried. A user can characterize more area in less time than by using conventional methods. The field-deployable RASP used a Ni

  17. Rapid Robot Design Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies will create a comprehensive software infrastructure for rapid validation of robotic designs. The software will support push-button validation...

  18. Rapid Robot Design Validation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Energid Technologies will create a comprehensive software infrastructure for rapid validation of robot designs. The software will support push-button validation...

  19. Oxidation catalyst

    Science.gov (United States)

    Ceyer, Sylvia T.; Lahr, David L.

    2010-11-09

    The present invention generally relates to catalyst systems and methods for oxidation of carbon monoxide. The invention involves catalyst compositions which may be advantageously altered by, for example, modification of the catalyst surface to enhance catalyst performance. Catalyst systems of the present invention may be capable of performing the oxidation of carbon monoxide at relatively lower temperatures (e.g., 200 K and below) and at relatively higher reaction rates than known catalysts. Additionally, catalyst systems disclosed herein may be substantially lower in cost than current commercial catalysts. Such catalyst systems may be useful in, for example, catalytic converters, fuel cells, sensors, and the like.

  20. Rapid prototyping in medical sciences

    Directory of Open Access Journals (Sweden)

    Ákos Márk Horváth

    2015-09-01

    Full Text Available Even if it sound a bit incredible rapid prototyping (RPT as production method has been used for decades in other professions. Nevertheless medical science just started discover the possibilities of this technology and use the offered benefits of 3D printing. In this paper authors have investigated the pharmaceutical usage of rapid prototyping.

  1. Characteristics of oxide scale formed on Cu-bearing austenitic stainless steel during early stages of high temperature oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Swaminathan, Srinivasan, E-mail: swaminathan@kist.re.kr [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of); Krishna, Nanda Gopala [Metallurgy & Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kim, Dong-Ik, E-mail: dongikkim@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seongbuk-gu, Seoul 136 791 (Korea, Republic of)

    2015-10-30

    Highlights: • Initial oxidation characteristics of Cu-bearing austenitic stainless steel at 650 °C were studied. • Strong segregation and oxidation of Mn and Nb were found in the entire oxide scale. • Surface coverage by metallic Cu-rich precipitates increases with exposure time. • Chemical heterogeneity of oxide scale revealed initial oxidation to be non-selective. • Fe-Cr and Mn-Cr mixed oxides were realized along with binary oxides of Fe, Cr and Mn. - Abstract: Oxide scale evolution on Cu-bearing austenitic stainless steel 304H at 650 °C, in ambient air, for exposure times 100, 300, 500 and 1000 h, has been investigated. Surface morphology and chemistry of the oxide scale grown were examined using SEM/EDX and XPS. The oxidation kinetics was determined by measuring the weight change using an electronic balance. At the initial stage, up to 500 h of exposure time, the oxidation rate was rapid due to surface reactions governed primarily by oxygen ingress, and then, dropped to a low rate after prolonged oxidation for 1000 h. The diffusion of reactants through the initially formed oxide scale limits the oxidation rate at longer times, thus, the progress of reaction followed the parabolic kinetics. The formed oxide scale was enriched significantly with segregation and subsequent oxidation of Nb, and finely dispersed metallic Cu particles. Within the time frame of oxidation, the oxide scale was mainly composed of mixed oxides such as FeCr{sub 2}O{sub 4} and MnCr{sub 2}O{sub 4} along with the binary oxides of Fe, Cr and Mn. Moreover, the precipitation fraction of Cu-rich particles on the oxide scale increased markedly with increase of exposure times. The chemical heterogeneity of oxide scale suggests that the oxidation occurred in a non-selective manner.

  2. Oxidative stress

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2012-01-01

    Full Text Available The unceasing need for oxygen is in contradiction to the fact that it is in fact toxic to mammals. Namely, its monovalent reduction can have as a consequence the production of short-living, chemically very active free radicals and certain non-radical agents (nitrogen-oxide, superoxide-anion-radicals, hydroxyl radicals, peroxyl radicals, singlet oxygen, peroxynitrite, hydrogen peroxide, hypochlorous acid, and others. There is no doubt that they have numerous positive roles, but when their production is stepped up to such an extent that the organism cannot eliminate them with its antioxidants (superoxide-dismutase, glutathione-peroxidase, catalase, transferrin, ceruloplasmin, reduced glutathion, and others, a series of disorders is developed that are jointly called „oxidative stress.“ The reactive oxygen species which characterize oxidative stress are capable of attacking all main classes of biological macromolecules, actually proteins, DNA and RNA molecules, and in particular lipids. The free radicals influence lipid peroxidation in cellular membranes, oxidative damage to DNA and RNA molecules, the development of genetic mutations, fragmentation, and the altered function of various protein molecules. All of this results in the following consequences: disrupted permeability of cellular membranes, disrupted cellular signalization and ion homeostasis, reduced or loss of function of damaged proteins, and similar. That is why the free radicals that are released during oxidative stress are considered pathogenic agents of numerous diseases and ageing. The type of damage that will occur, and when it will take place, depends on the nature of the free radicals, their site of action and their source. [Projekat Ministarstva nauke Republike Srbije, br. 173034, br. 175061 i br. 31085

  3. Oxide Fiber Targets at ISOLDE

    CERN Document Server

    Köster, U; Carminati, D; Catherall, R; Cederkäll, J; Correia, J G; Crepieux, B; Dietrich, M; Elder, K; Fedosseev, V; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Georg, U; Giles, T; Joinet, A; Jonsson, O C; Kirchner, R; Lau, C; Lettry, Jacques; Maier, H J; Mishin, V I; Oinonen, M; Peräjärvi, K; Ravn, H L; Rinaldi, T; Santana-Leitner, M; Wahl, U; Weissman, L

    2003-01-01

    Many elements are rapidly released from oxide matrices. Some oxide powder targets show a fast sintering, thus losing their favorable release characteristics. Loosely packed oxyde fiber targets are less critical since they may maintain their open structure even when starting to fuse together at some contact points. The experience with various oxyde fiber targets (titania, zirconia, ceria and thoria) used in the last years at ISOLDE is reviewed. For short-lived isotopes of Cu, Ga and Xe the zirconia and ceria targets respectively provided significantly higher yields than any other target (metal foils, oxide powders, etc.) tested before. Titania fibers, which were not commercially available, were produced in a relic process by impregnation of a rayon felt in a titanium chloride solution and subsequent calcination by heating the dried felt in air. Thoria fibers were obtained either by the same process or by burning commercial gas lantern mantle cloth. In the future a beryllia fiber target could be used to produce...

  4. How Rapid is Rapid Prototyping? Analysis of ESPADON Programme Results

    Directory of Open Access Journals (Sweden)

    Ian D. Alston

    2003-05-01

    Full Text Available New methodologies, engineering processes, and support environments are beginning to emerge for embedded signal processing systems. The main objectives are to enable defence industry to field state-of-the-art products in less time and with lower costs, including retrofits and upgrades, based predominately on commercial off the shelf (COTS components and the model-year concept. One of the cornerstones of the new methodologies is the concept of rapid prototyping. This is the ability to rapidly and seamlessly move from functional design to the architectural design to the implementation, through automatic code generation tools, onto real-time COTS test beds. In this paper, we try to quantify the term “rapid” and provide results, the metrics, from two independent benchmarks, a radar and sonar beamforming application subset. The metrics show that the rapid prototyping process may be sixteen times faster than a conventional process.

  5. New developments in oxidative fermentation.

    Science.gov (United States)

    Adachi, O; Moonmangmee, D; Toyama, H; Yamada, M; Shinagawa, E; Matsushita, K

    2003-02-01

    thermotolerant Acetobacter species were found to be useful for vinegar fermentation at a high temperature such 38-40 degrees C, where mesophilic strains showed no growth. They oxidized higher concentrations of ethanol up to 9% without any appreciable lag time, while alcohol oxidation with mesophilic strains was delayed or became almost impossible under such conditions. Several useful Gluconobacter species of thermotolerant acetic acid bacteria are also found, especially L-erythrulose-producing strains and cyclic alcohol-oxidizing strains. Gluconobacter frateurii CHM 43 is able to rapidly oxidize meso-erythritol at 37 degrees C leading to the accumulation of L-erythrulose, which may replace dihydroxyacetone in cosmetics. G. frateuriiCHM 9 is able to oxidize cyclic alcohols to their corresponding cyclic ketones or aliphatic ketones, which are known to be useful for preparing many different physiologically active compounds such as oxidized steroids or oxidized bicyclic ketones. The enzymes involved in these meso-erythritol and cyclic alcohol oxidations have been purified and shown to be a similar type of membrane-bound quinoproteins, consisting of a high molecular weight single peptide. This is completely different from another quinoprotein, alcohol dehydrogenase of acetic acid bacteria, which consists of three subunits including hemoproteins.

  6. SINTESIS GRAPHENE OXIDE DAN REDUCED GRAPHENE OXIDE

    OpenAIRE

    Rafitasari, Yeti; Suhendar, Haris; Imani, Nurul; Luciana, Fitri; Radean, Hesti; Santoso, Iman

    2016-01-01

    Graphene oxide (GO) and reduced graphene oxide (rGO) have been synthesized chemically from graphite powder. Graphite powder was oxidized with strong oxidator agent molekul  to get graphite oxide, this process was called by Hummer’s methode. Graphite oxide was dispersed in water with ultasonic vibrator to exfoliated graphite oxide layers, and become graphene oxide. Epoxy group in GO structure was reduced by hydrazine 80 wt% to get rGO. Comparation was done between self synthetic rGO and S...

  7. A Rapid Coliform Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid genetic detector for spaceflight water systems to enable real-time detection of E-coli with minimal...

  8. Rapid Multiplex Microbial Detector Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ORBITEC, in collaboration with Lucigen, proposes a rapid nucleic acid-based detector for spaceflight water systems to enable simultaneous quantification of multiple...

  9. A rapid mitochondrial toxicity assay utilizing rapidly changing cell energy metabolism.

    Science.gov (United States)

    Sanuki, Yosuke; Araki, Tetsuro; Nakazono, Osamu; Tsurui, Kazuyuki

    2017-01-01

    Drug-induced liver injury is a major cause of safety-related drug-marketing withdrawals. Several drugs have been reported to disrupt mitochondrial function, resulting in hepatotoxicity. The development of a simple and effective in vitro assay to identify the potential for mitochondrial toxicity is thus desired to minimize the risk of causing hepatotoxicity and subsequent drug withdrawal. An in vitro test method called the "glucose-galactose" assay is often used in drug development but requires prior-culture of cells over several passages for mitochondrial adaptation, thereby restricting use of the assay. Here, we report a rapid version of this method with the same predictability as the original method. We found that replacing the glucose in the medium with galactose resulted in HepG2 cells immediately shifting their energy metabolism from glycolysis to oxidative phosphorylation due to drastic energy starvation; in addition, the intracellular concentration of ATP was reduced by mitotoxicants when glucose in the medium was replaced with galactose. Using our proposed rapid method, mitochondrial dysfunction in HepG2 cells can be evaluated by drug exposure for one hour without a pre-culture step. This rapid assay for mitochondrial toxicity may be more suitable for high-throughput screening than the original method at an early stage of drug development.

  10. Solid oxide electrochemical reactor science.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Neal P. (Colorado School of Mines, Golden, CO); Stechel, Ellen Beth; Moyer, Connor J. (Colorado School of Mines, Golden, CO); Ambrosini, Andrea; Key, Robert J. (Colorado School of Mines, Golden, CO)

    2010-09-01

    Solid-oxide electrochemical cells are an exciting new technology. Development of solid-oxide cells (SOCs) has advanced considerable in recent years and continues to progress rapidly. This thesis studies several aspects of SOCs and contributes useful information to their continued development. This LDRD involved a collaboration between Sandia and the Colorado School of Mines (CSM) ins solid-oxide electrochemical reactors targeted at solid oxide electrolyzer cells (SOEC), which are the reverse of solid-oxide fuel cells (SOFC). SOECs complement Sandia's efforts in thermochemical production of alternative fuels. An SOEC technology would co-electrolyze carbon dioxide (CO{sub 2}) with steam at temperatures around 800 C to form synthesis gas (H{sub 2} and CO), which forms the building blocks for a petrochemical substitutes that can be used to power vehicles or in distributed energy platforms. The effort described here concentrates on research concerning catalytic chemistry, charge-transfer chemistry, and optimal cell-architecture. technical scope included computational modeling, materials development, and experimental evaluation. The project engaged the Colorado Fuel Cell Center at CSM through the support of a graduate student (Connor Moyer) at CSM and his advisors (Profs. Robert Kee and Neal Sullivan) in collaboration with Sandia.

  11. Development of hierarchically porous cobalt oxide for enhanced photo-oxidation of indoor pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, J. P., E-mail: chengjp@zju.edu.cn [Zhejiang University, State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering (China); Shereef, Anas; Gray, Kimberly A., E-mail: k-gray@northwestern.edu [Northwestern University, Center for Catalysis and Surface Science (United States); Wu, Jinsong [Northwestern University, Department of Materials Science and Engineering (United States)

    2015-03-15

    Porous cobalt oxide was successfully prepared by precipitation of cobalt hydroxide followed by low temperature thermal decomposition. The morphologies of the resultant oxides remained as the corresponding hydroxides, although the morphology of cobalt hydroxides was greatly influenced by the precursor salts. The cobalt oxides with average crystal size less than 20 nm were characterized by X-ray diffraction, scanning electron microscope, BET surface area, and XPS analysis. The photocatalytic activities of the various cobalt oxides morphologies were investigated by comparing the photo-degradation of acetaldehyde under simulated solar illumination. Relative to their low order structures and reference titania samples, the hierarchical nanostructures of cobalt oxide showed excellent abilities to rapidly degrade acetaldehyde, a model air pollutant. This was attributed to the unique nature of these hierarchical cobalt oxide nanoassemblies, which contained many catalytically active reaction sites and open pores.

  12. A strategic approach for preparation of oxide nanomaterials

    Indian Academy of Sciences (India)

    A microwave assisted solvothermal method is described for rapid preparation of nano-oxides. This method is based on exploiting differential dielectric constants to induce preferred heating and decomposition of the oxide precursors in the presence of suitable capping agents. This strategic approach has been used to ...

  13. A strategic approach for preparation of oxide nanomaterials

    Indian Academy of Sciences (India)

    Unknown

    Abstract. A microwave assisted solvothermal method is described for rapid preparation of nano-oxides. This method is based on exploiting differential dielectric constants to induce preferred heating and decomposition of the oxide precursors in the presence of suitable capping agents. This strategic approach has been used ...

  14. Interactions between microbial activity and distribution and mineral coatings on sand grains from rapid sand filters treating groundwater

    DEFF Research Database (Denmark)

    Gülay, Arda; Tatari, Karolina; Musovic, Sanin

    Rapid sand filtration is a traditional and widespread technology for drinking water purification which combines biological, chemical and physical processes together. Granular media, especially sand, is a common filter material that allows several oxidized compounds to accumulate on its surface...

  15. Product desorption limitations in selective photocatalytic oxidation

    NARCIS (Netherlands)

    Renckens, T.J.A.; Almeida, A.R.; Almeida, A.R.; Damen, M.R.; Kreutzer, M.T.; Mul, Guido

    2010-01-01

    The rate of photocatalytic processes can be significantly improved if strongly bound products rapidly desorb to free up active sites. This paper deals with the rate of desorption of cyclohexanone, the product of the liquid-phase photo-oxidation of cyclohexane. Dynamic step-response and

  16. Oxidation subscale of gamma-titanium aluminide

    NARCIS (Netherlands)

    Beye, R.; Verwerft, Marc; de Hosson, J.T.M.; Gronsky, R.

    1996-01-01

    The subscale formed during high temperature rapid oxidation of gamma-titanium aluminum is revealed by transmission electron microscopy and microanalysis to consist of two phases: one hexagonal with unit cell dimensions a = 0.58 nm, c = 0.47 nm (+/- 0.005 nm), and a composition close to Ti6Al3O4; the

  17. High-pressure oxidation of methane

    NARCIS (Netherlands)

    Hashemi, Hamid; Christensen, Jakob M.; Gersen, Sander; Levinsky, Howard; Klippenstein, Stephen J.; Glarborg, Peter

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly

  18. Circulating biologically active oxidized phospholipids show on-going and increased oxidative stress in older male mice

    Directory of Open Access Journals (Sweden)

    Jinbo Liu

    2013-01-01

    Significance: Oxidatively modified phospholipids are increased in the circulation during common, mild oxidant stresses of aging, or in male compared to female animals. Turnover of these biologically active phospholipids by rapid transport into liver and kidney is unchanged, so circulating levels reflect continuously increased production.

  19. PREFACE: Semiconducting oxides Semiconducting oxides

    Science.gov (United States)

    Catlow, Richard; Walsh, Aron

    2011-08-01

    Semiconducting oxides are amongst the most widely studied and topical materials in contemporary condensed matter science, with interest being driven both by the fundamental challenges posed by their electronic and magnetic structures and properties, and by the wide range of applications, including those in catalysis and electronic devices. This special section aims to highlight recent developments in the physics of these materials, and to show the link between developing fundamental understanding and key application areas of oxide semiconductors. Several aspects of the physics of this wide and expanding range of materials are explored in this special section. Transparent semiconducting oxides have a growing role in several technologies, but challenges remain in understanding their electronic structure and the physics of charge carriers. A related problem concerns the nature of redox processes and the reactions which interconvert defects and charge carriers—a key issue which may limit the extent to which doping strategies may be used to alter electronic properties. The magnetic structures of the materials pose several challenges, while surface structures and properties are vital in controlling catalytic properties, including photochemical processes. The field profits from and exploits a wide range of contemporary physical techniques—both experimental and theoretical. Indeed, the interplay between experiment and computation is a key aspect of contemporary work. A number of articles describe applications of computational methods whose use, especially in modelling properties of defects in these materials, has a long and successful history. Several papers in this special section relate to work presented at a symposium within the European Materials Research Society (EMRS) meeting held in Warsaw in September 2010, and we are grateful to the EMRS for supporting this symposium. We would also like to thank the editorial staff of Journal of Physics: Condensed Matter for

  20. Composites by rapid prototyping technology

    CSIR Research Space (South Africa)

    Kumar, S

    2010-02-01

    Full Text Available powder is a fiber, problems of manufacturing occur. The method has also been used to make Metal Matrix Composite (MMC), e.g Fe and graphite [17], WC-Co [18,19], WC-Co and Cu [20,21], Fe, Ni and TiC [22] etc and Ceramic Matrix Composite (CMC) e.g. Si... of various materials used. Key words: : Rapid Prototyping (RP), Laser, Composites 1 Introduction Rapid Prototyping (RP) initially focussed on polymers. These were later re- placed/supplemented by ceramics, metals and composites. Composites are used in RP...

  1. Self-ignition and oxidation of various hydrocarbons between 600 and 1000 K at high pressure: experimental study with fast compression machine and modeling; Autoinflammation et oxydation de divers hydrocarbures entre 600 et 1000 K a haute pression: etude experimentale en machine a compression rapide et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Ribaucour, M.

    2002-12-01

    Low- and intermediate-temperature oxidation and self-ignition of hydrocarbons play a major role in spark ignition, diesel and HCCI (homogenous charge compression ignition) engines. A deep understanding of the chemistry linked with both phenomena is necessary to improve the engines efficiency and to reduce the formation of pollutants. This document treats of works about the self-ignition and oxidation at high pressure of various hydrocarbons between 600 and 1000 deg. K. The experimental tool used is a fast compression machine fitted with a fast sampling system for the measurement of self-ignition delays and of the concentrations of intermediate oxidation products. The advantages and limitations of this tool are discussed. The self-ignition of various hydrocarbons is compared using pre-defined data which characterize the phenomenologies like cold flames, negative temperature coefficients and self-ignition limits. The hydrocarbons considered are pure or binary mixtures of alkanes, pent-1-ene and n-butyl-benzene. The development of high pressure oxidation reaction schemes of alkanes between 600 and 1000 deg. K is described. It is directly based on the analysis of intermediate oxidation products. This methodology is also applied to pent-1-ene and n-butyl-benzene. The construction of detailed thermo-kinetic models of oxidation and the modeling of phenomena are made for n-butane, n-heptane, for the 3 pentane isomers, for pent-1-ene and n-butyl-benzene. Finally, the perspectives of future works are evoked. They concern new modeling and new methodologies to be applied in more predictive thermo-kinetic models and the reduction of detailed models in order to include them inside fluid dynamics codes. (J.S.)

  2. Nitrogen oxides

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, T.; Horiike, E.; Murakami, M.; Hosoya, T.; Miyanishi, T.; Amamiya, S.

    1975-08-01

    This invention relates to the removal of nitrogen oxides with an aqueous alkaline solution. Waste gas was introduced to an absorbing tower at a flow rate of 0.7--1.0 m/s while sodium hydroxide solution was pumped to the top of the tower at 10--15 l/m/sup 3/ gas. The liquid was sprayed into the waste gas and the resulting gas was led to a second absorbing tower and then a decomposition tower where the remaining NO/sub x/ was removed by sodium sulfide solution or Na/sub 2/S and NaOH mixed solution. With two absorbing towers and one decomposition tower, NO/sub x/ concentration was reduced from 2500 ppM to as low as 36 ppM, or 99 percent removal. With three absorbing towers, the rate of removal was below 80 percent.

  3. Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide.

    Science.gov (United States)

    Lim, Dong-Kwon; Barhoumi, Aoune; Wylie, Ryan G; Reznor, Gally; Langer, Robert S; Kohane, Daniel S

    2013-09-11

    We report plasmonic gold nanoshells and nanorods coated with reduced graphene oxide that produce an enhanced photothermal effect when stimulated by near-infrared (NIR) light. Electrostatic interactions between nanosized graphene oxide and gold nanoparticles followed by in situ chemical reduction generated reduced graphene oxide-coated nanoparticles; the coating was demonstrated using Raman and HR-TEM. Reduced graphene oxide-coated gold nanoparticles showed enhanced photothermal effect compared to noncoated or nonreduced graphene oxide-coated gold nanoparticles. Reduced graphene oxide-coated gold nanoparticles killed cells more rapidly than did noncoated or nonreduced graphene oxide-coated gold nanoparticles.

  4. Developmental evolution facilitates rapid adaptation.

    Science.gov (United States)

    Lin, Hui; Kazlauskas, Romas J; Travisano, Michael

    2017-11-21

    Developmental evolution has frequently been identified as a mode for rapid adaptation, but direct observations of the selective benefits and associated mechanisms of developmental evolution are necessarily challenging to obtain. Here we show rapid evolution of greatly increased rates of dispersal by developmental changes when populations experience stringent selection. Replicate populations of the filamentous fungus Trichoderma citrinoviride underwent 85 serial transfers, under conditions initially favoring growth but not dispersal. T. citrinoviride populations shifted away from multicellular growth toward increased dispersal by producing one thousand times more single-celled asexual conidial spores, three times sooner than the ancestral genotype. Conidia of selected lines also germinated fifty percent faster. Gene expression changed substantially between the ancestral and selected fungi, especially for spore production and growth, demonstrating rapid evolution of tight regulatory control for down-regulation of growth and up-regulation of conidia production between 18 and 24 hours of growth. These changes involved both developmentally fixed and plastic changes in gene expression, showing that complex developmental changes can serve as a mechanism for rapid adaptation.

  5. Multigrade Teaching Rapid Appraisal Procedure.

    Science.gov (United States)

    Nielsen, Dean

    Multigrade classes have been recognized as part of elementary education for many years, but their special needs have been largely ignored. This manual focuses on the survey research that should predate the design of instructional management strategies in multigrade classrooms. It describes rapid and reliable ways to collect information about the…

  6. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  7. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  8. Rapid Energy Modeling Workflow Demonstration

    Science.gov (United States)

    2013-10-31

    BIM Building Information Modeling BPA Building Performance Analysis BTU British Thermal Unit CBECS Commercial Building ...geometry, orientation, weather, and materials, generates 3D Building Information Models ( BIM ) guided by satellite views of building footprints and...Rapid Energy Modeling (REM) workflows that employed building information modeling ( BIM ) approaches and conceptual energy analysis.

  9. Portable Diagnostics and Rapid Germination

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Zachary Spencer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  10. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followed by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.

  11. Acridine Orange Indicates Early Oxidation of Wood Cell Walls by Fungi

    Science.gov (United States)

    Carl J. Houtman; Peter Kitin; Jon C. D. Houtman; Kenneth E. Hammel; Christopher G. Hunt

    2016-01-01

    Colonization of wood blocks by brown and white rot fungi rapidly resulted in detectable wood oxidation, as shown by a reduced phloroglucinol response, a loss of autofluorescence, and acridine orange (AO) staining. This last approach is shown to provide a novel method for identifying wood oxidation. When lignin was mildly oxidized, the association between AO and lignin...

  12. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    DEFF Research Database (Denmark)

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya

    2016-01-01

    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...... is a good candidate for improving the overall conversion efficiencies in oxide thermoelectric modules. Meanwhile, Sc-doped ZnCdO is robust in air at high temperatures, whereas other n-type materials, such as Al-doped ZnO, will experience rapid degradation of their electrical conductivity and ZT....

  13. Collecting meaningful early-time kinetic data in homogeneous catalytic water oxidation with a sacrificial oxidant.

    Science.gov (United States)

    Vickers, James W; Sumliner, Jordan M; Lv, Hongjin; Morris, Mike; Geletii, Yurii V; Hill, Craig L

    2014-06-28

    As the field of water oxidation catalysis grows, so does the sophistication of the associated experimental apparatuses. However, problems persist in studying some of the most basic aspects of catalytic water oxidation including acquisition of satisfactory early-reaction-time kinetics and rapid quantification of O2 concentration. We seek to remedy these problems and through better experimental design, elucidate mechanistic aspects of catalytic water oxidation with theory backed by experimental data. Two new methods for evaluating homogeneous water oxidation catalysts by reaction with a stoichiometric oxidant are presented which eliminate problems of incomplete fast mixing and O2 measurement response time. These methods generate early-reaction-time kinetics that have previously been unavailable.

  14. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  15. Neutrophilic iron oxidizers adapted to highly oxic environments

    DEFF Research Database (Denmark)

    Gülay, Arda; Musovic, Sanin; Albrechtsen, Hans-Jørgen

    carbon) while oxygen (O2) is the electron acceptor provided during the aeration process. Numerous previous studies have described neutrophilic iron oxidizers as a bacterial guild with a special niche preference, especially the transition zone between aerobic and anoxic regions, where abiotic chemical...... oxidation of iron would be retarded. For that reason, no attempts have been documented to describe the density and diversity of iron oxidizing bacteria (FeOB) in oxic neutrophilic environments. Under low temperatures (5 to 10°C) conditions, as typically found in groundwater, extremely low rates of chemical...... iron oxidation (t1/2: 315min.) have been documented. This assumed slow chemical oxidation of Fe2 + in rapid sand filters may allow certain bacteria to oxidize iron concurrently with the ongoing slow chemical oxidation. Hence, we aimed to investigate the abundance, diversity, and spatial distribution...

  16. High-pressure oxidation of methane

    DEFF Research Database (Denmark)

    Hashemi, Hamid; Christensen, Jakob Munkholt; Gersen, Sander

    2016-01-01

    Methane oxidation at high pressures and intermediate temperatures was investigated in a laminar flow reactor and in a rapid compression machine (RCM). The flow-reactor experiments were conducted at 700–900 K and 100 bar for fuel-air equivalence ratios (Φ) ranging from 0.06 to 19.7, all highly...... diluted in nitrogen. It was found that under the investigated conditions, the onset temperature for methane oxidation ranged from 723 K under reducing conditions to 750 K under stoichiometric and oxidizing conditions. The RCM experiments were carried out at pressures of 15–80 bar and temperatures of 800......–1250 K under stoichiometric and fuel-lean (Φ=0.5) conditions. Ignition delays, in the range of 1–100 ms, decreased monotonically with increasing pressure and temperature. A chemical kinetic model for high-pressure methane oxidation was established, with particular emphasis on the peroxide chemistry...

  17. Rapid scenarios and observed intensities

    OpenAIRE

    Franco Pettenati; Livio Sirovich

    2012-01-01

    After a destructive earthquake, national Governments need to know the approximate amount of damage, the number of casualties, and the financial losses as soon as possible. Rapid scenarios are also used to inform the general public; see the widely used Shakemap package [Wald et al. 1999, 2006] of the US Geological Survey (USGS) and the one modified by the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology), which is reproduced for Figure 1. T...

  18. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  19. Rapid scenarios and observed intensities

    Directory of Open Access Journals (Sweden)

    Franco Pettenati

    2012-10-01

    Full Text Available After a destructive earthquake, national Governments need to know the approximate amount of damage, the number of casualties, and the financial losses as soon as possible. Rapid scenarios are also used to inform the general public; see the widely used Shakemap package [Wald et al. 1999, 2006] of the US Geological Survey (USGS and the one modified by the Istituto Nazionale di Geofisica e Vulcanologia (INGV; National Institute of Geophysics and Volcanology, which is reproduced for Figure 1. The general matter of the use of intensities in damage scenarios was discussed in a special session at the 2008 Annual Meeting of the Seismological Society of America (http://www.seismosoc.org/meetings/2008/specialsessions.html, and was also discussed in the NIS-1 session of the European Congress in Moscow, in August 2012 (http://www.esc2012-moscow.org/esc_thematicareas.html. The purposes of the present report are to: (i compare different types of intensities; (ii check two rapid scenarios of intensity; and (iii understand whether the KF formula [Sirovich 1996, Sirovich et al. 2009] can be used as a new 'attenuation' relationship to improve rapid scenarios. […

  20. Rapid diagnosis of mycobacterial infections

    Directory of Open Access Journals (Sweden)

    Michel Drancourt

    2015-01-01

    Full Text Available While pulmonary tuberculosis (PTB remains an important public health issue worldwide, there is an emerging interest in non-tuberculous mycobacteria (NTM which is responsible for opportunistic infections of the respiratory tract as well as other anatomical sites in both developed and developing countries. In this context the one goal of the clinical mycobacteriology laboratories is to provide physicians with an accurate identification of the mycobacterium as rapidly as possible. During the last ten years, several lines of laboratory tools have been developed in order to speed the isolation and identification of mycobacteria from clinical specimens. Chiefly, the composition of culture medium was renewed along with the protocol of incubation in order to recover Mycobacterium tuberculosis (MTB micro-colonies as soon as 48 h after the inoculation of the specimen. MALDI-TOF rapid identification is clearly the tool to be implemented in the laboratory for the rapid identification of the micro-colonies. Also, molecular tools and genomics are necessary in order to depict new mycobacteria species, including those of the Mycobacterium abscessus complex and the Mycobacterium avium complex. All these tools and their connections will be presented during this conference.

  1. Rapid Color Test Identification System for Screening of Counterfeit Fluoroquinolone

    Directory of Open Access Journals (Sweden)

    B. K. Singh

    2009-01-01

    Full Text Available The protocol of rapid identification system consists of three chemical color reactions; two group tests for fluoroquinolone class and a compound specific test each for norfloxacin, ciprofloxacin, gatifloxacin, ofloxacin, levofloxacin and sparfloxacin. The group color reactions are based on (a Oxidizing behavior of quinolone and (b Fluorine functional groups, both of which are characteristic of fluoroquinolone class. The compound specific color reactions are developed taking into consideration unique chemical behavior of each compound. The proposed chemical color tests have high selectivity⁄specificity, are ideal for screening purpose. The color of each test was defined by two standard color systems namely CIE lab and Munsell color. A suspected counterfeit tablet of any of the above mentioned drugs can be identified within 10-15 min using this rapid identification system.

  2. Rapid magnetic cell delivery for large tubular bioengineered constructs.

    Science.gov (United States)

    Gonzalez-Molina, J; Riegler, J; Southern, P; Ortega, D; Frangos, C C; Angelopoulos, Y; Husain, S; Lythgoe, M F; Pankhurst, Q A; Day, R M

    2012-11-07

    Delivery of cells into tubular tissue constructs with large diameters poses significant spatial and temporal challenges. This study describes preliminary findings for a novel process for rapid and uniform seeding of cells onto the luminal surface of large tubular constructs. Fibroblasts, tagged with superparamagnetic iron oxide nanoparticles (SPION), were directed onto the luminal surface of tubular constructs by a magnetic field generated by a k4-type Halbach cylinder device. The spatial distribution of attached cells, as measured by the mean number of cells, was compared with a conventional, dynamic, rotational cell-delivery technique. Cell loading onto the constructs was measured by microscopy and magnetic resonance imaging. The different seeding techniques employed had a significant effect on the spatial distribution of the cells (p same construct was significantly different for the dynamic rotation technique (p delivery techniques and is amenable to a variety of tubular organs where rapid loading and uniform distribution of cells for therapeutic applications are required.

  3. Methanogens rapidly transition from methane production to iron reduction.

    Science.gov (United States)

    Sivan, O; Shusta, S S; Valentine, D L

    2016-03-01

    Methanogenesis, the microbial methane (CH4 ) production, is traditionally thought to anchor the mineralization of organic matter as the ultimate respiratory process in deep sediments, despite the presence of oxidized mineral phases, such as iron oxides. This process is carried out by archaea that have also been shown to be capable of reducing iron in high levels of electron donors such as hydrogen. The current pure culture study demonstrates that methanogenic archaea (Methanosarcina barkeri) rapidly switch from methanogenesis to iron-oxide reduction close to natural conditions, with nitrogen atmosphere, even when faced with substrate limitations. Intensive, biotic iron reduction was observed following the addition of poorly crystalline ferrihydrite and complex organic matter and was accompanied by inhibition of methane production. The reaction rate of this process was of the first order and was dependent only on the initial iron concentrations. Ferrous iron production did not accelerate significantly with the addition of 9,10-anthraquinone-2,6-disulfonate (AQDS) but increased by 11-28% with the addition of phenazine-1-carboxylate (PCA), suggesting the possible role of methanophenazines in the electron transport. The coupling between ferrous iron and methane production has important global implications. The rapid transition from methanogenesis to reduction of iron-oxides close to the natural conditions in sediments may help to explain the globally-distributed phenomena of increasing ferrous concentrations below the traditional iron reduction zone in the deep 'methanogenic' sediment horizon, with implications for metabolic networking in these subsurface ecosystems and in past geological settings. © 2016 John Wiley & Sons Ltd.

  4. Electrochemical oxidation of cholesterol

    Directory of Open Access Journals (Sweden)

    Jacek W. Morzycki

    2015-03-01

    Full Text Available Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions.

  5. Thermally exfoliated graphite oxide

    Science.gov (United States)

    Prud'Homme, Robert K. (Inventor); Aksay, Ilhan A. (Inventor); Abdala, Ahmed (Inventor)

    2011-01-01

    A modified graphite oxide material contains a thermally exfoliated graphite oxide with a surface area of from about 300 sq m/g to 2600 sq m/g, wherein the thermally exfoliated graphite oxide displays no signature of the original graphite and/or graphite oxide, as determined by X-ray diffraction.

  6. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Melcher, Cynthia P.

    2015-08-28

    The Wyoming Basin Rapid Ecoregional Assessment was conducted in partnership with the Bureau of Land Management (BLM). The overall goals of the BLM Rapid Ecoregional Assessments (REAs) are to identify important ecosystems and wildlife habitats at broad spatial scales; identify where these resources are at risk from Change Agents, including development, wildfire, invasive species, disease and climate change; quantify cumulative effects of anthropogenic stressors; and assess current levels of risk to ecological resources across a range of spatial scales and jurisdictional boundaries by assessing all lands within an ecoregion. There are several components of the REAs. Management Questions, developed by the BLM and stakeholders for the ecoregion, identify the regionally significant information needed for addressing land-management responsibilities. Conservation Elements represent regionally significant species and ecological communities that are of management concern. Change Agents that currently affect or are likely to affect the condition of species and communities in the future are identified and assessed. REAs also identify areas that have high conservation potential that are referred to as “large intact areas.” At the ecoregion level, the ecological value of large intact areas is based on the assumption that because these areas have not been greatly altered by human activities (such as development), they are more likely to contain a variety of plant and animal communities and to be resilient and resistant to changes resulting from natural disturbances such as fire, insect outbreaks, and disease.

  7. Rapid self-healing hydrogels

    Science.gov (United States)

    Phadke, Ameya; Zhang, Chao; Arman, Bedri; Hsu, Cheng-Chih; Mashelkar, Raghunath A.; Lele, Ashish K.; Tauber, Michael J.; Arya, Gaurav; Varghese, Shyni

    2012-01-01

    Synthetic materials that are capable of autonomous healing upon damage are being developed at a rapid pace because of their many potential applications. Despite these advancements, achieving self-healing in permanently cross-linked hydrogels has remained elusive because of the presence of water and irreversible cross-links. Here, we demonstrate that permanently cross-linked hydrogels can be engineered to exhibit self-healing in an aqueous environment. We achieve this feature by arming the hydrogel network with flexible-pendant side chains carrying an optimal balance of hydrophilic and hydrophobic moieties that allows the side chains to mediate hydrogen bonds across the hydrogel interfaces with minimal steric hindrance and hydrophobic collapse. The self-healing reported here is rapid, occurring within seconds of the insertion of a crack into the hydrogel or juxtaposition of two separate hydrogel pieces. The healing is reversible and can be switched on and off via changes in pH, allowing external control over the healing process. Moreover, the hydrogels can sustain multiple cycles of healing and separation without compromising their mechanical properties and healing kinetics. Beyond revealing how secondary interactions could be harnessed to introduce new functions to chemically cross-linked polymeric systems, we also demonstrate various potential applications of such easy-to-synthesize, smart, self-healing hydrogels. PMID:22392977

  8. Rapid generalization in phonotactic learning

    Directory of Open Access Journals (Sweden)

    Tal Linzen

    2017-10-01

    Full Text Available Speakers judge novel strings to be better potential words of their language if those strings consist of sound sequences that are attested in the language. These intuitions are often generalized to new sequences that share some properties with attested ones: Participants exposed to an artificial language where all words start with the voiced stops [b] and [d] will prefer words that start with other voiced stops (e.g., [g] to words that start with vowels or nasals. The current study tracks the evolution of generalization across sounds during the early stages of artificial language learning. In Experiments 1 and 2, participants received varying amounts of exposure to an artificial language. Learners rapidly generalized to new sounds: In fact, following short exposure to the language, attested patterns were not distinguished from unattested patterns that were similar in their phonological properties to the attested ones. Following additional exposure, participants showed an increasing preference for attested sounds, alongside sustained generalization to unattested ones. Finally, Experiment 3 tested whether participants can rapidly generalize to new sounds based on a single type of sound. We discuss the implications of our results for computational models of phonotactic learning.

  9. Rapid ISS Power Availability Simulator

    Science.gov (United States)

    Downing, Nicholas

    2011-01-01

    The ISS (International Space Station) Power Resource Officers (PROs) needed a tool to automate the calculation of thousands of ISS power availability simulations used to generate power constraint matrices. Each matrix contains 864 cells, and each cell represents a single power simulation that must be run. The tools available to the flight controllers were very operator intensive and not conducive to rapidly running the thousands of simulations necessary to generate the power constraint data. SOLAR is a Java-based tool that leverages commercial-off-the-shelf software (Satellite Toolkit) and an existing in-house ISS EPS model (SPEED) to rapidly perform thousands of power availability simulations. SOLAR has a very modular architecture and consists of a series of plug-ins that are loosely coupled. The modular architecture of the software allows for the easy replacement of the ISS power system model simulator, re-use of the Satellite Toolkit integration code, and separation of the user interface from the core logic. Satellite Toolkit (STK) is used to generate ISS eclipse and insulation times, solar beta angle, position of the solar arrays over time, and the amount of shadowing on the solar arrays, which is then provided to SPEED to calculate power generation forecasts. The power planning turn-around time is reduced from three months to two weeks (83-percent decrease) using SOLAR, and the amount of PRO power planning support effort is reduced by an estimated 30 percent.

  10. KEPLER RAPIDLY ROTATING GIANT STARS

    Energy Technology Data Exchange (ETDEWEB)

    Costa, A. D.; Martins, B. L. Canto; Bravo, J. P.; Paz-Chinchón, F.; Chagas, M. L. das; Leão, I. C.; Oliveira, G. Pereira de; Silva, R. Rodrigues da; Roque, S.; Oliveira, L. L. A. de; Silva, D. Freire da; De Medeiros, J. R., E-mail: renan@dfte.ufrn.br [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Campus Universitário, Natal RN (Brazil)

    2015-07-10

    Rapidly rotating giant stars are relatively rare and may represent important stages of stellar evolution, resulting from stellar coalescence of close binary systems or accretion of substellar companions by their hosting stars. In the present Letter, we report 17 giant stars observed in the scope of the Kepler space mission exhibiting rapid rotation behavior. For the first time, the abnormal rotational behavior for this puzzling family of stars is revealed by direct measurements of rotation, namely from photometric rotation period, exhibiting a very short rotation period with values ranging from 13 to 55 days. This finding points to remarkable surface rotation rates, up to 18 times the rotation of the Sun. These giants are combined with six others recently listed in the literature for mid-infrared (IR) diagnostics based on Wide-field Infrared Survey Explorer information, from which a trend for an IR excess is revealed for at least one-half of the stars, but at a level far lower than the dust excess emission shown by planet-bearing main-sequence stars.

  11. Rapid starting methanol reactor system

    Science.gov (United States)

    Chludzinski, Paul J.; Dantowitz, Philip; McElroy, James F.

    1984-01-01

    The invention relates to a methanol-to-hydrogen cracking reactor for use with a fuel cell vehicular power plant. The system is particularly designed for rapid start-up of the catalytic methanol cracking reactor after an extended shut-down period, i.e., after the vehicular fuel cell power plant has been inoperative overnight. Rapid system start-up is accomplished by a combination of direct and indirect heating of the cracking catalyst. Initially, liquid methanol is burned with a stoichiometric or slightly lean air mixture in the combustion chamber of the reactor assembly. The hot combustion gas travels down a flue gas chamber in heat exchange relationship with the catalytic cracking chamber transferring heat across the catalyst chamber wall to heat the catalyst indirectly. The combustion gas is then diverted back through the catalyst bed to heat the catalyst pellets directly. When the cracking reactor temperature reaches operating temperature, methanol combustion is stopped and a hot gas valve is switched to route the flue gas overboard, with methanol being fed directly to the catalytic cracking reactor. Thereafter, the burner operates on excess hydrogen from the fuel cells.

  12. Rapidly Developing Toxic Epidermal Necrolysis

    Directory of Open Access Journals (Sweden)

    Viktoria Oline Barrios Poulsen

    2013-01-01

    Full Text Available Severe cutaneous reactions with potentially fatal outcomes can have many different causes. The Stevens-Johnson syndrome (SJS and toxic epidermal necrolysis (TEN are rare. They are characterized by a low incidence but high mortality, and drugs are most commonly implicated. Urgent active therapy is required. Prompt recognition and withdrawal of suspect drug and rapid intervention can result in favourable outcome. No further international guidelines for treatment exist, and much of the treatment relies on old or experimental concepts with no scientific evidence. We report on a 54-year-old man experiencing rapidly developing drug-induced severe TEN and presented multiorgan failure involving the respiratory and circulatory system, coagulopathy, and renal insufficiency. Detachment counted 30% of total body surface area (TBSA. SCORTEN = 5, indicating a mortality rate >90%. The patient was sedated and mechanically ventilated, supported with fluids and inotropes to maintain a stable circulation. Component therapy was guided by thromboelastography (TEG. The patient received plasmapheresis, and shock reversal treatment was initiated. He was transferred to a specialized intensive care burn unit within 24 hours from admittance. The initial care was continued, and hemodialysis was started. Pulmonary, circulatory, and renal sequelae resolved with intensive care, and re-epithelialization progressed slowly. The patient was discharged home on hospital day 19.

  13. Passivation ability of graphene oxide demonstrated by two-different-metal solar cells.

    Science.gov (United States)

    Hsu, Wen-Tzu; Tsai, Zong-Sian; Chen, Liang-Chun; Chen, Guan-Yu; Lin, Chun-Chieh; Chen, Mei-Hsin; Song, Jenn-Ming; Lin, Chu-Hsuan

    2014-12-01

    The study on graphene oxide (GO) grows rapidly in recent years. We find that graphene oxide could act as the passivation material in photovoltaic applications. Graphene oxide has been applied on Si two-different-metal solar cells. The suitable introduction of graphene oxide could result in obvious enhancement on the efficiency. The simple chemical process to deposit graphene oxide makes low thermal budget, large-area deposition, and fast production of surface passivation possible. The different procedures to incorporate graphene oxide in Si two-different-metal solar cells are compared, and 21% enhancement on the efficiency is possible with a suitable deposition method.

  14. Catalytic ammonia oxidation to nitrogen (i) oxide

    OpenAIRE

    MASALITINA NATALIYA YUREVNA; SAVENKOV ANATOLIY SERGEEVICH

    2015-01-01

    The process of synthesis of nitrous oxide by low-temperature catalytical oxidation of NH has been investigated for organic synthesis. The investigation has been carried out by the stage separation approach with NH oxidation occurring in several reaction zones, which characterized by different catalytic conditions. The selectivity for N2O was 92-92,5% at the ammonia conversion of 98-99.5% in the optimal temperature range

  15. The Enzymatic Oxidation of Graphene Oxide

    Science.gov (United States)

    Kotchey, Gregg P.; Allen, Brett L.; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A.; Tyurina, Yulia Y.; Klein-Seetharaman, Judith; Kagan, Valerian E.; Star, Alexander

    2011-01-01

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon – the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (~40 µM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, UV-Vis, EPR and FT-IR spectroscopy, TEM, AFM, SDS-PAGE, and GC-MS. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Due to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors. PMID:21344859

  16. The enzymatic oxidation of graphene oxide.

    Science.gov (United States)

    Kotchey, Gregg P; Allen, Brett L; Vedala, Harindra; Yanamala, Naveena; Kapralov, Alexander A; Tyurina, Yulia Y; Klein-Seetharaman, Judith; Kagan, Valerian E; Star, Alexander

    2011-03-22

    Two-dimensional graphitic carbon is a new material with many emerging applications, and studying its chemical properties is an important goal. Here, we reported a new phenomenon--the enzymatic oxidation of a single layer of graphitic carbon by horseradish peroxidase (HRP). In the presence of low concentrations of hydrogen peroxide (∼40 μM), HRP catalyzed the oxidation of graphene oxide, which resulted in the formation of holes on its basal plane. During the same period of analysis, HRP failed to oxidize chemically reduced graphene oxide (RGO). The enzymatic oxidation was characterized by Raman, ultraviolet-visible, electron paramagnetic resonance, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and gas chromatography-mass spectrometry. Computational docking studies indicated that HRP was preferentially bound to the basal plane rather than the edge for both graphene oxide and RGO. Owing to the more dynamic nature of HRP on graphene oxide, the heme active site of HRP was in closer proximity to graphene oxide compared to RGO, thereby facilitating the oxidation of the basal plane of graphene oxide. We also studied the electronic properties of the reduced intermediate product, holey reduced graphene oxide (hRGO), using field-effect transistor (FET) measurements. While RGO exhibited a V-shaped transfer characteristic similar to a single layer of graphene that was attributed to its zero band gap, hRGO demonstrated a p-type semiconducting behavior with a positive shift in the Dirac points. This p-type behavior rendered hRGO, which can be conceptualized as interconnected graphene nanoribbons, as a potentially attractive material for FET sensors.

  17. Rapid densification of sol–gel derived yttria-stabilized zirconia thin films

    NARCIS (Netherlands)

    Veldhuis, Sjoerd; Brinks, Peter; ten Elshof, Johan E.

    2015-01-01

    A method based on X-ray reflectivity was used to study the densification behavior of 8 mol% yttria-stabilized zirconia for use in solid oxide fuel cells. Sol–gel derived thin electrolyte films were prepared via spin coating. Subsequent microwave-assisted rapid thermal annealing at 650–1000 °C

  18. Expansion Coefficient on Oxides and Oxide Ceramics.

    Science.gov (United States)

    1986-05-01

    Classification) EXPANSION COEFFICIENTS ON OXIDES AND OXIDE CERAMICS 12 PFRSONAL AUTHOR(S) Josephine Covino 13a TYPE OF REPORT 13b TIME COVERED 114 DATE OF REPORT...drastically alter expansion properties of oxides. It has been found that fine-grained (᝺ tm) anisotropic ceramic materials, such as hafnium oxide, hafnium ...Gokhale. "Thermal Expansion of Zircon ," Jap. J. AppZ. Phys., 7 (1968), p. 1126. 34 -- ’-a.’! nw-W’W L. .WW U. .PV _ 77 NWC TP 6663 81. J. L. Amoros, M

  19. Rapid Adaptation in Digital Transformation

    DEFF Research Database (Denmark)

    Hansen, Anne Mette; Kræmmergaard, Pernille; Mathiassen, Lars

    2011-01-01

    the organization’s digitization approach. We demonstrate in detail how the leaders within these two organizations were engaged and offer recommendations for how other organizations can use the PPM to rapidly adapt their approaches to digital transformation through more effective IS leadership roles.......In today’s highly dynamic environments, organizational leaders need to quickly adapt existing approaches to digital transformation. However, without a shared mindset between IS and business leaders, it is difficult to adopt new approaches in response to changes in the competitive and technology...... landscape. In this article, we share insights gained from two public sector organizations in which IS and business leaders used the Participatory Process Model (PPM) designed by the authors to share their assumptions about IS leadership, challenge existing IT strategies and collaboration patterns and adapt...

  20. Moved by a Rapid Transit

    Science.gov (United States)

    Bueter, C.

    2013-04-01

    Enticing by virtue of its predictability, historical utility, and spectacle, the transit of Venus is a niche event among astronomical phenomena. Though the value of a transit for scientific purposes is now diminished, the brief appearance of Venus silhouetted against the background of the Sun in 2004 moved the artistic community to celebrate the rare alignment. Artists of all ages combined old traditions with fresh technology to create a 21st-century tapestry of music, sculpture, paintings, glasswork, quilts, sky shows, and digital imagery. A full catalog of transit-related art generated over the centuries would feature the sampling of entries presented here and at the Moved by a Rapid Transit website.

  1. [Rapid diagnostic test for malaria].

    Science.gov (United States)

    Houzé, S

    2017-02-01

    The rapid diagnostic tests (RDTs) whose main interest lies in their implementation without special equipment by unskilled personnel have grown significantly over the past fifteen years to diagnose malaria. They rely on the detection of specific Plasmodium proteins, PfHRP2, pLDH and aldolase. If the detection of PfHRP2 has very good sensitivity for the diagnosis of Plasmodium falciparum malaria, the detection of pLDH or aldolase is less efficient for other species, leaving its place to the reference microscopic diagnosis. RDT could not generally be used to monitor therapeutic efficacy because they can remain positive after clinical and parasitological cure. Furthermore, the development of the use of these tests has highlighted the need for quality assurance programs to monitor their production as their use.

  2. Importance of copper for nitrification in biological rapid sand filters for drinking water production

    DEFF Research Database (Denmark)

    Wagner, Florian Benedikt

    , the reaction rate is sometimes not high enough. This results in incomplete nitrification, with residual ammonium and nitrite concentrations in the finished water, which are problematic for the biological stability of the drinking water. In Denmark, 11 % of the larger water works (>350,000 m3/year) fail......When anoxic groundwater is treated to produce drinking water, ammonium is commonly removed through nitrification in rapid sand filters. Nitrification is a biological process, and is mediated by chemoautotrophic microorganisms. Ammonia oxidizing bacteria (AOB) and archaea (AOA) oxidize ammonium...... were the main active ammonium oxidizers during the dosing. This PhD project revealed that copper is of vital importance for efficient nitrification in biological rapid sand filters for drinking water production. The results of this study have important practical implications for biofilters currently...

  3. Nitric oxide supersensitivity

    DEFF Research Database (Denmark)

    Olesen, J; Iversen, Helle Klingenberg; Thomsen, L L

    1993-01-01

    Nitroglycerin, which may be regarded as a prodrug for nitric oxide, induces a mild to moderate headache in healthy subjects. In order to study whether migraine patients are more sensitive to nitric oxide than non-migrainous subjects, four different doses of intravenous nitroglycerin were given...... previously shown a similar supersensitivity to histamine which in human cerebral arteries activates endothelial H1 receptors and causes endothelial production of nitric oxide. Migraine patients are thus supersensitive to exogenous nitric oxide from nitroglycerin as well as to endothelially produced nitric...... oxide. It is suggested that nitric oxide may be partially or completely responsible for migraine pain....

  4. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    To avoid high tooling costs in product development, a rapid prototyping process chain has been established that enables rapid manufacturing of ceramic microcomponents from functional models to small lot series within a short time. This process chain combines the fast and inexpensive supply of master models by rapid ...

  5. Rapid Prototyping in Instructional Design: Creating Competencies

    Science.gov (United States)

    Fulton, Carolyn D.

    2010-01-01

    Instructional designers working in rapid prototyping environments currently do not have a list of competencies that help to identify the knowledge, skills, and attitudes (KSAs) required in these workplaces. This qualitative case study used multiple cases in an attempt to identify rapid prototyping competencies required in a rapid prototyping…

  6. The role of oxidation in the fretting wear process

    Science.gov (United States)

    Bill, R. C.

    1980-01-01

    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined.

  7. Rapid Tooling via Investment Casting and Rapid Prototype Patterns

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, Michael D.

    1999-06-01

    The objective of this work to develop the materials processing and design technologies required to reduce the die development time for metal mold processes from 12 months to 3 months, using die casting of Al and Mg as the example process. Sandia demonstrated that investment casting, using rapid prototype patterns produced from Stereo lithography or Selective laser Sintering, was a viable alternative/supplement to the current technology of machining form wrought stock. A demonstration die insert (ejector halt) was investment cast and subsequently tested in the die casting environment. The stationary half of the die insert was machined from wrought material to benchmark the cast half. The two inserts were run in a die casting machine for 3,100 shots of aluminum and at the end of the run no visible difference could be detected between the cast and machined inserts. Inspection concluded that the cast insert performed identically to the machined insert. Both inserts had no indications of heat checking or degradation.

  8. Quantitative methylene blue decolourisation assays as rapid screening tools for assessing the efficiency of catalytic reactions.

    Science.gov (United States)

    Kruid, Jan; Fogel, Ronen; Limson, Janice Leigh

    2017-05-01

    Identifying the most efficient oxidation process to achieve maximum removal of a target pollutant compound forms the subject of much research. There exists a need to develop rapid screening tools to support research in this area. In this work we report on the development of a quantitative assay as a means for identifying catalysts capable of decolourising methylene blue through the generation of oxidising species from hydrogen peroxide. Here, a previously described methylene blue test strip method was repurposed as a quantitative, aqueous-based spectrophotometric assay. From amongst a selection of metal salts and metallophthalocyanine complexes, monitoring of the decolourisation of the cationic dye methylene blue (via Fenton-like and non-Fenton oxidation reactions) by the assay identified the following to be suitable oxidation catalysts: CuSO 4 (a Fenton-like catalyst), iron(II)phthalocyanine (a non-Fenton oxidation catalyst), as well as manganese(II) phthalocyanine. The applicability of the method was examined for the removal of bisphenol A (BPA), as measured by HPLC, during parallel oxidation experiments. The order of catalytic activity was identified as FePc > MnPc > CuSO 4 for both BPA and MB. The quantitative MB decolourisation assay may offer a rapid method for screening a wide range of potential catalysts for oxidation processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Oxidative Stress in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Varsha Shukla

    2011-01-01

    Full Text Available It has been demonstrated that oxidative stress has a ubiquitous role in neurodegenerative diseases. Major source of oxidative stress due to reactive oxygen species (ROS is related to mitochondria as an endogenous source. Although there is ample evidence from tissues of patients with neurodegenerative disorders of morphological, biochemical, and molecular abnormalities in mitochondria, it is still not very clear whether the oxidative stress itself contributes to the onset of neurodegeneration or it is part of the neurodegenerative process as secondary manifestation. This paper begins with an overview of how oxidative stress occurs, discussing various oxidants and antioxidants, and role of oxidative stress in diseases in general. It highlights the role of oxidative stress in neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases and amyotrophic lateral sclerosis. The last part of the paper describes the role of oxidative stress causing deregulation of cyclin-dependent kinase 5 (Cdk5 hyperactivity associated with neurodegeneration.

  10. Bridged graphite oxide materials

    Science.gov (United States)

    Herrera-Alonso, Margarita (Inventor); McAllister, Michael J. (Inventor); Aksay, Ilhan A. (Inventor); Prud'homme, Robert K. (Inventor)

    2010-01-01

    Bridged graphite oxide material comprising graphite sheets bridged by at least one diamine bridging group. The bridged graphite oxide material may be incorporated in polymer composites or used in adsorption media.

  11. Zinc oxide overdose

    Science.gov (United States)

    Zinc oxide is an ingredient in many products. Some of these are certain creams and ointments used to prevent or treat minor skin burns and irritation. Zinc oxide overdose occurs when someone eats one of these ...

  12. Nitrous Oxide Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  13. PH Dependent Interactions between Aqueous Iodide Ion and Selected Oxidizers.

    Science.gov (United States)

    1985-12-06

    the reactions monitored by iodometric titration . Thus, multiple 25 ml aliquots of buffer were placed in separate 100 mL polycarbonate beakers, and...COSATI CODES I&. SUBJECT IERMS (Continue an evven d mocesaey and idoetfy by 510&k number) C’ ELD GROUP SUB-ROUP >Oxidize Iodometry Titration Oxidation...were followed iodometrically at several pH, and in general are more rapid under acidic conditions than basic. However, the results clearly show that

  14. Diffusion of indium in silicon inert and oxidizing ambients

    Science.gov (United States)

    Antoniadis, D. A.; Moskowitz, I.

    1982-12-01

    The diffusion of indium in silicon at 1000 °C has been measured in inert (dry nitrogen) and oxidizing (dry oxygen) ambients. It was found that, similarly to phosphorous, boron, and arsenic, indium experiences significant oxidation-enhanced diffusion. This result indicates that indium, like the other elements mentioned above, diffuses in silicon by a mixed interstitialcy and vacancy mechanism. It was also found that indium, similarly to gallium, segregates readily and diffuses rapidly in thermal silicon dioxide.

  15. Rapid catalyst-free flame synthesis of α-Nb{sub 2}O{sub 5} micro/nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson; Farmahini Farahani, Moien, E-mail: wmerchan-merchan@ou.edu

    2013-07-15

    We report the ultra-rapid synthesis of Nb oxide nano/micron sized rods using a flame method; the single-step process is achieved in less than a few minutes. The synthesis is performed using 1-mm diameter Nb probes (metal source) inserted in the oxygen-rich part of an counter-flow methane/acetylene oxy-flame. The niobium oxide structures can grow nearly instantaneously in a white layer of material surrounding the surface of the Nb probe. The Nb oxide layer is composed of individual and coalesced micro/nanorods that are rapidly formed on the surface of the Nb wire. The grown crystals forming the metal oxide layer grow through a basal growth mechanism due to the constant flow of oxygen and oxygen radicals from the flame onto the surface of the niobium probe. The morphology of the grown Nb oxide structures strongly depends on the flame position (temperature and chemical species). X-Ray Diffraction analysis reveals that the micro/nanorods forming the layer are composed of monoclinic α-Nb{sub 2}O{sub 5}. - Graphical abstract: Display Omitted - Highlights: • Niobium oxide crystals were grown on the surface of Nb probes using the flame method. • We report the flame as an ultra-rapid process for the growth of Nb oxide structures. • In the flame method the growth of Nb{sub 2}O{sub 5} structures is achieved in only a few minutes.

  16. Wyoming Basin Rapid Ecoregional Assessment

    Science.gov (United States)

    Carr, Natasha B.; Means, Robert E.

    2013-01-01

    The overall goal of the Wyoming Basin Rapid Ecoregional Assessment (REA) is to provide information that supports regional planning and analysis for the management of ecological resources. The REA provides an assessment of baseline ecological conditions, an evaluation of current risks from drivers of ecosystem change (including energy development, fire, and invasive species), and a predictive capacity for evaluating future risks (including climate change). Additionally, the REA may be used for identifying priority areas for conservation or restoration and for assessing cumulative effects of multiple land uses. The Wyoming Basin REA will address Management Questions developed by the Bureau of Land Management and other agency partners for 8 major biomes and 19 species or species assemblages. The maps developed for addressing Management Questions will be integrated into overall maps of landscape-level ecological values and risks. The maps can be used to address the goals of the REA at a number of levels: for individual species, species assemblages, aquatic and terrestrial systems, and for the entire ecoregion. This allows flexibility in how the products of the REA are compiled to inform planning and management actions across a broad range of spatial scales.

  17. Rapid purification of recombinant histones.

    Directory of Open Access Journals (Sweden)

    Henrike Klinker

    Full Text Available The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  18. Rapid typing of Coxiella burnetii.

    Directory of Open Access Journals (Sweden)

    Heidie M Hornstra

    Full Text Available Coxiella burnetii has the potential to cause serious disease and is highly prevalent in the environment. Despite this, epidemiological data are sparse and isolate collections are typically small, rare, and difficult to share among laboratories as this pathogen is governed by select agent rules and fastidious to culture. With the advent of whole genome sequencing, some of this knowledge gap has been overcome by the development of genotyping schemes, however many of these methods are cumbersome and not readily transferable between institutions. As comparisons of the few existing collections can dramatically increase our knowledge of the evolution and phylogeography of the species, we aimed to facilitate such comparisons by extracting SNP signatures from past genotyping efforts and then incorporated these signatures into assays that quickly and easily define genotypes and phylogenetic groups. We found 91 polymorphisms (SNPs and indels among multispacer sequence typing (MST loci and designed 14 SNP-based assays that could be used to type samples based on previously established phylogenetic groups. These assays are rapid, inexpensive, real-time PCR assays whose results are unambiguous. Data from these assays allowed us to assign 43 previously untyped isolates to established genotypes and genomic groups. Furthermore, genotyping results based on assays from the signatures provided here are easily transferred between institutions, readily interpreted phylogenetically and simple to adapt to new genotyping technologies.

  19. Rapid Response Flood Water Mapping

    Science.gov (United States)

    Policelli, Fritz; Brakenridge, G. R.; Coplin, A.; Bunnell, M.; Wu, L.; Habib, Shahid; Farah, H.

    2010-01-01

    Since the beginning of operation of the MODIS instrument on the NASA Terra satellite at the end of 1999, an exceptionally useful sensor and public data stream have been available for many applications including the rapid and precise characterization of terrestrial surface water changes. One practical application of such capability is the near-real time mapping of river flood inundation. We have developed a surface water mapping methodology based on using only bands 1 (620-672 nm) and 2 (841-890 nm). These are the two bands at 250 m, and the use of only these bands maximizes the resulting map detail. In this regard, most water bodies are strong absorbers of incoming solar radiation at the band 2 wavelength: it could be used alone, via a thresholding procedure, to separate water (dark, low radiance or reflectance pixels) from land (much brighter pixels) (1, 2). Some previous water mapping procedures have in fact used such single band data from this and other sensors that include similar wavelength channels. Adding the second channel of data (band 1), however, allows a band ratio approach which permits sediment-laden water, often relatively light at band 2 wavelengths, to still be discriminated, and, as well, provides some removal of error by reducing the number of cloud shadow pixels that would otherwise be misclassified as water.

  20. Choline oxidation by intact spinach chloroplasts. [Spinacia oleracea L

    Energy Technology Data Exchange (ETDEWEB)

    Weigel, P.; Lerma, C.; Hanson, A.D.

    1988-01-01

    Plants synthesize betaine by a two-step oxidation of choline (choline ..-->.. betaine aldehyde ..-->.. betaine). Protoplast-derived chloroplasts of spinach (Spinacia oleracea L.) carry out both reactions, more rapidly in light than in darkness. We investigated the light-stimulated oxidation of choline, using spinach chloroplasts isolated directly from leaves. The rates of choline oxidation obtained (dark and light rates: 10-50 and 100-300 nanomoles per hour per milligram chlorophyll, respectively) were approximately 20-fold higher than for protoplast-derived chloroplasts. Betaine aldehyde was the main product. Choline oxidation in darkness and light was suppressed by hypoxia. Neither uncouplers not the Calvin cycle inhibitor glyceraldehyde greatly affected choline oxidation in the light, and maximal choline oxidation was attained far below light saturation of CO/sub 2/ fixation. The light stimulation of choline oxidation was abolished by the PSII inhibitors DCMU and dibromothymoquinone, and was partially restored by adding reduced diaminodurene, an electron donor to PSI. Both methyl viologen and phenazine methosulfate prevented choline oxidation. Adding dihydroxyacetone phosphate, which can generate NADPH in organello, doubled the dark rate of choline oxidation. These results indicate that choline oxidation in chloroplasts requires oxygen, and reducing power generated from PSI. Enzymic reactions consistent with these requirements are discussed.

  1. Adult neurogenesis transiently generates oxidative stress.

    Directory of Open Access Journals (Sweden)

    Noah M Walton

    Full Text Available An increasing body of evidence suggests that alterations in neurogenesis and oxidative stress are associated with a wide variety of CNS diseases, including Alzheimer's disease, schizophrenia and Parkinson's disease, as well as routine loss of function accompanying aging. Interestingly, the association between neurogenesis and the production of reactive oxidative species (ROS remains largely unexamined. The adult CNS harbors two regions of persistent lifelong neurogenesis: the subventricular zone and the dentate gyrus (DG. These regions contain populations of quiescent neural stem cells (NSCs that generate mature progeny via rapidly-dividing progenitor cells. We hypothesized that the energetic demands of highly proliferative progenitors generates localized oxidative stress that contributes to ROS-mediated damage within the neuropoietic microenvironment. In vivo examination of germinal niches in adult rodents revealed increases in oxidized DNA and lipid markers, particularly in the subgranular zone (SGZ of the dentate gyrus. To further pinpoint the cell types responsible for oxidative stress, we employed an in vitro cell culture model allowing for the synchronous terminal differentiation of primary hippocampal NSCs. Inducing differentiation in primary NSCs resulted in an immediate increase in total mitochondria number and overall ROS production, suggesting oxidative stress is generated during a transient window of elevated neurogenesis accompanying normal neurogenesis. To confirm these findings in vivo, we identified a set of oxidation-responsive genes, which respond to antioxidant administration and are significantly elevated in genetic- and exercise-induced model of hyperactive hippocampal neurogenesis. While no direct evidence exists coupling neurogenesis-associated stress to CNS disease, our data suggest that oxidative stress is produced as a result of routine adult neurogenesis.

  2. The reaction of monochloramine and hydroxylamine: implications for ammonia–oxidizing bacteria in chloraminated drinking water

    Science.gov (United States)

    Drinking water chloramine use may promote ammonia–oxidizing bacteria (AOB) growth because of naturally occurring ammonia, residual ammonia remaining from chloramine formation, and ammonia released from chloramine decay and demand. A rapid chloramine residual loss is often associa...

  3. Oxidation of Alkylaromatics

    Directory of Open Access Journals (Sweden)

    T. S. S. Rao

    2007-01-01

    Full Text Available Hydroperoxide at α-position to the aromatic ring is the primary oxidation product formed. In all cases monoalkylbenzenes lead to the formation of benzoic acid. Oxidation in the presence of transition metal salts not only accelerate but also selectively decompose the hydroperoxides. Alkyl naphthalenes mainly produce the corresponding naphthalene carboxylic acids. Hock-rearrangement by the influence of strong acids converts the hydroperoxides to hemiacetals. Peresters formed from the hydroperoxides undergo Criegee rearrangement easily. Alkali metals accelerate the oxidation while CO2 as co-oxidant enhances the selectivity. Microwave conditions give improved yields of the oxidation products.

  4. Rapid actions of aldosterone in vascular health and disease - friend or foe?

    DEFF Research Database (Denmark)

    Skøtt, Ole; Uhrenholt, Torben Rene; Schjerning, Jeppe

    2006-01-01

    The mineralocorticoid receptor (MR) and the enzyme 11betahydroxysteroid dehydrogenase type 2, which confers aldosterone specificity to the MR, are present in endothelium and vascular smooth muscle. In several pathological conditions aldosterone promotes vascular damage by formation of reactive...... oxygen species. The effect of aldosterone on vascular function, however, is far from clear. By rapid non-genomic mechanisms aldosterone may cause calcium mobilization and vasoconstriction, or may stimulate nitric oxide formation through the PI-3 kinase/Akt pathway and thereby counteract vasoconstriction...... production, therefore depends on the ambient level of oxidative stress. Thus, in situations with low levels of oxidative stress aldosterone may promote vasodilatation, while at higher oxidative stress (high NaCl intake, pre-existing vascular pathological conditions, high oxygen tension in vitro) aldosterone...

  5. Silicon oxidation by ozone

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Christian K; Jenkins, Stephen J [Department of Chemistry, University of Cambridge, Cambridge CB2 1EW (United Kingdom); Nakamura, Ken; Ichimura, Shingo [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)], E-mail: sjj24@cam.ac.uk

    2009-05-06

    Understanding the oxidation of silicon has been an ongoing challenge for many decades. Ozone has recently received considerable attention as an alternative oxidant in the low temperature, damage-free oxidation of silicon. The ozone-grown oxide was also found to exhibit improved interface and electrical characteristics over a conventionally dioxygen-grown oxide. In this review article, we summarize the key findings about this alternative oxidation process. We discuss the different methods of O{sub 3} generation, and the advantages of the ozone-grown Si/SiO{sub 2} interface. An understanding of the growth characteristics is of utmost importance for obtaining control over this alternative oxidation process. (topical review)

  6. Graphene oxide overprints for flexible and transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Rogala, M., E-mail: rogala@uni.lodz.pl; Wlasny, I.; Kowalczyk, P. J.; Busiakiewicz, A.; Kozlowski, W.; Klusek, Z. [Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Pomorska 149/153, 90-236 Lodz (Poland); Dabrowski, P.; Lipinska, L.; Jagiello, J.; Aksienionek, M.; Strupinski, W.; Krajewska, A. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Sieradzki, Z. [Electrotechnological Company QWERTY Ltd., Siewna 21, 94-250 Lodz (Poland); Krucinska, I.; Puchalski, M.; Skrzetuska, E. [Department of Material and Commodity Sciences and Textile Metrology, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz (Poland)

    2015-01-26

    The overprints produced in inkjet technology with graphene oxide dispersion are presented. The graphene oxide ink is developed to be fully compatible with standard industrial printers and polyester substrates. Post-printing chemical reduction procedure is proposed, which leads to the restoration of electrical conductivity without destroying the substrate. The presented results show the outstanding potential of graphene oxide for rapid and cost efficient commercial implementation to production of flexible electronics. Properties of graphene-based electrodes are characterized on the macro- and nano-scale. The observed nano-scale inhomogeneity of overprints' conductivity is found to be essential in the field of future industrial applications.

  7. Oxidation stability of rapeseed biodiesel/petroleum diesel blends

    DEFF Research Database (Denmark)

    Østerstrøm, Freja From; Anderson, James E.; Mueller, Sherry A.

    2016-01-01

    of the oxidation of a biodiesel fuel blend consisting of 30% (v/v) rapeseed methyl ester in petroleum diesel (B30) was conducted at 70 and 90 °C with three aeration rates. Oxidation rates increased with increasing temperature as indicated by decreases in induction period (Rancimat), concentrations of unsaturated......, and then decreased reflecting volatilization of fuel and volatile oxidation products. Peroxide concentration showed a peak that coincided with the most rapid rate of oxygen incorporation, acid formation, and polyunsaturated FAME degradation. Net oxygen incorporation exhibited a plateau at approximately 5-6 wt % O...

  8. Oxidation of Non-Oxide Ceramics.

    Science.gov (United States)

    1982-05-25

    stacking faults Fig. 4. Unoxidized polished surface in cristobalite spherulite formed of sintered beta SiC (SEM) on sintered alpha SiC in 0 at 13000 C (TEn...electron and transmission electron microscopy were used to examine the oxide film. Experiments showed that cristobalite nucleates at the SiC/SiO 2 interface...and also that appreciable heterogeneous nucleation occurs during the first hour of oxidation. The growth rate of cristobalite was determined to be

  9. ZIRCONIUM OXIDE NANOSTRUCTURES PREPARED BY ANODIC OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Dang, Y. Y.; Bhuiyan, M.S.; Paranthaman, M. P.

    2008-01-01

    Zirconium oxide is an advanced ceramic material highly useful for structural and electrical applications because of its high strength, fracture toughness, chemical and thermal stability, and biocompatibility. If highly-ordered porous zirconium oxide membranes can be successfully formed, this will expand its real-world applications, such as further enhancing solid-oxide fuel cell technology. Recent studies have achieved various morphologies of porous zirconium oxide via anodization, but they have yet to create a porous layer where nanoholes are formed in a highly ordered array. In this study, electrochemical methods were used for zirconium oxide synthesis due to its advantages over other coating techniques, and because the thickness and morphology of the ceramic fi lms can be easily tuned by the electrochemical parameters, such as electrolyte solutions and processing conditions, such as pH, voltage, and duration. The effects of additional steps such as pre-annealing and post-annealing were also examined. Results demonstrate the formation of anodic porous zirconium oxide with diverse morphologies, such as sponge-like layers, porous arrays with nanoholes ranging from 40 to 75 nm, and nanotube layers. X-ray powder diffraction analysis indicates a cubic crystallographic structure in the zirconium oxide. It was noted that increased voltage improved the ability of the membrane to stay adhered to the zirconium substrate, whereas lower voltages caused a propensity for the oxide fi lm to fl ake off. Further studies are needed to defi ne the parameters windows that create these morphologies and to investigate other important characteristics such as ionic conductivity.

  10. Modeling of oxidation of aluminum nanoparticles by using Cabrera Mott Model

    Science.gov (United States)

    Ramazanova, Zamart; Zyskin, Maxim; Martirosyan, Karen

    2012-10-01

    Our research focuses on modeling new Nanoenergetic Gas-Generator (NGG) formulations that rapidly release a large amount of gaseous products and generates shock and pressure waves. Nanoenergetic thermite reagents include mixtures of Al and metal oxides such as bismuth trioxide and iodine pentoxide. The research problem is considered a spherically symmetric case and used the Cabrera Mott oxidation model to describe the kinetics of oxide growth on spherical Al nanoparticles for evaluating reaction time which a process of the reaction with oxidizer happens on the outer part of oxide layer of aluminum ions are getting in contact with an oxidizing agent and react. We assumed that a ball of Al of radius 20 to 50 nm is covered by a thin oxide layer 2-4 nm and is surrounded by abundant amount of oxygen stored by oxidizers. The ball is rapidly heated up to ignition temperature to initiate self-sustaining oxidation reaction. As a result highly exothermic reaction is generated. In the oxide layer of excess concentrations of electrons and ions are dependent on the electric field potential with the corresponding of the Gibbs factors and that it conducts to the solution of a nonlinear Poisson equation for the electric field potential in a moving boundary domain. Motion of the boundary is determined by the gradient of a solution on the boundary. We investigated oxidation model numerically, using the COMSOL software utilizing finite element analysis. The computing results demonstrate that oxidation rate increases with the decreasing particle radius.

  11. The Application Trends of Rapid Prototyping Manufacturing

    Directory of Open Access Journals (Sweden)

    Qiu Xiao Lin

    2016-01-01

    characteristics of laser stero lithography (LSL selective laser sintering (SLS, three-dimensional printing (DP, fused deposition modeling (FDM, computer numerical control (CNC and other rapid prototyping technologies. After discussed these five rapid prototyping technology materials, we presented the hotspot and direction of rapid prototyping technology and look forward to the development of its technique, the expansion of its field and the progress of its academic ideology.

  12. Diclofenac oxidation by biogenic manganese oxides.

    Science.gov (United States)

    Forrez, Ilse; Carballa, Marta; Verbeken, Kim; Vanhaecke, Lynn; Ternes, Thomas; Boon, Nico; Verstraete, Willy

    2010-05-01

    Diclofenac, a nonsteroidal anti-inflammatory drug, is one of the most commonly detected pharmaceuticals in sewage treatment plant (STP) effluents. In this work, biologically produced manganese oxides (BioMnOx) were investigated to remove diclofenac. At neutral pH, the diclofenac oxidation with BioMnOx was 10-fold faster than with chemically produced MnO(2). The main advantage of BioMnOx over chemical MnO(2) is the ability of the bacteria to reoxidize the formed Mn(2+), which inhibits the oxidation of diclofenac. Diclofenac-2,5-iminoquinone was identified as a major transformation product, accounting for 5-10% of the transformed diclofenac. Except for 5-hydroxydiclofenac, which was identified as an intermediate, no other oxidation products were detected. Diclofenac oxidation was proportional to the amount of BioMnOx dosed, and the pseudo first order rate constant k was 6-fold higher when pH was decreased from 6.8 to 6.2. The Mn(2+) levels remained below the drinking water limit (0.05 mg L(-1)), thus indicating the efficient in situ microbiological regeneration of the oxidant. These results combined with previous studies suggest the potential of BioMnOx for STP effluent polishing.

  13. Effects of dynamic operating conditions on nitrification in biological rapid sand filters for drinking water treatment.

    Science.gov (United States)

    Lee, Carson O; Boe-Hansen, Rasmus; Musovic, Sanin; Smets, Barth; Albrechtsen, Hans-Jørgen; Binning, Philip

    2014-11-01

    Biological rapid sand filters are often used to remove ammonium from groundwater for drinking water supply. They often operate under dynamic substrate and hydraulic loading conditions, which can lead to increased levels of ammonium and nitrite in the effluent. To determine the maximum nitrification rates and safe operating windows of rapid sand filters, a pilot scale rapid sand filter was used to test short-term increased ammonium loads, set by varying either influent ammonium concentrations or hydraulic loading rates. Ammonium and iron (flock) removal were consistent between the pilot and the full-scale filter. Nitrification rates and ammonia-oxidizing bacteria and archaea were quantified throughout the depth of the filter. The ammonium removal capacity of the filter was determined to be 3.4 g NH4-N m(-3) h(-1), which was 5 times greater than the average ammonium loading rate under reference operating conditions. The ammonium removal rate of the filter was determined by the ammonium loading rate, but was independent of both the flow and influent ammonium concentration individually. Ammonia-oxidizing bacteria and archaea were almost equally abundant in the filter. Both ammonium removal and ammonia-oxidizing bacteria density were strongly stratified, with the highest removal and ammonia-oxidizing bacteria densities at the top of the filter. Cell specific ammonium oxidation rates were on average 0.6 × 10(2) ± 0.2 × 10(2) fg NH4-N h(-1) cell(-1). Our findings indicate that these rapid sand filters can safely remove both nitrite and ammonium over a larger range of loading rates than previously assumed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Rapid Automated Mission Planning System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is an automated UAS mission planning system that will rapidly identify emergency (contingency) landing sites, manage contingency routing, and...

  15. WIST: toolkit for rapid, customized LIMS development

    National Research Council Canada - National Science Library

    Huang, Y Wayne; Arkin, Adam P; Chandonia, John-Marc

    2011-01-01

    Workflow Information Storage Toolkit (WIST) is a set of application programming interfaces and web applications that allow for the rapid development of customized laboratory information management systems (LIMS...

  16. JIEDDO Experience Provides Rapid Acquisition Insights

    National Research Council Canada - National Science Library

    James P Craft

    2015-01-01

    .... JIDA's rapid acquisition capabilities were preserved by transitioning the expedient organization that received supplemental funding into the Defense Department's newest combat support agency (CSA...

  17. Inhibition of Oxidation in Nuclear Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Phil Winston; James W. Sterbentz; William E. Windes

    2013-10-01

    Graphite is a fundamental material of high temperature gas cooled nuclear reactors, providing both structure and neutron moderation. Its high thermal conductivity, chemical inertness, thermal heat capacity, and high thermal structural stability under normal and off normal conditions contribute to the inherent safety of these reactor designs. One of the primary safety issues for a high temperature graphite reactor core is the possibility of rapid oxidation of the carbon structure during an off normal design basis event where an oxidizing atmosphere (air ingress) can be introduced to the hot core. Although the current Generation IV high temperature reactor designs attempt to mitigate any damage caused by a postualed air ingress event, the use of graphite components that inhibit oxidation is a logical step to increase the safety of these reactors. Recent experimental studies of graphite containing between 5.5 and 7 wt% boron carbide (B4C) indicate that oxidation is dramatically reduced even at prolonged exposures at temperatures up to 900°C. The proposed addition of B4C to graphite components in the nuclear core would necessarily be enriched in B-11 isotope in order to minimize B-10 neutron absorption and graphite swelling. The enriched boron can be added to the graphite during billet fabrication. Experimental oxidation rate results and potential applications for borated graphite in nuclear reactor components will be discussed.

  18. Polymer-assisted iron oxide magnetic nanoparticle immobilized keratinase

    Science.gov (United States)

    Konwarh, Rocktotpal; Karak, Niranjan; Rai, Sudhir Kumar; Mukherjee, Ashis Kumar

    2009-06-01

    Nanotechnology holds the prospect for avant-garde changes to improve the performance of materials in various sectors. The domain of enzyme biotechnology is no exception. Immobilization of industrially important enzymes onto nanomaterials, with improved performance, would pave the way to myriad application-based commercialization. Keratinase produced by Bacillus subtilis was immobilized onto poly(ethylene glycol)-supported Fe3O4 superparamagnetic nanoparticles. The optimization process showed that the highest enzyme activity was noted when immobilized onto cyanamide-activated PEG-assisted MNP prepared under conditions of 25 °C and pH 7.2 of the reaction mixture before addition of H2O2 (3% w/w), 2% (w/v) PEG6000 and 0.062:1 molar ratio of PEG to FeCl2·4H2O. Further statistical optimization using response surface methodology yielded an R2 value that could explain more than 94% of the sample variations. Along with the magnetization studies, the immobilization of the enzyme onto the PEG-assisted MNP was characterized by UV, XRD, FTIR and TEM. The immobilization process had resulted in an almost fourfold increase in the enzyme activity over the free enzyme. Furthermore, the immobilized enzyme exhibited a significant thermostability, storage stability and recyclability. The leather-industry-oriented application of the immobilized enzyme was tested for the dehairing of goat-skin.

  19. Oxidation Resistant Graphite Studies

    Energy Technology Data Exchange (ETDEWEB)

    W. Windes; R. Smith

    2014-07-01

    The Very High Temperature Reactor (VHTR) Graphite Research and Development Program is investigating doped nuclear graphite grades exhibiting oxidation resistance. During a oxygen ingress accident the oxidation rates of the high temperature graphite core region would be extremely high resulting in significant structural damage to the core. Reducing the oxidation rate of the graphite core material would reduce the structural effects and keep the core integrity intact during any air-ingress accident. Oxidation testing of graphite doped with oxidation resistant material is being conducted to determine the extent of oxidation rate reduction. Nuclear grade graphite doped with varying levels of Boron-Carbide (B4C) was oxidized in air at nominal 740°C at 10/90% (air/He) and 100% air. The oxidation rates of the boronated and unboronated graphite grade were compared. With increasing boron-carbide content (up to 6 vol%) the oxidation rate was observed to have a 20 fold reduction from unboronated graphite. Visual inspection and uniformity of oxidation across the surface of the specimens were conducted. Future work to determine the remaining mechanical strength as well as graphite grades with SiC doped material are discussed.

  20. A novel method for qualitative analysis of edible oil oxidation using an electronic nose.

    Science.gov (United States)

    Xu, Lirong; Yu, Xiuzhu; Liu, Lei; Zhang, Rui

    2016-07-01

    An electronic nose (E-nose) was used for rapid assessment of the degree of oxidation in edible oils. Peroxide and acid values of edible oil samples were analyzed using data obtained by the American Oil Chemists' Society (AOCS) Official Method for reference. Qualitative discrimination between non-oxidized and oxidized oils was conducted using the E-nose technique developed in combination with cluster analysis (CA), principal component analysis (PCA), and linear discriminant analysis (LDA). The results from CA, PCA and LDA indicated that the E-nose technique could be used for differentiation of non-oxidized and oxidized oils. LDA produced slightly better results than CA and PCA. The proposed approach can be used as an alternative to AOCS Official Method as an innovative tool for rapid detection of edible oil oxidation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Increase of hepatic nitric oxide levels in a nutritional model of fatty ...

    African Journals Online (AJOL)

    GREGORY

    2010-08-30

    Aug 30, 2010 ... associated with the oxidative stress components (MDA, PC) and liver NO concentration. Key words: Fatty liver, nitric oxide, malondialdehyde, protein carbonyl, broiler breeder. INTRODUCTION. In broiler breeder hens, the capacity for rapid early growth coupled with free access to feed leads to enhanced ...

  2. Aerobic oxidation of mackinawite (FeS) and its environmental implication for arsenic mobilization

    Science.gov (United States)

    Jeong, Hoon Y.; Han, Young-Soo; Park, Sung W.; Hayes, Kim F.

    2010-06-01

    Oxidation of mackinawite (FeS) and concurrent mobilization of arsenic were investigated as a function of pH under oxidizing conditions. At acidic pH, FeS oxidation is mainly initiated by the proton-promoted dissolution, which results in the release of Fe(II) and sulfide in the solution. While most of dissolved sulfide is volatilized before being oxidized, dissolved Fe(II) is oxidized into green rust-like precipitates and goethite ( α-FeOOH). At basic pH, the development of Fe(III) (oxyhydr)oxide coating on the FeS surface inhibits the solution-phase oxidation following FeS dissolution. Instead, FeS is mostly oxidized into lepidocrocite ( γ-FeOOH) via the surface-mediated oxidation without dissolution. At neutral pH, FeS is oxidized via both the solution-phase oxidation following FeS dissolution and the surface-mediated oxidation mechanisms. The mobilization of arsenic during FeS oxidation is strongly affected by FeS oxidation mechanisms. At acidic pH (and to some extent at neutral pH), the rapid FeS dissolution and the slow precipitation of Fe (oxyhydr)oxides results in arsenic accumulation in water. In contrast, the surface-mediated oxidation of FeS at basic pH leads to the direct formation of Fe (oxyhydr)oxides, which provides effective adsorbents for As under oxic conditions. At acidic and neutral pH, the solution-phase oxidation of dissolved Fe(II) accelerates the oxidation of the less adsorbing As(III) to the more adsorbing As(V). This study reveals that the oxidative mobilization of As may be a significant pathway for arsenic enrichment of porewaters in sulfidic sediments.

  3. Biomimetic Water-Oxidation Catalysts: Manganese Oxides.

    Science.gov (United States)

    Kurz, Philipp

    2016-01-01

    The catalytic oxidation of water to molecular oxygen is a key process for the production of solar fuels. Inspired by the biological manganese-based active site for this reaction in the enzyme Photosystem II, researchers have made impressive progress in the last decades regarding the development of synthetic manganese catalysts for water oxidation. For this, it has been especially fruitful to explore the many different types of known manganese oxides MnOx. This chapter first offers an overview of the structural, thermodynamic, and mechanistic aspects of water-oxidation catalysis by MnOx. The different test systems used for catalytic studies are then presented together with general reactivity trends. As a result, it has been possible to identify layered, mixed Mn (III/IV)-oxides as an especially promising class of bio-inspired catalysts and an attempt is made to give structure-based reasons for the good performances of these materials. In the outlook, the challenges of catalyst screenings (and hence the identification of a "best MnOx catalyst") are discussed. There is a great variety of reaction conditions which might be relevant for the application of manganese oxide catalysts in technological solar fuel-producing devices, and thus catalyst improvements are currently still addressing a very large parameter space. Nonetheless, detailed knowledge about the biological catalyst and a solid experimental basis concerning the syntheses and water-oxidation reactivities of MnOx materials have been established in the last decade and thus this research field is well positioned to make important contributions to solar fuel research in the future.

  4. Rapid quantitative detection of glucose content in glucose injection by reaction headspace gas chromatography.

    Science.gov (United States)

    Xie, Wei-Qi; Gong, Yi-Xian; Yu, Kong-Xian

    2017-10-20

    This work investigates an automated technique for rapid detecting the glucose content in glucose injection by reaction headspace gas chromatography (HS-GC). This method is based on the oxidation reaction of glucose in glucose injection with potassium dichromate. The carbon dioxide (CO 2 ) formed from the oxidation reaction can be quantitatively detected by GC. The results show that the relative standard deviation (RSD) of the present method was within 2.91%, and the measured glucose contents in glucose injection closely match those quantified by the reference method (relative differences glucose content in glucose injection related applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Electrical characterization of low temperature deposited oxide films ...

    Indian Academy of Sciences (India)

    Unknown

    Thin films of silicon dioxide are deposited on ZnO/n-Si substrate at a low temperature using tetra- ethylorthosilicate (TEOS). The ZnO/n-Si ... oxygen plasma has been extensively investigated because of its wide ranging applications in ... rapid electrical communication with the ZnO/n-Si sub- strate, whereas the oxide trapped ...

  6. Oxidation catalysis by polyoxometalates fundamental electron-transfer phenomena

    Science.gov (United States)

    Yurii V. Geletii; Rajai H. Atalla; Alan J. Bailey; Laurent Delannoy; Craig L. Hill; Ira A. Weinstock

    2002-01-01

    Early transition-metal oxygen-anion clusters (polyoxometalates, POMs) are a large and rapidly growing class of versatile and tunable oxidation catalysts. All key molecular properties of these clusters (composition, size, shape, charge density, reduction potential, solubility, etc.) can be systematically altered, and the clusters themselves can serve as tunable ligands...

  7. Oxidizer Scoping Studies

    Energy Technology Data Exchange (ETDEWEB)

    Chancellor, Christopher John [Los Alamos National Laboratory

    2016-11-07

    The purpose of this report is to present the results of the acceptable knowledge (AK) review of oxidizers present in active waste streams, provide a technical analysis of the oxidizers, and report the results of the scoping study testing. This report will determine the fastest burning oxidizer to be used in the development of a Test Plan for Preparation and Testing of Sorbents Mixed with Oxidizer found in Transuranic Waste (DWT-TP-001). The companion report, DWT-RPT-002, Sorbent Scoping Studies, contains similar information for sorbents identified during the AK review of TRU waste streams. The results of the oxidizer and sorbent scoping studies will be used to inform the QL1 test plan. The QL1 test results will support the development of a basis of knowledge document that will evaluate oxidizing chemicals and sorbents in TRU waste and provide guidance for treatment.

  8. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    Science.gov (United States)

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  9. Test plan for the Rapid Geophysical Surveyor

    Energy Technology Data Exchange (ETDEWEB)

    Roybal, L.G.

    1993-06-01

    This document describes the test plant for demonstrating and testing a set of optically pumped cesium-based total field magnetometers using the Rapid Geophysical Surveyor platform. The proposed testing will be used to assess the function of these magnetometers as deployed on the Rapid Geophysical Surveyor and evaluate the practical utility of high resolution magnetic data for supporting waste retrieval efforts.

  10. Rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Schenck, C H; Montplaisir, J Y; Frauscher, B

    2013-01-01

    We aimed to provide a consensus statement by the International Rapid Eye Movement Sleep Behavior Disorder Study Group (IRBD-SG) on devising controlled active treatment studies in rapid eye movement sleep behavior disorder (RBD) and devising studies of neuroprotection against Parkinson disease (PD...

  11. Rapid Prototyping of Mobile Learning Games

    Science.gov (United States)

    Federley, Maija; Sorsa, Timo; Paavilainen, Janne; Boissonnier, Kimo; Seisto, Anu

    2014-01-01

    This position paper presents the first results of an on-going project, in which we explore rapid prototyping method to efficiently produce digital learning solutions that are commercially viable. In this first phase, rapid game prototyping and an iterative approach was tested as a quick and efficient way to create learning games and to evaluate…

  12. Rapid methods for detection of bacteria

    DEFF Research Database (Denmark)

    Corfitzen, Charlotte B.; Andersen, B.Ø.; Miller, M.

    2006-01-01

    Traditional methods for detection of bacteria in drinking water e.g. Heterotrophic Plate Counts (HPC) or Most Probable Number (MNP) take 48-72 hours to give the result. New rapid methods for detection of bacteria are needed to protect the consumers against contaminations. Two rapid methods...

  13. The use of semiconductor processes for the design and characterization of a rapid thermal processor

    Science.gov (United States)

    Hodul, David; Metha, Sandeep

    1989-02-01

    While a variety of tools are used for the design of semiconductor equipment, processes themselves are often the most informative, providing a convenient and direct method for improving both the hardware and the process. Experiments have been done to evaluate the performance of a commercial rapid thermal processing (RTP) instrument. The effects of chamber geometry and optics as well as the time/temperature recipe were probed using rapid thermal oxidation (RTO), sintering of tungsten suicide and molybdenum silicide, and partial activation of implanted ions. We show how sheet resistance and film thickness maps can be used to determine the dynamic and static temperature uniformity.

  14. Modeling of graphite oxide

    OpenAIRE

    Boukhvalov, D. W.; Katsnelson, M. I.

    2008-01-01

    Based on density functional calculations, optimized structures of graphite oxide are found for various coverage by oxygen and hydroxyl groups, as well as their ratio corresponding to the minimum of total energy. The model proposed describes well known experimental results. In particular, it explains why it is so difficult to reduce the graphite oxide up to pure graphene. Evolution of the electronic structure of graphite oxide with the coverage change is investigated.

  15. METAL OXIDE NANOPARTICLES

    Energy Technology Data Exchange (ETDEWEB)

    FERNANDEZ-GARCIA,M.; RODGRIGUEZ, J.A.

    2007-10-01

    This chapter covers the fundamental science, synthesis, characterization, physicochemical properties and applications of oxide nanomaterials. Explains fundamental aspects that determine the growth and behavior of these systems, briefly examines synthetic procedures using bottom-up and top-down fabrication technologies, discusses the sophisticated experimental techniques and state of the art theory results used to characterize the physico-chemical properties of oxide solids and describe the current knowledge concerning key oxide materials with important technological applications.

  16. Rapid immobilization of simulated radioactive soil waste by microwave sintering.

    Science.gov (United States)

    Zhang, Shuai; Shu, Xiaoyan; Chen, Shunzhang; Yang, Huimin; Hou, Chenxi; Mao, Xueli; Chi, Fangting; Song, Mianxin; Lu, Xirui

    2017-09-05

    A rapid and efficient method is particularly necessary in the timely disposal of seriously radioactive contaminated soil. In this paper, a series of simulated radioactive soil waste containing different contents of neodymium oxide (3-25wt.%) has been successfully vitrified by microwave sintering at 1300°C for 30min. The microstructures, morphology, element distribution, density and chemical durability of as obtained vitrified forms have been analyzed. The results show that the amorphous structure, homogeneous element distribution, and regular density improvement are well kept, except slight cracks emerge on the magnified surface for the 25wt.% Nd2O3-containing sample. Moreover, all the vitrified forms exhibit excellent chemical durability, and the leaching rates of Nd are kept as ∼10-4-10-6g/(m2day) within 42days. This demonstrates a potential application of microwave sintering in radioactive contaminated soil disposal. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Molecular water oxidation catalysis

    CERN Document Server

    Llobet, Antoni

    2014-01-01

    Photocatalytic water splitting is a promising strategy for capturing energy from the sun by coupling light harvesting and the oxidation of water, in order to create clean hydrogen fuel. Thus a deep knowledge of the water oxidation catalysis field is essential to be able to come up with useful energy conversion devices based on sunlight and water splitting. Molecular Water Oxidation Catalysis: A Key Topic for New Sustainable Energy Conversion Schemes presents a comprehensive and state-of-the-art overview of water oxidation catalysis in homogeneous phase, describing in detail the most importan

  18. Oxidants and oxidation in the Earth's atmosphere

    Science.gov (United States)

    1995-01-01

    The 1994 BOC Priestley Conference was held at Bucknell University in Lewisburg, Pennsylvania, from June 24 through June 27, 1994. This conference, managed by the American Chemical Society (ACS), was a joint celebration with the Royal Society of Chemistry (RSC) commemorating Joseph Priestley's arrival in the U.S. and his discovery of oxygen. The basic theme of the conference was 'Oxidants and Oxidation in the Earth's Atmosphere,' with a keynote lecture on the history of ozone. A distinguished group of U.S. and international atmospheric chemists addressed the issues dominating current research and policy agendas. Topics crucial to the atmospheric chemistry of global change and local and regional air pollution were discussed. The program for the conference included four technical sessions on the following topics: (1) Oxidative Fate of Atmospheric Pollutants; (2) Photochemical Smog and Ozone; (3) Stratospheric Ozone; and (4) Global Tropospheric Ozone.

  19. Catalytic process for formaldehyde oxidation

    Science.gov (United States)

    Kielin, Erik J. (Inventor); Brown, Kenneth G. (Inventor); D'Ambrosia, Christine M. (Inventor)

    1996-01-01

    Disclosed is a process for oxidizing formaldehyde to carbon dioxide and water without the addition of energy. A mixture of formaldehyde and an oxidizing agent (e.g., ambient air containing formaldehyde) is exposed to a catalyst which includes a noble metal dispersed on a metal oxide which possesses more than one oxidation state. Especially good results are obtained when the noble metal is platinum, and the metal oxide which possesses more than one oxidation state is tin oxide. A promoter (i.e., a small amount of an oxide of a transition series metal) may be used in association with the tin oxide to provide very beneficial results.

  20. Use of Copper Oxide Nanoparticles for the Oxidative Degradation of Persistent Organic Water Pollutants

    Science.gov (United States)

    Dror, I.; Ben Moshe, T.; Berkowitz, B.

    2008-12-01

    The continuous release of persistent organic chemicals such as pesticides, halogenated organic solvents, PAHs, and PCBs to the subsurface environment is an unfortunate reality. These compounds are recognized as toxic, and often carcinogenic and/or mutagenic, and they thus require highly efficient treatment procedures in aqueous systems. The current study presents an oxidation process, to decontaminate polluted water, using nanosized copper oxide particles as the catalyst and hydrogen peroxide as the oxidation agent. The process shows complete and rapid degradation of a wide range of organic contaminants under ambient pressure and temperature. In contrast, control runs that measured the degradation through exposure to hydrogen peroxide only or copper oxide nanoparticles only showed less than 10% reduction in contaminant concentration, as compared to the complete degradation achieved when particles and oxidation agent were used. Lack of exposure to light and the method of mixing seem to have no influence on the reaction rate or products. The reaction was found to proceed effectively in the range pH 3-8.5, and much slower at pH 10. Testing various concentrations of oxidation agent, an optimum point was found, with an increase above this concentration resulting in a reduced reaction rate. Moreover, measurements of reaction kinetics demonstrated a conversion from exponential decay of a contaminant, typical of a first-order reaction, to a linear decrease in contaminant concentration which is typical of a pseudo-zero-order reaction. This behavior indicates that upon increase in oxidation agent concentration, a different reaction pathway which is independent of the contaminant concentration becomes the prevailing process. The copper oxide nanoparticles were characterized before and after the reaction, and also shown to retain reactivity for several cycles after refreshing the contaminant solution and adding more hydrogen peroxide.

  1. A rapid spectrophotometric determination of persulfate anion in ISCO.

    Science.gov (United States)

    Liang, Chenju; Huang, Chiu-Fen; Mohanty, Nihar; Kurakalva, Rama Mohan

    2008-11-01

    Due to a gradual increase in the use of persulfate as an in situ chemical oxidation (ISCO) oxidant, a simple measurement of persulfate concentration is desirable to analyze persulfate distribution at designated time intervals on/off a site. Such a distribution helps evaluate efficacy of ISCO treatment at a site. This work proposes a spectrophotometric determination of persulfate based on modification of the iodometric titration method. The analysis of absorption spectra of a yellow color solution resulting from the reaction of persulfate and iodide in the presence of sodium bicarbonate reveals an absorbance at 352 nm, without significant interferences from the reagent matrix. The calibration graph was linear in the range of persulfate solution concentration of 0-70 mM at 352 nm. The proposed method is validated by the iodometric titration method. The solution pH was at near neutral and the presence of iron activator does not interfere with the absorption measurement. Also, analysis of persulfate in a groundwater sample using the proposed method indicates a good agreement with measurements by the titration method. This proposed spectrophotometric quantification of persulfate provides a simple and rapid method for evaluation of ISCO effectiveness at a remediation site.

  2. A new method for rapid Canine retraction

    Directory of Open Access Journals (Sweden)

    "Khavari A

    2001-06-01

    Full Text Available Distraction osteogenesis method (Do in bone lengthening and rapid midpalatal expansion have shown the great ability of osteognic tissues for rapid bone formation under distraction force and special protocol with optimum rate of one millimeter per day. Periodontal membrane of teeth (PDM is the extension of periostium in the alveolar socked. Orthodontic force distracts PDM fibers in the tension side and then bone formation will begin.Objects: Rapid retraction of canine tooth into extraction space of first premolar by DO protocol in order to show the ability of the PDM in rapid bone formation. The other objective was reducing total orthodontic treatment time of extraction cases.Patients and Methods: Tweleve maxillary canines in six patients were retracted rapidly in three weeks by a custom-made tooth-born appliance. Radiographic records were taken to evaluate the effects of heavy applied force on canine and anchorage teeth.Results: Average retraction was 7.05 mm in three weeks (2.35 mm/week. Canines rotated distal- in by mean 3.5 degrees.Anchorage loss was from 0 to 0.8 mm with average of 0.3 mm.Root resorption of canines was negligible, and was not significant clinically. Periodontium was normal after rapid retraction. No hazard for pulp vitality was observed.Discussion: PDM responded well to heavy distraction force by Do protocol. Rapid canine retraction seems to be a safe method and can considerabely reduce orthodontic time.

  3. Risks and Benefits of Rapid Clozapine Titration.

    Science.gov (United States)

    Lochhead, Jeannie D; Nelson, Michele A; Schneider, Alan L

    2016-05-18

    Clozapine is often considered the gold standard for the treatment of schizophrenia. Clinical guidelines suggest a gradual titration over 2 weeks to reduce the risks of adverse events such as seizures, hypotension, agranulocytosis, and myocarditis. The slow titration often delays time to therapeutic response. This raises the question of whether, in some patients, it may be safe to use a more rapid clozapine titration. The following case illustrates the potential risks associated with the use of multiple antipsychotics and rapid clozapine titration. We present the case of a young man with schizophrenia who developed life threatening neuroleptic malignant syndrome (NMS) during rapid clozapine titration and treatment with multiple antipsychotics. We were unable to find another case in the literature of NMS associated with rapid clozapine titration. This case is meant to urge clinicians to carefully evaluate the risks and benefits of rapid clozapine titration, and to encourage researchers to further evaluate the safety of rapid clozapine titration. Rapid clozapine titration has implications for decreasing health care costs associated with prolonged hospitalizations, and decreasing the emotional suffering associated with uncontrolled symptoms of psychosis. Clozapine is considered the most effective antipsychotic available thus efforts should focus on developing strategies that would allow for safest and most efficient use of clozapine to encourage its utilization for treatment resistance schizophrenia.

  4. Risks and benefits of rapid clozapine titration

    Directory of Open Access Journals (Sweden)

    Jeannie D. Lochhead

    2016-05-01

    Full Text Available Clozapine is often considered the gold standard for the treatment of schizophrenia. Clinical guidelines suggest a gradual titration over 2 weeks to reduce the risks of adverse events such as seizures, hypotension, agranulocytosis, and myocarditis. The slow titration often delays time to therapeutic response. This raises the question of whether, in some patients, it may be safe to use a more rapid clozapine titration. The following case illustrates the potential risks associated with the use of multiple antipsychotics and rapid clozapine titration. We present the case of a young man with schizophrenia who developed life threatening neuroleptic malignant syndrome (NMS during rapid clozapine titration and treatment with multiple antipsychotics. We were unable to find another case in the literature of NMS associated with rapid clozapine titration. This case is meant to urge clinicians to carefully evaluate the risks and benefits of rapid clozapine titration, and to encourage researchers to further evaluate the safety of rapid clozapine titration. Rapid clozapine titration has implications for decreasing health care costs associated with prolonged hospitalizations, and decreasing the emotional suffering associated with uncontrolled symptoms of psychosis. Clozapine is considered the most effective antipsychotic available thus efforts should focus on developing strategies that would allow for safest and most efficient use of clozapine to encourage its utilization for treatment resistance schizophrenia.

  5. Rapid Topochemical Modification of Layered Perovskites via Microwave Reactions.

    Science.gov (United States)

    Akbarian-Tefaghi, Sara; Teixeira Veiga, Elaine; Amand, Guillaume; Wiley, John B

    2016-02-15

    An effective microwave approach to the topochemical modification of different layered oxide perovskite hosts is presented where cation exchange, grafting, and intercalation reactions with acid, n-alkyl alcohols, and n-alkylamines, respectively, are successfully carried out. Microwave-assisted proton exchange reactions involving double- and triple-layered Dion-Jacobson and Ruddlesden-Popper perovskite family members, RbLnNb2O7 (Ln = La, Pr), KCa2Nb3O10, Li2CaTa2O7, and Na2La2Ti3O10, were found to be quite efficient, decreasing reaction times from several days to ≤3 h. Grafting and intercalation reactions involving double-layered perovskites were also quite rapid with full conversions occurring in as fast as an hour. Interestingly, triple-layered hosts were found to show different behavior; when complete intercalations were possible, grafting reactions were limited at best. Utilization of this rapid synthetic approach could help facilitate the fabrication of new organic-inorganic hybrids.

  6. Rapid Enzymatic Method for Pectin Methyl Esters Determination

    Directory of Open Access Journals (Sweden)

    Lucyna Łękawska-Andrinopoulou

    2013-01-01

    Full Text Available Pectin is a natural polysaccharide used in food and pharma industries. Pectin degree of methylation is an important parameter having significant influence on pectin applications. A rapid, fully automated, kinetic flow method for determination of pectin methyl esters has been developed. The method is based on a lab-made analyzer using the reverse flow-injection/stopped flow principle. Methanol is released from pectin by pectin methylesterase in the first mixing coil. Enzyme working solution is injected further downstream and it is mixed with pectin/pectin methylesterase stream in the second mixing coil. Methanol is oxidized by alcohol oxidase releasing formaldehyde and hydrogen peroxide. This reaction is coupled to horse radish peroxidase catalyzed reaction, which gives the colored product 4-N-(p-benzoquinoneimine-antipyrine. Reaction rate is proportional to methanol concentration and it is followed using Ocean Optics USB 2000+ spectrophotometer. The analyzer is fully regulated by a lab written LabVIEW program. The detection limit was 1.47 mM with an analysis rate of 7 samples h−1. A paired t-test with results from manual method showed that the automated method results are equivalent to the manual method at the 95% confidence interval. The developed method is rapid and sustainable and it is the first application of flow analysis in pectin analysis.

  7. Water column methanotrophy controlled by a rapid oceanographic switch

    Science.gov (United States)

    Steinle, Lea; Graves, Carolyn; Treude, Tina; Biastoch, Arne; Ferré, Bénédicte; Bussmann, Ingeborg; Berndt, Christian; Krastel, Sebastian; James, Rachael H.; Behrens, Erik; Böning, Claus W.; Greinert, Jens; Sapart, Célia-Julia; Sommer, Stefan; Lehmann, Moritz F.; Niemann, Helge

    2015-04-01

    Large amounts of the greenhouse gas methane are released from the seabed to the water column where it may be consumed by aerobic methanotrophic bacteria. This microbial filter is consequently the last marine sink for methane before its liberation into the atmosphere. The size and activity of methanotrophic communities, which determine the capacity of the water column methane filter, are thought to be mainly controlled by nutrient and redox dynamics, but little is known about the effects of ocean currents. Here we show that cold bottom water at methane seeps west of Svalbard, containing a large number of aerobic methanotrophs, was rapidly displaced by warmer water with a considerably smaller methanotrophic community. This community replacement led to a reduction of methane oxidation rates of 60 % and was independent of methane input. Measurements of temperature and salinity, combined with the output of a high-resolution ocean/sea-ice simulation model (VIKING20) showed that this water mass exchange was caused by short-term variations of the West Spitsbergen Current (WSC), which is characterized by two principal modes: The warm core of the WSC either flows along the continental shelf break and thus above the methane seeps (nearshore mode), or it meanders offshore thereby entraining colder shelf water, which then flows over the seeps (offshore mode). We could link the larger community to the colder shelf water during the offshore mode, and the smaller community and lower methane oxidation rates to the presence of the warmer WSC water above the seeps. As a result, the meandering of the WSC can be considered as an oceanographic switch severely reducing methanotrophic activity in the water column. Output from the ORCA12 model showed that strong and fluctuating bottom currents are common features at methane seep systems. We thus argue that the variability of physical water mass transport is a globally important control on the distribution and abundance of methanotrophs and

  8. Reducible oxide based catalysts

    Science.gov (United States)

    Thompson, Levi T.; Kim, Chang Hwan; Bej, Shyamal K.

    2010-04-06

    A catalyst is disclosed herein. The catalyst includes a reducible oxide support and at least one noble metal fixed on the reducible oxide support. The noble metal(s) is loaded on the support at a substantially constant temperature and pH.

  9. Markers of protein oxidation

    DEFF Research Database (Denmark)

    Headlam, Henrietta A; Davies, Michael Jonathan

    2004-01-01

    Exposure of proteins to radicals in the presence of O2 gives both side-chain oxidation and backbone fragmentation. These processes can be interrelated, with initial side-chain oxidation giving rise to backbone damage via transfer reactions. We have shown previously that alkoxyl radicals formed on...

  10. Catalyst for Ammonia Oxidation

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a bimetallic catalyst for ammonia oxidation, a method for producing a bimetallic catalyst for ammonia oxidation and a method for tuning the catalytic activity of a transition metal. By depositing an overlayer of less catalytic active metal onto a more catalytic...

  11. studies in oxidation

    Indian Academy of Sciences (India)

    species of valence four or five or possibly, even two. Watanabe and. Westheimer' employed Successfully the induced oxidation of the manganots ion as a diagnostic tool in determining which chromium species is formed in the first step of the oxidation of isopropyl alcohol in aqueous perchloric acid media. The present paper ...

  12. A scoping review of rapid review methods.

    Science.gov (United States)

    Tricco, Andrea C; Antony, Jesmin; Zarin, Wasifa; Strifler, Lisa; Ghassemi, Marco; Ivory, John; Perrier, Laure; Hutton, Brian; Moher, David; Straus, Sharon E

    2015-09-16

    Rapid reviews are a form of knowledge synthesis in which components of the systematic review process are simplified or omitted to produce information in a timely manner. Although numerous centers are conducting rapid reviews internationally, few studies have examined the methodological characteristics of rapid reviews. We aimed to examine articles, books, and reports that evaluated, compared, used or described rapid reviews or methods through a scoping review. MEDLINE, EMBASE, the Cochrane Library, internet websites of rapid review producers, and reference lists were searched to identify articles for inclusion. Two reviewers independently screened literature search results and abstracted data from included studies. Descriptive analysis was conducted. We included 100 articles plus one companion report that were published between 1997 and 2013. The studies were categorized as 84 application papers, seven development papers, six impact papers, and four comparison papers (one was included in two categories). The rapid reviews were conducted between 1 and 12 months, predominantly in Europe (58 %) and North America (20 %). The included studies failed to report 6 % to 73 % of the specific systematic review steps examined. Fifty unique rapid review methods were identified; 16 methods occurred more than once. Streamlined methods that were used in the 82 rapid reviews included limiting the literature search to published literature (24 %) or one database (2 %), limiting inclusion criteria by date (68 %) or language (49 %), having one person screen and another verify or screen excluded studies (6 %), having one person abstract data and another verify (23 %), not conducting risk of bias/quality appraisal (7 %) or having only one reviewer conduct the quality appraisal (7 %), and presenting results as a narrative summary (78 %). Four case studies were identified that compared the results of rapid reviews to systematic reviews. Three studies found that the conclusions between

  13. New developments in rapidly solidified magnesium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.K. [Allied-Signal, Inc., Morristown, NJ (United States); Chang, C.F. [Allied-Signal, Inc., Morristown, NJ (United States); Raybould, D. [Allied-Signal, Inc., Morristown, NJ (United States); King, J.F. [Magnesium Elektron Ltd., Manchester (United Kingdom); Thistlethwaite, S. [Magnesium Elektron Ltd., Manchester (United Kingdom)

    1992-12-31

    In the present paper, we will examine the new developments in the rapidly solidified Mg-Al-Zn-Nd (EA55RS) alloy. We shall first briefly review the process scale-up currently employed for producing rapidly solidified magnesium alloys in large quantities, and then discuss the effect of billet size and processing parameters on the mechanical properties of various mill product forms such as extrusions and sheets. The superplastic behavior of EA55RS extrusions and rolled sheets are also discussed. Finally, some results on magnesium metal-matrix composites using rapidly solidified EA55RS matrix powders and SiC particulates are presented. (orig.)

  14. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp

    DEFF Research Database (Denmark)

    Palomo, Alejandro; Fowler, Jane; Gülay, Arda

    2016-01-01

    Rapid gravity sand filtration is a drinking water production technology widely used around the world. Microbially catalyzed processes dominate the oxidative transformation of ammonia, reduced manganese and iron, methane and hydrogen sulfide, which may all be present at millimolar concentrations...... involved in different carbon fixation pathways were also abundant, with the reverse tricarboxylic acid cycle pathway most abundant, consistent with an observed Nitrospira dominance. From the metagenomic data set, 14 near-complete genomes were reconstructed and functionally characterized. On the basis...

  15. Death from Nitrous Oxide.

    Science.gov (United States)

    Bäckström, Björn; Johansson, Bengt; Eriksson, Anders

    2015-11-01

    Nitrous oxide is an inflammable gas that gives no smell or taste. It has a history of abuse as long as its clinical use, and deaths, although rare, have been reported. We describe two cases of accidental deaths related to voluntary inhalation of nitrous oxide, both found dead with a gas mask covering the face. In an attempt to find an explanation to why the victims did not react properly to oncoming hypoxia, we performed experiments where a test person was allowed to breath in a closed system, with or without nitrous oxide added. Vital signs and gas concentrations as well as subjective symptoms were recorded. The experiments indicated that the explanation to the fact that neither of the descendents had reacted to oncoming hypoxia and hypercapnia was due to the inhalation of nitrous oxide. This study raises the question whether nitrous oxide really should be easily, commercially available. © 2015 American Academy of Forensic Sciences.

  16. RNA modifications by oxidation

    DEFF Research Database (Denmark)

    Poulsen, Henrik E; Specht, Elisabeth; Broedbaek, Kasper

    2012-01-01

    The past decade has provided exciting insights into a novel class of central (small) RNA molecules intimately involved in gene regulation. Only a small percentage of our DNA is translated into proteins by mRNA, yet 80% or more of the DNA is transcribed into RNA, and this RNA has been found...... to encompass various classes of novel regulatory RNAs, including, e.g., microRNAs. It is well known that DNA is constantly oxidized and repaired by complex genome maintenance mechanisms. Analogously, RNA also undergoes significant oxidation, and there are now convincing data suggesting that oxidation......, and the consequent loss of integrity of RNA, is a mechanism for disease development. Oxidized RNA is found in a large variety of diseases, and interest has been especially devoted to degenerative brain diseases such as Alzheimer disease, in which up to 50-70% of specific mRNA molecules are reported oxidized, whereas...

  17. Catalytic decomposition of nitrous oxide monopropellant for hybrid motor ignition

    Science.gov (United States)

    Wilson, Matthew

    Nitrous oxide (N2O) is an inexpensive and readily available non-toxic rocket motor oxidizer. It is the most commonly used oxidizer for hybrid bipropellant rocket systems, and several bipropellant liquid rocket designs have also used nitrous oxide. In liquid form, N2O is highly stable, but in vapor form it has the potential to decompose exothermically, releasing up to 1865 Joules per gram of vapor as it dissociates into nitrogen and oxygen. Consequently, it has long been considered as a potential "green" replacement for existing highly toxic and dangerous monopropellants. This project investigates the feasibility of using the nitrous oxide decomposition reaction as a monopropellant energy source for igniting liquid bipropellant and hybrid rockets that already use nitrous oxide as the primary oxidizer. Because nitrous oxide is such a stable propellant, the energy barrier to dissociation is quite high; normal thermal decomposition of the vapor phase does not occur until temperatures are above 800 C. The use of a ruthenium catalyst decreases the activation energy for this reaction to allow rapid decomposition below 400 C. This research investigates the design for a prototype device that channels the energy of dissociation to ignite a laboratory scale hybrid rocket motor.

  18. Kinetics of plasma oxidation of germanium-tin (GeSn)

    Science.gov (United States)

    Wang, Wei; Lei, Dian; Dong, Yuan; Zhang, Zheng; Pan, Jisheng; Gong, Xiao; Tok, Eng-Soon; Yeo, Yee-Chia

    2017-12-01

    The kinetics of plasma oxidation of GeSn at low temperature is investigated. The oxidation process is described by a power-law model where the oxidation rate decreases rapidly from the initial oxidation rate with increasing time. The oxidation rate of GeSn is higher than that of pure Ge, which can be explained by the higher chemical reaction rate at the GeSn-oxide/GeSn interface. In addition, the Sn atoms at the interface region exchange positions with the underlying Ge atoms during oxidation, leading to a SnO2-rich oxide near the interface. The bandgap of GeSn oxide is extracted to be 5.1 ± 0.2 eV by XPS, and the valence band offset at the GeSn-oxide/GeSn heterojunction is found to be 3.7 ± 0.2 eV. Controlled annealing experiments demonstrate that the GeSn oxide is stable with respect to annealing temperatures up to 400 °C. However, after annealing at 450 °C, the GeO2 is converted to GeO, and desorbs from the GeSn-oxide/GeSn, leaving behind Sn oxide.

  19. Protein oxidation in aquatic foods

    DEFF Research Database (Denmark)

    Baron, Caroline P.

    2014-01-01

    The chapter discusses general considerations about protein oxidation and reviews the mechanisms involved in protein oxidation and consequences of protein oxidation on fish proteins. It presents two case studies, the first deals with protein and lipid oxidation in frozen rainbow trout......, and the second with oxidation in salted herring. The mechanisms responsible for initiation of protein oxidation are unclear, but it is generally accepted that free radical species initiating lipid oxidation can also initiate protein oxidation. The chapter focuses on interaction between protein and lipid...... oxidation. The protein carbonyl group measurement is the widely used method for estimating protein oxidation in foods and has been used in fish muscle. The chapter also talks about the impact of protein oxidation on protein functionality, fish muscle texture, and food nutritional value. Protein oxidation...

  20. Implementation of rapid diagnostics with antimicrobial stewardship.

    Science.gov (United States)

    Minejima, Emi; Wong-Beringer, Annie

    2016-11-01

    Antimicrobial stewardship (ASP) is an intervention-based program to improve patient outcomes to infection while limiting spread of resistance and unintended consequences. Many rapid diagnostic tools are now FDA cleared for clinical use, with three evaluated across multiple settings: Matrix Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry, Verigene, and FilmArray. Areas covered: This review will focus on studies published that evaluated ASP intervention with rapid diagnostic implementation on outcomes of infection. A description of the key ASP personnel, rapid diagnostic notification methods, hours of notification, and scope of ASP intervention is summarized. Expert commentary: It is critical that ASPs continually re-evaluate and evolve with technological advances. Rapid diagnostic tools are powerful in their ability to identify organisms quickly. A trained clinician is needed to evaluate the results and interact with the providers to educate them on result interpretation and optimal antimicrobial selection to maximize treatment success.

  1. Rapid Update Cycle (RUC) [20 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Update Cycle (RUC) weather forecast model was developed by the National Centers for Environmental Prediction (NCEP). On May 1, 2012, the RUC was replaced...

  2. Rapid Update Cycle (RUC) [13 km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Rapid Update Cycle (RUC) weather forecast model was developed by the National Centers for Environmental Prediction (NCEP). On May 1, 2012, the RUC was replaced...

  3. Rapid Chemical Exposure and Dose Research

    Science.gov (United States)

    EPA evaluates the potential risks of the manufacture and use of thousands of chemicals. To assist with this evaluation, EPA scientists developed a rapid, automated model using off the shelf technology that predicts exposures for thousands of chemicals.

  4. Innovative rapid construction/reconstruction methods.

    Science.gov (United States)

    2005-07-01

    Innovative construction and reconstruction methods provide the opportunity to significantly reduce the time of roadway projects while maintaining the necessary quality of workmanship. The need for these rapid methods stems from the increase in ...

  5. Colorado Plateau Rapid Ecoregion Assessment Data Catalog

    Data.gov (United States)

    Bureau of Land Management, Department of the Interior — Datasets used in the analysis of the Colorado Plateau (COP) Rapid Ecoregion Assessment (REA).They can be downloaded via a layer package (lpk, similar to a zip file...

  6. Development of a Rapid Thermoplastic Impregnation Device

    NARCIS (Netherlands)

    Weustink, A.P.D.

    2007-01-01

    A melt impregnation device for rapid thermoplastic impregnation of fiber bundles has been developed through modeling and experiments. The basic principles behind the thermoplastic impregnation process are investigated and the properties needed for a successful thermoplastic impregnation device are

  7. Practical implications of rapid development methodologies

    CSIR Research Space (South Africa)

    Gerber, A

    2007-11-01

    Full Text Available Rapid development methodologies are popular approaches for the development of modern software systems. The goals of these methodologies are the inclusion of the client into the analysis, design and implementation activities, as well...

  8. The Rapid Perceptual Impact of Emotional Distractors.

    Directory of Open Access Journals (Sweden)

    Briana L Kennedy

    Full Text Available The brief presentation of an emotional distractor can temporarily impair perception of a subsequent, rapidly presented target, an effect known as emotion-induced blindness (EIB. How rapidly does this impairment unfold? To probe this question, we examined EIB for targets that immediately succeeded ("lag-1" emotional distractors in a rapid stream of items relative to EIB for targets at later serial positions. Experiments 1 and 2 suggested that emotional distractors interfere with items presented very soon after them, with impaired target perception emerging as early as lag-1. Experiment 3 included an exploratory examination of individual differences, which suggested that EIB onsets more rapidly among participants scoring high in measures linked to negative affect.

  9. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater

    DEFF Research Database (Denmark)

    Albers, Christian Nyrop; Ellegaard-Jensen, Lea; Hansen, Lars Hestbjerg

    2018-01-01

    Ammonium oxidation to nitrite and then to nitrate (nitrification) is a key process in many waterworks treating groundwater to make it potable. In rapid sand filters, nitrifying microbial communities may evolve naturally from groundwater bacteria entering the filters. However, in new filters this ...

  10. The effects of iron(II) on the kinetics of arsenic oxidation and sorption on manganese oxides.

    Science.gov (United States)

    Wu, Yun; Li, Wei; Sparks, Donald L

    2015-11-01

    In this study, As(III) oxidation kinetics by a poorly-crystalline phyllomanganate (δ-MnO2) in the presence and absence of dissolved Fe(II) was investigated using stirred-flow and batch experiments. Chemically synthetic δ-MnO2 was reacted with four influent solutions, containing the same As(III) concentration but different Fe(II) concentrations, at pH 6. The results show an initial rapid As(III) oxidation by δ-MnO2, which is followed by an appreciably slow reaction after 8h. In the presence of Fe(II), As(III) oxidation is inhibited due to the competitive oxidation of Fe(II) as well as the formation of Fe(III)-(hydr)oxides on the δ-MnO2 surface. However, the sorption of As(III), As(V) and Mn(II) are increased, for the newly formed Fe(III)-(hydr)oxides provide additional sorption sites. This study suggests that the competitive oxidation of Fe(II) and consequently the precipitation of Fe(III) compounds on the δ-MnO2 surface play an important role in As(III) oxidation and As sequestration. Understanding these processes would be helpful in developing in situ strategies for remediation of As-contaminated waters and soils. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Rapidly separating microneedles for transdermal drug delivery.

    Science.gov (United States)

    Zhu, Dan Dan; Wang, Qi Lei; Liu, Xu Bo; Guo, Xin Dong

    2016-09-01

    The applications of polymer microneedles (MNs) into human skin emerged as an alternative of the conventional hypodermic needles. However, dissolving MNs require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin, which may lead to the low drug delivery efficiency. To address these issues, we introduce rapidly separating MNs that can rapidly deliver drugs into the skin in a minimally invasive way. For the rapidly separating MNs, drug loaded dissolving MNs are mounted on the top of solid MNs, which are made of biodegradable polylactic acid which eliminate the biohazardous waste. These MNs have sufficient mechanical strength to be inserted into the skin with the drug loaded tips fully embedded for subsequent dissolution. Compared with the traditional MNs, rapidly separating MNs achieve over 90% of drug delivery efficiency in 30s while the traditional MNs needs 2min to achieve the same efficiency. With the in vivo test in mice, the micro-holes caused by rapidly separating MNs can heal in 1h, indicating that the rapidly separating MNs are safe for future applications. These results indicate that the design of rapidly separating dissolvable MNs can offer a quick, high efficient, convenient, safe and potentially self-administered method of drug delivery. Polymer microneedles offer an attractive, painless and minimally invasive approach for transdermal drug delivery. However, dissolving microneedles require many minutes to be dissolved in the skin and typically have difficulty being fully inserted into the skin due to the skin deformation, which may lead to the low drug delivery efficiency. In this work we proposed rapidly separating microneedles which can deliver over 90% of drug into the skin in 30s. The in vitro and in vivo results indicate that the new design of these microneedles can offer a quick, high efficient, convenient and safe method for transdermal drug delivery. Copyright © 2016 Acta Materialia Inc

  12. Exploring data with RapidMiner

    CERN Document Server

    Chisholm, Andrew

    2013-01-01

    A step-by-step tutorial style using examples so that users of different levels will benefit from the facilities offered by RapidMiner.If you are a computer scientist or an engineer who has real data from which you want to extract value, this book is ideal for you. You will need to have at least a basic awareness of data mining techniques and some exposure to RapidMiner.

  13. Sensitive and rapid determination of quinoline yellow in drinks using polyvinylpyrrolidone-modified electrode.

    Science.gov (United States)

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou

    2015-04-15

    A novel electrochemical sensor using polyvinylpyrrolidone (PVP)-modified carbon paste electrode was developed for the sensitive and rapid determination of quinoline yellow. In 0.1M, pH 6.5 phosphate buffer, an irreversible oxidation wave at 0.97 V was observed for quinoline yellow. PVP exhibited strong accumulation ability to quinoline yellow, and consequently increased the oxidation peak current of quinoline yellow remarkably. The effects of pH value, amount of PVP, accumulation potential and time were studied on the oxidation signals of quinoline yellow. The linear range was from 5×10(-8) to 1×10(-6) M, and the limit of detection was evaluated to be 2.7×10(-8) M. It was used to detect quinoline yellow in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Highly oxidized graphene oxide and methods for production thereof

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Kosynkin, Dmitry V.

    2016-08-30

    A highly oxidized form of graphene oxide and methods for production thereof are described in various embodiments of the present disclosure. In general, the methods include mixing a graphite source with a solution containing at least one oxidant and at least one protecting agent and then oxidizing the graphite source with the at least one oxidant in the presence of the at least one protecting agent to form the graphene oxide. Graphene oxide synthesized by the presently described methods is of a high structural quality that is more oxidized and maintains a higher proportion of aromatic rings and aromatic domains than does graphene oxide prepared in the absence of at least one protecting agent. Methods for reduction of graphene oxide into chemically converted graphene are also disclosed herein. The chemically converted graphene of the present disclosure is significantly more electrically conductive than is chemically converted graphene prepared from other sources of graphene oxide.

  15. Superconductivity in the antiperovskite Dirac-metal oxide Sr3-xSnO

    Science.gov (United States)

    Oudah, Mohamed; Ikeda, Atsutoshi; Hausmann, Jan Niklas; Yonezawa, Shingo; Fukumoto, Toshiyuki; Kobayashi, Shingo; Sato, Masatoshi; Maeno, Yoshiteru

    2016-12-01

    Investigations of perovskite oxides triggered by the discovery of high-temperature and unconventional superconductors have had crucial roles in stimulating and guiding the development of modern condensed-matter physics. Antiperovskite oxides are charge-inverted counterpart materials to perovskite oxides, with unusual negative ionic states of a constituent metal. No superconductivity was reported among the antiperovskite oxides so far. Here we present the first superconducting antiperovskite oxide Sr3-xSnO with the transition temperature of around 5 K. Sr3SnO possesses Dirac points in its electronic structure, and we propose from theoretical analysis a possibility of a topological odd-parity superconductivity analogous to the superfluid 3He-B in moderately hole-doped Sr3-xSnO. We envision that this discovery of a new class of oxide superconductors will lead to a rapid progress in physics and chemistry of antiperovskite oxides consisting of unusual metallic anions.

  16. Microbial degradation of pesticides in rapid sand filters used for drinking water treatment

    DEFF Research Database (Denmark)

    Hedegaard, Mathilde Jørgensen

    in rapid sand filters was not associated with methane oxidation. Based on the present investigations and literature, it was suggested that phenoxy acid degradation in rapid sand filters is due to primary metabolism, and that degradation might be stimulated by enriching naturally occurring specific...... degraders in the sand filters upon exposure to phenoxy acid contaminated groundwater. A suite of evidence showed that the herbicide bentazone was co-metabolically transformed to hydroxy-bentazone by the methanotrophic enrichment culture. Subsequently, it was investigated whether bentazone degradation...... a sequential reactor system, where methanotrophs are grown in the aeration tanks and transported to the rapid sand filters where they can perform co-metabolic pesticide biodegradation. It was suggested that bentazone removal can be stimulated at waterworks, by stimulating growth of methanotrophs. Overall...

  17. Formation of iron (hydr)oxides during the abiotic oxidation of Fe(II) in the presence of arsenate.

    Science.gov (United States)

    Song, Jia; Jia, Shao-Yi; Yu, Bo; Wu, Song-Hai; Han, Xu

    2015-08-30

    Abiotic oxidation of Fe(II) is a common pathway in the formation of Fe (hydr)oxides under natural conditions, however, little is known regarding the presence of arsenate on this process. In hence, the effect of arsenate on the precipitation of Fe (hydr)oxides during the oxidation of Fe(II) is investigated. Formation of arsenic-containing Fe (hydr)oxides is constrained by pH and molar ratios of As:Fe during the oxidation Fe(II). At pH 6.0, arsenate inhibits the formation of lepidocrocite and goethite, while favors the formation of ferric arsenate with the increasing As:Fe ratio. At pH 7.0, arsenate promotes the formation of hollow-structured Fe (hydr)oxides containing arsenate, as the As:Fe ratio reaches 0.07. Arsenate effectively inhibits the formation of magnetite at pH 8.0 even at As:Fe ratio of 0.01, while favors the formation of lepidocrocite and green rust, which can be latterly degenerated and replaced by ferric arsenate with the increasing As:Fe ratio. This study indicates that arsenate and low pH value favor the slow growth of dense-structured Fe (hydr)oxides like spherical ferric arsenate. With the rapid oxidation rate of Fe(II) at high pH, ferric (hydr)oxides prefer to precipitate in the formation of loose-structured Fe (hydr)oxides like lepidocrocite and green rust. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Transverse vetoes with rapidity cutoff in SCET

    Science.gov (United States)

    Hornig, Andrew; Kang, Daekyoung; Makris, Yiannis; Mehen, Thomas

    2017-12-01

    We consider di-jet production in hadron collisions where a transverse veto is imposed on radiation for (pseudo-)rapidities in the central region only, where this central region is defined with rapidity cutoff. For the case where the transverse measurement (e.g., transverse energy or min p T for jet veto) is parametrically larger relative to the typical transverse momentum beyond the cutoff, the cross section is insensitive to the cutoff parameter and is factorized in terms of collinear and soft degrees of freedom. The virtuality for these degrees of freedom is set by the transverse measurement, as in typical transverse-momentum dependent observables such as Drell-Yan, Higgs production, and the event shape broadening. This paper focuses on the other region, where the typical transverse momentum below and beyond the cutoff is of similar size. In this region the rapidity cutoff further resolves soft radiation into (u)soft and soft-collinear radiation with different rapidities but identical virtuality. This gives rise to rapidity logarithms of the rapidity cutoff parameter which we resum using renormalization group methods. We factorize the cross section in this region in terms of soft and collinear functions in the framework of soft-collinear effective theory, then further refactorize the soft function as a convolution of the (u)soft and soft-collinear functions. All these functions are calculated at one-loop order. As an example, we calculate a differential cross section for a specific partonic channel, qq ' → qq ' , for the jet shape angularities and show that the refactorization allows us to resum the rapidity logarithms and significantly reduce theoretical uncertainties in the jet shape spectrum.

  19. CHEMILUMINESCENCE ON OXIDE SURFACE

    OpenAIRE

    L. I. IVANKIV; O. V. DZYUPYN; Balitskii, O. A.

    2008-01-01

    This paper describes the oxygen adsorption properties on magnesium oxide surface. The results are compared with theoretical adsorption kinetics. Temperature and time dependences of adsorption mechanisms and chemiluminescence are discussed.

  20. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    The aim of the AASERT supported research is to develop the plasma deposition/implantation process for coating barium, strontium and calcium oxides on nickel substrates and to perform detailed surface...

  1. Cathodoluminescence of uranium oxides

    Energy Technology Data Exchange (ETDEWEB)

    Winer, K.; Colmenares, C.; Wooten, F.

    1984-08-09

    The cathodoluminescence of uranium oxide surfaces prepared in-situ from clean uranium exposed to dry oxygen was studied. The broad asymmetric peak observed at 470 nm is attributed to F-center excitation.

  2. Wet oxidation of quinoline

    DEFF Research Database (Denmark)

    Thomsen, A.B.; Kilen, H.H.

    1998-01-01

    The influence of oxygen pressure (0.4 and 2 MPa). reaction time (30 and 60 min) and temperature (260 and 280 degrees C) on the wet oxidation of quinoline has been studied. The dominant parameters for the decomposition of quinoline were oxygen pressure and reaction temperature. whereas the reaction...... if low oxygen pressure or long reaction times were used. The reaction products derived from the experiment in which quinoline was mostly decomposed were studied with respect to biological degradation. The results showed that these products were highly digestible under activated sludge treatment....... The combined wet oxidation and biological treatment of reaction products resulted in 91% oxidation of the parent compound to CO2 and water. Following combined wet oxidation and biological treatment the sample showed low toxicity towards Nitrosomonas and no toxicity towards Nitrobacter. (C) 1998 Elsevier...

  3. CATALYTIC ENANTIOSELECTIVE ALLYLIC OXIDATION

    NARCIS (Netherlands)

    Rispens, Minze T.; Zondervan, Charon; Feringa, Bernard

    Several chiral Cu(II)-complexes of cyclic amino acids catalyse the enantioselective allylic oxidation of cyclohexene to cyclohexenyl esters. Cyclohexenyl propionate was obtained in 86% yield with e.e.'s up to 61%.

  4. High Current Oxide Cathodes

    National Research Council Canada - National Science Library

    Luhmann, N

    2000-01-01

    .... The vacuum are plasma deposition gun developed at Lawrence Berkeley National Laboratory (LBNL) has been used to deposit oxides and nitrides with very precise control over deposition rate and composition.

  5. Prostate treatments, 1MRT o RapidArc; Tratamiento de prostata, IMART o RapidArc?

    Energy Technology Data Exchange (ETDEWEB)

    Castro novais, J.; Ruiz Maqueda, S.; Pardo Perez, E.; Molina Lopez, M. Y.; Cerro Penalver, E.

    2015-07-01

    Techniques that modulate the dose (as IMRT or RapidArcTM) improve dose homogeneity within the target volume decreasing the dose in healthy organs. The aim of this work is to study the dosimetric differences in prostate radiotherapy treatments with IMRT and RapidArcTM. The results of the 109 patients studied show that plans to RapidArcTM have better coverage, compliance and dose gradient outside the target volume. (Author)

  6. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    Science.gov (United States)

    Mendes, Stephanie D.; Redmond, Molly C.; Voigritter, Karl; Perez, Christian; Scarlett, Rachel; Valentine, David L.

    2015-03-01

    Simple hydrocarbon gases containing two to four carbons (ethane, propane, and butane) are among the most abundant compounds present in petroleum reservoirs, and are introduced into the ocean through natural seepage and industrial discharge. Yet little is known about the bacterial consumption of these compounds in ocean waters. To assess the timing by which microbes metabolize these gases, we conducted a three-phase study that tested and applied a radiotracer-based method to quantify the oxidation rates of ethane, propane, and butane in fresh seawater samples. Phase 1 involved the synthesis of tritiated ethane, propane, and butane using Grignard reagents and tritiated water. Phase 2 was a systematic assessment of experimental conditions, wherein the indigenous microbial community was found to rapidly oxidize ethane, propane, and butane. Phase 3 was the application of this tritium method near the Coal Oil Point seeps, offshore California. Spatial and temporal patterns of ethane, propane, and butane oxidation down current from the hydrocarbon seeps demonstrated that >99% of these gases are metabolized within 1.3 days following initial exposure. The oxidation of ethane outpaced oxidation of propane and butane with patterns indicating the microbial community responded to these gases by rapid adaptation or growth. Methane oxidation responded the slowest in plume waters. Estimates based on the observed metabolic rates and carbon mass balance suggest that ethane, propane, and butane-consuming microorganisms may transiently account for a majority of the total microbial community in these impacted waters.

  7. An Exponential Regulator for Rapidity Divergences

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ye [Fermilab; Neill, Duff [MIT, Cambridge, CTP; Zhu, Hua Xing [MIT, Cambridge, CTP

    2016-04-01

    Finding an efficient and compelling regularization of soft and collinear degrees of freedom at the same invariant mass scale, but separated in rapidity is a persistent problem in high-energy factorization. In the course of a calculation, one encounters divergences unregulated by dimensional regularization, often called rapidity divergences. Once regulated, a general framework exists for their renormalization, the rapidity renormalization group (RRG), leading to fully resummed calculations of transverse momentum (to the jet axis) sensitive quantities. We examine how this regularization can be implemented via a multi-differential factorization of the soft-collinear phase-space, leading to an (in principle) alternative non-perturbative regularization of rapidity divergences. As an example, we examine the fully-differential factorization of a color singlet's momentum spectrum in a hadron-hadron collision at threshold. We show how this factorization acts as a mother theory to both traditional threshold and transverse momentum resummation, recovering the classical results for both resummations. Examining the refactorization of the transverse momentum beam functions in the threshold region, we show that one can directly calculate the rapidity renormalized function, while shedding light on the structure of joint resummation. Finally, we show how using modern bootstrap techniques, the transverse momentum spectrum is determined by an expansion about the threshold factorization, leading to a viable higher loop scheme for calculating the relevant anomalous dimensions for the transverse momentum spectrum.

  8. Rapid, generalized adaptation to asynchronous audiovisual speech.

    Science.gov (United States)

    Van der Burg, Erik; Goodbourn, Patrick T

    2015-04-07

    The brain is adaptive. The speed of propagation through air, and of low-level sensory processing, differs markedly between auditory and visual stimuli; yet the brain can adapt to compensate for the resulting cross-modal delays. Studies investigating temporal recalibration to audiovisual speech have used prolonged adaptation procedures, suggesting that adaptation is sluggish. Here, we show that adaptation to asynchronous audiovisual speech occurs rapidly. Participants viewed a brief clip of an actor pronouncing a single syllable. The voice was either advanced or delayed relative to the corresponding lip movements, and participants were asked to make a synchrony judgement. Although we did not use an explicit adaptation procedure, we demonstrate rapid recalibration based on a single audiovisual event. We find that the point of subjective simultaneity on each trial is highly contingent upon the modality order of the preceding trial. We find compelling evidence that rapid recalibration generalizes across different stimuli, and different actors. Finally, we demonstrate that rapid recalibration occurs even when auditory and visual events clearly belong to different actors. These results suggest that rapid temporal recalibration to audiovisual speech is primarily mediated by basic temporal factors, rather than higher-order factors such as perceived simultaneity and source identity. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  9. Rapid penetration into granular media visualizing the fundamental physics of rapid earth penetration

    CERN Document Server

    Iskander, Magued

    2015-01-01

    Rapid Penetration into Granular Media: Visualizing the Fundamental Physics of Rapid Earth Penetration introduces readers to the variety of methods and techniques used to visualize, observe, and model the rapid penetration of natural and man-made projectiles into earth materials. It provides seasoned practitioners with a standard reference that showcases the topic's most recent developments in research and application. The text compiles the findings of new research developments on the subject, outlines the fundamental physics of rapid penetration into granular media, and assembles a com

  10. The oxidative costs of territory quality and offspring provisioning.

    Science.gov (United States)

    Guindre-Parker, S; Baldo, S; Gilchrist, H G; Macdonald, C A; Harris, C M; Love, O P

    2013-12-01

    The costs of reproduction are an important constraint that shapes the evolution of life histories, yet our understanding of the proximate mechanism(s) leading to such life-history trade-offs is not well understood. Oxidative stress is a strong candidate measure thought to mediate the costs of reproduction, yet empirical evidence supporting that increased reproductive investment leads to oxidative stress is equivocal. We investigated whether territory quality and offspring provisioning increase oxidative stress in male snow buntings (Plectrophenax nivalis) using a repeated sampling design. We show that arrival oxidative stress is not a constraint on territory quality or the number of offspring fledged. Nevertheless, owners of higher-quality territories experienced an oxidative cost, with this cost increasing more rapidly in younger males. Males that provisioned offspring at a high rate also experienced increased oxidative stress. Together, these findings support the potential role of oxidative stress in mediating life-history trade-offs. Future work should consider that reproductive workload is not limited to offspring care, and other activities - including territory defence - may contribute significantly to the costs of reproduction. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  11. Polyjet technology applications for rapid tooling

    Directory of Open Access Journals (Sweden)

    Udroiu Razvan

    2017-01-01

    Full Text Available Polymer Jetting (PolyJet has proved to be one of the most accurate additive manufacturing technologies, in order to manufacture rapid tools. Rapid Tooling (RT is different from conventional tooling as follow: manufacturing time is shorter, the cost is much less, but the tool life is shorter and tolerances are wider. The purpose of this paper is to make a comparative study between the soft tools (silicon moulds and hard tools (acrylic thermoplastic moulds based on the Polymer Jetting technology. Thus, two types of moulds have been made in order to manufacture a test part. Reaction injection moulding (RIM and casting techniques were used to fill these moulds with resins that simulate the plastic injection materials. Rapid tooling applications, such as indirect tooling and direct tooling, based on PolyJet technology were experimentally investigated.

  12. Rapid Hepatitis B Vaccination in Adults

    Directory of Open Access Journals (Sweden)

    Mansur Özcan

    2004-01-01

    Full Text Available Vaccination is a very important method in prevention of HBV.Especially rapid immunization takes an important place in subjects at highrisk. We have injected HBV vaccine to health workers who are attending inour hospital by rapid immunisation programme (at 0, 1 and 2 months andaimed to identify it’s efficiacy. Eighty seven subjects (69% male, 31%female were included to our study. Median age was 34 for male and 32 forwomen. We obtained 90% achievement of immunity rate after theprogramme finished. There were no significant difference between maleend female groups, and age groups. The non-responder rate was 11.6% inmale, and 7.4% in female. This rate was 6% in under 40 years old group,and 22.7% in 40 or older group. This difference was significant in twogroups statistically (p=0.02. The rapid immunization programme, weperformed has nearly the same success results as in standard programme.

  13. Rapid solidification of Nb-base alloys

    Science.gov (United States)

    Gokhale, A. B.; Javed, K. R.; Abbaschian, G. J.; Lewis, R. E.

    1988-01-01

    New Nb-base alloys are of interest for aerospace structural applications at high temperatures, viz, 800 to 1650 C. Fundamental information regarding the effects of rapid solidification in achieving greatly refined microstructures, extended solid solubility, suppression of embrittling equilibrium phases, and formation of new phases is desired in a number of Nb-X alloys. The microstructures and selected properties of Nb-Si and other Nb-base alloys are presented for materials both rapidly quenched from the equilibrium liquidus and rapidly solidified following deep supercooling. Electromagnetic levitation was used to achieve melting and supercooling in a containerless inert gas environment. A variety of solidification conditions were employed including splatting or drop casting of supercooled samples. The morphology and composition of phases formed are discussed in terms of both solidification history and bulk composition.

  14. Does oxidative stress shorten telomeres?

    NARCIS (Netherlands)

    Boonekamp, Jelle J.; Bauch, Christina; Mulder, Ellis; Verhulst, Simon

    Oxidative stress shortens telomeres in cell culture, but whether oxidative stress explains variation in telomere shortening in vivo at physiological oxidative stress levels is not well known. We therefore tested for correlations between six oxidative stress markers and telomere attrition in nestling

  15. Rapid Sediment Accumulation Results in High Methane Effluxes from Coastal Sediments.

    Directory of Open Access Journals (Sweden)

    Matthias Egger

    Full Text Available Globally, the methane (CH4 efflux from the ocean to the atmosphere is small, despite high rates of CH4 production in continental shelf and slope environments. This low efflux results from the biological removal of CH4 through anaerobic oxidation with sulfate in marine sediments. In some settings, however, pore water CH4 is found throughout the sulfate-bearing zone, indicating an apparently inefficient oxidation barrier for CH4. Here we demonstrate that rapid sediment accumulation can explain this limited capacity for CH4 removal in coastal sediments. In a saline coastal reservoir (Lake Grevelingen, The Netherlands, we observed high diffusive CH4 effluxes from the sediment into the overlying water column (0.2-0.8 mol m-2 yr-1 during multiple years. Linear pore water CH4 profiles and the absence of an isotopic enrichment commonly associated with CH4 oxidation in a zone with high rates of sulfate reduction (50-170 nmol cm-3 d-1 both suggest that CH4 is bypassing the zone of sulfate reduction. We propose that the rapid sediment accumulation at this site (~ 13 cm yr-1 reduces the residence time of the CH4 oxidizing microorganisms in the sulfate/methane transition zone (< 5 years, thus making it difficult for these slow growing methanotrophic communities to build-up sufficient biomass to efficiently remove pore water CH4. In addition, our results indicate that the high input of organic matter (~ 91 mol C m-2 yr-1 allows for the co-occurrence of different dissimilatory respiration processes, such as (acetotrophic methanogenesis and sulfate reduction in the surface sediments by providing abundant substrate. We conclude that anthropogenic eutrophication and rapid sediment accumulation likely increase the release of CH4 from coastal sediments.

  16. Rapid serial visual presentation design for cognition

    CERN Document Server

    Spence, Robert

    2013-01-01

    A powerful new image presentation technique has evolved over the last twenty years, and its value demonstrated through its support of many and varied common tasks. Conceptually, Rapid Serial Visual Presentation (RSVP) is basically simple, exemplified in the physical world by the rapid riffling of the pages of a book in order to locate a known image. Advances in computation and graphics processing allow RSVP to be applied flexibly and effectively to a huge variety of common tasks such as window shopping, video fast-forward and rewind, TV channel selection and product browsing. At its heart is a

  17. Accuracy of rapid disposition by emergency clinicians.

    Science.gov (United States)

    Backay, Andrew; Bystrzycki, Adam; Smit, De Villiers; Keogh, Martin; O'Reilly, Gerard; Mitra, Biswadev

    2017-05-01

    Objectives Rapid disposition protocols are increasingly being considered for implementation in emergency departments (EDs). Among patients presenting to an adult tertiary referral hospital, this study aimed to compare prediction accuracy of a rapid disposition decision at the conclusion of history and examination, compared with disposition following standard assessment. Methods Prospective observational data were collected for 1 month between October and November 2012. Emergency clinicians (including physicians, registrars, hospital medical officers, interns and nurse practitioners) filled out a questionnaire within 5min of obtaining a history and clinical examination for eligible patients. Predicted patient disposition (representing 'rapid disposition') was compared with final disposition (determined by 'standard assessment'). Results There were 301 patient episodes included in the study. Predicted disposition was correct in 249 (82.7%, 95% confidence interval (CI) 78.0-86.8) cases. Accuracy of predicting discharge to home appeared highest among emergency physicians at 95.8% (95% CI 78.9-99.9). Overall accuracy at predicting admission was 79.7% (95% CI 67.2-89.0). The remaining 20.3% (95% CI 11.0-32.8) were not admitted following standard assessment. Conclusion Rapid disposition by ED clinicians can predict patient destination accurately but was associated with a potential increase in admission rates. Any model of care using rapid disposition decision making should involve establishment of inpatient systems for further assessment, and a culture of timely inpatient team transfer of patients to the most appropriate treating team for ongoing patient management. What is known about the topic? In response to the National Emergency Access Targets, there has been widespread adoption of rapid-disposition-themed care models across Australia. Although there is emerging data that clinicians can predict disposition accurately, this data is currently limited. What does this

  18. Rapidly destructive osteoarthritis can mimic infection

    Directory of Open Access Journals (Sweden)

    Gavin Hart, MD

    2016-03-01

    Full Text Available The intraoperative appearance of rapidly destructive osteoarthritis and septic arthritis can be similar. Three patients at our institution demonstrated preoperative or intraoperative findings potentially consistent with infection during primary total hip arthroplasty; however, none of these patients were found to have an actual infection. One of these patients underwent an unnecessary 2-stage total hip arthroplasty secondary to the intraoperative appearance of their joint fluid. We advocate performing an infection workup preoperatively when patients present with rapid degenerative changes of their hip joint to diminish the uncertainty of proceeding with arthroplasty.

  19. Enargite oxidation: A review

    Science.gov (United States)

    Lattanzi, Pierfranco; Da Pelo, Stefania; Musu, Elodia; Atzei, Davide; Elsener, Bernhard; Fantauzzi, Marzia; Rossi, Antonella

    2008-01-01

    Enargite, Cu 3AsS 4, is common in some deposit types, e.g. porphyry systems and high sulphidation epithermal deposits. It is of environmental concern as a potential source of arsenic. In this communication, we review the current knowledge of enargite oxidation, based on the existing literature and our own original data. Explicit descriptions of enargite oxidation in natural environments are scarce. The most common oxidized alteration mineral of enargite is probably scorodite, FeAsO 4.2H 2O, with iron provided most likely by pyrite, a phase almost ubiquitously associated with enargite. Other secondary minerals after enargite include arsenates such as chenevixite, Cu 2Fe 2(AsO 4) 2(OH) 4.H 2O, and ceruleite, Cu 2Al 7(AsO 4) 4.11.5H 2O, and sulphates such as brochantite, Cu 4(SO 4)(OH) 6, and posnjakite, Cu 4(SO 4)(OH) 6·H 2O. Detailed studies of enargite field alteration at Furtei, Sardinia, suggest that most alteration occurs through dissolution, as testified by the appearance of etch pits at the surface of enargite crystals. However, apparent replacement by scorodite and cuprian melanterite was observed. Bulk oxidation of enargite in air is a very slow process. However, X-ray photoelectron spectroscopy (XPS) reveals subtle surface changes. From synchrotron-based XPS it was suggested that surface As atoms react very fast, presumably by forming bonds with oxygen. Conventional XPS shows the formation, on aged samples, of a nanometer-size alteration layer with an appreciably distinct composition with respect to the bulk. Mechanical activation considerably increases enargite reactivity. In laboratory experiments at acidic to neutral pH, enargite oxidation/dissolution is slow, although it is accelerated by the presence of ferric iron and/or bacteria such as Acidithiobacillus ferrooxidans and Sulfolobus BC. In the presence of sulphuric acid and ferric iron, the reaction involves dissolution of Cu and formation of native sulphur, subsequently partly oxidized to sulphate

  20. Method for providing oxygen ion vacancies in lanthanide oxides

    Science.gov (United States)

    Kay, D. Alan R.; Wilson, William G.

    1989-12-05

    A method for desulfurization of fuel gases resulting from the incomplete combustion of sulfur containing hydrocarbons whereby the gases are treated with lanthanide oxides containing large numbers of oxygen-ion vacancies providing ionic porosity which enhances the ability of the lanthanide oxides to react more rapidly and completely with the sulfur in the fuel gases whereby the sulfur in such gases is reduced to low levels suitable for fuels for firing into boilers of power plants generating electricity with steam turbine driven generators, gas turbines, fuel cells and precursors for liquid fuels such as methanol and the like.

  1. Nitric oxide, S-nitrosation, and endothelial permeability.

    Science.gov (United States)

    Durán, Walter N; Beuve, Annie V; Sánchez, Fabiola A

    2013-10-01

    S-Nitrosation is rapidly emerging as a regulatory mechanism in vascular biology, with particular importance in the onset of hyperpermeability induced by pro-inflammatory agents. This review focuses on the role of endothelial nitric oxide synthase (eNOS)-derived nitric oxide (NO) in regulating S-Nitrosation of adherens junction proteins. We discuss evidence for translocation of eNOS, via caveolae, to the cytosol and analyze the significance of eNOS location for S-Nitrosation and onset of endothelial hyperpermeability to macromolecules. © 2013 International Union of Biochemistry and Molecular Biology.

  2. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater‐fed rapid sand filter communities

    DEFF Research Database (Denmark)

    Fowler, Susan Jane; Palomo, Alejandro; Dechesne, Arnaud

    2017-01-01

    The recent discovery of completely nitrifying Nitrospira demands a re‐examination of nitrifying environments to evaluate their contribution to nitrogen cycling. To approach this challenge, tools are needed to detect and quantify comammox Nitrospira. We present primers for the simultaneous quantif...

  3. TOF-SIMS for Rapid Nuclear Forensics Evaluation of Uranium Oxide Particles

    Science.gov (United States)

    2011-03-01

    clarification on a number of points I was confused on. Thank you to Linda Kasten for introducing me to TOF-SIMS. Last, but not least, thank you to my family...surfaces (aluminum ingots were used) Gold stamp 1 Blue M oven with argon gas purge 2 Methanol – HPLC grade (Fisher Scientific, Lot 070517...stamp piece, and tweezers with a few mL of methanol using a squeeze bottle. Heat these items on a clean hotplate at 100 degrees Celsius for 10 minutes

  4. Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties

    Science.gov (United States)

    Aal, Nadia Abdel; Al-Hazmi, Faten; Al-Ghamdi, Ahmed A.; Al-Ghamdi, Attieh A.; El-Tantawy, Farid; Yakuphanoglu, F.

    2015-01-01

    ZnO nanotubes with the wurtzite structure have been successfully synthesized via simple hydrothermal solution route using zinc nitrate, urea and KOH for the first time. The structural, compositions and morphology architectures of the as synthesized ZnO nanotubes was performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and high resolution transmission scanning electron microscopy (HRTEM). TEM showed that ZnO nanotubes exhibited a wall thickness of less than 2 nm, with an average diameter of 17 nm and the length is 2 μm. In addition, the antibacterial activity of ZnO nanotubes was carried out in vitro against two kinds of bacteria: gram - negative bacteria (G -ve) i.e. Escherichia coli (E. coli) and gram - positive bacteria (G +ve) i.e. Staphylococcus aureus. Therefore, this work demonstrates that simply synthesized ZnO nanotubes have excellent potencies, being ideal antibacterial agents for many biomedical applications.

  5. RAPID OXIDATION OF ARSENITE IN A HOT SPRING ECOSYSTEM, YELLOWSTONE NATIONAL PARK. (R827457E03)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  6. Rapid accurate analysis of metal (oxide)-on-silica catalysts by atomic absorption spectrometry

    NARCIS (Netherlands)

    Jütte, B.A.H.G.; Heikamp, A.; Agterdenbos, J.

    1979-01-01

    The catalysts, which contain 10–60% copper, chromium, nickel and silicon, are decomposed in sealed Teflon-lined vessels and analyzed by atomic absorption spectrometry. Matrix matching and bracketing standards are applied. The RSD of a single determination is about 1% for all components.

  7. Novel rapid synthesis of zinc oxide nanotubes via hydrothermal technique and antibacterial properties.

    Science.gov (United States)

    Aal, Nadia Abdel; Al-Hazmi, Faten; Al-Ghamdi, Ahmed A; Al-Ghamdi, Attieh A; El-Tantawy, Farid; Yakuphanoglu, F

    2015-01-25

    ZnO nanotubes with the wurtzite structure have been successfully synthesized via simple hydrothermal solution route using zinc nitrate, urea and KOH for the first time. The structural, compositions and morphology architectures of the as synthesized ZnO nanotubes was performed using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and high resolution transmission scanning electron microscopy (HRTEM). TEM showed that ZnO nanotubes exhibited a wall thickness of less than 2 nm, with an average diameter of 17 nm and the length is 2 μm. In addition, the antibacterial activity of ZnO nanotubes was carried out in vitro against two kinds of bacteria: gram - negative bacteria (G -ve) i.e. Escherichia coli (E. coli) and gram - positive bacteria (G +ve) i.e. Staphylococcus aureus. Therefore, this work demonstrates that simply synthesized ZnO nanotubes have excellent potencies, being ideal antibacterial agents for many biomedical applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Halloysite nanotube-magnetic iron oxide nanoparticle hybrids for the rapid catalytic decomposition of pentachlorophenol

    NARCIS (Netherlands)

    Tsoufis, T.; Katsaros, F.; Kooi, B. J.; Bletsa, E.; Papageorgiou, S.; Deligiannakis, Y.; Panagiotopoulos, I.

    2017-01-01

    Halloysite clay are a very attractive class of alumino-silicate based, natural nanotubes possessing high aspect ratio, significant thermal and mechanical stability, as well as tunable surface chemistry. We report a novel, facile, synthetic approach involving a modified wet-impregnation method for

  9. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress.

    Science.gov (United States)

    Liu, Shaobin; Zeng, Tingying Helen; Hofmann, Mario; Burcombe, Ehdi; Wei, Jun; Jiang, Rongrong; Kong, Jing; Chen, Yuan

    2011-09-27

    Health and environmental impacts of graphene-based materials need to be thoroughly evaluated before their potential applications. Graphene has strong cytotoxicity toward bacteria. To better understand its antimicrobial mechanism, we compared the antibacterial activity of four types of graphene-based materials (graphite (Gt), graphite oxide (GtO), graphene oxide (GO), and reduced graphene oxide (rGO)) toward a bacterial model-Escherichia coli. Under similar concentration and incubation conditions, GO dispersion shows the highest antibacterial activity, sequentially followed by rGO, Gt, and GtO. Scanning electron microscope (SEM) and dynamic light scattering analyses show that GO aggregates have the smallest average size among the four types of materials. SEM images display that the direct contacts with graphene nanosheets disrupt cell membrane. No superoxide anion (O(2)(•-)) induced reactive oxygen species (ROS) production is detected. However, the four types of materials can oxidize glutathione, which serves as redox state mediator in bacteria. Conductive rGO and Gt have higher oxidation capacities than insulating GO and GtO. Results suggest that antimicrobial actions are contributed by both membrane and oxidation stress. We propose that a three-step antimicrobial mechanism, previously used for carbon nanotubes, is applicable to graphene-based materials. It includes initial cell deposition on graphene-based materials, membrane stress caused by direct contact with sharp nanosheets, and the ensuing superoxide anion-independent oxidation. We envision that physicochemical properties of graphene-based materials, such as density of functional groups, size, and conductivity, can be precisely tailored to either reducing their health and environmental risks or increasing their application potentials. © 2011 American Chemical Society

  10. Corrosion of metal samples rapidly measured

    Science.gov (United States)

    Maskell, C. E.

    1966-01-01

    Corrosion of a large number of metal samples that have been exposed to controlled environment is accurately and rapidly measured. Wire samples of the metal are embedded in clear plastic and sectioned for microexamination. Unexposed wire can be included in the matrix as a reference.

  11. Morphological Transition in Rapidly Expanding Magmas

    Science.gov (United States)

    Kolinski, J.; Chakraborty, P.; Gioia, G.; Kieffer, S. W.

    2008-12-01

    Many explosive eruptions are initiated by rapid decompression of bubbly magma, which behaves as an elastic material during the decompression and fragments into discrete pieces following the decompression. To emulate the rapid decompression of bubbly magma, we subject a two-dimensional foam of soap bubbles to quasi-static expansion. A recent theory predicts that where a two-dimensional foam of soap bubbles is first subjected to expansion, the foam expands homogeneously. After a critical value of expansion is attained, the foam undergoes a morphological transition and separates into a large number of small bubbles immersed in a background of a few large bubbles [Vainchtein and Aref, Physics of Fluids 13, 2001]. In our experiments we verify the phenomenon of morphological transition under area expansion. We verity the predictions of Vainchtein and Aref, compare our results with the experimental results on rapidly expanding bubble-bearing viscoelastic fluids reported by [Namiki and Manga, Earth and Planetary Science Letters 236, 2005], and discuss the implications of our results for the rapid decompression of magmas.

  12. Rapid resistome mapping using nanopore sequencing

    DEFF Research Database (Denmark)

    van der Helm, Eric; Imamovic, Lejla; Ellabaan, Mostafa M Hashim

    2017-01-01

    of bacterial infections. Yet, rapid workflows for resistome characterization are lacking. To address this challenge we developed the poreFUME workflow that deploys functional metagenomic selections and nanopore sequencing to resistome mapping. We demonstrate the approach by functionally characterizing the gut...

  13. Rapid Targeted Genomics in Critically Ill Newborns

    NARCIS (Netherlands)

    van Diemen, Cleo C; Kerstjens-Frederikse, Wilhelmina S; Bergman, Klasien A; de Koning, Tom J; Sikkema-Raddatz, Birgit; van der Velde, Joeri K; Abbott, Kristin M; Herkert, Johanna C; Löhner, Katharina; Rump, Patrick; Meems-Veldhuis, Martine T; Neerincx, Pieter B T; Jongbloed, Jan D H; van Ravenswaaij-Arts, Conny M; Swertz, Morris A; Sinke, Richard J; van Langen, Irene M; Wijmenga, Cisca

    2017-01-01

    BACKGROUND: Rapid diagnostic whole-genome sequencing has been explored in critically ill newborns, hoping to improve their clinical care and replace time-consuming and/ or invasive diagnostic testing. A previous retrospective study in a research setting showed promising results with diagnoses in

  14. Cognitive Predictors of Rapid Picture Naming

    Science.gov (United States)

    Decker, Scott L.; Roberts, Alycia M.; Englund, Julia A.

    2013-01-01

    Deficits in rapid automatized naming (RAN) have been found to be a sensitive cognitive marker for children with dyslexia. However, there is a lack of consensus regarding the construct validity and theoretical neuro-cognitive processes involved in RAN. Additionally, most studies investigating RAN include a narrow range of cognitive measures. The…

  15. Utilizing Information Technology to Facilitate Rapid Acquisition

    Science.gov (United States)

    2006-06-01

    ordering systems to facilitate streamlined commercial item acquisitions that reap the benefits of improved efficiency, reduced overall costs, and...PAGES 109 14. SUBJECT TERMS Rapid Acquisition, eCommerce , eProcurement, Information Technology, Contracting, Global Information Network...streamlined commercial item acquisitions that reap the benefits of improved efficiency, reduced overall costs, and timeliness. This thesis

  16. A rapidly enlarging cutaneous hemangioma in pregnancy

    Directory of Open Access Journals (Sweden)

    Marwan Ma’ayeh

    2014-10-01

    Full Text Available This is a case of a rapidly enlarging cutaneous pedunculated tumor on a patient’s thumb during her pregnancy. This was excised and identified as a hemangioma. A literature search identified a possible hormonal factor in causing an accelerated growth of this tumor.

  17. Preparation, Evaluation and Optimization of Rapidly Disintegrating ...

    African Journals Online (AJOL)

    The unit dose content uniformity, dissolution rate, assay values and other tablet characteristics evaluated were all within the acceptable limits. Thus, it was possible to formulate an RDT of artemether-lumefantrine FDC using CPVP as a disintegrant and camphor as a pore forming agent. Keywords: rapidly disintegrating tablet ...

  18. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    fast and inexpensive supply for polymer master models and a ceramic shaping method that enables the replication of the RP model into multiple ceramic materials within a short time. (Knitter et al 1999). 2. Rapid prototyping process chains. The manufacturing of ceramic microparts presented here set out with the 3D-CAD ...

  19. RESEARCH NOTE Rapid isolation and characterization of ...

    Indian Academy of Sciences (India)

    fraser c

    2017-10-25

    Oct 25, 2017 ... Rapid isolation and characterization of microsatellites in the critically endangered Mountain Bongo (Tragelaphus eurycerus isaaci). Authors: Fraser J Combe1, Evelyn Taylor-Cox1, Graeme Fox1, Tommy Sandri1,3, Nick Davis2, Martin J Jones1, Bradly Cain1, David. Mallon1, W Edwin Harris1*. 1. Division of ...

  20. A rapidly enlarging cutaneous hemangioma in pregnancy.

    LENUS (Irish Health Repository)

    Ma'ayeh, Marwan

    2014-06-18

    This is a case of a rapidly enlarging cutaneous pedunculated tumor on a patient\\'s thumb during her pregnancy. This was excised and identified as a hemangioma. A literature search identified a possible hormonal factor in causing an accelerated growth of this tumor.

  1. Short Communication: Rapid Visual Assessment of Fish ...

    African Journals Online (AJOL)

    Short Communication: Rapid Visual Assessment of Fish Communities on Selected Reefs in the Bazaruto Archipelago. ... the Bazaruto reef types to provide a basis for their sound management and conservation. Keywords: Bazaruto Archipelago, Mozambique, ichthyofauna, fish surveys, underwater visual census, coral reefs.

  2. Rapid response systems in The Netherlands

    NARCIS (Netherlands)

    Ludikhuize, Jeroen; Hamming, Annette; de Jonge, Evert; Fikkers, Bernard G.

    2011-01-01

    Sixty-three (approximately 80%) of the 81 hospitals that responded to a survey sent to all hospitals in The Netherlands with nonpediatric intensive care units had a rapid response system (RRS) in place or were in the final process of starting one. Among many other findings regarding RRS

  3. Rapid micropropagation of three elite Sugarcane (Saccharum ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... For rapid multiplication the regenerated shoots were transferred on liquid Murashige and Skoog medium containing 2% sucrose, supplemented with. BAP in combinations with GA3. Optimum multiplication was observed at 1 mg/l BAP in combination with. 0.1 mg/l GA3 for variety HSF-240. Best response of ...

  4. Rapid micropropagation of Boesenbergia rotunda (L.) Mansf ...

    African Journals Online (AJOL)

    user

    2011-02-14

    Feb 14, 2011 ... A rapid multiplication method is required to supply sufficient disease-free plant material for large scale cultivation using in vitro propa- gation. In vitro propagation of Zingiberaceae has already been reported, for example Alpinia galanga (Inden and. Asahir, 1988) and Zingiber officinale (Hosoki and Sagawa,.

  5. The RapidEye mission design

    Science.gov (United States)

    Tyc, George; Tulip, John; Schulten, Daniel; Krischke, Manfred; Oxfort, Michael

    2005-01-01

    The RapidEye mission is a commercial remote sensing mission by the German Company RapidEye AG. The RapidEye mission will deliver information products for various customers in the agricultural insurance market, large producers, international institutions and cartography. The mission consists of a constellation of five identical small satellites and a sophisticated ground infrastructure based on proven systems. The five satellites will be placed in a single sun-synchronous orbit of approximately 620 km, with the satellites equally spaced over the orbit. The RapidEye system has the unique ability to image any area on earth once per day and can also provide large area coverage within 5 days. The satellites will each carry a 5 band multi-spectral optical imager with a ground sampling distance of 6.5 m at nadir and a swath width of 80 km. These capabilities along with the processing throughput of the ground segment allows the system to deliver the information products needed by the customers reliably and in a time frame that meets their specific needs.

  6. Integrating Rapid Prototyping into Graphic Communications

    Science.gov (United States)

    Xu, Renmei; Flowers, Jim

    2015-01-01

    Integrating different science, technology, engineering, and mathematics (STEM) areas can help students learn and leverage both the equipment and expertise at a single school. In comparing graphic communications classes with classes that involve rapid prototyping (RP) technologies like 3D printing, there are sufficient similarities between goals,…

  7. Rapid Energy Modeling Workflow Demonstration Project

    Science.gov (United States)

    2014-01-01

    BIM Building Information Model BLCC building life cycle costs BPA Building Performance Analysis CAD computer assisted...utilizes information on operations, geometry, orientation, weather, and materials, generating Three-Dimensional (3D) Building Information Models ( BIM ...executed a demonstration of Rapid Energy Modeling (REM) workflows that employed building information modeling ( BIM ) approaches and

  8. Rapid high performance liquid chromatographic determination of ...

    African Journals Online (AJOL)

    Rapid high performance liquid chromatographic determination of chlorpropamide in human plasma. MTB Odunola, IS Enemali, M Garba, OO Obodozie. Abstract. Samples were extracted with dichloromethane and the organic layer evaporated to dryness. The residue was dissolved in methanol, and 25 ìl aliquot injected ...

  9. Rapidly progressive post-transplant lymphoproliferative disease ...

    African Journals Online (AJOL)

    Sirolimus, a potent inhibitor of B- and T-cell activation, is a commonly used immunosuppressant after renal transplantation. Withdrawal of sirolimus from the immunosuppression regimen may reduce B-cell surveillance. We present a case of rapidly progressive central nervous system (CNS) polymorphic Epstein-Barr virus ...

  10. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate VI, and ozone) and non-selective oxidants (hydroxyl radical).

    Science.gov (United States)

    Lee, Yunho; von Gunten, Urs

    2010-01-01

    Chemical oxidation processes have been widely applied to water treatment and may serve as a tool to minimize the release of micropollutants (e.g. pharmaceuticals and endocrine disruptors) from municipal wastewater effluents into the aquatic environment. The potential of several oxidants for the transformation of selected micropollutants such as atenolol, carbamazepine, 17 alpha-ethinylestradiol (EE2), ibuprofen, and sulfamethoxazole was assessed and compared. The oxidants include chlorine, chlorine dioxide, ferrate(VI), and ozone as selective oxidants versus hydroxyl radicals as non-selective oxidant. Second-order rate constants (k) for the reaction of each oxidant show that the selective oxidants react only with some electron-rich organic moieties (ERMs), such as phenols, anilines, olefins, and deprotonated-amines. In contrast, hydroxyl radicals show a nearly diffusion-controlled reactivity with almost all organic moieties (k>or=10(9)M(-1) s(-1)). Due to a competition for oxidants between a target micropollutant and wastewater matrix (i.e. effluent organic matter, EfOM), a higher reaction rate with a target micropollutant does not necessarily translate into more efficient transformation. For example, transformation efficiencies of EE2, a phenolic micropollutant, in a selected wastewater effluent at pH 8 varied only within a factor of 7 among the selective oxidants, even though the corresponding k for the reaction of each selective oxidant with EE2 varied over four orders of magnitude. In addition, for the selective oxidants, the competition disappears rapidly after the ERMs present in EfOM are consumed. In contrast, for hydroxyl radicals, the competition remains practically the same during the entire oxidation. Therefore, for a given oxidant dose, the selective oxidants were more efficient than hydroxyl radicals for transforming ERMs-containing micropollutants, while hydroxyl radicals are capable of transforming micropollutants even without ERMs. Besides Ef

  11. Combinatorial approach for development of new metal oxides materials for all oxide photovoltaics

    CERN Document Server

    Shimanovich, Klimentiy

    2015-01-01

    The combinatorial approach to all oxide material and device research is based on the synthesis of hundreds of related materials in a single experiment. This approach requires the development of new tools to rapidly characterize these materials libraries and new techniques to analyze the resulting data. The research presented here is intended to make a contribution towards meeting this demand, and thereby advance the pace of materials research. In many cases photovoltaic determinations are well-suited for high throughput methodologies, enabling direct quantitative analysis of properties whose implementation I demonstrate my thesis. This thesis focuses on the development and utilization of high throughput and combinatorial methods that have incorporated, or are associated with, the all-oxide photovoltaic field. The development of new absorbers often requires novel buffer layers, contact materials, and interface engineering. The importance and contribution of the combinatorial material science approach for the d...

  12. Patterning of Indium Tin Oxide Films

    Science.gov (United States)

    Immer, Christopher

    2008-01-01

    A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.

  13. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.

    Science.gov (United States)

    Belousov, Valery V

    2017-02-21

    oxygen ion transport in potential MOM materials and MOFC electrolytes. In addition, we consider the rapid oxygen transport in a molten oxide scale formed on a metal surface during catastrophic oxidation and show that the same transport could be used beneficially in MOMs and MOFCs. A polymer model explaining the oxygen transport in molten oxides is also considered. Understanding the oxygen transport mechanisms in oxide melts is important for the development of new generation energy materials, which will contribute to more efficient operation of electrochemical devices at intermediate temperatures. Here we highlight the progress made in developing this understanding. We also show the latest advances made in search of alternative molten oxide materials having high mixed ion electronic and ionic conductivities for use in MOMs and MOFCs, respectively. Prospects for further research are presented.

  14. Methanol partial oxidation reformer

    Science.gov (United States)

    Ahmed, Shabbir; Kumar, Romesh; Krumpelt, Michael

    1999-01-01

    A partial oxidation reformer comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell.

  15. Methanol partial oxidation reformer

    Science.gov (United States)

    Ahmed, S.; Kumar, R.; Krumpelt, M.

    1999-08-24

    A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

  16. Rapid Fabrication of Carbide Matrix/Carbon Fiber Composites

    Science.gov (United States)

    Williams, Brian E.; Bernander, Robert E.

    2007-01-01

    Composites of zirconium carbide matrix material reinforced with carbon fibers can be fabricated relatively rapidly in a process that includes a melt infiltration step. Heretofore, these and other ceramic matrix composites have been made in a chemical vapor infiltration (CVI) process that takes months. The finished products of the CVI process are highly porous and cannot withstand temperatures above 3,000 F (approx.1,600 C). In contrast, the melt-infiltration-based process takes only a few days, and the composite products are more nearly fully dense and have withstood temperatures as high as 4,350 F (approx.2,400 C) in a highly oxidizing thrust chamber environment. Moreover, because the melt- infiltration-based process takes much less time, the finished products are expected to cost much less. Fabrication begins with the preparation of a carbon fiber preform that, typically, is of the size and shape of a part to be fabricated. By use of low-temperature ultraviolet-enhanced chemical vapor deposition, the carbon fibers in the preform are coated with one or more interfacial material(s), which could include oxides. The interfacial material helps to protect the fibers against chemical attack during the remainder of the fabrication process and against oxidation during subsequent use; it also enables slippage between the fibers and the matrix material, thereby helping to deflect cracks and distribute loads. Once the fibers have been coated with the interfacial material, the fiber preform is further infiltrated with a controlled amount of additional carbon, which serves as a reactant for the formation of the carbide matrix material. The next step is melt infiltration. The preform is exposed to molten zirconium, which wicks into the preform, drawn by capillary action. The molten metal fills most of the interstices of the preform and reacts with the added carbon to form the zirconium carbide matrix material. The zirconium does not react with the underlying fibers because they

  17. Dopants Diffusion in Silicon during Molecular Oxygen/nitrogen Trifluoride Oxidation and Related Phenomena

    Science.gov (United States)

    Kim, U. S.

    1990-01-01

    To date, chlorine has been used as useful additives in silicon oxidation. However, rapid scaling of device dimensions motivates the development of a new dielectric layer or modification of the silicon dioxide itself. More recently, chemically enhanced thermal oxidation by the use of fluorine containing species has been introduced to verify the potential of fluorine in the silicon oxidation process. In this study, gaseous nitrogen trifluoride (NF _3) was selected as the fluorine oxidizing source based on ease of use and was compared with the dichlorofluoroethane (C_2H _3Cl_2F) source. Two different kinds of boron marker samples were prepared and oxidized in O_2/NF_3 ambient for the comparison of surface vs bulk oxidation enhanced/retarded diffusion (OED/ORD). The phosphorus, arsenic and antimony diffusion in silicon during fluorine oxidation has been studied using the various covering layers such as SiO_2, Si_3 N_4, and SiO_2 + Si_3N_4 layers. The oxidation related phenomena, i.e. enhanced silicon and silicon nitride oxidation in fluorine ambient were studied and correlated with the point defect balance at the oxidizing interface. The results of this investigation were discussed with special emphasis on the effect of fluorine on enhanced oxidation and dopant diffusion.

  18. Nitroalkane Oxidation by Streptomycetes

    Science.gov (United States)

    Dhawale, Motiram R.; Hornemann, Ulfert

    1979-01-01

    Crude cell-free extracts of nine strains of Streptomyces tested for nitroalkane-oxidizing activity showed production of nitrous acid from 2-nitropropane, 1-nitropropane, nitroethane, nitromethane, and 3-nitropropionic acid. These substrates were utilized in most strains but to a decreasing extent in the order given, and different strains varied in their relative efficiency of oxidation. p-Nitrobenzoic acid, p-aminobenzoic acid, enteromycin, and ω-nitro-l-arginine were not attacked. d-Amino acid oxidase, glucose oxidase, glutathione S-transferase, and xanthine oxidase, enzymes potentially responsible for the observed oxidations in crude cellfree extracts, were present at concentrations too low to play any significant role. A nitroalkane-oxidizing enzyme from streptozotocin-producing Streptomyces achromogenes subsp. streptozoticus was partially purified and characterized. It catalyzes the oxidative denitrification of 2-nitropropane as follows: 2CH3CH(NO2)CH3 + O2 → 2CH3COCH3 + 2HNO2. At the optimum pH of 7.5 of the enzyme, 2-nitropropane was as good a substrate as its sodium salt; t-nitrobutane was not a substrate. Whereas Tiron, oxine, and nitroxyl radical acted as potent inhibitors of this enzyme, superoxide dismutase was essentially without effect. Sodium peroxide abolished a lag phase in the progress curve of the enzyme and afforded stimulation, whereas sodium superoxide did not affect the reaction. Reducing agents, such as glutathione, reduced nicotinamide adenine dinucleotide, and nicotinamide adenine dinucleotide phosphate, reduced form, as well as thiol compounds, were strongly inhibitory, but cyanide had no effect. The S. achromogenes enzyme at the present stage of purification is similar in many respects to the enzyme 2-nitropropane dioxygenase from Hansenula mrakii. The possible involvement of the nitroalkane-oxidizing enzyme in the biosynthesis of antibiotics that contain a nitrogen-nitrogen bond is discussed. PMID:33965

  19. Iridium-Doped Ruthenium Oxide Catalyst for Oxygen Evolution

    Science.gov (United States)

    Valdez, Thomas I.; Narayan, Sri R.; Billings, Keith J.

    2011-01-01

    NASA requires a durable and efficient catalyst for the electrolysis of water in a polymer-electrolyte-membrane (PEM) cell. Ruthenium oxide in a slightly reduced form is known to be a very efficient catalyst for the anodic oxidation of water to oxygen, but it degrades rapidly, reducing efficiency. To combat this tendency of ruthenium oxide to change oxidation states, it is combined with iridium, which has a tendency to stabilize ruthenium oxide at oxygen evolution potentials. The novel oxygen evolution catalyst was fabricated under flowing argon in order to allow the iridium to preferentially react with oxygen from the ruthenium oxide, and not oxygen from the environment. Nanoparticulate iridium black and anhydrous ruthenium oxide are weighed out and mixed to 5 18 atomic percent. They are then heat treated at 300 C under flowing argon (in order to create an inert environment) for a minimum of 14 hours. This temperature was chosen because it is approximately the creep temperature of ruthenium oxide, and is below the sintering temperature of both materials. In general, the temperature should always be below the sintering temperature of both materials. The iridium- doped ruthenium oxide catalyst is then fabricated into a PEM-based membrane- electrode assembly (MEA), and then mounted into test cells. The result is an electrolyzer system that can sustain electrolysis at twice the current density, and at the same efficiency as commercial catalysts in the range of 100-200 mA/sq cm. At 200 mA/sq cm, this new system operates at an efficiency of 85 percent, which is 2 percent greater than commercially available catalysts. Testing has shown that this material is as stable as commercially available oxygen evolution catalysts. This means that this new catalyst can be used to regenerate fuel cell systems in space, and as a hydrogen generator on Earth.

  20. Characterization of oxidative guanine damage and repair in mammalian telomeres.

    Directory of Open Access Journals (Sweden)

    Zhilong Wang

    2010-05-01

    Full Text Available 8-oxo-7,8-dihydroguanine (8-oxoG and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1-initiated DNA base excision repair (BER. Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH, by chromosome orientation-FISH (CO-FISH, and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/- mouse tissues and primary embryonic fibroblasts (MEFs cultivated in hypoxia condition (3% oxygen, whereas telomere shortening was detected in Ogg1(-/- mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/- mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/- mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/- MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity

  1. Rapid solid-state metathesis route to transition-metal doped titanias

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Nathaniel; Perera, Sujith; Gillan, Edward G., E-mail: edward-gillan@uiowa.edu

    2015-12-15

    Rapid solid-state metathesis (SSM) reactions are often short-lived highly exothermic reactions that yield a molten alkali halide salt that aids in product growth and crystallization. SSM reactions may also produce kinetically stabilized structures due to the short (seconds) reaction times. This report describes the investigation of rapid SSM reactions in the synthesis of transition-metal doped titanias (M–TiO{sub 2}). The dopant targeted compositions were ten mol percent and based on elemental analysis, many of the M–TiO{sub 2} samples were close to this targeted level. Based on surface analysis, some samples showed large enrichment in surface dopant content, particularly chromium and manganese doped samples. Due to the highly exothermic nature of these reactions, rutile structured TiO{sub 2} was observed in all cases. The M–TiO{sub 2} samples are visible colored and show magnetic and optical properties consistent with the dopant in an oxide environment. UV and visible photocatalytic experiments with these visibly colored rutile M–TiO{sub 2} powders showed that many of them are strongly absorbent for methylene blue dye and degrade the dye under both UV and visible light illumination. This work may open up SSM reactions as an alternate non-thermodynamic reaction strategy for dopant incorporation into a wide range of oxide and non-oxides.

  2. [Factors of the rapid startup for nitrosation in sequencing batch reactor].

    Science.gov (United States)

    Li, Dong; Tao, Xiao-Xiao; Li, Zhan; Wang, Jun-An; Zhang, Jie

    2011-08-01

    The approach and factors for realizing the rapid startup of nitrosation were researched at the low level of dissolved oxygen (DO) in sequencing batch reactor (SBR). The main parameters of the reactor were controlled as follows: DO were 0.15-0.40 mg/L, pH values kept from 7.52 to 8.30, temperature maintained at 22.3-27.1 degrees C, and time of aeration was 8 hours. The purpose of rapid startup for nitrosation was achieved after 57 cycles (36 d) with the alternative influent of high and low ammonium wastewater (the mean values were 245.28 mg/L and 58.08 mg/L respectively) in a SBR, and the nitrosation rate was even 100%. Factors of accumulation of nitrite were investigated and the effects of DO and pH were analyzed during the startup for nitrosation. The results showed that it could improve the efficiency of nitrosation when DO concentration was increased appropriately. The activity of nitrite oxidizing bacteria (NOB) was recovered gradually when DO was higher than 0.72 mg/L. The key factor of controlling nitrosation reaction was the concentration of free ammonia (FA), while the final factor was the concentration of DO. pH was a desired controlling parameter to show the end of nitrification in a SBR cycle, while DO concentration did not indicate the finishing of SBR nitrification accurately because it increased rapidly before ammonia nitrogen was oxidized absolutely.

  3. Radiation damage in indium tin oxide (ITO) layers

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, D.V. [University Coll. of Wales, Cardiff (United Kingdom). School of Electric, Electronic and System Engineering; Salehi, A. [University Coll. of Wales, Cardiff (United Kingdom). School of Electric, Electronic and System Engineering; Aliyu, Y.H. [University Coll. of Wales, Cardiff (United Kingdom). School of Electric, Electronic and System Engineering; Bunce, R.W. [University Coll. of Wales, Cardiff (United Kingdom). School of Electric, Electronic and System Engineering; Diskett, D. [Applied Physics and Electro-optics Group, Cranfield University RMCS, Shrivenham, Swindon SN6 8LA (United Kingdom)

    1995-03-15

    The effects of proton damage on transparent conducting indium tin oxide (ITO) layers were investigated by electrical and optical techniques. ITO layers were found to be highly resistant to proton damage for fluences up to 10{sup 16} ions cm{sup -2}. For fluences greater than 10{sup 16} cm{sup -2} the resistivity rises rapidly with a corresponding degradation of the transmittance. ((orig.))

  4. Synthesis, Properties and Applications of Nanostructured Zinc Oxide

    OpenAIRE

    Caroline Mayrinck; Universidade Federal de São João del-Rei; Ellen Raphael; Universidade Federal de São João del-Rei; Jefferson Luis Ferrari; Universidade Federal de São João del-Rei; Marco Antonio Schiavon; Universidade Federal de São João del-Rei

    2014-01-01

    Nanostructured materials are undergoing rapid development due to their potential applications in a wide variety of technological areas such as electronics, catalysis, ceramics, photodetectors, sensors, solar cells, among others. However, it is fundamental the studies of the properties, synthesis conditions and applications of nanostructured materials. A material that has been highlighted due to its mechanical, electrical, magnetic, optical and chemical properties is the zinc oxide (ZnO). In z...

  5. Metal/Metal-Oxide Nanoclusters for Gas Sensor Applications

    OpenAIRE

    Ayesh, Ahmad I.

    2016-01-01

    The development of gas sensors that are based on metal/metal-oxide nanoclusters has attracted intensive research interest in the last years. Nanoclusters are suitable candidates for gas sensor applications because of their large surface-to-volume ratio that can be utilized for selective and rapid detection of various gaseous species with low-power consuming electronics. Herein, nanoclusters are used as building blocks for the construction of gas sensor where the electrical conductivity of the...

  6. Pentavalent Uranium Chemistry - Synthetic Pursuit Of A Rare Oxidation State

    Energy Technology Data Exchange (ETDEWEB)

    Graves, Christopher R [Los Alamos National Laboratory; Kiplinger, Jaqueline L [Los Alamos National Laboratory

    2009-01-01

    This feature article presents a comprehensive overview of pentavalent uranium systems in non-aqueous solution with a focus on the various synthetic avenues employed to access this unusual and very important oxidation state. Selected characterization data and theoretical aspects are also included. The purpose is to provide a perspective on this rapidly evolving field and identify new possibilities for future developments in pentavalent uranium chemistry.

  7. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  8. Designing Multicomponent Nanosystems for Rapid Detection of Circulating Tumor Cells.

    Science.gov (United States)

    Banerjee, Shashwat S; Khobragade, Vrushali; Khandare, Jayant

    2017-01-01

    Detection of circulating tumor cells (CTCs) in the blood circulation holds immense promise as it predicts the overall probability of patient survival. Therefore, CTC-based technologies are gaining prominence as a "liquid biopsy" for cancer diagnostics and prognostics. Here, we describe the design and synthesis of two distinct multicomponent magnetic nanosystems for rapid capture and detection of CTCs. The multifunctional Magneto-Dendrimeric Nano System (MDNS) composed of an anchoring dendrimer that is conjugated to multiple agents such as near infrared (NIR) fluorescent cyanine 5 NHS (Cy5), glutathione (GSH), transferrin (Tf), and iron oxide (Fe3O4) magnetic nanoparticle (MNP) for simultaneous tumor cell-specific affinity, multimodal high resolution confocal imaging, and cell isolation. The second nanosystem is a self-propelled microrocket that is composed of carbon nanotube (CNT), chemically conjugated with targeting ligand such as transferrin on the outer surface and Fe3O4 nanoparticles in the inner surface. The multicomponent nanosystems described here are highly efficient in targeting and isolating cancer cells thus benefiting early diagnosis and therapy of cancer.

  9. Development of Nylon Based FDM Filament for Rapid Tooling Application

    Science.gov (United States)

    Singh, R.; Singh, S.

    2014-04-01

    There has been critical need for development of cost effective nylon based wire to be used as feed stock filament for fused deposition modelling (FDM) machine. But hitherto, very less work has been reported for development of alternate solution of acrylonitrile butadiene styrene (ABS) based wire which is presently used in most of FDM machines. The present research work is focused on development of nylon based wire as an alternative of ABS wire (which is to be used as feedstock filament on FDM) without changing any hardware or software of machine. For the present study aluminium oxide (Al2O3) as additive in different proportion has been used with nylon fibre. Single screw extruder was used for wire preparation and wire thus produced was tested on FDM. Mechanical properties i.e. tensile strength and percentage elongation of finally developed wire have been optimized by Taguchi L9 technique. The work represented major development in reducing cost and time in rapid tooling applications.

  10. Drosophila provides rapid modeling of renal development, function, and disease

    Science.gov (United States)

    Romero, Michael F.

    2010-01-01

    The evolution of specialized excretory cells is a cornerstone of the metazoan radiation, and the basic tasks performed by Drosophila and human renal systems are similar. The development of the Drosophila renal (Malpighian) tubule is a classic example of branched tubular morphogenesis, allowing study of mesenchymal-to-epithelial transitions, stem cell-mediated regeneration, and the evolution of a glomerular kidney. Tubule function employs conserved transport proteins, such as the Na+, K+-ATPase and V-ATPase, aquaporins, inward rectifier K+ channels, and organic solute transporters, regulated by cAMP, cGMP, nitric oxide, and calcium. In addition to generation and selective reabsorption of primary urine, the tubule plays roles in metabolism and excretion of xenobiotics, and in innate immunity. The gene expression resource FlyAtlas.org shows that the tubule is an ideal tissue for the modeling of renal diseases, such as nephrolithiasis and Bartter syndrome, or for inborn errors of metabolism. Studies are assisted by uniquely powerful genetic and transgenic resources, the widespread availability of mutant stocks, and low-cost, rapid deployment of new transgenics to allow manipulation of renal function in an organotypic context. PMID:20926630

  11. Iron oxidation stimulates organic matter decomposition in humid tropical forest soils.

    Science.gov (United States)

    Hall, Steven J; Silver, Whendee L

    2013-09-01

    Humid tropical forests have the fastest rates of organic matter decomposition globally, which often coincide with fluctuating oxygen (O2 ) availability in surface soils. Microbial iron (Fe) reduction generates reduced iron [Fe(II)] under anaerobic conditions, which oxidizes to Fe(III) under subsequent aerobic conditions. We demonstrate that Fe (II) oxidation stimulates organic matter decomposition via two mechanisms: (i) organic matter oxidation, likely driven by reactive oxygen species; and (ii) increased dissolved organic carbon (DOC) availability, likely driven by acidification. Phenol oxidative activity increased linearly with Fe(II) concentrations (P oxidative activity occurred in soils under anaerobic conditions, implying the importance of oxidants such as O2 or hydrogen peroxide (H2 O2 ) in addition to Fe(II). Reactions between Fe(II) and H2 O2 generate hydroxyl radical, a strong nonselective oxidant of organic compounds. We found increasing consumption of H2 O2 as soil Fe(II) concentrations increased, suggesting that reactive oxygen species produced by Fe(II) oxidation explained variation in phenol oxidative activity among samples. Amending soils with Fe(II) at field concentrations stimulated short-term C mineralization by up to 270%, likely via a second mechanism. Oxidation of Fe(II) drove a decrease in pH and a monotonic increase in DOC; a decline of two pH units doubled DOC, likely stimulating microbial respiration. We obtained similar results by manipulating soil acidity independently of Fe(II), implying that Fe(II) oxidation affected C substrate availability via pH fluctuations, in addition to producing reactive oxygen species. Iron oxidation coupled to organic matter decomposition contributes to rapid rates of C cycling across humid tropical forests in spite of periodic O2 limitation, and may help explain the rapid turnover of complex C molecules in these soils. © 2013 John Wiley & Sons Ltd.

  12. The reaction of vapor-deposited Al with Cu oxides

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, T.N.; Martin, J.A.

    1990-01-01

    Interfaces formed by controlled deposition of Al on Cu oxides at 300K have been characterized using Auger electron spectroscopy (AES) and x-ray photoelectron spectroscopy (XPS). When Al is deposited onto a thin oxide grown on Cu(110) by atmospheric exposure, it completely scavenges the oxygen from the substrate material, increasing the O(1s) binding energy by 2.0 eV to give the value found for atmospheric oxidation of a thin Al film. Similar oxygen behavior is seen for Al deposition on sputter-deposited CuO with an enriched oxygen surface region, where multilayers of Al erase the shakeup satellites in the Cu(2p) region of the XPS spectrum to give features like those exhibited by Cu{sub 2}O or metallic Cu. Having calibrated the fluence of the Al source with Rutherford backscattering spectrometry, the attenuation of the Cu 2p{sub 1/2} satellite after approximately one monolayer of Al deposition is associated with the removal of oxygen from the top 20 {angstrom} of the CuO. Approximately 7--8 equivalent monolayers of Al are converted to an oxide in the initial rapid reaction process. Further deposition leads to progressive development of the metallic Al signature in both the XPS and AES spectra. These measurements clearly demonstrate the dominant role played by Al, a strong oxide former, when it is placed in intimate contact with the distinctively weaker Cu oxide. 9 refs., 5 figs.

  13. Modeling the Shock Ignition of a Copper Oxide Aluminum Thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2015-06-01

    An experimental ``striker confinement'' shock compression test was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. The test places a sample of materials such as a thermite mixture of copper oxide and aluminum powders that are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction/diffusion of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces that nominally make copper liquid and aluminum oxide products. We discuss our model of the shock ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model, that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide can predict the events observed at the particle scale in the experiments. Supported by HDTRA1-10-1-0020 (DTRA), N000014-12-1-0555 (ONR).

  14. Modeling the ignition of a copper oxide aluminum thermite

    Science.gov (United States)

    Lee, Kibaek; Stewart, D. Scott; Clemenson, Michael; Glumac, Nick; Murzyn, Christopher

    2017-01-01

    An experimental "striker confinement" shock compression experiment was developed in the Glumac-group at the University of Illinois to study ignition and reaction in composite reactive materials. These include thermitic and intermetallic reactive powders. Sample of materials such as a thermite mixture of copper oxide and aluminum powders are initially compressed to about 80 percent full density. Two RP-80 detonators simultaneously push steel bars into the reactive material and the resulting compression causes shock compaction of the material and rapid heating. At that point one observes significant reaction and propagation of fronts. But the fronts are peculiar in that they are comprised of reactive events that can be traced to the reaction of the initially separated reactants of copper oxide and aluminum that react at their mutual interfaces, that nominally make copper liquid and aluminum oxide products. We discuss our model of the ignition of the copper oxide aluminum thermite in the context of the striker experiment and how a Gibbs formulation model [1], that includes multi-components for liquid and solid phases of aluminum, copper oxide, copper and aluminum oxide, can predict the events observed at the particle scale in the experiments.

  15. AN EXPERIMENTAL INVESTIGATION ON OXIDATIVE STABILITY OF BIODIESEL

    Directory of Open Access Journals (Sweden)

    Mustafa ÇANAKÇI

    2004-02-01

    Full Text Available Biodiesel is an alternative fuel for diesel engines that can be produced from renewable feed stocks such as vegetable oil and animal fats. These feed stocks are reacted with an alcohol to produce alkyl monoesters. The obtained ester can be used in conventional diesel engines with little or no modification. Biodiesel, especially if produced from highly unsaturated oils, oxidizes more rapidly than diesel fuel. This paper reports the results of accelerated oxidation tests on biodiesel. These tests show the impact of time, oxygen flow rate, temperature, metals, and feedstock type on the rate of oxidation. Blending with diesel fuel and the addition of antioxidants are also explored. The data indicate that without antioxidants, biodiesel will oxidize very quickly at temperatures typical of diesel engines. This oxidation results in increases in peroxide value, acid value, and viscosity. While the peroxide value generally reaches a plateau of about 350 meq O2/kg, the acid value and viscosity increase monotonically as oxidation proceeds.

  16. Diffraction and rapidity gap measurements with ATLAS

    CERN Document Server

    Kus, V; The ATLAS collaboration

    2014-01-01

    Two diffraction related measurements of proton-proton collisions in the ATLAS experiment of the Large Hadron Collider at $\\surd s$ = 7 TeV centre-of-mass energy are reviewed. First of them is a fraction of diffractive contribution to the inelastic cross section. Second measurement is dedicated to the identification of Single Diffractive interactions with large pseudo-rapidity gaps using early 2010 data sample of integrated luminosity 7.1 $\\mu b^{-1}$. Differential cross sections of largest forward areas of the ATLAS detector starting at its most forward edges $\\eta = \\pm 4.9$ without any particle activity above different transverse momentum thresholds are measured. Results are compared to several distinctive Monte Carlo models resulting in constraint of Pomeron intercept value in triple Pomeron based approach. Furthermore, proton-proton interactions in small pseudo-rapidity gap region test qualitatively a description of different hadronisation models as well as statistical fluctuations during hadronisation pr...

  17. To Internationalize Rapidly from Inception: Crowdsource

    Directory of Open Access Journals (Sweden)

    Nirosh Kannangara

    2012-10-01

    Full Text Available Technology entrepreneurs continuously search for tools to accelerate the internationalization of their startups. For the purpose of internationalizing rapidly from inception, we propose that technology startups use crowdsourcing to internalize the tacit knowledge embodied in members of a crowd distributed across various geographies. For example, a technology startup can outsource to a large crowd the definition of a customer problem that occurs across various geographies, the development of the best solution to the problem, and the identification of attractive business expansion opportunities. In this article, we analyze how three small firms use crowdsourcing, discuss the benefits of crowdsourcing, and offer six recommendations to technology entrepreneurs interested in using crowdsourcing to rapidly internationalize their startups from inception.

  18. Rapid-Cycling Bubble-Chamber, details

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    Parts of the hydraulic expansion system of the Rapid-Cycling Bubble-Chamber (RCBC). RCBC was the largest of 3 rapid-cycling bubble-chambers (the others were LEBC and HOLEBC), used as target- and vertex-detectors within the European Hybrid Spectrometer (EHS) in the SPS North Area (EHN1). RCBC contained 250 l of liquid hydrogen and was located inside a 3 T superconducting magnet. It was designed for 30 expansions/s (100 times faster than BEBC), the system shown here allowed 50 expansions/s. RCBC operated from 1981 to 1983 for experiments NA21, NA22 and NA23 at a rate of 15 expansions/s, clocking up a total of over 4 million. In the rear, at left, is bearded Lucien Veillet; Augustin Didona is at the right. See also 8001009. The installation of the piston assembly in the RCBC chamber body is shown in the Annual Report 1980, p.65.

  19. Rapid quenching effects in PVC films

    Science.gov (United States)

    Lee, H. D.; Mandell, J. F.; Mcgarry, F. J.

    1981-01-01

    Using a specially constructed microbalance for hydrostatic weighing, density changes in PVC thin films (with no additives, 30-100 micrometers thick), due to rapid quenching (approximately 300 C/sec) through the glass transition temperature, have been observed. The more severe the quench, the greater is the free volume content. Isobaric volume recovery of PVC has also been studied by volume dilatometry. Both show aging of relaxing molecular rearrangements takes place as a linear function of logarithmic aging time at room temperature. Distribution of retardation times and Primak's distributed activation energy spectra have been applied to the volume recovery data. The concomitant changes in mechanical properties of PVC after quenching have been monitored by tensile creep and stress-strain to failure. All reflect the presence of excess free volume content, due to rapid quenching.

  20. Rapid parapatric speciation on holey adaptive landscapes

    CERN Document Server

    Gavrilets, S; Vose, M D; Gavrilets, Sergey; Li, Hai; Vose, Michael D.

    1998-01-01

    A classical view of speciation is that reproductive isolation arises as a by-product of genetic divergence. Here, individual-based simulations are used to evaluate whether the mechanisms implied by this view may result in rapid speciation if the only source of genetic divergence are mutation and random genetic drift. Distinctive features of the simulations are the consideration of the complete process of speciation (from initiation until completion), and of a large number of loci, which was only one order of magnitude smaller than that of bacteria. It is demonstrated that rapid speciation on the time scale of hundreds of generations is plausible without the need for extreme founder events, complete geographic isolation, the existence of distinct adaptive peaks or selection for local adaptation. The plausibility of speciation is enhanced by population subdivision. Simultaneous emergence of more than two new species from a subdivided population is highly probable. Numerical examples relevant to the theory of ce...

  1. Rapid prototyping: An innovative technique in dentistry

    Directory of Open Access Journals (Sweden)

    Shakeba Quadri

    2017-01-01

    Full Text Available Emergence of advanced digital technology has opened up new perspectives for design and production in the field of dentistry. Rapid prototyping (RP is a technique to quickly and automatically construct a three-dimensional (3D model of a part or product using 3D printers or stereolithography machines. RP has various dental applications, such as fabrication of implant surgical guides, zirconia prosthesis and molds for metal castings, maxillofacial prosthesis and frameworks for fixed and removable partial dentures, wax patterns for the dental prosthesis and complete denture. Rapid prototyping presents fascinating opportunities, but the process is difficult as it demands a high level of artistic skill, which means that the dental technicians should be able to work with the models obtained after impression to form a mirror image and achieve good esthetics. This review aims to focus on various RP methods and its application in dentistry.

  2. Rapid eye movement sleep in breath holders.

    Science.gov (United States)

    Kohyama, J; Hasegawa, T; Shimohira, M; Fukumizu, M; Iwakawa, Y

    2000-07-01

    One-night polysomnography was performed on seven subjects suffering from breath-holding spells, including one whose death was suggested to be a consequence of a breath-holding spell. The fatal case showed no rapid eye movements (REMs) during REM sleep, although he exhibited REMs during wakefulness. The average numbers of both REMs and bursts of REMs in REM sleep in the other six breath holders were significantly lower than those in age-matched controls. The breath holders showed no airway obstruction, desaturation, or sleep fragmentation. Since the rapid ocular activity in REM sleep is generated in the brain stem, we hypothesized that a functional brainstem disturbance is involved in the occurrence of breath-holding spells.

  3. Rapidly moving contact lines and damping contributions

    Science.gov (United States)

    Xia, Yi; Daniel, Susan; Steen, Paul

    2017-11-01

    Contact angle varies dynamically with contact line (CL) speed when a liquid moves across a solid support, as when a liquid spreads rapidly. For sufficiently rapid spreading, inertia competes with capillarity to influence the interface shape near the support. We use resonant-mode plane-normal support oscillations of droplets to drive lateral contact-line motion. Reynolds numbers based on CL speeds are high and capillary numbers are low. These are inertial-capillary motions. By scanning the driving frequency, we locate the frequency at peak amplification (resonance), obtain the scaled peak height (amplification factor) and a measure of band-width (damping ratio). We report how a parameter for CL mobility depends on these scanning metrics, with the goal of distinguishing contributions from the bulk- and CL-dissipation to overall damping.

  4. Optimization of Biosynthesis of Silver Oxide Nanoparticles and Its Anticancer Activity

    Science.gov (United States)

    Karunagaran, Vithiya; Rajendran, Kumar; Sen, Shampa

    Silver oxide nanoparticle can be synthesized by chemical and biological methods. Biological synthesis has emerged as an exciting, ecofriendly approach. However, the process tends to be slow when we consider its industrial applicability. The development of reliable method for rapid synthesis of nanoparticles is one of the significant zones of interests in current nanotechnological research. In this paper, optimization of physiochemical parameters for rapid silver oxide nanoparticle synthesis using Bacillus thuringiensis SSV1 culture supernatant has been elucidated. Spherical-shaped silver oxide nanoparticles with an average particle size of 30nm were obtained. The cytotoxic effect of silver oxide nanoparticles was studied against HepG2 and Chang liver cell lines by MTT assay. These nanoparticles showed dose-dependent response on HepG2 (IC50=0.47μg/mL) and Chang liver cells (IC50=1.11μg/mL).

  5. Protein oxidation and ageing

    DEFF Research Database (Denmark)

    Linton, S; Davies, Michael Jonathan; Dean, R T

    2001-01-01

    of redox-active metal ions that could catalyse oxidant formation. As a result of this decrease in antioxidant defences, and increased rate of ROS formation, it is possible that the impact of ROS increases with age. ROS are known to oxidise biological macromolecules, with proteins an important target...

  6. Dopamine Oxidation and Autophagy

    Directory of Open Access Journals (Sweden)

    Patricia Muñoz

    2012-01-01

    Full Text Available The molecular mechanisms involved in the neurodegenerative process of Parkinson's disease remain unclear. Currently, there is a general agreement that mitochondrial dysfunction, α-synuclein aggregation, oxidative stress, neuroinflammation, and impaired protein degradation are involved in the neurodegeneration of dopaminergic neurons containing neuromelanin in Parkinson's disease. Aminochrome has been proposed to play an essential role in the degeneration of dopaminergic neurons containing neuromelanin by inducing mitochondrial dysfunction, oxidative stress, the formation of neurotoxic α-synuclein protofibrils, and impaired protein degradation. Here, we discuss the relationship between the oxidation of dopamine to aminochrome, the precursor of neuromelanin, autophagy dysfunction in dopaminergic neurons containing neuromelanin, and the role of dopamine oxidation to aminochrome in autophagy dysfunction in dopaminergic neurons. Aminochrome induces the following: (i the formation of α-synuclein protofibrils that inactivate chaperone-mediated autophagy; (ii the formation of adducts with α- and β-tubulin, which induce the aggregation of the microtubules required for the fusion of autophagy vacuoles and lysosomes.

  7. Doped zinc oxide microspheres

    Science.gov (United States)

    Arnold, Jr., Wesley D.; Bond, Walter D.; Lauf, Robert J.

    1993-01-01

    A new composition and method of making same for a doped zinc oxide microsphere and articles made therefrom for use in an electrical surge arrestor which has increased solid content, uniform grain size and is in the form of a gel.

  8. Oxidative Stress in Myopia

    Science.gov (United States)

    Francisco, Bosch-Morell; Salvador, Mérida; Amparo, Navea

    2015-01-01

    Myopia affected approximately 1.6 billion people worldwide in 2000, and it is expected to increase to 2.5 billion by 2020. Although optical problems can be corrected by optics or surgical procedures, normal myopia and high myopia are still an unsolved medical problem. They frequently predispose people who have them to suffer from other eye pathologies: retinal detachment, glaucoma, macular hemorrhage, cataracts, and so on being one of the main causes of visual deterioration and blindness. Genetic and environmental factors have been associated with myopia. Nevertheless, lack of knowledge in the underlying physiopathological molecular mechanisms has not permitted an adequate diagnosis, prevention, or treatment to be found. Nowadays several pieces of evidence indicate that oxidative stress may help explain the altered regulatory pathways in myopia and the appearance of associated eye diseases. On the one hand, oxidative damage associated with hypoxia myopic can alter the neuromodulation that nitric oxide and dopamine have in eye growth. On the other hand, radical superoxide or peroxynitrite production damage retina, vitreous, lens, and so on contributing to the appearance of retinopathies, retinal detachment, cataracts and so on. The objective of this review is to suggest that oxidative stress is one of the key pieces that can help solve this complex eye problem. PMID:25922643

  9. Solid Oxide Fuel Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The solid oxide fuel cell comprising a metallic support material, an active anode layer consisting of a good hydrocarbon cracking catalyst, an electrolyte layer, an active cathode layer, and a transition layer consisting of preferably a mixture of LSM and a ferrite to the cathode current collector...

  10. Organizational Design for USSOCOM Rapid Acquisition

    Science.gov (United States)

    2017-03-31

    2 Ibid., 249. 25 of the programs.3 In rapid innovation , it is important for Program Executive Officers to ensure that technical...organizational learning is what the company does in order to create innovative products and survive. They note that, “interviewees emphasized the importance ...14. ABSTRACT USSOCOM Special Operations Forces (SOF) Acquisition, Technology and Logistics (AT&L) struggles to keep pace with technology innovation

  11. Rapid determination of capsaicinoids by colorimetric method

    OpenAIRE

    Ryu, Wang-Kyun; Kim, Hee-Woong; Kim, Geun-Dong; Rhee, Hae-Ik

    2016-01-01

    Capsaicinoids, the pungent component of chili peppers, are generally analyzed by precise analytical techniques, such as gas chromatography and high-performance liquid chromatography (HPLC), but these are not practical for the mass analyses of samples. To analyze mass samples rapidly, a colorimetric method was suggested. In this work, pigments and capsaicinoids were efficiently separated from chili pepper extract by sequential solid–liquid extraction and liquid–liquid extraction in test tubes ...

  12. Rapid Set Materials for Advanced Spall Repair

    Science.gov (United States)

    2010-08-01

    compressive strength, tensile strength, modulus of rupture, and the coefficient of thermal expansion. pavement , spall repair, airfield damage repair...expediency and quality. Rapid repairs extend the life of a pavement using more forgiving methods than those used in traditional repairs, but...cement-based polymer -cement mortar and concrete • Magnesium-ammonium-phosphate-cement mortar and concrete • Polymer -based mortar and concrete

  13. Rapid Hydraulic Assessment for Stream Restoration

    Science.gov (United States)

    2016-02-01

    governing equations are often used in conjunction with each other to define the flow characteristics of a given hydraulic phenomenon. The energy equation...Approved for public release; distribution is unlimited. ERDC TN-EMRRP-SR-48 February 2016 Rapid Hydraulic Assessment for Stream Restoration...account the hydraulic conditions of the stream being restored. This is true whether the project involves a few feet of bank stabilization or several

  14. Development and tendency of rapid prototyping technology

    Science.gov (United States)

    Yan, Yongnian; Hong, Guodong

    1998-08-01

    The definition of the rapid prototyping is given in this paper. Various RP processes, which build the prototypes with 2.5 or 3 dimensional layers, are introduced. The relative techniques of RP and the differences between RP technique and CNC manufacturing are analyzed. The paper discusses the RP's applied fields and methods and presents the RP development in the world. According to the idea that requirements determine the developing, the RP's tendency is discussed.

  15. Rapid and highly fieldable viral diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, Timothy E.

    2016-12-20

    The present invention relates to a rapid, highly fieldable, nearly reagentless diagnostic to identify active RNA viral replication in a live, infected cells, and more particularly in leukocytes and tissue samples (including biopsies and nasal swabs) using an array of a plurality of vertically-aligned nanostructures that impale the cells and introduce a DNA reporter construct that is expressed and amplified in the presence of active viral replication.

  16. Removable partial dentures: use of rapid prototyping.

    Science.gov (United States)

    Lima, Julia Magalhaes Costa; Anami, Lilian Costa; Araujo, Rodrigo Maximo; Pavanelli, Carlos A

    2014-10-01

    The CAD/CAM technology associated with rapid prototyping (RP) is already widely used in the fabrication of all-ceramic fixed prostheses and in the biomedical area; however, the use of this technology for the manufacture of metal frames for removable dentures is new. This work reports the results of a literature review conducted on the use of CAD/CAM and RP in the manufacture of removable partial dentures. © 2014 by the American College of Prosthodontists.

  17. Oxidative stress and the high altitude environment

    Directory of Open Access Journals (Sweden)

    Jakub Krzeszowiak

    2013-03-01

    Full Text Available In the recent years there has been considerable interest in mountain sports, including mountaineering, owing to the general availability of climbing clothing and equipment as well trainings and professional literature. This raised a new question for the environmental and mountain medicine: Is mountaineering harmful to health? Potential hazards include the conditions existing in the alpine environment, i.e. lower atmospheric pressure leading to the development of hypobaric hypoxia, extreme physical effort, increased UV radiation, lack of access to fresh food, and mental stress. A reasonable measure of harmfulness of these factors is to determine the increase in the level of oxidative stress. Alpine environment can stimulate the antioxidant enzyme system but under specific circumstances it may exceed its capabilities with simultaneous consumption of low-molecular antioxidants resulting in increased generation of reactive oxygen species (ROS. This situation is referred to as oxidative stress. Rapid and uncontrolled proliferation of reactive oxygen species leads to a number of adverse changes, resulting in the above-average damage to the lipid structures of cell membranes (peroxidation, proteins (denaturation, and nucleic acids. Such situation within the human body cannot take place without resultant systemic consequences. This explains the malaise of people returning from high altitude and a marked decrease in their physical fitness. In addition, a theory is put forward that the increase in the level of oxidative stress is one of the factors responsible for the onset of acute mountain sickness (AMS. However, such statement requires further investigation because the currently available literature is inconclusive. This article presents the causes and effects of development of oxidative stress in the high mountains.

  18. Molybdenum Disilicide Oxidation Kinetics in High Temperature Steam

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Elizabeth Sooby [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Parker, Stephen Scott [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nelson, Andrew Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-07

    The Fuel Cycle Research and Development program’s Advanced Fuels Campaign is currently supporting a range of experimental efforts aimed at the development and qualification of ‘accident tolerant’ nuclear fuel forms. One route to enhance the accident tolerance of nuclear fuel is to replace the zirconium alloy cladding, which is prone to rapid oxidation in steam at elevated temperatures, with a more oxidation-resistant cladding. Several cladding replacement solutions have been envisaged. The cladding can be completely replaced with a more oxidation resistant alloy, a layered approach can be used to optimize the strength, creep resistance, and oxidation tolerance of various materials, or the existing zirconium alloy cladding can be coated with a more oxidation-resistant material. Molybdenum is one candidate cladding material favored due to its high temperature creep resistance. However, it performs poorly under autoclave testing and suffers degradation under high temperature steam oxidation exposure. Development of composite cladding architectures consisting of a molybdenum core shielded by a molybdenum disilicide (MoSi2) coating is hypothesized to improve the performance of a Mo-based cladding system. MoSi2 was identified based on its high temperature oxidation resistance in O2 atmospheres (e.g. air and “wet air”). However, its behavior in H2O is less known. This report presents thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and x-ray diffraction (XRD) results for MoSi2 exposed to 670-1498 K water vapor. Synthetic air (80-20%, Ar-O2) exposures were also performed, and those results are presented here for a comparative analysis. It was determined that MoSi2 displays drastically different oxidation behavior in water vapor than in dry air. In the 670-1498 K temperature range, four distinct behaviors are observed. Parabolic oxidation is exhibited in only 670

  19. Diffraction and rapidity gap measurements in ATLAS

    CERN Document Server

    Bernat, P; The ATLAS collaboration

    2012-01-01

    The early data recorded by the ATLAS detector during 2010 presents a great opportunity to study diffraction cross section in proton-proton collision. The differential cross section of diffractive dissociation is studied as a function of the maximum rapidity gap, up to 8 in rapidity units. Data are compared to different models of diffractive dynamics in standard event generators. A rise at large rapidity gaps is interpreted with a triple pomeron based approach, using Pythia 8 prediction (with a Donnachie-Landshoff model). A pomeron intercept of 1.058 ± 0.003(stat) +0.034-0.039 (syst) is found. A measurement of the dijet production with a jet veto on additional central activity using 2010 data is also presented. The use of a veto scale at 20 GeV allows to measure the jet activity in dijet events. As the veto scale is much larger than Lambda_s different QCD phenomena can be studied. Moreover, ATLAS data explores regions of the phase space for the first time. The main observable in this analysis is the fraction ...

  20. Rapidly progressive young-onset dementia.

    Science.gov (United States)

    Kelley, Brendan J; Boeve, Bradley F; Josephs, Keith A

    2009-03-01

    To characterize a cohort of individuals who have experienced rapidly progressive dementia with onset before age 45. Very little data regarding the clinical features or clinical spectrum of rapidly progressive young-onset dementia (RP-YOD) is available, primarily consisting of case reports or small series. A search of the Mayo Clinic medical record was employed to identify patients who had onset before age 45 of rapidly progressive dementia. All available medical records, laboratory data, neuroimaging studies, and pathologic data were reviewed. Twenty-two patients met the predefined inclusion and exclusion criteria. Behavioral and affective disorders, cerebellar dysfunction, and visual and/or oculomotor dysfunction were common early clinical features within the cohort, as were clinical features often associated with Creutzfeldt-Jakob disease. Diagnostic testing identified an etiology in most patients. Presentations of RP-YOD result from a variety of etiologies and significant overlap in clinical features is observed. Clinical features often associated with Creutzfeldt-Jakob disease seem to be common within the entire cohort of RP-YOD patients. Diagnostic studies aided in establishing a diagnosis in most patients, however 5 had uncertain diagnoses despite exhaustive evaluation.

  1. Rapid Prototyping and its Application in Dentistry

    Directory of Open Access Journals (Sweden)

    V. N. V. Madhav

    2013-01-01

    Full Text Available Medical implants and biological models have three main characteristics: low volume, complex shape, and can be customized. These characteristics suit very well with Rapid Prototyping (RP and Rapid Manufacturing (RM processes. RP/RM processes are fabricated part layer- by-layer until complete shape finished from 3D model. Biocompatible materials, such as Titanium and Titanium alloy, Zirconium, Cobalt Chromium, PEEK, etc, are used for fabrication process. Reverse Engineering (RE technology greatly affects RP/RM processes. RE is used to capture or scan image of the limb, cranium, tooth, and other biological objects. Three common methods to get the image are 3D laser scanning, Computer Tomography (CT, and Magnetic Resonance Imaging (MRI. Main RP/RM techniques used in Dentistry are Stereotype Lithography Apparatus (SLA, Fused Deposition Modeling (FDM, Selective Laser Sintering (SLS, and ink jet printing. This article reviews the changing scenario of technology in dentistry with special emphasis on Rapid Prototyping and its various applications in Dentistry.

  2. The genomic landscape of rapid repeated evolutionary ...

    Science.gov (United States)

    Atlantic killifish populations have rapidly adapted to normally lethal levels of pollution in four urban estuaries. Through analysis of 384 whole killifish genome sequences and comparative transcriptomics in four pairs of sensitive and tolerant populations, we identify the aryl hydrocarbon receptor–based signaling pathway as a shared target of selection. This suggests evolutionary constraint on adaptive solutions to complex toxicant mixtures at each site. However, distinct molecular variants apparently contribute to adaptive pathway modification among tolerant populations. Selection also targets other toxicity-mediatinggenes and genes of connected signaling pathways; this indicates complex tolerance phenotypes and potentially compensatory adaptations. Molecular changes are consistent with selection on standing genetic variation. In killifish, high nucleotide diversityhas likely been a crucial substrate for selective sweeps to propel rapid adaptation. This manuscript describes genomic evaluations that contribute to our understanding of the ecological and evolutionary risks associated with chronic contaminant exposures to wildlife populations. Here, we assessed genetic patterns associated with long-term response to an important class of highly toxic environmental pollutants. Specifically, chemical-specific tolerance has rapidly and repeatedly evolved in an estuarine fish species resident to estuaries of the Atlantic U.S. coast. We used laboratory studies to ch

  3. Management of Infections with Rapidly Growing

    Directory of Open Access Journals (Sweden)

    Jong Hwan Kim

    2012-01-01

    Full Text Available Background Infection caused by rapidly growing mycobacteria (RGM is not uncommon, andthe prevalence of RGM infection has been increasing. Clinical diagnosis is difficult becausethere are no characteristic clinical features. There is also no standard antibiotic regimenfor treating RGM infection. A small series of patients with RGM infections was studied toexamine their treatments and outcomes.Methods A total of 5 patients who had developed postoperative infections from January2009 to December 2010 were retrospectively reviewed. Patients were initially screened using amycobacteria rapid screening test (polymerase chain reaction [PCR]-reverse blot hybridizationassay. To confirm mycobacterial infection, specimens were cultured for nontuberculousmycobacteria and analyzed by 16 S ribosomal RNA and rpoB gene PCR.Results The patients were treated with intravenous antibiotics during hospitalization,and oral antibiotics were administered after discharge. The mean duration of follow-upwas 9 months, and all patients were completely cured of infection with a regimen of acombination of antibiotics plus surgical treatment. Although none of the patients developedrecurrence, there were complications at the site of infection, including hypertrophic scarring,pigmentation, and disfigurement.Conclusions Combination antibiotic therapy plus drainage of surgical abscesses appeared tobe effective for the RGM infections seen in our patients. Although neither the exact dosagenor a standardized regimen has been firmly established, we propose that our treatment canprovide an option for the management of rapidly growing mycobacterial infection.

  4. Rapid analysis of 14C and 3H in graphite and concrete for decommissioning of nuclear reactor

    DEFF Research Database (Denmark)

    Hou, Xiaolin

    2005-01-01

    A rapid oxidizing combustion method using a commercial Sample Oxidizer has been investigated to determine separately the C-14 and H-3 activities in graphite and concrete. By this method the sample preparation time can be reduced to 2-3min. The detection limits for H-3 and C-14 are 0.96 and 0.58Bq...... the Danish Reactors DR-2 and DR-3, in addition to two concrete cores drilled in the Danish reactor DR-2; these were analysed for H-3 and C-14 using the method that has been developed. (c) 2005 Elsevier Ltd. All rights reserved....

  5. Partial Oxidation of n-Pentane over Vanadium Phosphorus Oxide ...

    African Journals Online (AJOL)

    The selective oxidation of n-pentane to value-added products, maleic anhydride or phthallic anhydride by vanadium phosphorus oxide loaded on hydroxyapatites as catalysts and oxygen as oxidant was investigated. Hydroxyapatite (HAp) and cobalthydroxyapatite (Co-HAp) were prepared by the co-precipitation method ...

  6. Nanostructured transition metal oxides useful for water oxidation catalysis

    Science.gov (United States)

    Frei, Heinz M; Jiao, Feng

    2013-12-24

    The present invention provides for a composition comprising a nanostructured transition metal oxide capable of oxidizing two H.sub.2O molecules to obtain four protons. In some embodiments of the invention, the composition further comprises a porous matrix wherein the nanocluster of the transition metal oxide is embedded on and/or in the porous matrix.

  7. Trends for Methane Oxidation at Solid Oxide Fuel Cell Conditions

    DEFF Research Database (Denmark)

    Kleis, Jesper; Jones, Glenn; Abild-Pedersen, Frank

    2009-01-01

    First-principles calculations are used to predict a plausible reaction pathway for the methane oxidation reaction. In turn, this pathway is used to obtain trends in methane oxidation activity at solid oxide fuel cell (SOFC) anode materials. Reaction energetics and barriers for the elementary...

  8. Rapid Column Extraction method for SoilRapid Column Extraction method for Soil

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sherrod, L. III; Culligan, Brian K.

    2005-11-07

    The analysis of actinides in environmental soil and sediment samples is very important for environmental monitoring as well as for emergency preparedness. A new, rapid actinide separation method has been developed and implemented that provides total dissolution of large soil samples, high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu) neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. The method combines a rapid fusion step for total dissolution to dissolve refractory analytes and matrix removal using cerium fluoride precipitation to remove the difficult soil matrix. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  9. Nitrous oxide-based techniques versus nitrous oxide-free techniques for general anaesthesia.

    Science.gov (United States)

    Sun, Rao; Jia, Wen Qin; Zhang, Peng; Yang, KeHu; Tian, Jin Hui; Ma, Bin; Liu, Yali; Jia, Run H; Luo, Xiao F; Kuriyama, Akira

    2015-11-06

    Nitrous oxide has been used for over 160 years for the induction and maintenance of general anaesthesia. It has been used as a sole agent but is most often employed as part of a technique using other anaesthetic gases, intravenous agents, or both. Its low tissue solubility (and therefore rapid kinetics), low cost, and low rate of cardiorespiratory complications have made nitrous oxide by far the most commonly used general anaesthetic. The accumulating evidence regarding adverse effects of nitrous oxide administration has led many anaesthetists to question its continued routine use in a variety of operating room settings. Adverse events may result from both the biological actions of nitrous oxide and the fact that to deliver an effective dose, nitrous oxide, which is a relatively weak anaesthetic agent, needs to be given in high concentrations that restrict oxygen delivery (for example, a common mixture is 30% oxygen with 70% nitrous oxide). As well as the risk of low blood oxygen levels, concerns have also been raised regarding the risk of compromising the immune system, impaired cognition, postoperative cardiovascular complications, bowel obstruction from distention, and possible respiratory compromise. To determine if nitrous oxide-based anaesthesia results in similar outcomes to nitrous oxide-free anaesthesia in adults undergoing surgery. We searched the Cochrane Central Register of Controlled Trials (CENTRAL; 2014 Issue 10); MEDLINE (1966 to 17 October 2014); EMBASE (1974 to 17 October 2014); and ISI Web of Science (1974 to 17 October 2014). We also searched the reference lists of relevant articles, conference proceedings, and ongoing trials up to 17 October 2014 on specific websites (http://clinicaltrials.gov/, http://controlled-trials.com/, and http://www.centerwatch.com). We included randomized controlled trials (RCTs) comparing general anaesthesia where nitrous oxide was part of the anaesthetic technique used for the induction or maintenance of general

  10. Arsenate uncoupling of oxidative phosphorylation in isolated plant mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Wickes, W.A.; Wiskich, J.T.

    1976-01-01

    The uncoupling by arsenate of beetroot and cauliflower bud mitochondria showed the following characteristics: arsenate stimulation of respiration above the rate found with phosphate; inhibition of arsenate-stimulated respiration by phosphate; enhancement of arsenate-stimulated respiration by ADP; only partial prevention of this ADP-enhanced respiration by atractyloside; inhibition by oligomycin of the arsenate-stimulated respiration back to the phosphate rate; and the absence of any stimulatory effect of ADP in the presence of oligomycin. These results are qualitatively analogous to those reported for arsenate uncoupling in rat liver mitochondria. Arsenate stimulated malate oxidation, presumably by stimulating malate entry, in both beetroot and cauliflower bud mitochondria; however, high rates of oxidation, and presumably entry, were only sustained with arsenate in beetroot mitochondria. NADH was oxidized rapidly in cauliflower bud mitochondria in the presence of arsenate, showing that arsenate did not inhibit electron transfer processes.

  11. Oxidative Stress and the Homeodynamics of Iron Metabolism

    Science.gov (United States)

    Bresgen, Nikolaus; Eckl, Peter M.

    2015-01-01

    Iron and oxygen share a delicate partnership since both are indispensable for survival, but if the partnership becomes inadequate, this may rapidly terminate life. Virtually all cell components are directly or indirectly affected by cellular iron metabolism, which represents a complex, redox-based machinery that is controlled by, and essential to, metabolic requirements. Under conditions of increased oxidative stress—i.e., enhanced formation of reactive oxygen species (ROS)—however, this machinery may turn into a potential threat, the continued requirement for iron promoting adverse reactions such as the iron/H2O2-based formation of hydroxyl radicals, which exacerbate the initial pro-oxidant condition. This review will discuss the multifaceted homeodynamics of cellular iron management under normal conditions as well as in the context of oxidative stress. PMID:25970586

  12. Studies On Optimization Of Protease Production Using Bacterial Isolate Clri Strain 5468 And Its Application In Dehairing And Hydrolysis Of Tannery Fleshings Solid Waste Management

    Directory of Open Access Journals (Sweden)

    Vimala Devi Seenivasagham

    2015-08-01

    Full Text Available The strain which produces protease was originally isolated characterized in Biotechnology laboratory at CLRI and was maintained. The microorganism was growned on several proteolytic media and the maximum activity was observed. The characterization of enzyme was analysed for different pH temperature size of inoculum inhibitors age of the culture. Then the enzyme was observed for the unhairing of skin and the disadvantage in chemical treatment was studied. The conformation of unhairing was studied using histology studies. The tannery waste solid fleshings as it is cannot be directly disposed off to the environment. It was treated with the microbial proteases. The hydrolysis of waste was done using proteases. The solid waste was converted to protien fat and the salt matter. Future work is to optimize the cheap media for the production of the enzyme for large scale applications in various industries.

  13. Nitrous Oxide Micro Engines Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nitrous Oxide Micro Engines (NOME) are a new type of nitrous oxide dissociation thruster designed to generate low levels of thrust that can be used for RCS control...

  14. Staged membrane oxidation reactor system

    Science.gov (United States)

    Repasky, John Michael; Carolan, Michael Francis; Stein, VanEric Edward; Chen, Christopher Ming-Poh

    2013-04-16

    Ion transport membrane oxidation system comprising (a) two or more membrane oxidation stages, each stage comprising a reactant zone, an oxidant zone, one or more ion transport membranes separating the reactant zone from the oxidant zone, a reactant gas inlet region, a reactant gas outlet region, an oxidant gas inlet region, and an oxidant gas outlet region; (b) an interstage reactant gas flow path disposed between each pair of membrane oxidation stages and adapted to place the reactant gas outlet region of a first stage of the pair in flow communication with the reactant gas inlet region of a second stage of the pair; and (c) one or more reactant interstage feed gas lines, each line being in flow communication with any interstage reactant gas flow path or with the reactant zone of any membrane oxidation stage receiving interstage reactant gas.

  15. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  16. Microbial reduction of manganese oxides - Interactions with iron and sulfur

    Science.gov (United States)

    Myers, Charles R.; Nealson, Kenneth H.

    1988-01-01

    Alteromonas putrefaciens (strain MR-1) is capable of rapid Mn(IV) reduction under conditions of neutral pH and temperatures characteristic of the Oneida Lake, New York, sediments from which it was isolated. MR-1 also reduces Fe(3+) to Fe(2+), and disproportionates thiosulfate to sulfide and sulfite; independently, the Fe(2+) and sulfide act as rapid reductants of Mn. The addition of Fe(3+) or thiosulfate to cultures of MR-1 in the presence of oxidized Mn increases the rate and the extent of Mn reduction relative to that observed in the absence of Fe(3+) or thiosulfate. Furthermore, when Fe(3+) and Mn oxides are present conjointly, Fe(2+) does not appear until the reduction of the oxidized Mn is complete. These results demonstrate that the observed rates of Fe(2+) and sulfide production may underestimate the total rates of Fe and sulfate reduction in those environments containing oxidized Mn. These results also demonstrate the potential impact that a single microbe can exert on sediment geochemistry, and provide the basis for preliminary models of the complexity of microbial and geochemical interactions that occur.

  17. Excessive fatty acid oxidation induces muscle atrophy in cancer cachexia.

    Science.gov (United States)

    Fukawa, Tomoya; Yan-Jiang, Benjamin Chua; Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Huang, Dan; Qian, Chao-Nan; Ong, Pauline; Li, Zhimei; Chen, Shuwen; Mak, Shi Ya; Lim, Wan Jun; Kanayama, Hiro-Omi; Mohan, Rosmin Elsa; Wang, Ruiqi Rachel; Lai, Jiunn Herng; Chua, Clarinda; Ong, Hock Soo; Tan, Ker-Kan; Ho, Ying Swan; Tan, Iain Beehuat; Teh, Bin Tean; Shyh-Chang, Ng

    2016-06-01

    Cachexia is a devastating muscle-wasting syndrome that occurs in patients who have chronic diseases. It is most commonly observed in individuals with advanced cancer, presenting in 80% of these patients, and it is one of the primary causes of morbidity and mortality associated with cancer. Additionally, although many people with cachexia show hypermetabolism, the causative role of metabolism in muscle atrophy has been unclear. To understand the molecular basis of cachexia-associated muscle atrophy, it is necessary to develop accurate models of the condition. By using transcriptomics and cytokine profiling of human muscle stem cell-based models and human cancer-induced cachexia models in mice, we found that cachectic cancer cells secreted many inflammatory factors that rapidly led to high levels of fatty acid metabolism and to the activation of a p38 stress-response signature in skeletal muscles, before manifestation of cachectic muscle atrophy occurred. Metabolomics profiling revealed that factors secreted by cachectic cancer cells rapidly induce excessive fatty acid oxidation in human myotubes, which leads to oxidative stress, p38 activation and impaired muscle growth. Pharmacological blockade of fatty acid oxidation not only rescued human myotubes, but also improved muscle mass and body weight in cancer cachexia models in vivo. Therefore, fatty acid-induced oxidative stress could be targeted to prevent cancer-induced cachexia.

  18. Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source

    OpenAIRE

    Ganhua Lu; Huebner, Kyle L.; Ocola, Leonidas E.; Marija Gajdardziska-Josifovska; Junhong Chen

    2006-01-01

    Miniaturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles a...

  19. Rapid Response in Psychological Treatments for Binge-Eating Disorder

    Science.gov (United States)

    Hilbert, Anja; Hildebrandt, Thomas; Agras, W. Stewart; Wilfley, Denise E.; Wilson, G. Terence

    2015-01-01

    Objective Analysis of short- and long-term effects of rapid response across three different treatments for binge-eating disorder (BED). Method In a randomized clinical study comparing interpersonal psychotherapy (IPT), cognitive-behavioral guided self-help (CBTgsh), and behavioral weight loss (BWL) treatment in 205 adults meeting DSM-IV criteria for BED, the predictive value of rapid response, defined as ≥ 70% reduction in binge-eating by week four, was determined for remission from binge-eating and global eating disorder psychopathology at posttreatment, 6-, 12-, 18-, and 24-month follow-up. Results Rapid responders in CBTgsh, but not in IPT or BWL, showed significantly greater rates of remission from binge-eating than non-rapid responders, which was sustained over the long term. Rapid and non-rapid responders in IPT and rapid responders in CBTgsh showed a greater remission from binge-eating than non-rapid responders in CBTgsh and BWL. Rapid responders in CBTgsh showed greater remission from binge-eating than rapid responders in BWL. Although rapid responders in all treatments had lower global eating disorder psychopathology than non-rapid responders in the short term, rapid responders in CBTgsh and IPT were more improved than those in BWL and non-rapid responders in each treatment. Rapid responders in BWL did not differ from non-rapid responders in CBTgsh and IPT. Conclusions Rapid response is a treatment-specific positive prognostic indicator of sustained remission from binge-eating in CBTgsh. Regarding an evidence-based stepped care model, IPT, equally efficacious for rapid and non-rapid responders, could be investigated as a second-line treatment in case of non-rapid response to first-line CBTgsh. PMID:25867446

  20. Oxidants and antioxidants in disease

    DEFF Research Database (Denmark)

    Lykkesfeldt, Jens; Svendsen, Ove

    2007-01-01

    Important infectious diseases in farm animals, such as pneumonia and enteritis, are thought to be associated with the so-called oxidative stress, i.e. a chemical phenomenon involving an imbalance in the redox status of the individual animal. The specifics of oxidative stress and how it may result...... theoretically, oxidative stress should be easily prevented with antioxidants yet the use of antioxidants as therapy remains controversial. The present knowledge on oxidative stress in farm animals is the topic of this review....

  1. Oxidative stress in Alzheimer disease

    OpenAIRE

    Gella, Alejandro; Durany, Nuria

    2009-01-01

    Alzheimer disease (AD) is a progressive dementia affecting a large proportion of the aging population. The histopathological changes in AD include neuronal cell death, formation of amyloid plaques and neurofibrillary tangles. There is also evidence that brain tissue in patients with AD is exposed to oxidative stress (e.g., protein oxidation, lipid oxidation, DNA oxidation and glycoxidation) during the course of the disease. Advanced glycation endproducts (AGEs) are present in amyloid plaques ...

  2. Amorphous material from the rapid evaporation of basalt weathering solutions: Implications for Amazonian alteration

    Science.gov (United States)

    Smith, R.; Horgan, B. H. N.; Christensen, P. R.

    2016-12-01

    Amorphous silicates of ambiguous origin are detected on the Martian surface through orbiter and rover measurements. Secondary amorphous silicates might precipitate from rapidly evaporating weathering solutions under Amazonian ( 3 BYA - present) surface conditions. Yet, such phases are poorly understood and are underrepresented in infrared spectral libraries. Amazonian weathering was simulated by dissolving two basaltic tephra compositions in DI water under two different atmospheres (1: oxidizing and 2: simulated Martian). The resulting weathering solutions were rapidly evaporated into sample cups. Precipitate mineralogy was studied using visible and near-infrared (VNIR) and thermal-infrared (TIR) spectroscopy and x-ray diffraction (XRD). Solution compositions were analyzed using Ion Chromatography (IC) and Inductively Coupled Plasma Mass-Spectroscopy (ICP-MS). All experiments formed hydrated amorphous silicates and nanophase iron-oxides, but precipitates from solutions formed under a simulated Martian atmosphere also contain crystalline carbonate and sulfate minerals. The oxidizing atmosphere precipitates are also S-bearing, based on solution chemistry, but no crystalline sulfates were unambiguously detected. The TIR spectra of all samples exhibit a spectral feature at 460 cm-1 that was previously only known to be present in the spectra of basaltic glass and some terrestrial palagonitized basalt samples, indicating that the precipitates are new to spectral libraries. Ongoing characterization will help determine the composition and structure of the amorphous phases. TIR spectral and XRD instruments on the Spirit and Mars Science Laboratory (MSL) rovers both indicate high abundances of basaltic glass in rock and soil samples, despite chemical evidence for aqueous alteration. Our results suggest that these measurements are consistent with secondary amorphous silicates formed through the rapid evaporation of basalt weathering solutions. Thus, transient water

  3. Synchronous rapid start-up of the methanation and anammox processes in two-stage ASBRs

    Science.gov (United States)

    Duan, Y.; Li, W. R.; Zhao, Y.

    2017-01-01

    The “methanation + anaerobic ammonia oxidation autotrophic denitrification” method was adopted by using anaerobic sequencing batch reactors (ASBRs) and realized a satisfactory synchronous removal of chemical oxygen demand (COD) and ammonia-nitrogen (NH4 +-N) in wastewater after 75 days operation. 90% of COD was removed at a COD load of 1.2 kg/(m3•d) and 90% of TN was removed at a TN load of 0.14 kg/(m3•d). The anammox reaction ratio was estimated to be 1: 1.32: 0.26. The results showed that synchronous rapid start-up of the methanation and anaerobic ammonia oxidation processes in two-stage ASBRs was feasible.

  4. Simultaneous and rapid determination of multiple component concentrations in a Kraft liquor process stream

    Science.gov (United States)

    Li, Jian [Marietta, GA; Chai, Xin Sheng [Atlanta, GA; Zhu, Junyoung [Marietta, GA

    2008-06-24

    The present invention is a rapid method of determining the concentration of the major components in a chemical stream. The present invention is also a simple, low cost, device of determining the in-situ concentration of the major components in a chemical stream. In particular, the present invention provides a useful method for simultaneously determining the concentrations of sodium hydroxide, sodium sulfide and sodium carbonate in aqueous kraft pulping liquors through use of an attenuated total reflectance (ATR) tunnel flow cell or optical probe capable of producing a ultraviolet absorbency spectrum over a wavelength of 190 to 300 nm. In addition, the present invention eliminates the need for manual sampling and dilution previously required to generate analyzable samples. The inventive method can be used in Kraft pulping operations to control white liquor causticizing efficiency, sulfate reduction efficiency in green liquor, oxidation efficiency for oxidized white liquor and the active and effective alkali charge to kraft pulping operations.

  5. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja

    2017-01-01

    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  6. Low Temperature Oxidation of Methane: The Influence of Nitrogen Oxides

    DEFF Research Database (Denmark)

    Bendtsen, Anders Broe; Glarborg, Peter; Dam-Johansen, Kim

    2000-01-01

    An experimental investigation of methane oxidation in the presence of NO and NO2 has been made in an isothermal plug-flow reactor at 750-1250K. The temperature for on-set of oxidation was lowered by 250 K in the presence of NO or NO2 at residence times of 200 ms. At shorter residence times (140 ms......) this enhancement effect is reduced for NO but maintained for NO2. Furthermore two temperature regimes of oxidation separated by an intermediate regime where only little oxidation takes place exist at residence times of 140 ms, if NO is the only nitrogen oxide initially present. The results were explained...

  7. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  8. Oxidative Decarboxylation of Levulinic Acid by Cupric Oxides

    Directory of Open Access Journals (Sweden)

    Lu Lin

    2010-11-01

    Full Text Available In this paper, cupric oxides was found to effectively oxidize levulinic acid (LA and lead to the decarboxylation of levulinic acid to 2-butanone. The effects of cupric oxide dosage, reaction time and initial pH value were investigated in batch experiments and a plausible mechanism was proposed. The results showed that LA decarboxylation over cupric oxides at around 300 °C under acidic conditions produced the highest yield of butanone (67.5%. In order to elucidate the catalytic activity of cupric oxides, XRD, AFM, XPS and H2-TPR techniques was applied to examine their molecular surfaces and their effects on the reaction process.

  9. TEMPO-Oxidized Cellulose with High Degree of Oxidation

    OpenAIRE

    Zuwu Tang; Wenyan Li; Xinxing Lin; He Xiao; Qingxian Miao; Liulian Huang; Lihui Chen; Hui Wu

    2017-01-01

    In this paper, water-soluble 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose with a high degree of oxidation was prepared by a two-step process using bamboo dissolving pulp. The first step was to destroy the cellulose crystal I by NaOH/urea solution to obtain cellulose powder with decreased crystallinity. The second step was to oxidize the cellulose powder by TEMPO oxidation. The TEMPO-oxidized cellulose was analyzed by Fourier transform infrared spectroscopy (FTIR), conductim...

  10. (VI) oxide in acetic acid

    African Journals Online (AJOL)

    The oxidation of cyclohexene by chromium (VI) oxide in aqueous and acetic media was studied. The reaction products were analysed using infra red (IR) and gas chromatography coupled with mass (GC/MS) spectroscopy. The major products of the oxidation reaction in acetic acid medium were cyclohexanol, ...

  11. Manganese oxidation by Leptothrix discophora

    NARCIS (Netherlands)

    Boogerd, F C; de Vrind, J P

    Cells of Leptothrix discophora SS1 released Mn2+-oxidizing factors into the medium during growth in batch culture. Manganese was optimally oxidized when the medium was buffered with HEPES (N-2-hydroxyethylpiperazine-N'-2-ethanesulfonic acid) at pH 7.5. Manganese-oxidizing activity in the culture

  12. The aqueous chemistry of oxides

    CERN Document Server

    Bunker, Bruce C

    2016-01-01

    The Aqueous Chemistry of Oxides is a comprehensive reference volume and special topics textbook that explores all of the major chemical reactions that take place between oxides and aqueous solutions. The book highlights the enormous impact that oxide-water reactions have in advanced technologies, materials science, geochemistry, and environmental science.

  13. Rapid Degradation of Alkanethiol-Based Self-Assembled Monolayers on Gold in Ambient Laboratory Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Vance, A L; van Buuren, T; Bostedt, C; Terminello, L J; Fadley, C S

    2004-07-21

    Self-assembled monolayers (SAMs) consisting of alkanethiols and similar sulfur-containing molecules on noble metal substrates are extensively used and explored for various chemical and biological surface-functionalization in the scientific community. SAMs consisting of thiol- or disulfide-containing molecules adsorbed on gold are commonly used due to their ease of preparation and stability. However, the gold-thiolate bond is easily and rapidly oxidized under ambient conditions, adversely affecting SAM quality and structure. Here, the oxidation of dodecanethiol on gold is explored for various 12-hour exposures to ambient laboratory air and light. SAM samples are freshly prepared, air-exposed, and stored in small, capped vials. X-ray photoelectron spectroscopy (XPS) reveals nearly complete oxidation of the thiolate in air-exposed samples, and a decrease in carbon signal on the surface. Near-edge X-ray absorption fine structure spectroscopy (NEXAFS) at the Carbon K-edge shows a loss of upright orientational order upon air-exposure. Alternatively, the oxidation of the thiolate is minor when SAMs are stored in limited-air-containing small 15 ml vials. Thus, care must be taken to avoid SAM degradation by ensuring alkanethiolates on gold have sufficient durability for each intended environment and application.

  14. Formation of thermal fatigue cracks in periodic rapid quenching of metal

    Energy Technology Data Exchange (ETDEWEB)

    Ots, A. [Tallinn Technical University, Thermal Engineering Department, Tallinn (Estonia)

    1998-12-31

    Water lancing is an effective technique for cleaning boiler heating surfaces from ash deposits by burning low-grade fuels with complicated composition of mineral matter. In water cleaning cycles of boiler`s heat transfer surfaces due to rapid quenching destruction of corrosion protective oxide film and formation of thermal fatigue cracks on the outer surface of the tube`s metal occur. The criterion of the thermal fatigue cracks` formation and their growth intensity depend on the character of temperature field in the tube`s metal outer layer. The solution of non-stationary heat conductivity equation for metal rapid quenching conditions is given. The convective heat transfer coefficients from hot metal surface to water jet were established experimentally. Thermal fatigue crack growth intensity was investigated in real boilers` heat transfer surfaces` tubes as well as in laboratory conditions. The formula for predicting thermal fatigue cracks` depth depending on the number of cleaning cycles. (orig.) 5 refs.

  15. Intrinsic Activity of MnOx-CeO2 Catalysts in Ethanol Oxidation

    Directory of Open Access Journals (Sweden)

    Dimitrios Delimaris

    2017-11-01

    Full Text Available MnOx-CeO2 mixed oxides are considered efficient oxidation catalysts superior to the corresponding single oxides. Although these oxides have been the subject of numerous studies, their fundamental performance indicators, such as turnover frequency (TOF or specific activity, are scarcely reported. The purpose of the present work is to investigate the effect of catalyst composition on the concentration of active sites and intrinsic activity in ethanol oxidation by the employment of temperature-programmed desorption and oxidation of isotopically-labelled ethanol, 12CH313CH2OH. The transformation pathways of preadsorbed ethanol in the absence of gaseous oxygen refer to dehydrogenation to acetaldehyde followed by its dissociation combined with oxidation by lattice oxygen. In the presence of gaseous oxygen, lattice oxygen is rapidly restored and the main products are acetaldehyde, CO2, and water. CO2 forms less easily on mixed oxides than on pure MnOx. The TOF of ethanol oxidation has been calculated assuming that the amount of adsorbed ethanol and CO2 produced during temperature-programmed oxidation (TPO is a reliable indicator of the concentration of the active sites.

  16. Oxidation Products of Semi-volatile Alkanes by Hydroxyl Radicals

    Science.gov (United States)

    Zhang, H.; Worton, D. R.; Nah, T.; Goldstein, A. H.; Wilson, K. R.

    2013-12-01

    Alkanes are ubiquitous in the atmosphere and are important components that influence atmospheric chemistry. Semi-volatile alkanes are partitioned between the gas- and the particle-phases and can be readily oxidized in both phases. Previous studies have demonstrated that reaction rates and the products of OH oxidation are very different for organic compounds in the gas- and particle phases. In the present study, n-octadecane (C18H38), n-eicosane (C20H42), n-docosane (C22H46), n-tricosane (C24H50), and n-pentadecylcyclohexane (C21H42) were chosen as model compounds for semi-volatile alkanes to examine their OH-initiated oxidation reactions in a flow tube reactor. OH exposure was varied in the experiments, equivalent to oxidation of up to one week in the atmosphere. Oxidation products were collected on filters and analyzed using two-dimensional gas chromatography coupled to a high-resolution time-of-flight electron impact ionization and vacuum ultraviolet photoionization mass spectrometer. Most of the oxygenated higher molecular weight isomers were separated and quantified. Our results suggest that aerosol samples formed in the n-octadecane experiment were more oxidized than the other model compounds (i.e., functionalization products with three oxygen atoms per molecule compared to two oxygen atoms per molecule) at similar OH exposures and aerosol mass loadings. This is likely due to the concentration of n-octadecane in the gas phase where oxidation is more rapid. We find that the first-generation gas-phase oxidation products quickly partition to the particle phase after which higher-generation oxidation likely occurs in the particle phase. Interestingly, functionalized carbonyl isomers for the normal alkanes were only observed on the 4 carbon positions closest to the molecule end in all cases, which is in contrast to structure-reactivity relationship (SRR) predictions for gas-phase reactions. For n-octadecane, the concentrations of first-generation functionalization

  17. Rapid Temperature Swing Adsorption using Polymeric/Supported Amine Hollow Fibers

    Energy Technology Data Exchange (ETDEWEB)

    Chance, Ronald [Georgia Tech Research Corporation, Atlanta, GA (United States); Chen, Grace [Georgia Tech Research Corporation, Atlanta, GA (United States); Dai, Ying [Georgia Tech Research Corporation, Atlanta, GA (United States); Fan, Yanfang [Georgia Tech Research Corporation, Atlanta, GA (United States); Jones, Christopher [Georgia Tech Research Corporation, Atlanta, GA (United States); Kalyanaraman, Jayashree [Georgia Tech Research Corporation, Atlanta, GA (United States); Kawajiri, Yoshiaki [Georgia Tech Research Corporation, Atlanta, GA (United States); Koros, William [Georgia Tech Research Corporation, Atlanta, GA (United States); Lively, Ryan [Georgia Tech Research Corporation, Atlanta, GA (United States); McCool, Benjamin [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States); Realff, Matthew [Georgia Tech Research Corporation, Atlanta, GA (United States); Rezaei, Fateme [Georgia Tech Research Corporation, Atlanta, GA (United States); Searcy, Katherine [Georgia Tech Research Corporation, Atlanta, GA (United States); Sholl, David [Georgia Tech Research Corporation, Atlanta, GA (United States); Subramanian, Swernath [Georgia Tech Research Corporation, Atlanta, GA (United States); Pang, Simon [Georgia Tech Research Corporation, Atlanta, GA (United States)

    2015-03-31

    This project is a bench-scale, post-combustion capture project carried out at Georgia Tech (GT) with support and collaboration with GE, Algenol Biofuels, Southern Company and subcontract to Trimeric Corporation. The focus of the project is to develop a process based on composite amine-functionalized oxide / polymer hollow fibers for use as contactors in a rapid temperature swing adsorption post-combustion carbon dioxide capture process. The hollow fiber morphology allows coupling of efficient heat transfer with effective gas contacting, potentially giving lower parasitic loads on the power plant compared to traditional contacting strategies using solid sorbents.

  18. Seed oil polyphenols: rapid and sensitive extraction method and high resolution-mass spectrometry identification.

    Science.gov (United States)

    Koubaa, Mohamed; Mhemdi, Houcine; Vorobiev, Eugène

    2015-05-01

    Phenolic content is a primary parameter for vegetables oil quality evaluation, and directly involved in the prevention of oxidation and oil preservation. Several methods have been reported in the literature for polyphenols extraction from seed oil but the approaches commonly used remain manually handled. In this work, we propose a rapid and sensitive method for seed oil polyphenols extraction and identification. For this purpose, polyphenols were extracted from Opuntia stricta Haw seed oil, using high frequency agitation, separated, and then identified using a liquid chromatography-high resolution mass spectrometry method. Our results showed good sensitivity and reproducibility of the developed methods. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Investigation of the reductive cleavage of BINAP and application to the rapid synthesis of phospholes.

    Science.gov (United States)

    Gallop, Chris W D; Bobin, Mariusz; Hourani, Petra; Dwyer, Jessica; Roe, S Mark; Viseux, Eddy M E

    2013-07-05

    A rapid and easy entry into λ(3)-phospholes and λ(4)-phosphole oxides derived from BINAP is reported herein featuring a variety of C and Si substituents and functional groups, as well the investigative work on the mechanistic pathway. DFT calculations using B3LYP functionals have been carried out to rationalize the mechanism. The observed experimental (31)P resonance shifts were compared with the calculated shifts of the proposed intermediates after calibration of the shielding tensors. The calculations included the use of polarizable continuum models to take into account solvent effects and were found to be in excellent agreement, providing further evidence for the proposed mechanism.

  20. Model catalytic oxidation studies using supported monometallic and heterobimetallic oxides

    Energy Technology Data Exchange (ETDEWEB)

    Ekerdt, J.G.

    1992-02-03

    This research program is directed toward a more fundamental understanding of the effects of catalyst composition and structure on the catalytic properties of metal oxides. Metal oxide catalysts play an important role in many reactions bearing on the chemical aspects of energy processes. Metal oxides are the catalysts for water-gas shift reactions, methanol and higher alcohol synthesis, isosynthesis, selective catalytic reduction of nitric oxides, and oxidation of hydrocarbons. A key limitation to developing insight into how oxides function in catalytic reactions is in not having precise information of the surface composition under reaction conditions. To address this problem we have prepared oxide systems that can be used to study cation-cation effects and the role of bridging (-O-) and/or terminal (=O) surface oxygen anion ligands in a systematic fashion. Since many oxide catalyst systems involve mixtures of oxides, we selected a model system that would permit us to examine the role of each cation separately and in pairwise combinations. Organometallic molybdenum and tungsten complexes were proposed for use, to prepare model systems consisting of isolated monomeric cations, isolated monometallic dimers and isolated bimetallic dimers supported on silica and alumina. The monometallic and bimetallic dimers were to be used as models of more complex mixed- oxide catalysts. Our current program was to develop the systems and use them in model oxidation reactions.

  1. Chaperones, but not oxidized proteins, are ubiquitinated after oxidative stress

    DEFF Research Database (Denmark)

    Kästle, Marc; Reeg, Sandra; Rogowska-Wrzesinska, Adelina

    2012-01-01

    After oxidative stress proteins which are oxidatively modified are degraded by the 20S proteasome. However, several studies documented an enhanced ubiquitination of yet unknown proteins. Since ubiqutination is a prerequisite for degradation by the 26S proteasome in an ATP-dependent manner...... this raises the question whether these proteins are also oxidized and, if not, what proteins need to be ubiquitinated and degraded after oxidative conditions. By determination of oxidized- and ubiquitinated proteins we demonstrate here that most oxidized proteins are not preferentially ubiquitinated. However......, we were able to confirm an increase of ubiquitinated proteins 16h upon oxidative stress. Therefore, we isolated ubiquitinated proteins from hydrogen peroxide treated cells, as well as from control and lactacystin, an irreversible proteasome inhibitor, treated cells, and identified some...

  2. TEMPO-Oxidized Cellulose with High Degree of Oxidation

    Directory of Open Access Journals (Sweden)

    Zuwu Tang

    2017-09-01

    Full Text Available In this paper, water-soluble 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO-oxidized cellulose with a high degree of oxidation was prepared by a two-step process using bamboo dissolving pulp. The first step was to destroy the cellulose crystal I by NaOH/urea solution to obtain cellulose powder with decreased crystallinity. The second step was to oxidize the cellulose powder by TEMPO oxidation. The TEMPO-oxidized cellulose was analyzed by Fourier transform infrared spectroscopy (FTIR, conductimetry, X-ray diffraction (XRD, fiber analyzer, and transmission electron microscopy (TEM. FTIR showed that the hydroxymethyl groups in cellulose chains were converted into carboxyl groups. The degree of oxidation measured by conductimetry titration was as high as 91.0%. The TEMPO-oxidized cellulose was soluble in water for valuable polyelectrolytes and intermediates.

  3. Iron oxide surfaces

    Science.gov (United States)

    Parkinson, Gareth S.

    2016-03-01

    The current status of knowledge regarding the surfaces of the iron oxides, magnetite (Fe3O4), maghemite (γ-Fe2O3), haematite (α-Fe2O3), and wüstite (Fe1-xO) is reviewed. The paper starts with a summary of applications where iron oxide surfaces play a major role, including corrosion, catalysis, spintronics, magnetic nanoparticles (MNPs), biomedicine, photoelectrochemical water splitting and groundwater remediation. The bulk structure and properties are then briefly presented; each compound is based on a close-packed anion lattice, with a different distribution and oxidation state of the Fe cations in interstitial sites. The bulk defect chemistry is dominated by cation vacancies and interstitials (not oxygen vacancies) and this provides the context to understand iron oxide surfaces, which represent the front line in reduction and oxidation processes. Fe diffuses in and out from the bulk in response to the O2 chemical potential, forming sometimes complex intermediate phases at the surface. For example, α-Fe2O3 adopts Fe3O4-like surfaces in reducing conditions, and Fe3O4 adopts Fe1-xO-like structures in further reducing conditions still. It is argued that known bulk defect structures are an excellent starting point in building models for iron oxide surfaces. The atomic-scale structure of the low-index surfaces of iron oxides is the major focus of this review. Fe3O4 is the most studied iron oxide in surface science, primarily because its stability range corresponds nicely to the ultra-high vacuum environment. It is also an electrical conductor, which makes it straightforward to study with the most commonly used surface science methods such as photoemission spectroscopies (XPS, UPS) and scanning tunneling microscopy (STM). The impact of the surfaces on the measurement of bulk properties such as magnetism, the Verwey transition and the (predicted) half-metallicity is discussed. The best understood iron oxide surface at present is probably Fe3O4(100); the structure is

  4. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase.

    Science.gov (United States)

    Li, Qunrui; Metthew Lam, L K; Xun, Luying

    2011-11-01

    Ethanol is a renewable biofuel, and it can be produced from lignocellulosic biomass. The biomass is usually converted to hydrolysates that consist of sugar and sugar derivatives, such as furfural. Yeast ferments sugar to ethanol, but furfural higher than 3 mM is inhibitory. It can take several days for yeast cells to reduce furfural to non-inhibitory furfuryl alcohol before producing ethanol. Bioreduction of furfural to furfuryl alcohol before fermentation may relieve yeast from furfural toxicity. We observed that Cupriavidus necator JMP134, a strict aerobe, rapidly reduced 17 mM furfural to less than 3 mM within 14 min with cell turbidity of 1.0 at 600 nm at 50°C. The rapid reduction consumed ethanol. The "furfural reductase" (FurX) was purified, and it oxidized ethanol to acetaldehyde and reduced furfural to furfuryl alcohol with NAD(+) as the cofactor. The protein was identified with mass spectrometry fingerprinting to be a hypothetical protein belonging to Zn-dependent alcohol dehydrogenase family. The furX-inactivation mutant of C. necator JMP134 lost the ability to rapidly reduce furfural, and Escherichia coli producing recombinant FurX gained the ability. Thus, an alcohol dehydrogenase enabled bacteria to rapidly reduce furfural with ethanol as the reducing power.

  5. Manganese Oxidation by Bacteria: Biogeochemical Aspects

    Digital Repository Service at National Institute of Oceanography (India)

    Sujith, P.P.; LokaBharathi, P.A

    Manganese is an essential trace metal that is not as readily oxidizable like iron. Several bacterial groups posses the ability to oxidize Mn effectively competing with chemical oxidation. The oxides of Mn are the strongest of the oxidants, next...

  6. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp

    DEFF Research Database (Denmark)

    Tatari, Karolina; Musovic, Sanin; Gülay, Arda

    2017-01-01

    distribution of these guilds, filter material was sampled at four drinking water treatment plants (DWTPs) in parallel filters of the pre- and after-filtration stages at different locations and depths. The target guilds were quantified by qPCR targeting 16S rRNA and amoA genes. Total bacterial densities......We investigated the density and distribution of total bacteria, canonical Ammonia Oxidizing Bacteria (AOB) (Nitrosomonas plus Nitrosospira), Ammonia Oxidizing Archaea (AOA), as well as Nitrobacter and Nitrospira in rapid sand filters used for groundwater treatment. To investigate the spatial...... stratified filters, where they were of similar abundance. In conclusion, rapid sand filters are microbially dense, with varying degrees of spatial heterogeneity, which requires replicate sampling for a sufficiently precise determination of total microbial community and specific population densities...

  7. Enzymatic Oxidation of Methane

    Energy Technology Data Exchange (ETDEWEB)

    Sirajuddin, S; Rosenzweig, AC

    2015-04-14

    Methane monooxygenases (MMOs) are enzymes that catalyze the oxidation of methane to methanol in methanotrophic bacteria. As potential targets for new gas-to-liquid methane bioconversion processes, MMOs have attracted intense attention in recent years. There are two distinct types of MMO, a soluble, cytoplasmic MMO (sMMO) and a membrane-bound, particulate MMO (pMMO). Both oxidize methane at metal centers within a complex, multisubunit scaffold, but the structures, active sites, and chemical mechanisms are completely different. This Current Topic review article focuses on the overall architectures, active site structures, substrate reactivities, proteinprotein interactions, and chemical mechanisms of both MMOs, with an emphasis on fundamental aspects. In addition, recent advances, including new details of interactions between the sMMO components, characterization of sMMO intermediates, and progress toward understanding the pMMO metal centers are highlighted. The work summarized here provides a guide for those interested in exploiting MMOs for biotechnological applications.

  8. Oxidative destruction of chlorocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, P.; Stern, E.W.; Amundsen, A.R.; Balko, E. (Engelhard Corporation, Iselin, NJ (USA))

    1993-02-01

    Presently, there is great concern about contamination of the environment by hazardous volatile organics originating in the manufacture of organic chemicals, cleaning and degreasing processes, and vent or exhaust air from air stripping of contaminated groundwater or soil. Catalytic oxidation is an energy efficient and economical way of destroying such hazardous materials and, depending on overall stream composition and concentration, can compete effectively with alternatives such as thermal incineration and carbon adsorption. This paper discusses the performance of a new catalyst, VOCat 350 HC[trademark], and give a comparison between the VOCat 350 HC[trademark] and the platinum and chromia-alumina catalysts. VOCat 350 HC[trademark] shows excellent activity for oxidation chlorocarbons and good stability in this application. 3 refs., 4 figs.

  9. Defects at oxide surfaces

    CERN Document Server

    Thornton, Geoff

    2015-01-01

    This book presents the basics and characterization of defects at oxide surfaces. It provides a state-of-the-art review of the field, containing information to the various types of surface defects, describes analytical methods to study defects, their chemical activity and the catalytic reactivity of oxides. Numerical simulations of defective structures complete the picture developed. Defects on planar surfaces form the focus of much of the book, although the investigation of powder samples also form an important part. The experimental study of planar surfaces opens the possibility of applying the large armoury of techniques that have been developed over the last half-century to study surfaces in ultra-high vacuum. This enables the acquisition of atomic level data under well-controlled conditions, providing a stringent test of theoretical methods. The latter can then be more reliably applied to systems such as nanoparticles for which accurate methods of characterization of structure and electronic properties ha...

  10. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  11. Rapidly progressive periodontitis. A distinct clinical condition.

    Science.gov (United States)

    Page, R C; Altman, L C; Ebersole, J L; Vandesteen, G E; Dahlberg, W H; Williams, B L; Osterberg, S K

    1983-04-01

    We report radiographic, clinical, historical, and laboratory observations on seven patients selected to illustrate the features and characteristics of rapidly progressive periodontitis, with the aim of establishing this disease as a distinct clinical entity. This form of periodontitis is seen most commonly in young adults in their twenties, but it can occur in postpubertal individuals up to approximately 35 years of age. During the active phase, the gingival tissues are extremely inflamed and there is hemorrhage, proliferation of the marginal gingiva, and exudation. Destruction is very rapid, with loss of much of the alveolar bone occurring within a few weeks or months. This phase may be accompanied by general malaise, weight loss, and depression, although these symptoms are not seen in all patients. The disease may progress, without remission, to tooth loss, or alternatively, it may subside and become quiescent with or without therapy. The quiescent phase is characterized by the presence of clinically normal gingiva that may be tightly adapted to the roots of teeth with very advanced bone loss and deep periodontal pockets. The quiescent phase may be permanent, it may persist for an indefinite period, or the disease activity may return. Most patients with rapidly progressive periodontitis have serum antibodies specific for various species of Bacteroides, Actinobacillus, or both, and manifest defects in either neutrophil or monocyte chemotaxis. Affected patients generally respond favorably to treatment by scaling and open or closed curettage, especially when accompanied by standard doses of antibiotics for conventional time periods. A small minority of patients do not respond to any treatment, including antibiotics, and the disease progresses inexorably to tooth loss even in the presence of aggressive periodontal therapy and maintenance. At the present time it is not possible to distinguish prior to treatment which individuals will respond to therapy and which will

  12. Intraperitoneal Glucose Sensing is Sometimes Surprisingly Rapid

    Directory of Open Access Journals (Sweden)

    Anders Lyngvi Fougner

    2016-04-01

    Full Text Available Rapid, accurate and robust glucose measurements are needed to make a safe artificial pancreas for the treatment of diabetes mellitus type 1 and 2. The present gold standard of continuous glucose sensing, subcutaneous (SC glucose sensing, has been claimed to have slow response and poor robustness towards local tissue changes such as mechanical pressure, temperature changes, etc. The present study aimed at quantifying glucose dynamics from central circulation to intraperitoneal (IP sensor sites, as an alternative to the SC location. Intraarterial (IA and IP sensors were tested in three anaesthetized non-diabetic pigs during experiments with intravenous infusion of glucose boluses, enforcing rapid glucose level excursions in the range 70--360 mg/dL (approximately 3.8--20 mmol/L. Optical interferometric sensors were used for IA and IP measurements. A first-order dynamic model with time delay was fitted to the data after compensating for sensor dynamics. Additionally, off-the-shelf Medtronic Enlite sensors were used for illustration of SC glucose sensing. The time delay in glucose excursions from central circulation (IA to IP sensor location was found to be in the range 0--26 s (median: 8.5 s, mean: 9.7 s, SD 9.5 s, and the time constant was found to be 0.5--10.2 min (median: 4.8 min, mean: 4.7 min, SD 2.9 min. IP glucose sensing sites have a substantially faster and more distinctive response than SC sites when sensor dynamics is ignored, and the peritoneal fluid reacts even faster to changes in intravascular glucose levels than reported in previous animal studies. This study may provide a benchmark for future, rapid IP glucose sensors.

  13. Rapid response manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1998-02-10

    US industry is fighting to maintain its competitive edge in the global market place. Markets fluctuate rapidly. Companies have to be able to respond quickly with improved, high quality, cost efficient products. Because companies and their suppliers are geographically distributed, rapid product realization is dependent on the development of a secure integrated concurrent engineering environment operating across multiple business entities. The way products are developed and brought to market can be improved and made more efficient through the proper incorporation of emerging technologies implemented in a secure environment. This documents the work done under this CRADA to develop capabilities, which permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process. Lockheed Martin Energy Systems (LMES), through a CRADA with the National Center for Manufacturing Sciences (NCMS), worked within a consortium of major industrial firms--Ford, General Motors, Texas Instruments, United Technologies, and Eastman Kodak--and several small suppliers of advanced manufacturing technology--MacNeal-Schwendler Corp., Teknowledge Corp., Cimplex Corp., Concentra, Spatial Technology, and Structural Dynamics Research Corp. (SDRC)--to create infrastructure to support the development and implementation of secure engineering environments for Rapid Response Manufacturing. The major accomplishment achieved under this CRADA was the demonstration of a prototypical implementation of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined parts in a secure NWC compliant environment. Specifically, methods needed to permit the effective application, incorporation, and use of advanced technologies in a secure environment to facilitate the product realization process were developed and demonstrated. An important aspect of this demonstration was

  14. Rapid visual colorimetry of peritoneal lavage fluid.

    Science.gov (United States)

    Tandberg, D; Reitmeyer, S T; Cheney, P R

    1990-11-01

    That visual colorimetry can be used to rapidly and precisely estimate the erythrocyte count of 1:5 dilutions of simulated peritoneal lavage fluid. Fifty-four normal adult human subjects. The automated or chamber RBC count is often used on fluid obtained by peritoneal lavage in patients with abdominal trauma to help determine the need for surgery. Unfortunately, this method sometimes results in excessive delay. We designed and built a simple colorimeter that facilitated rapid direct visual comparison of unknown samples with known color standards. A radiograph view box was used as a light source. Standards were prepared in 16-mm glass tubes to simulate peritoneal lavage fluid with RBC counts ranging from 0 to 140,000 in 10,000 cell/microL increments; 1:5 dilutions with water were used throughout to reduce opacity. Thimerosal was added to unknowns and standards to stabilize color; all samples were kept refrigerated at 4 C when not in use. In a double-blind in-vitro study, each subject matched 20 randomly distributed unknowns ranging from 12,000 to 131,000 erythrocytes/microL to the nearest standard. The mean absolute error for all 1,080 determinations was 3,560 RBC/microL (95% CI = 4,290-4,830; SD = 4,560; t = 39.6; df = 1,079; P less than .001). This method correctly predicted the RBC count to within 9,000 cells/microL 95% of the time. Visual comparison of 1:5 dilutions of simulated peritoneal lavage fluid with known color standards can be used to rapidly and precisely estimate the erythrocyte count.

  15. Sheet metal forming using rapid prototyped tooling

    Science.gov (United States)

    Park, Young-Bin

    The demand for rapid, low-cost die fabrication and modification technology is greater than ever in sheet metal forming industry. One category of rapid tooling technology involves the application of advanced polymers and composites to fabricate metal forming dies. Despite their advantages in lead time and cost reductions, polymer dies for sheet metal forming applications have several drawbacks. Due to their lack of strength as compared to conventional die materials, the use of polymer dies is often limited to prototype or short-run production. In addition, because the mechanisms by which they fail are not fully understood, the dies are designed on the basis of experience and intuition. The research (1) characterized the mechanical behavior of an advanced polymer composite tooling material, (2) developed a method to predict the failure mode and the life of a polymer die, and (3) established optimal die design guidelines. The focus was on rapid prototyped, aluminum trihydrate(ATH)-filled, polyurethane-based dies in sheet metal forming. The study involved the determination of dominant process parameters based on the finite element analyses of 90° V-die bending and cylindrical cup drawing processes. The effects of process parameters on stress distribution in the die provided guidelines to the modification of die design for achieving the desired die life. The presented parametric study lays the groundwork for providing reliable tool failure prediction and design optimization guidelines for advanced polymer tooling materials in metal forming. In addition, the failure mechanisms were investigated to predict the failure mode and the fatigue life of the die. To establish a fundamental understanding of the fatigue behavior of the polyurethane-based die material, extensive material tests were performed, the microstructure was studied, and the fatigue properties were identified experimentally. The test data were incorporated into the local stress-based fatigue analysis to

  16. CFD Script for Rapid TPS Damage Assessment

    Science.gov (United States)

    McCloud, Peter

    2013-01-01

    This grid generation script creates unstructured CFD grids for rapid thermal protection system (TPS) damage aeroheating assessments. The existing manual solution is cumbersome, open to errors, and slow. The invention takes a large-scale geometry grid and its large-scale CFD solution, and creates a unstructured patch grid that models the TPS damage. The flow field boundary condition for the patch grid is then interpolated from the large-scale CFD solution. It speeds up the generation of CFD grids and solutions in the modeling of TPS damages and their aeroheating assessment. This process was successfully utilized during STS-134.

  17. Rapid eye movement sleep behavior disorder

    DEFF Research Database (Denmark)

    Zoetmulder, Marielle; Jennum, Poul

    2009-01-01

    and neurological disease. RBD is related to brainstem pathology. Furthermore, it is increasingly recognized that RBD is frequently related to Parkinsonian disorders and narcolepsy. This article reviews recent knowledge about RBD with focus on the diagnostic process and management. Udgivelsesdato: 2009-May......Rapid eye movement (REM) sleep behaviour disorder (RBD) is characterized by loss of REM sleep and related electromyographic atonia with marked muscular activity and dream enactment behaviour. RBD is seen in 0.5% of the population. It occurs in an idiopathic form and secondarily to medical...

  18. Simulation Model of Bus Rapid Transit

    Directory of Open Access Journals (Sweden)

    Gunawan Fergyanto E.

    2014-03-01

    Full Text Available Bus rapid transit system is modern solution for mass transportation system. The system, in comparison to the rail-based transportation system, is significantly cheaper and requires shorter development time, but lower performance. The BRT system performance strongly depends on variables related to station design and infrastructure. A numerical model offers an effective and efficient means to evaluate the system performance. This article offers a detailed numerical model on the basis of the discrete-event approach and demonstrates its application.

  19. Rapid thermal processing science and technology

    CERN Document Server

    Fair, Richard B

    1993-01-01

    This is the first definitive book on rapid thermal processing (RTP), an essential namufacturing technology for single-wafer processing in highly controlled environments. Written and edited by nine experts in the field, this book covers a range of topics for academics and engineers alike, moving from basic theory to advanced technology for wafer manufacturing. The book also provides new information on the suitability or RTP for thin film deposition, junction formation, silicides, epitaxy, and in situ processing. Complete discussions on equipment designs and comparisons between RTP and other

  20. Rapid prototyping of composite aircraft structures

    Science.gov (United States)

    Bennett, George; Rais-Rohani, Masoud; Hall, Kenneth; Holifield, Walt; Sullivan, Rani; Brown, Scott

    The faculty, staff and students of the Raspet Flight Research Laboratory (RFRL) have developed a rapid prototyping capability in a series of research aircraft and unmanned aircraft development projects. There has been a steady change in the technologies used to accomplish these tasks at the RFRL. The most recent development has been the utilization of computer graphics and a 5-axis gantry robot router to accelerate the design, moldmaking and parts trimming tasks. The composite structure fabrication processes at the RFRL have evolved from wet-lay-up to autoclave curve. Currently, the feasibility of the stitched composite material preform and resin transfer molding process is being explored.

  1. Onset of chaos in rapidly rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, S. (Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, TN (USA) Department of Mathematical Physics, Lund Institute of Technology, P.O. Box 118, S-22100 Lund (Sweden))

    1990-06-25

    The onset of chaos is investigated for excited, rapidly rotating nuclei, utilizing a schematic two-body residual interaction added to the cranked Nilsson Hamiltonian. Dynamical effects at various degrees of mixing between regularity and chaos are studied in terms of fragmentation of the collective rotational strength. It is found that the onset of chaos is connected to a saturation of the average standard deviation of the rotational strength function. Still, the rotational-damping width may exhibit motional narrowing in the chaotic regime.

  2. Chaotic Maps Dynamics, Fractals, and Rapid Fluctuations

    CERN Document Server

    Chen, Goong

    2011-01-01

    This book consists of lecture notes for a semester-long introductory graduate course on dynamical systems and chaos taught by the authors at Texas A&M University and Zhongshan University, China. There are ten chapters in the main body of the book, covering an elementary theory of chaotic maps in finite-dimensional spaces. The topics include one-dimensional dynamical systems (interval maps), bifurcations, general topological, symbolic dynamical systems, fractals and a class of infinite-dimensional dynamical systems which are induced by interval maps, plus rapid fluctuations of chaotic maps as a

  3. Rapid HIV Testing and Counselling in

    African Journals Online (AJOL)

    Conseil et le test rapide du VIH pendant le travail dans un milieu du Nigéria du nord Entre avril et aôut. 2004 toutes les femmes en travail à]UTH ont subi le test pour le VIH et ont reçu du conseil avec l'opportunité de refuser le test. Les femmes séro-positives reçu la monothérapie de névirapine standard shéma prophylaxie.

  4. Rapid Response Manufacturing (RRM). Final CRADA report

    Energy Technology Data Exchange (ETDEWEB)

    Cain, W.D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Waddell, W.L. [National Centers for Manufacturing Sciences, Ann Arbor, MI (United States)

    1997-08-28

    A major accomplishment of the Rapid Response Manufacturing (RRM) project was the development of a broad-based generic framework for automating and integrating the design-to-manufacturing activities associated with machined part products. Key components of the framework are a manufacturing model that integrates product and process data in a consistent, minimally redundant manner, an advanced computer-aided engineering working environment, knowledge-based software systems for design, process planning, and manufacturing and new production technologies for making products directly from design application software.

  5. Crowdsourced Translation for Rapid Internationalization in Cyberspace

    DEFF Research Database (Denmark)

    Tran, Yen; Yonatany, Moshe; Mahnke, Volker

    2016-01-01

    This paper explores how Facebook effectively used crowdsourced translation to accelerate its rapid internationalization. We apply the learning perspective of internationalization theory to unpack what the firm learned in order to mobilize crowd-based knowledge to facilitate internationalization...... and codified knowledge, rather than the experiential knowledge traditionally suggested in the literature on the process of internationalization, and (2) the firm's success rested on its ability to use virtual learning tools and incentive systems to acquire, articulate and integrate knowledge from communities...... of internationally dispersed users – the “crowd” – to accelerate its internationalization in cyberspace. This empirical study extends internationalization theory regarding knowledge and organizational learning....

  6. Rapid Prototyping: Technologies, Materials and Advances

    Directory of Open Access Journals (Sweden)

    Dudek P.

    2016-06-01

    Full Text Available In the context of product development, the term rapid prototyping (RP is widely used to describe technologies which create physical prototypes directly from digital data. Recently, this technology has become one of the fastest-growing methods of manufacturing parts. The paper provides brief notes on the creation of composites using RP methods, such as stereolithography, selective laser sintering or melting, laminated object modelling, fused deposition modelling or three-dimensional printing. The emphasis of this work is on the methodology of composite fabrication and the variety of materials used in these technologies.

  7. An Unusual Case of Rapidly Progressive Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Kimberly M. Thornton

    2013-01-01

    Full Text Available We present an unusual case of hyperbilirubinemia with rapid early progression leading to bilirubin encephalopathy in a term neonate. Despite early recognition and intervention, the total serum bilirubin reached a maximum level of 39 mg/dL at 32 hours of life. Prior to an emergent exchange transfusion, the patient’s diagnostic evaluation was significant for Coombs-negative microangiopathic hemolytic anemia and thrombocytopenia. Further testing revealed a deficiency of ADAMTS13 protein, or von Willebrand factor-cleaving protease, a finding diagnostic of congenital thrombotic thrombocytopenic purpura, or Upshaw-Schulman syndrome. This rare disease is often misdiagnosed, especially in the newborn period.

  8. Rapid Genetic Analysis in Congenital Hyperinsulinism

    DEFF Research Database (Denmark)

    Christesen, Henrik Thybo; Brusgaard, Klaus; Alm, Jan

    2007-01-01

    with a paternal germline ABCC8 or KCNJ11 mutation and a focal loss of maternal chromosome 11p15, whereas a maternal mutation, or homozygous/compound heterozygous ABCC8 and KCNJ11 mutations predict diffuse-type disease. However, genotyping usually takes too long to be helpful in the absence of a founder mutation....... One patient had a paternal KCNJ11 mutation and focal disease confirmed by positron emission tomography scan and biopsies. One patient had a de novo heterozygous ABBC8 mutation and unexplained diffuse disease confirmed by positron emission tomography scan and biopsies. CONCLUSION: A rapid analysis...

  9. Rapid disturbances in Arctic permafrost regions (Invited)

    Science.gov (United States)

    Grosse, G.; Romanovsky, V. E.; Arp, C. D.; Jones, B. M.

    2013-12-01

    Permafrost thaw is often perceived as a slow process dominated by press disturbances such as gradual active layer thickening. However, various pulse disturbances such as thermokarst formation can substantially increase the rate of permafrost thaw and result in rapid landscape change on sub-decadal to decadal time scales. Other disturbances associated with permafrost thaw are even more dynamic and unfold on sub-annual timescales, such as catastrophic thermokarst lake drainage. The diversity of processes results in complex feedbacks with soil carbon pools, biogeochemical cycles, hydrology, and flora and fauna, and requires a differentiated approach when quantifying how these ecosystem componentsare affected,how vulnerablethey are to rapid change, and what regional to global scale impacts result. Here we show quantitative measurements for three examples of rapid pulse disturbances in permafrost regions as observed with remote sensing data time series: The formation of a mega thaw slump (>50 ha) in syngenetic permafrost in Siberia, the formation of new thermokarst ponds in ice-rich permafrost regions in Alaska and Siberia, and the drainage of thermokarst lakes along a gradient of permafrost extent in Western Alaska. The surprising setting and unabated growth of the mega thaw slump during the last 40 years indicates that limited information on panarctic ground ice distribution, abundance, and vulnerability remains a key gap for reliable projections of thermokarst and thermo-erosion impacts, and that the natural limits on the growth and size of thaw slumps are still poorly understood. Observed thermokarst pond formation and expansion in our study regions was closely tied to ice-rich permafrost terrain, such as syngenetic Yedoma uplands, but was also found in old drained thermokarst lake basins with epigenetic permafrost and shallow drained thermokarst lake basins whose ground ice had not been depleted by the prior lake phase. The very different substrates in which new

  10. A rapid diagnostic test for schistosomiasis mansoni

    Directory of Open Access Journals (Sweden)

    Clelia Christina Mello-Silva

    2013-12-01

    Full Text Available This article presents an improvement to the Kato-Katz (KK method, making it faster and more efficient for the visualisation of fertile eggs in stool samples. This modified KK method uses sodium acetate formalin as a fixative and reveals the intensity of infection in less than 1 h, reducing the diagnostic time without increasing the cost. This modified method may contribute to future epidemiological studies in both hospitals and the field due to its rapid and precise diagnostic, which allow for immediate treatment.

  11. Plant MAPK cascades: Just rapid signaling modules?

    KAUST Repository

    Boudsocq, Marie

    2015-08-27

    © 2015 Taylor & Francis Group, LLC. Abscisic acid (ABA) is a major phytohormone mediating important stress-related processes. We recently unveiled an ABA-activated MAPK signaling module constituted of MAP3K17/18-MKK3-MPK1/2/7/14. Unlike classical rapid MAPK activation, we showed that the activation of the new MAPK module is delayed and relies on the MAP3K protein synthesis. In this addendum, we discuss the role of this original and unexpected activation mechanism of MAPK cascades which suggests that MAPKs can regulate both early and longterm plant stress responses.

  12. Entropy-Stabilized Oxides

    Science.gov (United States)

    2015-09-29

    predictions4. There are, however, limitations to the predictive power, particularly when factors like partial covalency and heterodesmic bonding are...broad classes of chalcogenides, nitrides and halides; particularly when covalent character is modest. The entropic driving force—engineered by cation...ultimately manifests in image drift. To do so, E1 films were coated with 50 nm of indium tin oxide (ITO) at room temperature using radio frequency

  13. Infrared transparent conductive oxides

    Science.gov (United States)

    Johnson, Linda F.; Moran, Mark B.

    2001-09-01

    A novel class of complex metal oxides that have potential as transparent conducting oxides (TCOs) for the electromagnetic-interference (EMI) shielding on IR-seeker windows and missile domes has been identified. These complex metal oxides exhibit the rhombohedral (R3m) crystalline structure of naturally occurring delafossite, CuFeO2. The general chemical formula is ABO2 where A is a monovalent metal (Me+1 such as Cu, Ag, Au, Pt or Pd, and B is a trivalent metal (Me3+) such as Al,Ti,Cr,Co,Fe,Ni,Cs,Rh,Ga,Sn,In,Y,La,Pr,Nd,Sm or Eu. By adjusting the oxygen content, the conductivity can be varied over a wide range so that the delafossites behave as insulators, semiconductors or metals. This paper presents results for films of p-type CuxAlyOz and n-type CuxCryOz deposited by reactive magnetron co-sputtering from high-purity-metal targets. Films have been deposited using conventional RF- and DC-power supplies, and a new asymmetric-bipolar-pulsed- DC-power supply. Similar to the high-temperature-copper- oxide superconductors, the presence of Cu-O bonds is critical for the unique properties. Fourier transform infrared (FTIR) and electron spectroscopy for chemical analysis (ESCA) are used to understand the relationship between the optoelectornic properties and the molecular structure of the films. For example, FTIR absorption bands at 1470 and 1395cm-1 are present only in CuxAlyOz films that exhibit enhanced electrical conductivity. When these bands are absent, the CuxAlyOz films have high values of resistivity. In addition to the 1470 and 1395cm-1 bands observed in CuxAlyOz films, another pair of bands at 1040 and 970cm-1 is present in CuxCryOz films.

  14. Antifungal Effect of Magnesium Oxide, Zinc Oxide, Silicon Oxide and Copper Oxide Nanoparticles Against Candida albicans

    OpenAIRE

    Abbas Karimiyan; Hossein Najafzadeh; Masoud Ghorbanpour; Seyed Hossein Hekmati-Moghaddam

    2015-01-01

    Absrtact Background: Candidiasis is the most common fungal infection in human and warm-blooded animals. Candida albicans, is an opportunistic pathogen in immune suppressed hosts, like HIV infected and under chemotherapy patients. Since, antifungal drugs are limited and challenged by resistance. Thus discovering agents with antifungal properties and minimum side effects and toxicity is essential. Nano-agents such as metal oxide nano-particles have unique properties such as high surface to v...

  15. Tracking Solid Oxide Cell Microstructure Evolution by High Resolution 3D Nano-Tomography

    DEFF Research Database (Denmark)

    De Angelis, Salvatore

    Solid oxide cells (SOCs) oer great prospects for the ecient and reversible conversion of chemical to electrical energy. Therefore, they are expected to play a key role in the renewable energy landscape. However, their limited lifetime under operating conditions hinders their widespread usage...... tomography is applied. Preliminary results show rapid kinetics for the two reactions. During oxidation, void formation in metallic particles is observed. During reduction, the nickel oxide particles rst evolve to a nano-porous system of nickel crystallites and then coarsen towards dense nickel particles....

  16. Experiments on rapidly-sheared wall turbulence

    Science.gov (United States)

    Diwan, Sourabh; Morrison, Jonathan

    2013-11-01

    The use of linear theories in wall turbulence dates back to Townsend (1976, Cambridge University Press) who extensively used Rapid Distortion Theory (RDT) for understanding the structure of near-wall turbulence. Various other linear tools have been used in more recent investigations. The present study is an attempt to further explore this aspect and is in part motivated by the recent numerical work of Sharma et al. (Phys. Fluids 23, 2011) that highlighted the possible role of linear mechanisms in wall turbulence. Our experimental arrangement involves passing a grid-generated turbulent flow over a flat plate mounted downstream of the grid in a wind tunnel. The grid turbulence is subjected to large rates of shear strain by the wall layer close to the leading edge of the plate and as a result, over a certain region in its vicinity, the approximations of the RDT can be expected to be approximately satisfied. We present detailed single-point and planar velocity measurements, and pressure measurements using surface-mounted pressure transducers, the aim being to establish a turbulent wall layer in which linear processes are dominant. Such a flow can be used to evaluate the ideas relating to linear theories of Townsend and Landahl, among others. We also present the structural changes that take place as the rapidly-sheared wall layer evolves towards a more conventional boundary layer further downstream. We acknowledge financial support from EPSRC under Grant No. EP/I037938.

  17. RAPID MANUFACTURING SYSTEM OF ORTHOPEDIC IMPLANTS.

    Science.gov (United States)

    Relvas, Carlos; Reis, Joana; Potes, José Alberto Caeiro; Fonseca, Fernando Manuel Ferreira; Simões, José Antonio Oliveira

    2009-01-01

    This study, aimed the development of a methodology for rapid manufacture of orthopedic implants simultaneously with the surgical intervention, considering two potential applications in the fields of orthopedics: the manufacture of anatomically adapted implants and implants for bone loss replacement. This work innovation consists on the capitation of the in situ geometry of the implant by direct capture of the shape using an elastomeric material (polyvinylsiloxane) which allows fine detail and great accuracy of the geometry. After scanning the elastomeric specimen, the implant is obtained by machining using a CNC milling machine programmed with a dedicated CAD/CAM system. After sterilization, the implant is able to be placed on the patient. The concept was developed using low cost technology and commercially available. The system has been tested in an in vivo hip arthroplasty performed on a sheep. The time increase of surgery was 80 minutes being 40 minutes the time of implant manufacturing. The system developed has been tested and the goals defined of the study achieved enabling the rapid manufacture of an implant in a time period compatible with the surgery time.

  18. Rapid and precise genotyping of porcine microsatellites.

    Science.gov (United States)

    Yue, G H; Beeckmann, P; Bartenschlager, H; Moser, G; Geldermann, H

    1999-11-01

    Microsatellites are useful markers for genetic mapping and linkage analysis because they are highly polymorphic, abundant in genomes and relatively easily scored with polymerase chain reaction (PCR). A rapid genotyping system for microsatellites was developed, which included multiplex PCRs, multiple use of Hydrolink gels, automated fluorescent detection of fragments on an A.L.F. DNA sequencer, automatic assignment of alleles to each locus and verification of genotypes with a self-developed computer program "Fragtest". Eight multiplex PCRs have been developed to genotype 29 microsatellites for genetic and quantitative trait loci (QTL) mapping on pig chromosomes 6, 7, 12 and 13. Three to six microsatellites could be amplified in one multiplex PCR. Each multiplex reaction required only different concentrations of each pair of primers and a low concentration of dNTP (100 microM). A dNTP concentration of 100 microM proved to be optimal for the coamplification of microsatellites under the concentration of 1.5 mM MgCl2. Using four internal size standards added in each sample, the 5% Hydrolink gel could subsequently be used up to five times (total running time of 500 min) on the A.L.F. automated sequencer without significant loss of resolution and precision of fragment length analysis. Automatic assignment of alleles on each locus using "Fragtest" significantly increased the efficiency and precision of the genotyping. This system is thus a rapid, cheap, and highly discriminating genotyping system.

  19. Rapid Glass Refiner Development Program, Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-02-20

    A rapid glass refiner (RGR) technology which could be applied to both conventional and advanced class melting systems would significantly enhance the productivity and the competitiveness of the glass industry in the United States. Therefore, Vortec Corporation, with the support of the US Department of Energy (US DOE) under Cooperative Agreement No. DE-FC07-90ID12911, conducted a research and development program for a unique and innovative approach to rapid glass refining. To provide focus for this research effort, container glass was the primary target from among the principal glass types based on its market size and potential for significant energy savings. Container glass products represent the largest segment of the total glass industry accounting for 60% of the tonnage produced and over 40% of the annual energy consumption of 232 trillion Btu/yr. Projections of energy consumption and the market penetration of advanced melting and fining into the container glass industry yield a potential energy savings of 7.9 trillion Btu/yr by the year 2020.

  20. Rapid Rebuilding of the Outer Radiation Belt

    Science.gov (United States)

    Glocer, A.; Fok, M.-C.; Nagai, T.; Toth, G.; Guild, T.; Bkake, J.

    2011-01-01

    Recent observations by the radiation monitor (RDM) on the spacecraft Akebono have shown several cases of greater than 2.5 MeV radiation belt electron enhancements occurring on timescales of less than a few hours. Similar enhancements are also seen in detectors on board the NOAA/POES and TWINS 1 satellites. These intervals are shorter than typical radial diffusion or wave-particle interactions can account for. We choose two so-called "rapid rebuilding" events that occur during high speed streams (4 September 2008 and 22 July 2009) and simulated them with the Space Weather Modeling Framework configured with global magnetosphere, radiation belt, ring current, and ionosphere electrodynamics model. Our simulations produce a weaker and delayed dipolarization as compared to observations, but the associated inductive electric field in the simulations is still strong enough to rapidly transport and accelerate MeV electrons resulting in an energetic electron flux enhancement that is somewhat weaker than is observed. Nevertheless, the calculated flux enhancement and dipolarization is found to be qualitatively consistent with the observations. Taken together, the modeling results and observations support the conclusion that storm-time dipolarization events in the magnetospheric magnetic field result in strong radial transport and energization of radiation belt electrons.