WorldWideScience

Sample records for rapid organic synthesis

  1. An unconventional rapid synthesis of high performance metal-organic framework membranes.

    Science.gov (United States)

    Shah, Miral N; Gonzalez, Mariel A; McCarthy, Michael C; Jeong, Hae-Kwon

    2013-06-25

    Metal-organic frameworks (MOFs) are attractive for gas separation membrane applications due to their microporous channels with tunable pore shape, size, and functionality. Conventional MOF membrane fabrication techniques, namely in situ and secondary growth, pose challenges for their wider commercial applications. These challenges include reproducility, scalability, and high manufacturing cost. Recognizing that the coordination chemistry of MOFs is fundamentally different from the covalent chemistry of zeolites, we developed a radically different strategy for MOF membrane synthesis. Using this new technique, we were able to produce continuous well-intergrown membranes of prototypical MOFs, HKUST-1 and ZIF-8, in a relatively short period of time (tens of min). With a minimal consumption of precursors and a greatly simplified synthesis protocol, our new technique provides potential for a continuous, scalable, reproducible, and easily commercializable route for the rapid synthesis of MOF membranes. RTD-prepared MOF membranes show greatly improved gas separation performances as compared to those prepared by conventional solvothermal methods, indicating improved membrane microstructure.

  2. Rapid synthesis of ultra-long silver nanowires for tailor-made transparent conductive electrodes: proof of concept in organic solar cells.

    Science.gov (United States)

    José Andrés, Luis; Fe Menéndez, María; Gómez, David; Luisa Martínez, Ana; Bristow, Noel; Paul Kettle, Jeffrey; Menéndez, Armando; Ruiz, Bernardino

    2015-07-03

    Rapid synthesis of ultralong silver nanowires (AgNWs) has been obtained using a one-pot polyol-mediated synthetic procedure. The AgNWs have been prepared from the base materials in less than one hour with nanowire lengths reaching 195 μm, which represents the quickest synthesis and one of the highest reported aspect ratios to date. These results have been achieved through a joint analysis of all reaction parameters, which represents a clear progress beyond the state of the art. Dispersions of the AgNWs have been used to prepare thin, flexible, transparent and conducting films using spray coating. Due to the higher aspect ratio, an improved electrical percolation network is observed. This allows a low sheet resistance (RS = 20.2 Ω/sq), whilst maintaining high optical film transparency (T = 94.7%), driving to the highest reported figure-of-merit (FoM = 338). Owing to the light-scattering influence of the AgNWs, the density of the AgNW network can also be varied to enable controllability of the optical haze through the sample. Based on the identification of the optimal haze value, organic photovoltaics (OPVs) have been fabricated using the AgNWs as the transparent electrode and have been benchmarked against indium tin oxide (ITO) electrodes. Overall, the performance of OPVs made using AgNWs sees a small decrease in power conversion efficiency (PCE), primarily due to a fall in open-circuit voltage (50 mV). This work indicates that AgNWs can provide a low cost, rapid and roll-to-roll compatible alternative to ITO in OPVs, with only a small compromise in PCE needed.

  3. Rapid Synthesis of Thiophene-Based, Organic Dyes for Dye-Sensitized Solar Cells (DSSCs) by a One-Pot, Four-Component Coupling Approach.

    Science.gov (United States)

    Matsumura, Keisuke; Yoshizaki, Soichi; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Kaiho, Tatsuo; Fuse, Shinichiro; Tanaka, Hiroshi; Takahashi, Takashi

    2015-06-26

    This one-pot, four-component coupling approach (Suzuki-Miyaura coupling/C-H direct arylation/Knoevenagel condensation) was developed for the rapid synthesis of thiophene-based organic dyes for dye-sensitized solar cells (DSSCs). Seven thiophene-based, organic dyes of various donor structures with/without the use of a 3,4-ethylenedioxythiophene (EDOT) moiety were successfully synthesized in good yields based on a readily available thiophene boronic acid pinacol ester scaffold (one-pot, 3-step, 35-61%). Evaluation of the photovoltaic properties of the solar cells that were prepared using the synthesized dyes revealed that the introduction of an EDOT structure beside a cyanoacrylic acid moiety improved the short-circuit current (Jsc) while decreasing the fill factor (FF). The donor structure significantly influenced the open-circuit voltage (Voc), the FF, and the power conversion efficiency (PCE). The use of a n-hexyloxyphenyl amine donor, and our originally developed, rigid, and nonplanar donor, both promoted good cell performance (η=5.2-5.6%). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Machine-Assisted Organic Synthesis.

    Science.gov (United States)

    Ley, Steven V; Fitzpatrick, Daniel E; Myers, Rebecca M; Battilocchio, Claudio; Ingham, Richard J

    2015-08-24

    In this Review we describe how the advent of machines is impacting on organic synthesis programs, with particular emphasis on the practical issues associated with the design of chemical reactors. In the rapidly changing, multivariant environment of the research laboratory, equipment needs to be modular to accommodate high and low temperatures and pressures, enzymes, multiphase systems, slurries, gases, and organometallic compounds. Additional technologies have been developed to facilitate more specialized reaction techniques such as electrochemical and photochemical methods. All of these areas create both opportunities and challenges during adoption as enabling technologies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Rapid synthesis of beta zeolites

    Science.gov (United States)

    Fan, Wei; Chang, Chun -Chih; Dornath, Paul; Wang, Zhuopeng

    2015-08-18

    The invention provides methods for rapidly synthesizing heteroatom containing zeolites including Sn-Beta, Si-Beta, Ti-Beta, Zr-Beta and Fe-Beta. The methods for synthesizing heteroatom zeolites include using well-crystalline zeolite crystals as seeds and using a fluoride-free, caustic medium in a seeded dry-gel conversion method. The Beta zeolite catalysts made by the methods of the invention catalyze both isomerization and dehydration reactions.

  6. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    His work includes organic synthesis and reaction mechanisms mainly in the area of organosilicon chemistry. Presently he is also working on organic synthesis under solvent- free conditions and using clay-catalyses. Keywords. Montmorillonite, ion-exchange, clay-nanomaterials, dehydration pyrolysis, rearrangement, steric.

  7. Fluid Mechanics Optimising Organic Synthesis

    Science.gov (United States)

    Leivadarou, Evgenia; Dalziel, Stuart

    2015-11-01

    The Vortex Fluidic Device (VFD) is a new ``green'' approach in the synthesis of organic chemicals with many industrial applications in biodiesel generation, cosmetics, protein folding and pharmaceutical production. The VFD is a rapidly rotating tube that can operate with a jet feeding drops of liquid reactants to the base of the tube. The aim of this project is to explain the fluid mechanics of the VFD that influence the rate of reactions. The reaction rate is intimately related to the intense shearing that promotes collision between reactant molecules. In the VFD, the highest shears are found at the bottom of the tube in the Rayleigh and the Ekman layer and at the walls in the Stewardson layers. As a step towards optimising the performance of the VFD we present experiments conducted in order to establish the minimum drop volume and maximum rotation rate for maximum axisymmetric spreading without fingering instability. PhD candidate, Department of Applied Mathematics and Theoretical Physics.

  8. Benzodiazepine Synthesis and Rapid Toxicity Assay

    Science.gov (United States)

    Fletcher, James T.; Boriraj, Grit

    2010-01-01

    A second-year organic chemistry laboratory experiment to introduce students to general concepts of medicinal chemistry is described. Within a single three-hour time window, students experience the synthesis of a biologically active small molecule and the assaying of its biological toxicity. Benzodiazepine rings are commonly found in antidepressant…

  9. Rapid flow-based peptide synthesis.

    Science.gov (United States)

    Simon, Mark D; Heider, Patrick L; Adamo, Andrea; Vinogradov, Alexander A; Mong, Surin K; Li, Xiyuan; Berger, Tatiana; Policarpo, Rocco L; Zhang, Chi; Zou, Yekui; Liao, Xiaoli; Spokoyny, Alexander M; Jensen, Klavs F; Pentelute, Bradley L

    2014-03-21

    A flow-based solid-phase peptide synthesis methodology that enables the incorporation of an amino acid residue every 1.8 min under automatic control or every 3 min under manual control is described. This is accomplished by passing a stream of reagent through a heat exchanger into a low volume, low backpressure reaction vessel, and through a UV detector. These features enable continuous delivery of heated solvents and reagents to the solid support at high flow rate, thereby maintaining maximal concentration of reagents in the reaction vessel, quickly exchanging reagents, and eliminating the need to rapidly heat reagents after they have been added to the vessel. The UV detector enables continuous monitoring of the process. To demonstrate the broad applicability and reliability of this method, it was employed in the total synthesis of a small protein, as well as dozens of peptides. The quality of the material obtained with this method is comparable to that for traditional batch methods, and, in all cases, the desired material was readily purifiable by RP-HPLC. The application of this method to the synthesis of the 113-residue Bacillus amyloliquefaciens RNase and the 130-residue DARPin pE59 is described in the accompanying manuscript. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Organic Synthesis using Clay Catalysts

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 7; Issue 1. Organic Synthesis using Clay Catalysts - Clays for 'Green Chemistry'. Gopalpur Nagendrappa. General Article Volume 7 Issue 1 January 2002 pp 64-77. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Asymmetric catalysis in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, S.D.; Click, D.R.; Grumbine, S.K.; Scott, B.L.; Watkins, J.G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The goal of the project was to prepare new catalyst systems, which would perform chemical reactions in an enantioselective manner so as to produce only one of the possible optical isomers of the product molecule. The authors have investigated the use of lanthanide metals bearing both diolate and Schiff-base ligands as catalysts for the enantioselective reduction of prochiral ketones to secondary alcohols. The ligands were prepared from cheap, readily available starting materials, and their synthesis was performed in a ''modular'' manner such that tailoring of specific groups within the ligand could be carried out without repeating the entire synthetic procedure. In addition, they have developed a new ligand system for Group IV and lanthanide-based olefin polymerization catalysts. The ligand system is easily prepared from readily available starting materials and offers the opportunity to rapidly prepare a wide range of closely related ligands that differ only in their substitution patterns at an aromatic ring. When attached to a metal center, the ligand system has the potential to carry out polymerization reactions in a stereocontrolled manner.

  12. Synthesis Road Map Problems in Organic Chemistry

    Science.gov (United States)

    Schaller, Chris P.; Graham, Kate J.; Jones, T. Nicholas

    2014-01-01

    Road map problems ask students to integrate their knowledge of organic reactions with pattern recognition skills to "fill in the blanks" in the synthesis of an organic compound. Students are asked to identify familiar organic reactions in unfamiliar contexts. A practical context, such as a medicinally useful target compound, helps…

  13. Rapid synthesis of acetylcholine receptors at neuromuscular junctions.

    Science.gov (United States)

    Ramsay, D A; Drachman, D B; Pestronk, A

    1988-10-11

    The rate of acetylcholine receptor (AChR) degradation in mature, innervated mammalian neuromuscular junctions has recently been shown to be biphasic; up to 20% are rapidly turned over (RTOs; half life less than 1 day) whereas the remainder are lost more slowly ('stable' AChRs; half life 10-12 days). In order to maintain normal junctional receptor density, synthesis and insertion of AChRs should presumably be sufficiently rapid to replace both the RTOs and the stable receptors. We have tested this prediction by blocking pre-existing AChRs in the mouse sternomastoid muscle with alpha-bungarotoxin (alpha-BuTx), and monitoring the subsequent appearance of 'new' junctional AChRs at intervals of 3 h to 20 days by labeling them with 125I-alpha-BuTx. The results show that new receptors were initially inserted rapidly (16% at 24 h and 28% at 48 h). The rate of increase of 'new' 125I-alpha-BuTx binding sites gradually slowed down during the remainder of the time period studied. Control observations excluded possible artifacts of the experimental procedure including incomplete blockade of AChRs, dissociation of toxin-receptor complexes, or experimentally induced alteration of receptor synthesis. The present demonstration of rapid synthesis and incorporation of AChRs at innervated neuromuscular junctions provides support for the concept of a subpopulation of rapidly turned over AChRs. The RTOs may serve as precursors for the larger population of stable receptors and have an important role in the metabolism of the neuromuscular synapse.

  14. Silver Cluster Catalysts for Green Organic Synthesis

    OpenAIRE

    Shimizu, Ken-ichi; Satsuma, Atsushi

    2011-01-01

    Development of platinum-group-metal (PGM)-free  catalysts for green chemical synthesis is an important topic in synthetic catalysis, because PGM will soon be in short supply in the near future. Our group has paid attention to the catalytic functions of Ag clusters. Here, we summarize our recent work on size- and support-specific catalysis of Ag clusters for green organic synthesis. Ag clusters supported on Al2O3 act as effective heterogeneous catalysts for (1) oxidant-free dehydrogenation of ...

  15. Rapid synthesis of silver nanoparticles from Polylthia longifolia leaves

    Directory of Open Access Journals (Sweden)

    Tollamadugu Nagavenkata

    2012-10-01

    Full Text Available Objective: Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. In this research article we present a simple and eco-friendly biosynthesis of silver nanoparticles using P. longifolia leaf extract as reducing agent. Methods: Characterization using UV-Vis spectrophotometry, Transmission Electron Microscopy (TEM was performed. Results: TEM showed the formation of silver nanoparticles with an average size of 57 nm. Conclusions: P. longifolia demonstrated strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0. Biological methods are a good competent for the chemical procedures, which are enviro- friendly and convenient.

  16. Alkoxyallenes as building blocks for organic synthesis.

    Science.gov (United States)

    Zimmer, Reinhold; Reissig, Hans-Ulrich

    2014-05-07

    Alkoxyallenes are unusually versatile C3 building blocks in organic synthesis. Hence this tutorial review summarizes the most important transformations, including subsequent reactions and their applications in the synthesis of relevant compounds, e.g. natural products. The reactivity patterns involved and the synthons derived from alkoxyallenes are presented. Often alkoxyallenes can serve as substitutes of acrolein or acrolein acetals, utilisation of which has already led to interesting products. Most important is the use of lithiated alkoxyallenes which smoothly react with a variety of electrophiles and lead to products with unique substitution patterns. The heterocycles or carbocycles formed are intermediates for the stereoselective synthesis of natural products or for the preparation of other structurally relevant compounds. The different synthons being put into practice by the use of lithiated alkoxyallenes in these variations will be discussed.

  17. Rapid Nanoparticle Synthesis by Magnetic and Microwave Heating

    Directory of Open Access Journals (Sweden)

    Viktor Chikan

    2016-05-01

    Full Text Available Traditional hot-injection (HI syntheses of colloidal nanoparticles (NPs allows good separation of the nucleation and growth stages of the reaction, a key limitation in obtaining monodisperse NPs, but with limited scalability. Here, two methods are presented for obtaining NPs via rapid heating: magnetic and microwave-assisted. Both of these techniques provide improved engineering control over the separation of nucleation and growth stages of nanomaterial synthesis when the reaction is initiated from room temperature. The advantages of these techniques with preliminary data are presented in this prospective article. It is shown here that microwave assisted heating could possibly provide some selectivity in activating the nanomaterial precursor materials, while magnetic heating can produce very tiny particles in a very short time (even on the millisecond timescale, which is important for scalability. The fast magnetic heating also allows for synthesizing larger particles with improved size distribution, therefore impacting, not only the quantity, but the quality of the nanomaterials.

  18. Organic synthesis in experimental impact shocks

    Science.gov (United States)

    McKay, C. P.; Borucki, W. J.

    1997-01-01

    Laboratory simulations of shocks created with a high-energy laser demonstrate that the efficacy of organic production depends on the molecular, not just the elemental composition of the shocked gas. In a methane-rich mixture that simulates a low-temperature equilibrium mixture of cometary material, hydrogen cyanide and acetylene were produced with yields of 5 x 10(17) molecules per joule. Repeated shocking of the methane-rich mixture produced amine groups, suggesting the possible synthesis of amino acids. No organic molecules were produced in a carbon dioxide-rich mixture, which is at odds with thermodynamic equilibrium approaches to shock chemistry and has implications for the modeling of shock-produced organic molecules on early Earth.

  19. Rapid estimation of organic nitrogen in oil shale wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Harris, G.J.; Daughton, C.G.

    1984-03-01

    Many of the characteristics of oil shale process wastewaters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogen heterocycles and aromatic amines. For the frequent performance assessment of waste treatment procsses designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential.

  20. Metal–organic framework membranes: from synthesis to separation application

    KAUST Repository

    Qiu, Shilun

    2014-06-26

    Metal-organic framework (MOF) materials, which are constructed from metal ions or metal ion clusters and bridging organic linkers, exhibit regular crystalline lattices with relatively well-defined pore structures and interesting properties. As a new class of porous solid materials, MOFs are attractive for a variety of industrial applications including separation membranes-a rapidly developing research area. Many reports have discussed the synthesis and applications of MOFs and MOF thin films, but relatively few have addressed MOF membranes. This critical review provides an overview of the diverse MOF membranes that have been prepared, beginning with a brief introduction to the current techniques for the fabrication of MOF membranes. Gas and liquid separation applications with different MOF membranes are also included (175 references). This journal is © the Partner Organisations 2014.

  1. Synthesis-Spectroscopy Roadmap Problems: Discovering Organic Chemistry

    Science.gov (United States)

    Kurth, Laurie L.; Kurth, Mark J.

    2014-01-01

    Organic chemistry problems that interrelate and integrate synthesis with spectroscopy are presented. These synthesis-spectroscopy roadmap (SSR) problems uniquely engage second-year undergraduate organic chemistry students in the personal discovery of organic chemistry. SSR problems counter the memorize-or-bust strategy that many students tend to…

  2. Novel Aryne Chemistry in Organic Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhijian [Iowa State Univ., Ames, IA (United States)

    2006-12-12

    Arynes are among the most intensively studied systems in chemistry. However, many aspects of the chemistry of these reactive intermediates are not well understood yet and their use as reagents in synthetic organic chemistry has been somewhat limited, due to the harsh conditions needed to generate arynes and the often uncontrolled reactivity exhibited by these species. Recently, o-silylaryl triflates, which can generate the corresponding arynes under very mild reaction conditions, have been found very useful in organic synthesis. This thesis describes several novel and useful methodologies by employing arynes, which generate from o-silylaryl triflates, in organic synthesis. An efficient, reliable method for the N-arylation of amines, sulfonamides and carbamates, and the O-arylation of phenols and carboxylic acids is described in Chapter 1. Amines, sulfonamides, phenols, and carboxylic acids are good nucleophiles, which can react with arynes generated from a-silylaryl triflates to afford the corresponding N- and O-arylated products in very high yields. The regioselectivity of unsymmetrical arynes has also been studied. A lot of useful, functional groups can tolerate our reaction conditions. Carbazoles and dibenzofurans are important heteroaromatic compounds, which have a variety of biological activities. A variety of substituted carbazoles and dibenzofwans are readily prepared in good to excellent yields starting with the corresponding o-iodoanilines or o-iodophenols and o-silylaryl triflates by a treatment with CsF, followed by a Pd-catalyzed cyclization, which overall provides a one-pot, two-step process. By using this methodology, the carbazole alkaloid mukonine has been concisely synthesized in a very good yield. Insertion of an aryne into a σ-bond between a nucleophile and an electrophile (Nu-E) should potentially be a very beneficial process from the standpoint of organic synthesis. A variety of substituted ketones and sulfoxides have been synthesized in good

  3. Synthesis of CVD-graphene on rapidly heated copper foils.

    Science.gov (United States)

    Kim, Sang-Min; Kim, Jae-Hyun; Kim, Kwang-Seop; Hwangbo, Yun; Yoon, Jong-Hyuk; Lee, Eun-Kyu; Ryu, Jaechul; Lee, Hak-Joo; Cho, Seungmin; Lee, Seung-Mo

    2014-05-07

    Most chemical vapor deposition (CVD) systems used for graphene growth mainly employ convection and radiation heat transfer between the heating source and the metal catalyst in order to reach the activation temperature of the reaction, which in general leads to a long synthesis time and poor energy efficiency. Here, we report a highly time- and energy-efficient CVD setup, in which the metal catalyst (Cu) is designed to be physically contacted with a heating source to give quick heat transfer by conduction. The induced conduction heating enabled the usual effects of the pretreatment and annealing of Cu (i.e., annihilation of surface defects, impurities and contaminants) to be achieved in a significantly shorter time compared to conventional CVD. Notably, the rapid heating was observed to lead to larger grains of Cu with high uniformity as compared to the Cu annealed by conventional CVD, which are believed to be beneficial for the growth of high quality graphene. Through this CVD setup, bundles of high quality (∼252 Ω per square) and large area (over 16 inch) graphenes were able to be readily synthesized in 40 min in a significantly efficient way. When considering ease of scalability, high energy effectiveness and considerable productivity, our method is expected to be welcomed by industrialists.

  4. Organic synthesis: march of the machines.

    Science.gov (United States)

    Ley, Steven V; Fitzpatrick, Daniel E; Ingham, Richard J; Myers, Rebecca M

    2015-03-09

    Organic synthesis is changing; in a world where budgets are constrained and the environmental impacts of practice are scrutinized, it is increasingly recognized that the efficient use of human resource is just as important as material use. New technologies and machines have found use as methods for transforming the way we work, addressing these issues encountered in research laboratories by enabling chemists to adopt a more holistic systems approach in their work. Modern developments in this area promote a multi-disciplinary approach and work is more efficient as a result. This Review focuses on the concepts, procedures and methods that have far-reaching implications in the chemistry world. Technologies have been grouped as topics of opportunity and their recent applications in innovative research laboratories are described. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Recyclable Nanostructured Catalytic Systems in Modern Environmentally Friendly Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Irina Beletskaya

    2010-07-01

    Full Text Available Modern chemical synthesis makes heavy use of different types of catalytic systems: homogeneous, heterogeneous and nano-sized. The latter – nano-sized catalysts – have given rise in the 21st century to a rapidly developing area of research encompassing several prospects and opportunities for new technologies. Catalytic reactions ensure high regio- and stereoselectivity of chemical transformations, as well as better yields and milder reaction conditions. In recent years several novel catalytic systems were developed for selective formation of carbon-heteroatom and carbon-carbon bonds. This review presents the achievements of our team in our studies on various types of catalysts containing metal nanoparticles: palladium-containing diblock copolymer micelles; soluble palladium-containing polymers; metallides on a support; polymeric metal salts and oxides; and, in addition, metal-free organic catalysts based on soluble polymers acting as nanoreactors. Representative examples are given and discussed in light of possible applications to solve important problems in modern organic synthesis.

  6. Flow “Fine” Synthesis: High Yielding and Selective Organic Synthesis by Flow Methods

    Science.gov (United States)

    2015-01-01

    Abstract The concept of flow “fine” synthesis, that is, high yielding and selective organic synthesis by flow methods, is described. Some examples of flow “fine” synthesis of natural products and APIs are discussed. Flow methods have several advantages over batch methods in terms of environmental compatibility, efficiency, and safety. However, synthesis by flow methods is more difficult than synthesis by batch methods. Indeed, it has been considered that synthesis by flow methods can be applicable for the production of simple gasses but that it is difficult to apply to the synthesis of complex molecules such as natural products and APIs. Therefore, organic synthesis of such complex molecules has been conducted by batch methods. On the other hand, syntheses and reactions that attain high yields and high selectivities by flow methods are increasingly reported. Flow methods are leading candidates for the next generation of manufacturing methods that can mitigate environmental concerns toward sustainable society. PMID:26337828

  7. Organic or organometallic template mediated clay synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1992-12-31

    A method is given for incorporating diverse varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and LiF for 2 days with an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by US patent No. 3,887,454 issued to Hickson, June 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have water-solubility, positive charge, and thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  8. Stepwise Synthesis of Metal-Organic Frameworks.

    Science.gov (United States)

    Bosch, Mathieu; Yuan, Shuai; Rutledge, William; Zhou, Hong-Cai

    2017-04-18

    Metal-organic frameworks (MOFs) are a category of porous materials that offer unparalleled control over their surface areas (demonstrated as higher than for any other material), pore characteristics, and functionalization. This allows them to be customized for exceptional performance in a wide variety of applications, most commonly including gas storage and separation, drug delivery, luminescence, or heterogeneous catalysis. In order to optimize biomimicry, controlled separations and storage of small molecules, and detailed testing of structure-property relationships, one major goal of MOF research is "rational design" or "pore engineering", or precise control of the placement of multiple functional groups in pores of chosen sizes and shapes. MOF crystal growth can be controlled through judicious design of stepwise synthetic routes, which can also allow functionalization of MOFs in ways that were previously synthetically inaccessible. Organic chemists have developed a library of powerful techniques over the last century, allowing the total synthesis and detailed customization of complex molecules. Our hypothesis is that total synthesis is also possible for customized porous materials, through the development of similar multistep techniques. This will enable the rational design of MOFs, which is a major goal of many researchers in the field. We have begun developing a library of stepwise synthetic techniques for MOFs, allowing the synthesis of ultrastable MOFs with multiple crystallographically ordered and customizable functional groups at controlled locations within the pores. In order to design MOFs with precise control over pore size and shape, stability, and the placement of multiple different functional groups within the pores at tunable distances from one another, we have concentrated on methods which allow us to circumvent the lack of control inherent to one-pot MOF crystallization. Kinetically tuned dimensional augmentation (KTDA) is an approach using

  9. Histidine as a catalyst in organic synthesis: A facile in situ synthesis ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 113; Issue 4. Histidine as a catalyst in organic synthesis: A facile in situ synthesis of , N-diarylnitrones. H Mallesha K R Ravi Kumar B K Vishu Kumar K Mantelingu K S Rangappa. Organic Volume 113 Issue 4 August 2001 pp 291-296 ...

  10. Synthesis of polyaryl rigid-core carbosilane dendrimers for supported organic synthesis

    NARCIS (Netherlands)

    Wander, M.; Hausoul, P.J.C.; Sliedregt, L.A.J.M.; van Steen, B.J.; van Koten, G.; Klein Gebbink, R.J.M.

    2009-01-01

    Carbosilane dendrimers can be used as soluble supports for organic synthesis, since their structure allows separation of excess reagents from the supported products, eventually yielding products of high purity and in high yield, as in solid-phase organic synthesis (SPOS). In previous studies often

  11. Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels

    Energy Technology Data Exchange (ETDEWEB)

    Francis, Sanju [Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)], E-mail: sanju@barc.gov.in; Mitra, D.; Dhanawade, B.R.; Varshney, Lalit; Sabharwal, Sunil [Radiation Technology Development Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2009-11-15

    In this report a simple route for gamma radiation induced synthesis of superporous hydrogel (SPH) is described. Conventional SPH synthesis requires foaming and cross-linking reactions to take place simultaneously. However, in radiation synthesis it is difficult to introduce foaming during the cross-linking reactions. In order to overcome this limitation, the foaming and radiation cross-linking reactions were decoupled and carried out in two stages. The polyacrylamide SPH synthesized by this approach has very fast swelling kinetics compared to the non-porous hydrogel.

  12. Gamma radiation synthesis of rapid swelling superporous polyacrylamide hydrogels

    Science.gov (United States)

    Francis, Sanju; Mitra, D.; Dhanawade, B. R.; Varshney, Lalit; Sabharwal, Sunil

    2009-11-01

    In this report a simple route for gamma radiation induced synthesis of superporous hydrogel (SPH) is described. Conventional SPH synthesis requires foaming and cross-linking reactions to take place simultaneously. However, in radiation synthesis it is difficult to introduce foaming during the cross-linking reactions. In order to overcome this limitation, the foaming and radiation cross-linking reactions were decoupled and carried out in two stages. The polyacrylamide SPH synthesized by this approach has very fast swelling kinetics compared to the non-porous hydrogel.

  13. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract

    Science.gov (United States)

    Li, Shikuo; Shen, Yuhua; Xie, Anjian; Yu, Xuerong; Zhang, Xiuzhen; Yang, Liangbao; Li, Chuanhao

    2007-10-01

    We describe the formation of amorphous selenium (α-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO32-) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO32- ions to Se0, but also controls the nucleation and growth of Se0, and even participates in the formation of α-Se/protein composites. The size and shell thickness of the α-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO32- ions by Capsicum annuum L extract.

  14. Fundamentals and applications of organic electrochemistry synthesis, materials, devices

    CERN Document Server

    Fuchigami, Toshio; Inagi, Shinsuke

    2014-01-01

    This textbook is an accessible overview of the broad field of organic electrochemistry, covering the fundamentals and applications of contemporary organic electrochemistry.  The book begins with an introduction to the fundamental aspects of electrode electron transfer and methods for the electrochemical measurement of organic molecules. It then goes on to discuss organic electrosynthesis of molecules and macromolecules, including detailed experimental information for the electrochemical synthesis of organic compounds and conducting polymers. Later chapters highlight new methodology for organic electrochemical synthesis, for example electrolysis in ionic liquids, the application to organic electronic devices such as solar cells and LEDs, and examples of commercialized organic electrode processes. Appendices present useful supplementary information including experimental examples of organic electrosynthesis, and tables of physical data (redox potentials of various organic solvents and organic compounds and phy...

  15. Patterns in Organometallic Chemistry with Application in Organic Synthesis.

    Science.gov (United States)

    Schwartz, Jeffrey; Labinger, Jay A.

    1980-01-01

    Of interest in this discussion of organometallic complexes are stoichiometric or catalytic reagents for organic synthesis in the complex transformations observed during synthesis for transition metal organometallic complexes. Detailed are general reaction types from which the chemistry or many transition metal organometallic complexes can be…

  16. Peptide synthesis in neat organic solvents with novel thermostable proteases

    NARCIS (Netherlands)

    Toplak, Ana; Nuijens, Timo; Quaedflieg, Peter J L M; Wu, Bian; Janssen, Dick B

    Biocatalytic peptide synthesis will benefit from enzymes that are active at low water levels in organic solvent compositions that allow good substrate and product solubility. To explore the use of proteases from thermophiles for peptide synthesis under such conditions, putative protease genes of the

  17. Greener and Sustainable Trends in Synthesis of Organics and Nanomaterials

    Science.gov (United States)

    Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and na...

  18. Rapid, efficient and eco-friendly procedure for the synthesis of ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Chemical Sciences; Volume 129; Issue 2. Rapid, efficient and eco-friendly procedure for the synthesis of quinoxalines under solvent-free conditions using sulfated polyborate as a recyclable catalyst. KRISHNA S INDALKAR CHETAN K KHATRI GANESH U CHATURBHUJ. Rapid Communication ...

  19. Rapid estimation of organic nitrogen in oil shale waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting the sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a

  20. New and rapid access to synthesis of novel polysubstituted ...

    Indian Academy of Sciences (India)

    The highly efficient role of antimony trichloride and stannous chloride dihydrate as catalyst in this synthesis was shown and their effects on the reaction process were studied. By this advantage, several polysubstituted imidazoles as pharmaceutical important molecules can be prepared in high yield and high purity.

  1. New and rapid access to synthesis of novel polysubstituted ...

    Indian Academy of Sciences (India)

    Abstract. In this work, new, efficient and environmentally adapted synthesis of polysubstituted imidazoles in one-pot is repoted. The multicomponent reaction of various aldehydes, benzil, aliphatic and aromatic primary amines and ammonium acetate under solvent-free condition is explained. The highly efficient role of ...

  2. Microwave-assisted rapid synthesis of Si-MCM-41

    Indian Academy of Sciences (India)

    Administrator

    parallel channels with diameters 15 to 100 Å, is prepared hydrothermally using a broad spectrum of surfactants as templates under a wide range of synthetic conditions. (temperature, pH, reaction time and gel compositions). Hydrothermal synthesis of MCM-. 41 is mostly reported to take several days for completion. The use ...

  3. Radiometric method for the rapid detection of Leptospira organisms

    Energy Technology Data Exchange (ETDEWEB)

    Manca, N.; Verardi, R.; Colombrita, D.; Ravizzola, G.; Savoldi, E.; Turano, A.

    1986-02-01

    A rapid and sensitive radiometric method for detection of Leptospira interrogans serovar pomona and Leptospira interrogans serovar copenhageni is described. Stuart's medium and Middlebrook TB (12A) medium supplemented with bovine serum albumin, catalase, and casein hydrolysate and labeled with /sup 14/C-fatty acids were used. The radioactivity was measured in a BACTEC 460. With this system, Leptospira organisms were detected in human blood in 2 to 5 days, a notably shorter time period than that required for the majority of detection techniques.

  4. Recent developments on ultrasound assisted catalyst-free organic synthesis.

    Science.gov (United States)

    Banerjee, Bubun

    2017-03-01

    Mother Nature needs to be protected from ever increasing chemical pollutions associated with synthetic organic processes. The fundamental challenge for today's methodologists is to make their protocols more environmentally benign and sustainable by avoiding the extensive use of hazardous reagents and solvents, harsh reaction conditions, and toxic metal catalysts. However, the people of the twenty-first century are well aware about the side effects of those hazardous substances used and generated by the chemical processes. As a result, the last decade has seen a tremendous outburst in modifying chemical processes to make them 'sustainable' for the betterment of our environment. Catalysts play a crucial role in organic synthesis and thus they find huge applications and uses. Scientists' continuously trying to modify the catalysts to reduce their toxicity level, but the most benign way is to design an organic reaction without catalyst(s), if possible. It is worthy to mention that the involvement of ultrasound in organic synthesis is sometimes fulfilling this goal. In many occasions the applications of ultrasound can avoid the use of catalysts in organic reactions. Such beneficial features as a whole have motivated the organic chemists to apply ultrasonic irradiation in more heights and as a results, in recent past, there were immense applications of ultrasound in organic reactions for the synthesis of diverse organic scaffolds under catalyst-free condition. The present review summarizes the latest developments on ultrasound assisted catalyst-free organic synthesis reported so far. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Camera-enabled techniques for organic synthesis

    Science.gov (United States)

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  6. Multidisciplinary synthetic approach for rapid combinatorial library synthesis of triaza-fluorenes.

    Science.gov (United States)

    Hsiao, Ya-Shan; Yellol, Gorakh S; Chen, Li-Hsun; Sun, Chung-Ming

    2010-09-13

    A new multidisciplinary synthetic approach comprising polymer-support synthesis, microwave-assisted synthesis, and multicomponent condensation facilitates synthesis of triaza-fluorenes library with a set of advantages such as rapid process, simple purification, and structural diversity in one shot. Microwave-assisted multistep synthetic protocol was used to construct the benzimidazole ring on soluble polymer support using activated aryl-fluorides. The PEG anchored aryl fluoride was condensed with selective primary amines via an ipso-fluoro displacement reaction followed by reduction of nitro group. The subsequent cyclization with cyanogen bromide is used as a key step to furnish immobilized benzimidazoles. Finally multicomponent condensation of resulted polymer bound benzimidazoles with various aldehydes and 1,3-diones under microwave irradiations provides rapid access for triaza-fluorenes with high purity and excellent yields. Microwave irradiation greatly accelerates the rate of all reactions while polymer support facilitates purifications by simple precipitation technique. This strategy dramatically increases efficiency of overall multistep synthesis.

  7. A rapid and convergent synthesis of the integrastatin core

    KAUST Repository

    Tadross, Pamela M.

    2011-01-01

    The tetracyclic core of the integrastatin natural products has been prepared in a convergent and rapid manner. Our strategy relies upon a palladium(ii)-catalyzed oxidative cyclization to form the central [3.3.1]-dioxabicycle of the natural product core. Overall, the core has been completed in only 4 linear steps from known compounds. © 2011 The Royal Society of Chemistry.

  8. Modern separation techniques for the efficient workup in organic synthesis.

    Science.gov (United States)

    Tzschucke, Carl Christoph; Markert, Christian; Bannwarth, Willi; Roller, Sebastian; Hebel, André; Haag, Rainer

    2002-11-04

    The shift of paradigm in combinatorial chemistry, from large compound libraries (of mixtures) on a small scale towards defined compound libraries where each compound is prepared in an individual well, has stimulated the search for alternative separation approaches. The key to a rapid and efficient synthesis is not only the parallel arrangement of reactions, but simple work-up procedures so as to circumvent time-consuming and laborious purification steps. During the initial development stages of combinatorial synthesis it was believed that rational synthesis of individual compounds could only be achieved by solid-phase strategies. However, there are a number of problems in solid-phase chemistry: most notably there is the need for a suitable linker unit, the limitation of the reaction conditions to certain solvents and reagents, and the heterogeneous reaction conditions. Further disadvantages are: the moderate loading capacities of the polymeric support and the limited stability of the solid support. In the last few years several new separation techniques have been developed. Depending on the chemical problem or the class of compounds to be prepared, one can choose from a whole array of different approaches. Most of these modern separation approaches rely on solution-phase chemistry, even though some of them use solid-phase resins as tools (for example, as scavengers). Several of these separation techniques are based on liquid-liquid phase separation, including ionic liquids, fluorous phases, and supercritical solvents. Besides being benign with respect to their environmental aspects, they also show a number of advantages with respect to the work-up procedures of organic reactions as well as simplicity in the isolation of products. Another set of separation strategies involves polymeric supports (for example, as scavengers or for cyclative cleavage), either as solid phases or as soluble polymeric supports. In contrast to solid-phase resins, soluble polymeric supports

  9. Rapid Size- Controlled Synthesis of Dextran-Coated, Copper-Doped Iron Oxide Nanoparticles

    Science.gov (United States)

    Wong, Ray M.

    2011-12-01

    Development of dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise in recent years due to the potential for these probes to facilitate combining the complementary high resolution of MRI and the high sensitivity of PET. The efficient synthesis of multimodal probes that include the radiolabels for PET can be hindered due to prolonged reaction times during radioisotope incorporation, and the resulting decay of the radiolabel. Along with a time-efficient synthesis, one also needs an optimal synthesis that yields products in a desirable size range (between 20-100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis of dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for synthesizing dextran-coated iron oxide particles require refluxing for 2 hours and result in approximately 50 nm particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles in 5 minutes of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu, and demonstrate the successful incorporation of copper into these particles with the aim of future use for rapid 64Cu incorporation.

  10. A Simple, Rapid and Efficient One-pot Protocol for the Synthesis of 2 ...

    African Journals Online (AJOL)

    NJD

    A Simple, Rapid and Efficient One-pot Protocol for the. Synthesis of 2-substituted Benzothiazole Derivatives and their Antimicrobial Screening. Abdul Rauf,a* Saloni Gangal,a Shweta Sharmaa and Maryam Zahinb. aDepartment of Chemistry, Aligarh Muslim University, Aligarh 2002002, India. bDepartment of Agricultural ...

  11. An efficient and rapid synthesis of 3-hydroxy-3-alkyl-2-oxindoles via ...

    Indian Academy of Sciences (India)

    Abstract. A robust and rapid synthesis of 3-hydroxy-3-alkyl-2-oxindoles from isatins is described. This method introduces an ecofriendly, un-activated Zn dust, solid NH₄Cl and substrates under aqueous conditions, which has produced the product in moderate to good yields. Without using column chromatography, majority ...

  12. Transitioning organic synthesis from organic solvents to water. What's your E Factor?

    Science.gov (United States)

    Lipshutz, Bruce H.; Ghorai, Subir

    2014-01-01

    Traditional organic chemistry, and organic synthesis in particular, relies heavily on organic solvents, as most reactions involve organic substrates and catalysts that tend to be water-insoluble. Unfortunately, organic solvents make up most of the organic waste created by the chemical enterprise, whether from academic, industrial, or governmental labs. One alternative to organic solvents follows the lead of Nature: water. To circumvent the solubility issues, newly engineered “designer” surfactants offer an opportunity to efficiently enable many of the commonly used transition metal-catalyzed and related reactions in organic synthesis to be run in water, and usually at ambient temperatures. This review focuses on recent progress in this area, where such amphiphiles spontaneously self-aggregate in water. The resulting micellar arrays serve as nanoreactors, obviating organic solvents as the reaction medium, while maximizing environmental benefits. PMID:25170307

  13. Organic nanomaterials: synthesis, characterization, and device applications

    CERN Document Server

    Torres, Tomas

    2013-01-01

    Recent developments in nanoscience and nanotechnology have given rise to a new generation of functional organic nanomaterials with controlled morphology and well-defined properties, which enable a broad range of useful applications. This book explores some of the most important of these organic nanomaterials, describing how they are synthesized and characterized. Moreover, the book explains how researchers have incorporated organic nanomaterials into devices for real-world applications.Featuring contributions from an international team of leading nanoscientists, Organic Nanomaterials is divided into five parts:Part One introduces the fundamentals of nanomaterials and self-assembled nanostructuresPart Two examines carbon nanostructures—from fullerenes to carbon nanotubes to graphene—reporting on properties, theoretical studies, and applicationsPart Three investigates key aspects of some inorganic materials, self-assembled monolayers,...

  14. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract

    Energy Technology Data Exchange (ETDEWEB)

    Li Shikuo; Shen Yuhua; Xie Anjian; Yu Xuerong; Zhang Xiuzhen; Yang Liangbao; Li Chuanhao [School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039 (China)

    2007-10-10

    We describe the formation of amorphous selenium ({alpha}-Se)/protein composites using Capsicum annuum L extract to reduce selenium ions (SeO{sub 3}{sup 2-}) at room temperature. The reaction occurs rapidly and the process is simple and easy to handle. A protein with a molecular weight of 30 kDa extracted from Capsicum annuum L not only reduces the SeO{sub 3}{sup 2-} ions to Se{sup 0}, but also controls the nucleation and growth of Se{sup 0}, and even participates in the formation of {alpha}-Se/protein composites. The size and shell thickness of the {alpha}-Se/protein composites increases with high Capsicum annuum L extract concentration, and decreases with low reaction solution pH. The results suggest that this eco-friendly, biogenic synthesis strategy could be widely used for preparing inorganic/organic biocomposites. In addition, we also discuss the possible mechanism of the reduction of SeO{sub 3}{sup 2-} ions by Capsicum annuum L extract.

  15. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  16. A biocompatible alkene hydrogenation merges organic synthesis with microbial metabolism.

    Science.gov (United States)

    Sirasani, Gopal; Tong, Liuchuan; Balskus, Emily P

    2014-07-21

    Organic chemists and metabolic engineers use orthogonal technologies to construct essential small molecules such as pharmaceuticals and commodity chemicals. While chemists have leveraged the unique capabilities of biological catalysts for small-molecule production, metabolic engineers have not likewise integrated reactions from organic synthesis with the metabolism of living organisms. Reported herein is a method for alkene hydrogenation which utilizes a palladium catalyst and hydrogen gas generated directly by a living microorganism. This biocompatible transformation, which requires both catalyst and microbe, and can be used on a preparative scale, represents a new strategy for chemical synthesis that combines organic chemistry and metabolic engineering. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. The 2010 Chemistry Nobel Prize: Pd (0)-Catalyzed Organic Synthesis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 16; Issue 2. The 2010 Chemistry Nobel Prize: Pd(O)-Catalyzed Organic Synthesis. Gopalpur Nagendrappa Y C Sunil Kumar. General Article Volume 16 Issue 2 February 2011 pp 152-164 ...

  18. organic template free synthesis of zsm11 from kaolinite clay

    African Journals Online (AJOL)

    user

    hydrocarbon, etc. Accordingly, this work present successful synthesis of zeolite ZSM11 from kaolinite clay, seeded with. NaY type zeolite and aged for 3-11 days, in an organic template free condition. The used kaolinite clays were sourced from two different mines in Nigeria, namely; Kankara and Onibode. They were both ...

  19. Synthesis of Bisphenol Z: An Organic Chemistry Experiment

    Science.gov (United States)

    Gregor, Richard W.

    2012-01-01

    A student achievable synthesis of bisphenol Z, 4,4'-(cyclohexane-1,1-diyl)diphenol, from the acid-catalyzed reaction of phenol with cyclohexanone is presented. The experiment exemplifies all the usual pedagogy for the standard topic of electrophilic aromatic substitution present in the undergraduate organic chemistry curriculum, while providing…

  20. Synthesis and Chemistry of Organic Geminal Di- and Triazides.

    Science.gov (United States)

    Häring, Andreas P; Kirsch, Stefan F

    2015-11-06

    This review recapitulates all available literature dealing with the synthesis and reactivity of geminal organic di- and triazides. These compound classes are, to a large extent, unexplored despite their promising chemical properties and their simple preparation. In addition, the chemistry of carbonyl diazide (2) and tetraazidomethane (105) is described in separate sections.

  1. Concept of Green Chemistry-Redesigning Organic Synthesis

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 11. Concept of Green Chemistry - Redesigning Organic Synthesis. Bharati V Badami. General Article Volume 13 Issue 11 November 2008 pp 1041-1048. Fulltext. Click here to view fulltext PDF. Permanent link:

  2. Ultrasound: A Boon in the Synthesis of Organic Compounds

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 3; Issue 9. Ultrasound: A Boon in the Synthesis of Organic Compounds. Vasundhara Singh Kanwal Preet Kaur Anupam Khurana G L Kad. General Article Volume 3 Issue 9 September 1998 pp 56-60 ...

  3. ULTRASOUND-ASSISTED ORGANIC SYNTHESIS: ALCOHOL OXIDATION AND OLEFIN EPOXIDATION

    Science.gov (United States)

    Ultrasound-assisted Organic Synthesis: Alcohol Oxidation and Olefin EpoxidationUnnikrishnan R Pillai, Endalkachew Sahle-Demessie , Vasudevan Namboodiri, Quiming Zhao, Juluis EnriquezU.S. EPA , 26 W. Martin Luther King Dr. , Cincinnati, OH 45268 Phone: 513-569-773...

  4. Synthesis of Organic Compounds for Malaria Chemotherapeutic Studies

    Science.gov (United States)

    1975-10-01

    AD__ REPORT NUMBER 10 SYNTHESIS OF ORGANIC COMPOUNDS FOR MALARIA CHEMOTHERAPEUTIC STUDIES SANNUAL PROGRESS REPORT by L • ,C. C. Cheng, Ph.D. Ping-Lu...block number) 8-Aminoquinollnes, Antimalarial Activity, Diastereoisomers, Febrifugine, Furanomycin, Malaria , Malaria Chemotherapeutic Agents...andtilte organic layer were dried over muagnesium sulfate-, evaporastion of ether gavi - a d.)rk brown liquid. ThIAN was distilled at anl oil-bath tow

  5. Earthworm Is a Versatile and Sustainable Biocatalyst for Organic Synthesis

    Science.gov (United States)

    Guan, Zhi; Chen, Yan-Li; Yuan, Yi; Song, Jian; Yang, Da-Cheng; Xue, Yang; He, Yan-Hong

    2014-01-01

    A crude extract of earthworms was used as an eco-friendly, environmentally benign, and easily accessible biocatalyst for various organic synthesis including the asymmetric direct aldol and Mannich reactions, Henry and Biginelli reactions, direct three-component aza-Diels-Alder reactions for the synthesis of isoquinuclidines, and domino reactions for the synthesis of coumarins. Most of these reactions have never before seen in nature, and moderate to good enantioselectivities in aldol and Mannich reactions were obtained with this earthworm catalyst. The products can be obtained in preparatively useful yields, and the procedure does not require any additional cofactors or special equipment. This work provides an example of a practical way to use sustainable catalysts from nature. PMID:25148527

  6. Synthesis of Organics in the Early Solar Nebula

    Science.gov (United States)

    Johnson, Natasha M.; Manning, S.; Nuth, J. A., III

    2007-10-01

    It is unknown what process or processes made the organics that are found or detected in extraterrestrial materials. One process that forms organics are Fischer-Tropsch type (FTT) reactions. Fischer-Tropsch type synthesis produces complex hydrocarbons by hydrogenating carbon monoxide via surface mediated reactions. The products of these reactions have been well-studied using `natural’ catalysts [1] and calculations of the efficiency of FTT synthesis in the Solar Nebula suggest that these types of reactions could make significant contributions to material near three AU [2]. We use FTT synthesis to coat Fe-silicate amorphous grains with organic material to simulate the chemistry in the early Solar Nebula. These coatings are composed of macromolecular organic phases [3]. Previous work also showed that as the grains became coated, Haber-Bosch type reactions took place resulting in nitrogen-bearing organics [4]. Our experiments consist of circulating CO, N2, and H2 gas through Fe- amorphous silicate grains that are maintained at a specific temperature in a closed system. The gases are passed through an FTIR spectrometer and are measured to monitor the reaction progress. Samples are analyzed using FTIR, and GCMS (including pyrolysis) and extraction techniques are used to analyze the organic coatings. These experiments show that these types of reactions are an effective means to produce complex hydrocarbons. We present the analysis of the produced organics (solid and gas phase) and the change in the production rate of several compounds as the grains become coated. Organics generated by this technique could represent the carbonaceous material incorporated in comets and meteorites. References: [1] Hayatsu and Anders 1981. Topics in Current Chemistry 99:1-37. [2] Kress and Tielens 2001. MAPS 36:75-91. [3] Johnson et al. 2004. #1876. 35th LPSC. [4] Hill and Nuth 2003. Astrobiology 3:291-304. This work was supported by a grant from NASA.

  7. Mechanochemical synthesis of small organic molecules

    Directory of Open Access Journals (Sweden)

    Tapas Kumar Achar

    2017-09-01

    Full Text Available With the growing interest in renewable energy and global warming, it is important to minimize the usage of hazardous chemicals in both academic and industrial research, elimination of waste, and possibly recycle them to obtain better results in greener fashion. The studies under the area of mechanochemistry which cover the grinding chemistry to ball milling, sonication, etc. are certainly of interest to the researchers working on the development of green methodologies. In this review, a collection of examples on recent developments in organic bond formation reactions like carbon–carbon (C–C, carbon–nitrogen (C–N, carbon–oxygen (C–O, carbon–halogen (C–X, etc. is documented. Mechanochemical syntheses of heterocyclic rings, multicomponent reactions and organometallic molecules including their catalytic applications are also highlighted.

  8. Mn3O4 nano-sized crystals: Rapid synthesis and extension to ...

    Indian Academy of Sciences (India)

    Mn3O4 nano-sized crystals: Rapid synthesis and extension to preparation of nanosized LiMn2O4 materials. XIAO-LING CUI, YONG-LI LI, SHI-YOU LI. ∗. , GUO-CUN SUN, JIN-XIA MA,. LU ZHANG, TIAN-MING LI and RONG-BO MA. College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, ...

  9. Towards waste free organic synthesis using nanostructured hybrid silicas.

    Science.gov (United States)

    Ciriminna, Rosaria; Ilharco, Laura M; Pandarus, Valerica; Fidalgo, Alexandra; Béland, François; Pagliaro, Mario

    2014-06-21

    As catalysis and organic synthesis come together again, the need for stable, selective and truly heterogeneous solid catalysts for clean and efficient synthetic organic chemistry has increased. Hybrid silica glasses obtained by the sol-gel nanochemistry approach can be successfully used for the waste-free synthesis of valued chemicals in various applications. This success derives from the deliberate chemical design of hybrid nanostructures capable of immobilizing and stabilizing organocatalytic species and unstable metal nanoparticles. The highly selective activity along with a broad scope and ease of application of these mesoporous materials to high-throughput reactions opens the route to faster, cleaner and more convenient processes for both small and large scale manufacturing of useful molecules.

  10. Rapid size-controlled synthesis of dextran-coated, 64Cu-doped iron oxide nanoparticles.

    Science.gov (United States)

    Wong, Ray M; Gilbert, Dustin A; Liu, Kai; Louie, Angelique Y

    2012-04-24

    Research into developing dual modality probes enabled for magnetic resonance imaging (MRI) and positron emission tomography (PET) has been on the rise recently due to the potential to combine the high resolution of MRI and the high sensitivity of PET. Current synthesis techniques for developing multimodal probes is largely hindered in part by prolonged reaction times during radioisotope incorporation--leading to a weakening of the radioactivity. Along with a time-efficient synthesis, the resulting products must fit within a critical size range (between 20 and 100 nm) to increase blood retention time. In this work, we describe a novel, rapid, microwave-based synthesis technique to grow dextran-coated iron oxide nanoparticles doped with copper (DIO/Cu). Traditional methods for coprecipitation of dextran-coated iron oxide nanoparticles require refluxing for 2 h and result in approximately 50 nm diameter particles. We demonstrate that microwave synthesis can produce 50 nm nanoparticles with 5 min of heating. We discuss the various parameters used in the microwave synthesis protocol to vary the size distribution of DIO/Cu and demonstrate the successful incorporation of (64)Cu into these particles with the aim of future use for dual-mode MR/PET imaging.

  11. Adiantum philippense L. Frond Assisted Rapid Green Synthesis of Gold and Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Duhita G. Sant

    2013-01-01

    Full Text Available Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs. The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications.

  12. Organic peroxides' gas-particle partitioning and rapid heterogeneous decomposition on secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    H. Li

    2016-02-01

    Full Text Available Organic peroxides, important species in the atmosphere, promote secondary organic aerosol (SOA aging, affect HOx radicals cycling, and cause adverse health effects. However, the formation, gas-particle partitioning, and evolution of organic peroxides are complicated and still unclear. In this study, we investigated in the laboratory the production and gas-particle partitioning of peroxides from the ozonolysis of α-pinene, which is one of the major biogenic volatile organic compounds in the atmosphere and an important precursor for SOA at a global scale. We have determined the molar yields of hydrogen peroxide (H2O2, hydromethyl hydroperoxide (HMHP, peroxyformic acid (PFA, peroxyacetic acid (PAA, and total peroxides (TPOs, including unknown peroxides and the fraction of peroxides in α-pinene/O3 SOA. Comparing the gas-phase peroxides with the particle-phase peroxides, we find that gas-particle partitioning coefficients of PFA and PAA are 104 times higher than the values from the theoretical prediction, indicating that organic peroxides play a more important role in SOA formation than previously expected. Here, the partitioning coefficients of TPO were determined to be as high as (2–3  ×  10−4 m3 µg−1. Even so, more than 80 % of the peroxides formed in the reaction remain in the gas phase. Water changes the distribution of gaseous peroxides, while it does not affect the total amount of peroxides in either the gas or the particle phase. Approx. 18 % of gaseous peroxides undergo rapid heterogeneous decomposition on SOA particles in the presence of water vapor, resulting in the additional production of H2O2. This process can partially explain the unexpectedly high H2O2 yields under wet conditions. Transformation of organic peroxides to H2O2 also preserves OH in the atmosphere, helping to improve the understanding of OH cycling.

  13. Rapid heterogeneous oxidation of organic coatings on submicron aerosols

    Science.gov (United States)

    Lim, C. Y.; Browne, E. C.; Sugrue, R. A.; Kroll, J. H.

    2017-03-01

    Laboratory studies have found that heterogeneous oxidation can affect the composition and loading of atmospheric organic aerosol particles over time scales of several days, but most studies have examined pure organic particles only. In this study, in order to probe the reactivity of organic species confined near the particle surface, the rates and products of the OH-initiated oxidation of pure squalane particles are compared to oxidation of thin coatings of squalane on ammonium sulfate particles. The squalane reaction rate constant shows a linear dependence on the organic surface area-to-volume ratio, with rate constants for coated particles up to 10 times larger than for pure particles. Changes in the carbon oxidation state and fraction of particulate carbon remaining show similar enhancements, implying that heterogeneous oxidation may exhibit a stronger effect on the loadings and properties of organic aerosol than previously estimated from laboratory studies.

  14. Engineering and Applications of fungal laccases for organic synthesis

    Science.gov (United States)

    Kunamneni, Adinarayana; Camarero, Susana; García-Burgos, Carlos; Plou, Francisco J; Ballesteros, Antonio; Alcalde, Miguel

    2008-01-01

    Laccases are multi-copper containing oxidases (EC 1.10.3.2), widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product) and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed. PMID:19019256

  15. Engineering and Applications of fungal laccases for organic synthesis

    Directory of Open Access Journals (Sweden)

    Ballesteros Antonio

    2008-11-01

    Full Text Available Abstract Laccases are multi-copper containing oxidases (EC 1.10.3.2, widely distributed in fungi, higher plants and bacteria. Laccase catalyses the oxidation of phenols, polyphenols and anilines by one-electron abstraction, with the concomitant reduction of oxygen to water in a four-electron transfer process. In the presence of small redox mediators, laccase offers a broader repertory of oxidations including non-phenolic substrates. Hence, fungal laccases are considered as ideal green catalysts of great biotechnological impact due to their few requirements (they only require air, and they produce water as the only by-product and their broad substrate specificity, including direct bioelectrocatalysis. Thus, laccases and/or laccase-mediator systems find potential applications in bioremediation, paper pulp bleaching, finishing of textiles, bio-fuel cells and more. Significantly, laccases can be used in organic synthesis, as they can perform exquisite transformations ranging from the oxidation of functional groups to the heteromolecular coupling for production of new antibiotics derivatives, or the catalysis of key steps in the synthesis of complex natural products. In this review, the application of fungal laccases and their engineering by rational design and directed evolution for organic synthesis purposes are discussed.

  16. Simple and Rapid Synthesis of Magnetite/Hydroxyapatite Composites for Hyperthermia Treatments via a Mechanochemical Route

    Science.gov (United States)

    Iwasaki, Tomohiro; Nakatsuka, Ryo; Murase, Kenya; Takata, Hiroshige; Nakamura, Hideya; Watano, Satoru

    2013-01-01

    This paper presents a simple method for the rapid synthesis of magnetite/hydroxyapatite composite particles. In this method, superparamagnetic magnetite nanoparticles are first synthesized by coprecipitation using ferrous chloride and ferric chloride. Immediately following the synthesis, carbonate-substituted (B-type) hydroxyapatite particles are mechanochemically synthesized by wet milling dicalcium phosphate dihydrate and calcium carbonate in a dispersed suspension of magnetite nanoparticles, during which the magnetite nanoparticles are incorporated into the hydroxyapatite matrix. We observed that the resultant magnetite/hydroxyapatite composites possessed a homogeneous dispersion of magnetite nanoparticles, characterized by an absence of large aggregates. When this material was subjected to an alternating magnetic field, the heat generated increased with increasing magnetite concentration. For a magnetite concentration of 30 mass%, a temperature increase greater than 20 K was achieved in less than 50 s. These results suggest that our composites exhibit good hyperthermia properties and are promising candidates for hyperthermia treatments. PMID:23629669

  17. A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports.

    Science.gov (United States)

    Huo, Congde; Chan, Tak Hang

    2010-08-01

    This critical review describes a new liquid-phase strategy for organic synthesis by using organic ions as soluble supports. Catalysts or reagents or substrates are immobilized onto organic ions. They are generally soluble in polar organic solvents (e.g. CH(3)CN) or ionic liquids but insoluble in non-polar solvents (e.g. ether or hexanes). Their reactions are carried out in homogeneous solution phase with a polar organic solvent or ionic liquid. After the reaction, the ion-supported species can be phase separated through precipitation from the polar organic solvent by the addition of a less polar organic solvent or extraction with organic solvents from ionic liquids. The ion-supported species can therefore be easily recovered and purified from the reaction mixture by simple washings with the less polar solvent. The ion-tagged species can function in the role of a catalyst, or as a reagent, or as the substrate in the synthesis of small molecules or bio-oligomers. Ion-supported catalysts and reagents can usually be recovered and reused with little diminution of activity. Important biooligomers such as peptides, oligosaccharides and oligonucleotides have been synthesized with this method (136 references).

  18. Green and Rapid Synthesis of Anticancerous Silver Nanoparticles by Saccharomyces boulardii and Insight into Mechanism of Nanoparticle Synthesis

    Directory of Open Access Journals (Sweden)

    Abhishek Kaler

    2013-01-01

    Full Text Available Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs by cell free extract (CFE of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth, cell mass concentration (400 mg/mL, temperature (35°C, and reaction time (4 h, have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3–10 nm with high negative zeta potential (−31 mV indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines.

  19. Green and rapid synthesis of anticancerous silver nanoparticles by Saccharomyces boulardii and insight into mechanism of nanoparticle synthesis.

    Science.gov (United States)

    Kaler, Abhishek; Jain, Sanyog; Banerjee, Uttam Chand

    2013-01-01

    Rapidly developing field of nanobiotechnology dealing with metallic nanoparticle (MNP) synthesis is primarily lacking control over size, shape, dispersity, yield, and reaction time. Present work describes an ecofriendly method for the synthesis of silver nanoparticles (AgNPs) by cell free extract (CFE) of Saccharomyces boulardii. Parameters such as culture age (stationary phase growth), cell mass concentration (400 mg/mL), temperature (35°C), and reaction time (4 h), have been optimized to exercise a control over the yield of nanoparticles and their properties. Nanoparticle (NP) formation was confirmed by UV-Vis spectroscopy, elemental composition by EDX (energy dispersive X-rays) analysis, and size and shape by transmission electron microscopy. Synthesized nanoparticles had the size range of 3-10 nm with high negative zeta potential (-31 mV) indicating excellent stability. Role of proteins/peptides in NP formation and their stability were also elucidated. Finally, anticancer activity of silver nanoparticles as compared to silver ions was determined on breast cancer cell lines.

  20. Rapid sensing of melamine in milk by interference green synthesis of silver nanoparticles.

    Science.gov (United States)

    Varun, S; Kiruba Daniel, S C G; Gorthi, Sai Siva

    2017-05-01

    A highly sensitive, selective, and rapid interference green synthesis based determination of potential milk adulterant melamine has been reported here. Melamine is a nitrogenous compound added to milk for mimicking proteins, consumption of which leads to kidney stones and renal failures. Melamine interacts with ascorbic acid (AA) through strong hydrogen-bonding interactions, thus resulting in an interference/interruption in the formation of silver (Ag) nanoparticles which was confirmed by UV-Vis spectroscopy and Transmission Electron Microscopy (TEM). The corresponding benchmark validations for melamine spiked milk samples were performed using High Performance Liquid Chromatography (HPLC). This interference in the formation of Ag nanoparticles resulted in color change that varies with concentration of melamine, thereby enabling in-situ rapid sensing of melamine from milk to a lower limit of 0.1ppm with a linear correlation coefficient of 0.9908. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Nanoscale luminescent lanthanide-based metal-organic frameworks: properties, synthesis, and applications

    Science.gov (United States)

    Hu, Dongqin; Song, Yonghai; Wang, Li

    2015-07-01

    Nanoscale luminescent lanthanide-based metal-organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal-organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  2. Nanoscale luminescent lanthanide-based metal–organic frameworks: properties, synthesis, and applications

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dongqin; Song, Yonghai; Wang, Li, E-mail: lwanggroup@aliyun.com [Jiangxi Normal University, Key Laboratory of Functional Small Organic Molecule, Ministry of Education, Key Laboratory of Chemical Biology, Jiangxi Province, College of Chemistry and Chemical Engineering (China)

    2015-07-15

    Nanoscale luminescent lanthanide-based metal–organic frameworks (NLLn-MOFs) possess superior optical and physical properties such as higher luminescent lifetime, quantum yield, high stability, high surface area, high agent loading, and intrinsic biodegradability, and therefore are regarded as a novel generation of luminescent material compared with bulk lanthanide-based metal–organic frameworks (Ln-MOFs). Traditional luminescent Ln-MOFs have been well studied; however, NLLn-MOFs taking the advantages of nanomaterials have attracted extensive investigations for applications in optical imaging in living cells, light-harvesting, and sensing. In this review, we provide a survey of the latest progresses made in developing NLLn-MOFs, which contains the fundamental optical features, synthesis, and their potential applications. Finally, the future prospects and challenges of the rapidly growing field are summarized.

  3. Rapid Biological Synthesis of Silver Nanoparticles from Ocimum sanctum and Their Characterization

    Directory of Open Access Journals (Sweden)

    M. Z. H. Khan

    2017-01-01

    Full Text Available With development of nanotechnology, the biological synthesis process deals with the synthesis, characterization, and manipulation of materials and further development at nanoscale which is the most cost-effective and eco-friendly and rapid synthesis process as compared to physical and chemical process. In this research silver nanoparticles (AgNPs were synthesized from silver nitrate (AgNO3 aqueous solution through eco-friendly plant leaf broth of Ocimum sanctum as reactant as well as capping agent and stabilizer. The formation of AgNPs was monitored by ultraviolet-visible spectrometer (UV-vis and Fourier transform infrared (FTIR spectroscopy. X-ray diffraction (XRD and scanning electronic microscopy (SEM have been used to characterize the morphology of prepared AgNPs. The peaks in XRD pattern are in good agreement with that of face-centered-cubic (FCC form of metallic silver. Thermal gravimetric analysis/differential thermal analysis (TGA/DTA results confirmed the weight loss and the exothermic reaction due to desorption of chemisorbed water. The average grain size of silver nanoparticles is found to be 29 nm. The FTIR results indicated that the leaf broths containing the carboxyl, hydroxyl, and amine groups are mainly involved in fabrication of silver AgNPs and proteins, which have amine groups responsible for stabilizing AgNPs in the solution.

  4. Electrical energy sources for organic synthesis on the early earth

    Science.gov (United States)

    Chyba, Christopher; Sagan, Carl

    1991-01-01

    It is pointed out that much of the contemporary origin-of-life research uses the original estimates of Miller and Urey (1959) for terrestrial energy dissipation by lightning and coronal discharges being equal to 2 x 10 to the 19th J/yr and 6 x 10 to the 19th J/yr, respectively. However, data from experiments that provide analogues to naturally-occurring lightning and coronal discharges indicate that lightning energy yields for organic synthesis (nmole/J) are about one order of magnitude higher than the coronal discharge yields. This suggests that, on early earth, organic production by lightning may have dominated that due to coronal emission. New values are recommended for lightning and coronal discharge dissipation rates on the early earth, 1 x 10 to the 18th J/yr and 5 x 10 to the 17th J/yr, respectively.

  5. Synthesis and postmodification of functionally relevant organically modified silica particles

    Science.gov (United States)

    Brozek, Eric

    This thesis describes the synthesis and properties of organically modified silica (ORMOSIL) particles with possible applications in the field of drug delivery. Nanoparticle drug delivery methods take advantage of the unique physical properties of nanoscale architecture to deliver a large payload of drug to a targeted site. They are highly porous, contain many organic functionalities for covalent attachment, and their surfaces can be functionalized. A particle-based approach allows for the delivery of a large and localized payload in a single package. Initial study focused on the generation of submicron organically modified silica particles containing boron. This involved the synthesis of vinyl-enriched silica particles and the postmodification of the vinyl functionalities throughout the particle body. Hydroboration and bromination of the vinyl functionalities showed for the first time that the organic functionalities of ORMOSIL particles could be significantly modified. Next, new organically modified silica particle types were developed. These new particle types incorporated unique organic functionalities that may undergo additional functionalization. Organic functionalities included alkenyl-, cyano-, mercapto-, and isocyanto- throughout the particle body. The different organic functionalities were then modified to demonstrate their reactivity. Finally, a particle containing nuclei suitable for neutron capture therapy, a fluorescent tag, and targeting ligand was synthesized. Boron was the active nuclei, fluorescein was the fluorescent label, useful for in vitro studies, and folic acid is a broad field targeting ligand, useful in targeting a variety of cancer types. The particle containing the three unique motifs underwent early stages of in vitro studies against the OVCAR-3 cell line. This thesis has considerably advanced the field of ORMOSIL chemistry through the development and modification of new ORMOSIL products. While initial efforts were geared toward the

  6. Greener and Sustainable Trends in Synthesis of Organics and ...

    Science.gov (United States)

    Trends in greener and sustainable process development during the past 25 years are abridged involving the use of alternate energy inputs (mechanochemistry, ultrasound- or microwave irradiation), photochemistry, and greener reaction media as applied to synthesis of organics and nanomaterials. In the organic synthesis arena, examples comprise assembly of heterocyclic compounds, coupling and a variety of other name reactions catalyzed by basic water or recyclable magnetic nanocatalysts. Generation of nanoparticles benefits from the biomimetic approaches where vitamins, sugars, and plant polyphenols, including agricultural waste residues, can serve as reducing and capping agents. Metal nanocatalysts (Pd, Au, Ag, Ni, Ru, Ce, Cu, etc.) immobilized on biodegradable supports such as cellulose and chitosan, or on recyclable magnetic ferrites via ligands, namely dopamine or glutathione, are receiving special attention. These strategic approaches attempt to address most of the Green Chemistry Principles while producing functional chemicals with utmost level of waste minimization. Feature article for celebration of 25 years of Green Chemistry on invitation from American Chemical Society (ACS) journal, ACS Sustainable Chemistry & Engineering.

  7. Synthesis of Two Local Anesthetics from Toluene: An Organic Multistep Synthesis in a Project-Oriented Laboratory Course

    Science.gov (United States)

    Demare, Patricia; Regla, Ignacio

    2012-01-01

    This article describes one of the projects in the advanced undergraduate organic chemistry laboratory course concerning the synthesis of two local anesthetic drugs, prilocaine and benzocaine, with a common three-step sequence starting from toluene. Students undertake, in a several-week independent project, the multistep synthesis of a…

  8. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    Science.gov (United States)

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  9. Organic synthesis - applications in enzymatic studies, catalysis and surface modification

    DEFF Research Database (Denmark)

    Viart, Helene Marie-France

    In a desire to explore various areas of syntheticorganic chemistry, different projects have been carried out, and each of the four following chapterswill describe the workcarried out on each of them. The first three chapters are related in someextent and treat the synthesis and biochemical...... of the epidermis of land plants. The enzyme responsible for the polymerization (CD1), as well as its substrate, has been identified, and the role of the enzyme has been demonstrated by its activity on the synthetic dihydroxyacylglycerol. Finally, the last chapter differs greatly from the first three by its focus......: a C3symmetric phosphine oxide has been synthesised, which we intend to test, after reduction to the phosphin, as a ligand in organometallic catalysed reactions. The ultimate goal is to obtain enantioselectivity, introduced by the organization of aryl substituents around phosphorous in our ligand....

  10. A Simple and Rapid Method for Preparing a Cell-Free Bacterial Lysate for Protein Synthesis.

    Directory of Open Access Journals (Sweden)

    Nitzan Krinsky

    Full Text Available Cell-free protein synthesis (CFPS systems are important laboratory tools that are used for various synthetic biology applications. Here, we present a simple and inexpensive laboratory-scale method for preparing a CFPS system from E. coli. The procedure uses basic lab equipment, a minimal set of reagents, and requires less than one hour to process the bacterial cell mass into a functional S30-T7 extract. BL21(DE3 and MRE600 E. coli strains were used to prepare the S30-T7 extract. The CFPS system was used to produce a set of fluorescent and therapeutic proteins of different molecular weights (up to 66 kDa. This system was able to produce 40-150 μg-protein/ml, with variations depending on the plasmid type, expressed protein and E. coli strain. Interestingly, the BL21-based CFPS exhibited stability and increased activity at 40 and 45°C. To the best of our knowledge, this is the most rapid and affordable lab-scale protocol for preparing a cell-free protein synthesis system, with high thermal stability and efficacy in producing therapeutic proteins.

  11. Rapid and direct synthesis of complex perovskite oxides through a highly energetic planetary milling

    Science.gov (United States)

    Lee, Gyoung-Ja; Park, Eun-Kwang; Yang, Sun-A.; Park, Jin-Ju; Bu, Sang-Don; Lee, Min-Ku

    2017-04-01

    The search for a new and facile synthetic route that is simple, economical and environmentally safe is one of the most challenging issues related to the synthesis of functional complex oxides. Herein, we report the expeditious synthesis of single-phase perovskite oxides by a high-rate mechanochemical reaction, which is generally difficult through conventional milling methods. With the help of a highly energetic planetary ball mill, lead-free piezoelectric perovskite oxides of (Bi, Na)TiO3, (K, Na)NbO3 and their modified complex compositions were directly synthesized with low contamination. The reaction time necessary to fully convert the micron-sized reactant powder mixture into a single-phase perovskite structure was markedly short at only 30-40 min regardless of the chemical composition. The cumulative kinetic energy required to overtake the activation period necessary for predominant formation of perovskite products was ca. 387 kJ/g for (Bi, Na)TiO3 and ca. 580 kJ/g for (K, Na)NbO3. The mechanochemically derived powders, when sintered, showed piezoelectric performance capabilities comparable to those of powders obtained by conventional solid-state reaction processes. The observed mechanochemical synthetic route may lead to the realization of a rapid, one-step preparation method by which to create other promising functional oxides without time-consuming homogenization and high-temperature calcination powder procedures.

  12. A strategic approach for rapid synthesis of gold and silver nanoparticles by Panax ginseng leaves.

    Science.gov (United States)

    Singh, Priyanka; Kim, Yeon Ju; Yang, Deok Chun

    2016-12-01

    The study highlights the synthesis of gold nanoparticles and silver nanoparticles by fresh leaves of Panax ginseng, an herbal medicinal plant. The reduction of auric chloride and silver nitrate led to the formation of gold and silver nanoparticles within 3 and 45 min, at 80°C, respectively. The developed methodology was rapid, facile, ecofriendly and the utmost significant is quite economical, which did not require subsequent processing for reduction or stabilization of nanoparticles. The nanoparticles were further characterized by Ultraviolet-visible spectroscopy (UV-vis) which showed the relevant peak for gold and silver nanoparticles at 578 and 420 nm, correspondingly. Field-emission transmission electron microscopy (FE-TEM) displayed the spherical shape of monodispersed nanoparticles. FE-TEM revealed that the gold nanoparticles were 10-20 nm and silver nanoparticles were 5-15 nm. The energy dispersive X-ray (EDX) and elemental mapping results indicated the maximum distribution of gold and silver elements in the respective nanoproducts, which further corresponds the purity. Further, the X-ray diffraction (XRD) results confirm the crystalline nature of synthesized nanoparticles. The biosynthesized AgNPs served as an efficient antimicrobial agent at 3 μg concentration against many pathogenic strains for instance, Escherichia coli, Salmonella enterica, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus anthracis and Bacillus cereus. In addition, AgNPs showed complete inhibition of biofilm formation by S. aureus and Pseudomonas aeruginosa at 4 μg/ml concentration. Moreover, the AuNPs and AgNPs found as a potent anticoagulant agent. Thus, the study claims the rapid synthesis of gold and silver nanoparticles by fresh P. ginseng leaf extract and its biological applications.

  13. Colloidal-sized metal-organic frameworks: synthesis and applications.

    Science.gov (United States)

    Sindoro, Melinda; Yanai, Nobuhiro; Jee, Ah-Young; Granick, Steve

    2014-02-18

    Colloidal metal-organic frameworks (CMOFs), nanoporous colloidal-sized crystals that are uniform in both size and polyhedral shape, are crystals composed of metal ions and organic bridging ligands, which can be used as building blocks for self-assembly in organic and aqueous liquids. They stand in contrast to conventional metal-organic frameworks (MOFs), which scientists normally study in the form of bulk crystalline powders. However, powder MOFs generally have random crystal size and shape and therefore do not possess either a definite mutual arrangement with adjacent particles or uniformity. CMOFs do have this quality, which can be important in vital uptake and release kinetics. In this Account, we present the diverse methods of synthesis, pore chemistry control, surface modification, and assembly techniques of CMOFs. In addition, we survey recent achievements and future applications in this emerging field. There is potential for a paradigm shift, away from using just bulk crystalline powders, towards using particles whose size and shape are regulated. The concept of colloidal MOFs takes into account that nanoporous MOFs, conventionally prepared in the form of bulk crystalline powders with random crystal size, shape, and orientation, may also form colloidal-sized objects with uniform size and morphology. Furthermore, the traditional MOF functions that depend on porosity present additional control over those MOF functions that depend on pore interactions. They also can enable controlled spatial arrangements between neighboring particles. To begin, we discuss progress regarding synthesis of MOF nano- and microcrystals whose crystal size and shape are well regulated. Next, we review the methods to modify the surfaces with dye molecules and polymers. Dyes are useful when seeking to observe nonluminescent CMOFs in situ by optical microscopy, while polymers are useful to tune their interparticle interactions. Third, we discuss criteria to assess the stability of CMOFs

  14. Sonochemical Synthesis of Photoluminescent Nanoscale Eu(III-Containing Metal-Organic Frameworks

    Directory of Open Access Journals (Sweden)

    Cheng-an TAO

    2015-11-01

    Full Text Available Nanoscale lanthanide-containing metal-organic frameworks (MOFs have more and more interest due to their great properties and potential applications, but how to construct them easily is still challenging. Here, we present a facile and rapid synthesis of Eu(III-containing Nanoscale MOF (denoted as NMOF under ultrasonic irradiation. The effect of the ratio and the addition order of metal ions and linkers on the morphology and size of MOFs was investigated. It is found that both of the ratio and the addition order can affect the morphology and size of 1.4-benzenedicarboxylic acid(H2BDC -based MOFs, but they show no evident influence on that of H2aBDC-based MOFs. The former exhibit typical emission bands of Eu(III ions, while the latter only show the photoluminescent properties of ligands.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9695

  15. Rapid microwave-assisted synthesis of dextran-coated iron oxide nanoparticles for magnetic resonance imaging

    Science.gov (United States)

    Osborne, Elizabeth A.; Atkins, Tonya M.; Gilbert, Dustin A.; Kauzlarich, Susan M.; Liu, Kai; Louie, Angelique Y.

    2012-06-01

    Currently, magnetic iron oxide nanoparticles are the only nanosized magnetic resonance imaging (MRI) contrast agents approved for clinical use, yet commercial manufacturing of these agents has been limited or discontinued. Though there is still widespread demand for these particles both for clinical use and research, they are difficult to obtain commercially, and complicated syntheses make in-house preparation unfeasible for most biological research labs or clinics. To make commercial production viable and increase accessibility of these products, it is crucial to develop simple, rapid and reproducible preparations of biocompatible iron oxide nanoparticles. Here, we report a rapid, straightforward microwave-assisted synthesis of superparamagnetic dextran-coated iron oxide nanoparticles. The nanoparticles were produced in two hydrodynamic sizes with differing core morphologies by varying the synthetic method as either a two-step or single-step process. A striking benefit of these methods is the ability to obtain swift and consistent results without the necessity for air-, pH- or temperature-sensitive techniques; therefore, reaction times and complex manufacturing processes are greatly reduced as compared to conventional synthetic methods. This is a great benefit for cost-effective translation to commercial production. The nanoparticles are found to be superparamagnetic and exhibit properties consistent for use in MRI. In addition, the dextran coating imparts the water solubility and biocompatibility necessary for in vivo utilization.

  16. Rapid green synthesis of silver nanoparticles and nanorods using Piper nigrum extract

    Energy Technology Data Exchange (ETDEWEB)

    Mohapatra, Bandita [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Kuriakose, Sini [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); Mohapatra, Satyabrata, E-mail: smiuac@gmail.com [Multifunctional Nanomaterials Laboratory, School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India); School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078 (India)

    2015-07-15

    Highlights: • Silver nanorods were synthesized by photoreduction using Piper nigrum extract. • The morphological and structural properties were studied by XRD and AFM. • Silver nanoparticles were formed at lower AgNO{sub 3} concentration. • Increase in AgNO{sub 3} concentration resulted in formation of silver nanorods. - Abstract: We report sun light driven rapid green synthesis of stable aqueous dispersions of silver nanoparticles and nanorods at room temperature using photoreduction of silver ions with Piper nigrum extract. Silver nanoparticles were formed within 3 min of sun light irradiation following addition of Piper nigrum extract to the AgNO{sub 3} solution. The effects of AgNO{sub 3} concentration and irradiation time on the formation and plasmonic properties of biosynthesized silver nanoparticles were studied using UV–visible absorption spectroscopy. The morphology and structure of silver nanoparticles were well characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The size of Ag nanoparticles increased with increase in irradiation time, leading to the formation of anisotropic nanostructures. Increasing the AgNO{sub 3} concentration resulted in the formation of Ag nanorods. UV–visible absorption studies revealed the presence of surface plasmon resonance (SPR) peaks which red shift and broaden with increasing AgNO{sub 3} concentration. We have demonstrated a facile, energy efficient and rapid green synthetic route to synthesize stable aqueous dispersions of silver nanoparticles and nanorods.

  17. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  18. Synthesis of Dehydrobenzoannulene-Based Covalent Organic Frameworks

    Science.gov (United States)

    Baldwin, Luke Adam

    Our group is interested in covalent organic frameworks (COFs), a class of highly crystalline, well-ordered 2D and 3D polymers with predictable pore sizes, photophysical properties, and well-defined structures. Other materials that interested our group include graphyne and graphdiyne, as well as substructures of these carbon allotropes. Our research centers on the design and synthesis of novel, functional, 2D and 3D COFs with macrocycles for post-synthetic alterations Specifically, the incorporation of DBA[12] and DBA[18] macrocycles into crystalline materials intrigued our group. We first started by synthesizing two DBA based COFs with a mixture of alternating triangular and hexagonal pores using a C2-symmetric diboronic acid linker. After synthesis we found that these COFs were extremely thermally stable, highly porous, and crystalline. Incorporation of DBA into the polymers also allowed for highly fluorescent materials that had micropores (0.4 to 0.5 nm) from the DBA units, and mesopores (3.2 to 3.6 nm) from the hexagonal pore of the COF. Turning our attention to three component COFs we reported the synthesis of three novel COFs that contained a homogeneous and heterogeneous distribution of DBA vertex units. The COFs were synthesized using different ratios of DBA[12], DBA[18], and diboronic acid to yield three COFs with high crystallinity, and interesting luminescent properties. This protocol showed that the pore size of COFs can be altered by incorporating different mixtures of DBA vertex units in the polymer. After our success in 2D COFs we turned our attention to constructing metalated three-dimensional COFs. We synthesized a highly porous DBA based 3D COF with a record high surface area (SABET = 5083 m2g -1) and record low density (0.13 g/cm3) for a COF material. Metalation of the DBA-3D COF with Ni resulted in minimal reduction to the surface area, and retention of crystallinity. We explored these COFs for the uptake of ethane and ethylene gas to determine

  19. Rapid and large-scale synthesis of Co3O4 octahedron particles with very high catalytic activity, good supercapacitance and unique magnetic property

    CSIR Research Space (South Africa)

    Chowdhury, M

    2015-12-01

    Full Text Available Scarcity of rapid and large scale synthesis of functional materials, hinders the progress from laboratory scale to commercial applications. In this study, we report a rapid and large scale synthesis of Co(Sub3)O(sub4) octahedron micron size (1.3 µm...

  20. Continuous and rapid synthesis of nanoclusters and nanocrystals using scalable microstructured reactors

    Science.gov (United States)

    Jin, Hyung Dae

    formation mechanism of CuInSe2 nanocrystals for the development of a continuous flow process for their synthesis. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times, along with the formation of Cu2Se and In2Se3. It was found that Cu2Se was formed at a much faster rate than In2Se3 under the same reaction conditions. By adjusting the Cu/In precursor ratio, we were able to develop a very rapid and simple synthesis of CuInSe2 nanocrystals using a continuous flow microreactor with a high throughput per reactor volume. The microreactor has a simple design which uses readily available low cost components. It comprised an inner microtube to precisely control the injection of TOPSe into a larger diameter tube that preheated CuCl and InCl3 hot mixture was pumped through. Rapid injection plays an important role in dividing the nucleation and growth process which is crucial in getting narrow size distribution. The design of this microreactor also has the advantages of alleviating sticking of QDs on the growth channel wall since QDs were formed from the center of the reactor. Furthermore, size-controlled synthesis of CuInSe2 nanocrystals was achieved using this reactor simply by adjusting ratio between coordinating solvents. Semiconductors with a direct bandgap between 1 and 2eV including Cu(In,Ga)Se 2 (1.04--1.6eV) and CuIn(Se,S)2 (1.04--1.53eV) are ideal for single junction cells utilize the visible spectrum. However, half of the solar energy available to the Earth lies in the infrared region. Inorganic QD-based solar cells with a decent efficiency near 1.5 mum have been reported. Therefore, syntheses of narrow gap IV-VI (SnTe, PbS, PbSe, PbTe), II-IV (HgTe, CdXHg1-XTe), and III-V (InAs) QDs have attracted significant attention and these materials have potential uses for a variety of other optical, electronic, and optoelectronic applications. SnTe with an energy gap of 0.18e

  1. Surfactant free rapid synthesis of hydroxyapatite nanorods by a microwave irradiation method for the treatment of bone infection

    Energy Technology Data Exchange (ETDEWEB)

    Vani, R; Sridevi, T S; Kalkura, S Narayana [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Raja, Subramaniya Bharathi; Savithri, K; Devaraj, S Niranjali [Department of Biochemistry, University of Madras, Chennai 600 025 (India); Girija, E K [Department of Physics, Periyar University, Salem 636 011 (India); Thamizhavel, A, E-mail: kalkurasn@annauniv.edu, E-mail: kalkura@yahoo.com [Tata Institute of Fundamental Research, Mumbai 400005 (India)

    2011-07-15

    Mesoporous nanocrystalline hydroxyapatite (nHAp) rods of size 40-75 nm long and 25 nm wide (resembling bone mineral) were synthesized under microwave irradiation without using any surfactants or modifiers. The surface area and average pore size of the nHAp were found to be 32 m{sup 2} g{sup -1} and 4 nm, respectively. Rifampicin (RIF) and ciprofloxacin (CPF) loaded nHAp displayed an initial burst followed by controlled release (zero order kinetics). Combination of CPF and RIF loaded nHAp showed enhanced bacterial growth inhibition against Staphylococcus aureus (S aureus), Staphylococcus epidermidis (S epidermidis) and Escherichia coli (E coli) compared to individual agent loaded nHAp and pure nHAp. In addition, decreased bacterial adhesion (90%) was observed on the surface of CPF plus RIF loaded nHAp. The biocompatibility test toward MG63 cells infected with micro-organisms showed better cell viability and alkaline phosphatase activity (ALP) for the combination of CPF and RIF loaded nHAp. The influence on cell viability of infected MG63 cells was attributed to the simultaneous and controlled release of CPF and RIF from nHAp, which prevented the emergence of subpopulations that were resistant to each other. Hence, apart from the issue of the rapid synthesis of nHAp without surfactants or modifiers, the simultaneous and controlled release of dual drugs from nHAp would be a simple, non-toxic and cost-effective method to treat bone infections.

  2. Rapid auxin-induced stimulation of cell wall synthesis in pea internodes

    Energy Technology Data Exchange (ETDEWEB)

    Kutschera, U.; Briggs, W.R.

    1987-05-01

    The effect of auxin (indole-3-acetic acid; IAA) on growth and incorporation of myo-(2-/sup 3/H(N)) inositol ((/sup 3/H)Ins) into noncellulosic polysacchharides in the cell walls of third internode sections from red light-grown pea seedlings (Pisum sativum L. cv. Alaska) was investigated. Intact section were incubated on (/sup 3/H)Ins for 4 hr to permit uptake of the tracer and then IAA was added. Growth started after a lag phase of 15 min under these conditions. The sections were removed from the tracer and separated into epidermis and cortical cylinder (cortex plus vascular tissue). In the epidermis, IAA-induced stimulation of (/sup 3/H)Ins incorporation started after a lag of 15 min. The amount of incorporation was 15% higher after 30 min and 24% higher after 2 hr than in the control. In the cortical cylinder, IAA-induced stimulation of (/sup 3/H)Ins incorporation started only approx. = 1 hr after adding IAA. The ionophore monensin (20 ..mu..M) inhibited the IAA-induced growth by 95%. Under these conditions, the IAA-induced stimulation of (/sup 3/H)Ins incorporation and the IAA-induced increase in in vivo extensibility of the sections was almost completely inhibited, although oxygen uptake was unaffected. The authors suggest that wall synthesis (as represented by (/sup 3/H)Ins incorporation) and wall loosening (increase in in vivo extensibility) are related processes. The results support the hypothesis that IAA induces growth by rapid simulation of cell wall synthesis in the growth-limiting epidermal cell layer.

  3. Selective organic synthesis over metal cation-exchanged clay catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Tateiwa, J.; Uemura, S. [Kyoto University, Kyoto (Japan)

    1997-09-01

    Results of recent studies conducted by the authors are reviewed on the use, as catalysts, of metal cation-exchanged montmorillonite (M{sup n+}-mont), a modified natural clay with a layer structure, and metal cation-exchanged fluor-tetrasilicic mica (M{sup n+}-TSM), a synthetic clay with a layer structure, for the following organic synthesis: (1) Friedel-Crafts alkylation of phenol with 4-hydroxybutan-2-one to produce 4-(4-hydroxyphenyl)butan-2-one (raspberry ketone), (2) rearrangement of alkyl phenyl ethers to corresponding alkylphenols, (3) aromatic alkylation of phenol with aldehydes and ketones to produce corresponding gem-bis(hydroxyphenyl)alkanes (bisphenols) and alkylphenols, respectively, (4) a facile and an almost quantitative substrate-selective acetalization, (5) alkane oxidation with aqueous tert-butyl hydroperoxide, (6) Prins reaction of styrenes with aldehydes using clay as a Bronsted acid, and (7) inter-and intra-molecular carbonyl-ene reaction using clay as a Lewis acid in condition similar to that of Prins reaction. In almost all cases, the clay catalysts could be regenerated and reused several times, after filtration, washing and drying. 42 refs., 20 figs., 3 tabs.

  4. Some recent work on prebiological synthesis of organic compounds.

    Science.gov (United States)

    Ponnamperuma, C.

    1966-01-01

    Origin of constituents of nucleic acid and protein molecules, noting biological molecules synthesis under conditions similar to those prevailing in prebiotic Earth, following Oparin-Haldane hypothesis

  5. Rapid methods to detect organic mercury and total selenium in biological samples

    Directory of Open Access Journals (Sweden)

    Basu Niladri

    2011-01-01

    Full Text Available Abstract Background Organic mercury (Hg is a global pollutant of concern and selenium is believed to afford protection against mercury risk though few approaches exist to rapidly assess both chemicals in biological samples. Here, micro-scale and rapid methods to detect organic mercury ( Results For organic Hg, samples are digested using Tris-HCl buffer (with sequential additions of protease, NaOH, cysteine, CuSO4, acidic NaBr followed by extraction with toluene and Na2S2O3. The final product is analyzed via commercially available direct/total mercury analyzers. For Se, a fluorometric assay has been developed for microplate readers that involves digestion (HNO3-HClO4 and HCl, conjugation (2,3-diaminonaphthalene, and cyclohexane extraction. Recovery of organic Hg (86-107% and Se (85-121% were determined through use of Standard Reference Materials and lemon shark kidney tissues. Conclusions The approaches outlined provide an easy, rapid, reproducible, and cost-effective platform for monitoring organic Hg and total Se in biological samples. Owing to the importance of organic Hg and Se in the pathophysiology of Hg, integration of such methods into established research monitoring efforts (that largely focus on screening total Hg only will help increase understanding of Hg's true risks.

  6. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C.S. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Moura, Ana P. de [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Freire, Poliana G. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Silva, Luis F. da; Longo, Elson [LIEC, Instituto de Química, Universidade Estadual Paulista, 14800-900 Araraquara, SP (Brazil); Munoz, Rodrigo A.A. [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil); Lima, Renata C., E-mail: rclima@iqufu.ufu.br [Instituto de Química, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG (Brazil)

    2015-10-15

    We report for the first time a rapid preparation of Zn{sub 1−2x}Co{sub x}Ni{sub x}O nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green–orange–red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO. - Graphical abstract: Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: optical and electrochemical properties. Co, Ni co-doped ZnO hexagonal nanoparticles with optical and electrocatalytic properties were successfully prepared for the first time using a microwave hydrothermal method at mild conditions. - Highlights: • Co{sup 2+} and Ni{sup 2+} into ZnO lattice obtained a mild and environmentally friendly process. • The heating method strongly influences in the growth and shape of the particles. • Short-range defects generated by the ions insertion affects the photoluminescence. • Doped ZnO nanoparticles improve the electrocatalytic properties of pure oxide.

  7. Rapid synthesis of nanocrystalline magnesium chromite and ferrite ceramics with concentrated sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Michalsky, Ronald, E-mail: michalskyr@ethz.ch; Peterson, Brian A.; Pfromm, Peter H.

    2014-04-01

    Highlights: • Refractory ceramics are produced via rapid solar-thermal processing. • The formed chromite and ferrite spinels have a high specific surface area. • The presence of transition metal oxides enables reduction of Mg cations. • Dinitrogen is reduced only by chromium. • The spinels are stable in reducing environments and in the presence of solar radiation. - Abstract: High-temperature refractory ceramics and catalysts such as MgM{sub 2}O{sub 4} (M = Cr, Fe) are produced conventionally via energy-intensive solid-state syntheses (using 0.44–10 GJ electricity for sintering per ton oxide, equivalent to combustion of 48–1088 kg coal per ton oxide). This article reports rapid production of 17 ± 2 mol% MgFe{sub 2}O{sub 4} and 8.6 ± 0.9 mol% MgCr{sub 2}O{sub 4} after 30 min at 1200 °C employing 0.82 kW m{sup −2} sunlight concentrated at a geometric ratio of about 900 m{sup 2} m{sup −2} using a Fresnel lens. Solar radiation promotes the diffusion-limited ferrite formation (42 ± 5 μmol MgFe{sub 2}O{sub 4} per mol Fe{sub 2}O{sub 3} s{sup −1} vs. 26 ± 3 μmol mol{sup −1} s{sup −1} in absence of sunlight) while the transition metals promote the reduction of Mg{sup 2+}. The nanocrystalline and macroporous spinel has a specific surface area of 9.7–11.9 m{sup 2} g{sup −1} (in the order of sol–gel synthesis methods) and is stable under extreme conditions, i.e., high temperature, solar radiation, and reducing agents.

  8. A facile and rapid method for the black pepper leaf mediated green synthesis of silver nanoparticles and the antimicrobial study

    Science.gov (United States)

    Augustine, Robin; Kalarikkal, Nandakumar; Thomas, Sabu

    2014-10-01

    Green synthesis of nanoparticles is widely accepted due to the less toxicity in comparison with chemical methods. But there are certain drawbacks like slow formation of nanoparticles, difficulty to control particle size and shape make them less convenient. Here we report a novel cost-effective and eco-friendly method for the rapid green synthesis of silver nanoparticles using leaf extracts of Piper nigrum. Our results suggest that this method can be used for obtaining silver nanoparticles with controllable size within a few minutes. The fabricated nanoparticles possessed excellent antibacterial property against both Gram-positive and Gram-negative bacteria.

  9. Murraya Koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles

    Science.gov (United States)

    Philip, Daizy; Unni, C.; Aromal, S. Aswathy; Vidhu, V. K.

    2011-02-01

    A facile bottom-up 'green' and rapid synthetic route using Murraya Koenigii leaf extract as reducing and stabilizing agent produced silver nanoparticles at ambient conditions and gold nanoparticles at 373 K. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. This method allows the synthesis of well-dispersed silver and gold nanoparticles having size ˜10 nm and ˜20 nm, respectively. Silver nanoparticles with size ˜10 nm having symmetric SPR band centered at 411 nm is obtained within 5 min of addition of the extract to the solution of AgNO 3 at room temperature. Nearly spherical gold nanoparticles having size ˜20 nm with SPR at 532 nm is obtained on adding the leaf extract to the boiling solution of HAuCl 4. Crystallinity of the nanoparticles is confirmed from the high-resolution TEM images, selected area electron diffraction (SAED) and XRD patterns. From the FTIR spectra it is found that the biomolecules responsible for capping are different in gold and silver nanoparticles. A comparison of the present work with the author's earlier reports on biosynthesis is also included.

  10. Rapid and convenient semi-automated microwave-assisted solid-phase synthesis of arylopeptoids

    DEFF Research Database (Denmark)

    Rasmussen, Jakob Ewald; Boccia, Marcello Massimo; Nielsen, John

    2014-01-01

    A facile and expedient route to the synthesis of arylopeptoid oligomers (N-alkylated aminomethyl benz-amides) using semi-automated microwave-assisted solid-phase synthesis is presented. The synthesis was optimized for the incorporation of side chains derived from sterically hindered or unreactive...

  11. Recent Applications of Polymer Supported Organometallic Catalysts in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Nina Kann

    2010-09-01

    Full Text Available Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  12. A Long Chain Alcohol as Support in Solid Phase Organic Synthesis

    NARCIS (Netherlands)

    Nurlela, Yeni; Minnaard, Adrian J.; Achmad, Sadijah; Wahyuningrum, Deana

    The solid phase synthesis is a method by which organic compound synthesis are performed on a support. With this method, the purification can be carried out easily by simple filtration and washing procedures. Long-chain alcohol (C-100 alcohol) can be used as a support because of its insolubility in

  13. Organic reaction systems: using microcapsules and microreactors to perform chemical synthesis.

    Science.gov (United States)

    Longstreet, Ashley R; McQuade, D Tyler

    2013-02-19

    The appetite for complex organic molecules continues to increase worldwide, especially in rapidly developing countries such as China, India, and Brazil. At the same time, the cost of raw materials and solvent waste disposal is also growing, making sustainability an increasingly important factor in the production of synthetic life-saving/improving compounds. With these forces in mind, our group is driven by the principle that how we synthesize a molecule is as important as which molecule we choose to synthesize. We aim to define alternative strategies that will enable more efficient synthesis of complex molecules. Drawing our inspiration from nature, we attempt to mimic (1) the multicatalytic metabolic systems within cells using collections of nonenzyme catalysts in batch reactors and (2) the serial synthetic machinery of fatty acid/polyketide biosynthesis using microreactor systems. Whether we combine catalysts in batch to prepare an active pharmaceutical ingredient (API) or use microreactors to synthesize small or polymeric molecules, we strive to understand the mechanism of each reaction while also developing new methods and techniques. This Account begins by examining our early efforts in the development of novel catalytic materials and characterization of catalytic systems and how these observations helped forge our current models for developing efficient synthetic routes. The Account progresses through a focused examination of design principles needed to develop multicatalyst systems using systems recently published by our group as examples. Our systems have been successfully applied to produce APIs as well as new synthetic methods. The multicatalyst section is then juxtaposed with our work in continuous flow multistep synthesis. Here, we discuss the design principles needed to create multistep continuous processes using examples from our recent efforts. Overall, this Account illustrates how multistep organic routes can be conceived and achieved using

  14. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials.

    Science.gov (United States)

    Meek, Scott T; Greathouse, Jeffery A; Allendorf, Mark D

    2011-01-11

    Metal-organic frameworks (MOFs) represent a new class of hybrid organic-inorganic supramolecular materials comprised of ordered networks formed from organic electron donor linkers and metal cations. They can exhibit extremely high surface areas, as well as tunable pore size and functionality, and can act as hosts for a variety of guest molecules. Since their discovery, MOFs have enjoyed extensive exploration, with applications ranging from gas storage to drug delivery to sensing. This review covers advances in the MOF field from the past three years, focusing on applications, including gas separation, catalysis, drug delivery, optical and electronic applications, and sensing. We also summarize recent work on methods for MOF synthesis and computational modeling.

  15. Expediting evidence synthesis for healthcare decision-making: exploring attitudes and perceptions towards rapid reviews using Q methodology

    Directory of Open Access Journals (Sweden)

    Shannon E. Kelly

    2016-10-01

    Full Text Available Background Rapid reviews expedite the knowledge synthesis process with the goal of providing timely information to healthcare decision-makers who want to use evidence-informed policy and practice approaches. A range of opinions and viewpoints on rapid reviews is thought to exist; however, no research to date has formally captured these views. This paper aims to explore evidence producer and knowledge user attitudes and perceptions towards rapid reviews. Methods A Q methodology study was conducted to identify central viewpoints about rapid reviews based on a broad topic discourse. Participants rank-ordered 50 text statements and explained their Q-sort in free-text comments. Individual Q-sorts were analysed using Q-Assessor (statistical method: factor analysis with varimax rotation. Factors, or salient viewpoints on rapid reviews, were identified, interpreted and described. Results Analysis of the 11 individual Q sorts identified three prominent viewpoints: Factor A cautions against the use of study design labels to make judgements. Factor B maintains that rapid reviews should be the exception and not the rule. Factor C focuses on the practical needs of the end-user over the review process. Conclusion Results show that there are opposing viewpoints on rapid reviews, yet some unity exists. The three factors described offer insight into how and why various stakeholders act as they do and what issues may need to be resolved before increase uptake of the evidence from rapid reviews can be realized in healthcare decision-making environments.

  16. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava (Psidium guajava) leaf extract

    Energy Technology Data Exchange (ETDEWEB)

    Raghunandan, Deshpande [H.K.E.S' s College of Pharmacy (India); Mahesh, Bedre D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Basavaraja, S. [Jawaharlal Nehru Centre for Advanced Scientific Research, Veeco-India Nanotechnology Laboratory (India); Balaji, S. D. [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India); Manjunath, S. Y. [Sri Krupa, Institute of Pharmaceutical Science (India); Venkataraman, A., E-mail: raman_chem@rediffmail.com [Gulbarga University, Materials Chemistry Laboratory, Department of Material Science (India)

    2011-05-15

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 {+-} 5 nm from guava (Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  17. Microwave-assisted rapid extracellular synthesis of stable bio-functionalized silver nanoparticles from guava ( Psidium guajava) leaf extract

    Science.gov (United States)

    Raghunandan, Deshpande; Mahesh, Bedre D.; Basavaraja, S.; Balaji, S. D.; Manjunath, S. Y.; Venkataraman, A.

    2011-05-01

    Our research interest centers on microwave-assisted rapid extracellular synthesis of bio-functionalized silver nanoparticles of 26 ± 5 nm from guava ( Psidium guajava) leaf extract with control over dimension and composition. The reaction occurs very rapidly as the formation of spherical nanoparticles almost completed within 90 s. The probable pathway of the biosynthesis is suggested. Appearance, crystalline nature, size and shape of nanoparticles are understood by UV-vis (UV-vis spectroscopy), FTIR (fourier transform infrared spectroscopy), XRD (X-ray diffraction), FESEM (field emission scanning electron microscopy) and TEM (transmission electron microscopy) techniques. Microwave-assisted route is selected for the synthesis of silver nanoparticles to carry out the reaction fast, suppress the enzymatic action and to keep the process environmentally clean and green.

  18. Reactive organometallics from organotellurides: application in organic synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Princival, Jefferson L.; Santos, Alcindo A. dos; Comasseto, Joao V., E-mail: jvcomass@iq.usp.b [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica

    2010-07-01

    In this paper the preparation of reactive organometallics starting from organotellurides is reviewed. The application of the reactive organometallics prepared in this way in the synthesis of bioactive compounds is commented. (author)

  19. HIGH YIELD AND RAPID SYNTHESES METHODS FOR PRODUCING METALLO-ORGANIC SALTS

    DEFF Research Database (Denmark)

    2005-01-01

    A new method for preparing salts of metal cations and organic acids, especially divalent salts of alkaline earth metal ions from group II of the periodic system and carboxylic acids. The method comprising the use of a high temperature (about 90° or more) and, optionally. high pressure, in order...... to obtain a higher yield, purity and faster reaction speed than obtained with known synthesis methods. In particular, the present invention relates to the production of strontium salts of carboxylic acids. Novel strontium salts are also provided by the present method....

  20. Rapid Formation of Metal-Organic Frameworks (MOFs) Based Nanocomposites in Microdroplets and Their Applications for CO2 Photoreduction.

    Science.gov (United States)

    He, Xiang; Gan, Zhuoran; Fisenko, Sergey; Wang, Dawei; El-Kaderi, Hani M; Wang, Wei-Ning

    2017-03-22

    A copper-based metal-organic framework (MOF), [Cu3(TMA)2(H2O)3]n (also known as HKUST-1, where TMA stands for trimesic acid), and its TiO2 nanocomposites were directly synthesized in micrometer-sized droplets via a rapid aerosol route for the first time. The effects of synthesis temperature and precursor component ratio on the physicochemical properties of the materials were systematically investigated. Theoretical calculations on the mass and heat transfer within the microdroplets revealed that the fast solvent evaporation and high heat transfer rates are the major driving forces. The fast droplet shrinkage because of evaporation induces the drastic increase in the supersaturation ratio of the precursor, and subsequently promotes the rapid nucleation and crystal growth of the materials. The HKUST-1-based nanomaterials synthesized via the aerosol route demonstrated good crystallinity, large surface area, and great photostability, comparable with those fabricated by wet-chemistry methods. With TiO2 embedded in the HKUST-1 matrix, the surface area of the composite is largely maintained, which enables significant improvement in the CO2 photoreduction efficiency, as compared with pristine TiO2. In situ diffuse reflectance infrared Fourier transform spectroscopy analysis suggests that the performance enhancement was due to the stable and high-capacity reactant adsorption by HKUST-1. The current work shows great promise in the aerosol route's capability to address the mass and heat transfer issues of MOFs formation at the microscale level, and ability to synthesize a series of MOFs-based nanomaterials in a rapid and scalable manner for energy and environmental applications.

  1. Design and synthesis of organic semiconductors for use in organic field effect transistors

    Science.gov (United States)

    Murphy, Amanda Ruth

    In the past ten years, much progress has been made in producing organic semiconductors with properties that rival amorphous silicon. Organic semiconductors are sought for low-cost or large-area electronic devices such as organic field-effect transistors (OFETs), light-emitting diodes (OLEDs), photovoltaic cells, sensors, and radio frequency identification (RFID) tags. Low temperature processing options and the ductility of organic materials also allow flexible plastics or fabrics to be used as substrates. However, the majority of the newly developed materials are insoluble requiring the use of thermal evaporation to obtain thin films. In order for these organic semiconductors to compete as 'low cost' alternatives to silicon, manufacturers must be able to use large-area, continuous, reel-to-reel methods for production, which would likely involve the solution-based deposition methods such as spin coating, stamping, or printing. Therefore, our work has focused on methods for solubilizing and controlling the self-assembly of conjugated oligomers in order to maximize the semiconducting properties from solution-based processes. Chapter 1 gives a general overview of charge transfer in organic semiconductors, and describes how devices are fabricated and tested. An extensive review of the literature on solution processed p- and n-type oligomers is also given. Chapter 2 and 3 discuss our initial attempts to produce soluble oligothiophenes capable of self-assembly. Chapter 2 focuses on beta-functionalized heptathiophene oligomers, while Chapter 3 deals with (x-(x'-substituted oligothiophene derivatives. A synthetic method for incorporating thermally removable solubilizing groups into organic semiconductors is outlined in Chapter 4, and demonstrated using a sexithiophene oligomer. The synthesis, chemical characterization, as well as an in-depth characterization of solution-processed films of this oligomer using AFM and NEXAFS spectroscopy is given. This theme is carried over

  2. The growth of high density network of MOF nano-crystals across macroporous metal substrates - Solvothermal synthesis versus rapid thermal deposition

    Science.gov (United States)

    Maina, James W.; Gonzalo, Cristina Pozo; Merenda, Andrea; Kong, Lingxue; Schütz, Jürg A.; Dumée, Ludovic F.

    2018-01-01

    Fabrication of metal organic framework (MOF) films and membranes across macro-porous metal substrates is extremely challenging, due to the large pore sizes across the substrates, poor wettability, and the lack of sufficient reactive functional groups on the surface, which prevent high density nucleation of MOF crystals. Herein, macroporous stainless steel substrates (pore size 44 × 40 μm) are functionalized with amine functional groups, and the growth of ZIF-8 crystals investigated through both solvothermal synthesis and rapid thermal deposition (RTD), to assess the role of synthesis routes in the resultant membranes microstructure, and subsequently their performance. Although a high density of well interconnected MOF crystals was observed across the modified substrates following both techniques, RTD was found to be a much more efficient route, yielding high quality membranes under 1 h, as opposed to the 24 h required for solvothermal synthesis. The RTD membranes also exhibited high gas permeance, with He permeance of up to 2.954 ± 0.119 × 10-6 mol m-2 s-1 Pa-1, and Knudsen selectivities for He/N2, Ar/N2 and CO2/N2, suggesting the membranes were almost defect free. This work opens up route for efficient fabrication of MOF films and membranes across macro-porous metal supports, with potential application in electrically mediated separation applications.

  3. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    OpenAIRE

    Nelly eDatukishvili; Tamara eKutateladze; Inga eGabriadze; Kakha eBitskinashvili; Boris eVishnepolsky

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of C...

  4. Eco-friendly Synthesis of Organics and Nanomaterials ...

    Science.gov (United States)

    The presentation summarizes our recent activity in chemical synthesis involving benign alternatives, such as the use of supported reagents, and greener reaction medium in aqueous or solvent-free conditions.1 The synthesis of heterocyclic compounds, coupling reactions, and a variety of name reactions2 are the primary beneficiaries as exemplified by the synthesis of N-aryl azacycloalkanes, isoindoles, and dihydropyrazoles, 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,3-dioxanes, pyrazoles, catalyzed by basic water or polystyrene sulfonic acid (PSSA) in conjunction with microwave (MW) irradiation.2 Vitamins B1, B2, C, and tea and wine polyphenols which function both as reducing and capping agents, provide extremely simple, one-pot, green synthetic methods to bulk quantities of nanomaterials in water.3a Shape-controlled synthesis of noble nanostructures via MW-assisted spontaneous reduction of noble metal salts using sugars will be presented.3b A general method has been developed for the cross-linking reaction of poly (vinyl alcohol) (PVA) with metallic systems; bimetallic systems,3c and SWNT, MWNT, and C-60.3d The strategy is extended to the formation of biodegradable carboxymethylcellulose (CMC) composite films with noble nanometals;3e such metal decoration and alignment of carbon nanotubes in CMC is possible using MW approach3f which also enables the shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol).3g MW hydrothermal process delivers m

  5. Rapid synthesis of long chain fatty acid esters of steroids in ionic liquids with microwave irradiation: expedient one-pot procedure for estradiol monoesters.

    Science.gov (United States)

    Deb, Somdatta; Wähälä, Kristiina

    2010-10-01

    We report the rapid synthesis (1min) in high yield of fatty acid ester (FAE) derivatives of several steroids under microwave irradiation in an ionic liquid (IL). An expedient regioselective hydrolysis at C-3 of estradiol diesters is also reported.

  6. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis

    Science.gov (United States)

    Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.

    2015-01-01

    Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…

  7. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    of research is organosilicon chemistry with particular attention to developing new synthetic procedures and reagents, and studying the reaction mechanisms. Part 1 appeared in Resonance,. VoLl, No.lO, pp. 59-68, 2002. Keywords. Sunlight, photochemistry, chiral products, inclusion complexes, stereoselective synthesis, sol ...

  8. Solid-supported reagents for multi-step organic synthesis: preparation and application.

    Science.gov (United States)

    Ley, S V; Baxendale, Ian R; Brusotti, G; Caldarelli, M; Massi, A; Nesi, M

    2002-04-01

    Since the early days of combinatorial chemistry solid-phase organic synthesis has been the method of choice for the production of large libraries. Solution-phase synthesis is again gaining importance especially for the synthesis of parallel arrays of smaller, focussed libraries containing single compounds with high degrees of purity. In the field of solution-phase library generation, the use of solid-supported reagents, catalysts and scavengers is emerging as a leading strategy, combining the advantages of both solid-phase organic synthesis (e.g. allowing the employment of an excess of reagent without the need for additional purification steps) and solution-phase chemistry (e.g. the ease of monitoring the progress of the reactions by applying LC-MS, TLC or standard NMR techniques). An account of some of the most recent advances in this area of research will be presented.

  9. Application of lean manufacturing concepts to drug discovery: rapid analogue library synthesis.

    Science.gov (United States)

    Weller, Harold N; Nirschl, David S; Petrillo, Edward W; Poss, Michael A; Andres, Charles J; Cavallaro, Cullen L; Echols, Martin M; Grant-Young, Katherine A; Houston, John G; Miller, Arthur V; Swann, R Thomas

    2006-01-01

    The application of parallel synthesis to lead optimization programs in drug discovery has been an ongoing challenge since the first reports of library synthesis. A number of approaches to the application of parallel array synthesis to lead optimization have been attempted over the years, ranging from widespread deployment by (and support of) individual medicinal chemists to centralization as a service by an expert core team. This manuscript describes our experience with the latter approach, which was undertaken as part of a larger initiative to optimize drug discovery. In particular, we highlight how concepts taken from the manufacturing sector can be applied to drug discovery and parallel synthesis to improve the timeliness and thus the impact of arrays on drug discovery.

  10. Metal Organic Frameworks: Explorations and Design Strategies for MOF Synthesis

    KAUST Repository

    AbdulHalim, Rasha

    2016-11-27

    Metal-Organic Frameworks (MOFs) represent an emerging new class of functional crystalline solid-state materials. In the early discovery of this now rapidly growing class of materials significant challenges were often encountered. However, MOFs today, with its vast structural modularity, reflected by the huge library of the available chemical building blocks, and exceptional controlled porosity, stand as the most promising candidate to address many of the overbearing societal challenges pertaining to energy and environmental sustainability. A variety of design strategies have been enumerated in the literature which rely on the use of predesigned building blocks paving the way towards potentially more predictable structures. The two major design strategies presented in this work are the molecular building block (MBB) and supermolecular building block (SBB) -based approaches for the rationale assembly of functional MOF materials with the desired structural features. In this context, we targeted two highly connected MOF platforms, namely rht-MOF and shp-MOF. These two MOF platforms are classified based on their topology, defined as the underlying connectivity of their respective net, as edge transitive binodal nets; shp being (4,12)-connected net and rht being (3,24)-connected net. These highly connected nets were deliberately targeted due to the limited number of possible nets for connecting their associated basic building units. Two highly porous materials were designed and successfully constructed; namely Y-shp-MOF-5 and rht-MOF-10. The Y-shp-MOF-5 features a phenomenal water stability with an exquisite behavior when exposed to water, positioning this microporous material as the best adsorbent for moisture control applications. The shp-MOF platform proved to be modular to ligand functionalization and thus imparting significant behavioral changes when hydrophilic and hydrophobic functionalized ligands were introduced on the resultant MOF. On the other hand, rht

  11. Rapid catalyst-free flame synthesis of α-Nb{sub 2}O{sub 5} micro/nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Merchan-Merchan, Wilson; Farmahini Farahani, Moien, E-mail: wmerchan-merchan@ou.edu

    2013-07-15

    We report the ultra-rapid synthesis of Nb oxide nano/micron sized rods using a flame method; the single-step process is achieved in less than a few minutes. The synthesis is performed using 1-mm diameter Nb probes (metal source) inserted in the oxygen-rich part of an counter-flow methane/acetylene oxy-flame. The niobium oxide structures can grow nearly instantaneously in a white layer of material surrounding the surface of the Nb probe. The Nb oxide layer is composed of individual and coalesced micro/nanorods that are rapidly formed on the surface of the Nb wire. The grown crystals forming the metal oxide layer grow through a basal growth mechanism due to the constant flow of oxygen and oxygen radicals from the flame onto the surface of the niobium probe. The morphology of the grown Nb oxide structures strongly depends on the flame position (temperature and chemical species). X-Ray Diffraction analysis reveals that the micro/nanorods forming the layer are composed of monoclinic α-Nb{sub 2}O{sub 5}. - Graphical abstract: Display Omitted - Highlights: • Niobium oxide crystals were grown on the surface of Nb probes using the flame method. • We report the flame as an ultra-rapid process for the growth of Nb oxide structures. • In the flame method the growth of Nb{sub 2}O{sub 5} structures is achieved in only a few minutes.

  12. Template directed synthesis of highly organized functional biomimetic silica nanostructures

    OpenAIRE

    Kind, Lucy

    2009-01-01

    Silica is an important mineral in technological and biological applications. Many protocols have been developed for the synthesis of complex silica architectures. Most prominent is the silicification approach, where polymers build up the templates for the revealed polymer/silica structures. The current thesis demonstrates that star-shaped polymers and block copolymers are efficient templates for the fabrication of silica particles with spherical or raspberry-like morphology....

  13. Pyrolysis-GCMS Analysis of Solid Organic Products from Catalytic Fischer-Tropsch Synthesis Experiments

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2015-01-01

    Abiotic synthesis of complex organic compounds in the early solar nebula that formed our solar system is hypothesized to occur via a Fischer-Tropsch type (FTT) synthesis involving the reaction of hydrogen and carbon monoxide gases over metal and metal oxide catalysts. In general, at low temperatures (less than 200 C), FTT synthesis is expected to form abundant alkane compounds while at higher temperatures (greater than 200 C) it is expected to product lesser amounts of n-alkanes and greater amounts of alkene, alcohol, and polycyclic aromatic hydrocarbons (PAHs). Experiments utilizing a closed-gas circulation system to study the effects of FTT reaction temperature, catalysts, and number of experimental cycles on the resulting solid insoluble organic products are being performed in the laboratory at NASA Goddard Space Flight Center. These experiments aim to determine whether or not FTT reactions on grain surfaces in the protosolar nebula could be the source of the insoluble organic matter observed in meteorites. The resulting solid organic products are being analyzed at NASA Johnson Space Center by pyrolysis gas chromatography mass spectrometry (PY-GCMS). PY-GCMS yields the types and distribution of organic compounds released from the insoluble organic matter generated from the FTT reactions. Previously, exploratory work utilizing PY-GCMS to characterize the deposited organic materials from these reactions has been reported. Presented here are new organic analyses using magnetite catalyst to produce solid insoluble organic FTT products with varying reaction temperatures and number of experimental cycles.

  14. Synthesis of the Commercial Fragrance Compound Ethyl 6-Acetoxyhexanoate: A Multistep Ester Experiment for the Second-Year Organic Laboratory

    Science.gov (United States)

    McCullagh, James V.; Hirakis, Sophia P.

    2017-01-01

    This synthesis of ethyl 6-acetoxyhexanoate (Berryflor) is designed as an experiment for use in a second-year organic chemistry course focusing on the synthesis and reaction of esters. The compound is described as having a raspberry-like odor with jasmine and anise aspects. A two-step procedure for its synthesis beginning with inexpensive…

  15. Cyclodextrin-Catalyzed Organic Synthesis: Reactions, Mechanisms, and Applications

    Directory of Open Access Journals (Sweden)

    Chang Cai Bai

    2017-09-01

    Full Text Available Cyclodextrins are well-known macrocyclic oligosaccharides that consist of α-(1,4 linked glucose units and have been widely used as artificial enzymes, chiral separators, chemical sensors, and drug excipients, owing to their hydrophobic and chiral interiors. Due to their remarkable inclusion capabilities with small organic molecules, more recent interests focus on organic reactions catalyzed by cyclodextrins. This contribution outlines the current progress in cyclodextrin-catalyzed organic reactions. Particular emphases are given to the organic reaction mechanisms and their applications. In the end, the future directions of research in this field are proposed.

  16. Prebiotic organic matter - Possible pathways for synthesis in a geological context

    Science.gov (United States)

    Chang, S.

    1982-01-01

    Models for the accretion of the earth, core formation, differentiation of the planet into core, mantle, crust, and atmosphere, and prebiotic synthesis of organic materials are reviewed. The development of the Haldane-Oparin and Urey models is traced, and the effect of accretion time on the outgassing process and the composition of the consequent atmosphere is examined. Model prebiotic atmospheres are calculated, the extent of equilibration of the primitive atmosphere is studied and the evolution of the atmosphere prior to organic chemical evolution is reviewed. Finally, experimental progress in synthesis of biological monomers and polymers under presumed early earth conditions is covered.

  17. Proteoglycan synthesis and Golgi organization in polarized epithelial cells.

    Science.gov (United States)

    Dick, Gunnar; Akslen-Hoel, Linn K; Grøndahl, Frøy; Kjos, Ingrid; Prydz, Kristian

    2012-12-01

    A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells.

  18. Organic Analysis of Catalytic Fischer-Tropsch Type Synthesis Products: Are they Similar to Organics in Chondritic Meteorites?

    Science.gov (United States)

    Yazzie, Cyriah A.; Locke, Darren R.; Johnson, Natasha M.

    2014-01-01

    Fischer-Tropsch Type (FTT) synthesis of organic compounds has been hypothesized to occur in the early solar nebula that formed our Solar System. FTT is a collection of abiotic chemical reactions that convert a mixture of carbon monoxide and hydrogen over nano-catalysts into hydrocarbons and other more complex aromatic compounds. We hypothesized that FTT can generate similar organic compounds as those seen in chondritic meteorites; fragments of asteroids that are characteristic of the early solar system. Specific goals for this project included: 1) determining the effects of different FTT catalyst, reaction temperature, and cycles on organic compounds produced, 2) imaging of organic coatings found on the catalyst, and 3) comparison of organic compounds produced experimentally by FTT synthesis and those found in the ordinary chondrite LL5 Chelyabinsk meteorite. We used Pyrolysis Gas Chromatography Mass Spectrometry (PY-GCMS) to release organic compounds present in experimental FTT and meteorite samples, and Scanning Electron Microscopy (SEM) to take images of organic films on catalyst grains.

  19. Organic Matter of the Mulhouse Basin, France: A synthesis

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Hofmann, P.; Huc, A.Y.; Carpentier, B.; Schaeffer, P.; Albrecht, P.; Keely, B.J.; Maxwell, J.R.; Leeuw, J.W. de; Leythaeuser, D.

    1993-01-01

    The lower Oligocene evaporite sequence of the Mulhouse Basin (France) contains organic matter-rich marl deposits. These marls display an overall cyclic variation of sedimentation rate, organic carbon content, hydrogen index and selected molecular parameters over a 30 m thick stratigraphic interval.

  20. Studies on the use of haloperoxidases in organic synthesis

    NARCIS (Netherlands)

    Franssen, M.C.R.

    1987-01-01

    The subject of this thesis is the use of haloperoxidases in synthetic organic chemistry. Haloperoxidases are enzymes capable of halogenating a variety of organic compounds. They require hydrogen peroxide and halide ions as cosubstrates. The enzymes operate under mild conditions, compared to

  1. A new metalation complex for organic synthesis and polymerization reactions

    Science.gov (United States)

    Hirshfield, S. M.

    1971-01-01

    Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.

  2. Old knowledge and new technologies allow rapid development of model organisms.

    Science.gov (United States)

    Cook, Charles E; Chenevert, Janet; Larsson, Tomas A; Arendt, Detlev; Houliston, Evelyn; Lénárt, Péter

    2016-03-15

    Until recently the set of "model" species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts. Here we illustrate how historical knowledge and new technologies can reveal the potential of nonconventional organisms, and we suggest guidelines for selecting new experimental models. We also present examples of nonstandard marine metazoan model species that have made important contributions to our understanding of biological processes. © 2016 Cook et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  3. [Rapid determination of volatile organic compounds in workplace air by protable gas chromatography-mass spectrometer].

    Science.gov (United States)

    Zhu, H B; Su, C J; Tang, H F; Ruan, Z; Liu, D H; Wang, H; Qian, Y L

    2017-10-20

    Objective: To establish a method for rapid determination of 47 volatile organic compounds in the air of workplace using portable gas chromatography-mass spectrometer(GC-MS). Methods: The mixed standard gas with different concentration levels was made by using the static gas distribution method with the high purity nitrogen as dilution gas. The samples were injected into the GC-MS by a hand-held probe. Retention time and characteristic ion were used for qualitative analysis,and the internal standard method was usd for quantitation. Results: The 47 poisonous substances were separated and determined well. The linear range of this method was 0.2-16.0 mg/m(3),and the relative standard deviation of 45 volatile ovganic compounds was 3.8%-15.8%. The average recovery was 79.3%-119.0%. Conclusion: The method is simple,accurate,sensitive,has good separation effect,short analysis period, can be used for qualitative and quantitative analysis of volatile organic compounds in the workplace, and also supports the rapid identification and detection of occupational hazards.

  4. A multistep continuous-flow system for rapid on-demand synthesis of receptor ligands

    DEFF Research Database (Denmark)

    Petersen, Trine P; Ritzén, Andreas; Ulven, Trond

    2009-01-01

    A multistep continuous-flow system for synthesis of receptor ligands by assembly of three variable building blocks in a single unbroken flow is described. The sequence consists of three reactions and two scavenger steps, where a Cbz-protected diamine is reacted with an isocyanate, deprotected, an...

  5. A Rapid and Efficient Synthesis of D-erythro-Sphingosine from D-ribo-Phytosphingosine

    NARCIS (Netherlands)

    van den Berg, Richard J. B. H. N.; van den Elst, Hans; Korevaar, Cornelius G. N.; Aerts, Johannes M. F. G.; van der Marel, Gijsbert A.; Overkleeft, Herman S.

    2011-01-01

    In this paper we describe the concise synthesis of D-erythro-sphingosine starting from the readily available chiral building block D-ribo-phytosphingosine. The title compound is the ubiquitous sphingolipid from which most mammalian ceram-ides are derived. Our work is based on the existing literature

  6. Rapid development of bromodomain probes using flow synthesis methods and frontal affinity chromatography

    OpenAIRE

    Ingham, Richard; Guetzoyan, Lucie; Nikbin, Nikzad; Ley, Steven V.

    2014-01-01

    This poster illustrates aspects of a project involving the development of new probes for bromodomain 9 protein. Flow chemistry technologies and remote monitoring techniques were used for the synthesis, and Frontal Affinity Chromatography assays were used for analysis of the products.

  7. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system

    KAUST Repository

    Pan, Yichang

    2011-01-01

    We report here the first example of ZIF materials synthesized in aqueous solution. The synthesis was performed at room temperature and typically took several minutes compared to hours and days in non-aqueous conditions. The obtained product were ZIF-8 nanocrystals having size of ∼85 nm and showed excellent thermal, hydrothermal and solvothermal stabilities. © 2011 The Royal Society of Chemistry.

  8. Rapid RNase L-driven arrest of protein synthesis in the dsRNA response without degradation of translation machinery.

    Science.gov (United States)

    Donovan, Jesse; Rath, Sneha; Kolet-Mandrikov, David; Korennykh, Alexei

    2017-11-01

    Mammalian cells respond to double-stranded RNA (dsRNA) by activating a translation-inhibiting endoribonuclease, RNase L. Consensus in the field indicates that RNase L arrests protein synthesis by degrading ribosomal RNAs (rRNAs) and messenger RNAs (mRNAs). However, here we provide evidence for a different and far more efficient mechanism. By sequencing abundant RNA fragments generated by RNase L in human cells, we identify site-specific cleavage of two groups of noncoding RNAs: Y-RNAs, whose function is poorly understood, and cytosolic tRNAs, which are essential for translation. Quantitative analysis of human RNA cleavage versus nascent protein synthesis in lung carcinoma cells shows that RNase L stops global translation when tRNAs, as well as rRNAs and mRNAs, are still intact. Therefore, RNase L does not have to degrade the translation machinery to stop protein synthesis. Our data point to a rapid mechanism that transforms a subtle RNA cleavage into a cell-wide translation arrest. © 2017 Donovan et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  9. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function.

    Science.gov (United States)

    Dey, Chandan; Kundu, Tanay; Biswal, Bishnu P; Mallick, Arijit; Banerjee, Rahul

    2014-02-01

    Metal-organic frameworks (MOFs) are a class of hybrid network supramolecular solid materials comprised of organized organic linkers and metal cations. They can display enormously high surface areas with tunable pore size and functionality, and can be used as hosts for a range of guest molecules. Since their discovery, MOFs have experienced widespread exploration for their applications in gas storage, drug delivery and sensing. This article covers general and modern synthetic strategies to prepare MOFs, and discusses their structural diversity and properties with respect to application perspectives.

  10. Synthesis of refractory organic matter in the ionized gas phase of the solar nebula.

    Science.gov (United States)

    Kuga, Maïa; Marty, Bernard; Marrocchi, Yves; Tissandier, Laurent

    2015-06-09

    In the nascent solar system, primitive organic matter was a major contributor of volatile elements to planetary bodies, and could have played a key role in the development of the biosphere. However, the origin of primitive organics is poorly understood. Most scenarios advocate cold synthesis in the interstellar medium or in the outer solar system. Here, we report the synthesis of solid organics under ionizing conditions in a plasma setup from gas mixtures (H2(O)-CO-N2-noble gases) reminiscent of the protosolar nebula composition. Ionization of the gas phase was achieved at temperatures up to 1,000 K. Synthesized solid compounds share chemical and structural features with chondritic organics, and noble gases trapped during the experiments reproduce the elemental and isotopic fractionations observed in primitive organics. These results strongly suggest that both the formation of chondritic refractory organics and the trapping of noble gases took place simultaneously in the ionized areas of the protoplanetary disk, via photon- and/or electron-driven reactions and processing. Thus, synthesis of primitive organics might not have required a cold environment and could have occurred anywhere the disk is ionized, including in its warm regions. This scenario also supports N2 photodissociation as the cause of the large nitrogen isotopic range in the solar system.

  11. Novel Metal Organic Framework Synthesis for Spacecraft Oxygen Capture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek and University of Utah propose to develop novel metal organic framework (MOF) material to efficiently capture oxygen in spacecraft cabin environment. The...

  12. Synthesis of ordered carbonaceous frameworks from organic crystals.

    Science.gov (United States)

    Nishihara, Hirotomo; Hirota, Tetsuya; Matsuura, Kenta; Ohwada, Mao; Hoshino, Norihisa; Akutagawa, Tomoyuki; Higuchi, Takeshi; Jinnai, Hiroshi; Koseki, Yoshitaka; Kasai, Hitoshi; Matsuo, Yoshiaki; Maruyama, Jun; Hayasaka, Yuichiro; Konaka, Hisashi; Yamada, Yasuhiro; Yamaguchi, Shingi; Kamiya, Kazuhide; Kamimura, Takuya; Nobukuni, Hirofumi; Tani, Fumito

    2017-07-24

    Despite recent advances in the carbonization of organic crystalline solids like metal-organic frameworks or supramolecular frameworks, it has been challenging to convert crystalline organic solids into ordered carbonaceous frameworks. Herein, we report a route to attaining such ordered frameworks via the carbonization of an organic crystal of a Ni-containing cyclic porphyrin dimer (Ni2-CPDPy). This dimer comprises two Ni-porphyrins linked by two butadiyne (diacetylene) moieties through phenyl groups. The Ni2-CPDPy crystal is thermally converted into a crystalline covalent-organic framework at 581 K and is further converted into ordered carbonaceous frameworks equipped with electrical conductivity by subsequent carbonization at 873-1073 K. In addition, the porphyrin's Ni-N4 unit is also well retained and embedded in the final framework. The resulting ordered carbonaceous frameworks exhibit an intermediate structure, between organic-based frameworks and carbon materials, with advantageous electrocatalysis. This principle enables the chemical molecular-level structural design of three-dimensional carbonaceous frameworks.Carbon-based materials are promising alternatives to noble metal catalysts, but their structures are typically disordered and difficult to control. Here, the authors obtain ordered carbonaceous frameworks with advantageous electrocatalytic properties via the carbonization of nickel-containing porphyrin dimer networks.

  13. Direct in Situ Conversion of Metals into Metal-Organic Frameworks: A Strategy for the Rapid Growth of MOF Films on Metal Substrates.

    Science.gov (United States)

    Ji, Hoon; Hwang, Sunhyun; Kim, Keonmok; Kim, CheolGi; Jeong, Nak Cheon

    2016-11-30

    The fabrication of metal-organic framework (MOF) films on conducting substrates has demonstrated great potential in applications such as electronic conduction and sensing. For these applications, direct contact of the film to the conducting substrate without a self-assembled monolayer (SAM) is a desired step that must be achieved prior to the use of MOF films. In this report, we propose an in situ strategy for the rapid one-step conversion of Cu metal into HKUST-1 films on conducting Cu substrates. The Cu substrate acts both as a conducting substrate and a source of Cu 2+ ions during the synthesis of HKUST-1. This synthesis is possible because of the simultaneous reaction of an oxidizing agent and a deprotonating agent, in which the former agent dissolves the metal substrate to form Cu 2+ ions while the latter agent deprotonates the ligand. Using this strategy, the HKUST-1 film could not only be rapidly synthesized within 5 min but also be directly attached to the Cu substrate. Based on microscopic studies, we propose a plausible mechanism for the growth reaction. Furthermore, we show the versatility of this in situ conversion methodology, applying it to ZIF-8, which comprises Zn 2+ ions and imidazole-based ligands. Using an I 2 -filled HKUST-1 film, we further demonstrate that the direct contact of the MOF film to the conducting substrate makes the material more suitable for use as a sensor or electronic conductor.

  14. Proton-Coupled Electron Transfer in Organic Synthesis: Fundamentals, Applications, and Opportunities

    Science.gov (United States)

    Miller, David C.; Tarantino, Kyle T.; Knowles, Robert R.

    2016-01-01

    Proton-coupled electron transfers (PCETs) are unconventional redox processes in which both protons and electrons are exchanged, often in a concerted elementary step. While PCET is now recognized to play a central a role in biological redox catalysis and inorganic energy conversion technologies, its applications in organic synthesis are only beginning to be explored. In this chapter we aim to highlight the origins, development and evolution of PCET processes most relevant to applications in organic synthesis. Particular emphasis is given to the ability of PCET to serve as a non-classical mechanism for homolytic bond activation that is complimentary to more traditional hydrogen atom transfer processes, enabling the direct generation of valuable organic radical intermediates directly from their native functional group precursors under comparatively mild catalytic conditions. The synthetically advantageous features of PCET reactivity are described in detail, along with examples from the literature describing the PCET activation of common organic functional groups. PMID:27573270

  15. Radiation induced synthesis of silver nano-shells formed onto organic micelles

    Energy Technology Data Exchange (ETDEWEB)

    Remita, S. [Paris-5 Univ., (CNRS UMR 8601), Lab. de Chimie et Biochimie Pharmacologiques et Toxicologiques, 75 - Paris (France); Remita, S.; Fontaine, P.; Goldmann, M. [Paris-6 et 7 Univ., (CNRS, UMR 7588), Institut des NanoSciences de Paris, 75 - Paris (France); Fontaine, P.; Muller, F.; Goldmann, M. [Paris-11 Univ., Lab. pour l' Utilisation du Rayonnement Electromagnetique (LURE), (CNRS-CEA-MDR, UMR 130), Centre Universitaire Paris Sud, 91 - Orsay (France); Rochas, C. [Universite Joseph-Fourier, Lab. de Spectrometrie Physique (UJF-CNRS-INPG, UMR 5588), 38 (France)

    2005-07-01

    Synthesis of metal nano-shells around organic micelles is achieved through radiolysis of aqueous solutions of surfactant self-assembled in spherical micelles and metal ions. The formation of the metal nano-shells is evidenced by UV-visible spectroscopy and Small Angle X-ray Scattering. (authors)

  16. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-01-01

    Full Text Available A modulated synthesis of Zr-metal organic framework (Zr-MOF) with improved ease of handling and decreased reaction time is reported to yield highly crystalline Zr-MOF with well-defined octahedral shaped crystals for practical hydrogen storage...

  17. 2005 Nobel Prize in Chemistry: Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-01-01

    The 2005 Nobel Prize in Chemistry was awarded "for the development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other…

  18. 1-Isocyano-2-dimethylamino-alkenes: Versatile reagents in diversity-oriented organic synthesis

    NARCIS (Netherlands)

    Dömling, Alexander; Illgen, Katrin

    2005-01-01

    1-Isocyano-2-dimethylamino-alkenes are versatile and multifunctional reagents in organic synthesis. Two useful protocols are given for multicomponent reactions (MCRs) for the assembly of a 6-oxo-1,4,5,6-tetrahydropyrazine-2- carboxylic acid methyl ester derivative and a highly substituted thiazole.

  19. Interdisciplinary Learning for Chemical Engineering Students from Organic Chemistry Synthesis Lab to Reactor Design to Separation

    Science.gov (United States)

    Armstrong, Matt; Comitz, Richard L.; Biaglow, Andrew; Lachance, Russ; Sloop, Joseph

    2008-01-01

    A novel approach to the Chemical Engineering curriculum sequence of courses at West Point enabled our students to experience a much more realistic design process, which more closely replicated a real world scenario. Students conduct the synthesis in the organic chemistry lab, then conduct computer modeling of the reaction with ChemCad and…

  20. Synthesis and Hydrogenation of Disubstituted Chalcones: A Guided-Inquiry Organic Chemistry Project

    Science.gov (United States)

    Mohrig, Jerry R.; Hammond, Christina Noring; Schatz, Paul F.; Davidson, Tammy A.

    2009-01-01

    Guided-inquiry experiments offer the same opportunities to participate in the process of science as classical organic qualitative analysis used to do. This three-week guided-inquiry project involves an aldol-dehydration synthesis of a chalcone chosen from a set of nine, followed by a catalytic transfer hydrogenation reaction using ammonium formate…

  1. Metal organic framework synthesis in the presence of surfactants : Towards hierarchical MOFs?

    NARCIS (Netherlands)

    Seoane, B.; Dikhtiarenko, A.; Mayoral, A.; Tellez, C.; Coronas, J.; Kapteijn, F.; Gascon, J.

    2015-01-01

    The effect of synthesis pH and H2O/EtOH molar ratio on the textural properties of different aluminium trimesate metal organic frameworks (MOFs) prepared in the presence of the well-known cationic surfactant cetyltrimethylammonium bromide (CTAB) at 120 °C was studied with the purpose of obtaining a

  2. Rapid, Low-Cost, and Ecofriendly Approach for Iron Nanoparticle Synthesis Using Aspergillus oryzae TFR9

    Directory of Open Access Journals (Sweden)

    Jagadish Chandra Tarafdar

    2013-01-01

    Full Text Available Development of reliable and ecofriendly green approach for synthesis of metallic nanoparticles biologically is an important step in the field of application of nanoscience and nanotechnology. The present paper reports the green approach for iron nanoparticle synthesis using Aspergillus oryzae TFR9 using FeCl3 as a precursor metal salt. Valid characterization techniques employed for biosynthesized iron nanoparticles including dynamic light scattering (DLS, transmission electron microscopy (TEM, and high resolution-transmission electron microscopy (HR-TEM for morphological study. X-ray energy dispersive spectroscopy (EDS spectrum confirmed the presence of elemental iron signal in high percentage. Apart from ecofriendliness and easy availability, low-cost biomass production will be more advantageous when compared to other chemical methods. Biosynthesis of iron nanoparticles using fungus has greater commercial viability that it may be used in agriculture, biomedicals and engineering sector.

  3. Rapid continuous flow synthesis of high-quality silver nanocubes and nanospheres

    KAUST Repository

    Mehenni, Hakim

    2013-01-01

    We report a biphasic-liquid segmented continuous flow method for the synthesis of high-quality plasmonic single crystal silver nanocubes and nanospheres. The nanocubes were synthesized with controllable edge lengths from 20 to 48 nm. Single crystal nanospheres with a mean size of 29 nm were obtained by in-line continuous-flow etching of as-produced 39 nm nanocubes with an aqueous solution of FeNO3. In comparison to batch synthesis, the demonstrated processes represent highly scalable reactions, in terms of both production rate and endurance. The reactions were conducted in a commercially available flow-reactor system that is easily adaptable to industrial-scale production, facilitating widespread utilization of the procedure and the resulting nanoparticles. This journal is © The Royal Society of Chemistry 2013.

  4. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Liquid phase oxidation via heterogeneous catalysis organic synthesis and industrial applications

    CERN Document Server

    Clerici, Mario G

    2013-01-01

    Sets the stage for environmentally friendly industrial organic syntheses From basic principles to new and emerging industrial applications, this book offers comprehensive coverage of heterogeneous liquid-phase selective oxidation catalysis. It fully examines the synthesis, characterization, and application of catalytic materials for environmentally friendly organic syntheses. Readers will find coverage of all the important classes of catalysts, with an emphasis on their stability and reusability. Liquid Phase Oxidation via Heterogeneous Catalysis features contributions from an internation

  6. Synthesis, Postmodification, Metalation, and Gas Adsorption in Chemically Stable Metal Organic Frameworks and Zeolitic Imidazolate Frameworks.

    OpenAIRE

    Morris, William

    2012-01-01

    Metal Organic Frameworks (MOFs) and Zeolitic Imidazolate Frameworks (ZIFs) are porous crystalline materials comprised of organic units (links) and metal oxide units (secondary building units) with surface areas often exceeding 1000 m2/g. These materials are finding increased applications in gas storage, gas separation, and catalysis. In this thesis new MOFs and ZIFs are synthesized to further these applications. Special attention is paid to the synthesis of frameworks, which can be postsynthe...

  7. Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise.

    Science.gov (United States)

    West, Daniel W D; Burd, Nicholas A; Coffey, Vernon G; Baker, Steven K; Burke, Louise M; Hawley, John A; Moore, Daniel R; Stellingwerff, Trent; Phillips, Stuart M

    2011-09-01

    Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis. This trial was registered at clinicaltrials.gov as NCT01319513.

  8. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates.

    Science.gov (United States)

    Chaudhry, Aqif A; Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-09-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO₃-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO₃-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO₃-HA. For silicate-substituted hydroxyapatite (SiO₄-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO₄-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy.

  9. Microreactortechnology: Real-Time Flow Measurements in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Pieter J. Nieuwland

    2012-03-01

    Full Text Available With the commercial availability of integrated microreactor systems, the numbers of chemical processes that are performed nowadays in a continuous flow is growing rapidly. The control over mixing efficiency and homogeneous heating in these reactors allows industrial scale production that was often hampered by the use of large amounts of hazardous chemicals. Accurate actuation and in line measurements of the flows, to have a better control over the chemical reaction, is of added value for increasing reproducibility and a safe production.

  10. Synthesis and characterization of a new organic semiconductor material

    Energy Technology Data Exchange (ETDEWEB)

    Tiffour, Imane [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); Dehbi, Abdelkader [Laboratoire de Génie Physique, Département de Physique, Université de Tiaret, Tiaret 14000 (Algeria); Mourad, Abdel-Hamid I., E-mail: ahmourad@uaeu.ac.ae [Mechanical Engineering Department, Faculty of Engineering, United Arab Emirates University, Al-Ain, P.O. Box 15551 (United Arab Emirates); Belfedal, Abdelkader [Faculté des Sciences et Technologies, Université Mustapha Stambouli, Mascara 29000 (Algeria); LPCMME, Département de Physique, Université d' Oran Es-sénia, 3100 Oran (Algeria)

    2016-08-01

    The objective of this study is to create an ideal mixture of Acetaminophen/Curcumin leading to a new and improved semiconductor material, by a study of the electrical, thermal and optical properties. This new material will be compared with existing semiconductor technology to discuss its viability within the industry. The electrical properties were investigated using complex impedance spectroscopy and optical properties were studied by means of UV-Vis spectrophotometry. The electric conductivity σ, the dielectric constant ε{sub r}, the activation energy E{sub a}, the optical transmittance T and the gap energy E{sub g} have been investigated in order to characterize our organic material. The electrical conductivity of the material is approximately 10{sup −5} S/m at room temperature, increasing the temperature causes σ to increase exponentially to approximately 10{sup −4} S/m. The activation energy obtained for the material is equal to 0.49 ± 0.02 ev. The optical absorption spectra show that the investigating material has absorbance in the visible range with a maximum wavelength (λ{sub max}) 424 nm. From analysis, the absorption spectra it was found the optical band gap equal to 2.6 ± 0.02 eV and 2.46 ± 0.02 eV for the direct and indirect transition, respectively. In general, the study shows that the developed material has characteristics of organic semiconductor material that has a promising future in the field of organic electronics and their potential applications, e.g., photovoltaic cells. - Highlights: • Development of a new organic acetaminophen/Curcumin semiconductor material. • The developed material has characteristics of an organic semiconductor. • It has electrical conductivity comparable to available organic semiconductors. • It has high optical transmittance and low permittivity/dielectric constant.

  11. Rapid production of organic fertilizer by dynamic high-temperature aerobic fermentation (DHAF) of food waste.

    Science.gov (United States)

    Jiang, Yang; Ju, Meiting; Li, Weizun; Ren, Qingbin; Liu, Le; Chen, Yu; Yang, Qian; Hou, Qidong; Liu, Yiliang

    2015-12-01

    Keep composting matrix in continuous collision and friction under a relatively high-temperature can significantly accelerate the progress of composting. A bioreactor was designed according to the novel process. Using this technology, organic fertilizer could be produced within 96h. The electric conductivity (EC) and pH value reached to a stable value of 2.35mS/cm and 7.7 after 96h of fermentation. The total carbon/total nitrogen (TC/TN) and dissolved carbon/dissolved nitrogen (DC/DN) ratio was decrease from 27.3 and 36.2 to 17.4 and 7.6 respectively. In contrast, it needed 24days to achieve the similar result in traditional static composting (TSC). Compost particles with different size were analyzed to explore the rapid degradation mechanism of food waste. The evidence of anaerobic fermentation was firstly discovered in aerobic composting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Rapid, automated gas chromatographic detection of organic compounds in ultra-pure water

    Energy Technology Data Exchange (ETDEWEB)

    MOWRY,CURTIS DALE; BLAIR,DIANNA S.; MORRISON,DENNIS J.; REBER,STEPHEN D.; RODACY,PHILIP J.

    2000-02-15

    An automated gas chromatography was used to analyze water samples contaminated with trace (parts-per-billion) concentrations of organic analytes. A custom interface introduced the liquid sample to the chromatography. This was followed by rapid chromatographic analysis. Characteristics of the analysis include response times less than one minute and automated data processing. Analytes were chosen based on their known presence in the recycle water streams of semiconductor manufacturers and their potential to reduce process yield. These include acetone, isopropanol, butyl acetate, ethyl benzene, p-xylene, methyl ethyl ketone and 2-ethoxy ethyl acetate. Detection limits below 20 ppb were demonstrated for all analytes and quantitative analysis with limited speciation was shown for multianalyte mixtures. Results are discussed with respect to the potential for on-line liquid process monitoring by this method.

  13. Synthesis, characterization and application of an inorgano organic ...

    Indian Academy of Sciences (India)

    Its chemical stability has been assessed in various mineral acids, bases and organic solvents. Ion exchange capacity (IEC) has been determined and distribution behaviour towards several metal ions in different electrolyte solutions with varying concentrations has been studied and a few binary separations achieved.

  14. Green chemistry principles in organic compound synthesis and analysis

    Directory of Open Access Journals (Sweden)

    Ruchi Verma

    2014-03-01

    Full Text Available The present review focus on various green chemistry approaches which could be utilized in the organic compounds in practical classes for undergraduate level in comparison of conventional methods. These methods avoid the usage of hazardous substances and are environmental friendly.

  15. Burnout and Organization in Education: A Synthesis of Literature.

    Science.gov (United States)

    Gibson, R. Oliver; Raw, Donald W.

    Burnout in education is described in terms of system stress. Systems and their relationships are viewed at four levels: somatic, psychological, social, and cultural. "Burnout" is defined as a reduction of the function of an organism or living system. Changes in the state of a system create increased demands for adaptation. Stress is a general…

  16. Organic Synthesis under Solvent-free Condition. An Environmentally ...

    Indian Academy of Sciences (India)

    environmental pollution caused by solvents and also their academic interest in solid-solid reactions have led them in recent times to develop methodologies for solvent-free reac- tions with considerable success. The Function of a Solvent. A general assumption with regard to organic reactions is that they are performed in a ...

  17. Experimental Investigation of Organic Synthesis in Hydrothermal Environments

    Science.gov (United States)

    Shock, Everett L.

    1998-01-01

    The results of the investigation were presented at a Astrobiology Institute General Meeting. Seafloor hydrothermal systems may be the most likely locations on the early Earth for the emergence of life. Because of the disequilibrium inherent in such dynamic, mixing environments, abundant chemical energy would have been available for formation of the building blocks of life. In addition, theoretical studies suggest that organic compounds in these conditions would reach metastable states, due to kinetic barriers to the formation of stable equilibrium products (CO2 and methane). The speciation of organic carbon in metastable states is highly dependent on the oxidation state, pH, temperature, pressure and bulk composition of the system. The goal of our research is to investigate the effects of a number external variables on the formation, transformation, and stability of organic compounds at hydrothermal conditions. We have begun experimental work to attempt to control the oxidation state of simulated hydrothermal systems by using buffers composed of mineral powders and gas mixtures. We are also beginning to test the stability of organic compounds under these conditions.

  18. Organic ambipolar conjugated molecules for electronics: synthesis and structure-property relationships.

    Science.gov (United States)

    Jiang, Hongji

    2010-12-01

    The field of organic electronics has been developed vastly in the past two decades, and the performance and lifetime of these devices are critically dependent on the materials development, device design, deposition processes, and modeling, among which the active materials of organic semiconductor play a crucial role. The unique properties of organic semiconductor are largely based on the versatility to synthesize multifunctional organic conjugated materials by judicious molecular design. To effectively adjust the optoelectronic properties, especially energy levels, of organic semiconductor, the scientists have presented a synthesis methodology of organic ambipolar conjugated molecules, in which typical p-dope type and n-dope type segments are incorporated into one molecule. The present review summarizes the progress on organic ambipolar conjugated molecules for electronics in the past few years. Some issues to be addressed are also highlighted and discussed. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Bupivacaine decreases cell viability and matrix protein synthesis in an intervertebral disc organ model system.

    Science.gov (United States)

    Wang, Dong; Vo, Nam V; Sowa, Gwendolyn A; Hartman, Robert A; Ngo, Kevin; Choe, So Ra; Witt, William T; Dong, Qing; Lee, Joon Y; Niedernhofer, Laura J; Kang, James D

    2011-02-01

    Bupivacaine is a local anesthetic commonly used for back pain management in interventional procedures. Cytotoxic effects of bupivacaine have been reported in articular cartilage and, recently, in intervertebral disc cell culture. However, the relevance of these effects to discs in vivo remains unclear. This study examines the effect of bupivacaine on disc cell metabolism using an organotypic culture model system that mimics the in vivo environment. To assess the effect of bupivacaine on disc cell viability and matrix protein synthesis using an organotypic model system and to determine whether this anesthetic has toxic effects. Mouse intervertebral discs were isolated and maintained ex vivo in an organotypic culture then exposed to clinically relevant concentrations of bupivacaine, and the impact on disc cell viability and matrix proteoglycan (PG) and collagen syntheses were measured in the presence and absence of the drug. Mouse functional spine units (FSUs) were isolated from the lumbar spines of 10-week-old mice. Cell viability was assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Total PG and collagen syntheses were determined by measuring the incorporation of radioactive (35)S-sulfate and (3)H-l-proline into PG and collagen, respectively. Organotypic cultures of mouse FSUs were exposed to different concentrations (0%-0.5%) of bupivacaine for variable amounts of time (0-2 hours). Cell viability within disc tissue was quantified by MTT staining and histologic assay. Matrix protein synthesis was measured by incorporation of radioactive (35)S-sulfate (for PG synthesis) and (3)H-l-proline (for collagen synthesis). Untreated mouse disc organs were maintained in culture for up to 1 month with minimal changes in tissue histology, cell viability, and matrix protein synthesis. Exposure to bupivacaine decreased cell viability in a dose- and time-dependent manner. Exposure to bupivacaine at concentrations less than or equal to 0.25% did

  20. Rapid hydrothermal flow synthesis and characterisation of carbonate- and silicate-substituted calcium phosphates

    Science.gov (United States)

    Knowles, Jonathan C; Rehman, Ihtesham; Darr, Jawwad A

    2013-01-01

    A range of crystalline and nano-sized carbonate- and silicate-substituted hydroxyapatite has been successfully produced by using continuous hydrothermal flow synthesis technology. Ion-substituted calcium phosphates are better candidates for bone replacement applications (due to improved bioactivity) as compared to phase-pure hydroxyapatite. Urea was used as a carbonate source for synthesising phase pure carbonated hydroxyapatite (CO3-HA) with ≈5 wt% substituted carbonate content (sample 7.5CO3-HA) and it was found that a further increase in urea concentration in solution resulted in biphasic mixtures of carbonate-substituted hydroxyapatite and calcium carbonate. Transmission electron microscopy images revealed that the particle size of hydroxyapatite decreased with increasing urea concentration. Energy-dispersive X-ray spectroscopy result revealed a calcium deficient apatite with Ca:P molar ratio of 1.45 (±0.04) in sample 7.5CO3-HA. For silicate-substituted hydroxyapatite (SiO4-HA) silicon acetate was used as a silicate ion source. It was observed that a substitution threshold of ∼1.1 wt% exists for synthesis of SiO4-HA in the continuous hydrothermal flow synthesis system, which could be due to the decreasing yields with progressive increase in silicon acetate concentration. All the as-precipitated powders (without any additional heat treatments) were analysed using techniques including Transmission electron microscopy, X-ray powder diffraction, Differential scanning calorimetry, Thermogravimetric analysis, Raman spectroscopy and Fourier transform infrared spectroscopy. PMID:22983020

  1. Hyaluronate synthesis by synovial villi in organ culture. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Myers, S.L.; Christine, T.A.

    1983-06-01

    Individual canine synovial villi were used to establish short-term synovial organ cultures. These villi incorporated /sup 3/H-glucosamine into highly-polymerized /sup 3/H-hyaluronic acid (/sup 3/H-HA), which was the only /sup 3/H-glycosaminoglycan identified in the culture medium. Some /sup 3/H-HA, and larger amounts of other /sup 3/H-glycosaminoglycans, were recovered from cultured tissues. Culture medium /sup 3/H-HA content was proportional to the surface area of cultured villi. Organ cultures of nonvillous synovium were compared with villi; nonvillous cultures synthesized less /sup 3/H-HA per mm2 of their synovial intimal surface than villi. These cultures complement cell culture techniques for in vitro studies of synovial lining cell function.

  2. Synthesis of Amino Acid Precursors with Organic Solids in Planetesimals with Liquid Water

    Science.gov (United States)

    Kebukawa, Y; Misawa, S.; Matsukuma, J.; Chan, Q. H. S.; Kobayashi, J.; Tachibana, S.; Zolensky, M. E.

    2017-01-01

    Amino acids are important ingredients of life that would have been delivered to Earth by extraterrestrial sources, e.g., comets and meteorites. Amino acids are found in aqueously altered carbonaceous chondrites in good part in the form of precursors that release amino acids after acid hydrolysis. Meanwhile, most of the organic carbon (greater than 70 weight %) in carbonaceous chondrites exists in the form of solvent insoluble organic matter (IOM) with complex macromolecular structures. Complex macromolecular organic matter can be produced by either photolysis of interstellar ices or aqueous chemistry in planetesimals. We focused on the synthesis of amino acids during aqueous alteration, and demonstrated one-pot synthesis of a complex suite of amino acids simultaneously with IOM via hydrothermal experiments simulating the aqueous processing

  3. Synthesis of B–Sb by rapid thermal annealing of B/Sb multilayer films

    Indian Academy of Sciences (India)

    layer with predetermined thickness of boron and antimony and subsequently subjecting the multilayer to rapid thermal annealing. The films were characterized by measuring microstructural, optical and compositional properties. 2. Experimental. Multilayer films of B and Sb were deposited onto Si and fused silica substrates ...

  4. An Automated Microwave-Assisted Synthesis Purification System for Rapid Generation of Compound Libraries.

    Science.gov (United States)

    Tu, Noah P; Searle, Philip A; Sarris, Kathy

    2016-06-01

    A novel methodology for the synthesis and purification of drug-like compound libraries has been developed through the use of a microwave reactor with an integrated high-performance liquid chromatography-mass spectrometry (HPLC-MS) system. The strategy uses a fully automated synthesizer with a microwave as energy source and robotic components for weighing and dispensing of solid reagents, handling liquid reagents, capper/crimper of microwave reaction tube assemblies, and transportation. Crude reaction products were filtered through solid-phase extraction cartridges and injected directly onto a reverse-phase chromatography column via an injection valve. For multistep synthesis, crude products were passed through scavenger resins and reintroduced for subsequent reactions. All synthetic and purification steps were conducted under full automation with no handling or isolation of intermediates, to afford the desired purified products. This approach opens the way to highly efficient generation of drug-like compounds as part of a lead discovery strategy or within a lead optimization program. © 2015 Society for Laboratory Automation and Screening.

  5. Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications.

    Science.gov (United States)

    Soundarrajan, C; Sankari, A; Dhandapani, P; Maruthamuthu, S; Ravichandran, S; Sozhan, G; Palaniswamy, N

    2012-06-01

    The leaf extract of Ocimum sanctum was used as a reducing agent for the synthesis of platinum nanoparticles from an aqueous chloroplatinic acid (H(2)PtCl(6)·6H(2)O). A greater conversion of platinum ions to nanoparticles was achieved by employing a tulsi leaf broth with a reaction temperature of 100 °C. Energy-dispersive absorption X-ray spectroscopy confirmed the platinum particles as major constituent in the reduction process. It is evident from scanning electron microscopy that the reduced platinum particles were found as aggregates with irregular shape. Fourier-transform infrared spectroscopy revealed that the compounds such as ascorbic acid, gallic acid, terpenoids, certain proteins and amino acids act as reducing agents for platinum ions reduction. X-ray diffraction spectroscopy suggested the associated forms of platinum with other molecules and the average particle size of platinum nanoparticle was 23 nm, calculated using Scherer equation. The reduced platinum showed similar hydrogen evolution potential and catalytic activity like pure platinum using linear scan voltammetry. This environmentally friendly method of biological platinum nanoparticles production increases the rates of synthesis faster which can potentially be used in water electrolysis applications.

  6. Synthesis of Carbon Nanotubes and Volatile Organic Compounds Detection

    Directory of Open Access Journals (Sweden)

    Sobri S.

    2016-01-01

    Full Text Available In this work, the adsorption effect of volatile organic compounds (chloroacetophenone, acetonitrile and hexane towards the change of resistance of CNTs pellet as sensor signal was investigated. CNTs used in this research were synthesized using Floating Catalyst – Chemical Vapor Deposition (FC-CVD method in optimum condition. The synthesized CNTs were characterized using Scanning Electron Microscopy (SEM, Transmission Electron Microscopy (TEM and Raman Spectroscopy. The variation of resistance changes towards the tested gases were recorded using a multimeter. CNTs sensor pellet showed good responses towards the tested gases, however, the sensitivity, response time and recovery time of sensor pellet need to be optimized.

  7. Toward an experimental synthesis of the chondritic insoluble organic matter

    Science.gov (United States)

    Biron, Kasia; Derenne, Sylvie; Robert, FrançOis; Rouzaud, Jean-NoëL.

    2015-08-01

    Based on the statistical model proposed for the molecular structure of the insoluble organic matter (IOM) isolated from the Murchison meteorite, it was recently proposed that, in the solar T-Tauri disk regions where (photo)dissociation of gaseous molecules takes place, aromatics result from the cyclization/aromatization of short aliphatics. This hypothesis is tested in this study, with n-alkanes being submitted to high-frequency discharge at low pressure. The contamination issue was eliminated using deuterated precursor. IOM was formed and studied using solid-state nuclear magnetic resonance, pyrolysis coupled to gas chromatography and mass spectrometry, RuO4 oxidation, and high-resolution transmission electron microscopy. It exhibits numerous similarities at the molecular level with the hydrocarbon backbone of the natural IOM, reinforcing the idea that the initial precursors of the IOM were originally chains in the gas. Moreover, a fine comparison between the chemical structure of several meteorite IOM suggests either that (i) the meteorite IOMs share a common precursor standing for the synthetic IOM or that (ii) the slight differences between the meteorite IOMs reflect differences in their environment at the time of their formation i.e., related to plasma temperature that, in turn, dictates the dissociation-recombination rates of organic fragments.

  8. Structural versatility of Metal-organic frameworks: Synthesis and Characterization

    KAUST Repository

    Alsadun, Norah S.

    2017-05-01

    Metal-Organic Frameworks (MOFs), an emerging class of porous crystalline materials, have shown promising properties for diverse applications such as catalysis, gas storage and separation. The high degree of tunability of MOFs vs other solid materials enable the assembly of advanced materials with fascinating properties for specific applications. Nevertheless, the precise control in the construction of MOFs at the molecular level remains challenging. Particularly, the formation of pre-targeted multi-nuclear Molecular Building Block (MBB) precursors to unveil materials with targeted structural characteristics is captivating. The aim of my master project in the continuous quest of the group of Prof. Eddaoudi in exploring different synthetic pathways to control the assembly of Rare Earth (RE) based MOF. After giving a general overview about MOFs, I will discuss in this thesis the results of my work on the use of tri-topic oriented organic carboxylate building units with the aim to explore the assembly/construction of new porous RE based MOFs. In chapter 2 will discuss the assembly of 3-c linkers with RE metals was then evaluated based on symmetry and angularity of the three connected linkers. The focus of chapter 3 is cerium based MOFs and heterometallic system, based on 3-c ligands with different length and symmetry. Overall, the incompatibility of 3-c ligands with the 12-c cuo MBB did not allow to any formation of higher neuclearity (˃6), but it has resulted in affecting the connectivity of the cluster.

  9. Facile and rapid one-pot microwave-assisted synthesis of Pd-Ni magnetic nanoalloys confined in mesoporous carbons

    Energy Technology Data Exchange (ETDEWEB)

    Martínez de Yuso, Alicia; Le Meins, Jean-Marc [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France); Oumellal, Yassine; Paul-Boncour, Valérie; Zlotea, Claudia [Institut de Chimie et des Matériaux Paris Est, UMR 7182, CNRS-UPEC (France); Matei Ghimbeu, Camelia, E-mail: camelia.ghimbeu@uha.fr [Université de Strasbourg, Université de Haute-Alsace, Institut de Science des Matériaux de Mulhouse, CNRS UMR (France)

    2016-12-15

    An easy and rapid one-pot microwave-assisted soft-template synthesis method for the preparation of Pd-Ni nanoalloys confined in mesoporous carbon is reported. This approach allows the formation of mesoporous carbon and the growth of the particles at the same time, under short microwave irradiation (4 h) compared to the several days spent for the classical approach. In addition, the synthesis steps are diminished and no thermopolymerization step or reduction treatment being required. The influence of the Pd-Ni composition on the particle size and on the carbon characteristics was investigated. Pd-Ni solid solutions in the whole composition range could be obtained, and the metallic composition proved to have an important effect on the nanoparticle size but low influence on carbon textural properties. Small and uniformly distributed nanoparticles were confined in mesoporous carbon with uniform pore size distribution, and dependence between the nanoparticle size and the nanoalloy composition was observed, i.e., increase of the particle size with increasing the Ni content (from 5 to 14 nm). The magnetic properties of the materials showed a strong nanoparticle size and/or composition effect. The blocking temperature of Pd-Ni nanoalloys increases with the increase of Ni amount and therefore of particle size. The magnetization values are smaller than the bulk counterpart particularly for the Ni-rich compositions due to the formed graphitic shells surrounding the particles inducing a dead magnetic layer.

  10. Laccase-Assisted Rapid Synthesis of Colloidal Gold Nanoparticles for the Catalytic Reduction of 4-Nitrophenol

    OpenAIRE

    Li, Fang; Li, Zheng; Zeng, Chang; Hu, Yonggang

    2017-01-01

    A green method for the rapid preparation of uniform-sized colloidal gold nanoparticles under ambient conditions was presented and validated using laccase as a reduction agent in alkaline medium. UV-Vis spectrophotometry, field-emission high-resolution transmission electron microscopy, X-ray diffraction, selected area electron diffraction, energy dispersive X-ray analysis, zetasizer, and Fourier transform infrared spectroscopy were used to characterize the gold nanoparticles. The gold nanopart...

  11. Synthesis and Electrospraying of Nanoscale MOF (Metal Organic Framework) for High-Performance CO2Adsorption Membrane.

    Science.gov (United States)

    Wahiduzzaman; Allmond, Kelsey; Stone, John; Harp, Spencer; Mujibur, Khan

    2017-12-01

    We report the sonochemical synthesis of MOF (metal organic framework) nanoparticles of 30-200 nm in size and electrospraying of those particles on electrospun nanofibers to process a MOF-attached nanofibrous membrane. This membrane displayed significant selectivity towards CO 2 and capacity of adsorbing with 4000-5000 ppm difference from a mixed gas flow of 1% CO 2 and 99% N 2 . Applying ultrasonic waves during the MOF synthesis offered rapid dispersion and formation of crystalline MOF nanoparticles in room temperature. The MOF nanoparticles of 100-200 nm in size displayed higher surface area and adsorption capacity comparing to that of 30-60 nm in size. Nanofibrous membrane was produced by electrospinning of MOF blended PAN solution followed by electrospraying of additional MOF nanoparticles. This yielded uniform MOF deposition on nanofibers, occurred due to electrostatic attraction between highly charged nanoparticles and conductive nanofibers. A test bench for real-time CO 2 adsorption at room temperature was built with non-dispersive Infrared (NDIR) CO 2 sensors. Comparative tests were performed on the membrane to investigate its enhanced adsorption capacity. Three layers of the as-produced membranes displayed CO 2 adsorption for approximately 2 h. Thermogravimetric analysis (TGA) of the membrane showed the thermal stability of the MOF and PAN up to 290 and 425 °C, respectively.

  12. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi

    Science.gov (United States)

    Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P. T.

    In this present study, silver nanoparticles were synthesized by green chemistry approach using Acalypha indica leaf extract as reducing agents. The reaction medium employed in the synthesis process was optimized to attain better yield, controlled size and stability. Further, the biosynthesized silver nanoparticles were conformed through UV-vis spectrum, XRD and HR-TEM analyses. Different concentration of silver nanoparticles were tested to know the inhibitory effect of fungal plant pathogens namely Alternaria alternata, Sclerotinia sclerotiorum, Macrophomina phaseolina, Rhizoctonia solani, Botrytis cinerea and Curvularia lunata. Interestingly, 15 mg concentration of silver nanoparticles showed excellent inhibitory activity against all the tested pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.

  13. Rapid Synthesis of Gold Nanoparticles from Quercus incana and Their Antimicrobial Potential against Human Pathogens

    Directory of Open Access Journals (Sweden)

    Rizwana Sarwar

    2017-01-01

    Full Text Available In current study, bioreduction of tetrachloroauric acid (HAuCl4·3H2O was carried out using leaves extract of Quercus incana for nanoparticle synthesis. The nanoparticles were characterized by ultraviolet visible spectrum (UV, Fourier-transform infrared (FT-IR, and transmission electron microscopy (TEM analysis. The gold nanoparticles (GNPs were generally clumpy agglomerates of polydispersed particles, with an average size in the range 5.5–10 nm. The Gas chromatography–mass spectrometry (GC–MS qualitative analysis and FT-IR data supported the presence of bioactive compounds, which are responsible for the metal reduction and nanoparticles stabilization. The biocompatibility of synthesized GNPs was evaluated via antibacterial activity by using human bacterial pathogens. The results showed that synthesized GNPs showed enhanced antibacterial activity against all bacterial pathogens.

  14. Trophic magnification of organic chemicals: A global synthesis

    Science.gov (United States)

    Walters, W. David; Jardine, T.D.; Cade, Brian S.; Kidd, K.A.; Muir, D.C.G.; Leipzig-Scott, Peter C.

    2016-01-01

    Production of organic chemicals (OCs) is increasing exponentially, and some OCs biomagnify through food webs to potentially toxic levels. Biomagnification under field conditions is best described by trophic magnification factors (TMFs; per trophic level change in log-concentration of a chemical) which have been measured for more than two decades. Syntheses of TMF behavior relative to chemical traits and ecosystem properties are lacking. We analyzed >1500 TMFs to identify OCs predisposed to biomagnify and to assess ecosystem vulnerability. The highest TMFs were for OCs that are slowly metabolized by animals (metabolic rate kM  0.2 day–1). This probabilistic model provides a new global tool for screening existing and new OCs for their biomagnification potential.

  15. Rapid green synthesis of silver and gold nanoparticles using Dendropanax morbifera leaf extract and their anticancer activities.

    Science.gov (United States)

    Wang, Chao; Mathiyalagan, Ramya; Kim, Yeon Ju; Castro-Aceituno, Veronica; Singh, Priyanka; Ahn, Sungeun; Wang, Dandan; Yang, Deok Chun

    2016-01-01

    Dendropanax morbifera Léveille is an oriental medicinal plant that is traditionally used in folk medicine and grows in a specific region of South Korea. We aimed to enhance the utilization of D. morbifera medicinal plants for synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs). D. morbifera leaf extract acted as both a reducing and a stabilizing agent that rapidly synthesized Dendropanax AgNPs (D-AgNPs) and Dendropanax AuNPs (D-AuNPs). The D-AgNPs and D-AuNPs were characterized by ultraviolet-visible spectroscopy, energy dispersive X-ray analysis, elemental mapping, field emission transmission electron microscopy, X-ray diffraction, and dynamic light scattering. The characterizations revealed that the D-AgNPs and D-AuNPs were in polygon and hexagon shapes with average sizes of 100-150 nm and 10-20 nm, respectively. The important outcomes were the synthesis of AgNPs and AuNPs within 1 hour and 3 minutes, respectively, avoiding the subsequent processing for removal of any toxic components or for stabilizing the nanoparticles. Additionally, D-AgNPs and D-AuNPs were examined for cytotoxicity in a human keratinocyte cell line and in A549 human lung cancer cell line. The results indicated that D-AgNPs exhibited less cytotoxicity in the human keratinocyte cell line at 100 µg/mL after 48 hours. On the other hand, D-AgNPs showed potent cytotoxicity in the lung cancer cells at the same concentration after 48 hours, whereas D-AuNPs did not exhibit cytotoxicity in both cell lines at the same concentration. However, both D-AgNPs and D-AuNPs at 50 µg/mL enhanced the cytotoxicity of ginsenoside compound K at 25 µM after 48 hours of treatment compared with CK alone. We believe that this rapid green synthesis of D-AgNPs and D-AuNPs is a valuable addition to the applications of D. morbifera medicinal plant. D-AuNPs can be used as carriers for drug delivery and in cancer therapy due to their lack of normal cell cytotoxicity.

  16. DNA display III. Solid-phase organic synthesis on unprotected DNA.

    Directory of Open Access Journals (Sweden)

    David R Halpin

    2004-07-01

    Full Text Available DNA-directed synthesis represents a powerful new tool for molecular discovery. Its ultimate utility, however, hinges upon the diversity of chemical reactions that can be executed in the presence of unprotected DNA. We present a solid-phase reaction format that makes possible the use of standard organic reaction conditions and common reagents to facilitate chemical transformations on unprotected DNA supports. We demonstrate the feasibility of this strategy by comprehensively adapting solid-phase 9-fluorenylmethyoxycarbonyl-based peptide synthesis to be DNA-compatible, and we describe a set of tools for the adaptation of other chemistries. Efficient peptide coupling to DNA was observed for all 33 amino acids tested, and polypeptides as long as 12 amino acids were synthesized on DNA supports. Beyond the direct implications for synthesis of peptide-DNA conjugates, the methods described offer a general strategy for organic synthesis on unprotected DNA. Their employment can facilitate the generation of chemically diverse DNA-encoded molecular populations amenable to in vitro evolution and genetic manipulation.

  17. Investigation of the reductive cleavage of BINAP and application to the rapid synthesis of phospholes.

    Science.gov (United States)

    Gallop, Chris W D; Bobin, Mariusz; Hourani, Petra; Dwyer, Jessica; Roe, S Mark; Viseux, Eddy M E

    2013-07-05

    A rapid and easy entry into λ(3)-phospholes and λ(4)-phosphole oxides derived from BINAP is reported herein featuring a variety of C and Si substituents and functional groups, as well the investigative work on the mechanistic pathway. DFT calculations using B3LYP functionals have been carried out to rationalize the mechanism. The observed experimental (31)P resonance shifts were compared with the calculated shifts of the proposed intermediates after calibration of the shielding tensors. The calculations included the use of polarizable continuum models to take into account solvent effects and were found to be in excellent agreement, providing further evidence for the proposed mechanism.

  18. Synthesis Gas Production by Rapid Solar Thermal Gasification of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, C. M.; Woodruff, B.; Andrews, L.; Lichty, P.; Lancaster, B.; Weimer, A. W.; Bingham, C.

    2008-03-01

    Biomass resources hold great promise as renewable fuel sources for the future, and there exists great interest in thermochemical methods of converting these resources into useful fuels. The novel approach taken by the authors uses concentrated solar energy to efficiently achieve temperatures where conversion and selectivity of gasification are high. Use of solar energy removes the need for a combustion fuel and upgrades the heating value of the biomass products. The syngas product of the gasification can be transformed into a variety of fuels useable with today?s infrastructure. Gasification in an aerosol reactor allows for rapid kinetics, allowing efficient utilization of the incident solar radiation and high solar efficiency.

  19. Histidine as a catalyst in organic synthesis: A facile in situ synthesis ...

    Indian Academy of Sciences (India)

    Unknown

    (Aldrich, E-Merck and Acros) and were purified prior to use either by distillation or by recrystallization. Histidine (E-Merck) ... ethylacetate (E-Merck) were purified by distillation before use. Double distilled water, .... Sandler S R and Karo W 1972 Organic functional group preparations (New York: Academic. Press) vol. 3. 4.

  20. Perspective: Whither the problem list? Organ-based documentation and deficient synthesis by medical trainees.

    Science.gov (United States)

    Kaplan, Daniel M

    2010-10-01

    The author argues that the well-formulated problem list is essential for both organizing and evaluating diagnostic thinking. He considers evidence of deficiencies in problem lists in the medical record. He observes a trend among medical trainees toward organizing notes in the medical record according to lists of organ systems or medical subspecialties and hypothesizes that system-based documentation may undermine the art of problem formulation and diagnostic synthesis. Citing research linking more sophisticated problem representation with diagnostic success, he suggests that documentation style and clinical reasoning are closely connected and that organ-based documentation may predispose trainees to several varieties of cognitive diagnostic error and deficient synthesis. These include framing error, premature or absent closure, failure to integrate related findings, and failure to recognize the level of diagnostic resolution attained for a given problem. He acknowledges the pitfalls of higher-order diagnostic resolution, including the application of labels unsupported by firm evidence, while maintaining that diagnostic resolution as far as evidence permits is essential to both rational care of patients and rigorous education of learners. He proposes further research, including comparison of diagnostic efficiency between organ- and problem-oriented thinkers. He hypothesizes that the subspecialty-based structure of academic medical services helps perpetuate organ-system-based thinking, and calls on clinical educators to renew their emphasis on the formulation and documentation of complete and precise problem lists and progressively refined diagnoses by trainees.

  1. Nano-Biohybrids: In Vivo Synthesis of Metal-Organic Frameworks inside Living Plants.

    Science.gov (United States)

    Richardson, Joseph J; Liang, Kang

    2018-01-01

    Plants have a complex passive fluid transport system capable of internalizing small molecules from the environment, and this system offers an ideal route for augmenting plants with functional nanomaterials. Current plant augmentation techniques use pre-formed nanomaterials and permeabilizing agents or plant cuttings. A so far unexplored concept is the formation of the functional material, in situ, from precursors small enough to be passively internalized through the roots without harming the plants. Metal-organic frameworks are ideal for in situ synthesis as they are composed of metal ions coordinated with organic ligands and have recently been mineralized around single-celled organisms in mild aqueous conditions. Herein, the synthesis of two types of metal-organic frameworks, zinc(2-methylimidazole) 2 and lanthanide 2 (terephthalate) 3 , are reported inside a variety of plants. In situ synchrotron experiments help elucidate the formation kinetics and crystal phases of the nano-biohybrid plants. Plants augmented with luminescent metal-organic frameworks are utilized for small molecule sensing, although other applications, such as pathogen sensing, proton conductive plants, improved CO 2 capture, bacteria-free nitrogen fixation, drought and fungi-resistance, and enhanced photosynthesis and photocatalysis, are foreseeable. Overall, the generation of functional materials inside of fully intact plants could lead to more complex nano-biohybrid sensors and organisms augmented with superior performance characteristics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Elucidating the structure-property relationships of donor-π-acceptor dyes for dye-sensitized solar cells (DSSCs) through rapid library synthesis by a one-pot procedure.

    Science.gov (United States)

    Fuse, Shinichiro; Sugiyama, Sakae; Maitani, Masato M; Wada, Yuji; Ogomi, Yuhei; Hayase, Shuzi; Katoh, Ryuzi; Kaiho, Tatsuo; Takahashi, Takashi

    2014-08-18

    The creation of organic dyes with excellent high power conversion efficiency (PCE) is important for the further improvement of dye-sensitized solar cells. We wish to describe the rapid synthesis of a 112-membered donor-π-acceptor dye library by a one-pot procedure, evaluation of PCEs, and elucidation of structure-property relationships. No obvious correlations between ε, and the η were observed, whereas the HOMO and LUMO levels of the dyes were critical for η. The dyes with a more positive E(HOMO), and with an E(LUMO)dyes; nevertheless, that was not sufficient for identifying the best combination of donor, π, and acceptor blocks. Combinatorial synthesis and evaluation was important for identifying the best dye. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Rapid Hydrothermal Synthesis of Zinc Oxide Nanowires by Annealing Methods on Seed Layers

    Directory of Open Access Journals (Sweden)

    Jang Bo Shim

    2011-01-01

    Full Text Available Well-aligned zinc oxide (ZnO nanowire arrays were successfully synthesized on a glass substrate using the rapid microwave heating process. The ZnO seed layers were produced by spinning the precursor solutions onto the substrate. Among coatings, the ZnO seed layers were annealed at 100°C for 5 minutes to ensure particle adhesion to the glass surface in air, nitrogen, and vacuum atmospheres. The annealing treatment of the ZnO seed layer was most important for achieving the high quality of ZnO nanowire arrays as ZnO seed nanoparticles of larger than 30 nm in diameter evolve into ZnO nanowire arrays. Transmission electron microscopy analysis revealed a single-crystalline lattice of the ZnO nanowires. Because of their low power (140 W, low operating temperatures (90°C, easy fabrication (variable microwave sintering system, and low cost (90% cost reduction compared with gas condensation methods, high quality ZnO nanowires created with the rapid microwave heating process show great promise for use in flexible solar cells and flexible display devices.

  4. Facile synthesis of magnetic mesoporous hollow carbon microspheres for rapid capture of low-concentration peptides.

    Science.gov (United States)

    Cheng, Gong; Zhou, Ming-Da; Zheng, Si-Yang

    2014-08-13

    Mesoporous and hollow carbon microspheres embedded with magnetic nanoparticles (denoted as MHM) were prepared via a facile self-sacrificial method for rapid capture of low-abundant peptides from complex biological samples. The morphology, structure, surface property, and magnetism were well-characterized. The hollow magnetic carbon microspheres have a saturation magnetization value of 130.2 emu g(-1) at room temperature and a Brunauer-Emmett-Teller specific surface area of 48.8 m(2) g(-1) with an average pore size of 9.2 nm for the mesoporous carbon shell. The effectiveness of these MHM affinity microspheres for capture of low-concentration peptides was evaluated by standard peptides, complex protein digests, and real biological samples. These multifunctional hollow carbon microspheres can realize rapid capture and convenient separation of low-concentration peptides. They were validated to have better performance than magnetic mesoporous silica and commercial peptide-enrichment products. In addition, they can be easily recycled and present excellent reusability. Therefore, it is expected that this work may provide a promising tool for high-throughput discovery of peptide biomarkers from biological samples for disease diagnosis and other biomedical applications.

  5. The Impact of Introducing Malaria Rapid Diagnostic Tests on Fever Case Management: A Synthesis of Ten Studies from the ACT Consortium.

    Science.gov (United States)

    Bruxvoort, Katia J; Leurent, Baptiste; Chandler, Clare I R; Ansah, Evelyn K; Baiden, Frank; Björkman, Anders; Burchett, Helen E D; Clarke, Siân E; Cundill, Bonnie; DiLiberto, Debora D; Elfving, Kristina; Goodman, Catherine; Hansen, Kristian S; Kachur, S Patrick; Lal, Sham; Lalloo, David G; Leslie, Toby; Magnussen, Pascal; Mangham-Jefferies, Lindsay; Mårtensson, Andreas; Mayan, Ismail; Mbonye, Anthony K; Msellem, Mwinyi I; Onwujekwe, Obinna E; Owusu-Agyei, Seth; Rowland, Mark W; Shakely, Delér; Staedke, Sarah G; Vestergaard, Lasse S; Webster, Jayne; Whitty, Christopher J M; Wiseman, Virginia L; Yeung, Shunmay; Schellenberg, David; Hopkins, Heidi

    2017-10-01

    Since 2010, the World Health Organization has been recommending that all suspected cases of malaria be confirmed with parasite-based diagnosis before treatment. These guidelines represent a paradigm shift away from presumptive antimalarial treatment of fever. Malaria rapid diagnostic tests (mRDTs) are central to implementing this policy, intended to target artemisinin-based combination therapies (ACT) to patients with confirmed malaria and to improve management of patients with nonmalarial fevers. The ACT Consortium conducted ten linked studies, eight in sub-Saharan Africa and two in Afghanistan, to evaluate the impact of mRDT introduction on case management across settings that vary in malaria endemicity and healthcare provider type. This synthesis includes 562,368 outpatient encounters (study size range 2,400-432,513). mRDTs were associated with significantly lower ACT prescription (range 8-69% versus 20-100%). Prescribing did not always adhere to malaria test results; in several settings, ACTs were prescribed to more than 30% of test-negative patients or to fewer than 80% of test-positive patients. Either an antimalarial or an antibiotic was prescribed for more than 75% of patients across most settings; lower antimalarial prescription for malaria test-negative patients was partly offset by higher antibiotic prescription. Symptomatic management with antipyretics alone was prescribed for fewer than 25% of patients across all scenarios. In community health worker and private retailer settings, mRDTs increased referral of patients to other providers. This synthesis provides an overview of shifts in case management that may be expected with mRDT introduction and highlights areas of focus to improve design and implementation of future case management programs.

  6. Aerosol-assisted synthesis of hierarchically organized titania and titanates nanostructures

    OpenAIRE

    DUGANDŽIĆ, Ivan; Jovanović, Dragana; Mančić, Lidija; Šaponjić, Zoran; Nedeljković, Jovan; Milošević, Olivera

    2013-01-01

    The aerosol route, representing a feasible bottom-up technique for nanomaterials processing in disperse system, was applied for the low-temperature (T=150 oC) synthesis of spherical, nonagglomerated, hierarchically organized titania and titanates nanostructures. The diverse levels of structural, morphological and functional complexity were explored by using appropriate colloidal precursors comprising either spherical nanoparticles or nanotubes. In both cases, spherical, grained, submicronic s...

  7. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    Science.gov (United States)

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  8. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    Directory of Open Access Journals (Sweden)

    Nelly eDatukishvili

    2015-07-01

    Full Text Available We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs. New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  9. Rapid microwaves synthesis of CoSi{sub x}/CNTs as novel catalytic materials for hydrogenation of phthalic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Liangliang [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Chen, Xiao; Jin, Shaohua; Guan, Jingchao [Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian 116024 (China); Williams, Christopher T. [Department of Chemical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Peng, Zhijian, E-mail: pengzhijian@cugb.edu.cn [School of Engineering and Technology, China University of Geosciences, Beijing 100083 (China); Liang, Changhai, E-mail: changhai@dlut.edu.cn [Laboratory of Advanced Materials and Catalytic Engineering, Dalian University of Technology, Dalian 116024 (China)

    2014-09-15

    CoSi{sub x}/CNTs catalysts with different CoSi{sub x} phases (CoSi, CoSi{sub 2}) have been rapidly synthesized via a microwave-assisted route and applied for the liquid phase hydrogenation of phthalic anhydride. The synthesized catalysts were analyzed and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy, thermogravimetric/derivative thermogravimetric analysis. The reaction progress of cobalt silicides and the ratio of Co:Si were monitored at different microwave irradiation times by XRD, giving insight into the formation mechanism. Compared to the Co/CNTs catalyst, all the prepared CoSi{sub x}/CNTs catalysts exhibited excellent activity and good selectivity to phthalide under mild reaction conditions (180–220 °C and 4.0 MPa H{sub 2}). This novel methodology can be applied to the synthesis of other transition metal silicides such as FeSi, Ni{sub 2}Si, and Cu{sub 4}Si. - Graphical abstract: CoSi{sub x}/CNTs catalysts with different CoSi{sub x} phases (CoSi{sub 2}, CoSi) have been rapidly synthesized via microwave-assisted route, which involves the vaporization of CoCl{sub 2} and subsequent reaction of CoCl{sub 2} with Si. - Highlights: • CoSi{sub x}/CNTs catalysts have been rapid synthesized via microwave-assisted route. • The phases of CoSi{sub x} were controlled by varying microwave time and Co:Si ratio. • FeSi, Ni{sub 2}Si and Cu{sub 4}Si were also synthesized via microwave-assisted route. • CoSi{sub x}/CNTs catalysts can be applied in hydrogenation of phthalic anhydride.

  10. A rapid microwave route for the synthesis of ZnS nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Salavati-Niasari

    2011-07-01

    Full Text Available ZnS  nanoparticles  were  synthesized  via  a  simple  surfactant  free microwave  route.  In  this  synthesis, thioacetamide  was  used  as sulfur  source.  The effects  of different  parameters  such  as  type of zinc precursor,  time  and  power  of  irradiation  on  the  morphology and  particle  size  of  the  products  have been  investigated.  The nanostructures  were  characterized  by  means  of  X-ray  diffraction (XRD, energy-dispersive X-ray analysis (EDX, scanning electron microscopy (SEM, Fourier transform infrared (FT-IR and photoluminescence (PL spectroscopy.

  11. Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique

    Energy Technology Data Exchange (ETDEWEB)

    Hafermann, Lars, E-mail: lars.hafermann@tu-ilmenau.de; Michael Köhler, J. [Technische Universität Ilmenau, Department for Physical Chemistry/Microreaction Technology, Faculty of Mathematics and Natural Science, Institute for Chemistry and Biotechnology (Germany)

    2015-02-15

    The photochemical synthesis of gold nanoparticles was transferred into a three-step micro-continuous flow process. A solution of tetrachloroaurate and a solution of a photoinitiator and polyvinylpyrrolidone were mixed within micro-fluid segments using a cross-injector. The segments (0.5 mm inner diameter) pass a focused UV ray after a short mixing by means of segment-internal convection. The nucleation of nanoparticles was initiated by this exposure, which lasted 30–300 ms depending on the applied flow rate. The growth of nanoparticles was completed by the passage of a residence loop of a length of 0.5 m. The obtained colloidal product solution was characterized by UV/VIS spectrophotometry, centrifugal sedimentation spectroscopy, dynamic light scattering, and SEM/TEM. In result, small gold nanoparticles with enhanced quality, compared to photochemical batch experiments, were obtained. The particle size can be tuned by variation of the composition of reactant solutions or flow rate between 2.5 and 4 nm. The small gold nanoparticles are suitable for use as seed particles for the formation of larger particles with an adjustable diameter.

  12. Rapid green synthesis of silver nanoparticles by aqueous extract of seeds of Nyctanthes arbor-tristis

    Science.gov (United States)

    Basu, Shibani; Maji, Priyankar; Ganguly, Jhuma

    2016-01-01

    The present study explores that the aqueous extract of the seeds of Nyctanthes arbor-tristis (aka night jasmine) is very efficient for the synthesis of stable AgNPs from aqueous solution of AgNO3. The extract acts as both reducing (from Ag+ to Ag0) and capping agent in the aqueous phase. The constituents in extract are mainly biomolecules like carbohydrates and phenolic compounds, which are responsible for the preparation of stable AgNPs within 20 min of reaction time at 25 °C using without any severe conditions. The synthesized silver nanoparticles were characterized with UV-Visible spectroscopy, FT-IR, XRD and SEM. UV-Vis spectroscopy analysis showed peak at 420 nm, which corresponds to the surface plasmon resonance of AgNPs. XRD results showed peaks at (111), (200), (220), which confirmed the presence of AgNPs with face-centered cubic structure. The uniform spherical nature of the AgNPs and size (between 50 and 80 nm) were further confirmed by SEM analysis.

  13. Rapid synthesis of the X-linked mental retardation protein OPHN1 mediates mGluR-dependent LTD through interaction with the endocytic machinery.

    NARCIS (Netherlands)

    Nadif Kasri, N.; Nakano-Kobayashi, A.; Aelst, L. Van

    2011-01-01

    Activation of group I metabotropic glutamate receptors leads to long-term depression (mGluR-LTD). Alterations in this form of plasticity have been linked to drug addiction and cognitive disorders. A key characteristic of mGluR-LTD is its dependence on rapid protein synthesis; however, the identities

  14. Simplified Application of Material Efficiency Green Metrics to Synthesis Plans: Pedagogical Case Studies Selected from "Organic Syntheses"

    Science.gov (United States)

    Andraos, John

    2015-01-01

    This paper presents a simplified approach for the application of material efficiency metrics to linear and convergent synthesis plans encountered in organic synthesis courses. Computations are facilitated and automated using intuitively designed Microsoft Excel spreadsheets without invoking abstract mathematical formulas. The merits of this…

  15. Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

    Science.gov (United States)

    Sloop, Joseph C.; Tsoi, Mai Yin; Coppock, Patrick

    2016-01-01

    A problem-solving scaffold approach to synthesis was developed and implemented in two intervention sections of Chemistry 2211K (Organic Chemistry I) at Georgia Gwinnett College (GGC). A third section of Chemistry 2211K at GGC served as the control group for the experiment. Synthesis problems for chapter quizzes and the final examination were…

  16. Solution-Phase Synthesis of Dipeptides: A Capstone Project That Employs Key Techniques in an Organic Laboratory Course

    Science.gov (United States)

    Marchetti, Louis; DeBoef, Brenton

    2015-01-01

    A contemporary approach to the synthesis and purification of several UV-active dipeptides has been developed for the second-year organic laboratory. This experiment exposes students to the important technique of solution-phase peptide synthesis and allows an instructor to highlight the parallel between what they are accomplishing in the laboratory…

  17. Rapid synthesis of Co, Ni co-doped ZnO nanoparticles: Optical and electrochemical properties

    Science.gov (United States)

    Romeiro, Fernanda C.; Marinho, Juliane Z.; Lemos, Samantha C. S.; de Moura, Ana P.; Freire, Poliana G.; da Silva, Luis F.; Longo, Elson; Munoz, Rodrigo A. A.; Lima, Renata C.

    2015-10-01

    We report for the first time a rapid preparation of Zn1-2xCoxNixO nanoparticles via a versatile and environmentally friendly route, microwave-assisted hydrothermal (MAH) method. The Co, Ni co-doped ZnO nanoparticles present an effect on photoluminescence and electrochemical properties, exhibiting excellent electrocatalytic performance compared to undoped ZnO sample. Photoluminescence spectroscopy measurements indicated the reduction of the green-orange-red visible emission region after adding Co and Ni ions, revealing the formation of alternative pathways for the generated recombination. The presence of these metallic ions into ZnO creates different defects, contributing to a local structural disorder, as revealed by Raman spectra. Electrochemical experiments revealed that the electrocatalytic oxidation of dopamine on ZnO attached to multi-walled carbon nanotubes improved significantly in the Co, Ni co-doped ZnO samples when compared to pure ZnO.

  18. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  19. Integrated process of distillation with side reactors for synthesis of organic acid esters

    Science.gov (United States)

    Panchal, Chandrakant B; Prindle, John C; Kolah, Aspri; Miller, Dennis J; Lira, Carl T

    2015-11-04

    An integrated process and system for synthesis of organic-acid esters is provided. The method of synthesizing combines reaction and distillation where an organic acid and alcohol composition are passed through a distillation chamber having a plurality of zones. Side reactors are used for drawing off portions of the composition and then recycling them to the distillation column for further purification. Water is removed from a pre-reactor prior to insertion into the distillation column. An integrated heat integration system is contained within the distillation column for further purification and optimizing efficiency in the obtaining of the final product.

  20. Rapid DNA Synthesis During EarlyDrosophilaEmbryogenesis Is Sensitive to Maternal Humpty Dumpty Protein Function.

    Science.gov (United States)

    Lesly, Shera; Bandura, Jennifer L; Calvi, Brian R

    2017-11-01

    Problems with DNA replication cause cancer and developmental malformations. It is not fully understood how DNA replication is coordinated with development and perturbed in disease. We had previously identified the Drosophila gene humpty dumpty ( hd ), and showed that null alleles cause incomplete DNA replication, tissue undergrowth, and lethality. Animals homozygous for the missense allele, hd 272-9 , were viable, but adult females had impaired amplification of eggshell protein genes in the ovary, resulting in the maternal effects of thin eggshells and embryonic lethality. Here, we show that expression of an hd transgene in somatic cells of the ovary rescues amplification and eggshell synthesis but not embryo viability. The germline of these mothers remain mutant for the hd 272-9 allele, resulting in reduced maternal Hd protein and embryonic arrest during mitosis of the first few S/M nuclear cleavage cycles with chromosome instability and chromosome bridges. Epistasis analysis of hd with the rereplication mutation plutonium indicates that the chromosome bridges of hd embryos are the result of a failed attempt to segregate incompletely replicated sister chromatids. This study reveals that maternally encoded Humpty dumpty protein is essential for DNA replication and genome integrity during the little-understood embryonic S/M cycles. Moreover, the two hd 272-9 maternal-effect phenotypes suggest that ovarian gene amplification and embryonic cleavage are two time periods in development that are particularly sensitive to mild deficits in DNA replication function. This last observation has broader relevance for interpreting why mild mutations in the human ortholog of humpty dumpty and other DNA replication genes cause tissue-specific malformations of microcephalic dwarfisms. Copyright © 2017 by the Genetics Society of America.

  1. Organization Development and U.S. Institutions of Higher Education: A Thematic Meta-Synthesis of Approaches and Practice

    Science.gov (United States)

    Overstreet, Kirk E., Jr.

    2017-01-01

    Organization Development (OD) has been used in a variety of ways to improve organizations both large and small. Interestingly, the institutions that teach and conduct research on organizations have been slow to adopt or utilize OD approaches and practices in their own institutions. This dissertation will use a thematic meta-synthesis approach to…

  2. Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites.

    Science.gov (United States)

    Vollmer, Christian; Kepaptsoglou, Demie; Leitner, Jan; Busemann, Henner; Spring, Nicole H; Ramasse, Quentin M; Hoppe, Peter; Nittler, Larry R

    2014-10-28

    Isotopically anomalous carbonaceous grains in extraterrestrial samples represent the most pristine organics that were delivered to the early Earth. Here we report on gentle aberration-corrected scanning transmission electron microscopy investigations of eight (15)N-rich or D-rich organic grains within two carbonaceous Renazzo-type (CR) chondrites and two interplanetary dust particles (IDPs) originating from comets. Organic matter in the IDP samples is less aromatic than that in the CR chondrites, and its functional group chemistry is mainly characterized by C-O bonding and aliphatic C. Organic grains in CR chondrites are associated with carbonates and elemental Ca, which originate either from aqueous fluids or possibly an indigenous organic source. One distinct grain from the CR chondrite NWA 852 exhibits a rim structure only visible in chemical maps. The outer part is nanoglobular in shape, highly aromatic, and enriched in anomalous nitrogen. Functional group chemistry of the inner part is similar to spectra from IDP organic grains and less aromatic with nitrogen below the detection limit. The boundary between these two areas is very sharp. The direct association of both IDP-like organic matter with dominant C-O bonding environments and nanoglobular organics with dominant aromatic and C-N functionality within one unique grain provides for the first time to our knowledge strong evidence for organic synthesis in the early solar system activated by an anomalous nitrogen-containing parent body fluid.

  3. TECHNOLOGIES OF SYNTHESIS OF ORGANIC SUBSTANCES BY MICROORGANISMS USING WASTE BIODIESEL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Pirog T. P.

    2015-08-01

    Full Text Available We describe here literature and our experimental data concerning microbial synthesis using waste biodiesel production, mono- and dihydric alcohols (1,3-propanediol, 2,3-butanediol, butanol, ethanol, polyols (mannitol, erythritol, arabitol, organic acids (citric, succinic, lactic, glyceric, polymers and compounds with a complex structure (polysaccharides, polyhydroxyalkanoates, surfactants, cephalosporin, cyanocobalamin. In some mentioned cases recombinant producer strains were used. It was shown that due to the presence of potential inhibitors in the composition of technical (crude glycerol (methanol, sodium and potassium salts, the efficiency of synthesis of most microbial products on such a substrate is lower than on the purified glycerol. However, the need of utilization of this toxic waste (storage and processing of crude glycerol is a serious environmental problem due to the high alkalinity and the content of methanol in it, compensates the lower rates of synthesis of the final product. Furthermore, currently considering the volumes of crude glycerol formed during the production of biodiesel, microbial technologies are preferred for its utilization, allowing realizing biosynthesis of practically valuable metabolites in the environment with the highest possible concentration of this waste. Using of crude glycerol as a substrate will reduce the cost of products of microbial synthesis and increase the profitability of biodiesel production.

  4. Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H(+)-ATPase.

    Science.gov (United States)

    Hager, A; Debus, G; Edel, H G; Stransky, H; Serrano, R

    1991-11-01

    Auxin causes elongation growth of plant cells by increasing the plastic extensibility of the cell wall. Putative cellular events involved in this hormone action were studied using maize (Zea mays L.) coleoptiles with the following results: (i) Auxin enhances membrane flow from the endoplasmic reticulum to the plasma membrane (PM). This effect was demonstrated by pulse-labeling of the endoplasmic reticulum with myo-[(3)H]inositol in coleoptile segments and by measuring the distribution of the label within isolated and separated microsomal membrane fractions, (ii) Auxin rapidly increases the amount of antibody-detectable H(+)-ATPase in the PM. This augmentation is already significant 10 min after the addition of indole-3-acetic acid (IAA) and reaches a new higher steady-state level after about 30 min. (iii) Cycloheximide, a potent inhibitor of both protein synthesis and extension growth, quickly diminishes the auxin-enhanced level of the PM H(+)-ATPase, indicating an apparent half-life of the enzyme of around 12 min. (iv) Cordycepin, which blocks the synthesis of mRNAs, reduces the auxin-elevated level of the H(+)-ATPase similar to cycloheximide. (v) Changes in the growth rate of coleoptile segments in response to IAA, cycloheximide, and cordycepin exactly reflect the changes of the H(+)-ATPase level in the PM. (vi) The elongation growth induced by fusicoccin, or ester compounds, or by an elevated CO2 concentration in the incubation medium, is not related to an increased number of H(+)-ATPase molecules within the PM. (vii) The necessity of H(+) for cell-wall-loosening processes is again demonstrated by growth experiments with abraded coleoptile segments. The adjustment of the cell wall to a pH of ≥6.5 completely abolishes the auxin-induced elongation growth; no inhibition occurs with non-abraded segments. Buffer solutions of pH ≤6.0 induce "acid growth" of abraded segments for several hours. It is suggested that auxin activates a cluster of genes responsible (i

  5. Design, Synthesis and Characterization of Functional Metal-Organic Framework Materials

    KAUST Repository

    Alamer, Badriah

    2015-06-01

    Over the past few decades, vast majority of industrial and academic research throughout the world has witnessed the emergence of materials that can serve as ideal candidates for potential utility in desired applications, and these materials are known as Metal Organic Framework (MOFs). This exceptional new family of porous materials is fabricated by linkage of metal ions or clusters and organic linkers via strong bonds. MOFs have been awarded with remarkable interest and widely studied due to their inherent structural methodology (e.g. use of various metals, expanded library of organic building blocks with different geometry and functionality particularly frameworks designed from carboxylate organic linkers) and unquestionably unique structural and chemical features for many practical applications. (i.e. gas storage/separation, catalysis, drug delivery etc). Simply, metal organic frameworks epitomize the beauty of porous chemical structures. From a design perspective, the introduction of the Molecular Building Block (MBB) approach is actively being pursued pathway by researchers toward the construction of MOFs by employing inorganic building blocks and organic linkers and taking advantage of not only their multiple coordination modes and geometries but also the way in which they are reticulated to generate final framework. In this thesis, research studies will be directed toward (i) the investigation of the relationship between experimental parameters and synthesis of well-known fcu –MOF, (ii) rational design and synthesis of new rare earth (RE) based MOFs, (ii) isoreticular materials based on particular MBB ([M3O(RCO2)6]), M= p-and d-block metals, and (iv) zeolite- like metal organic framework assembled from single-metal ion based MBB ([MN2(CO2)4]) via 2-, 3-,and 4-connected organic linkers. Consequently, the porosity, chemical and thermal stability, and gas sorption properties will be evaluated and detailed.

  6. Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization

    Science.gov (United States)

    Hoai, Tran Thanh; Nga, Nguyen Kim; Giang, Luu Truong; Huy, Tran Quang; Tuan, Phan Nguyen Minh; Binh, Bui Thi Thanh

    2017-08-01

    Hydroxyapatite (HAp) is an excellent biomaterial for bone repair and regeneration. The biological functions of HAp particles, such as biomineralization, cell adhesion, and cell proliferation, can be enhanced when their size is reduced to the nanoscale. In this work, HAp nanoparticles were synthesized by the hydrothermal technique with addition of cetyltrimethylammonium bromide (CTAB). These particles were also characterized, and their size controlled by modifying the CTAB concentration and hydrothermal duration. The results show that most HAp nanoparticles were rod-like in shape, exhibiting the most uniform and smallest size (mean diameter and length of 39 nm and 125 nm, respectively) at optimal conditions of 0.64 g CTAB and hydrothermal duration of 12 h. Moreover, good biomineralization capability of the HAp nanorods was confirmed through in vitro tests in simulated body fluid. A bone-like mineral layer of synthesized HAp nanorods formed rapidly after 7 days. This study shows that highly bioactive HAp nanorods can be easily prepared by the hydrothermal method, being a potential nanomaterial for bone regeneration.

  7. Rapid Thermal Annealing for Solution Synthesis of Transparent Conducting Aluminum Zinc Oxide Thin Films

    Science.gov (United States)

    Ullah, Sana; De Matteis, Fabio; Davoli, Ivan

    2017-11-01

    Transparent conducting oxide films with optimized dopant molar ratio have been prepared with limited pre- and postdeposition annealing duration of 10 min. Multiple aluminum zinc oxide (AZO) layers were spin-coated on ordinary glass substrates. The predeposition consolidation temperature and dopant molar ratio were optimized for electrical conductivity and optical transparency. Next, a group of films were deposited on Corning glass substrates from precursor solutions with the optimized dopant ratio, followed by postdeposition rapid thermal annealing (RTA) at different temperatures and in controlled environments. The lowest resistivity of 10.1 × 10-3 Ω cm was obtained for films receiving RTA at 600°C for 10 min each in vacuum then in N2-5%H2 environment, while resistivity of 20.3 × 10-3 Ω cm was obtained for films subjected to RTA directly in N2-5%H2. Optical measurements revealed average total transmittance of about 85% in the visible region. A direct allowed transition bandgap was determined based on the absorption edge with a value slightly above 3.0 eV, within the typical range for semiconductors. RTA resulted in desorption of oxygen with enhanced carrier concentration and crystallinity, which increased the carrier mobility with decreased bulk resistivity while maintaining the required optical transparency.

  8. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors.

    Science.gov (United States)

    Lin, Tian; Kellici, Suela; Gong, Kenan; Thompson, Kathryn; Evans, Julian R G; Wang, Xue; Darr, Jawwad A

    2010-05-10

    We report on the commissioning experimental run of the rapid automated materials synthesis instrument (RAMSI), a combinatorial robot designed to manufacture, clean, and print libraries of nanocrystal precursor solid compositions. The first stage of RAMSI, parallel synthesis, uses a fully automated high throughput continuous hydrothermal (HiTCH) flow reactor for automatic metal salt precursor mixing, hydrothermal flow reaction, and sample slurry collection. The second stage of RAMSI provides integrated automated cleanup, and the third section is a ceramic printing function. Nanocrystal precursor solid ceramics were synthesized from precursor solutions and collected into 50 mL centrifuge tubes where they were cleaned by multiple centrifugation and redispersion cycles (monitored by intelligent scanning turbidimetry) and printed with an automated pipette. Eight unique compositions of a model phosphor library comprising pure nano-Y(OH)(3) and Eu(3+) doped-yttrium hydroxide, Y(OH)(3):Eu(3+) nanocrystal precursor solid were synthesized (with 2 centrifuge tubes' worth collected per composition), processed, and printed in duplicate as 75, 100, and 125 microL dots in a 21.6 ks (6 h) experiment (note: the actual time for synthesis of each sample tube was only 12 min so up to 60 compositions could easily be synthesized in 12 h if one centrifuge tube per composition was collected instead). The Y(OH)(3):Eu(3+) samples were manually placed in a furnace and heat-treated in air for 14.4 ks (4 h) in the temperature range 200-1200 at 100 degrees C intervals (giving a total of 84 samples plus one as-prepared pure Y(OH)(3) sample). The as-prepared and heat-treated ceramic samples were affixed to 4 mm wide hemispherical wells in a custom-made aluminum well-plate and analyzed using a fluorescence spectrometer. When the library was illuminated with a 254 nm light source (and digitally imaged and analyzed), the 3 mol % Eu(3+) sample heat-treated at 1200 degrees C gave the most intense

  9. Rapid analysis of organic microcontaminants in environmental water samples by trace enrichment and liquid chromatography on a single short column.

    NARCIS (Netherlands)

    Hogenboom, A.C.; Malmqvist, U.K.; Nolkrantz, K.; Vreuls, J.J.; Brinkman, U.A.T.

    1997-01-01

    On-column trace enrichment and liquid chromatography using a single short (20 mm length) high-pressure packed column was optimized for the rapid simultaneous identification and quantification of a wide range of organic microcontaminants in environmental water samples. The quality of different C,,

  10. Rapid fabrication of Al{sub 2}O{sub 3} encapsulations for organic electronic devices

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Kamran; Ali, Junaid [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); Mehdi, Syed Murtuza [Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270 (Pakistan); Choi, Kyung-Hyun, E-mail: amm@jejunu.ac.kr [Department of Mechatronics Engineering, Jeju National University, Jeju 690-756 (Korea, Republic of); An, Young Jin [Jeonnam Science and Technology Promotion Center, Yeongam-gun, Jeollanam-do 526-897 (Korea, Republic of)

    2015-10-30

    Highlights: • Al{sub 2}O{sub 3} encapsulations are being developed through a unique R2R-AALD system. • The encapsulations have resulted in life time enhancement of PVP memristor devices. • The Al{sub 2}O{sub 3} encapsulated memristor performed with superior stability for four weeks. • Encapsulated devices performed efficiently even after bending test for 100 cycles. - Abstract: Organic electronics have earned great reputation in electronic industry yet they suffer technical challenges such as short lifetimes and low reliability because of their susceptibility to water vapor and oxygen which causes their fast degradation. This paper report on the rapid fabrication of Al{sub 2}O{sub 3} encapsulations through a unique roll-to-roll atmospheric atomic layer deposition technology (R2R-AALD) for the life time enhancement of organic poly (4-vinylphenol) (PVP) memristor devices. The devices were then categorized into two sets. One was processed with R2R-AALD Al{sub 2}O{sub 3} encapsulations at 50 °C and the other one was kept as un-encapsulated. The field-emission scanning electron microscopy (FESEM) results revealed that pin holes and other irregularities in PVP films with average arithmetic roughness (R{sub a}) of 9.66 nm have been effectively covered by Al{sub 2}O{sub 3} encapsulation having R{sub a} of 0.92 nm. The X-ray photoelectron spectroscopy XPS spectrum for PVP film showed peaks of C 1s and O 1s at the binding energies of 285 eV and 531 eV, respectively. The respective appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74 eV, 119 eV, and 531 eV, confirms the fabrication of Al{sub 2}O{sub 3} films. Electrical current–voltage (I–V) measurements confirmed that the Al{sub 2}O{sub 3} encapsulation has a huge influence on the performance, robustness and life time of memristor devices. The Al{sub 2}O{sub 3} encapsulated memristor performed with superior stability for four weeks whereas the un-encapsulated devices could only last for one

  11. Marine invertebrates, model organisms, and the modern synthesis: epistemic values, evo-devo, and exclusion.

    Science.gov (United States)

    Love, Alan C

    2009-03-01

    A central reason that undergirds the significance of evo-devo is the claim that development was left out of the Modern synthesis. This claim turns out to be quite complicated, both in terms of whether development was genuinely excluded and how to understand the different kinds of embryological research that might have contributed. The present paper reevaluates this central claim by focusing on the practice of model organism choice. Through a survey of examples utilized in the literature of the Modern synthesis, I identify a previously overlooked feature: exclusion of research on marine invertebrates. Understanding the import of this pattern requires interpreting it in terms of two epistemic values operating in biological research: theoretical generality and explanatory completeness. In tandem, these values clarify and enhance the significance of this exclusion. The absence of marine invertebrates implied both a lack of generality in the resulting theory and a lack of completeness with respect to particular evolutionary problems, such as evolvability and the origin of novelty. These problems were salient to embryological researchers aware of the variation and diversity of larval forms in marine invertebrates. In closing, I apply this analysis to model organism choice in evo-devo and discuss its relevance for an extended evolutionary synthesis.

  12. Harnessing the Power of the Water-Gas Shift Reaction for Organic Synthesis.

    Science.gov (United States)

    Ambrosi, Andrea; Denmark, Scott E

    2016-09-26

    Since its original discovery over a century ago, the water-gas shift reaction (WGSR) has played a crucial role in industrial chemistry, providing a source of H2 to feed fundamental industrial transformations such as the Haber-Bosch synthesis of ammonia. Although the production of hydrogen remains nowadays the major application of the WGSR, the advent of homogeneous catalysis in the 1970s marked the beginning of a synergy between WGSR and organic chemistry. Thus, the reducing power provided by the CO/H2 O couple has been exploited in the synthesis of fine chemicals; not only hydrogenation-type reactions, but also catalytic processes that require a reductive step for the turnover of the catalytic cycle. Despite the potential and unique features of the WGSR, its applications in organic synthesis remain largely underdeveloped. The topic will be critically reviewed herein, with the expectation that an increased awareness may stimulate new, creative work in the area. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms

    Energy Technology Data Exchange (ETDEWEB)

    Uma Suganya, K.S. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Govindaraju, K., E-mail: govindtu@gmail.com [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Ganesh Kumar, V.; Stalin Dhas, T.; Karthick, V. [Centre for Ocean Research, Sathyabama University, Chennai 600 119 (India); Singaravelu, G. [Nanoscience Division, Department of Zoology, Thiruvalluvar University, Vellore 632115 (India); Elanchezhiyan, M. [Department of Microbiology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113 (India)

    2015-02-01

    Biofunctionalized gold nanoparticles (AuNPs) play an important role in design and development of nanomedicine. Synthesis of AuNPs from biogenic materials is environmentally benign and possesses high bacterial inhibition and bactericidal properties. In the present study, blue green alga Spirulina platensis protein mediated synthesis of AuNPs and its antibacterial activity against Gram positive bacteria is discussed. AuNPs were characterized using Ultraviolet–visible (UV–vis) spectroscopy, Fluorescence spectroscopy, Fourier Transform-Infrared (FTIR) spectroscopy, Raman spectroscopy, High Resolution-Transmission Electron Microscopy (HR-TEM) and Energy Dispersive X-ray analysis (EDAX). Stable, well defined AuNPs of smaller and uniform shape with an average size of ∼ 5 nm were obtained. The antibacterial efficacy of protein functionalized AuNPs were tested against Gram positive organisms Bacillus subtilis and Staphylococcus aureus. - Highlights: • Size controlled synthesis of gold nanoparticles from blue green alga Spirulina platensis • Stability of gold nanoparticles at different temperatures • Potent antibacterial efficacy against Gram positive organisms.

  14. Carbon Isotope Systematics in Mineral-Catalyzed Hydrothermal Organic Synthesis Processes at High Temperature and Pressures

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, Paul B.

    2011-01-01

    Observation of methane in the Martian atmosphere has been reported by different detection techniques. Reduction of CO2 and/or CO during serpentization by mineral surface catalyzed Fischer-Tropsch Type (FTT) synthesis may be one possible process responsible for methane generation on Mars. With the evidence a recent study has discovered for serpentinization in deeply buried carbon rich sediments, and more showing extensive water-rock interaction in Martian history, it seems likely that abiotic methane generation via serpentinization reactions may have been common on Mars. Experiments involving mineral-catalyzed hydrothermal organic synthesis processes were conducted at 750 C and 5.5 Kbars. Alkanes, alcohols and carboxylic acids were identified as organic compounds. No "isotopic reversal" of delta C-13 values was observed for alkanes or carboxylic acids, suggesting a different reaction pathway than polymerization. Alcohols were proposed as intermediaries formed on mineral surfaces at experimental conditions. Carbon isotope data were used in this study to unravel the reaction pathways of abiotic formation of organic compounds in hydrothermal systems at high temperatures and pressures. They are instrumental in constraining the origin and evolution history of organic compounds on Mars and other planets.

  15. Structure-directing effects of ionic liquids in the ionothermal synthesis of metal–organic frameworks

    Directory of Open Access Journals (Sweden)

    Thomas P. Vaid

    2017-07-01

    Full Text Available Traditional synthesis of metal–organic frameworks (MOFs involves the reaction of a metal-containing precursor with an organic linker in an organic solvent at an elevated temperature, in what is termed a `solvothermal' reaction. More recently, many examples have been reported of MOF synthesis in ionic liquids (ILs, rather than an organic solvent, in `ionothermal' reactions. The high concentration of both cations and anions in an ionic liquid allows for the formation of new MOF structures in which the IL cation or anion or both are incorporated into the MOF. Most commonly, the IL cation is included in the open cavities of the MOF, countering the anionic charge of the MOF framework itself and acting as a template around which the MOF structure forms. Ionic liquids can also serve other structure-directing roles, for example, when an IL containing a single enantiomer of a chiral anion leads to a homochiral MOF, even though the IL anion is not itself incorporated into the MOF. A comprehensive review of ionothermal syntheses of MOFs, and the structure-directing effects of the ILs, is given.

  16. A simple, rapid, and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing.

    Science.gov (United States)

    Liu, Yong-Hua; Offler, Christina E; Ruan, Yong-Ling

    2014-01-01

    Hydrogen peroxide (H2O2) is a major reactive oxygen species (ROS) and plays diverse roles in plant development and stress responses. However, its localization in large and thick plant organs (e.g., stem, roots, and fruits), other than leaves, has proven to be challenging due to the difficulties for the commonly used H2O2-specific chemicals, such as 3,3'-diaminobenzidine (DAB), cerium chloride (CeCl3), and 2',7'-dichlorofluorescin diacetate (H2DCF-DA), to penetrate those organs. Theoretically, the reaction of endogenous H2O2 with these chemicals could be facilitated by using thin organ sections. However, the rapid production of wound-induced H2O2 associated with this procedure inevitably disturbs the original distribution of H2O2 in vivo. Here, by employing tomato seedling stems and fruits as testing materials, we report a novel, simple, and rapid protocol to localize H2O2 in those organs using DAB-mediated tissue printing. The rapidity of the protocol (within 15 s) completely avoided the interference of wound-induced H2O2 during experimentation. Moreover, the H2O2 signal on the printing was stable for at least 1 h with no or little background produced. We conclude that DAB-mediated tissue printing developed here provide a new feasible and reliable method to localize H2O2 in large plant organs, hence should have broad applications in studying ROS biology.

  17. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts

    Science.gov (United States)

    Santos, Vera P.; Wezendonk, Tim A.; Jaén, Juan José Delgado; Dugulan, A. Iulian; Nasalevich, Maxim A.; Islam, Husn-Ubayda; Chojecki, Adam; Sartipi, Sina; Sun, Xiaohui; Hakeem, Abrar A.; Koeken, Ard C. J.; Ruitenbeek, Matthijs; Davidian, Thomas; Meima, Garry R.; Sankar, Gopinathan; Kapteijn, Freek; Makkee, Michiel; Gascon, Jorge

    2015-03-01

    Depletion of crude oil resources and environmental concerns have driven a worldwide research on alternative processes for the production of commodity chemicals. Fischer-Tropsch synthesis is a process for flexible production of key chemicals from synthesis gas originating from non-petroleum-based sources. Although the use of iron-based catalysts would be preferred over the widely used cobalt, manufacturing methods that prevent their fast deactivation because of sintering, carbon deposition and phase changes have proven challenging. Here we present a strategy to produce highly dispersed iron carbides embedded in a matrix of porous carbon. Very high iron loadings (>40 wt %) are achieved while maintaining an optimal dispersion of the active iron carbide phase when a metal organic framework is used as catalyst precursor. The unique iron spatial confinement and the absence of large iron particles in the obtained solids minimize catalyst deactivation, resulting in high active and stable operation.

  18. Synthesis of a specified, silica molecular sieve by using computationally predicted organic structure-directing agents.

    Science.gov (United States)

    Schmidt, Joel E; Deem, Michael W; Davis, Mark E

    2014-08-04

    Crystalline molecular sieves are used in numerous applications, where the properties exploited for each technology are the direct consequence of structural features. New materials are typically discovered by trial and error, and in many cases, organic structure-directing agents (OSDAs) are used to direct their formation. Here, we report the first successful synthesis of a specified molecular sieve through the use of an OSDA that was predicted from a recently developed computational method that constructs chemically synthesizable OSDAs. Pentamethylimidazolium is computationally predicted to have the largest stabilization energy in the STW framework, and is experimentally shown to strongly direct the synthesis of pure-silica STW. Other OSDAs with lower stabilization energies did not form STW. The general method demonstrated here to create STW may lead to new, simpler OSDAs for existing frameworks and provide a way to predict OSDAs for desired, theoretical frameworks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Direct Synthesis of 7 nm Thick Zinc(II)-Benzimidazole-Acetate Metal-Organic Framework Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Feng; Kumar, Prashant; Xu, Wenqian; Mkhoyan, K. Andre; Tsapatsis, Michael

    2018-01-09

    Two-dimensional metal-organic frameworks (MOFs) are promising candidates for high performance gas sepa-ration membranes. Currently, MOF nanosheets are mostly fabricated through delamination of layered MOFs, which often re-sults in a low yield of intact free-standing nanosheets. In this work, we present a direct synthesis method for zinc(II)-benzimidazole-acetate (Zn(Bim)OAc) MOF nanosheets. The obtained nanosheets have a lateral dimension of 600 nm when synthesized at room temperature. By adjusting the synthesis temperature, the morphology of obtained nanosheets can be readily tuned from nanosheets to nanobelts. A thickness of 7 nm is determined for Zn(Bim)OAc using high-angle annular dark-field scanning transmission electron microscopy, which makes these nanosheets promising building blocks of gas sepa-ration membranes.

  20. Rectangular coordination polymer nanoplates: large-scale, rapid synthesis and their application as a fluorescent sensing platform for DNA detection.

    Science.gov (United States)

    Zhang, Yingwei; Luo, Yonglan; Tian, Jingqi; Asiri, Abdullah M; Al-Youbi, Abdulrahman O; Sun, Xuping

    2012-01-01

    In this paper, we report on the large-scale, rapid synthesis of uniform rectangular coordination polymer nanoplates (RCPNs) assembled from Cu(II) and 4,4'-bipyridine for the first time. We further demonstrate that such RCPNs can be used as a very effective fluorescent sensing platform for multiple DNA detection with a detection limit as low as 30 pM and a high selectivity down to single-base mismatch. The DNA detection is accomplished by the following two steps: (1) RCPN binds dye-labeled single-stranded DNA (ssDNA) probe, which brings dye and RCPN into close proximity, leading to fluorescence quenching; (2) Specific hybridization of the probe with its target generates a double-stranded DNA (dsDNA) which detaches from RCPN, leading to fluorescence recovery. It suggests that this sensing system can well discriminate complementary and mismatched DNA sequences. The exact mechanism of fluorescence quenching involved is elucidated experimentally and its use in a human blood serum system is also demonstrated successfully.

  1. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    Science.gov (United States)

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  2. Rapid microwaves synthesis of CoSix/CNTs as novel catalytic materials for hydrogenation of phthalic anhydride

    Science.gov (United States)

    Zhang, Liangliang; Chen, Xiao; Jin, Shaohua; Guan, Jingchao; Williams, Christopher T.; Peng, Zhijian; Liang, Changhai

    2014-09-01

    CoSix/CNTs catalysts with different CoSix phases (CoSi, CoSi2) have been rapidly synthesized via a microwave-assisted route and applied for the liquid phase hydrogenation of phthalic anhydride. The synthesized catalysts were analyzed and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy-energy dispersive X-ray spectroscopy, thermogravimetric/derivative thermogravimetric analysis. The reaction progress of cobalt silicides and the ratio of Co:Si were monitored at different microwave irradiation times by XRD, giving insight into the formation mechanism. Compared to the Co/CNTs catalyst, all the prepared CoSix/CNTs catalysts exhibited excellent activity and good selectivity to phthalide under mild reaction conditions (180-220 °C and 4.0 MPa H2). This novel methodology can be applied to the synthesis of other transition metal silicides such as FeSi, Ni2Si, and Cu4Si.

  3. Recent Developments of Metal and Metal Oxide Nanocatalysts in Organic Synthesis.

    Science.gov (United States)

    Makawana, Jigar A; Sangani, Chetan B; Yao, Yong-Fang; Duan, Yong-Tao; Lv, Peng-Cheng; Zhu, Hai-Liang

    2016-01-01

    Recently, various nanomaterials have been used in many organic transformations as efficient catalysts. The development of new catalysts by nanoscale design has emerged as a fertile field for research and innovation. The ability of nanotechnology to enhance catalytic activity opens the potential to replace expensive catalysts with lower amounts of inexpensive nanocatalysts. Besides, development of efficient and environmentally friendly synthetic methodologies for the synthesis of compound libraries of medicinal scaffolds is an attractive area of research in both academic and pharmaceutical industry. According to above reports and needs, this review deals with applications of nanoparticles as catalysts in various organic syntheses. We detail the topic of organic transformations using nanoparticles: Metal Nanoparticles and Metal Oxide Nanoparticles. In the latter part, different Metal Oxide Nanoparticles, such as ZnO Nanoparticle, TiO2 Nanoparticle, and CuO Nanoparticle are discussed.

  4. A Research Module for the Organic Chemistry Laboratory: Multistep Synthesis of a Fluorous Dye Molecule.

    Science.gov (United States)

    Slade, Michael C; Raker, Jeffrey R; Kobilka, Brandon; Pohl, Nicola L B

    2014-01-14

    A multi-session research-like module has been developed for use in the undergraduate organic teaching laboratory curriculum. Students are tasked with planning and executing the synthesis of a novel fluorous dye molecule and using it to explore a fluorous affinity chromatography separation technique, which is the first implementation of this technique in a teaching laboratory. Key elements of the project include gradually introducing students to the use of the chemical literature to facilitate their searching, as well as deliberate constraints designed to force them to think critically about reaction design and optimization in organic chemistry. The project also introduces students to some advanced laboratory practices such as Schlenk techniques, degassing of reaction mixtures, affinity chromatography, and microwave-assisted chemistry. This provides students a teaching laboratory experience that closely mirrors authentic synthetic organic chemistry practice in laboratories throughout the world.

  5. Metal-organic frameworks: structure, properties, methods of synthesis and characterization

    Science.gov (United States)

    Butova, V. V.; Soldatov, M. A.; Guda, A. A.; Lomachenko, K. A.; Lamberti, C.

    2016-03-01

    This review deals with key methods of synthesis and characterization of metal-organic frameworks (MOFs). The modular structure affords a wide variety of MOFs with different active metal sites and organic linkers. These compounds represent a new stage of development of porous materials in which the pore size and the active site structure can be modified within wide limits. The set of experimental methods considered in this review is sufficient for studying the short-range and long-range order of the MOF crystal structure, determining the morphology of samples and elucidating the processes that occur at the active metal site in the course of chemical reactions. The interest in metal-organic frameworks results, first of all, from their numerous possible applications, ranging from gas separation and storage to chemical reactions within the pores. The bibliography includes 362 references.

  6. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo [eMD Center, Samsung Electro-Mechanics, Suwon, Kyunggi-Do 443-743 (Korea, Republic of)

    2007-08-22

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate (<0.05 eq.mol) resulted in a high synthesis yield (>90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst.

  7. Advances in Electrocatalysis for Energy Conversion and Synthesis of Organic Molecules.

    Science.gov (United States)

    Holade, Yaovi; Servat, Karine; Tingry, Sophie; Napporn, Teko W; Remita, Hynd; Cornu, David; Kokoh, K Boniface

    2017-10-06

    Ubiquitous electrochemistry is expected to play a major role for reliable energy supply as well as for production of sustainable fuels and chemicals. The fundamental understanding of organics-based electrocatalysis in alkaline media at the solid-liquid interface involves complex mechanisms and performance descriptors (from the electrolyte and reaction intermediates), which undermine the roads towards advance and breakthroughs. Here, we review and diagnose recently designed strategies for the electrochemical conversion of organics into electricity and/or higher-value chemicals. To tune the mysterious workings of nanocatalysts in electrochemical devices, we examine the guiding principles by which the performance of a particular electrode material is governed, thus highlighting various tactics for the development of synthesis methods for nanomaterials with specific properties. We end by examining the production of chemicals by using electrochemical methods, from selective oxidation to reduction reactions. The intricate relationship between electrode and selectivity encourages both of the communities of electrocatalysis and organic synthesis to move forward together toward the renaissance of electrosynthesis methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    Science.gov (United States)

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  9. Non-cytotoxic organic-inorganic hybrid bioscaffolds: An efficient bedding for rapid growth of bone-like apatite and cell proliferation

    Energy Technology Data Exchange (ETDEWEB)

    John, Lukasz, E-mail: lukasz.john@chem.uni.wroc.pl [Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland); Baltrukiewicz, Marta; Sobota, Piotr [Faculty of Chemistry, University of Wroclaw, 14 F. Joliot-Curie, 50-383 Wroclaw (Poland); Brykner, Renata; Cwynar-Zajac, Lucja [Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego, 50-368 Wroclaw (Poland); Dziegiel, Piotr [Department of Histology and Embryology, Wroclaw Medical University, 6a Chalubinskiego, 50-368 Wroclaw (Poland); Department of Histology and Embryology, Poznan University of Medical Sciences, 6 Swiecickiego, 61-781 Poznan (Poland)

    2012-10-01

    Synthesis and characterization of organic-inorganic macroporous hybrid scaffolds were investigated. The materials were prepared by combining 2-hydroxyethylmethacrylate (HEMA) and triethoxyvinylsilane (TEVS) chemically modified by Ca{sup 2+} and PO{sub 4}{sup 3-} ions via sol-gel route. In this study we have constructed a sugar-based cracks-free three-dimensional (3D) network with interconnected porous architecture within the range of 150-300 {mu}m and rough topography. The obtained results revealed that both topography and composition of prepared materials allow rapid growth of the bone-like apatite (HAp) layer on their surface after soaking in biological medium. Preliminary studies have shown that hybrids covered by HAp are non-cytotoxic and allow cell proliferation that make them a promising scaffolds in the field of bone regenerative medicine. The materials were mainly characterized by powder X-ray diffraction analysis (PXRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS) and transmission electron microscopy-energy-dispersive spectroscopy (TEM-EDS). Highlights: Black-Right-Pointing-Pointer Sol-gel derived biomaterials. Black-Right-Pointing-Pointer 3D organic-inorganic hybrid composites for bone tissue engineering. Black-Right-Pointing-Pointer Sugar-templated cracks-free macroporous scaffolds. Black-Right-Pointing-Pointer 2-hydroxyethylmethacrylate/triethoxyvinylsilane blend doped with calcium and phosphate ions. Black-Right-Pointing-Pointer Non-cytotoxic bedding for fibroblasts proliferation.

  10. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  11. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  12. Metal-organic framework templated synthesis of porous inorganic materials as novel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Taylor-Pashow, Kathryn M. L.; Lin, Wenbin; Abney, Carter W.

    2017-03-21

    A novel metal-organic framework (MOF) templated process for the synthesis of highly porous inorganic sorbents for removing radionuclides, actinides, and heavy metals is disclosed. The highly porous nature of the MOFs leads to highly porous inorganic sorbents (such as oxides, phosphates, sulfides, etc) with accessible surface binding sites that are suitable for removing radionuclides from high level nuclear wastes, extracting uranium from acid mine drainage and seawater, and sequestering heavy metals from waste streams. In some cases, MOFs can be directly used for removing these metal ions as MOFs are converted to highly porous inorganic sorbents in situ.

  13. Zeolite-like metal–organic frameworks (ZMOFs): design, synthesis, and properties

    KAUST Repository

    Eddaoudi, Mohamed

    2014-10-24

    This review highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal–organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and/or properties towards specific applications.

  14. Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties.

    Science.gov (United States)

    Eddaoudi, Mohamed; Sava, Dorina F; Eubank, Jarrod F; Adil, Karim; Guillerm, Vincent

    2015-01-07

    This review highlights various design and synthesis approaches toward the construction of ZMOFs, which are metal-organic frameworks (MOFs) with topologies and, in some cases, features akin to traditional inorganic zeolites. The interest in this unique subset of MOFs is correlated with their exceptional characteristics arising from the periodic pore systems and distinctive cage-like cavities, in conjunction with modular intra- and/or extra-framework components, which ultimately allow for tailoring of the pore size, pore shape, and/or properties towards specific applications.

  15. Synthesis and characterization of organic-inorganic hybrids formed between conducting polymers and crystalline antimonic acid

    Directory of Open Access Journals (Sweden)

    Beleze Fábio A.

    2001-01-01

    Full Text Available In this paper we report the synthesis and characterization of novel organic-inorganic hybrid materials between the crystalline antimonic acid (CAA and two conductive polymers: polypyrrole and polyaniline. The hybrids were obtained by in situ oxidative polymerization of monomers by the Sb(V present in the pyrochlore-like CAA structure. The materials were characterized by infrared and Raman spectroscopy, X-ray diffraction, cyclic voltammetry, CHN elemental analysis and electronic paramagnetic resonance spectroscopy. The results showed that both polymers were formed in their oxidized form, with the CAA structure acting as a counter anion.

  16. Interface modification and material synthesis of organic light-emitting diodes using plasma technology

    Science.gov (United States)

    Liang, Rongqing; Ou, Qiongrong; Yang, Cheng; He, Kongduo; Yang, Xilu; Zhong, Shaofeng; plasma application Team

    2015-09-01

    Organic light-emitting diodes (OLEDs), due to their unique properties of solution processability, compatibility with flexible substrates and with large-scale printing technology, attract huge interest in the field of lighting. The integration of plasma technology into OLEDs provides a new route to improve their performance. Here we demonstrate the modification of indium-tin-oxide (ITO) work function by plasma treatment, synthesis of thermally activated delayed fluorescence (TADF) materials using plasma grafting (polymerisation), and multi-layer solution processing achieved by plasma cross-linking.

  17. What outcomes are associated with developing and implementing co-produced interventions in acute healthcare settings? A rapid evidence synthesis.

    Science.gov (United States)

    Clarke, David; Jones, Fiona; Harris, Ruth; Robert, Glenn

    2017-07-11

    Co-production is defined as the voluntary or involuntary involvement of users in the design, management, delivery and/or evaluation of services. Interest in co-production as an intervention for improving healthcare quality is increasing. In the acute healthcare context, co-production is promoted as harnessing the knowledge of patients, carers and staff to make changes about which they care most. However, little is known regarding the impact of co-production on patient, staff or organisational outcomes in these settings. To identify and appraise reported outcomes of co-production as an intervention to improve quality of services in acute healthcare settings. Rapid evidence synthesis. Medline, Cinahl, Web of Science, Embase, HMIC, Cochrane Database of Systematic Reviews, SCIE, Proquest Dissertation and Theses, EThOS, OpenGrey; CoDesign; The Design Journal; Design Issues. Studies reporting patient, staff or organisational outcomes associated with using co-production in an acute healthcare setting. 712 titles and abstracts were screened; 24 papers underwent full-text review, and 11 papers were included in the evidence synthesis. One study was a feasibility randomised controlled trial, three were process evaluations and seven used descriptive qualitative approaches. Reported outcomes related to (a) the value of patient and staff involvement in co-production processes; (b) the generation of ideas for changes to processes, practices and clinical environments; and (c) tangible service changes and impacts on patient experiences. Only one study included cost analysis; none reported an economic evaluation. No studies assessed the sustainability of any changes made. Despite increasing interest in and advocacy for co-production, there is a lack of rigorous evaluation in acute healthcare settings. Future studies should evaluate clinical and service outcomes as well as the cost-effectiveness of co-production relative to other forms of quality improvement. Potentially broader

  18. Carglumic acid enhances rapid ammonia detoxification in classical organic acidurias with a favourable risk-benefit profile : a retrospective observational study

    NARCIS (Netherlands)

    Valayannopoulos, Vassili; Baruteau, Julien; Delgado, Maria Bueno; Cano, Aline; Couce, Maria L; Del Toro, Mireia; Donati, Maria Alice; Garcia-Cazorla, Angeles; Gil-Ortega, David; Gomez-de Quero, Pedro; Guffon, Nathalie; Hofstede, Floris C; Kalkan-Ucar, Sema; Coker, Mahmut; Lama-More, Rosa; Martinez-Pardo Casanova, Mercedes; Molina, Agustin; Pichard, Samia; Papadia, Francesco; Rosello, Patricia; Plisson, Celine; Le Mouhaer, Jeannie; Chakrapani, Anupam

    2016-01-01

    BACKGROUND: Isovaleric aciduria (IVA), propionic aciduria (PA) and methylmalonic aciduria (MMA) are inherited organic acidurias (OAs) in which impaired organic acid metabolism induces hyperammonaemia arising partly from secondary deficiency of N-acetylglutamate (NAG) synthase. Rapid reduction in

  19. Saccharin Derivative Synthesis via [1,3] Thermal Sigmatropic Rearrangement: A Multistep Organic Chemistry Experiment for Undergraduate Students

    Science.gov (United States)

    Fonseca, Custódia S. C.

    2016-01-01

    Saccharin (1,2-benzisothiazole-3-one 1,1-dioxide) is an artificial sweetener used in the food industry. It is a cheap and easily available organic compound that may be used in organic chemistry laboratory classes for the synthesis of related heterocyclic compounds and as a derivatizing agent. In this work, saccharin is used as a starting material…

  20. Rapid Assessment of Resistance to Antibiotic Inhibitors of Protein Synthesis in the Gram-Positive Pathogens, Enterococcus faecalis and Streptococcus pneumoniae, Based on Evaluation of the Lytic Response.

    Science.gov (United States)

    Otero, Fátima; Tamayo, María; Santiso, Rebeca; Gosálvez, Jaime; Bou, Germán; Fernández, José Luis

    2017-04-01

    A novel assay for rapid determination of resistance to antibiotic inhibitors of protein synthesis was developed for the gram-positive pathogens, Enterococcus faecalis and Streptococcus pneumoniae. To this purpose, a lytic response was obtained by a brief incubation with lysozyme or a mixture of lysozyme, Triton X-100, and EDTA for E. faecalis (n = 82) and S. pneumoniae (n = 51), respectively. Lysis was quantified by visualizing the released nucleoids. Antibiotic-susceptible bacteria treated with Clinical and Laboratory Standards Institute (CLSI) breakpoint doses of erythromycin, azithromycin, or doxycycline that inhibited protein synthesis demonstrated a large reduction of lysed cells with respect to the control, that is, without antibiotics. However, cell lysis prevention was much lower in nonsusceptible strains, with unsuccessful inhibition of protein synthesis. ROC analysis showed that a reduction value of ≥35.6% and ≥40.4% discriminates susceptible and nonsusceptible strains for erythromycin and for doxycycline, respectively, in E. faecalis, whereas ≥20.0% is adequate for both macrolides and doxycycline in S. pneumoniae. Resistant stains were identified in 90-120 min with sensitivity and specificity between 91.7% and 100%. This is a proof of concept that evaluation of the lytic response may be a rapid and efficient test for determination of resistance to antibiotic inhibitors of protein synthesis.

  1. Integration of Fermentation and Organic Synthesis: Studies of Roquefortine C and Biosynthetic Derivatives

    Science.gov (United States)

    Gober, Claire Marie

    Roquefortine C is one of the most ubiquitous indoline alkaloids of fungal origin. It has been isolated from over 30 different species of Penicillium fungi and has garnered attention in recent years for its role as a biosynthetic precursor to the triazaspirocyclic natural products glandicoline B, meleagrin, and oxaline. The triazaspirocyclic motif, which encompasses three nitrogen atoms attached to one quaternary carbon forming a spirocyclic scaffold, is a unique chemical moiety that has been shown to impart a wide array of biological activity, from anti-bacterial activity and antiproliferative activity against cancer cell lines to anti-biofouling against marine organisms. Despite the promise of these compounds in the pharmaceutical and materials industries, few syntheses of triazaspirocycles exist in the literature. The biosynthesis of roquefortine C-derived triazaspirocycles, however, provides inspiration for the synthesis of these compounds, namely through a nitrone-promoted transannular rearrangement. This type of internal rearrangement has never been carried out synthetically and would provide an efficient stereoselective synthesis of triazaspirocycles. This work encompasses efforts towards elucidating the biosynthetic pathway of roquefortine C-derived triazaspirocycles as well as synthetic efforts towards the construction of triazaspirocycles. Chapter 1 will discuss a large-scale fermentation procedure for the production of roquefortine C from Penicillium crustosum. Chapters 2 and 3 explore (through enzymatic and synthetic means, respectively) the formation of the key indoline nitrone moiety required for the proposed transannular rearrangement. Finally, chapter 4 will discuss synthetic efforts towards the synthesis of triazaspirocycles. This work has considerably enhanced our understanding of the roquefortine C biosynthetic pathway and the unique chemistry of this natural product, and our efforts towards the synthesis of triazaspirocycles will facilitate the

  2. Synthesis of Inorganic-Organic Hybrid Materials Designed for Radiation Detection, Luminescence, and Gas Storage

    Science.gov (United States)

    Vaughn, Shae Anne

    Materials discovery is the driving force behind the research presented herein. Basic research has been conducted in order to obtain a better understanding of coordination chemistry and structural outcomes, particularly within the area of trivalent lanthanides. Discovering new materials is one route to further advancement of technology; another one is the focus on incremental changes to already existing materials. Often the building blocks of a compound are chosen in an effort to synthesize a material that makes use of the properties of each individual component and may result in a better, more robust, applicable material. The combination of organic and inorganic components for the synthesis of novel materials with potential applications such as scintillation photoluminescence, catalysis, and gas storage are the focus of the research presented herein. The first part focuses on lanthanide organic hybrid materials, where the synthesis of a new family of potential scintillating materials was undertaken and yielded improved understanding of the control that can be achieved over the topological structure of these materials by controlling the coordinating crystallization solvents. This research has led to the synthesis of an array of unique motifs, ranging from dimeric complexes, tetrameric complexes, to 1-D chains, and most intriguing of all, catenated tetradecanuclear rings. These rings represent the largest lanthanide rings synthesized to date, the next largest multinuclear rings, until now, were dodecanuclear complexes of alkoxides. From a basic research standpoint this is an exciting new development in lanthanide coordination chemistry and illustrates the importance of steric effects upon a system. These complexes are potential scintillators, supported by their luminescence and measurements of similar compounds that demonstrate surprising scintillation efficiencies. In the second part, other hybrid materials that have also been prepared are discussed, including the

  3. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Vahdatkhah, Parisa [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Madaah Hosseini, Hamid Reza, E-mail: Madaah@sharif.ir [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Khodaei, Azin [Department of Materials Science and Engineering, Sharif University of Technology (Iran, Islamic Republic of); Montazerabadi, Ali Reza [Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Irajirad, Rasoul [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Oghabian, Mohamad Ali [Biomolecular Image Analysis Group, Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences (Iran, Islamic Republic of); Department of Medical Physics and Biomedical Engineering, Tehran University of Medical Sciences (Iran, Islamic Republic of); Delavari, Hamid H., E-mail: Hamid.delavari@modares.ac.ir [Department of Materials Engineering, Tarbiat Modares University, Tehran, PO Box 14115-143 (Iran, Islamic Republic of)

    2015-05-12

    Highlights: • A rapid microwave-assisted polyol process used to synthesize Gd{sub 2}O{sub 3} nanoparticles. • In situ surface modification of ultrasmall Gd{sub 2}O{sub 3}NPs with PVP has been performed. • Gd{sub 2}O{sub 3}NPs shows considerable increasing of relaxivity in comparison to Gd-chelates. • PVP-covered Gd{sub 2}O{sub 3}NPs show appropriate stability for approximately 15 days. • Spectrophotometric indicates the leaching of free Gd ions not occurred versus time. - Abstract: Synthesis of polyvinyl pyrrolidone (PVP) coated ultrasmall Gd{sub 2}O{sub 3} nanoparticles (NPs) with enhanced T{sub 1}-weighted signal intensity and r{sub 2}/r{sub 1} ratio close to unity is performed by a microwave-assisted polyol process. PVP coated Gd{sub 2}O{sub 3}NPs with spherical shape and uniform size of 2.5 ± 0.5 nm have been synthesized below 5 min and structure and morphology confirmed by HRTEM, XRD and FTIR. The longitudinal (r{sub 1}) and transversal relaxation (r{sub 2}) of Gd{sub 2}O{sub 3}NPs is measured by a 3 T MRI scanner. The results showed considerable increasing of relaxivity for Gd{sub 2}O{sub 3}NPs in comparison to gadolinium chelates which are commonly used for clinical magnetic resonance imaging. In addition, a mechanism for Gd{sub 2}O{sub 3}NPs formation and in situ surface modification of PVP-grafted Gd{sub 2}O{sub 3}NPs is proposed.

  4. Rapid synthesis of biocompatible silver nanoparticles using aqueous extract of Rosa damascena petals and evaluation of their anticancer activity.

    Science.gov (United States)

    Venkatesan, Balaji; Subramanian, Vimala; Tumala, Anusha; Vellaichamy, Elangovan

    2014-09-01

    To optimize the process parameters involved in the green synthesis of silver nanoparticles (G-SNPs) by aqueous extract of Rosa damascena petals and to evaluate the biocompatibility and anti cancer activity of the synthesized silver nanoparticles against human lung adenocarcinoma (A549). The process variables that include concentration of extract, mixing ratio of reactants, silver salt concentration and interaction time were analyzed. The compatibility of the G-SNPs was verified by incubating with erythrocytes and the anticancer property of the G-SNPs against A549 cells was performed by MTT assay. Formation of G-SNPs was confirmed by the visual change in the colour of the reaction mixture from pale yellow to brown yellow. Surface plasmon resonance of synthesized G-SNPs was observed at 420 nm; the size of G-SNPs were analyzed by DLS and found to be in the range of (84.00±10.08) nm. Field emission scanning electron microscope and high resolution transmission electron microscopy analysis confirmed that the G-SNPs were fairly spherical. Fourier transform infrared spectroscopy spectroscopy and X-ray diffraction revealed the characteristic peaks of G-SNPs. Energy dispersive X-ray analysis showed a signal of silver around 3 keV. The synthesized G-SNPs exhibited anticancer activity as evidenced by the MTT assay. IC50 value of G-SNPs was found to be 80 μg/mL. The results of the present study suggest that G-SNPs can be synthesized rapidly within first minute of the reaction; they are biocompatible and possess anticancer activity against human lung adenocarcinoma. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  5. Thiophene fused azacoronenes: regioselective synthesis, self organization, charge transport, and its incorporation in conjugated polymers

    Science.gov (United States)

    Liu, Yi; He, Bo

    2015-09-15

    A regioselective synthesis of an azacoronene fused with two peripheral thiophene groups has been realized through a concise synthetic route. The resulting thienoazacoronene (TAC) derivatives show high degree of self-organization in solution, in single crystals, in the bulk, and in spuncast thin films. Spuncast thin film field-effect transistors of the TACs exhibited mobilities up to 0.028 cm.sup.2V.sup.-1 S.sup.-1, which is among the top field effect mobilities for solution processed discotic materials. Organic photovoltaic devices using TAC-containing conjugated polymers as the donor material exhibited a high open-circuit voltage of 0.89 V, which was ascribable to TAC's low-lying highest occupied molecular orbital energy level.

  6. Sustainable Utility of Magnetically Recyclable Nano-Catalysts in Water: Applications in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Manoj B. Gawande

    2013-10-01

    Full Text Available Magnetically recyclable nano-catalysts and their use in aqueous media is a perfect combination for the development of greener sustainable methodologies in organic synthesis. It is well established that magnetically separable nano-catalysts avoid waste of catalysts or reagents and it is possible to recover >95% of catalysts, which is again recyclable for subsequent use. Water is the ideal medium to perform the chemical reactions with magnetically recyclable nano-catalysts, as this combination adds tremendous value to the overall benign reaction process development. In this review, we highlight recent developments inthe use of water and magnetically recyclable nano-catalysts (W-MRNs for a variety of organic reactions namely hydrogenation, condensation, oxidation, and Suzuki–Miyaura cross-coupling reactions, among others.

  7. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    Directory of Open Access Journals (Sweden)

    Bogdan Lewczuk

    2014-07-01

    Full Text Available This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.

  8. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ.

    Science.gov (United States)

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-07-16

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime.

  9. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    Science.gov (United States)

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  10. Facile synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions.

    Science.gov (United States)

    Ding, San-Yuan; Cui, Xiao-Hui; Feng, Jie; Lu, Gongxuan; Wang, Wei

    2017-10-20

    We reported herein a facile approach for the synthesis of -C[double bond, length as m-dash]N- linked covalent organic frameworks under ambient conditions. Three known (COF-42, COF-43, and COF-LZU1) and one new (Pr-COF-42) COF materials were successfully synthesized using this method. Furthermore, this simple synthetic approach makes the large-scale synthesis of -C[double bond, length as m-dash]N- linked COFs feasible.

  11. Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum.

    Science.gov (United States)

    Tesfaye, M; Temple, S J; Allan, D L; Vance, C P; Samac, D A

    2001-12-01

    Al toxicity is a severe impediment to production of many crops in acid soil. Toxicity can be reduced through lime application to raise soil pH, however this amendment does not remedy subsoil acidity, and liming may not always be practical or cost-effective. Addition of organic acids to plant nutrient solutions alleviates phytotoxic Al effects, presumably by chelating Al and rendering it less toxic. In an effort to increase organic acid secretion and thereby enhance Al tolerance in alfalfa (Medicago sativa), we produced transgenic plants using nodule-enhanced forms of malate dehydrogenase and phosphoenolpyruvate carboxylase cDNAs under the control of the constitutive cauliflower mosaic virus 35S promoter. We report that a 1.6-fold increase in malate dehydrogenase enzyme specific activity in root tips of selected transgenic alfalfa led to a 4.2-fold increase in root concentration as well as a 7.1-fold increase in root exudation of citrate, oxalate, malate, succinate, and acetate compared with untransformed control alfalfa plants. Overexpression of phosphoenolpyruvate carboxylase enzyme specific activity in transgenic alfalfa did not result in increased root exudation of organic acids. The degree of Al tolerance by transformed plants in hydroponic solutions and in naturally acid soil corresponded with their patterns of organic acid exudation and supports the concept that enhancing organic acid synthesis in plants may be an effective strategy to cope with soil acidity and Al toxicity.

  12. The remarkable effect of organic salts on 1,3,5-trioxane synthesis

    Directory of Open Access Journals (Sweden)

    Liu-Yi Yin

    2016-10-01

    Full Text Available Abstract The effects of organic salts on 1,3,5-trioxane synthesis were investigated through batch reaction and continuous production experiments. The organic salts used include sodium methanesulfonate (CH3NaO3S, sodium benzenesulfonate (C6H5NaO3S, sodium 4-methylbenzenesulfonate (C7H7NaO3S, and sodium 3-nitrobenzene sulfonate (C6H4NNaO5S. It was shown that the effects of organic salts on the yield of 1,3,5-trioxane in reaction solution and distillate follow the order CH3NaO3S < C6H5NaO3S < C7H7NaO3S < C6H4NNaO5S, which is inversely related to the charge density of the anions of the organic salts. In comparison with Cl−-based salts such as magnesium chloride, organic salts have the advantages of less formic acid generation and low corrosion. Studies on water activity revealed that the effect of organic salts on the activity of water was quite small at low concentration of organic salts. UV–visible spectroscopy and vapor–liquid equilibrium experiments were performed to uncover the mechanisms that govern such effects. The results showed that the effect of organic salts on the yield of 1,3,5-trioxane relies primarily on their ability to increase the catalytic activity of sulfuric acid and increase the relative volatilities of 1,3,5-trioxane and water and of 1,3,5-trioxane and oligomers.

  13. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites.

    Science.gov (United States)

    Corma, Avelino; Rey, Fernando; Rius, Jordi; Sabater, Maria J; Valencia, Susana

    2004-09-16

    Solid materials with uniform micropores, such as zeolites, can act as selective catalysts and adsorbents for molecular mixtures by separating those molecules small enough to enter their pores while leaving the larger molecules behind. Zeolite A is a microporous material with a high void volume. Despite its widespread industrial use in, for example, molecular separations and in detergency, its capability as a petroleum-refining material is limited owing to its poor acid-catalytic activity and hydrothermal stability, and its low hydrophobicity. These characteristics are ultimately a consequence of the low framework Si/Al ratio (normally around one) and the resulting high cationic fraction within the pores and cavities. Researchers have modified the properties of type-A zeolites by increasing the Si/Al compositions up to a ratio of three. Here we describe the synthesis of zeolite A structures exhibiting high Si/Al ratios up to infinity (pure silica). We synthesize these materials, named ITQ-29, using a supramolecular organic structure-directing agent obtained by the self-assembly, through pi-pi type interactions, of two identical organic cationic moieties. The highly hydrophobic pure-silica zeolite A can be used for hydrocarbon separations that avoid oligomerization reactions, whereas materials with high Si/Al ratios give excellent shape-selective cracking additives for increasing propylene yield in fluid catalytic cracking operations. We have also extended the use of our supramolecular structure-directing agents to the synthesis of a range of other zeolites.

  14. Deep Carbon Cycling in the Deep Hydrosphere: Abiotic Organic Synthesis and Biogeochemical Cycling

    Science.gov (United States)

    Sherwood Lollar, B.; Sutcliffe, C. N.; Ballentine, C. J.; Warr, O.; Li, L.; Ono, S.; Wang, D. T.

    2014-12-01

    Research into the deep carbon cycle has expanded our understanding of the depth and extent of abiotic organic synthesis in the deep Earth beyond the hydrothermal vents of the deep ocean floor, and of the role of reduced gases in supporting deep subsurface microbial communities. Most recently, this research has expanded our understanding not only of the deep biosphere but the deep hydrosphere - identifying for the first time the extreme antiquity (millions to billions of years residence time) of deep saline fracture waters in the world's oldest rocks. Energy-rich saline fracture waters in the Precambrian crust that makes up more than 70% of the Earth's continental lithosphereprovide important constraints on our understanding of the extent of the crust that is habitable, on the time scales of hydrogeologic isolation (and conversely mixing) of fluids relevant to the deep carbon cycle, and on the geochemistry of substrates that sustain both abiotic organic synthesis and biogeochemical cycles driven by microbial communities. Ultimately the chemistry and hydrogeology of the deep hydrosphere will help define the limits for life in the subsurface and the boundary between the biotic-abiotic fringe. Using a variety of novel techniques including noble gas analysis, clumped isotopologues of methane, and compound specific isotope analysis of CHNOS, this research is addressing questions about the distribution of deep saline fluids in Precambrian rocks worldwide, the degree of interconnectedness of these potential biomes, the habitability of these fluids, and the biogeographic diversity of this new realm of the deep hydrosphere.

  15. Visible-Light Photocatalysis: Does it make a difference in Organic Synthesis?

    Science.gov (United States)

    Marzo, Leyre; Pagire, Santhosh K; Reiser, Oliver; König, Burkhard

    2018-02-19

    Visible light photocatalysis has evolved over the last decade into a widely used method in organic synthesis. For many important transformations, such as cross-coupling reactions, alpha-amino functionalizations, cycloadditions, ATRA reactions, or fluorinations, photocatalytic variants have been reported. In this review, we try to compare classical and photocatalytic procedures for selected classes of reactions and highlight their advantages and limitations. In many cases, the photocatalytic reactions proceed at milder reaction conditions, typically at room temperature, and stoichiometric reagents are replaced by simple oxidants or reductants, like air oxygen or amines. This way, besides providing alternative protocols for established transformations that allow a broadening of the substrate scope, also new transformations become possible, especially by merging photocatalysis with organo- or metal catalysis. Does visible light photocatalysis make a difference in organic synthesis? The prospect to shuttle electrons back and forth to substrates and intermediates or to selectively transfer energy through a visible light absorbing photocatalyst holds the promise to improve current protocols in radical chemistry and to open up new avenues by accessing reactive species hitherto unknown. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis of a Water-soluble Metal-Organic Complex Array.

    Science.gov (United States)

    Bose, Purnandhu; Sukul, Pradip K; Yaghi, Omar M; Tashiro, Kentaro

    2016-10-08

    We demonstrate a method for the synthesis of a water-soluble multimetallic peptidic array containing a predetermined sequence of metal centers such as Ru(II), Pt(II), and Rh(III). The compound, named as a water-soluble metal-organic complex array (WSMOCA), is obtained through 1) the conventional solution-chemistry-based preparation of the corresponding metal complex monomers having a 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid moiety and 2) their sequential coupling together with other water-soluble organic building units on the surface-functionalized polymeric resin by following the procedures originally developed for the solid-phase synthesis of polypeptides, with proper modifications. Traces of reactions determined by mass spectrometric analysis at the representative coupling steps in stage 2 confirm the selective construction of a predetermined sequence of metal centers along with the peptide backbone. The WSMOCA cleaved from the resin at the end of stage 2 has a certain level of solubility in aqueous media dependent on the pH value and/or salt content, which is useful for the purification of the compound.

  17. Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves

    Science.gov (United States)

    Kou, Jiahui; Varma, Rajender S.

    2013-08-01

    A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3-β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing the use of the iron source and NaOH. The as-prepared sea urchin-like β-FeOOH exhibits excellent catalytic performance for the degradation of methylene blue (MB) in the presence of H2O2.A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3-β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing the use of the iron source and NaOH. The as-prepared sea urchin-like β-FeOOH exhibits excellent catalytic performance for the degradation of methylene blue (MB) in the presence of H2O2. Electronic supplementary information (ESI) available: XRD patterns and the reaction profile of the microwave system. See DOI: 10.1039/c3nr02663a

  18. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells.

    Science.gov (United States)

    Ochi, T; Nakajima, F; Fukumori, N

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes.

  19. Different effects of inorganic and dimethylated arsenic compounds on cell morphology, cytoskeletal organization, and DNA synthesis in cultured Chinese hamster V79 cells

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Takafumi; Nakajima, Fumie [Department of Environmental Toxicology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamiko, Kanagawa (Japan); Fukumori, Nobutaka [Department of Toxicology, Tokyo Metropolitan Research Laboratory of Public Health, Hyakuninchou, Shinjyuku (Japan)

    1998-09-01

    Changes in cytoskeletal organization of cultured V79 cells exposed to arsenite and dimethylarsinic acid (DMAA), a methylated derivative of inorganic arsenics, and related changes, such as mitotic arrest and induction of multinucleated cells, were investigated in comparison with their effects on DNA synthesis. DMAA caused mitotic arrest and induction of multinucleated cells with a delay of 12 h relative to the mitotic arrest. By contrast, arsenite at equitoxic concentrations to DMAA was less effective than DMAA in causing mitotic arrest and in inducing multinucleated cells. Post-mitotic incubation of cells arrested in metaphase by 6 h incubation with 10 mM DMAA showed that the incidence of multinucleated cells increased conversely with a rapid decrease in metaphase cells. This suggests that metaphase-arrested cells can escape from metaphase, resulting in the appearance of multinucleated cells. The mitotic arrest caused by DMAA was accompanied by disruption of the microtubule network. By contrast, both arsenite and DMAA did not cause disorganization of actin stress fibers even when incubated at concentrations that caused a marked retardation of cell growth. Cells exposed to arsenite for 6 h showed marked inhibition of DNA synthesis, whereas inhibition by DMAA was not observed. When incubation was prolonged by 18 h, the arsenite-induced inhibition of DNA synthesis was mitigated. By contrast, inhibition of DNA synthesis by DMAA occurred in parallel with an increase in the population of mitotic cells. These results suggest that DMAA caused growth retardation and morphological changes via disruption of the microtubule network, and that arsenite-induced retardation of cell growth and inhibition of DNA synthesis were not attributable to the cytoskeletal changes. (orig.) (orig.) With 7 figs., 31 refs.

  20. A simple, rapid and reliable protocol to localize hydrogen peroxide in large plant organs by DAB-mediated tissue printing

    Directory of Open Access Journals (Sweden)

    Yonghua eLiu

    2014-12-01

    Full Text Available Hydrogen peroxide (H2O2 is a major reactive oxygen species (ROS and plays diverse roles in plant development and stress responses. However, its localization in large and thick plant organs (e.g. stem, roots and fruits, other than leaves, has proven to be challenging due to the difficulties for the commonly used H2O2-specific chemicals, such as 3, 3’-diaminobenzidine (DAB, cerium chloride (CeCl3 and 2’, 7’-dichlorofluorescin diacetate (H2DCF-DA, to penetrate those organs. Theoretically, the reaction of endogenous H2O2 with these chemicals could be facilitated by using thin organ sections. However, the rapid production of wound-induced H2O2 associated with this procedure inevitably disturbs the original distribution of H2O2 in vivo. Here, by employing tomato seedling stems and fruits as testing materials, we report a novel, simple and rapid protocol to localize H2O2 in those organs using DAB-mediated tissue printing. The rapidity of the protocol (within 15 s completely avoided the interference of wound-induced H2O2 during experimentation. Moreover, the H2O2 signal on the printing was stable for at least 1 h with no or little background produced. We conclude that DAB-mediated tissue printing developed here provide a new feasible and reliable method to localize H2O2 in large plant organs, hence should have broad applications in studying ROS biology.

  1. Simplified NaCl based (68)Ga concentration and labeling procedure for rapid synthesis of (68)Ga radiopharmaceuticals in high radiochemical purity.

    Science.gov (United States)

    Mueller, Dirk; Klette, Ingo; Baum, Richard P; Gottschaldt, M; Schultz, Michael K; Breeman, Wouter A P

    2012-08-15

    A simple sodium chloride (NaCl) based (68)Ga eluate concentration and labeling method that enables rapid, high-efficiency labeling of DOTA conjugated peptides in high radiochemical purity is described. The method utilizes relatively few reagents and comprises minimal procedural steps. It is particularly well-suited for routine automated synthesis of clinical radiopharmaceuticals. For the (68)Ga generator eluate concentration step, commercially available cation-exchange cartridges and (68)Ga generators were used. The (68)Ga generator eluate was collected by use of a strong cation exchange cartridge. 98% of the total activity of (68)Ga was then eluted from the cation exchange cartridge with 0.5 mL of 5 M NaCl solution containing a small amount of 5.5 M HCl. After buffering with ammonium acetate, the eluate was used directly for radiolabeling of DOTATOC and DOTATATE. The (68)Ga-labeled peptides were obtained in higher radiochemical purity compared to other commonly used procedures, with radiochemical yields greater than 80%. The presence of (68)Ge could not be detected in the final product. The new method obviates the need for organic solvents, which eliminates the required quality control of the final product by gas chromatography, thereby reducing postsynthesis analytical effort significantly. The (68)Ga-labeled products were used directly, with no subsequent purification steps, such as solid-phase extraction. The NaCl method was further evaluated using an automated fluid handling system and it routinely facilitates radiochemical yields in excess of 65% in less than 15 min, with radiochemical purity consistently greater than 99% for the preparation of (68)Ga-DOTATOC.

  2. Organic Analysis of Catalytic Fischer-Tropsch Synthesis Products and Ordinary Chondrite Meteorites by Stepwise Pyrolysis-GCMS: Organics in the Early Solar Nebula

    Science.gov (United States)

    Locke, Darren R.; Yazzie, Cyriah A.; Burton, Aaron S.; Niles, Paul B.; Johnson, Natasha M.

    2014-01-01

    Abiotic generation of complex organic compounds, in the early solar nebula that formed our solar system, is hypothesized by some to occur via Fischer-Tropsch (FT) synthesis. In its simplest form, FT synthesis involves the low temperature (300degC) produces FT products that include lesser amounts of n-alkanes and greater alkene, alcohol, and polycyclic aromatic hydrocarbon (PAH) compounds. We have begun to experimentally investigate FT synthesis in the context of abiotic generation of organic compounds in the early solar nebula. It is generally thought that the early solar nebula included abundant hydrogen and carbon monoxide gases and nano-particulate matter such as iron and metal silicates that could have catalyzed the FT reaction. The effect of FT reaction temperature, catalyst type, and experiment duration on the resulting products is being investigated. These solid organic products are analyzed by thermal-stepwise pyrolysis-GCMS and yield the types and distribution of hydrocarbon compounds released as a function of temperature. We show how the FT products vary by reaction temperature, catalyst type, and experimental duration and compare these products to organic compounds found to be indigenous to ordinary chondrite meteorites. We hypothesize that the origin of organics in some chondritic meteorites, that represent an aggregation of materials from the early solar system, may at least in part be from FT synthesis that occurred in the early solar nebula.

  3. [Rapid determination of eight organic acids in plant tissue by sequential extraction and high performance liquid chromatography].

    Science.gov (United States)

    Huang, Tianzhi; Wang, Shijie; Liu Xiuming; Liu, Hong; Wu, Yanyou; Luo Xuqiang

    2014-12-01

    A sequential extraction method was developed to determine different forms of oxalate and seven oxalate-metabolism-related organic acids (glyoxylic acid, tartaric acid, glycolic acid, malic acid, acetic acid, citric acid, succinic acid) in plant tissue. The ultra-pure water was used as the extraction medium to obtain water-soluble oxalic acid and the other seven water-soluble organic acids. After the extraction of the water-soluble organic acids, the residues were extracted by dilute hydrochloric acid successively to get the acid-soluble oxalate which entered the liquid phase. A Hypersil ODS column was used with 5 mmol/L potassium dihydrogen phosphate buffer solution (pH 2. 8) as the mobile phase. The diode array detector was set at 210 nm and the column temperature at 30 °C with the injection volume of 5 µL. The flow rate was controlled at different times which allowed a good and rapid separation of the organic acids and hydrochloric acid. Under these conditions, the linear ranges of the method were 1-2000 mg/L for oxalic acid, 25-2,000 mg/L for acetic acid, and 10-2,000 mg/L for glyoxylic acid, tartaric acid, glycolic acid, malic acid, citric acid and succinic acid, with the correlation coefficients of the eight organic acids ≥ 0. 9996. The average recoveries of the eight organic acids in leaves and roots were 93. 5%-104. 4% and 85. 3%-105. 4% with RSDs of 0. 15% -2.43% and 0. 31%-2. 9% (n=7), respectively. The limits of detection ranged from 1 to 10 ng (S/N=3). The results indicated that the method is accurate, rapid and reproducible for the determination of organic acids in plant samples.

  4. Synthesis of novel inorganic-organic hybrid materials for simultaneous adsorption of metal ions and organic molecules in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Xinliang [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Li, Yanfeng, E-mail: liyf@lzu.edu.cn [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China); Yu, Cui; Ma, Yingxia; Yang, Liuqing; Hu, Huaiyuan [State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Institute of Biochemical Engineering and Environmental Technology, Lanzhou University, Lanzhou 730000 (China)

    2011-12-30

    Highlights: Black-Right-Pointing-Pointer Novel hybrid materials were synthesized and employed in the absorption of heavy metal and organic pollutants. Black-Right-Pointing-Pointer A novel method for amphiphilic adsorbent material synthesis was first reported in this paper. Black-Right-Pointing-Pointer The adsorbent material showed excellent adsorption capacity to Pb(II) and phenol. - Abstract: In this paper, atom transfer radical polymerization (ATRP) and radical grafting polymerization were combined to synthesize a novel amphiphilic hybrid material, meanwhile, the amphiphilic hybrid material was employed in the absorption of heavy metal and organic pollutants. After the formation of attapulgite (ATP) ATRP initiator, ATRP block copolymers of styrene (St) and divinylbenzene (DVB) were grafted from it as ATP-P(S-b-DVB). Then radical polymerization of acrylonitrile (AN) was carried out with pendent double bonds in the DVD units successfully, finally we got the inorganic-organic hybrid materials ATP-P(S-b-DVB-g-AN). A novel amphiphilic hybrid material ATP-P(S-b-DVB-g-AO) (ASDO) was obtained after transforming acrylonitrile (AN) units into acrylamide oxime (AO) as hydrophilic segment. The adsorption capacity of ASDO for Pb(II) could achieve 131.6 mg/g, and the maximum removal capacity of ASDO towards phenol was found to be 18.18 mg/g in the case of monolayer adsorption at 30 Degree-Sign C. The optimum pH was 5 for both lead and phenol adsorption. The adsorption kinetic suited pseudo-second-order equation and the equilibrium fitted the Freundlich model very well under optimal conditions. At the same time FT-IR, TEM and TGA were also used to study its structure and property.

  5. Controlled Synthesis of Organic/Inorganic van de Waals Solid for Tunable Light-matter Interactions

    CERN Document Server

    Niu, Lin; Cong, Chunxiao; Wu, Chunyang; Wu, Di; Chang, Tay-Rong; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Wang, Xingli; Fu, Wei; Yu, Peng; Fu, Qundong; Zhang, Zhuhua; Yakobson, Boris I; Tay, Beng Kang; Jeng, Horng-Tay; Lin, Hsin; Sum, Tze Chien; Jin, Chuanhong; He, Haiyong; Yu, Ting; Liu, Zheng

    2015-01-01

    Van de Waals (vdW) solids, as a new type of artificial materials that consisting of alternative layers bonded by weak interactions, have shed light on fantastic optoelectronic devices. As a result, a large variety of shining vdW devices have been engineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids have been proved a scalable and swift way towards vdW solids, reflected by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Enlightened by it, with a three-step deposition and reaction, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide as the organic part (organic perovskite) and 2D monolayers inorganic as counterpart. Being a perfect light absorbent, the electrons and holes generated in organic perovskite couple with its inorganic 2D companions, and behave dramaticall...

  6. Progammed synthesis of magnetic mesoporous silica coated carbon nanotubes for organic pollutant adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yue; Zhang, Min, E-mail: congmingyang123@163.com; Xia, Peixiong; Wang, Linlin; Zheng, Jing; Li, Weizhen; Xu, Jingli, E-mail: xujingli@sues.edu.cn

    2016-05-15

    Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis method and were characterized by TEM, XRD, FTIR, TGA, N{sub 2} adsorption–desorption and VSM. The well-designed mesoporous magnetic nanotubes had a large specific area, a highly open mesoporous structure and high magnetization. Firstly, SiO{sub 2}-coated maghemite/CNTs nanoparticles (CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites) were synthesized by the combination of high temperature decomposition process and an sol–gel method, in which the iron acetylacetonate as well as TEOS acted as the precursor for maghemite and SiO{sub 2}, respectively. The CNTs/Fe{sub 3}O{sub 4}@SiO{sub 2} composites revealed a core–shell structure, Then, CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was obtained by extracting cetyltrimethylammonium bromide (CTAB) via an ion-exchange procedure. The resulting composites show not only a magnetic response to an externally applied magnetic field, but also can be a good adsorbent for the organic pollutant in the ambient temperature. - Graphical abstract: Magnetic mesoporous silica coated carbon nanotubes were produced from hydrophilic monodisperse magnetic nanoparticles decorated carbon nanotubes using well controlled programmed synthesis, which can be a good adsorbent for the organic pollutant in the ambient temperature. - Highlights: • The surface of CNTs/Fe{sub 3}O{sub 4} is hydrophilic, which facilitates the silica coating. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} was synthesized by a facile method. • The CNTs/Fe{sub 3}O{sub 4}@mSiO{sub 2} can be a good adsorbent for the organic pollutant.

  7. Rapid efficient synthesis and characterization of silver, gold, and bimetallic nanoparticles from the medicinal plant Plumbago zeylanica and their application in biofilm control.

    Science.gov (United States)

    Salunke, Gayatri R; Ghosh, Sougata; Santosh Kumar, R J; Khade, Samiksha; Vashisth, Priya; Kale, Trupti; Chopade, Snehal; Pruthi, Vikas; Kundu, Gopal; Bellare, Jayesh R; Chopade, Balu A

    2014-01-01

    Nanoparticles (NPs) have gained significance in medical fields due to their high surface-area-to-volume ratio. In this study, we synthesized NPs from a medicinally important plant - Plumbago zeylanica. Aqueous root extract of P. zeylanica (PZRE) was analyzed for the presence of flavonoids, sugars, and organic acids using high-performance thin-layer chromatography (HPTLC), gas chromatography-time of flight-mass spectrometry (GC-TOF-MS), and biochemical methods. The silver NPs (AgNPs), gold NPs (AuNPs), and bimetallic NPs (AgAuNPs) were synthesized from root extract and characterized using ultraviolet-visible spectra, X-ray diffraction (XRD), energy-dispersive spectrometry (EDS), transmission electron microscopy (TEM), and dynamic light scattering (DLS). The effects of these NPs on Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli biofilms were studied using quantitative biofilm inhibition and disruption assays, as well as using fluorescence, scanning electron microscopy, and atomic force microscopy. PZRE showed the presence of phenolics, such as plumbagin, and flavonoids, in addition to citric acid, sucrose, glucose, fructose, and starch, using HPTLC, GC-TOF-MS, and quantitative analysis. Bioreduction of silver nitrate (AgNO₃) and chloroauric acid (HAuCl₄) were confirmed at absorbances of 440 nm (AgNPs), 570 nm (AuNPs), and 540 nm (AgAuNPs), respectively. The maximum rate of synthesis at 50°C was achieved with 5 mM AgNO₃ within 4.5 hours for AgNPs; and with 0.7 mM HAuCl4 within 5 hours for AuNPs. The synthesis of AgAuNPs, which completed within 90 minutes with 0.7 mM AgNO₃ and HAuCl₄, was found to be the fastest. Fourier-transform infrared spectroscopy confirmed bioreduction, while EDS and XRD patterns confirmed purity and the crystalline nature of the NPs, respectively. TEM micrographs and DLS showed about 60 nm monodispersed Ag nanospheres, 20-30 nm Au nanospheres adhering to form Au nanotriangles, and about 90 nm hexagonal blunt

  8. The Influence of Nitrate and Chloride Uptake on Expressed Sap pH, Organic Acid Synthesis, and Potassium Accumulation in Higher Plants.

    Science.gov (United States)

    Blevins, D G; Hiatt, A J; Lowe, R H

    1974-07-01

    The influence of NO(3) (-) uptake and reduction on ionic balance in barley seedlings (Hordeum vulgare, cv. Compana) was studied. KNO(3) and KCl treatment solutions were used for comparison of cation and anion uptake. The rate of Cl(-) uptake was more rapid than the rate of NO(3) (-) uptake during the first 2 to 4 hours of treatment. There was an acceleration in rate of NO(3) (-) uptake after 4 hours resulting in a sustained rate of NO(3) (-) uptake which exceeded the rate of Cl(-) uptake. The initial (2 to 4 hours) rate of K(+) uptake appeared to be independent of the rate of anion uptake. After 4 hours the rate of K(+) uptake was greater with the KNO(3) treatment than with the KCl treatment, and the solution pH, cell sap pH, and organic acid levels with KNO(3) increased, relative to those with the KCl treatment. When absorption experiments were conducted in darkness, K(+) uptake from KNO(3) did not exceed K(+) uptake from KCl. We suggest that the greater uptake and accumulation of K(+) in NO(3) (-)-treated plants resulted from (a) a more rapid, sustained uptake and transport of NO(3) (-) providing a mobile counteranion for K(+) transport, and (b) the synthesis of organic acids in response to NO(3) (-) reduction increasing the capacity for K(+) accumulation by providing a source of nondiffusible organic anions.

  9. Janus Green B as a rapid, vital stain for peripheral nerves and chordotonal organs in insects.

    Science.gov (United States)

    Yack, J E

    1993-08-01

    Effective staining of peripheral nerves in live insects is achieved with the vital stain Janus Green B. A working solution of 0.02% Janus Green B in saline is briefly applied to the exposed peripheral nervous system. The stain is then decanted and the dissection flooded with fresh saline, resulting in whole nerves being stained dark blue in contrast to surrounding tissues. This simple and reliable technique is useful in describing the distribution of nerves to their peripheral innervation sites, and in locating small nerve branches for extracellular physiological recordings. The stain is also shown to be useful as a means of enhancing the contrast between scolopale caps and surrounding tissues in chordotonal organs, staining chordotonal organ attachment strands, and the crista acustica (tympanal organ) of crickets and katydids. The advantages of Janus Green B over traditional peripheral nerve strains, in addition to its shortcomings, are discussed.

  10. A working hypothesis for broadening framework types of zeolites in seed-assisted synthesis without organic structure-directing agent.

    Science.gov (United States)

    Itabashi, Keiji; Kamimura, Yoshihiro; Iyoki, Kenta; Shimojima, Atsushi; Okubo, Tatsuya

    2012-07-18

    Recent research has demonstrated a new synthesis route to useful zeolites such as beta, RUB-13, and ZSM-12 via seed-assisted, organic structure-directing agent (OSDA)-free synthesis, although it had been believed that these zeolites could be essentially synthesized with OSDAs. These zeolites are obtained by adding seeds to the gels that otherwise yield other zeolites; however, the underlying crystallization mechanism has not been fully understood yet. Without any strategy, it is unavoidable to employ a trial-and-error procedure for broadening zeolite types by using this synthesis method. In this study, the effect of zeolite seeds with different framework structures is investigated to understand the crystallization mechanism of zeolites obtained by the seed-assisted, OSDA-free synthesis method. It has been found that the key factor in the successful synthesis of zeolites in the absence of OSDA is the common composite building unit contained both in the seeds and in the zeolite obtained from the gel after heating without seeds. A new working hypothesis for broadening zeolite types by the seed-assisted synthesis without OSDA is proposed on the basis of the findings of the common composite building units in zeolites. This hypothesis enables us to design the synthesis condition of target zeolites. The validity of the hypothesis is experimentally tested and verified by synthesizing several zeolites including ECR-18 in K-aluminosilicate system.

  11. Synthesis of Organic Matter of Prebiotic Chemistry at the Protoplanetary Disc

    Science.gov (United States)

    Snytnikov, Valeriy; Stoynovskaya, Olga; Rudina, Nina

    We have carried out scanning electron microscopic examination of CM carbonaceous chondrites meteorites Migey, Murchison, Staroe Boriskino aged more than 4.56 billion years (about 50 million years from the beginning of the formation of the Solar system). Our study confirmed the conclusion of Rozanov, Hoover and other researchers about the presence of microfossils of bacterial origin in the matrix of all these meteorites. Since the time of the Solar system formation is 60 - 100 million years, the primary biocenosis emerged in the protoplanetary disc of the Solar system before meteorites or simultaneously with them. It means that prebiological processes and RNA world appeared even earlier in the circumsolar protoplanetary disc. Most likely, this appearance of prebiotic chemistry takes place nowday in massive and medium-massive discs of the observed young stellar objects (YSO) class 0 and I. The timescale of the transition from chemical to biological evolution took less than 50 million years for the Solar system. Further evolution of individual biocenosis in a protoplanetary disc associated with varying physico-chemical conditions during the formation of the Solar system bodies. Biocenosis on these bodies could remove or develop under the influence of many cosmic factors and geological processes in the case of Earth. To complete the primary biosphere formation in short evolution time - millions of years - requires highly efficient chemical syntheses. In industrial chemistry for the efficient synthesis of ammonia, hydrogen cyanide, methanol and other organic species, that are the precursors to obtain prebiotic compounds, catalytic reactors of high pressure are used. Thus (1) necessary amount of the proper catalyst in (2) high pressure areas of the disc can trigger these intense syntheses. The disc contains the solids with the size from nanoparticle to pebble. Iron and magnesium is catalytically active ingredient for such solids. The puzzle is a way to provide hydrogen

  12. Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) for rapid measurement of organic matter in compost.

    Science.gov (United States)

    McWhirt, Amanda L; Weindorf, David C; Chakraborty, Somsubhra; Li, Bin

    2012-10-01

    Commercial compost is the inherently variable organic product of a controlled decomposition process. In the USA, assessment of compost's physicochemical parameters presently relies on standard laboratory analyses set forth in Test Methods for the Examination of Composting and Compost (TMECC). A rapid, field-portable means of assessing the organic matter (OM) content of compost products would be useful to help producers ensure optimal uniformity in their compost products. Visible near infrared diffuse reflectance spectroscopy (VisNIR DRS) is a rapid, proximal-sensing technology proven effective at quantifying organic matter levels in soils. As such, VisNIR DRS was evaluated to assess its applicability to compost. Thirty-six compost samples representing a wide variety of source materials and moisture content were collected and scanned with VisNIR DRS under moist and oven-dry conditions. Partial least squares (PLS) regression and principal component regression (PCR) were used to relate the VisNIR DRS spectra with laboratory-measured OM to build compost OM prediction models. Raw reflectance, and first- and second-derivatives of the reflectance spectra were considered. In general, PLS regression outperformed PCR and the oven-dried first-derivative PLS model produced an r(2) value of 0.82 along with a residual prediction deviation value of 1.72. As such, VisNIR DRS shows promise as a suitable technique for the analysis of compost OM content for dried samples.

  13. Synthesis and Characterization of an Iron Nitride Constructed by a Novel Template of Metal Organic Framework

    Directory of Open Access Journals (Sweden)

    Suyan Liu

    2015-01-01

    Full Text Available An iron nitride with high surface area was synthesized from an iron-based metal organic framework (Fe-MOF in this work. During the synthesis process, the Fe-MOF of MIL-53 served as a hard template, a template to impart a certain degree of morphology for iron oxide products and to form porosities for iron nitride products. Moreover, it played the roles of iron sources for the synthesis of the final iron oxides and the iron nitrides. The physicochemical properties of the materials were characterized by a series of technologies including XRD, SEM, and N2-adsorption/desorption. The results showed that the iron nitride synthesized from MIL-53 was α-Fe2-3N. And, the α-Fe2-3N showed the morphology with loosely aggregated particles which favored the formation of rich interparticle porosities. As a result, the surface area of the α-Fe2-3N was larger than those of samples using α-Fe2O3 as precursors and its value was 41 m2/g. In addition, the results agreed that both raw material properties (such as crystallinity and surface areas and nitriding approaches had significant effects on the surface areas of iron nitrides. Also the results were proved by the iron oxide synthesized with different methods. This new synthetic strategy could be a general approach for the preparation of late transition metal nitrides with peculiar properties.

  14. Synthesis of metal-organic framework films by pore diffusion method

    Science.gov (United States)

    Murayama, Naohiro; Nishimura, Yuki; Kajiro, Hiroshi; Kishida, Satoru; Kinoshita, Kentaro; Tottori Univ Team; Nippon Steel; Sumitomo Metal Co. Collaboration; Tottori Integrated Frontier Resaerch Center (Tifrec) Collaboration; Tottori University Electronic Display Resaerch Center (Tedrec) Collaboration

    Metal-organic frameworks (MOFs) presents high controllability in designing the nano-scale pore, and this enable molecular storages, catalysts, gas sensors, gas separation membranes, and electronic devices for next-generation. Therefore, a simple method for film synthesis of MOFs compared with conventional methods [1] is strongly required. In this paper, we provide pore diffusion method, in which a substrate containing constituent metals of MOF is inserted in solution that includes only linker molecules of MOF. As a result, 2D growth of MOF was effectively enhanced, and the formation of flat and dense MOF films was attained. The growth time, t, dependence of film thickness, d, can be expressed by the relation of d = Aln(t + 1) + B, where A and B are constants. It means that ionized coppers diffuse through the pores of MOFs and the synthesis reaction proceeds at the MOF/solvent interface. We demonstrated the fabrication of a HKUST-1/Cu-TPA hetero structure by synthesizing a Cu-TPA film continuously after the growth of a HKUST-1 film on the CuOx substrate.

  15. Enzymatic synthesis of a CCK-8 tripeptide fragment in organic media.

    Science.gov (United States)

    Capellas, M; Benaiges, M D; Caminal, G; Gonzalez, G; Lopez-Santín, J; Clapés, P

    1996-06-20

    The enzymatic synthesis of the tripeptide derivative Z-Gly-Trp-Met-OEt is reported. This tripeptide is a fragment of the cholecystokinin C-terminal octapeptide CCK-8. Studies on the alpha-chymotrypsin catalyzed coupling reaction between Z-Gly-Trp-R(1) and Met-R(2) have focused on low water content media, using deposited enzyme on inert supports such as Celite and polyamide. The effect of additives (polar organic solvents), the acyl-donor ester structure, the C-alpha protecting group of the nucleophile, enzyme loading, and substrate concentration were tested. The best reaction medium found was acetonitrile containing buffer (0.5%, v/v) and triethylamine (0.5%, v/v) using the enzyme deposited on Celite as catalyst (8 mg of alpha-chymotrypsin/g of Celite). A reaction yield of 81% was obtained with Z-Gly-Trp-OCam as acyl donor, at an initial concentration of 80 mM. The tripeptide synthesis was scaled up to the production of 2 g of pure tripeptide with an overall yield of 71%, including reaction and purification steps.

  16. Zirconocene and Si-tethered diynes: a happy match directed toward organometallic chemistry and organic synthesis.

    Science.gov (United States)

    Zhang, Wen-Xiong; Zhang, Shaoguang; Xi, Zhenfeng

    2011-07-19

    Characterizing reactive organometallic intermediates is critical for understanding the mechanistic aspects of metal-mediated organic reactions. Moreover, the isolation of reactive organometallic intermediates can often result in the ability to design new synthetic methods. In this Account, we outline synthetic methods that we developed for a variety of diverse Zr/Si organo-bimetallic compounds and Si/N heteroatom-organic compounds through the detailed study of zirconacyclobutene-silacyclobutene fused compounds. Two basic components are involved in this chemistry. The first is the Si-tethered diyne, which owes its rich reactive palette to the combination of the Si-C bond and the C≡C triple bond. The second is the low-valent zirconocene species Cp(2)Zr(II), which has proven very useful in organic synthesis. The reaction of these two components affords the zirconacyclobutene-silacyclobutene fused compound, which is the key reactive Zr/Si organo-bimetallic intermediate discussed here. We discuss the three types of reactions that have been developed for the zirconacyclobutene-silacyclobutene fused intermediate. The reaction with nitriles (the C≡N triple bond) is introduced in the first section. In this one-pot reaction, up to four different components can be combined: the Si-tethered diyne can be reacted with three identical nitriles, with differing nitriles, or with a nitrile and other unsaturated organic substrates such as formamides, isocyanides, acid chlorides, aldehydes, carbodiimides, and azides. Several unexpected multiring, fused Zr/Si organo-bimetallic intermediates were isolated and characterized. A wide variety of N-heterocycles, such as 5-azaindole, pyrrole, and pyrroloazepine derivatives, were obtained. We then discuss the reaction with alkynes (the C≡C triple bond). A consecutive skeletal rearrangement, differing from that observed in the reactions with nitriles, takes place in this reaction. Finally, we discuss the reaction with the C═X substrates

  17. An Efficient Synthesis Strategy for Metal-Organic Frameworks: Dry-Gel Synthesis of MOF-74 Framework with High Yield and Improved Performance.

    Science.gov (United States)

    Das, Atanu Kumar; Vemuri, Rama Sesha; Kutnyakov, Igor; McGrail, B Peter; Motkuri, Radha Kishan

    2016-06-16

    Vapor-assisted dry-gel synthesis of the metal-organic framework-74 (MOF-74) structure, specifically Ni-MOF-74 produced from synthetic precursors using an organic-water hybrid solvent system, showed a very high yield (>90% with respect to 2,5-dihydroxyterepthalic acid) and enhanced performance. The Ni-MOF-74 obtained showed improved sorption characteristics towards CO2 and the refrigerant fluorocarbon dichlorodifluoromethane. Unlike conventional synthesis, which takes 72 hours using the tetrahydrofuran-water system, this kinetic study showed that Ni-MOF-74 forms within 12 hours under dry-gel conditions with similar performance characteristics, and exhibits its best performance characteristics even after 24 hours of heating. In the dry-gel conversion method, the physical separation of the solvent and precursor mixture allows for recycling of the solvent. We demonstrated efficient solvent recycling (up to three times) that resulted in significant cost benefits. The scaled-up manufacturing cost of Ni-MOF-74 synthesized via our dry-gel method is 45% of conventional synthesis cost. Thus, for bulk production of the MOFs, the proposed vapor-assisted, dry-gel method is efficient, simple, and inexpensive when compared to the conventional synthesis method.

  18. Development and testing of a rapid, sensitive ATP assay to detect living organisms in ballast water

    NARCIS (Netherlands)

    van Slooten, Cees; Wijers, Tom; Buma, Anita; Peperzak, Louis

    2015-01-01

    To reduce the spread of aquatic invasive species, the discharge of ballast water by ships will soon be compulsorily regulated by the International Maritime Organization (IMO) and the United States Coast Guard (USCG). Compliance with their regulations will have to be achieved by onboard ballast water

  19. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Triolo, Jin Mi; Boldrin, Alessio

    2017-01-01

    . The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting...

  20. Rapid and Efficient Synthesis of Hydroxytriarylmethanes under Ultra Sonic Irradiation Using Keggin Heteropolyacids and Preyssler Catalysts in Green Conditions

    Directory of Open Access Journals (Sweden)

    Hooshang Hamidian

    2013-01-01

    Full Text Available A new synthesis of hydroxytriarylmethane derived from the reaction of 2-sulfobenzoic anhydride and phenols in the presence of heteropolyacids as green, reusable, and efficient catalyst (using catalytic amount under ultrasonic irradiation is reported in this paper.

  1. Rapid continuous microwave-assisted synthesis of silver nanoparticles to achieve very high productivity and full yield: from mechanistic study to optimal fabrication strategy

    Energy Technology Data Exchange (ETDEWEB)

    Dzido, Grzegorz, E-mail: gdzido@polsl.pl [Silesian University of Technology, Department of Chemical Engineering and Process Design, Faculty of Chemistry (Poland); Markowski, Piotr [Silesian University of Technology, Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry (Poland); Małachowska-Jutsz, Anna [Silesian University of Technology, Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering (Poland); Prusik, Krystian [University of Silesia, Institute of Materials Science (Poland); Jarzębski, Andrzej B. [Silesian University of Technology, Department of Chemical Engineering and Process Design, Faculty of Chemistry (Poland)

    2015-01-15

    Systematic studies of silver nanoparticle synthesis in a continuous-flow single-mode microwave reactor using polyol process were performed, revealing that the synthesis is exceptionally effective to give very small metal particles at full reaction yield and very high productivity. Inlet concentration of silver nitrate or silver acetate, applied as metal precursors, varied between 10 and 50 mM, and flow rates ranged from 0.635 to 2.5 dm{sup 3}/h, to give 3–24 s reaction time. Owing to its much higher reactivity, silver acetate was shown to be far superior substrate for the synthesis of small (10–20 nm) spherical silver nanoparticles within a few seconds. Its restricted solubility in ethylene glycol, applied as the solvent and reducing agent, appeared to be vital for effective separation of the stage of particle growth from its nucleation to enable rapid synthesis of small particles in a highly loaded system. This was not possible to obtain using silver nitrate. All the observations could perfectly be explained by a classical LaMer–Dinegar model of NPs’ formation, but taking into account also nonisothermal character of the continuous-flow process and acetate dissolution in the reaction system. The performed studies indicate an optimal strategy for the high-yield fabrication of metal particles using polyol method.

  2. Organic phase synthesis of noble metal-zinc chalcogenide core-shell nanostructures.

    Science.gov (United States)

    Kumar, Prashant; Diab, Mahmud; Flomin, Kobi; Rukenstein, Pazit; Mokari, Taleb

    2016-10-15

    Multi-component nanostructures have been attracting tremendous attention due to their ability to form novel materials with unique chemical, optical and physical properties. Development of hybrid nanostructures that are composed of metal-semiconductor components using a simple approach is of interest. Herein, we report a robust and general organic phase synthesis of metal (Au or Ag)-Zinc chalcogenide (ZnS or ZnSe) core-shell nanostructures. This synthetic protocol also enabled the growth of more compositionally complex nanostructures of Au-ZnSxSe1-x alloys and Au-ZnS-ZnSe core-shell-shell. The optical and structural properties of these hybrid nanostructures are also presented. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. A homochiral metal-organic framework as an effective asymmetric catalyst for cyanohydrin synthesis.

    Science.gov (United States)

    Mo, Ke; Yang, Yuhua; Cui, Yong

    2014-02-05

    A homochiral metal-organic framework (MOF) of an enantiopure 2,2'-dihydroxy-1,1'-biphenyl ligand was constructed. After exchanging one proton of the dihydroxyl group for Li(I) ions, the framework is shown to be a highly efficient and recyclable heterogeneous catalyst for asymmetric cyanation of aldehydes with up to >99% ee. Compared with the homogeneous counterpart, the MOF catalyst exhibits significantly enhanced catalytic activity and enantioselectivity, especially at a low catalyst/substrate ratio, due to that the rigid framework could stabilize the catalytically active monolithium salt of biphenol against its free transformation to catalytically inactive and/or less active assemblies in reactions. The synthetic utility of the cyanation was demonstrated in the synthesis of (S)-bufuralol (a nonselective β-adrenoceptor blocking agent) with 98% ee.

  4. Anodized Aluminum Oxide Templated Synthesis of Metal-Organic Frameworks Used as Membrane Reactors.

    Science.gov (United States)

    Yu, Yifu; Wu, Xue-Jun; Zhao, Meiting; Ma, Qinglang; Chen, Junze; Chen, Bo; Sindoro, Melinda; Yang, Jian; Han, Shikui; Lu, Qipeng; Zhang, Hua

    2017-01-09

    The incorporation of metal-organic frameworks (MOFs) into membrane-shaped architectures is of great importance for practical applications. The currently synthesized MOF-based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF-based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF-based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis and characterization of tunable coumarin- linked glasses as new class of organic/inorganic phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Luridiana, Alberto; Pretta, Gianluca; Secci, Francesco; Frongia, Angelo [Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, Complesso universitario di Monserrato, SS 554, bivio per Sestu, Monserrato (Canada) (Italy); Chiriu, Daniele; Carbonaro, Carlo Maria; Corpino, Riccardo [Dipartimento di Fisica, Università degli Studi di Cagliari, Complesso universitario di Monserrato, SS 554, bivio per Sestu, Monserrato (Canada) (Italy); Ricci, Pier Carlo, E-mail: carlo.ricci@dsf.unica.it [Dipartimento di Fisica, Universitá degli Studi di Cagliari, S.P. Monserrato-Sestu Km 0,700, 09042 Monserrato (Canada) (Italy)

    2014-10-21

    It is well known that stilbene with a trans conformation is highly fluorescent. From the viewpoint of molecular structure, coumarins bear a carbon-carbon double bond which is fixed as trans conformation as in trans-stilbene through a lactone structure. This can help to avoid the trans-cis transformation of the double bond under ultraviolet (UV) irradiation as observed in stilbene compounds and results in strong fluorescence and high fluorescence quantum yield and photostability in most of coumarin derivatives. Herein we report some preliminary results about the synthesis and spectroscopic characterization of tunable coumarins and the development of a new linkage protocol for the obtainment of monolayer coumarin-covalently linked glasses. The resulting organic/inorganic coumarin/silica based Self-Assembled Monolayer (SMA) film is proposed as new phosphors for the substituting of critical raw materials, like rare earths, in photonics applications.

  6. [Exploitation of the chemistry of magnesium carbenoids and their use in organic synthesis].

    Science.gov (United States)

    Satoh, Tsuyoshi

    2009-09-01

    Synthetic organic chemistry is a base of medicinal chemistry and the exploitation of new methods for carbon-carbon bond formation is of most importance in synthetic organic chemistry. Carbenes and carbenoids have long been known to be highly reactive carbon species that show a variety of unique reactivity. However, those reactive species are not fully used in organic synthesis. The reasons are as follows: one is the precursors for the generation of carbenes and carbenoids are quite limited and the other is that the reactivity of the species is too high to control. In order to solve the problem mentioned above, we used alpha-haloalkyl (or alkenyl) aryl sulfoxides as the precursors and used sulfoxide-magnesium exchange reaction for generation of much mild magnesium carbenoids. alpha-Haloalkyl (or alkenyl) aryl sulfoxides are quite easily synthesized in high overall yields. Magnesium carbenoids, cyclopropylmagnesium carbenoids, cyclobutylmagnesium carbenoids, magnesium beta-oxido carbenoids, and magnesium alkylidene carbenoids are generated at low temperature from the corresponding sulfoxides with a Grignard reagent in quantitative yields. They were found to be stable usually at below -60 degrees C for at least 30 min. The each magnesium carbenoids have their own unique reactivities and we could find many unprecedented reactions from these reactive species. Recent results for the developments of new synthetic methods based on the chemistry of magnesium carbenoids are described.

  7. Toward Developing Made-to-Order Metal-Organic Frameworks: Design, Synthesis and Applications

    KAUST Repository

    Ashri, Lubna Y.

    2016-05-26

    Synthesis of materials with certain properties for targeted applications is an ongoing challenge in materials science. One of the most interesting classes of solid-state materials that have been recently introduced with the potential to address this is metal-organic frameworks (MOFs). MOFs chemistry offers a higher degree of control over materials to be synthesized utilizing various new design strategies, such as the molecular building blocks (MBBs) and the supermolecular building layers (SBLs) approaches. Depending on using predetermined building blocks, these strategies permit the synthesis of MOFs with targeted topologies and enable fine tuning of their properties. This study examines a number of aspects of the design and synthesis of MOFs while exploring their possible utilization in two diverse fields related to energy and pharmaceutical applications. Concerning MOFs design and synthesis, the work presented here explores the rational design of various MOFs with predicted topologies and tunable cavities constructed by pillaring pre-targeted 2-periodic SBLs using the ligand-to-axial and six-connected axial-to-axial pillaring strategies. The effect of expanding the confined spaces in prepared MOFs or modifying their functionalities, while preserving the underlying network topology, was investigated. Additionally, The MBBs approach was employed to discover new modular polynuclear rare earth (RE)-MBBs in the presence of different angular polytopic ligands containing carboxylate and nitrogen moieties with the aid of a modulator. The goal was to assess the diverse possible coordination modes and construct highly-connected nets for utility in the design of new MOFs and enhance the predictability of structural outcomes. The effect of adjusting ligands’ length-to-width ratio on the prepared MOFs was also evaluated. As a result, the reaction conditions amenable for reliable formation of the unprecedented octadecanuclear, octanuclear and double tetranuclear RE-MBBs were

  8. Synthesis of magnetic nanoporous carbon from metal-organic framework for the fast removal of organic dye from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Caina; Wang, Yanen; Li, Menghua; Wu, Qiuhua; Wang, Chun; Wang, Zhi, E-mail: wangzhi@hebau.edu.cn

    2016-06-01

    In this paper, a magnetic nanoporous carbon (Fe{sub 3}O{sub 4}/NPC) was successfully synthesized by using MOF-5 as carbon precursor and Fe salt as magnetic precursor. The texture properties of the as-synthesized nanocomposite were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), vibration sample magnetometer (VSM), and N{sub 2} adsorption–desorption isotherms. The Fe{sub 3}O{sub 4}/NPC had a high surface area with strong magnetic strength. Its adsorption behavior was tested by its adsorption capacity for the removal of methylene blue from aqueous solution. The results demonstrated that the Fe{sub 3}O{sub 4}/NPC had a high adsorption capacity, rapid adsorption rate, and easy magnetic separabilty. Moreover, the adsorbent could be easily regenerated by washing it with ethanol. The Fe{sub 3}O{sub 4}/NPC can be used as a good alternative for the effective removal of organic dyes from wastewater. - Highlights: • Fe{sub 3}O{sub 4}/NPC nanocomposite was synthesized by choosing MOF-5 as carbon precursor. • Fe{sub 3}O{sub 4}/NPC was used as an adsorbent for removal of organic dye from aqueous solution. • Fe{sub 3}O{sub 4}/NPC could be a promising candidate for pollutants removal.

  9. Composite polymer/oxide hollow fiber contactors: versatile and scalable flow reactors for heterogeneous catalytic reactions in organic synthesis.

    Science.gov (United States)

    Moschetta, Eric G; Negretti, Solymar; Chepiga, Kathryn M; Brunelli, Nicholas A; Labreche, Ying; Feng, Yan; Rezaei, Fateme; Lively, Ryan P; Koros, William J; Davies, Huw M L; Jones, Christopher W

    2015-05-26

    Flexible composite polymer/oxide hollow fibers are used as flow reactors for heterogeneously catalyzed reactions in organic synthesis. The fiber synthesis allows for a variety of supported catalysts to be embedded in the walls of the fibers, thus leading to a diverse set of reactions that can be catalyzed in flow. Additionally, the fiber synthesis is scalable (e.g. several reactor beds containing many fibers in a module may be used) and thus they could potentially be used for the large-scale production of organic compounds. Incorporating heterogeneous catalysts in the walls of the fibers presents an alternative to a traditional packed-bed reactor and avoids large pressure drops, which is a crucial challenge when employing microreactors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. The MESERAN Method: Rapid Quantification of Non-Volatile Organic Residue (NVOR)

    Energy Technology Data Exchange (ETDEWEB)

    Benkovich, M.G.

    2002-06-13

    The precision analytical technique known as MESERAN Analysis permits quantitative measurement of the level of preexisting nonvolatile organic residue (NVOR) on a substrate from <1 nanogram (ng)/cm{sup 2} to > 100 micrograms ({micro}g)/cm{sup 2} in 2 minutes. MESERAN Analysis is also applicable to determining NVOR in solvents and solvent extracts. The MESERAN method is able to quantify organic contamination levels down to and below 1 ng by depositing as little as 10 microliters ({micro}L) of solvent containing a known amount of contamination on a clean substrate, allowing it to evaporate, and measuring the evaporated residue. The method will be described in detail and NVOR measurements determined from MESERAN data will be presented.

  11. Synthesis of a Parkinson's Disease Treatment Drug, the "R,R"-Tartrate Salt "of R"-Rasagiline: A Three Week Introductory Organic Chemistry Lab Sequence

    Science.gov (United States)

    Aguilar, Noberto; Garcia, Billy; Cunningham, Mark; David, Samuel

    2016-01-01

    A synthesis of the "R,R"-tartrate salt of the popular anti-Parkinson's drug "R"-rasagiline (Azilect) was adapted to introduce the organic laboratory student to a medically relevant synthesis. It makes use of concepts found in the undergraduate organic chemistry curriculum, appropriately fits into three approximately 4 h lab…

  12. Stress inhibition of melatonin synthesis in the pineal organ of rainbow trout (Oncorhynchus mykiss) is mediated by cortisol.

    Science.gov (United States)

    López-Patiño, Marcos A; Gesto, Manuel; Conde-Sieira, Marta; Soengas, José L; Míguez, Jesús M

    2014-04-15

    Cortisol has been suggested to mediate the effect of stress on pineal melatonin synthesis in fish. Therefore, we aimed to determine how pineal melatonin synthesis is affected by exposing rainbow trout to different stressors, such as hypoxia, chasing and high stocking density. In addition, to test the hypothesis that cortisol is a mediator of such stress-induced effects, a set of animals were intraperitoneally implanted with coconut oil alone or containing cortisol (50 mg kg(-1) body mass) and sampled 5 or 48 h post-injection at midday and midnight. The specificity of such effect was also assessed in cultured pineal organs exposed to cortisol alone or with the general glucocorticoid receptor antagonist, mifepristone (RU486). Stress (in particular chasing and high stocking density) affected the patterns of plasma and pineal organ melatonin content during both day and night, with the greatest reduction occurring at night. The decrease in nocturnal melatonin levels in the pineal organ of stressed fish was accompanied by increased serotonin content and decreased AANAT2 enzymatic activity and mRNA abundance. Similar effects on pineal melatonin synthesis to those elicited by stress were observed in trout implanted with cortisol for either 5 or 48 h. These data indicate that stress negatively influences the synthesis of melatonin in the pineal organ, thus attenuating the day-night variations of circulating melatonin. The effect might be mediated by increased cortisol, which binds to trout pineal organ-specific glucocorticoid receptors to modulate melatonin rhythms. Our results in cultured pineal organs support this. Considering the role of melatonin in the synchronization of daily and annual rhythms, the results suggest that stress-induced alterations in melatonin synthesis could affect the availability of fish to integrate rhythmic environmental information.

  13. Prevalence of organic and inorganic contaminants within a rapidly developing catchment

    Science.gov (United States)

    Njumbe, E. S.; Curtis, C. D.; Cooke, D. A.; Polya, D. A.; Wogelius, R. A.; Hughes, C.

    2003-04-01

    Industrialization rates in many developing countries typically outpace investment in water supply, sewage treatment and other waste water facilities. This is futher compounded by the absence of stringent land-use and waste disposal policies. The consequence of this has been contamination of land, surface water, and groundwater in such areas. Efforts to control and remediate these types of systems will rely on a thorough understanding of contaminant levels and mobility. Reliable data, however, is usually not available. Therefore this study was designed to acquire baseline data from a representative developing urban area in tropical west Africa. 43 water and 20 sediment/soil samples from streams, hand-dug wells, springs and deep boreholes within the city and surrounding areas of Douala in Cameroon were characterised. Analyses were aimed at obtaining information on the type and quantity of organic and inorganic contaminants present, and linking them to specific point and non-point sources. Results from gas chromatography (GC/FID) and gas chromatography/mass spectrometry analyses of total organic extracts (TOE) of water samples have revealed the presence of a wide range of organic compounds including phenols, polycyclic aromatic hydrocarbons (PAHs), volatile organic compounds (VOCs), phthalates, acids and aliphatic derivatives. Concentrations as high as 500 ng ml-1 were detected. These high levels of non-polar compounds measured in drinking water represent a clear health problem. Heavy metal concentrations in bulk alluvial sands and loamy soil have been determined by microwave assisted nitric acid digestion. Concentration ranges (in ppm of dry weight) for the important metals were: Cr, 3.2-84.2 ; Ni, 0.2-57.4 ; Zn, 2.1-92 ; Pb, 0.3-33 ; As, 0.081-9.4 ; Cu, 0.61-17.4 ; and Cd, 0-3.1. Point sources have been identified for several of the organic and inorganic compounds and this spatial information will be integrated with the chemical data to present an overview of

  14. Graphic organizers and their effects on the reading comprehension of students with LD: a synthesis of research.

    Science.gov (United States)

    Kim, Ae-Hwa; Vaughn, Sharon; Wanzek, Jeanne; Wei, Shangjin

    2004-01-01

    Previous research studies examining the effects of graphic organizers on reading comprehension for students with learning disabilities (LD) are reviewed. An extensive search of the professional literature between 1963 and June 2001 yielded a total of 21 group design intervention studies that met the criteria for inclusion in the synthesis. Using graphic organizers (i.e., semantic organizers, framed outlines, cognitive maps with and without a mnemonic) was associated with improved reading comprehension overall for students with LD. Compared to standardized reading measures, researcher-developed comprehension measures were associated with higher effect sizes. Initial gains demonstrated when using graphic organizers were not revealed during later comprehension tasks or on new comprehension tasks.

  15. Facile synthesis of multiple enzyme-containing metal-organic frameworks in a biomolecule-friendly environment.

    Science.gov (United States)

    Wu, Xiaoling; Ge, Jun; Yang, Cheng; Hou, Miao; Liu, Zheng

    2015-09-07

    The one-step and facile synthesis of multi-enzyme-containing metal-organic framework (MOF) nanocrystals in aqueous solution at 25 °C was reported in this study. The GOx&HRP/ZIF-8 nanocomposite displayed high catalytic efficiency, high selectivity and enhanced stability due to the protecting effect of the framework.

  16. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    Science.gov (United States)

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  17. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity.

    Science.gov (United States)

    Lammert, Martin; Wharmby, Michael T; Smolders, Simon; Bueken, Bart; Lieb, Alexandra; Lomachenko, Kirill A; Vos, Dirk De; Stock, Norbert

    2015-08-14

    A series of nine Ce(iv)-based metal organic frameworks with the UiO-66 structure containing linker molecules of different sizes and functionalities were obtained under mild synthesis conditions and short reaction times. Thermal and chemical stabilities were determined and a Ce-UiO-66-BDC/TEMPO system was successfully employed for the aerobic oxidation of benzyl alcohol.

  18. Microwave-Enhanced Organic Syntheses for the Undergraduate Laboratory: Diels-Alder Cycloaddition, Wittig Reaction, and Williamson Ether Synthesis

    Science.gov (United States)

    Baar, Marsha R.; Falcone, Danielle; Gordon, Christopher

    2010-01-01

    Microwave heating enhanced the rate of three reactions typically performed in our undergraduate organic chemistry laboratory: a Diels-Alder cycloaddition, a Wittig salt formation, and a Williamson ether synthesis. Ninety-minute refluxes were shortened to 10 min using a laboratory-grade microwave oven. In addition, yields improved for the Wittig…

  19. Facile synthesis of one-dimensional organometallic-organic hybrid polymers based on a diphosphorus complex and flexible bipyridyl linkers.

    Science.gov (United States)

    Elsayed Moussa, M; Attenberger, B; Peresypkina, E V; Fleischmann, M; Balázs, G; Scheer, M

    2016-08-21

    The selective synthesis of a series of new "ladderlike" one-dimensional organometallic-organic hybrid polymers is shown. The polymers are obtained from the reaction of the diphosphorus ligand complex [Cp2Mo2(CO)4(η(2)-P2)] with the copper salt [Cu(CH3CN)4]BF4 in the presence of flexible organic bipyridyl linkers in high selectivity. This unique behaviour is supported by DFT calculations.

  20. An emergency brake for protein synthesis The integrated stress response is able to rapidly shut down the synthesis of proteins in eukaryotic cells.

    Czech Academy of Sciences Publication Activity Database

    Hronová, Vladislava; Valášek, Leoš

    2017-01-01

    Roč. 6, APR 25 (2017), s. 1-3, č. článku e27085. ISSN 2050-084X Institutional support: RVO:61388971 Keywords : synthesis of proteins * eukaryotic cells * eIF2 Subject RIV: EE - Microbiology, Virology Impact factor: 7.725, year: 2016

  1. Synthesis and Structural Characterization of Carboxylate-Based Metal-Organic Frameworks and Coordination Networks

    Science.gov (United States)

    Calderone, Paul

    Coordination networks (CNs) and metal-organic frameworks (MOFs) are crystalline materials composed of metal ions linked by multifunctional organic ligands. From these connections, infinite arrays of one-, two-, or three-dimensional networks can be formed. Exploratory synthesis and research of novel CNs and MOFs is of current interest because of their many possible industrial applications including gas storage, catalysis, magnetism, and luminescence. A variety of metal centers and organic ligands can be used to synthesize MOFs and CNs under a range of reaction conditions, leading to extraordinary structural diversity. The characteristics of the metals and linkers, such as properties and coordination preferences, play the biggest role in determining the structure and properties of the resulting network. Thus, the choice of metal and linker is dictated by the desired traits of the target network. The pervasive use of transition metal centers in MOF synthesis stems from their well-known coordination behavior with carboxylate-based linkers, thus facilitating design strategies. Conversely, CNs and MOFs based on s-block and lanthanide metals are less studied because each group presents unique challenges to structure prediction. Lanthanide metals have variable coordination spheres capable of accommodating up to twelve atoms, while the bonding in s-block metals takes on a mainly ionic character. In spite of these obstacles, lanthanide and s-block CNs are worthwhile synthetic targets because of their unique properties. Interesting photoluminescent and sensing materials can be developed using lanthanide metals, whereas low atomic weight s-block metals may afford an advantage in gravimetric advantages for gas storage applications. The aim of this research was to expand the current understanding of carboxylate-based CN and MOF synthesis by varying the metals, solvents, and temperatures used. To this end, magnesium-based CNs were examined using a variety of aromatic carboxylate

  2. Rapid and scalable synthesis of innovative unnatural α,β or γ-amino acids functionalized with tertiary amines on their side-chains.

    Science.gov (United States)

    Schneider, Séverine; Ftouni, Hussein; Niu, Songlin; Schmitt, Martine; Simonin, Frédéric; Bihel, Frédéric

    2015-07-07

    We report a selective ruthenium catalyzed reduction of tertiary amides on the side chain of Fmoc-Gln-OtBu derivatives, leading to innovative unnatural α,β or γ-amino acids functionalized with tertiary amines. Rapid and scalable, this process allowed us to build a library of basic unnatural amino acids at the gram-scale and directly usable for liquid- or solid-phase peptide synthesis. The diversity of available tertiary amines allows us to modulate the physicochemical properties of the resulting amino acids, such as basicity or hydrophobicity.

  3. [Highly efficient and rapid capillary electrophoretic analysis of seven organic acid additives in beverages using polymeric ionic liquid as additive].

    Science.gov (United States)

    Han, Haifeng; Wang, Qing; Liu, Xi; Jiang, Shengxiang

    2012-05-01

    A new capillary electrophoretic method for the rapid and direct separation of seven organic acids in beverages was developed, with poly (1-vinyl-3-butylimidazolium bromide) as the reliable background electrolyte modifier to reverse the direction of anode electroosmotic flow (EOF) severely. Several factors that affected the separation efficiency were investigated in detail. The optimal running buffer consisted of 125 mmol/L sodium dihydrogen phosphate (pH 6.5) and 0.01 g/L poly (1-vinyl-3-butylimidazolium bromide). Highly efficient separation (105,000 to 636,000 plates/m) was achieved within 4 min and standard deviations of the migration times (n=3) were lower than 0.0213 min under optimal conditions. The limits of detection (S/N = 3) ranged from 0.001 to 0.05 g/L. The present method was applied to determine a beverage sample (Mirinda) for sodium citrate, benzoic acid and sorbic acid with concentration of 2.64, 0.10 and 0.08 g/L, respectively. The recoveries of the three analytes in the sample were 100.3%, 100.7% and 131.7%, respectively. The method is simple, rapid, inexpensive, and can be applied to determine organic acids as additives in beverages.

  4. ATP bioluminescence method: tool for rapid screening of organic and microbial contaminants on deteriorated mural paintings.

    Science.gov (United States)

    Unković, Nikola; Ljaljević Grbić, Milica; Stupar, Miloš; Vukojević, Jelena; Subakov-Simić, Gordana; Jelikić, Aleksa; Stanojević, Dragan

    2015-11-24

    The extent of the microbial contamination of the seventeenth-century wall paintings in the nave of the old Church of the Holy Ascension (Veliki Krčimir, Serbia) was evaluated via newly implemented ATP bioluminescence method, and traditional cultivation-based method, utilising commercially available dip slides. To assess the validity of ATP, as a biomarker for rapid detection of mural surface contamination, obtained zones of cleanliness values, in range from 1.0 to 5.3, were compared to documented total microbial counts, ranging between seven and 247 CFU/cm 2 . Small coefficients of determination, 0.0106-0.0385, suggest poor correlation between microbial counts and surface ATP levels; however, zones of cleanliness values are of great help in determining the high points of contamination, aka 'hotspots', which should be given special attention during sampling and investigation using other methods. In addition, various aspects of the possible implementation of the ATP bioluminescence method in an integrated system of wall painting conservation are discussed.

  5. Rapid and Checkable Electrical Post-Treatment Method for Organic Photovoltaic Devices

    Science.gov (United States)

    Park, Sangheon; Seo, Yu-Seong; Shin, Won Suk; Moon, Sang-Jin; Hwang, Jungseek

    2016-01-01

    Post-treatment processes improve the performance of organic photovoltaic devices by changing the microscopic morphology and configuration of the vertical phase separation in the active layer. Thermal annealing and solvent vapor (or chemical) treatment processes have been extensively used to improve the performance of bulk-heterojunction (BHJ) organic photovoltaic (OPV) devices. In this work we introduce a new post-treatment process which we apply only electrical voltage to the BHJ-OPV devices. We used the commercially available P3HT [Poly(3-hexylthiophene)] and PC61BM (Phenyl-C61-Butyric acid Methyl ester) photovoltaic materials as donor and acceptor, respectively. We monitored the voltage and current applied to the device to check for when the post-treatment process had been completed. This electrical treatment process is simpler and faster than other post-treatment methods, and the performance of the electrically treated solar cell is comparable to that of a reference (thermally annealed) device. Our results indicate that the proposed treatment process can be used efficiently to fabricate high-performance BHJ-OPV devices. PMID:26932767

  6. Synthesis of Actinide Materials for the Study of Basic Actinide Science and Rapid Separation of Fission Products

    Energy Technology Data Exchange (ETDEWEB)

    Dorhout, Jacquelyn Marie [Univ. of Nevada, Las Vegas, NV (United States)

    2017-11-28

    This dissertation covers several distinct projects relating to the fields of nuclear forensics and basic actinide science. Post-detonation nuclear forensics, in particular, the study of fission products resulting from a nuclear device to determine device attributes and information, often depends on the comparison of fission products to a library of known ratios. The expansion of this library is imperative as technology advances. Rapid separation of fission products from a target material, without the need to dissolve the target, is an important technique to develop to improve the library and provide a means to develop samples and standards for testing separations. Several materials were studied as a proof-of-concept that fission products can be extracted from a solid target, including microparticulate (< 10 μm diameter) dUO2, porous metal organic frameworks (MOFs) synthesized from depleted uranium (dU), and other organicbased frameworks containing dU. The targets were irradiated with fast neutrons from one of two different neutron sources, contacted with dilute acids to facilitate the separation of fission products, and analyzed via gamma spectroscopy for separation yields. The results indicate that smaller particle sizes of dUO2 in contact with the secondary matrix KBr yield higher separation yields than particles without a secondary matrix. It was also discovered that using 0.1 M HNO3 as a contact acid leads to the dissolution of the target material. Lower concentrations of acid were used for future experiments. In the case of the MOFs, a larger pore size in the framework leads to higher separation yields when contacted with 0.01 M HNO3. Different types of frameworks also yield different results.

  7. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste

    National Research Council Canada - National Science Library

    Jiaqi Hou; Mingxiao Li; Xuhui Mao; Yan Hao; Jie Ding; Dongming Liu; Beidou Xi; Hongliang Liu

    2017-01-01

    .... Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application...

  8. Organic luminescent materials. First results on synthesis and characterization of Alq{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Baldacchini, G.; Gagliardi, S.; Montereali, R.M.; Pace, A. [ENEA, Centro Ricerche Frascati, Frascati, RM (Italy). Div. Fisica Applicata; Balaji Pode, R. [Nagpur University, Nagpur (India). Dept. of Physics

    2000-07-01

    Inorganic semiconductor diodes brought a technological revolution in the field of efficient light and laser sources in the last 20 years. New development in this field are expected from organic compounds, thanks to their low cost of synthesis and the relative easiness of growth as thin films. In particular, electrically pumped luminescent devices based on organic thin layers are among the most promising systems for next generation flat panel displays and semiconductor lasers. The tris - (8-hydroxy quinoline)-aluminium complex-Alq{sub 3} - is one of the most studied electro luminescent materials. In this paper, after a short introduction regarding historical development in the field, are reported preliminary results on the growth of Alq{sub 3} films and on their optical and spectroscopic characterization. [Italian] Negli ultimi 20 anni i diodi semiconduttori hanno portato una rivoluzione tecnologica nel campo delle sorgenti luminose e laser. Un nuovo sviluppo possibile in questo campo sono i composti organici, grazie al basso costo di sintesi e la relativa facilita' di crescerli in forma di film sottile. In particolare, dispositivi luminescenti pompati elettricamente basati su film sottili di materiali organici sono promettenti per una nuova generazione di display per schermi piatti e laser a Alq{sub 3} e' uno dei materiali elettroluminescenti piu' studiati. In questo rapporto, dopo una breve introduzione sullo sviluppo storico in questo campo, presentiamo i nostri primi risultati sulla crescita e caratterizzazione ottica di film di Alq{sub 3}.

  9. Bulk synthesis of metal-organic hybrid dimers and their propulsion under electric fields.

    Science.gov (United States)

    Wang, Sijia; Ma, Fuduo; Zhao, Hui; Wu, Ning

    2014-03-26

    Metal-organic hybrid particles have great potential in applications such as colloidal assembly, autonomous microrobots, targeted drug delivery, and colloidal emulsifiers. Existing fabrication methods, however, typically suffer from low throughput, high operation cost, and imprecise property control. Here, we report a facile and bulk synthesis platform that makes a wide range of metal-organic colloidal dimers. Both geometric and interfacial anisotropy on the particles can be tuned independently and conveniently, which represents a key advantage of this method. We further investigate the self-propulsion of platinum-polystyrene dimers under perpendicularly applied electric fields. In 1 × 10(-4) M KCl solution, the dimers exhibit both linear and circular motion with the polystyrene lobes facing toward the moving direction, due to the induced-charge electroosmotic flow surrounding the metal-coated lobes. Surprisingly, in deionized water, the same dimers move in an opposite direction, i.e., the metallic lobes face the forward direction. This is because of the impact of another type of electrokinetic flow: the electrohydrodynamic flow arising from the induced charges on the conducting substrate. The competition between the electrohydrodynamic flow along the substrate and the induced-charge electroosmotic flow along the metallic lobe dictates the propulsion direction of hybrid dimers under electric fields. Our synthetic approach will provide potential opportunities to study the combined impacts of the geometric and interfacial anisotropy on the propulsion, assembly, and other applications of anisotropic particles.

  10. A New Energy Source for Organic Synthesis in Europa's Surface Ice

    Science.gov (United States)

    Borucki, Jerome G.; Khare, Bishun; Cruikshank, Dale P.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Colored regions on Jupiter's satellite Europa and other icy bodies in the outer Solar System may be contaminated by organic macromolecular solid material that is produced when surface ices are exposed to electrical energy. Hypervelocity meteorite impacts and fracture release tidal and tectonic stresses in icy crusts in the form of electrical discharges, which provide the energy for in situ synthesis of the organic solids. We report measurements of electrical discharge, light emission, and magnetic phenomena in hypervelocity impacts into ice with projectiles with V approx. 5 km/s. Part of the projectile's kinetic energy is converted into electrical potential, while the mechanical disruption of the impact also releases stress energy as light, heat, electrical, and magnetic fields as secondary emissions. These newly recognized energy sources suggest that the dark material in the area of impact craters are tholins generated from the energy of the impacts and that well up from the fracture zone. Large pools of liquid water would persist under the meteorite crater for thousands of years, with the potential for prebiotic chemistry to take place at an accelerated rate due to energy pumped in from the secondary emissions.

  11. Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials.

    Science.gov (United States)

    Song, Xiaoxian; Zhang, Zuolun; Zhang, Shoufeng; Wei, Jinbei; Ye, Kaiqi; Liu, Yu; Marder, Todd B; Wang, Yue

    2017-08-03

    Noncovalent synthesis of one-dimensional (1D) organic nano-/micro-materials with controllable geometric shapes or morphologies and special luminescent and electronic properties is one of the greatest challenges in modern chemistry and material science. Control of noncovalent interactions is fundamental for realizing desired 1D structures and crucial for understanding the functions of these interactions. Here, a series of thiophene-fused phenazines composed of a halogen-substituted π-conjugated plate and a pair of flexible side chains is presented, which displays halogen-dependent 1D self-assemblies. Luminescent 1D twisted wires, straight rods, and zigzag wires, respectively, can be generated in sequence when the halogen atoms are varied from the lightest F to the heaviest I. It was demonstrated that halogen-dependent anisotropic noncovalent interactions and mirror-symmetrical crystallization dominated the 1D-assembly behaviors of this class of molecules. The methodology developed in this study provides a potential strategy for constructing 1D organic materials with unique optoelectronic functions.

  12. Family perspectives on deceased organ donation: thematic synthesis of qualitative studies.

    Science.gov (United States)

    Ralph, A; Chapman, J R; Gillis, J; Craig, J C; Butow, P; Howard, K; Irving, M; Sutanto, B; Tong, A

    2014-04-01

    A major barrier to meeting the needs for organ transplantation is family refusal to give consent. This study aimed to describe the perspectives of donor families on deceased donation. We conducted a systematic review and thematic synthesis of qualitative studies. Electronic databases were searched to September 2012. From 34 studies involving 1035 participants, we identified seven themes: comprehension of sudden death (accepting finality of life, ambiguity of brain death); finding meaning in donation (altruism, letting the donor live on, fulfilling a moral obligation, easing grief); fear and suspicion (financial motivations, unwanted responsibility for death, medical mistrust); decisional conflict (pressured decision making, family consensus, internal dissonance, religious beliefs); vulnerability (valuing sensitivity and rapport, overwhelmed and disempowered); respecting the donor (honoring the donor's wishes, preserving body integrity) and needing closure (acknowledgment, regret over refusal, unresolved decisional uncertainty, feeling dismissed). Bereaved families report uncertainty about death and the donation process, emotional and cognitive burden and decisional dissonance, but can derive emotional benefit from the "lifesaving" act of donation. Strategies are needed to help families understand death in the context of donation, address anxieties about organ procurement, foster trust in the donation process, resolve insecurities in decision making and gain a sense of closure. © Copyright 2014 The American Society of Transplantation and the American Society of Transplant Surgeons.

  13. Microwave Assisted Organic Synthesis of Heterocycles in Aqueous Media: Recent Advances in Medicinal Chemistry.

    Science.gov (United States)

    Frecentese, Francesco; Saccone, Irene; Caliendo, Giuseppe; Corvino, Angela; Fiorino, Ferdinando; Magli, Elisa; Perissutti, Elisa; Severino, Beatrice; Santagada, Vincenzo

    2016-01-01

    Green chemistry is a discipline of great interest in medicinal chemistry. It involves all fields of chemistry and it is based on the principle to conduct chemical reactions protecting the environment at the same time, through the use of chemical procedures able to avoid pollution. In this context, water as solvent is a good choice because it is abundant, nontoxic, non-caustic, and non-combustible. Even if microwave assisted organic reactions in conventional solvents have quickly progressed, in the recent years medicinal chemists have focused their attention to processes deemed not dangerous for the environment, using nanotechnology and greener solvents as water. Several reports of reaction optimizations and selectivities, demonstrating the capability of microwave to allow the obtaining of increased yields have been recently published using water as solvent. In this review, we selected the available knowledge related to microwave assisted organic synthesis in aqueous medium, furnishing examples of the newest strategies to obtain useful scaffolds and novel derivatives for medicinal chemistry purposes. The intention of this review is to demonstrate the exclusive ability of MAOS in water as solvent or as co-solvent. For this purpose we report here the most representative applications of MAOS using water as solvent, focusing on medicinal chemistry processes leading to interesting nitrogen containing heterocycles with potential pharmaceutical applications.

  14. Ultrasound assisted synthesis of amide functionalized metal-organic framework for nitroaromatic sensing.

    Science.gov (United States)

    Gharib, Maniya; Safarifard, Vahid; Morsali, Ali

    2018-04-01

    Nano plates of zinc(II) based metal-organic framework (MOF) were prepared via ultrasonic method without any surfactants at room temperature and atmospheric pressure. Control of particle size and morphology was enhanced in this synthesis method. Nano plates of an interpenetrated amide-functionalized metal-organic framework, [Zn 2 (oba) 2 (bpfb)]·(DMF) 5 , TMU-23, (H 2 oba = 4,4'-oxybis(benzoic acid); bpfb = N,N'-bis-(4-pyridylformamide)-1,4-benzenediamine, DMF = N,N-dimethyl formamide), was synthesized under ultrasound irradiation in different concentrations of initial precursor. The nano structure and morphology of the synthesized MOF were characterized by Field Emission Scanning Electron Microscopy (FE-SEM), powder X-ray diffraction, thermo gravimetric analysis (TGA), elemental analysis and FTIR spectroscopy. Moreover, Fluorescence emissions of nanoplates have been studied. Amide-functionalized MOF shows high selectivity for sensing of nitroaromatic compounds such as nitrophenol, nitroaniline, and nitrobenzene in acetonitrile solution. Fluorescence intensity decreased with increasing contents of nitroaromatics in acetonitrile solution due to fluorescence quenching effect. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Synthesis of scintillating metal organic frameworks for the detection of radiation from subatomic particles

    Science.gov (United States)

    Ingram, Conrad; Williams, Michael

    2013-04-01

    The objective of this research is to develop fluorescent metal organic frameworks (MOFs) as scintillation materials for more efficient light output and detection of ionizing radiation, such as neutrons, alpha particles or gamma rays, generated by fissile materials. MOFs are multidimensional porous structures, which are synthesized from the covalent bonding of metal ions or metal oxide clusters with organic ligand linkers, such as benzene dicarboxylates. The ligands will be chosen to have fluorescent characteristics, when excited by radiation or energetic sub-atomic particles. We will explore the synthesis of new MOFs, containing carboxylate ligands with unique conjugated chromophores, such as, benzene-1,3,5-triyltris(ethene-2,1-diyl)) tribenzoic acid and 9-hydroxy-9-vinyl-9H-fluorene-2,7-dicarboxylic acid), and doped with heavy metal as triplet-state harvesters, that we are proposing will result in stronger and possibly, unique luminescence spectral features that will allow for the discrimination between different ionizing radiations from subatomic particles. Photo-, catho- and radio-luminescence studies will be conducted on the materials, and radiation mechanism(s) will be investigated.

  16. Rapid Guest Exchange and Ultra-Low Surface Tension Solvents Optimize Metal-Organic Framework Activation.

    Science.gov (United States)

    Ma, Jialiu; Kalenak, Andre P; Wong-Foy, Antek G; Matzger, Adam J

    2017-11-13

    Exploratory research into the critical steps in metal-organic framework (MOF) activation involving solvent exchange and solvent evacuation are reported. It is discovered that solvent exchange kinetics are extremely fast, and minutes rather days are appropriate for solvent exchange in many MOFs. It is also demonstrated that choice of a very low surface tension solvent is critical in successfully activating challenging MOFs. MOFs that have failed to be activated previously can achieve predicted surface areas provided that lower surface tension solvents, such as n-hexane and perfluoropentane, are applied. The insights herein aid in the efficient activation of MOFs in both laboratory and industrial settings and provide best practices for avoiding structural collapse. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Three-Dimensional Ionic Covalent Organic Frameworks for Rapid, Reversible, and Selective Ion Exchange.

    Science.gov (United States)

    Li, Zonglong; Li, Hui; Guan, Xinyu; Tang, Junjie; Yusran, Yusran; Li, Zhan; Xue, Ming; Fang, Qianrong; Yan, Yushan; Valtchev, Valentin; Qiu, Shilun

    2017-12-13

    Covalent organic frameworks (COFs) have emerged as functional materials for various potential applications. However, the availability of three-dimensional (3D) COFs is still limited, and nearly all of them exhibit neutral porous skeletons. Here we report a general strategy to design porous positively charged 3D ionic COFs by incorporation of cationic monomers in the framework. The obtained 3D COFs are built of 3-fold interpenetrated diamond net and show impressive surface area and CO2 uptakes. The ion-exchange ability of 3D ionic COFs has been highlighted by reversible removal of nuclear waste model ions and excellent size-selective capture for anionic pollutants. This research thereby provides a new perspective to explore 3D COFs as a versatile type of ion-exchange materials.

  18. Does disease-irrelevant intrathecal synthesis in multiple sclerosis make sense in the light of tertiary lymphoid organs?

    Directory of Open Access Journals (Sweden)

    Mickael eBonnan

    2014-03-01

    Full Text Available Although partly disease-irrelevant, intrathecal Ig synthesis is a typical feature of multiple sclerosis (MS and is driven by the tertiary lymphoid organs (TLO. A long-known hallmark of this non-specific intrathecal synthesis is the MRZ pattern, an intrathecal synthesis of Ig against measles, rubella and zoster viruses, which could also be involved in a wide range of pathogens. However, this non-specific synthesis is highly problematic since brain TLO should not be able to drive the clonal expansion of lymphocytes against alien antigens that are thought to be absent in MS brain.We propose to explain the paradox of non-specific intrathecal synthesis by discussing the natural properties of TLO. In fact, besides local antigen-driven clonal expansion, circulating plasmablasts and plasma cells (PC are non-specifically recruited from blood and gain access to survival niches in the inflammatory CNS. This mechanism, which has been described in other inflammatory disorders, takes place in the TLO. As a consequence, PCs recruited in brain mirror the individual’s history of immunization and intrathecal synthesis of IgG in MS may target a broad range of common infectious agents, a hypothesis in line with epidemiological data. Moreover, the immunization schedule and its timing may interfere with PC recruitment. If this hypothesis is correct, the reaction against EBV appears paradoxical: although early infection of MS patients is systematic, intrathecal synthesis is far lower than expected, suggesting a crucial interaction between MS onset and timing of EBV infection. A growing body of evidence suggests that the non-specific intrathecal synthesis observed in MS is also common in many chronic CNS inflammatory disorders. Assuming that cortical TLO in MS are associated with typical sub-pial lesions, we have coined the concept of ‘TLO-pathy’ to describe these lesions and take examples of them from non-MS disorders.

  19. Greening the Processes of Metal-Organic Framework Synthesis and their Use in Sustainable Catalysis.

    Science.gov (United States)

    Chen, Junying; Shen, Kui; Li, Yingwei

    2017-08-24

    Given the shortage of sustainable resources and the increasingly serious environmental issues in recent decades, the demand for clean technologies and sustainable feedstocks is of great interest to researchers worldwide. With regard to the fields of energy saving and environmental remediation, the key point is the development of efficient catalysts, not only in terms of facile synthesis methods, but also the benign utilization of such catalysts. This work reviews the use of metal-organic frameworks (MOFs) and MOF-based materials in these fields. The definition of MOFs and MOF-based materials will be primarily introduced followed by a brief description of the characterization and stability of MOF-related materials under the applied conditions. The greening of MOF synthesis processes will then be discussed and catalogued by benign solvents and conditions and green precursors of MOFs. Furthermore, their suitable application in sustainable catalysis will be summarized, focusing on several typical atom-economic reactions, such as the direct introduction of H 2 or O 2 and C-C bond formation. Approaches towards reducing CO 2 emission by MOF-based catalysts will be described with special emphasis on CO 2 fixation and CO 2 reduction. In addition, driven by the explosive growth of energy consumption in the last century, much research has gone into biomass, which represents a renewable alternative to fossil fuels and a sustainable carbon feedstock for chemical production. The advanced progress of biomass-related transformations is also illustrated herein. Fundamental insights into the nature of MOF-based materials as constitutionally easily recoverable heterogeneous catalysts and as supports for various active sites is thoroughly discussed. Finally, challenges facing the development of this field and the outlook for future research are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Synthesis of Thin Film Composite Metal-Organic Frameworks Membranes on Polymer Supports

    KAUST Repository

    Barankova, Eva

    2017-06-01

    Since the discovery of size-selective metal-organic frameworks (MOF) researchers have tried to manufacture them into gas separation membranes. ZIF-8 became the most studied MOF for membrane applications mainly because of its simple synthesis, good chemical and thermal stability, recent commercial availability and attractive pore size. The aim of this work is to develop convenient methods for growing ZIF thin layers on polymer supports to obtain defect-free ZIF membranes with good gas separation properties. We present new approaches for ZIF membranes preparation on polymers. We introduce zinc oxide nanoparticles in the support as a secondary metal source for ZIF-8 growth. Initially the ZnO particles were incorporated into the polymer matrix and later on the surface of the polymer by magnetron sputtering. In both cases, the ZnO facilitated to create more nucleation opportunities and improved the ZIF-8 growth compared to the synthesis without using ZnO. By employing the secondary seeded growth method, we were able to obtain thin (900 nm) ZIF-8 layer with good gas separation performance. Next, we propose a metal-chelating polymer as a suitable support for growing ZIF layers. Defect-free ZIF-8 films with a thickness of 600 nm could be obtained by a contra-diffusion method. ZIF-8 membranes were tested for permeation of hydrogen and hydrocarbons, and one of the highest selectivities reported so far for hydrogen/propane, and propylene/propane was obtained. Another promising method to facilitate the growth of MOFs on polymeric supports is the chemical functionalization of the support surface with functional groups, which can complex metal ions and which can covalently bond the MOF crystals. We functionalized the surface of a common porous polymeric membrane with amine groups, which took part in the reaction to form ZIF-8 nanocrystals. We observed an enhancement in adhesion between the ZIF layer and the support. The effect of parameters of the contra-diffusion experiment

  1. Synthesis and phtoluminescence study of Microporous Metal Organic Frameworks (MMOFs) for sensing and detection of nitroexplosives and aromatic compounds

    Science.gov (United States)

    Pramanik, Sanhita

    Due to the increased terrorist activity worldwide and the use of modern bombs in those attacks, the development of a new method capable of rapidly and cost-efficiently detecting trace vapor of explosives is highly desirable. Chemical explosives composed of a diverse group of compounds, including nitroaromatics, nitramines, nitrate esters as well as some inorganic/organic nitrates and peroxides. Current methodologies include use of well trained dogs and sophisticated instrumentation such as gas chromatography coupled with a mass spectrometer, nuclear quadruple resonance, ionization mass spectrometry (IMS). These methods are highly sensitive and selective, but often expensive, not always easily accessible, and require intense training for operation. As a complementary method, chemical sensors can provide new ways to the rapid detection of ultra trace explosives, and can be easily incorporated into inexpensive and portable microelectronic devices. Fluorescence based sensors utilizing conjugated polymers have attracted enormous attention in the recent years for their excellent performance. In this thesis, a systematic study was performed in a series of luminescent MMOFs and their behavior upon exposure to the vapor of different analytes. For example, [Zn2(oba)2(bpy)]·DMA, one of the MMOFs made of paddle-wheel SBU, selectively responds to nitroaromatics (with electron-withdrawing groups) and other aromatic compounds, like benzene, toluene (with electron-donating groups) via fluorescent quenching and enhancement respectively. The study also shows that nitro-containing non-aromatic analytes (nitroaliphatics) make negligible effect on the fluorescence of [Zn2(oba)2(bpy)]·DMA . The results demonstrate the exceptional ability of this particular MMOF to selectively detect explosives of different types (e.g. aromatic DNT vs. non-aromatic or aliphatic DMNB). Another series of highly luminescent MMOFs made of the same metal center (Zn) and similar ligands (bpdc, bpy, 2,2'dmbpy

  2. Microbial fuel cell biosensor for rapid assessment of assimilable organic carbon under marine conditions.

    Science.gov (United States)

    Quek, Soon Bee; Cheng, Liang; Cord-Ruwisch, Ralf

    2015-06-15

    The development of an assimilable organic carbon (AOC) detecting marine microbial fuel cell (MFC) biosensor inoculated with microorganisms from marine sediment was successful within 36 days. This established marine MFC was tested as an AOC biosensor and reproducible microbiologically produced electrical signals in response to defined acetate concentration were achieved. The dependency of the biosensor sensitivity on the potential of the electron-accepting electrode (anode) was investigated. A linear correlation (R(2) > 0.98) between electrochemical signals (change in anodic potential and peak current) and acetate concentration ranging from 0 to 150 μM (0-3600 μg/L of AOC) was achieved. However, the present biosensor indicated a different-linear relation at somewhat elevated acetate concentration ranging from 150 to 450 μM (3600-10,800 μg/L of AOC). This high concentration of acetate addition could be measured by coulombic measurement (cumulative charges) with a linear correlation. For the acetate concentration detected in this study, the sensor recovery time could be controlled within 100 min. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Activity of α-Chymotrypsin Enhanced in the Presence of Iron Oxide Nanoparticles in Organic Solvent: Application to Peptide Synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Cheolwoo; Kim, Mahnjoo [Pohang Univ. of Science and Technology, Pohang (Korea, Republic of)

    2013-03-15

    We have demonstrated that α-CT displays a significantly enhanced activity in the presence of IONs relative to its IONs-free counterparts in organic solvent. IONs-activated α-CT catalyzed efficiently the synthesis of peptides without the formation of hydrolyzed byproducts. Enzymes are a useful class of catalysts for the preparation of enantiomeric compounds. The applications of enzymes in synthetic transformations, however, are limited by their reduced activities in organic solvent. Particularly, proteases such as subtilisin and α-chymotrypsin display several orders of magnitude lower activities in organic solvent than their aqueous counterparts.

  4. One-pot green synthesis of zinc oxide nano rice and its application as sonocatalyst for degradation of organic dye and synthesis of 2-benzimidazole derivatives

    Science.gov (United States)

    Paul, Bappi; Vadivel, Sethumathavan; Dhar, Siddhartha Sankar; Debbarma, Shyama; Kumaravel, M.

    2017-05-01

    In this paper, we report novel and green approach for one-pot biosynthesis of zinc oxide (ZnO) nanoparticles (NPs). Highly stable and hexagonal phase ZnO nanoparticles were synthesized using seeds extract from the tender pods of Parkia roxburghii and characterized by XRD, FT-IR, EDX, TEM, and N2 adsorption-desorption (BET) studies. The present method of synthesis of ZnO NPs is very efficient and cost effective. The powder XRD pattern furnished evidence for the formation of hexagonal close packing structure of ZnO NPs having average crystallite size 25.6 nm. The TEM image reveals rice shapes ZnO NPs are with an average diameter of 40-60 nm. The as-synthesized ZnO NPs has proved to be an excellent sonocatalysts for degradation of organic dye and synthesis of 2-benzimidazole derivatives.

  5. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    National Research Council Canada - National Science Library

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm...

  6. Rapid genetically modified organism (GMO screening of various food products and animal feeds using multiplex polymerase chain reaction (PCR

    Directory of Open Access Journals (Sweden)

    Lisha, V.

    2017-01-01

    Full Text Available modified crops which brought up a controversy on the safety usage of genetically modified organisms (GMOs. It has been implemented globally that all GMO products and its derived ingredients should have regulations on the usage and labelling. Thus, it is necessary to develop methods that allow rapid screening of GMO products to comply with the regulations. This study employed a reliable and flexible multiplex polymerase chain reaction (PCR method for the rapid detection of transgenic elements in genetically modified soy and maize along with the soybean LECTIN gene and maize ZEIN gene respectively. The selected four common transgenic elements were 35S promoter (35S; Agrobacterium tumefaciens nopaline synthase terminator (NOS; 5-enolypyruvylshikimate-3-phosphate synthase (epsps gene; and Cry1Ab delta-endotoxin (cry1Ab gene. Optimization of the multiplex PCR methods were carried out by using 1% Roundup ReadyTM Soybean (RRS as the certified reference material for soybean that produced fourplex PCR method detecting 35S promoter, NOS terminator, epsps gene and soybean LECTIN gene and by using 1% MON810 as the certified reference material for maize that produced triplex PCR method detecting 35S promoter, cry1Ab gene and maize ZEIN gene prior to screening of the GMO traits in various food products and animal feeds. 1/9 (11.1% of the animal feed contained maize and 1/15 (6.7% of the soybean food products showed positive results for the detection of GMO transgenic gene. None of the maize food products showed positive results for GMO transgenic gene. In total, approximately 4% of the food products and animal feed were positive as GMO. This indicated GMOs have not widely entered the food chain. However, it is necessary to have an appropriate screening method due to GMOs’ unknown potential risk to humans and to animals. This rapid screening method will provide leverage in terms of being economically wise, time saving and reliable.

  7. 3D metal-organic framework as highly efficient biosensing platform for ultrasensitive and rapid detection of bisphenol A.

    Science.gov (United States)

    Wang, Xue; Lu, Xianbo; Wu, Lidong; Chen, Jiping

    2015-03-15

    As is well known, bisphenol A (BPA), usually exists in daily plastic products, is one of the most important endocrine disrupting chemicals. In this work, copper-centered metal-organic framework (Cu-MOF) was synthesized, which was characterized by SEM, TEM, XRD, FTIR and electrochemical method. The resultant Cu-MOF was explored as a robust electrochemical biosensing platform by choosing tyrosinase (Tyr) as a model enzyme for ultrasensitive and rapid detection of BPA. The Cu-MOF provided a 3D structure with a large specific surface area, which was beneficial for enzyme and BPA absorption, and thus improved the sensitivity of the biosensor. Furthermore, Cu-MOF as a novel sorbent could increase the available BPA concentration to react with tyrosinase through π-π stacking interactions between BPA and Cu-MOF. The Tyr biosensor exhibited a high sensitivity of 0.2242A M(-1) for BPA, a wide linear range from 5.0×10(-8) to 3.0×10-6moll(-1), and a low detection limit of 13nmoll(-1). The response time for detection of BPA is less than 11s. The proposed method was successfully applied to rapid and selective detection of BPA in plastic products with satisfactory results. The recoveries are in the range of 94.0-101.6% for practical applications. With those remarkable advantages, MOFs-based 3D structures show great prospect as robust biosensing platform for ultrasensitive and rapid detection of BPA. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  8. Sunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity.

    Science.gov (United States)

    Brahmachari, Goutam; Sarkar, Sajal; Ghosh, Ranjan; Barman, Soma; Mandal, Narayan C; Jash, Shyamal K; Banerjee, Bubun; Roy, Rajiv

    2014-12-01

    , thus offers a cost-effective and environmentally benign route for their large-scale commercial production. The nanoparticles dispersed in the mother solution showed promising antibacterial efficacy. Graphical AbstractSunlight-induced rapid and efficient biogenic synthesis of silver nanoparticles using aqueous leaf extract of Ocimum sanctum Linn. with enhanced antibacterial activity.

  9. Time-of-night variations in the story-like organization of dream experience developed during rapid eye movement sleep.

    Science.gov (United States)

    Cipolli, Carlo; Guazzelli, Mario; Bellucci, Claudia; Mazzetti, Michela; Palagini, Laura; Rosenlicht, Nicholas; Feinberg, Irwin

    2015-04-01

    This study aimed to investigate the cycles (2nd/4th) and duration-related (5/10 min) variations in the story-like organization of dream experience elaborated during rapid eye movement (REM) sleep. Dream reports were analysed using story grammar rules. Reports were provided by those subjects (14 of 22) capable of reporting a dream after each of the four awakenings provoked in 2 consecutive nights during REM sleep of the 2nd and 4th cycles, after periods of either 5 or 10 min, counterbalanced across the nights. Two researchers who were blind as to the sleep condition scored the dream reports independently. The values of the indicators of report length (measured as value of total word count) and of story-like organization of dream reports were matched taking time-of-night (2nd and 4th cycles) and REM duration (5 versus 10 min) as factors. Two-way analyses of variance showed that report length increased significantly in 4th-cycle REM sleep and nearly significantly for longer REM duration, whereas the number of dream-stories per report did not vary. The indices of sequential (number of statements describing the event structure developed in the story) and hierarchical (number of episodes per story) organization increased significantly only in dream-stories reported after 10 min of 4th-cycle REM sleep. These findings indicate that the characteristics of structural organization of dream-stories vary along with time of night, and suggest that the elaboration of a long and complex dream-story requires a fairly long time and the availability of a great amount of cognitive resources to maintain its continuity and coherence. © 2014 European Sleep Research Society.

  10. Towards identifying nurse educator competencies required for simulation-based learning: A systemised rapid review and synthesis

    DEFF Research Database (Denmark)

    Bøje, Rikke Buus; Topping, Annie; Rekola, Leena

    2015-01-01

    . Following critical appraisal, the articles were analyzed using an inductive approach to extract statements for categorization and synthesis as competency statements. Results: This review confirmed that there was a modest amount of empirical evidence on which to base a competency framework. Those papers...... that provided descriptions of educator preparation identified simulation- based workshops, or experiential training, as the most common approaches for enhancing skills. SBL was not associated with any one theoretical perspective. Delivery of SBL appeared to demand competencies associated with planning...

  11. Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis

    DEFF Research Database (Denmark)

    Tafti, Mohsen Y.; Ballikaya, Sedat; Khachatourian, Adrine Malek

    2016-01-01

    of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. α to β phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry...... synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications....

  12. Organic Synthesis and Potential Microbiology in the Solar Nebula: Are Early Solar Systems Nurseries for Microorganisms?

    Science.gov (United States)

    Mautner, M. N.; Ibrahim, Y.; El-Shall, M. S.

    2004-11-01

    We observed a new synthetic mechanism that can contribute organics toward the origins of life in the solar nebula. We also observed that microorganisms can grow on carbonaceous asteroid/meteorite materials, suggesting that micoorganisms can multiply in aqueous asteroids in the early Solar System. The new synthetic mechanism is provided by ionized polycyclic aromatic hydrocarbons in cold nebular and interstellar cloud environments, through associative charge transfer (ACT) and associative proton transfer (APT) reactions. For example, ionized benzene (C6H6+) reacts with two CH3CH=CH2 molecules to form C6H12+ that initiates ionic polymerization. Other unsaturated molecules (HCCH, H2CO, HCN, CH3CN) can yield complex organics by this mechanism. The C6H6+ ion also reacts with water molecules to form (H2O)nH+ nucleation centers for ices, in which UV-induced organic synthesis can occur. The organics in the nebula can contribute to the origins of life and support microorganisms. For example, we observed that microorganisms such as Nocardia asteroides, algae, fungi, and even plant cultures (Asparagus officinalis) grow in planetary microcosms based on carbonaceous chondrite, as well as Martian, meteorites. We found high microbial populations (10exp7 CFU/ml) and complex microbial communities in these planetary microcosms. Thermophilic archaebacteria also grew on these materials. The results suggest that early aqueous asteroids can support microorganisms, distribute them through the solar nebula by collisions, deliver them to planets, and possibly eject them to interstellar space. Such natural panspermia processes, or directed panspermia payloads, may seed other young solar systems where microbial life can multiply by similar mechanisms. We thank NASA Grant NNG04GH45G for funding support. References: 1. M. N. Mautner, Planetary Bioresources and Astroecology...., Icarus 2002, 158, 72-86; see www.astroecology.com. 2. M. Mautner and G. L. Matloff, Directed Panspermia...., Bull

  13. Designed synthesis of nanoporous organic polymers for selective gas uptake and catalytic applications

    Science.gov (United States)

    Arab, Pezhman

    Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture and catalytic applications. Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 m2 g-1 and have high chemical and thermal stabilities. The nitrogen atoms of the azo group can act as Lewis bases and the carbon atom of CO2 can act as a Lewis acid. Therefore, ALPs show high CO2 uptake capacities due to this Lewis acid-based interaction. The potential applications of ALPs for selective CO2 capture from flue gas, natural gas, and landfill gas under pressure-swing and vacuum swing separation settings were studied. Due to their high CO2 uptake capacity, selectivity, and regenerability, ALPs are among the best porous organic frameworks for selective CO2 capture. In our second project, a new bis(imino)pyridine-linked porous polymer (BIPLP-1) was synthesized and post-synthetically functionalized with Cu(BF4)2 for highly selective CO2 capture. BIPLP-1 was synthesized via a condensation reaction between 2,6-pyridinedicarboxaldehyde and 1,3,5-tris(4-aminophenyl)benzene, wherein the bis(imino)pyridine linkages are formed in-situ during polymerization. The functionalization of the polymer with Cu(BF4)2 was achieved by treatment of the polymer with a solution of Cu(BF4)2 via complexation of copper cations with bis(imino)pyridine moieties of the polymer. BF4- ions can act Lewis base and CO2 can act as a Lewis acid; and therefore

  14. Novel route for rapid sol-gel synthesis of hydroxyapatite, avoiding ageing and using fast drying with a 50-fold to 200-fold reduction in process time.

    Science.gov (United States)

    Ben-Arfa, Basam A E; Salvado, Isabel M Miranda; Ferreira, José M F; Pullar, Robert C

    2017-01-01

    We have developed an innovative, rapid sol-gel method of producing hydroxyapatite nanopowders that avoids the conventional lengthy ageing and drying processes (over a week), being 200 times quicker in comparison to conventional aqueous sol-gel preparation, and 50 times quicker than ethanol based sol-gel synthesis. Two different sets of experimental conditions, in terms of pH value (5.5 and 7.5), synthesis temperature (45 and 90°C), drying temperature (60 and 80°C) and calcination temperature (400 and 700°C) were explored. The products were characterised by X-ray diffraction (XRD) Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and specific surface area (SSA) measurements. Pure hydroxyapatite (Ca10(PO4)6(OH)2, HAp) was obtained for the powders synthesised at pH7.5 and calcined at 400°C, while biphasic mixtures of HAp/β-tricalcium phosphate (β-Ca3(PO4)2, TCP) were produced at pH5.5 and (pH7.5 at elevated temperature). The novel rapid drying was up to 200 times faster than conventional drying, only needing 1h with no prior ageing step, and favoured the formation of smaller/finer nanopowders, while producing pure HAp or phase mixtures virtually identical to those obtained from the slow conventional drying method, despite the absence of a slow ageing process. The products of this novel rapid process were actually shown to have smaller crystallite sizes and larger SSA, which should result in increased bioactivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Oxide-based inorganic/organic and nanoporous spherical particles: synthesis and functional properties

    Directory of Open Access Journals (Sweden)

    Kota Shiba, Motohiro Tagaya, Richard D Tilley and Nobutaka Hanagata

    2013-01-01

    Full Text Available This paper reviews the recent progress in the preparation of oxide-based and heteroatom-doped particles. Surfactant-templated oxide particles, e.g. silica and titania, are possible candidates for various potential applications such as adsorbents, photocatalysts, and optoelectronic and biological materials. We highlight nanoporous oxides of one element, such as silicon or titanium, and those containing multiple elements, which exhibit properties that are not achieved with individual components. Although the multicomponent nanoporous oxides possess a number of attractive functions, the origin of their properties is hard to determine due to compositional/structural complexity. Particles with a well-defined size and shape are keys for a quantitative and detailed discussion on the unique complex properties of the particles. From this viewpoint, we review the synthesis techniques of the oxide particles, which are functionalized with organic molecules or doped with heteroatoms, the physicochemical properties of the particles and the possibilities for their photofunctional applications as complex systems.

  16. Engymatic synthesis of aspartame precursor in organic solvent; Yuki yobaichu deno asuparutemu zenkutai no koso gosei

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, K. [Okayama Univ., Okayama (Japan). Faculty of Engineering

    1996-11-05

    Taking up the synthetic reaction of the precursor of artificial sweetener aspartame for which thermolysin is used as the catalyst, the features and problems of enzymatic reaction in organic solvent are discussed. It is found that immobilized enzyme which has high activity and stability can be prepared by adsorbing high concentration thermolysin in Amberlite XAD7 followed by bridge immobilization. The initial rate of the synthesis and the stability of immobilized enzyme depend on the types of solvents. Continuous reaction is attempted using a columnar ferment reactor (PFR) in ethyl acetate at the beginning, but the yield decreases in a short period because the immobilized enzyme lose its activity gradually from the upper area of the column where Z-Asp concentration is high. When CSTR (complete mixed type reactor) is used, deactivation of immobilized enzyme can be restricted because low Z-Asp concentration in the reactor can be maintained. It is demonstrated that continuous reaction of longer than 200 hours is possible although the reaction rate is as low as 90%. 4 refs., 3 figs., 1 tab.

  17. A study on metal organic framework (MOF-177) synthesis, characterization and hydrogen adsorption -desorption cycles

    Energy Technology Data Exchange (ETDEWEB)

    Viditha, V.; Venkateswer Rao, M.; Srilatha, K.; Himabindu, V. [Centre for Environment, Institute of Science and Technology, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad-500 085, A.P. (India); Yerramilli, Anjaneyulu [Director, TLGVRC, JSU Box 18739, JSU, Jackson, MS 32917-0939 (United States)

    2013-07-01

    Hydrogen has long been considered to be an ideal alternative to fossil-fuel systems and much work has now been done on its storage. There are four main methods of hydrogen storage: as a liquid; as compressed hydrogen; in the form of metal hydrides; and by physisorption. Among all the materials metal organic frameworks (MOFs) are considered to have desirable properties like high porosity, pore volume and high thermal stability. MOF-177 is considered to be an ideal storage material. In this paper we study about its synthesis and hydrogen storage capacities of MOF-177 at different pressures ranging from 25, 50, 75 and 100 bar respectively. The obtained samples are characterized by XRD, BET and SEM. The recorded results show that the obtained hydrogen capacity is 1.1, 2.20, 2.4 and 2.80 wt%. The desorption capacity is 0.9, 2.1, 2.37 and 2.7 wt% at certain temperatures like 373 K.

  18. Layered cobalt hydroxysulfates with both rigid and flexible organic pillars: synthesis, structure, porosity, and cooperative magnetism.

    Science.gov (United States)

    Rujiwatra, A; Kepert, C J; Claridge, J B; Rosseinsky, M J; Kumagai, H; Kurmoo, M

    2001-10-31

    The synthesis and characterization of two members of a family of porous magnetic materials is described. The structures of Co4(SO4)(OH)6(C2N2H8)0.5*3H2O and Co4(SO4)(OH)6(C6N2H12)0.5*H2O and their thermal stability can be tailored via the choice of organic pillar. The interactions between the pillaring agent and the compositionally complex inorganic layer are discussed. The influences of two pillaring agents i.e., the flexible ethylenediamine and the relatively rigid 1,4-diazabicyclo[2,2,2]octane, on thermal stability, rigidity upon guest loss, and magnetic behavior of the pillared solids are compared. The magnetism of the pillared layered cobalt hydroxides is complex due to the influences of multiple metal sites, inter- and intralayer exchange, spin-orbit coupling, and geometrical frustration. The wide variety of potential pillars, oxyanions, and possible metal substitutions at the octahedral and tetrahedral sites offers the possibility of tailoring the magnetic and porous properties of these materials.

  19. Metal organic framework synthesis in the presence of surfactants: towards hierarchical MOFs?

    Science.gov (United States)

    Seoane, B; Dikhtiarenko, A; Mayoral, A; Tellez, C; Coronas, J; Kapteijn, F; Gascon, J

    2015-02-21

    The effect of synthesis pH and H2O/EtOH molar ratio on the textural properties of different aluminium trimesate metal organic frameworks (MOFs) prepared in the presence of the well-known cationic surfactant cetyltrimethylammonium bromide (CTAB) at 120 °C was studied with the purpose of obtaining a MOF with hierarchical pore structure. Depending on the pH and the solvent used, different topologies were obtained (namely, MIL-96, MIL-100 and MIL-110). On the one hand, MIL-110 was obtained at lower temperatures than those commonly reported in the literature and without additives to control the pH; on the other hand, MIL-100 with crystallite sizes as small as 30 ± 10 nm could be easily synthesized in a mixture of H2O and EtOH with a H2O/EtOH molar ratio of 3.4 at pH 2.6 in the presence of CTAB. The resulting material displays a hierarchical porosity that combines the microporosity from the MOF and the non-ordered mesopores defined in between the MOF nanoparticles. Interestingly, the maximum of the pore size distribution could be varied between 3 and 33 nm. Finally, at pH 2.5 and using water as a solvent, platelets of MIL-96, a morphology never observed before for this MOF, were synthesized with a (001) preferential crystal orientation, the (001) plane running parallel to the bipyramidal cages of the MIL-96 topology.

  20. Preparation of fluorescent DNA probe by solid-phase organic synthesis

    Directory of Open Access Journals (Sweden)

    2009-08-01

    Full Text Available Fluorescent DNA probe based on fluorescence resonance energy transfer (FRET was prepared by solid-phase organic synthesis when CdTe quantum dots (QDs were as energy donors and Au nanoparticles (AuNPs were as energy accepters. The poly(divinylbenzene core/poly(4-vinylpyridine shell microspheres, as solid-phase carriers, were prepared by seeds distillation-precipitation polymerization with 2,2′-azobisisobutyronitrile (AIBN as initiator in neat acetonitrile. The CdTe QDs and AuNPs were self-assembled on the surface of core/shell microspheres, and then the linkage of CdTe QDs with oligonucleotides (CdTe-DNA and AuNPs with complementary single-stranded DNA (Au-DNA was on the solid-phase carriers instead of in aqueous solution. The hybridization of complementary double stranded DNA (dsDNA bonded to the QDs and AuNPs (CdTe-dsDNA-Au determined the FRET distance of CdTe QDs and AuNPs. Compared with the fluorescence of CdTe-DNA, the fluorescence of CdTe-dsDNA-Au conjugates (DNA probes decreased extremely, which indicated that the FRET occurred between CdTe QDs and AuNPs. The probe system would have a certain degree recovery of fluorescence when the complementary single stranded DNA was introduced into this system, which showed that the distance between CdTe QDs and AuNPs was increased.

  1. Design and Synthesis of Biomimetic Hydrogel Scaffolds with Controlled Organization of Cyclic RGD Peptides

    Science.gov (United States)

    Zhu, Junmin; Tang, Chad; Kottke-Marchant, Kandice; Marchant, Roger E.

    2009-01-01

    We report on the rational design and synthesis of a new type of bioactive poly(ethylene glycol) diacrylate (PEGDA) macromers, cyclic Arg-Gly-Asp (cRGD)-PEGDA, to mimic the cell-adhesive properties of extracellular matrix (ECM), aiming to create biomimetic scaffolds with controlled spatial organization of ligands and enhanced cell binding affinity for tissue engineering. To attach the cRGD peptide in the middle of PEGDA chain, a tailed cRGD peptide, c[RGDfE(SSSKK-NH2)] (1) was synthesized with c(RGDfE) linked to a tail of SSSKK. The tail consists of a spacer with three serine residues, and a linker with two lysine residues for conjugating with acryloyl-PEG-NHS (5) to create cRGD-PEGDA (6). cRGD-PEGDA possesses good ability of photopolymerization to fabricate hydrogel scaffolds under UV radiation. Surface morphology and composition analysis demonstrates that cRGD-PEGDA hydrogels were well-constructed with porous three-dimensional (3D) structures and uniform distribution of cRGD ligands. Our results show that cRGD-PEGDA hydrogels facilitate endothelial cell (EC) adhesion and spreading on the hydrogel surfaces, and exhibit significantly higher EC population in comparison with linear RGD-modified hydrogels at low peptide incorporation. Since ligand presentation in biomimetc scaffolds plays an important role in controlling cell behaviors, cRGD-PEGDA has great advantages of controlling hydrogel properties and ligand spatial organization in the resulting scaffolds. Furthermore, cRGD-PEGDA is an attractive candidate for the future development of tissue engineering scaffolds with optimum cell adhesive strength and ligand density. PMID:19191566

  2. Utilização do D-manitol em síntese orgânica D-Mannitol in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Pedro S. M. de Oliveira

    2009-01-01

    Full Text Available D-mannitol is used in several fields including food, pharmaceuticals, cosmetics and textiles being an important carbohydrate found widespread in nature. Due to its chirality, it is largely used in organic synthesis with several applications, such as ligands, polymers, chiral pool, for preparation of small chiral building blocks, key intermediates in total synthesis. In this context, the aim of this review is to highlights recent applications of D-mannitol, especially in total synthesis.

  3. Poly(ethylene glycol)-based ionic liquids: properties and uses as alternative solvents in organic synthesis and catalysis.

    Science.gov (United States)

    Cecchini, Martina Maya; Charnay, Clarence; De Angelis, Francesco; Lamaty, Frédéric; Martinez, Jean; Colacino, Evelina

    2014-01-01

    PEG-based ionic liquids are a new appealing group of solvents making the link between two distinct but very similar fluids: ionic liquids and poly(ethylene glycol)s. They find applications across a range of innumerable disciplines in science, technology, and engineering. In the last years, the possibility to use these as alternative solvents for organic synthesis and catalysis has been increasingly explored. This Review highlights strategies for their synthesis, their physical properties (critical point, glass transition temperature, density, rheological properties), and their application in reactions catalyzed by metals (such as Pd, Cu, W, or Rh) or as organic solvent (for example for multicomponent reactions, organocatalysis, CO2 transformation) with special emphasis on their toxicity, environmental impact, and biodegradability. These aspects, very often neglected, need to be considered in addition to the green criteria usually considered to establish ecofriendly processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Low Band Gap Polymers for Roll-to-Roll Coated Organic Photovoltaics – Design, Synthesis and Characterization

    DEFF Research Database (Denmark)

    Bundgaard, Eva; Hagemann, Ole; Jørgensen, Mikkel

    2011-01-01

    In this paper we present the design and synthesis of 25 new low band gap polymers. The polymers were characterized by UV-vis spectroscopy which showed optical band gaps of 2.0–0.9 eV. The polymers which were soluble enough were applied in organic photovoltaics, both small area devices with a spin....../acceptor fitting within the polymer, side chains to ensure solubility and HOMO/LUMO level alignment with the acceptor (e.g. [60]PCBM) to take into consideration.......In this paper we present the design and synthesis of 25 new low band gap polymers. The polymers were characterized by UV-vis spectroscopy which showed optical band gaps of 2.0–0.9 eV. The polymers which were soluble enough were applied in organic photovoltaics, both small area devices with a spin...

  5. Optimized synthesis and crystalline stability of γ-cyclodextrin metal-organic frameworks for drug adsorption.

    Science.gov (United States)

    Liu, Botao; Li, Haiyan; Xu, Xiaonan; Li, Xue; Lv, Nana; Singh, Vikramjeet; Stoddart, J Fraser; York, Peter; Xu, Xu; Gref, Ruxandra; Zhang, Jiwen

    2016-11-30

    The biocompatible and renewable cyclodextrin metal-organic frameworks (CD-MOFs) have addressed a range of opportunities in molecular storage and separation sciences. The reported protocols for their synthesis, however, were carried out at room temperature over long time periods of time (24h), producing crystals of relatively poor uniformity. In this investigation, micron sized γ-CD-MOFs were synthesized by an optimized vapor diffusion method at elevated temperature (50°C) within 6h, after which the size control, crystalline stability and drug adsorption behavior were investigated in detail. In this manner, uniform cubic γ-CD-MOF crystals were obtained when the reaction temperature was raised to 50°C with pre-addition of the reaction solvent. The size of γ-CD-MOFs was adjusted efficiently by changing the reactant concentrations, temperatures, time, γ-CD ratios to KOH and surfactant concentrations, without influencing the porosity and crystallinity of the material markedly. Varing degrees of reduction in crystallinity and change in morphology were observed when the γ-CD-MOF crystals are treated under conditions of high temperature (100°C), high humidity (92.5%) and polar solvents (e.g., MeOH and DMF). In relation to drug adsorption by γ-CD-MOFs, most of the drug molecules containing carboxyl groups showed relatively high adsorption (>5%), while low adsorption (<5%) was found for drugs with nitrogen-containing heterocyclic rings. In addition, the adsorption kinetics of captopril to standard γ-CD-MOFs matched a pseudo-second-order model rather well, whilst captopril adsorption to the damaged γ-CD-MOFs only partially matched the pseudo-second-order model. In summary, based upon the optimized synthesis and size control of γ-CD-MOFs, the crystalline stability and drug adsorption characteristics of γ-CD-MOF crystals have been evaluated as a fundamental requirement of a potential vehicle for drug delivery. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Methods of a multi-faceted rapid knowledge synthesis project to inform the implementation of a new health service model: Collaborative Emergency Centres.

    Science.gov (United States)

    Hayden, Jill A; Killian, Lara; Zygmunt, Austin; Babineau, Jessica; Martin-Misener, Ruth; Jensen, Jan L; Carter, Alix J

    2015-01-14

    The aim of this rapid knowledge synthesis was to provide relevant research evidence to inform the implementation of a new health service in Nova Scotia, Canada: Collaborative Emergency Centres (CECs). CECs propose to deliver both primary and urgent care to rural populations where traditional delivery is a challenge. This paper reports on the methods used in a rapid knowledge synthesis project to provide timely evidence to policy makers about this novel healthcare delivery model. We used a variety of methods, including a jurisdictional/scoping review, modified systematic review methodologies, and integrated knowledge translation. We scanned publicly available information about similar centres across our country to identify important components of CECs and CEC-type models to operationalize the definition of a CEC. We conducted literature searches in PubMed, CINAHL, and EMBASE, and in the grey literature, to identify evidence on the key structures and processes and effectiveness of CEC-type models of care delivery. Our searches were limited to published systematic reviews. The research team facilitated two integrated knowledge translation workshops during the project to engage stakeholders, to refine the research goals and objectives, and to share interim and final results. Citations and included articles were categorized by whether they addressed the CEC model or component structures and processes. Data and key messages were extracted from these reviews to inform implementation. CEC-type models have limited peer-reviewed evidence available; no peer-reviewed studies on CECs as a standalone healthcare model were found. As a result, our evidence search and synthesis was revised to focus on core CEC-type structures and processes, prioritized through consensus methods with the stakeholder group, and resulted in provision of a meaningful evidence synthesis to help inform the development and implementation of CECs in Nova Scotia. A variety of methods and partnership with

  7. Bulk Combinatorial Synthesis and High Throughput Characterization for Rapid Assessment of Magnetic Materials: Application of Laser Engineered Net Shaping (LENS™)

    Science.gov (United States)

    Geng, J.; Nlebedim, I. C.; Besser, M. F.; Simsek, E.; Ott, R. T.

    2016-07-01

    A bulk combinatorial approach for synthesizing alloy libraries using laser engineered net shaping (LENS™; i.e., 3D printing) was utilized to rapidly assess material systems for magnetic applications. The LENS™ system feeds powders in different ratios into a melt pool created by a laser to synthesize samples with bulk (millimeters) dimensions. By analyzing these libraries with autosampler differential scanning calorimeter/thermal gravimetric analysis and vibrating sample magnetometry, we are able to rapidly characterize the thermodynamic and magnetic properties of the libraries. The Fe-Co binary alloy was used as a model system and the results were compared with data in the literature.

  8. Synthesis and characterization of bimetallic metal-organic framework Cu-Ru-BTC with HKUST-1 structure.

    Science.gov (United States)

    Gotthardt, Meike A; Schoch, Roland; Wolf, Silke; Bauer, Matthias; Kleist, Wolfgang

    2015-02-07

    The bimetallic metal-organic framework Cu-Ru-BTC with the stoichiometric formula Cu2.75Ru0.25(BTC)2·xH2O, which is isoreticular to HKUST-1, was successfully prepared in a direct synthesis using mild reaction conditions. The partial substitution of Cu(2+) by Ru(3+) centers in the paddlewheel structure and the absence of other Ru-containing phases was proven using X-ray absorption spectroscopy.

  9. Rapid prediction of particulate, humus and resistant fractions of soil organic carbon in reforested lands using infrared spectroscopy.

    Science.gov (United States)

    Madhavan, Dinesh B; Baldock, Jeff A; Read, Zoe J; Murphy, Simon C; Cunningham, Shaun C; Perring, Michael P; Herrmann, Tim; Lewis, Tom; Cavagnaro, Timothy R; England, Jacqueline R; Paul, Keryn I; Weston, Christopher J; Baker, Thomas G

    2017-05-15

    Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester C. While accurate and efficient methods for predicting soil organic C content and composition have recently been developed for soils under agricultural land uses, such methods under forested land uses are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils using physical fractionation by automated wet-sieving and 13C nuclear magnetic resonance (NMR) spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000-450 cm-1) were acquired from finely-ground soils from environmental plantings and agricultural land. Satisfactory prediction models based on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R2 > 0.90, negligible bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and economically determine TOC and its fractions and thereby accurately describe the effects of land use change such as reforestation on agricultural soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Hierarchical Metal-Organic Framework Hybrids: Perturbation-Assisted Nanofusion Synthesis.

    Science.gov (United States)

    Yue, Yanfeng; Fulvio, Pasquale F; Dai, Sheng

    2015-12-15

    Metal-organic frameworks (MOFs) represent a new family of microporous materials; however, microporous-mesoporous hierarchical MOF materials have been less investigated because of the lack of simple, reliable methods to introduce mesopores to the crystalline microporous particles. State-of-the-art MOF hierarchical materials have been prepared by ligand extension methods or by using a template, resulting in intrinsic mesopores of longer ligands or replicated pores from template agents, respectively. However, mesoporous MOF materials obtained through ligand extension often collapse in the absence of guest molecules, which dramatically reduces the size of the pore aperture. Although the template-directed strategy allows for the preparation of hierarchical materials with larger mesopores, the latter requires a template removal step, which may result in the collapse of the implemented mesopores. Recently, a general template-free synthesis of hierarchical microporous crystalline frameworks, such as MOFs and Prussian blue analogues (PBAs), has been reported. This new method is based on the kinetically controlled precipitation (perturbation), with simultaneous condensation and redissolution of polymorphic nanocrystallites in the mother liquor. This method further eliminates the use of extended organic ligands and the micropores do not collapse upon removal of trapped guest solvent molecules, thus yielding hierarchical MOF materials with intriguing porosity in the gram scale. The hierarchical MOF materials prepared in this way exhibited exceptional properties when tested for the adsorption of large organic dyes over their corresponding microporous frameworks, due to the enhanced pore accessibility and electrolyte diffusion within the mesopores. As for PBAs, the pore size distribution of these materials can be tailored by changing the metals substituting Fe cations in the PB lattice. For these, the textural mesopores increased from approximately 10 nm for Cu analogue (meso

  11. 'Dialyzable' Carbosilane Dendrimers as Soluble Supports in Organic Synthesis: Proof of principle, application and diafiltration performance

    NARCIS (Netherlands)

    Wander, M.

    2012-01-01

    Since the development of polystyrene as (insoluble) support for the synthesis of peptides by Merrifield in the 1960s, the application of supported synthesis in both industrial and academic research has increased. The introduction of dendrimers as supports solved many of the problems arising from the

  12. Hydrothermal Synthesis and Characterization of a Metal-Organic Framework by Thermogravimetric Analysis, Powder X-Ray Diffraction, and Infrared Spectroscopy: An Integrative Inorganic Chemistry Experiment

    Science.gov (United States)

    Crane, Johanna L.; Anderson, Kelly E.; Conway, Samantha G.

    2015-01-01

    This advanced undergraduate laboratory experiment involves the synthesis and characterization of a metal-organic framework with microporous channels that are held intact via hydrogen bonding of the coordinated water molecules. The hydrothermal synthesis of Co[subscript 3](BTC)[subscript 2]·12H[subscript 2]O (BTC = 1,3,5-benzene tricarboxylic acid)…

  13. Promising bulk nanostructured Cu2Se thermoelectrics via high throughput and rapid chemical synthesis

    DEFF Research Database (Denmark)

    Tafti, Mohsen Y.; Ballikaya, Sedat; Khachatourian, Adrine Malek

    2016-01-01

    analyses. Scanning electron microscopy analysis reveals the presence of secondary globular nanostructures in the order of 200 nm consisting of electron microscopy analysis confirmed the highly crystalline nature of the primary particles with irregular...... of Cu2Se were synthesized. Powder samples and compacted pellets have been characterized in detail for their structural, microstructural and transport properties. α to β phase transition of Cu2Se was confirmed using temperature dependent X-ray powder diffraction and differential scanning calorimetry...... synthesis scheme as well as the consolidation could lead to reliable production of large scale thermoelectric nanopowders for niche applications....

  14. NANOSIZED MAGNESIUM OXIDE AS CATALYST FOR THE RAPID AND GREEN SYNTHESIS OF SUBSTITUTED 2-AMINO-2-CHROMENES

    Science.gov (United States)

    A nanosized magnesium oxide catalyzed three-component condensation reaction of aldehyde, malononitrile and ¿-naphthol proceeded rapidly in water/PEG to afford corresponding 2-amino-2-chromenes in high yields at room temperature. The greener protocol was found to be fairly general...

  15. Supercritical hydrothermal synthesis and in situ organic modification of indium tin oxide nanoparticles using continuous-flow reaction system.

    Science.gov (United States)

    Lu, Jinfeng; Minami, Kimitaka; Takami, Seiichi; Shibata, Masatoshi; Kaneko, Yasunobu; Adschiri, Tadafumi

    2012-01-01

    ITO nanoparticles were synthesized hydrothermally and surface modified in supercritical water using a continuous flow reaction system. The organic modification of the nanoparticles converted the surface from hydrophilic to hydrophobic, making the modified nanoparticles easily dispersible in organic solvent. The addition of a surface modifier into the reaction system impacted the crystal growth and particle size as well as dispersion. The particle size was 18 nm. Highly crystalline cubic ITO with a narrow particle size distribution was obtained. The advantages of short reaction time and the use of a continuous reaction system make this method suitable for industrial scale synthesis. © 2011 American Chemical Society

  16. Intermatrix Synthesis as a rapid, inexpensive and reproducible methodology for the in situ functionalization of nanostructured surfaces with quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bastos-Arrieta, Julio, E-mail: julio.bastos@upc.edu [Department of Chemical Engineering, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muñoz, Jose, E-mail: josemaria.munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Stenbock-Fermor, Anja, E-mail: stenbock@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Muñoz, Maria, E-mail: Maria.Munoz@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Muraviev, Dmitri N., E-mail: Dimitri.Muraviev@uab.es [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Céspedes, Francisco, E-mail: francisco.cespedes@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain); Tsarkova, Larisa A., E-mail: tsarkova@dwi.rwth-aachen.de [DWI – Leibniz-Institut für Interaktive Materialien, Aachen 52056 (Germany); Baeza, Mireia, E-mail: MariaDelMar.Baeza@uab.cat [Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Barcelona (Spain)

    2016-04-15

    Graphical abstract: - Highlights: • Nanodiamond functionalization with CdS quantum dots. • Approach for carbon nanotube detection in water samples. • Simple functionalization of thin polymeric nanolayers with quantum dots. - Abstract: Intermatrix Synthesis (IMS) technique has proven to be a valid methodology for the in situ incorporation of quantum dots (QDs) in a wide range of nanostructured surfaces for the preparation of advanced hybrid-nanomaterials. In this sense, this communication reports the recent advances in the application of IMS for the synthesis of CdS-QDs with favourable distribution on sulfonated polyetherether ketone (SPEEK) membrane thin films (TFs), multiwall carbon nanotubes (MWCNTs) and nanodiamonds (NDs). The synthetic route takes advantage of the ion exchange functionality of the reactive surfaces for the loading of the QDs precursor and consequent QDs appearance by precipitation. The benefits of such modified nanomaterials were studied using CdS-QDs@MWCNTs hybrid-nanomaterials. CdS-QDs@MWCNTs has been used as conducting filler for the preparation of electrochemical nanocomposite sensors, which present electrocatalytic properties. Finally, the optical properties of the QDs contained on MWCNTs could allow a new procedure for the analytical detection of nanostructured carbon allotropes in water.

  17. The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock.

    Science.gov (United States)

    Matsumoto, Naoyuki; Oshima, Azusa; Sakurai, Shunsuke; Yamada, Takeo; Yumura, Motoo; Hata, Kenji; Futaba, Don N

    2015-07-17

    One aspect of carbon nanotube (CNT) synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT) forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

  18. The Application of Gas Dwell Time Control for Rapid Single Wall Carbon Nanotube Forest Synthesis to Acetylene Feedstock

    Directory of Open Access Journals (Sweden)

    Naoyuki Matsumoto

    2015-07-01

    Full Text Available One aspect of carbon nanotube (CNT synthesis that remains an obstacle to realize industrial mass production is the growth efficiency. Many approaches have been reported to improve the efficiency, either by lengthening the catalyst lifetime or by increasing the growth rate. We investigated the applicability of dwell time and carbon flux control to optimize yield, growth rate, and catalyst lifetime of water-assisted chemical vapor deposition of single-walled carbon nanotube (SWCNT forests using acetylene as a carbon feedstock. Our results show that although acetylene is a precursor to CNT synthesis and possesses a high reactivity, the SWCNT forest growth efficiency is highly sensitive to dwell time and carbon flux similar to ethylene. Through a systematic study spanning a wide range of dwell time and carbon flux levels, the relationship of the height, growth rate, and catalyst lifetime is found. Further, for the optimum conditions for 10 min growth, SWCNT forests with ~2500 μm height, ~350 μm/min initial growth rates and extended lifetimes could be achieved by increasing the dwell time to ~5 s, demonstrating the generality of dwell time control to highly reactive gases.

  19. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  20. Rapid synthesis of highly luminescent and stable Au20 nanoclusters for active tumor-targeted imaging in vitro and in vivo

    Science.gov (United States)

    Zhang, Pu; Yang, Xiao Xi; Wang, Yi; Zhao, Ning Wei; Xiong, Zu Hong; Huang, Cheng Zhi

    2014-01-01

    Rapid synthesis of protein-stabilized Au20 nanoclusters (Au20NCs) with high fluorescence quantum yield (QY) up to ~15% is successfully achieved by manipulating the reaction kinetics. The as-obtained Au20NCs, identified by mass spectrometry, have an average size of 2.6 nm, with strong fluorescence emission at 620 nm (2.00 eV) upon excitation at either 370 nm (3.35 eV) or 470 nm (2.64 eV). The advantages of the as-obtained Au20NCs, including small sizes, high fluorescence QY, excellent photostability, non-toxicity, and good stability in biological media, make them ideal candidates as good luminescent probes for optical imaging in vitro and in vivo. Our results demonstrate that the uptake of Au20NCs by both cancer cells and tumor-bearing nude mice can be improved by receptor-mediated internalization, compared with that by passive targeting. Because of their selective accumulation at the tumor sites, the Au20NC probes can be used as potential indicators for cancer diagnosis. This work not only provides a new understanding of the rapid synthesis of highly luminescent Au20NCs but also demonstrates that the functionalized-Au20NCs are excellent probes for active tumor-targeted imaging in vitro and in vivo.Rapid synthesis of protein-stabilized Au20 nanoclusters (Au20NCs) with high fluorescence quantum yield (QY) up to ~15% is successfully achieved by manipulating the reaction kinetics. The as-obtained Au20NCs, identified by mass spectrometry, have an average size of 2.6 nm, with strong fluorescence emission at 620 nm (2.00 eV) upon excitation at either 370 nm (3.35 eV) or 470 nm (2.64 eV). The advantages of the as-obtained Au20NCs, including small sizes, high fluorescence QY, excellent photostability, non-toxicity, and good stability in biological media, make them ideal candidates as good luminescent probes for optical imaging in vitro and in vivo. Our results demonstrate that the uptake of Au20NCs by both cancer cells and tumor-bearing nude mice can be improved by receptor

  1. Facile and rapid synthesis of divers xanthene derivatives using lanthanum(III chloride/chloroacetic acid as an efficient and reusable catalytic system under solvent-free conditions

    Directory of Open Access Journals (Sweden)

    Pouramiri Behjat

    2017-01-01

    Full Text Available LaCl3/ClCH2COOH was used as an efficient, and recyclable catalytic system for synthesis of 11H-benzo[a]xanthene-11-one, hexahydro-1H-xanthene- 1,8(2H-dione and 11-aryl-10H-diindeno[1,2-b:2′,1′-e]pyran-10,12(11H-dione derivatives via a one-pot three-component reaction of aldehydes, 2-naphthol, and cyclic 1,3-dicarbonyl compounds. The reactions proceeded rapidly at 70°C under solvent-free conditions and the desired products were obtained in good to excellent yields.

  2. Rapid in situ synthesis of spherical microflower Pt/C catalyst via spray-drying for high performance fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Balgis, R.; Ogi, T.; Okuyama, K. [Department of Chemical Engineering, Graduate School of Engineering, Hiroshima University, Higashi Hiroshima, Hiroshima (Japan); Anilkumar, G.M.; Sago, S. [Research and Development Centre, Noritake Co., Ltd., Higashiyama, Miyoshi, Aichi (Japan)

    2012-08-15

    A facile route for the rapid in situ synthesis of platinum nanoparticles on spherical microflower carbon has been developed. An aqueous precursor slurry containing carbon black, polystyrene latex (PSL), polyvinyl alcohol, and platinum salt was spray-dried, followed by calcination to simultaneously reduce platinum salt and to decompose PSL particles. Prepared Pt/C catalyst showed high-performance electrocatalytic activity with excellent durability. The mass activity and specific activity values were 132.26 mA mg{sup -1} Pt and 207.62 {mu}A cm{sup -2} Pt, respectively. This work presents a future direction for the production of high-performance Pt/C catalyst in an industrial scale. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Synthesis of (11)C-labeled retinoic acid, [(11)C]ATRA, via an alkenylboron precursor by Pd(0)-mediated rapid C-[(11)C]methylation.

    Science.gov (United States)

    Suzuki, Masaaki; Takashima-Hirano, Misato; Ishii, Hideki; Watanabe, Chika; Sumi, Kengo; Koyama, Hiroko; Doi, Hisashi

    2014-08-01

    Retinoids are a class of chemical compounds which include both natural dietary vitamin A (retinol) metabolites and active synthetic analogs. Both experimental and clinical studies have revealed that retinoids regulate a wide variety of essential biological processes. In this study, we synthesized (11)C-labeled all-trans-retinoic acid (ATRA), the most potent biologically active metabolite of retinol and used in the treatment of acute promyelocytic leukemia. The synthesis of (11)C-labeled ATRA was accomplished by a combination of rapid Pd(0)-mediated C-[(11)C]methylation of the corresponding pinacol borate precursor prepared by 8 steps and hydrolysis. [(11)C]ATRA will prove useful as a PET imaging agent, particularly for elucidating the improved therapeutic activity of ATRA (natural retinoid) for acute promyelocytic leukemia by comparing with the corresponding PET probe [(11)C]Tamibarotene (artificial retinoid). Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Synthesis of mono-organo-tins and use as versatile reagents for organic synthesis; Synthese de monoorganoetains, nouveaux reactifs pour la synthese organique

    Energy Technology Data Exchange (ETDEWEB)

    Fouquet, E.; Pereyre, M.; Rodriguez, A.L.; Roulet, T. [Bordeaux-1 Univ., 33 (France). Laboratoire de Chimie Organique et Organometallique

    1997-11-01

    There is a need in researching new methodologies for organic synthesis avoiding polluting or toxic side products. Organo-tin chemistry is particularly concerned by these environmental considerations due to the well-known toxicity of tri-organo-tin residues. In addition to catalytic organo-tin methods or polymer supported organo-tin reagents, mono-organo-tins represent an attracting alternative to the usual tetra-organo-tin chemistry in the sense that after work, tin residues would be inorganic ones. But, the chemistry of mono-organo-tins has not really been exploited so far, mainly due to their high reactivity and to the difficulties in finding general preparation methods. In this work, the direct and quantitative preparation of some mono-organo-tins starting from Lappert`s stannylene represents a general access to a new class of organo-tin reagents. Their reactivity and versatility in the field of organic synthesis is highlighted. The influence of the substituents bound to the tin atom is shown for various reactions such as nucleophilic addition onto carbonyl compounds, radical transfer of functionalized allylic moieties and coupling reactions catalyzed by transition metals. (authors) 26 refs.

  5. Metal-Organic Frameworks: Building Block Design Strategies for the Synthesis of MOFs.

    KAUST Repository

    Luebke, Ryan

    2014-09-01

    A significant and ongoing challenge in materials chemistry and furthermore solid state chemistry is to design materials with the desired properties and characteristics. The field of Metal-Organic Frameworks (MOFs) offers several strategies to address this challenge and has proven fruitful at allowing some degree of control over the resultant materials synthesized. Several methodologies for synthesis of MOFs have been developed which rely on use of predetermined building blocks. The work presented herein is focused on the utilization of two of these design principles, namely the use of molecular building blocks (MBBs) and supermolecular building blocks (SBBs) to target MOF materials having desired connectivities (topologies). These design strategies also permit the introduction of specific chemical moieties, allowing for modification of the MOFs properties. This research is predominantly focused on two platforms (rht-MOFs and ftw-MOFs) which topologically speaking are edge transitive binodal nets; ftw being a (4,12)-connected net and rht being a (3,24)-connected net. These highly connected nets (at least one node having connectivity greater than eight) have been purposefully targeted to increase the predictability of structural outcome. A general trend in topology is that there is an inverse relationship between the connectivity of the node(s) and the number of topological outcomes. Therefore the key to this research (and to effective use of the SBB and MBB approaches) is identification of conditions which allow for reliable formation of the targeted MBBs and SBBs. In the case of the research presented herein: a 12-connected Group IV or Rare Earth based hexanuclear MBB and a 24-connected transition metal based SBB were successfully targeted and synthesized. These two synthetic platforms will be presented and used as examples of how these design methods have been (and can be further) utilized to modify existing materials or develop new materials for gas storage and

  6. Synthesis of complex organic molecules in simulated methane rich astrophysical ices

    Science.gov (United States)

    Esmaili, Sasan; Bass, Andrew D.; Cloutier, Pierre; Sanche, Léon; Huels, Michael A.

    2017-12-01

    It has been proposed that organic molecules required for life on earth may be formed by the radiation processing of molecular ices in space environments, e.g., within our solar system. Such processes can be studied in the laboratory with surface science analytical techniques and by using low-energy electron (LEE) irradiation to simulate the effects of the secondary electrons that are generated in great abundance whenever ionizing radiation interacts with matter. Here we present new measurements of 70 eV LEE irradiation of multilayer films of CH4, 18O2, and CH4/18O2 mixtures (3:1 ratio) at 22 K. The electron stimulated desorption (ESD) yields of cations and anions have been recorded as a function of electron fluence. At low fluence, the prompt desorption of more massive multi-carbon or C—O containing cationic fragments agrees with our earlier measurements. However, new anion ESD signals of C2-, C2H-, and C2H2- from CH4/18O2 mixtures increase with fluence, indicating the gradual synthesis (and subsequent electron-induced fragmentation) of new, more complex species containing several C and possibly O atoms. Comparisons between the temperature programed desorption (TPD) mass spectra of irradiated and unirradiated films show the electron-induced formation of new chemical species, the identities of which are confirmed by reference to the NIST database of electron impact mass spectra and by TPD measurements of films composed of the proposed products. New species observed in the TPD of irradiated mixture films include C3H6, C2H5OH, and C2H6. Furthermore, X-ray photoelectron spectroscopy of irradiated films confirms the formation of C—O, C=O, and O=C—O— bonds of newly formed molecules. Our experiments support the view that secondary LEEs produced by ionizing radiation drive the chemistry in irradiated ices in space, irrespective of the radiation type.

  7. Synthesis and gas adsorption study of porous metal-organic framework materials

    Science.gov (United States)

    Mu, Bin

    Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) have become the focus of intense study over the past decade due to their potential for advancing a variety of applications including air purification, gas storage, adsorption separations, catalysis, gas sensing, drug delivery, and so on. These materials have some distinct advantages over traditional porous materials such as the well-defined structures, uniform pore sizes, chemically functionalized sorption sites, and potential for postsynthetic modification, etc. Thus, synthesis and adsorption studies of porous MOFs have increased substantially in recent years. Among various prospective applications, air purification is one of the most immediate concerns, which has urgent requirements to improve current nuclear, biological, and chemical (NBC) filters involving commercial and military purposes. Thus, the major goal of this funded project is to search, synthesize, and test these novel hybrid porous materials for adsorptive removal of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs), and to install the benchmark for new-generation NBC filters. The objective of this study is three-fold: (i) Advance our understanding of coordination chemistry by synthesizing novel MOFs and characterizing these porous coordination polymers; (ii) Evaluate porous MOF materials for gasadsorption applications including CO2 capture, CH4 storage, other light gas adsorption and separations, and examine the chemical and physical properties of these solid adsorbents including thermal stability and heat capacity of MOFs; (iii) Evaluate porous MOF materials for next-generation NBC filter media by adsorption breakthrough measurements of TICs on MOFs, and advance our understanding about structureproperty relationships of these novel adsorbents.

  8. A Facile and Microwave-assisted Rapid Synthesis of 2-Arylamino-4-(3'-indolyl)- thiazoles as Apoptosis Inducing Cytotoxic Agents.

    Science.gov (United States)

    Tantak, Mukund P; Mukherjee, Dipanwita Das; Kumar, Anil; Chakrabarti, Gopal; Kumar, Dalip

    2017-01-01

    The clinical success of the chemotherapeutic drugs is restricted by the nonspecific toxicity-related adverse side effects. The diverse implication of indoles and thiazoles in medicinal chemistry prompted us to develop a new series of novel 2-aryl-amino-4-(3'-indolyl)thiazoles as more effective and less toxic anti-cancer compounds. One-pot microwave-assisted rapid and high yielding synthesis of 2-arylamino-4-(3'- indolyl)thiazoles involved the reaction of easily available α-tosyloxy-ketones with N-arylthioureas in polyethylene glycol-400 (PEG-400). In vitro cytotoxicity study of 2-arylamino-4-(3'-indolyl)thiazoles against a panel of human cancer cell lines by MTT assay revealed IC50 values in the low micromolar range. Of the fifteen synthesized arylaminothiazoles, compounds 17b, 17d, 17g and 17il showed significant anti-proliferative activity against the selected cancer cell lines with IC50 synthesis for 2-arylamino-4-(3'-indolyl)thiazoles, and their in vitro cytotoxicity studies demonstrate that compound 17b exhibits significant anti-proliferative activity against MCF-7 (breast cancer) cells by activating ROS-mediated apoptosis through the mitochondrial apoptosis pathway. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  9. One pot synthesis of magnetic graphene/carbon nanotube composites as magnetic dispersive solid-phase extraction adsorbent for rapid determination of oxytetracycline in sewage water.

    Science.gov (United States)

    Sun, Yunyun; Tian, Jing; Wang, Lu; Yan, Hongyuan; Qiao, Fengxia; Qiao, Xiaoqiang

    2015-11-27

    A simple and time-saving one pot synthesis of magnetic graphene/carbon nanotube composites (M-G/CNTs) was developed that could avoid the tedious drying process of graphite oxide, and G/CNTs were modified by Fe3O4 nanoparticles in the reduction procedure. It contributed to a shorten duration of the synthesis process of M-G/CNTs. The obtained M-G/CNTs were characterized and the results indicated that CNTs and Fe3O4 nanoparticles were served as spacer distributing to the layers of graphene, which was beneficial for enlarging surface area and improving extraction efficiency. Moreover, M-G/CNTs showed good magnetic property and outstanding thermal stability. Then M-G/CNTs were applied as adsorbent of magnetic dispersive solid-phase extraction for rapid extraction and determination of oxytetracycline in sewage water. Under the optimum conditions, good linearity was obtained in the range of 20-800ngmL(-1) and the recoveries were ranged from 95.5% to 112.5% with relative standard deviations less than 5.8%. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jammaz, I. Al, E-mail: jammaz@kfshrc.edu.sa; Al-Otaibi, B.; Amer, S.; Okarvi, S.M.

    2011-10-15

    In an attempt to visualize folate receptors that overexpress on many cancers, [{sup 18}F]-fluorobenzene and pyridinecarbohydrazide-folate/methotrexate conjugates ([{sup 18}F]-1, [{sup 18}F]-2-folates and [{sup 18}F]-8, [{sup 18}F]-9-MTXs) were synthesized by the nucleophilic displacement reactions using ethyl-trimethylammonium-benzoate and pyridinecarboxylate precursors. The intermediates ethyl [{sup 18}F]-fluorinated benzene and pyridine esters were reacted with hydrazine to produce the [{sup 18}F]-fluorobenzene and pyridinecarbohydrazides, followed by coupling with N-hydroxysuccinimide-folate/MTX. Radiochemical yields were greater than 80% (decay corrected), with total synthesis time of less than 45 min. Radiochemical purities were always greater than 97% without high-performance liquid chromatography purification. These synthetic approaches hold considerable promise as rapid and simple method for the radiofluorination of folate derivatives with high radiochemical yield in short synthesis time. In vitro tests on KB cell line showed that significant amount of the radioconjugates were associated with cell fractions, and in vivo characterization in normal Balb/c mice revealed rapid blood clearance of these radioconjugates with excretion predominantly by the urinary and partially by the hepatobiliary systems. Biodistribution studies in nude mice bearing human KB cell line xenografts demonstrated significant tumor uptake and favorable biodistribution profile for [{sup 18}F]-2-folate over the other conjugates. The uptake in the tumors was blocked by excess coinjection of folic acid, suggesting a receptor-mediated process. Micro-positron emission tomography images of nude mice bearing human KB cell line xenografts confirmed these observations. These results demonstrate that [{sup 18}F]-2-folate may be useful as molecular probe for detecting and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis as well as monitoring tumor response

  11. Rapid synthesis and in vitro and in vivo evaluation of folic acid derivatives labeled with fluorine-18 for PET imaging of folate receptor-positive tumors.

    Science.gov (United States)

    Al Jammaz, I; Al-Otaibi, B; Amer, S; Okarvi, S M

    2011-10-01

    In an attempt to visualize folate receptors that overexpress on many cancers, [(18)F]-fluorobenzene and pyridinecarbohydrazide-folate/methotrexate conjugates ([(18)F]-1, [(18)F]-2-folates and [(18)F]-8, [(18)F]-9-MTXs) were synthesized by the nucleophilic displacement reactions using ethyl-trimethylammonium-benzoate and pyridinecarboxylate precursors. The intermediates ethyl [(18)F]-fluorinated benzene and pyridine esters were reacted with hydrazine to produce the [(18)F]-fluorobenzene and pyridinecarbohydrazides, followed by coupling with N-hydroxysuccinimide-folate/MTX. Radiochemical yields were greater than 80% (decay corrected), with total synthesis time of less than 45 min. Radiochemical purities were always greater than 97% without high-performance liquid chromatography purification. These synthetic approaches hold considerable promise as rapid and simple method for the radiofluorination of folate derivatives with high radiochemical yield in short synthesis time. In vitro tests on KB cell line showed that significant amount of the radioconjugates were associated with cell fractions, and in vivo characterization in normal Balb/c mice revealed rapid blood clearance of these radioconjugates with excretion predominantly by the urinary and partially by the hepatobiliary systems. Biodistribution studies in nude mice bearing human KB cell line xenografts demonstrated significant tumor uptake and favorable biodistribution profile for [(18)F]-2-folate over the other conjugates. The uptake in the tumors was blocked by excess coinjection of folic acid, suggesting a receptor-mediated process. Micro-positron emission tomography images of nude mice bearing human KB cell line xenografts confirmed these observations. These results demonstrate that [(18)F]-2-folate may be useful as molecular probe for detecting and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis as well as monitoring tumor response to treatment. Copyright © 2011

  12. A Rapid and Efficient Sonogashira Protocol and Improved Synthesis of Free Fatty Acid 1 (FFA1) Receptor Agonists

    DEFF Research Database (Denmark)

    Christiansen, Elisabeth; Due-Hansen, Maria E; Ulven, Trond

    2010-01-01

    A protocol for rapid and efficient Pd/Cu-catalyzed coupling of aryl bromides and iodides to terminal alkynes has been developed with use of 2-(di-tert-butylphosphino)-N-phenylindole (cataCXium PIntB) as ligand in TMEDA and water. The new protocol successfully couples substrates which failed with ...... with standard Sonogashira conditions, and enables an efficient general synthetic route to free fatty acid 1 (FFA1) receptor ligands from 3-(4-bromophenyl)propionic acid....

  13. Post-Synthesis Functionalization of Porous Organic Polymers for CO2 Capture

    KAUST Repository

    Al Otaibi, Mona S.

    2014-07-01

    Solid porous materials are network materials that contain space void. Porous Organic Polymers (POPs) are porous materials, which are constructed from organic building blocks and exhibit large surface area with low densities. Due to these characteristics, POPs have attracted attentions because of their potential use in application such as gas storage and chemical separation. This thesis presents a study of the synthesis of novel POP being a network based on 2,5- dibromobenzaldehyde and 1,3,5-triethynylbenzene linked together via Sonogashira- Hagihara (SH) coupling. This network showed a relatively good surface area of 770 m2/g and total pore volume of 0.59 cc/g. In addition, it proved to be chemically and thermally stable, maintaining the thermal stability up to 350oC. In addition to synthesize novel aldehyde-POP network, it was also possible to post synthetically modify a network via one-step post synthetic functionalization by amine. Ethelynediamine (EDA), Diethylenetriamine (DETA), and Tris(2-aminoethyl)amine (Tris-amine) are three different amines used for aldehyde-POP functionalization. The produced networks were aminated via different amine species substitution the aldehyde group present within the network. Modification to these networks resulted in a decrease in surface area from 770 m2.g-1 to 333 m2.g-1, 162 m2.g-1, and 211 m2.g-1 in respective to EDA, DETA, and Tris-amine. Although the surface areas were decreased, the CO2 adsorption was enhanced as evidenced by the increase of Qst (i.e., from 25 to 45 kJ.mol-1 for DETA at low coverage). Our findings are expected to strengthen existing research areas of the influence of different type of amines (e.g aromatic amine) on CO2 adsorption. Although amine grafting has been studied in other systems (e.g., PAFs and MOFs), we are the first to reported amine functionalized POPs using a novel one-step amine grafting PSM procedure. Future research might extend to study the interaction between CO2 and amine species under

  14. Potential Rapid Effects on Soil Organic Matter Characteristics and Chemistry Following a Change in Dominant Litter Inputs

    Science.gov (United States)

    Crow, S. E.; Filley, T.; Conyers, G.; Stott, D.; McCormick, M.; Whigham, D.; Taylor, D.

    2006-12-01

    Changes in vegetation structure are expected in forests globally under predicted future climate scenarios. Shifts in type or quantity of litter inputs, which will be associated with changes in plant community, may influence soil organic matter (SOM) characteristics. We altered litter inputs in a mixed-deciduous forest at the Smithsonian Environmental Research Center beginning in May 2004: litter removal, leaf amendment, and wood amendment plots were established in three old (120-150 y) and three young (50-70 y) forests. Plots were amended with wood and leaves collected locally from the dominant tree species, tulip poplar (Lirodendron tulipifera). 0-5 cm A horizon soil was collected in November 2005, 18 months after initial treatment, and physically fractionated first by dispersal in HMP and size separation (53 μm) to remove silts and clays then the >53 μm fraction by density (1.4 g cm-3) in SPT to separate the organic debris (light fraction, LF) from the mineral material. Soil with the greatest amount of C present within the LF came from the wood amendment treatment (35.2 ± 0.1%), followed by the leaf amendment (27.7 ± 0.0%) and the litter removal (24.5 ± 0.0%) treatments. In a pattern opposite of the other treatments, leaf amended soil from the old sites had less C within LF than the young. Potentially, a priming effect from the leaf addition at the old sites resulted in increased decomposition of soil LF. While at the young sites, invasive earthworms potentially provided a rapid, direct mode for incorporation of fresh leaf inputs into LF. Preliminary data indicate differences in lignin and cutin/suberin decay rates during litter decomposition between old and young sites. An investigation into the biopolymer composition of LF will determine whether altering litter inputs will ultimately influence SOM dynamics at both the old and young forest sites.

  15. Rapid access to compound libraries through flow technology: fully automated synthesis of a 3-aminoindolizine library via orthogonal diversification.

    Science.gov (United States)

    Lange, Paul P; James, Keith

    2012-10-08

    A novel methodology for the synthesis of druglike heterocycle libraries has been developed through the use of flow reactor technology. The strategy employs orthogonal modification of a heterocyclic core, which is generated in situ, and was used to construct both a 25-membered library of druglike 3-aminoindolizines, and selected examples of a 100-member virtual library. This general protocol allows a broad range of acylation, alkylation and sulfonamidation reactions to be performed in conjunction with a tandem Sonogashira coupling/cycloisomerization sequence. All three synthetic steps were conducted under full automation in the flow reactor, with no handling or isolation of intermediates, to afford the desired products in good yields. This fully automated, multistep flow approach opens the way to highly efficient generation of druglike heterocyclic systems as part of a lead discovery strategy or within a lead optimization program.

  16. How does the general public view posthumous organ donation? A meta-synthesis of the qualitative literature

    Directory of Open Access Journals (Sweden)

    Newton Joshua D

    2011-10-01

    Full Text Available Abstract Background Many individuals are unwilling to become posthumous organ donors, resulting in a disparity between the supply and demand for organ transplants. A meta-synthesis of the qualitative literature was therefore conducted to determine how the general public views posthumous organ donation. Methods Three online databases (PubMed, PsycINFO, Scopus were searched for articles published between January 1990 and May 2008 using the following search terms: organ donation, qualitative, interview. Eligibility criteria were: examination of beliefs about posthumous organ donation; utilization of a qualitative research design; and publication in an English peer-reviewed journal. Exclusion criteria were examining how health professionals or family members of organ donors viewed posthumous organ donation. Grounded theory was used to identify the beliefs emerging from this literature. Thematically-related beliefs were then grouped to form themes. Results 27 articles from 24 studies met the inclusion criteria and were reviewed. The major themes identified were: religion, death, altruism, personal relevance, the body, the family, medical professionals, and transplant recipients. An altruistic motivation to help others emerged as the most commonly identified motivator for becoming an organ donor, although feeling a sense of solidarity with the broader community and believing that donated organs are put to good use may be important preconditions for the emergence of this motivation. The two most commonly identified barriers were the need to maintain bodily integrity to safeguard progression into the afterlife and the unethical recovery of organs by medical professionals. The influence of stakeholder groups on willingness to become an organ donor was also found to vary by the level of control that each stakeholder group exerted over the donation recovery process and their perceived conflict of interest in wanting organ donation to proceed. Conclusions

  17. How does the general public view posthumous organ donation? A meta-synthesis of the qualitative literature.

    Science.gov (United States)

    Newton, Joshua D

    2011-10-11

    Many individuals are unwilling to become posthumous organ donors, resulting in a disparity between the supply and demand for organ transplants. A meta-synthesis of the qualitative literature was therefore conducted to determine how the general public views posthumous organ donation. Three online databases (PubMed, PsycINFO, Scopus) were searched for articles published between January 1990 and May 2008 using the following search terms: organ donation, qualitative, interview. Eligibility criteria were: examination of beliefs about posthumous organ donation; utilization of a qualitative research design; and publication in an English peer-reviewed journal. Exclusion criteria were examining how health professionals or family members of organ donors viewed posthumous organ donation. Grounded theory was used to identify the beliefs emerging from this literature. Thematically-related beliefs were then grouped to form themes. 27 articles from 24 studies met the inclusion criteria and were reviewed. The major themes identified were: religion, death, altruism, personal relevance, the body, the family, medical professionals, and transplant recipients. An altruistic motivation to help others emerged as the most commonly identified motivator for becoming an organ donor, although feeling a sense of solidarity with the broader community and believing that donated organs are put to good use may be important preconditions for the emergence of this motivation. The two most commonly identified barriers were the need to maintain bodily integrity to safeguard progression into the afterlife and the unethical recovery of organs by medical professionals. The influence of stakeholder groups on willingness to become an organ donor was also found to vary by the level of control that each stakeholder group exerted over the donation recovery process and their perceived conflict of interest in wanting organ donation to proceed. These findings afford insights into how individuals perceive

  18. Rapid and facile ratiometric detection of an anthrax biomarker by regulating energy transfer process in bio-metal-organic framework.

    Science.gov (United States)

    Zhang, Yihe; Li, Bin; Ma, Heping; Zhang, Liming; Zheng, Youxuan

    2016-11-15

    A ratiometric fluorescent sensor based on luminescent bio-metal-organic framework was prepared by exchanging both Tb(3+) and Eu(3+) cations into anionic bio-MOF-1. Due to a highly efficient energy transfer from Tb(3+) to Eu(3+) (>89%), emission color of Tb/Eu@bio-MOF-1 was orange-red even though Tb(3+) was the dominant content in this Tb/Eu co-doping material. More interestingly, this energy transfer process could be modulated by dipicolinic acid (DPA), an unique biomarker for bacillus spores. With DPA addition, corresponding DPA-to-Tb(3+) energy transfer was gradually enhanced while the energy transfer from Tb(3+) to Eu(3+) was significantly weakened. By regulating the energy transfer process in Tb/Eu@bio-MOF-1, visual colorimetric sensing of DPA in porous MOF was realized for the first time. Detection limit of Tb/Eu@bio-MOF-1 for DPA was 34nM, which was much lower than an infectious dosage of Bacillus anthracis spores (60μM) for human being. Besides, Tb/Eu@bio-MOF-1 showed a remarkable selectivity over other aromatic ligands and amino acids. More importantly, this porous ratiometric sensor worked equally well in human serum. These particularly attractive features of Tb/Eu@bio-MOF-1 made the direct, rapid and naked-eye detection of DPA for practical application possible. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Controlling human corneal stromal stem cell contraction to mediate rapid cell and matrix organization of real architecture for 3-dimensional tissue equivalents.

    Science.gov (United States)

    Mukhey, Dev; Phillips, James B; Daniels, Julie T; Kureshi, Alvena K

    2017-12-05

    The architecture of the human corneal stroma consists of a highly organized extracellular matrix (ECM) interspersed with keratocytes. Their progenitor cells; corneal stromal stem cells (CSSC) are located at the periphery, in the limbal stroma. A highly organized corneal ECM is critical for effective transmission of light but this structure may be compromised during injury or disease, resulting in loss of vision. Re-creating normal organization in engineered tissue equivalents for transplantation often involves lengthy culture times that are inappropriate for clinical use or utilisation of synthetic substrates that bring complications such as corneal melting. CSSC have great therapeutic potential owing to their ability to reorganize a disorganized matrix, restoring transparency in scarred corneas. We examined CSSC contractile behavior to assess whether this property could be exploited to rapidly generate cell and ECM organization in Real Architecture For 3D Tissues (RAFT) tissue equivalents (TE) for transplantation. Free-floating collagen gels were characterized to assess contractile behavior of CSSC and establish optimum cell density and culture times. To mediate cell and collagen organization, tethered collagen gels seeded with CSSC were cultured and subsequently stabilized with the RAFT process. We demonstrated rapid creation of biomimetic RAFT TE with tunable structural properties. These displayed three distinct regions of varying degrees of cellular and collagen organization. Interestingly, increased organization coincided with a dramatic loss of PAX6 expression in CSSC, indicating rapid differentiation into keratocytes. The organized RAFT TE system could be a useful bioengineering tool to rapidly create an organized ECM while simultaneously controlling cell phenotype. For the first time, we have demonstrated that human CSSC exhibit the phenomenon of cellular self-alignment in tethered collagen gels. We found this mediated rapid co-alignment of collagen fibrils

  20. Facile synthesis of fluorine-substituted benzothiadiazole-based organic semiconductors and their use in solution-processed small-molecule organic solar cells.

    Science.gov (United States)

    Cho, Nara; Song, Kihyung; Lee, Jae Kwan; Ko, Jaejung

    2012-09-03

    A facile new protocol for the synthesis of iodinated derivatives of fluorinated benzothiadiazoles is demonstrated for the production of p-type semiconducting materials. The newly synthesized small-molecule compounds bis[TPA-diTh]-MonoF-BT and bis[TPA-diTh]-DiF-BT exhibited a power conversion efficiency of 2.95% and a high open-circuit voltage of 0.85 V in solution-processed small-molecule organic solar cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: An explanation of how mesophilic organisms can rapidly colonise extremely toxic environments

    Energy Technology Data Exchange (ETDEWEB)

    García-Balboa, C.; Baselga-Cervera, B. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); García-Sanchez, A.; Igual, J.M. [Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA-CSIC), PO Box 257, 37071 Salamanca (Spain); Lopez-Rodas, V. [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain); Costas, E., E-mail: ecostas@vet.ucm.es [Genetica, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid (Spain)

    2013-11-15

    Highlights: •Some microalgae species survive to extreme environments in ponds of residual waters from uranium mining. •Adaptation of microalgae to U arose very fast. •Spontaneous mutations that confer large adaptive value were able to produce the adaptation to residual waters of U mining. •Adaptation to more extreme waters of U mining is only possible after the recombination subsequent to sexual mating. •Resistant microalgae bio-adsorbs uranium to the cell wall and internalises uranium inside the cytoplasm. -- Abstract: Extreme environments may support communities of microalgae living at the limits of their tolerance. It is usually assumed that these extreme environments are inhabited by extremophile species. However, global anthropogenic environmental changes are generating new extreme environments, such as mining-effluent pools of residual waters from uranium mining with high U levels, acidity and radioactivity in Salamanca (Spain). Certain microalgal species have rapidly adapted to these extreme waters (uranium mining in this area began in 1960). Experiments have demonstrated that physiological acclimatisation would be unable to achieve adaptation. In contrast, rapid genetic adaptation was observed in waters ostensibly lethal to microalgae by means of rare spontaneous mutations that occurred prior to the exposure to effluent waters from uranium mining. However, adaptation to the most extreme conditions was only possible after recombination through sexual mating because adaptation requires more than one mutation. Microalgae living in extreme environments could be the descendants of pre-selective mutants that confer significant adaptive value to extreme contamination. These “lucky mutants” could allow for the evolutionary rescue of populations faced with rapid environmental change.

  2. Iron Catalysis in Organic Synthesis: A Critical Assessment of What It Takes To Make This Base Metal a Multitasking Champion

    Science.gov (United States)

    2016-01-01

    The current status of homogeneous iron catalysis in organic chemistry is contemplated, as are the reasons why this particular research area only recently starts challenging the enduring dominance of the late and mostly noble metals over the field. Centered in the middle of the d-block and able to support formal oxidation states ranging from −II to +VI, iron catalysts hold the promise of being able to encompass organic synthesis at large. They are expected to serve reductive as well as oxidative regimes, can emulate “noble tasks”, but are also able to adopt “early” transition metal character. Since a comprehensive coverage of this multidimensional agenda is beyond the scope of an Outlook anyway, emphasis is laid in this article on the analysis of the factors that perhaps allow one to control the multifarious chemical nature of this earth-abundant metal. The challenges are significant, not least at the analytical frontier; their mastery mandates a mindset that differs from the routines that most organic chemists interested in (noble metal) catalysis tend to cultivate. This aspect notwithstanding, it is safe to predict that homogeneous iron catalysis bears the chance to enable a responsible paradigm for chemical synthesis and a sustained catalyst economy, while potentially providing substantial economic advantages. This promise will spur the systematic and in-depth investigations that it takes to upgrade this research area to strategy-level status in organic chemistry and beyond. PMID:27981231

  3. Sol-gel (template) synthesis of macroporous Mo-based catalysts for hydrothermal oxidation of radionuclide-organic complexes

    Science.gov (United States)

    Papynov, E. K.; Palamarchuk, M. S.; Mayorov, V. Yu; Modin, E. B.; Portnyagin, A. S.; Sokol'nitskaya, T. A.; Belov, A. A.; Tananaev, I. G.; Avramenko, V. A.

    2017-07-01

    Molybdenum compounds are industrially demanding as heterogeneous catalysts for oxidation of various organic substances. Highly porous structure of molybdenum-containing catalysts avoids surface's colmatation and prevents blocking catalytic sites that makes these materials play a key role in processes of hydrothermal oxidation of radionuclide organic complexes. The study presents an original way of sol-gel synthesis of new macroporous molybdenum compounds using ;core-shell; colloid template (polymer latex) as poreforming agent. We have described three individual routs of template removal via thermal decomposition to obtain porous materials based on molybdenum compounds. Thermal treatment conditions (temperature, gaseous atmosphere) have been studied with respect to their influence on composition, structure and catalytic properties of synthesized molybdenum systems. The optimal way to synthesis of crystal molybdenum (VI) oxide with ordered porous structure (mean pore size 100-160 nm) has been suggested. Catalytic properties of macroporous molybdenum materials have been investigated in the process of liquid phase and hydrothermal oxidation of such organic substances thiazine and stable Co-EDTA complex. It was shown that macroporous molybdenum oxides could be applied as prospective catalysts for hydrothermal oxidation of organic radionuclide complexes during the processing of radioactive waste.

  4. Layer-by-Layer Method for the Synthesis and Growth of Surface Mounted Metal-Organic Frameworks (SURMOFs

    Directory of Open Access Journals (Sweden)

    Osama Shekhah

    2010-02-01

    Full Text Available A layer-by-layer method has been developed for the synthesis of metal-organic frameworks (MOFs and their deposition on functionalized organic surfaces. The approach is based on the sequential immersion of functionalized organic surfaces into solutions of the building blocks of the MOF, i.e., the organic ligand and the inorganic unit. The synthesis and growth of different types of MOFs on substrates with different functionalization, like COOH, OH and pyridine terminated surfaces, were studied and characterized with different surface characterization techniques. A controlled and highly oriented growth of very homogenous films was obtained using this method. The layer-by-layer method offered also the possibility to study the kinetics of film formation in more detail using surface plasmon resonance and quartz crystal microbalance. In addition, this method demonstrates the potential to synthesize new classes of MOFs not accessible by conventional methods. Finally, the controlled growth of MOF thin films is important for many applications like chemical sensors, membranes and related electrodes.

  5. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    OpenAIRE

    Pedersen, Joachim D; Esposito, Heather J; Teh, Kwok Siong

    2011-01-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fuse...

  6. One-step and rapid synthesis of porous Pd nanoparticles with superior catalytic activity toward ethanol/formic acid electrooxidation

    Science.gov (United States)

    Hong, Wei; Fang, Youxing; Wang, Jin; Wang, Erkang

    2014-02-01

    Porous Pd nanoparticles are successfully prepared by a rapid, one-step, and efficient route with high yield in aqueous solution. The developed method is very simple, just by mixing sodium tetrachloropalladate, polyvinylpyrrolidone and hydroquinone and heated at 70 °C for 15 min. The structure and composition are analyzed by transmission electron microscope, selected-area electron diffraction, inductively coupled plasma optical emission spectrometer, X-ray diffraction, energy dispersive X-ray spectrum and X-ray photoelectron spectroscopy. Electrochemical catalytic measurement results prove that the as synthesized porous Pd nanoparticles exhibit superior catalytic activity towards ethanol and formic acid electrooxidation.

  7. Bringing the science of proteins into the realm of organic chemistry: total chemical synthesis of SEP (synthetic erythropoiesis protein).

    Science.gov (United States)

    Kent, Stephen B H

    2013-11-11

    Erythropoietin, commonly known as EPO, is a glycoprotein hormone that stimulates the production of red blood cells. Recombinant EPO has been described as "arguably the most successful drug spawned by the revolution in recombinant DNA technology". Recently, the EPO glycoprotein molecule has re-emerged as a major target of synthetic organic chemistry. In this article I will give an account of an important body of earlier work on the chemical synthesis of a designed EPO analogue that had full biological activity and improved pharmacokinetic properties. The design and synthesis of this "synthetic erythropoiesis protein" was ahead of its time, but has gained new relevance in recent months. Here I will document the story of one of the major accomplishments of synthetic chemistry in a more complete way than is possible in the primary literature, and put the work in its contemporaneous context. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid microwave-assisted synthesis of molecularly imprinted polymers on carbon quantum dots for fluorescent sensing of tetracycline in milk.

    Science.gov (United States)

    Hou, Juan; Li, Huiyu; Wang, Long; Zhang, Ping; Zhou, Tianyu; Ding, Hong; Ding, Lan

    2016-01-01

    In this paper, a novel, selective and eco-friendly sensor for the detection of tetracycline was developed by grafting imprinted polymers onto the surface of carbon quantum dots. A simple microwave-assisted approach was utilized to fabricate the fluorescent imprinted composites rapidly for the first time, which could shorten the polymerization time and simplify the experimental procedure dramatically. The novel composites not only demonstrated excellent fluorescence stability and special binding sites, but also could selectively accumulate target analytes. Under optimal conditions, the relative fluorescence intensity of the composites decreased linearly with increasing the concentration of tetracycline from 20 nM to 14 µM. The detection limit of tetracycline was 5.48 nM. The precision and reproducibility of the proposed sensor were also acceptable. Significantly, the practicality of this ultrasensitive sensor for tetracycline detection in milk was further validated, revealing the advantages of simplicity, sensitivity, selectivity and low cost. This approach combines the high selective adsorption property of molecular imprinted polymers and the sensitivity of fluorescence detection. It is envisioned that the development of fluorescent molecularly imprinted composites will offer a new way of thinking for rapid analysis in complex samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Mesoporous Silica Based Gold Catalysts: Novel Synthesis and Application in Catalytic Oxidation of CO and Volatile Organic Compounds (VOCs

    Directory of Open Access Journals (Sweden)

    Leonarda F. Liotta

    2013-10-01

    Full Text Available Gold nanoparticles, particularly with the particle size of 2–5 nm, have attracted increasing research attention during the past decades due to their surprisingly high activity in CO and volatile organic compounds (VOCs oxidation at low temperatures. In particular, CO oxidation below room temperature has been extensively studied on gold nanoparticles supported on several oxides (TiO2, Fe2O3, CeO2, etc.. Recently, mesoporous silica materials (such as SBA-15, MCM-41, MCM-48 and HMS possessing ordered channel structures and suitable pore diameters, large internal surface areas, thermal stabilities and excellent mechanical properties, have been investigated as suitable hosts for gold nanoparticles. In this review we highlight the development of novel mesoporous silica based gold catalysts based on examples, mostly from recently reported results. Several synthesis methods are described herein. In detail we report: the modification of silica with organic functional groups; the one-pot synthesis with the incorporation of both gold and coupling agent containing functionality for the synthesis of mesoporous silica; the use of cationic gold complexes; the synthesis of silica in the presence of gold colloids or the dispersion of gold colloids protected by ligands or polymers onto silica; the modification of silica by other metal oxides; other conventional preparation methods to form mesoporous silica based gold catalysts. The gold based catalysts prepared as such demonstrate good potential for use in oxidation of CO and VOCs at low temperatures. From the wide family of VOCs, the oxidation of methanol and dimethyldisulfide has been addressed in the present review.

  10. Microwave-assisted multicomponent reactions for rapid synthesis of AIE-active fluorescent polymeric nanoparticles by post-polymerization method.

    Science.gov (United States)

    Cao, Qian-Yong; Jiang, Ruming; Liu, Meiying; Wan, Qing; Xu, Dazhuang; Tian, Jianwen; Huang, Hongye; Wen, Yuanqing; Zhang, Xiaoyong; Wei, Yen

    2017-11-01

    The development of simple and effective methods for synthesis of fluorescent polymeric nanoparticles (FPNs) with aggregation-induced emission (AIE) plays an important role for the biomedical applications of AIE-active FPNs. In present work, we developed a facile strategy for the fabrication of AIE-active FPNs by a post-polymerization method based on the microwave-assisted Kabachnik-Fields (KF) reaction, which can conjugate with poly(PEGMA-NH2), AIE-active dye (TPE-CHO) and diethyl phosphate (DP) under microwave irradiation within 5min. The characterization results confirm that PEGMA-TPE FPNs are successfully prepared through the microwave-assisted KF reaction. The resultant AIE-active FPNs show high water dispersity, intensive fluorescence and low cytotoxicity. These features make these AIE-active FPNs great potential for biomedical applications. Moreover, the microwave-assisted KF reaction is simple, fast, atom economy that should be a general strategy for the fabrication of various multifunctional AIE-active FPNs. We believe this work will open up a new avenue for the preparation of AIE-active functional materials with great potential for different applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis of malachite@clay nanocomposite for rapid scavenging of cationic and anionic dyes from synthetic wastewater.

    Science.gov (United States)

    Srivastava, Varsha; Sillanpää, Mika

    2017-01-01

    Synthesis of malachite@clay nanocomposite was successfully carried out for the removal of cationic (Methylene Blue, MB) and anionic dyes (Congo Red, CR) from synthetic wastewater. Nanocomposite was characterized by TEM, SEM, FT-IR, EDS analysis and zeta potential. TEM analysis indicated that the particle diameter of nanocomposite was in the range of 14 to 23nm. Various important parameters viz. contact time, concentration of dyes, nanocomposite dosage, temperature and solution pH were optimized to achieve maximum adsorption capacity. In the case of MB, removal decreased from 99.82% to 93.67% while for CR, removal decreased from 88.55% to 75.69% on increasing dye concentration from 100 to 450mg/L. pH study confirmed the higher removal of CR in acidic range while MB removal was higher in alkaline range. Kinetic study revealed the applicability of pseudo-second-order model for the adsorption of both dyes. Negative values of ΔG0 for both systems suggested the feasibility of dye removal and support for spontaneous adsorption of CR and MB on nanocomposite. Nanocomposite showed 277.77 and 238.09mg/g Langmuir adsorption capacity for MB and CR respectively. Desorption of dyes from the dye loaded nanocomposite was easily carried out with acetone. The results indicate that the prepared malachite@clay nanocomposite is an efficient adsorbent with high adsorption capacity for the aforementioned dyes. Copyright © 2016. Published by Elsevier B.V.

  12. A robust microfluidic device for the synthesis and crystal growth of organometallic polymers with highly organized structures.

    Science.gov (United States)

    Liu, Xiao; Yi, Qiaolian; Han, Yongzhen; Liang, Zhenning; Shen, Chaohua; Zhou, Zhengyang; Sun, Jun-Liang; Li, Yizhi; Du, Wenbin; Cao, Rui

    2015-02-02

    A simple and robust microfluidic device was developed to synthesize organometallic polymers with highly organized structures. The device is compatible with organic solvents. Reactants are loaded into pairs of reservoirs connected by a 15 cm long microchannel prefilled with solvents, thus allowing long-term counter diffusion for self-assembly of organometallic polymers. The process can be monitored, and the resulting crystalline polymers are harvested without damage. The device was used to synthesize three insoluble silver acetylides as single crystals of X-ray diffraction quality. Importantly, for the first time, the single-crystal structure of silver phenylacetylide was determined. The reported approach may have wide applications, such as crystallization of membrane proteins, synthesis and crystal growth of organic, inorganic, and polymeric coordination compounds, whose single crystals cannot be obtained using traditional methods. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. DEVELOPMENT OF NOVEL CERAMIC NANOFILM-FIBER INTEGRATED OPTICAL SENSORS FOR RAPID DETECTION OF COAL DERIVED SYNTHESIS GAS

    Energy Technology Data Exchange (ETDEWEB)

    Junhang Dong; Hai Xiao; Xiling Tang; Hongmin Jiang; Kurtis Remmel; Amardeep Kaur

    2012-09-30

    The overall goal of this project is to conduct fundamental studies on advanced ceramic materials and fiber optic devices for developing new types of high temperature (>500{degree}C) fiber optic chemical sensors (FOCS) for monitoring fossil (mainly coal) and biomass derived gases in power plants. The primary technical objective is to investigate and demonstrate the nanocrystalline doped-ceramic thin film enabled FOCS that possess desired stability, sensitivity and selectivity for in-situ, rapid gas detection in the syngas streams from gasification and combustion flue gases. This report summarizes research works of two integrated parts: (1) development of metal oxide solid thin films as sensing materials for detection and measurement of important gas components relevant to the coal- and biomass-derived syngas and combustion gas streams at high temperatures; and (2) development of fiber optic devices that are potentially useful for constructing FOCS in combination with the solid oxide thin films identified in this program.

  14. A rapid green strategy for the synthesis of Au "meatball"-like nanoparticles using green tea for SERS applications

    Science.gov (United States)

    Wu, Shichao; Zhou, Xi; Yang, Xiangrui; Hou, Zhenqing; Shi, Yanfeng; Zhong, Lubin; Jiang, Qian; Zhang, Qiqing

    2014-09-01

    We report a simple and rapid biological approach to synthesize water-soluble and highly roughened "meatball"-like Au nanoparticles using green tea extract under microwave irradiation. The synthesized Au meatball-like nanoparticles possess excellent monodispersity and uniform size (250 nm in diameter). Raman measurements show that these tea-generated meatball-like gold nanostructures with high active surface areas exhibit a high enhancement of surface-enhanced Raman scattering. In addition, the Au meatball-like nanoparticles demonstrate good biocompatibility and remarkable in vitro stability at the biological temperature. Meanwhile, the factors that influence the Au meatball-like nanoparticles morphology are investigated, and the mechanisms behind the nonspherical shape evolution are discussed.

  15. A novel green synthesis and characterization of Ag NPs with its ultra-rapid catalytic reduction of methyl green dye

    Energy Technology Data Exchange (ETDEWEB)

    Junejo, Y., E-mail: yasmeengul14@yahoo.com [National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Jamshoro 76080 (Pakistan); Department of Chemistry, Fatih University, Buyukcekmece, 34500 Istanbul (Turkey); Sirajuddin [National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Jamshoro 76080 (Pakistan); Baykal, A. [Department of Chemistry, Fatih University, Buyukcekmece, 34500 Istanbul (Turkey); Safdar, M. [Department of Genetics and Bioengineering, Faculty of Engineering, Fatih University, 34500, Büyükçekmece, İstanbul (Turkey); Balouch, A. [National Centre of Excellence in Analytical Chemistry, University of Sindh Jamshoro, Jamshoro 76080 (Pakistan)

    2014-01-30

    Ampicillin derived silver nanoparticles were synthesized in an aqueous medium. Particle size and shape were determined by Transmission electron microscopy which showed the monodispersed morphology. The Fourier transform infrared spectra were represented the interaction of Ampicillin with surface of Ampicillin derived silver nanoparticles. X-ray powder diffraction study gave crystalline nature of the Ampicillin derived silver nanoparticles which exhibited exceptional catalytic activity for the reduction of Methylene Green dye. However, complete reduction of dye was accomplished by Ampicillin derived silver nanoparticles within 4 min only. The catalytic performance of these nanoparticles was adsorbed on glass. They were recovered easily from reaction medium and reused with enhanced catalytic potential. Based upon these results it has been concluded that Ampicillin derived silver nanoparticles are novel, rapid and highly economical alternative for environmental safety against pollution by dyes and extendable for control of other reducible contaminants as well.

  16. Unusual microporous polycatenane-like metal-organic frameworks for the luminescent sensing of Ln3+ cations and rapid adsorption of iodine.

    Science.gov (United States)

    Chen, Lei; Tan, Ke; Lan, Ya-Qian; Li, Shun-Li; Shao, Kui-Zhan; Su, Zhong-Min

    2012-06-14

    Two isostructural 2D → 2D parallel → 3D inclined interpenetrating polycatenane-like metal-organic frameworks were successfully constructed based on length-adjusted tricarboxylate ligands. With the merit of being microporous, IFMC-10 can serve as host for encapsulating lanthanide cations and I(2) to exhibit luminescent sensing and rapid adsorption of iodine.

  17. A technique for rapid source apportionment applied to ambient organic aerosol measurements from a thermal desorption aerosol gas chromatograph (TAG

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2016-11-01

    Full Text Available We present a rapid method for apportioning the sources of atmospheric organic aerosol composition measured by gas chromatography–mass spectrometry methods. Here, we specifically apply this new analysis method to data acquired on a thermal desorption aerosol gas chromatograph (TAG system. Gas chromatograms are divided by retention time into evenly spaced bins, within which the mass spectra are summed. A previous chromatogram binning method was introduced for the purpose of chromatogram structure deconvolution (e.g., major compound classes (Zhang et al., 2014. Here we extend the method development for the specific purpose of determining aerosol samples' sources. Chromatogram bins are arranged into an input data matrix for positive matrix factorization (PMF, where the sample number is the row dimension and the mass-spectra-resolved eluting time intervals (bins are the column dimension. Then two-dimensional PMF can effectively do three-dimensional factorization on the three-dimensional TAG mass spectra data. The retention time shift of the chromatogram is corrected by applying the median values of the different peaks' shifts. Bin width affects chemical resolution but does not affect PMF retrieval of the sources' time variations for low-factor solutions. A bin width smaller than the maximum retention shift among all samples requires retention time shift correction. A six-factor PMF comparison among aerosol mass spectrometry (AMS, TAG binning, and conventional TAG compound integration methods shows that the TAG binning method performs similarly to the integration method. However, the new binning method incorporates the entirety of the data set and requires significantly less pre-processing of the data than conventional single compound identification and integration. In addition, while a fraction of the most oxygenated aerosol does not elute through an underivatized TAG analysis, the TAG binning method does have the ability to achieve molecular level

  18. Smart multi-channel two-dimensional micro-gas chromatography for rapid workplace hazardous volatile organic compounds measurement.

    Science.gov (United States)

    Liu, Jing; Seo, Jung Hwan; Li, Yubo; Chen, Di; Kurabayashi, Katsuo; Fan, Xudong

    2013-03-07

    We developed a novel smart multi-channel two-dimensional (2-D) micro-gas chromatography (μGC) architecture that shows promise to significantly improve 2-D μGC performance. In the smart μGC design, a non-destructive on-column gas detector and a flow routing system are installed between the first dimensional separation column and multiple second dimensional separation columns. The effluent from the first dimensional column is monitored in real-time and decision is then made to route the effluent to one of the second dimensional columns for further separation. As compared to the conventional 2-D μGC, the greatest benefit of the smart multi-channel 2-D μGC architecture is the enhanced separation capability of the second dimensional column and hence the overall 2-D GC performance. All the second dimensional columns are independent of each other, and their coating, length, flow rate and temperature can be customized for best separation results. In particular, there is no more constraint on the upper limit of the second dimensional column length and separation time in our architecture. Such flexibility is critical when long second dimensional separation is needed for optimal gas analysis. In addition, the smart μGC is advantageous in terms of elimination of the power intensive thermal modulator, higher peak amplitude enhancement, simplified 2-D chromatogram re-construction and potential scalability to higher dimensional separation. In this paper, we first constructed a complete smart 1 × 2 channel 2-D μGC system, along with an algorithm for automated control/operation of the system. We then characterized and optimized this μGC system, and finally employed it in two important applications that highlight its uniqueness and advantages, i.e., analysis of 31 workplace hazardous volatile organic compounds, and rapid detection and identification of target gas analytes from interference background.

  19. Self-assembly versus stepwise synthesis: heterometal-organic frameworks based on metalloligands with tunable luminescence properties.

    Science.gov (United States)

    Zhang, Shu-Ran; Du, Dong-Ying; Tan, Ke; Qin, Jun-Sheng; Dong, Hui-Qing; Li, Shun-Li; He, Wen-Wen; Lan, Ya-Qian; Shen, Ping; Su, Zhong-Min

    2013-08-19

    A new family of heterometal-organic frameworks has been prepared by two synthesis strategies, in which IFMC-26 and IFMC-27 are constructed by self-assembly and IFMC-28 is obtained by stepwise synthesis based on the metalloligand (IFMC=Institute of Functional Material Chemistry). IFMC-26 is a (3,6)-connected net and IFMC-27 is a (4,8)-connected 3D framework. The metalloligands {Ni(H4 L)}(NO3 )2 are connected by binuclear lanthanide clusters giving rise to a 2D sheet structure in IFMC-28. Notably, IFMC-26-Eux Tby and IFMC-28-Eux Tby have been obtained by changing the molar ratios of raw materials. Owing to the porosity of IFMC-26, Tb(3+) @IFMC-26-Eu and Eu(3+) @IFMC-26-Tb are obtained by postencapsulating Tb(III) and Eu(III) ions into the pores, respectively. Tunable luminescence in metal-organic frameworks is achieved by the two kinds of doping methods. In particular, the quantum yields of heterometal-organic frameworks are apparently enhanced by postencapsulation of Ln(III) ions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Colloidal Synthesis of CH3 NH3 PbBr3 Nanoplatelets with Polarized Emission through Self-Organization.

    Science.gov (United States)

    Liu, Lige; Huang, Sheng; Pan, Longfei; Shi, Li-Jie; Zou, Bingsuo; Deng, Luogen; Zhong, Haizheng

    2017-02-06

    We report a combined experimental and theoretical study of the synthesis of CH3 NH3 PbBr3 nanoplatelets through self-organization. Shape transformation from spherical nanodots to square or rectangular nanoplatelets can be achieved by keeping the preformed colloidal nanocrystals at a high concentration (3.5 mg mL-1 ) for 3 days, or combining the synthesis of nanodots with self-organization. The average thickness of the resulting CH3 NH3 PbBr3 nanoplatelets is similar to the size of the original nanoparticles, and we also noticed several nanoplatelets with circular or square holes, suggesting that the shape transformation experienced a self-organization process through dipole-dipole interactions along with a realignment of dipolar vectors. Additionally, the CH3 NH3 PbBr3 nanoplatelets exhibit excellent polarized emissions for stretched CH3 NH3 PbBr3 nanoplatelets embedded in a polymer composite film, showing advantageous photoluminescence properties for display backlights. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Validation of a rapid type 1 diabetes autoantibody screening assay for community-based screening of organ donors to identify subjects at increased risk for the disease.

    Science.gov (United States)

    Wasserfall, C; Montgomery, E; Yu, L; Michels, A; Gianani, R; Pugliese, A; Nierras, C; Kaddis, J S; Schatz, D A; Bonifacio, E; Atkinson, M A

    2016-07-01

    The Network for Pancreatic Organ donors with Diabetes (nPOD) programme was developed in response to an unmet research need for human pancreatic tissue obtained from individuals with type 1 diabetes mellitus and people at increased risk [i.e. autoantibody (AAb)-positive] for the disease. This necessitated the establishment of a type 1 diabetes-specific AAb screening platform for organ procurement organizations (OPOs). Assay protocols for commercially available enzyme-linked immunosorbent assays (elisas) determining AAb against glutamic acid decarboxylase (GADA), insulinoma-associated protein-2 (IA-2A) and zinc transporter-8 (ZnT8A) were modified to identify AAb-positive donors within strict time requirements associated with organ donation programmes. These rapid elisas were evaluated by the international islet AAb standardization programme (IASP) and used by OPO laboratories as an adjunct to routine serological tests evaluating donors for organ transplantation. The rapid elisas performed well in three IASPs (2011, 2013, 2015) with 98-100% specificity for all three assays, including sensitivities of 64-82% (GADA), 60-64% (IA-2A) and 62-68% (ZnT8A). Since 2009, nPOD has screened 4442 organ donors by rapid elisa; 250 (5·6%) were identified as positive for one AAb and 14 (0.3%) for multiple AAb with 20 of these cases received by nPOD for follow-up studies (14 GADA+, two IA-2A(+) , four multiple AAb-positive). Rapid screening for type 1 diabetes-associated AAb in organ donors is feasible, allowing for identification of non-diabetic, high-risk individuals and procurement of valuable tissues for natural history studies of this disease. © 2016 British Society for Immunology.

  2. Synthesis and Characterization of Metal-Organic Frameworks (MOFs) for Photon Collection and Energy Transfer

    Science.gov (United States)

    So, Monica C.

    Projected global energy demand is widely believed to reach 30 TW by 2050. Currently, fossil fuels collectively represent over 80% of our total energy supply, while only 10% come from renewable sources. To meet future demands, however, we must maximize our use of renewable resources while minimizing our dependence on fossil fuels. While there are many sources of renewable energy, solar energy is one of the most abundant; in fact, the sun delivers up to 67 TW of power annually, which exceeds the projected energy demand in 2050. While there are multiple ways to convert sunlight to electricity, organic photovoltaics (OPVs) has the shortest energy payback time; this is the time required for the PV module to generate the equivalent amount of energy that originally was used to manufacture the PV module. OPVs show promise for light-to-electrical energy conversion with the best performing cells having power conversion efficiencies of 8%, but the theoretical maximum is at 32%. If efficiencies can be increased to even a fraction of the way to ˜16%, OPVs would be more cost-competitive with their inorganic counterparts. However, there are four major challenges in improving OPV performance. These include (a) poor light harvesting, due to a limited range of absorbance of visible light, (b) inefficient exciton splitting into holes and electrons, due to the limited diffusion length of excitons (typically ca. 10 nm), (c) increased recombination of separated charges at the donor/acceptor interface, and (d) inefficient collection of charges at the active layer/electrode interface (i.e. partial electrical shorting). OPVs constructed from conventional materials and architectures involve conflicting design requirements; this makes it impossible to address all four problems simultaneously. The projects described in this dissertation involve the design, synthesis, and characterization of a new class of OPV materials that have the potential to overcome the problems with conventional cells

  3. N-Heterocyclic carbene/Brønsted acid cooperative catalysis as a powerful tool in organic synthesis

    Directory of Open Access Journals (Sweden)

    Rob De Vreese

    2012-03-01

    Full Text Available The interplay between metals and N-heterocyclic carbenes (NHCs has provided a window of opportunities for the development of novel catalytic strategies within the past few years. The recent successful combination of Brønsted acids with NHCs has added a new dimension to the field of cooperative catalysis, enabling the stereoselective synthesis of functionalized pyrrolidin-2-ones as valuable scaffolds in heterocyclic chemistry. This Commentary will briefly highlight the concept of N-heterocyclic carbene/Brønsted acid cooperative catalysis as a new and powerful methodology in organic chemistry.

  4. Novel Easy Preparations of Some Aromatic Iodine(I, III, and V Reagents, Widely Applied in Modern Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Lech Skulski

    2003-01-01

    Full Text Available We report our novel (or considerably improved methods for the synthesis of aromatic iodides, (dichloroiodoarenes, (diacetoxyiodoarenes, [bis(trifluoroacetoxy-iodo]arenes, iodylarenes and diaryliodonium salts, as well as some facile, oxidative anion metatheses in crude diaryliodonium or tetraalkylammonium halides and, for comparison, potassium halides. All our formerly published papers were discussed and explained in our review “Organic Iodine(I, III, and V Chemistry: 10 Years of Development at the Medical University of Warsaw, Poland” (1990-2000 [1]. Our newest results are discussed below.

  5. Ultrasonic assisted rapid synthesis of high uniform super-paramagnetic microspheres with core-shell structure and robust magneto-chromatic ability

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wenyan, E-mail: wiseyanyan@jit.edu.cn [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Chen, Jiahua [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Wang, Wei [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing (China); Lu, GongXuan [State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Science, Lanzhou 730000 (China); Hao, Lingyun [College of Material Engineering, Jinling Institute of technology, Nanjing (China); Ni, Yaru; Lu, Chunhua; Xu, Zhongzi [Jiangsu Collaborative Innovation Center for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing (China); State Key Laboratory of Materials-Oriented Chemical Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing (China)

    2017-03-15

    Super-paramagnetic core-shell microspheres were synthesized by ultrasonic assisted routine under low ultrasonic irradiation powers. Compared with conventional routine, ultrasonic effect could not only improve the uniformity of the core-shell structure of Fe{sub 3}O{sub 4}@SiO{sub 2}, but shorten the synthesis time in large scale. Owing to their hydrophilicity and high surface charge, the Fe{sub 3}O{sub 4}@SiO{sub 2} microspheres could be dispersed well in distilled water to form homogeneous colloidal suspension. The suspensions have favorable magneto-chromatic ability that they sensitively exhibit brilliant colorful ribbons by magnetic attraction. The colorful ribbons, which distributed along the magnetic lines, make morphology of the magnetic fields become “visible” to naked eyed. Those colorful ribbons originate from strong magnetic interaction between the microspheres and magnetic fields. Furthermore, the magneto-chromatic performance is reversible as the colorful ribbons vanished rapidly with the removing of magnetic fields. The silica layer effectively enhanced the acid resistance and surface-oxidation resistance of theFe{sub 3}O{sub 4}@SiO{sub 2} microspheres, so they could exhibit stable magnetic nature and robust magneto-chromatic property in acid environment. - Graphical abstract: The Graphical abstract shows the sensitive magneto-chromatic ability, the acid resistance ability as well as the magneto-chromatic mechanism of the Fe{sub 3}O{sub 4} and Fe{sub 3}O{sub 4}@SiO{sub 2} suspension. - Highlights: • Sensitive and reversible robust magneto-chromatic property under magnetic attraction. • Morphology of magnetic field “visible” to naked eyes. • Enhance acid resistance and surface-oxidation resistance. • Ultrasonic effect largely shorten the synthesis time of high uniform microspheres.

  6. The synthesis of organic charge transfer hetero-microtubules by crack welding.

    Science.gov (United States)

    Kim, J; Chung, J; Hyon, J; Kwon, T; Seo, C; Nam, J; Kang, Y

    2014-09-14

    The strain-induced cracks in organic microtubules composed of an organic charge transfer (CT) complex of 1,2,4,5-tetracyanobenzene (TCNB) and naphthalene were selectively welded via the formation of secondary CT complexes; this process, in turn, led to the formation of organic hetero-microtubules consisting of multiple segments of two organic CT complexes.

  7. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes

    Science.gov (United States)

    Wang, Yaling; Zheng, Jingxia; Wang, Junli; Yang, Yongzhen; Liu, Xuguang

    2017-11-01

    Highly luminescent nitrogen-doped carbon dots (N-CDs) were synthesized rapidly by one-step microwave-assisted hydrothermal method using citric acid as carbon source and ethylenediamine as dopant. The influences of reaction temperature, reaction time and raw material ratio on the fluorescence performance of N-CDs were investigated. Then N-CDs with the highest quantum yield were selected as fluorescent materials for fabricating white light-emitting diodes (LEDs). Highly luminescent N-CDs with the quantum yield of 75.96% and blue-to-red spectral composition of 51.48% were obtained at the conditions of 180 °C, 8 min and the molar ratio of citric acid to ethylenediamine 2:1. As-prepared highly luminescent N-CDs have an average size of 6.06 nm, possess extensive oxygen- and nitrogen-containing functional groups on their surface, and exhibit strong absorption in ultraviolet region. White LEDs based on the highly luminescent N-CDs emit warm white light with color coordinates of (0.42, 0.40) and correlated color temperature of 3416 K.

  8. Rapid synthesis of core/shell ZnS:Mn/Si nanotetrapods by a catalyst-free thermal evaporation route.

    Science.gov (United States)

    Kar, Soumitra; Biswas, Subhajit

    2009-07-01

    We report the fabrication of a hybrid all semiconductor core/shell nanotetrapod structure consisting of crystalline ZnS:Mn core and amorphous Si shell for the first time. The nanostructures were produced via a catalyst-free rapid thermal evaporation technique. Core/shell nanotetrapods were formed in two steps: (i) formation of the crystalline ZnS:Mn tetrapods and (ii) simultaneous surface adsorption of the in situ formed Si vapor species providing the amorphous shell. Crystalline tetrapod formation was guided by the formation of cubic structured ZnS octahedrons with four active (111) polar growth planes, which served as the favored growth site for the four wurtzite structured legs of the tetrapods. Choice of chloride salt as the source of dopant ion was crucial for the in situ generation of Si vapor. At elevated temperature, chloride salt reacted with the sulfur vapor to produce S2Cl2 gas that etched the Si wafers, generating Si vapor. Suppression of the surface-state-related blue emission was observed in the core/shell structures that clearly supported the formation of a shell layer. Elimination of the surface states ensured efficient energy transfer to the dopant Mn ionic state, resulting in the strong orange emission via (4)T(1)-(6)A(1) electronic transition.

  9. Synthesis of Tunable Band Gap Semiconductor Nickel Sulphide Nanoparticles: Rapid and Round the Clock Degradation of Organic Dyes.

    Science.gov (United States)

    Molla, Aniruddha; Sahu, Meenakshi; Hussain, Sahid

    2016-05-17

    Controlled shape and size with tuneable band gap (1.92-2.41 eV), nickel sulphide NPs was achieved in presence of thiourea or thioacetamide as sulphur sources with the variations of temperature and capping agents. Synthesized NPs were fully characterized by powder XRD, IR, UV-vis, DRS, FE-SEM, TEM, EDX, XPS, TGA and BET. Capping agent, temperature and sulphur sources have significant role in controlling the band gaps, morphology and surface area of NPs. The catalytic activities of NPs were tested for round the clock (light and dark) decomposition of crystal violet (CV), rhodamine B (RhB), methylene blue (MB), nile blue (NB) and eriochrome black T (EBT). Agitation speed, temperature, pH and ionic strength have significant role on its catalytic activities. The catalyst was found to generate reactive oxygen species (ROS) both in presence and absence of light which is responsible for the decomposition of dyes into small fractions, identified with ESI-mass spectra.

  10. Synthesis of Tunable Band Gap Semiconductor Nickel Sulphide Nanoparticles: Rapid and Round the Clock Degradation of Organic Dyes

    National Research Council Canada - National Science Library

    Molla, Aniruddha; Sahu, Meenakshi; Hussain, Sahid

    2016-01-01

    Controlled shape and size with tuneable band gap (1.92-2.41 eV), nickel sulphide NPs was achieved in presence of thiourea or thioacetamide as sulphur sources with the variations of temperature and capping agents...

  11. Green synthesis of ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) using a new, rapid and room temperature photochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Molaei, M., E-mail: m.molaei@vru.ac.ir; Bahador, A.R.; Karimipour, M.

    2015-10-15

    In this work, ZnSe and core–shell ZnSe@ZnS nanocrystals (NCs) were synthesized using a one-pot, rapid and room temperature photochemical method. UV illumination provided the required energy for the chemical reactions. Synthesized NCs were characterized using X-ray diffraction spectroscopy (XRD), transmission electron microscopy (TEM), UV–vis and photoluminescence (PL) spectroscopy. XRD pattern indicated cubic zinc blende structure for ZnSe NCs and the TEM image indicated round-shaped particles, most of which had a diameter of about 3 nm. Band gap of ZnSe NCs was obtained as about 3.6 eV, which was decreased by increasing the illumination time. Synthesized NCs indicated intensive and narrow emission in the UV-blue area (370 nm) related to the excitonic recombination and a broad band emission with a peak located at about 490 nm originated from the DAP (donor–acceptor pairs) recombination. ZnS shell was grown on ZnSe cores using a reaction based on the photo-sensitivity of Na{sub 2}S{sub 2}O{sub 3}. For ZnSe@ZnS core–shell NCs, XRD diffraction peaks shifted to higher angles. TEM image indicated a shell around cores and most of the ZnSe@ZnS NCs have a diameter of about 5 nm. After the ZnS growth, ZnSe excitonic emission shifted to the longer wavelength and PL intensity was increased considerably. PL QY was obtained about 11% and 17% for ZnSe and ZnSe@ZnS core–shell QDs respectively. - Highlights: • A green photochemical approach was reported for synthesis of ZnSe NCs. • ZnS shell was grown around ZnSe using a new method. • Synthesis method was rapid, simple and at room temperature. • ZnSe NCs indicated a narrow UV-blue and a broad DAP emissions. • PL intensity was increased considerably by ZnS shell growth.

  12. Use of organic precursors and graphenes in the controlled synthesis of carbon-containing nanomaterials for energy storage and conversion.

    Science.gov (United States)

    Yang, Shubin; Bachman, Robert E; Feng, Xinliang; Müllen, Klaus

    2013-01-15

    The development of high-performance electrochemical energy storage and conversion devices, including supercapacitors, lithium-ion batteries, and fuel cells, is an important step on the road to alternative energy technologies. Carbon-containing nanomaterials (CCNMs), defined here as pure carbon materials and carbon/metal (oxide, hydroxide) hybrids with structural features on the nanometer scale, show potential application in such devices. Because of their pronounced electrochemical activity, high chemical and thermal stability and low cost, researchers are interested in CCNMs to serve as electrodes in energy-related devices. Various all-carbon materials are candidates for electrochemical energy storage and conversion devices. Furthermore, carbon-based hybrid materials, which consist of a carbon component with metal oxide- or metal hydroxide-based nanostructures, offer the opportunity to combine the attractive properties of these two components and tune the behavior of the resulting materials. As such, the design and synthesis of CCNMs provide an attractive route for the construction of high-performance electrode materials. Studies in these areas have revealed that both the composition and the fabrication protocol employed in preparing CCNMs influence the morphology and microstructure of the resulting material and its electrochemical performance. Consequently, researchers have developed several synthesis strategies, including hard-templated, soft-templated, and template-free synthesis of CCNMs. In this Account, we focus on recent advances in the controlled synthesis of such CCNMs and the potential of the resulting materials for energy storage or conversion applications. The Account is divided into four major categories based on the carbon precursor employed in the synthesis: low molecular weight organic or organometallic molecules, hyperbranched or cross-linked polymers consisting of aromatic subunits, self-assembling discotic molecules, and graphenes. In each case

  13. Organic template free synthesis of ZSM11 from kaolinite clay | Ajayi ...

    African Journals Online (AJOL)

    Zeolite ZSM11 is a promising catalyst that finds application in area not limited to benzene alkylation, gasoline formation from methanol, conversion of low density polyethene into hydrocarbon, etc. Accordingly, this work present successful synthesis of zeolite ZSM11 from kaolinite clay, seeded with NaY type zeolite and aged ...

  14. A Multistep Synthesis Featuring Classic Carbonyl Chemistry for the Advanced Organic Chemistry Laboratory

    Science.gov (United States)

    Duff, David B.; Abbe, Tyler G.; Goess, Brian C.

    2012-01-01

    A multistep synthesis of 5-isopropyl-1,3-cyclohexanedione is carried out from three commodity chemicals. The sequence involves an aldol condensation, Dieckmann-type annulation, ester hydrolysis, and decarboxylation. No purification is required until after the final step, at which point gravity column chromatography provides the desired product in…

  15. A Green, Enantioselective Synthesis of Warfarin for the Undergraduate Organic Laboratory

    Science.gov (United States)

    Wong, Terence C.; Sultana, Camille M.; Vosburg, David A.

    2010-01-01

    The enantioselective synthesis of drugs is of fundamental importance in the pharmaceutical industry. In this experiment, students synthesize either enantiomer of warfarin, a widely used anticoagulant, in a single step from inexpensive starting materials. Stereoselectivity is induced by a commercial organocatalyst, ("R","R")- or…

  16. BASIC SYNTHESIS AND BIOLOGICAL ACTIVITY OF SOME PHOSPHORCONTATNING ORGANIC COMPOUNDS CONTAINING FRAGMENTS OF UREA AND TRYHLORETILAMID

    Directory of Open Access Journals (Sweden)

    Gushylyk B.

    2013-10-01

    Full Text Available Data about directions of synthesis and use of the phosphororganic compounds in technics, biology and medicine is presented in the paper. Antimicrobial activity of 51 phosphororganic salts and ilides containing urine and threechlor ethylenamide has been studied. Perspective of the development of effective antimicrobial substances has been determined

  17. The Synthesis and Methanolysis of Benzyl Tosylates: An Advanced Organic Chemistry Laboratory Experiment.

    Science.gov (United States)

    Garst, Michael E.; Gribble, Gordon W.

    1984-01-01

    Describes a series of experiments (requiring six hours/week for six to eight weeks) involving the synthesis and methanolysis of substituted benzyl tosylates. The experiments provide students with experiences in kinetic data manipulation and an introduction and firm basis for structure-activity relationships and solvent effects in organic…

  18. Enzymatic synthesis of polyol seters in aqueous - organic two-phase systems

    NARCIS (Netherlands)

    Janssen, A.

    1993-01-01

    The last decade increasingly attention is paid to lipases as catalysts for synthesis of components, such as fatty acid-based surfactants, flavors, edible oil equivalents, monomers and polymers, and amides. In this thesis, the lipase-catalyzed esterification of polyols and fatty acids is

  19. Soft templating strategies for the synthesis of mesoporous materials: inorganic, organic-inorganic hybrid and purely organic solids.

    Science.gov (United States)

    Pal, Nabanita; Bhaumik, Asim

    2013-03-01

    With the discovery of MCM-41 by Mobil researchers in 1992 the journey of the research on mesoporous materials started and in the 21st century this area of scientific investigation have extended into numerous branches, many of which contribute significantly in emerging areas like catalysis, energy, environment and biomedical research. As a consequence thousands of publications came out in large varieties of national and international journals. In this review, we have tried to summarize the published works on various synthetic pathways and formation mechanisms of different mesoporous materials viz. inorganic, organic-inorganic hybrid and purely organic solids via soft templating pathways. Generation of nanoscale porosity in a solid material usually requires participation of organic template (more specifically surfactants and their supramolecular assemblies) called structure-directing agent (SDA) in the bottom-up chemical reaction process. Different techniques employed for the syntheses of inorganic mesoporous solids, like silicas, metal doped silicas, transition and non-transition metal oxides, mixed oxides, metallophosphates, organic-inorganic hybrids as well as purely organic mesoporous materials like carbons, polymers etc. using surfactants are depicted schematically and elaborately in this paper. Moreover, some of the frontline applications of these mesoporous solids, which are directly related to their functionality, composition and surface properties are discussed at the appropriate places. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Synthesis of nano-hydroxyapatite (nHA) from waste mussel shells using a rapid microwave method

    Energy Technology Data Exchange (ETDEWEB)

    Shavandi, Amin, E-mail: amin.shavandi@postgrad.otago.ac.nz [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Bekhit, Alaa El-Din A. [Department of Food Sciences, University of Otago, Dunedin (New Zealand); Ali, Azam [Department of Applied Sciences, University of Otago, Dunedin (New Zealand); Sun, Zhifa [Department of Physics, University of Otago, Dunedin (New Zealand)

    2015-01-15

    Nano-crystalline hydroxyapatite (HA, Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2}) was produced from waste mussel shells using a rapid microwave irradiation method. Mussel shells were converted to rod like nano-crystalline HA particles of 30–70 nm long using 0.1 M EDTA as a chelating agent for 30 min after an appropriate pre-treatment and an irradiation step in a microwave with a power of 1.1 kW. The produced HA was characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), thermo gravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR) and inductively coupled plasma mass spectrometry (ICP-MS) to determine the morphology, particle size, crystal phases, elemental composition and thermal behaviour. Furthermore, to benchmark the synthesized HA obtained from mussel shells, it was compared with a commercially pure HA (Sigma–Aldrich). The thermal analysis showed that the synthesized HA has remarkable heat stability at 1000 °C, and the XRD and FTIR results showed a high purity of the synthesized HA powders. Compared to the conventional hydrothermal treatment, microwave-assisted method has the advantages of an increased rate of HA formation. The obtained HA have potential engineering applications as materials for bone-tissues. - Highlights: • Waste mussel shells were successfully converted to nano sized hydroxyapatite. • Microwave-assisted technique accelerated the conversion process. • The physicochemical properties of the produced hydroxyapatite are reported. • The prepared hydroxyapatite has nano sized particles of less than 100 nm.

  1. Facile synthesis of red emitting 3-aminophenylboronic acid functionalized copper nanoclusters for rapid, selective and highly sensitive detection of glycoproteins.

    Science.gov (United States)

    Li, Xin-Ge; Zhang, Fei; Gao, Ya; Zhou, Qing-Meng; Zhao, Ye; Li, Yan; Huo, Jian-Zhong; Zhao, Xiao-Jun

    2016-12-15

    As an emerging class of fluorescent probes, copper nanoclusters (Cu NCs) have been considered as an intriguing candidate for detecting biomoleculars due to their outstanding fluorescent properties, excellent biocompatibility and low cost. Herein, we fabricated bovine serum albumin (BSA) protected Cu NCs (BSA-Cu NCs) and further functionalized them with 3-aminophenylboronic acid (APBA) for selectively discerning glycoproteins. In aqueous solution, Cu(2+) ions were directly reduced into BSA-Cu NCs by hydrazine hydrate (N2H4·H2O) at room-temperature using BSA as the capping agent. The synthetic process was very rapid, simple and easy for controlling due to the lack of any other complicated procedure such as heating and adjusting the pH value of the reactive mixture. The APBA-Cu NCs showed strong fluorescent emission at 630nm in the red range. So it can effectively avoid the disturbance of auto-fluorescence in biosamples. The fluorescence of the APBA-Cu NCs was obviously quenched by glycoprotein samples. Then, the APBA-Cu NCs were employed as a probe for selective capture and sensitive detection of glycoproteins with a wide linear range of 5-220nM and a low detection limit of 2.60nM owing to the covalent reaction between the boric acid group of APBA and the cis-glycol groups of the glycoproteins. The developed method was also successfully applied to determine glycoproteins in egg white of chickens and human urine samples with quantitative spike recoveries from 95% to 104%. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Self-organized Ruthenium-Barium Core-Shell Nanoparticles on a Mesoporous Calcium Amide Matrix for Efficient Low-Temperature Ammonia Synthesis.

    Science.gov (United States)

    Kitano, Masaaki; Inoue, Yasunori; Sasase, Masato; Kishida, Kazuhisa; Kobayashi, Yasukazu; Nishiyama, Kohei; Tada, Tomofumi; Kawamura, Shigeki; Yokoyama, Toshiharu; Hara, Michikazu; Hosono, Hideo

    2018-01-22

    A low-temperature ammonia synthesis process is required for on-site synthesis. Here, we report that barium-doped calcium amide (Ba-Ca(NH2)2) significantly enhances the ammonia synthesis activities of Ru and Co by two-orders of magnitude more than that of a conventional Ru catalyst below 300ºC. Furthermore, the present catalysts are superior to that of the wüstite-based Fe catalyst known as a highly active industrial catalyst at low temperatures and pressures. Nanosized Ru-Ba core-shell structures are self-organized on the support during hydrogen pretreatment, and the support material is simultaneously converted into a mesoporous structure with a high surface area (>100 m2 g-1). These unique self-organized nanostructures account for the high catalytic performance in low-temperature ammonia synthesis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Copper(I)-Catalyzed Cycloaddition of Bismuth(III) Acetylides with Organic Azides: Synthesis of Stable Triazole Anion Equivalents

    Science.gov (United States)

    Worrell, Brady T.; Ellery, Shelby P.

    2014-01-01

    Readily accessible and shelf-stable 1-bismuth(III) acetylides react rapidly and regiospecifically with organic azides in the presence of a copper(I) catalyst. The reaction tolerates many functional groups and gives excellent yields of the previously unreported, bench-stable 5-bismuth triazolides. This uniquely reactive intermediates can be further functionalized under extremely mild conditions to give fully substituted 1,2,3-triazoles. PMID:24130150

  4. Particle size studies to reveal crystallization mechanisms of the metal organic framework HKUST-1 during sonochemical synthesis.

    Science.gov (United States)

    Armstrong, Mitchell R; Senthilnathan, Sethuraman; Balzer, Christopher J; Shan, Bohan; Chen, Liang; Mu, Bin

    2017-01-01

    Systematic studies of key operating parameters for the sonochemical synthesis of the metal organic framework (MOF) HKUST-1(also called CuBTC) were performed including reaction time, reactor volume, sonication amplitude, sonication tip size, solvent composition, and reactant concentrations analyzed through SEM particle size analysis. Trends in the particle size and size distributions show reproducible control of average particle sizes between 1 and 4μm. These results along with complementary studies in sonofragmentation and temperature control were conducted to compare these results to kinetic crystal growth models found in literature to develop a plausible hypothetical mechanism for ultrasound-assisted growth of metal-organic-frameworks composed of a competitive mechanism including constructive solid-on-solid (SOS) crystal growth and a deconstructive sonofragmentation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD

    Science.gov (United States)

    Pedersen, Joachim D.; Esposito, Heather J.; Teh, Kwok Siong

    2011-10-01

    We report a rapid, self-catalyzed, solid precursor-based thermal plasma chemical vapor deposition process for depositing a conformal, nonporous, and optically transparent nanocrystalline ZnO thin film at 130 Torr (0.17 atm). Pure solid zinc is inductively heated and melted, followed by ionization by thermal induction argon/oxygen plasma to produce conformal, nonporous nanocrystalline ZnO films at a growth rate of up to 50 nm/min on amorphous and crystalline substrates including Si (100), fused quartz, glass, muscovite, c- and a-plane sapphire (Al2O3), gold, titanium, and polyimide. X-ray diffraction indicates the grains of as-deposited ZnO to be highly textured, with the fastest growth occurring along the c-axis. The individual grains are observed to be faceted by (103) planes which are the slowest growth planes. ZnO nanocrystalline films of nominal thicknesses of 200 nm are deposited at substrate temperatures of 330°C and 160°C on metal/ceramic substrates and polymer substrates, respectively. In addition, 20-nm- and 200-nm-thick films are also deposited on quartz substrates for optical characterization. At optical spectra above 375 nm, the measured optical transmittance of a 200-nm-thick ZnO film is greater than 80%, while that of a 20-nm-thick film is close to 100%. For a 200-nm-thick ZnO film with an average grain size of 100 nm, a four-point probe measurement shows electrical conductivity of up to 910 S/m. Annealing of 200-nm-thick ZnO films in 300 sccm pure argon at temperatures ranging from 750°C to 950°C (at homologous temperatures between 0.46 and 0.54) alters the textures and morphologies of the thin film. Based on scanning electron microscope images, higher annealing temperatures appear to restructure the ZnO nanocrystalline films to form nanorods of ZnO due to a combination of grain boundary diffusion and bulk diffusion. PACS: films and coatings, 81.15.-z; nanocrystalline materials, 81.07.Bc; II-VI semiconductors, 81.05.Dz.

  6. Bridging the gap between cell biology and organic chemistry: chemical synthesis and biological application of lipidated peptides and proteins.

    Science.gov (United States)

    Peters, Carsten; Wagner, Melanie; Völkert, Martin; Waldmann, Herbert

    2002-09-01

    We have developed a basic concept for studying cell biological phenomena using an interdisciplinary approach starting from organic chemistry. Based on structural information available for a given biological phenomenon, unsolved chemical problems are identified. For their solution, new synthetic pathways and methods are developed, which reflect the state of the art in synthesising lipidated peptide conjugates. These compounds are used as molecular probes for the investigation of biological phenomena that involve both the determination of biophysical properties and cell biological studies. The interplay between organic synthesis, biophysics and cell biology in the study of protein lipidation may open up new and alternative opportunities to gain knowledge about the biological phenomenon that could not be obtained by employing biological techniques alone. This fruitful combination is highlighted using the Ras protein as an outstanding example. Included herein is: the development of methods for the synthesis of Ras-derived peptides and fully functional Ras proteins, the determination of the biophysical properties, in particular the ability to bind to model membranes, and finally the use of synthetic Ras peptides and proteins in cell biological experiments.

  7. Rapid, general synthesis of PdPt bimetallic alloy nanosponges and their enhanced catalytic performance for ethanol/methanol electrooxidation in an alkaline medium.

    Science.gov (United States)

    Zhu, Chengzhou; Guo, Shaojun; Dong, Shaojun

    2013-01-14

    We have demonstrated a rapid and general strategy to synthesize novel three-dimensional PdPt bimetallic alloy nanosponges in the absence of a capping agent. Significantly, the as-prepared PdPt bimetallic alloy nanosponges exhibited greatly enhanced activity and stability towards ethanol/methanol electrooxidation in an alkaline medium, which demonstrates the potential of applying these PdPt bimetallic alloy nanosponges as effective electrocatalysts for direct alcohol fuel cells. In addition, this simple method has also been applied for the synthesis of AuPt, AuPd bimetallic, and AuPtPd trimetallic alloy nanosponges. The as-synthesized three-dimensional bimetallic/trimetallic alloy nanosponges, because of their convenient preparation, well-defined sponge-like network, large-scale production, and high electrocatalytic performance for ethanol/methanol electrooxidation, may find promising potential applications in various fields, such as formic acid oxidation or oxygen reduction reactions, electrochemical sensors, and hydrogen-gas sensors. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rapid synthesis of silver nanoparticles byPseudomonas stutzeriisolated from textile soil under optimised conditions and evaluation of their antimicrobial and cytotoxicity properties.

    Science.gov (United States)

    Rajora, Nishant; Kaushik, Sanket; Jyoti, Anupam; Kothari, Shanker L

    2016-12-01

    Present study utilised textile soil isolated bacterium Pseudomonas stutzeri to synthesise extracellular silver nanoparticles (AgNPs) under optimised conditions. The synthesised AgNPs were characterised using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM). Optimisation showed AgNPs synthesis within 8 h using 2mM Ag nitrate at pH9, temperature 80°C and maximum absorbance toward 400 nm. TEM analysis revealed spherical shape AgNPs and reduction in size upto 8 nm was observed under optimised conditions. FTIR spectra confirmed presence of proteins bound to AgNPs act as reducing agent. AgNPs showed strong antibacterial activity against multi-drug resistant (MDR) Escherichia coli and Klebsiella pneumoniae as demonstrated by disc diffusion and colony forming unit assays. Zone of inhibition increased with increasing concentration of AgNPs with maximum of 19 mm against E. coli and 17 mm against K. pneumoniae at concentration of 2 μg/disc. Furthermore, AgNPs did not show any cytotoxic effects on human epithelial cells as demonstrated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay even at 2 μg/ml concentration of AgNPs. The results of the present study suggest that AgNPs can be synthesised rapidly under optimised conditions and show strong antimicrobial property against MDR pathogens without having toxicity effect on human epithelial cells.

  9. Multifunctional graphene micro-islands: Rapid, low-temperature plasma-enabled synthesis and facile integration for bioengineering and genosensing applications.

    Science.gov (United States)

    Pineda, Shafique; Borghi, Fabricio Frizera; Seo, Dong Han; Yick, Samuel; Lawn, Malcolm; van der Laan, Timothy; Han, Zhao Jun; Ostrikov, Kostya Ken

    2017-03-15

    Here, we present a rapid, low-temperature (200°C) plasma-enabled synthesis of graphene micro-islands (GMs). Morphological analyses of GMs by scanning electron microscopy (SEM) and atomic force microscopy (AFM) feature a uniform and open-networked array of aggregated graphene sheets. Structural and surface chemical characterizations by Raman spectroscopy and X-ray photoelectron spectroscopy (XPS) support the presence of thin graphitic edges and reactive oxygen functional groups. We demonstrate that these inherent properties of GMs enable its multifunctional capabilities as a bioactive interface. GMs exhibit a biocompatibility of 80% cell viability with primary fibroblast lung cells after 5 days. Further, GMs were assembled into an impedimetric genosensor, and its performance was characterized by electrochemical impedance spectroscopy (EIS). A dynamic sensing range of 1pM to 1nM is reported, and a limit of quantification (LOQ) of 2.03×10(-13)M is deduced, with selectivity to single-RNA-base mismatched sequences. The versatile nature of GMs may be explored to enable multi-faceted bioactive platforms for next-generation personalized healthcare technologies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Ultra rapid direct heating synthesis of ZnO nanorods with improved light trapping from stacked photoanodes for high efficiency photocatalytic water splitting

    Science.gov (United States)

    Cheat Lee, Wei; Fang, Yuanxing; Commandeur, Daniel; Qian, Rong; Al-Abdullah, Zainab T. Y.; Chen, Qiao

    2017-09-01

    An ultra rapid growth method for vertically aligned ZnO nanorod (NR) thin films on metal meshes was developed using a direct heating synthesis technique. A typical NR growth rate of 10 μm h-1 was achieved. The effects of the applied heating power and growth duration on the morphologies of ZnO nanostructures were examined. High density surface defects were formed on the ZnO NRs, which is responsible for slow charge recombination and high efficiency in the photoelectrochemical (PEC) water splitting process. The light absorption for a photoanode was significantly improved by light trapping using a 3D stacked metal mesh photoanode structure. With the internal reflection between the stacked photoanodes, the final light leakage is minimised. The light absorption in the stacked photoanode is improved without restricting the charge transportation. In comparison with a single mesh photoanode and a chemical bath deposition grown flat photoanode, the PEC water splitting efficiency from the stacked photoanode was increased by a factor of 2.6 and 6.1 respectively.

  11. Microscale methods to rapidly evaluate bioprocess options for increasing bioconversion yields: application to the ω-transaminase synthesis of chiral amines.

    Science.gov (United States)

    Halim, Murni; Rios-Solis, Leonardo; Micheletti, Martina; Ward, John M; Lye, Gary J

    2014-05-01

    This work aims to establish microscale methods to rapidly explore bioprocess options that might be used to enhance bioconversion reaction yields: either by shifting unfavourable reaction equilibria or by overcoming substrate and/or product inhibition. As a typical and industrially relevant example of the problems faced we have examined the asymmetric synthesis of (2S,3R)-2-amino-1,3,4-butanetriol from l-erythrulose using the ω-transaminase from Chromobacterium violaceum DSM30191 (CV2025 ω-TAm) and methylbenzylamine as the amino donor. The first process option involves the use of alternative amino donors. The second couples the CV2025 ω-TAm with alcohol dehydrogenase and glucose dehydrogenase for removal of the acetophenone (AP) by-product by in situ conversion to (R)-1-phenylethanol. The final approaches involve physical in-situ product removal methods. Reduced pressure conditions, attained using a 96-well vacuum manifold were used to selectively increase evaporation of the volatile AP while polymeric resins were also utilised for selective adsorption of AP from the bioconversion medium. For the particular reaction studied here the most promising bioprocess options were use of an alternative amino donor, such as isopropylamine, which enabled a 2.8-fold increase in reaction yield, or use of a second enzyme system which achieved a 3.3-fold increase in yield.

  12. Enzymatic synthesis of polyol seters in aqueous - organic two-phase systems

    OpenAIRE

    A. Janssen

    1993-01-01

    The last decade increasingly attention is paid to lipases as catalysts for synthesis of components, such as fatty acid-based surfactants, flavors, edible oil equivalents, monomers and polymers, and amides. In this thesis, the lipase-catalyzed esterification of polyols and fatty acids is described. These esters consist of a nonpolar part (fatty acid) and a polar part (polyol). Therefore, polyol esters have surface-active properties and are used as emulsifier in food, pharmaceutics; an...

  13. Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake

    CSIR Research Space (South Africa)

    Ren, Jianwei

    2014-08-01

    Full Text Available -1 International Journal of Hydrogen Energy Vol. 39(23) Modulated synthesis of chromium-based metalorganic framework (MIL-101) with enhanced hydrogen uptake Jianwei Ren a,*, Nicholas M. Musyoka a, Henrietta W. Langmi a, Tshiamo Segakweng a, Brian C. North... a, Mkhulu Mathe a, Xiangdong Kang b a HySA Infrastructure Centre of Competence, Materials Science and Manufacturing, Council for Scientific and Industrial Research (CSIR), PO Box 395, Pretoria 0001, South Africa b Shenyang National Laboratory...

  14. Synthesis and morphogenesis of organic and inorganic polymers by means of biominerals and biomimetic materials.

    Science.gov (United States)

    Kijima, Misako; Oaki, Yuya; Munekawa, Yurika; Imai, Hiroaki

    2013-02-11

    We have studied the simultaneous synthesis and morphogenesis of polymer materials with hierarchical structures from nanoscopic to macroscopic scales. The morphologies of the original materials can be replicated to the polymer materials. In general, it is not easy to achieve the simultaneous synthesis and morphogenesis of polymer material even using host materials. In the present work, four biominerals and three biomimetic mesocrystal structures are used as the host materials or templates and polypyrrole, poly(3-hexylthiopehene), and silica were used as the precursors for the simultaneous syntheses and morphogenesis of polymer materials. The host materials with the hierarchical structure possess the nanospace for the incorporation of the monomers. After the incorporation of the monomers, the polymerization reaction proceeds in the nanospace with addition of the initiator agents. Then, the dissolution of the host materials leads to the formation and morphogenesis of the polymer materials. The scheme of the replication can be classified into the three types based on the structures of the host materials (types I-III). The type I template facilitates the hierarchical replication of the whole host material, type II mediates the hierarchical surface replication, and type III induces the formation of the two-dimensional nanosheets. Based on these results, the approach for the coupled synthesis and morphogenesis can be applied to a variety of combinations of the templates and polymer materials. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and characterization of silicon-based polymers for use as organic/inorganic hybrids and silicon carbide precursors

    Science.gov (United States)

    Sellinger, Alan

    Organic/inorganic hybrids from silsesquioxanes. This Dissertation describes the synthesis and characterization of methacrylate, epoxy and liquid crystalline (LC)-containing organic/inorganic hybrid materials based on silsesquioxanes. While the methacrylate and epoxy groups provide polymerizable moieties to the hybrids, the LC component is anticipated to provide toughness, and oxidative stability as well as minimize shrinkage during curing. The inorganic silsesquioxane portion, ((RSiOsb{1.5})sb8, cubes), which closely resembles specific crystalline forms of silica and zeolites, may be covalently linked to a variety of organic functional groups. As a result, single-phase organic/inorganic hybrids are formed that when polymerized mimic silica-reinforced composites. The resultant hybrids are liquids at room temperature, and hence allow for single-phase composite processing, ideal for abrasion-resistant coatings and filling molds, as in dental restorative applications. The reactions are based on inexpensive starting materials, have high yields (>80%), and form soluble products containing up to 65% masked silica. The hybrids were characterized using NMR spectroscopy (sp1H,\\ sp{13}C,\\ sp{29}Si), FTIR, size exclusion chromatography (SEC), and thermal analysis (TGA, DSC). A modified polymethylsilane as a precursor of silicon carbide. It is generally known that polymer precursor routes to silicon carbide (SiC) are very important in the processing of SiC fibers and high performance SiC parts with specific shapes. It is further known that commercial SiC precursor polymers are often not resistant to oxidation, and are based on monomers rich in carbon. As a result of this, their pyrolysis yields SiC rich in oxygen and carbon, a feature which drastically reduces the final materials' ultimate properties (high temperature resistance, tensile strength, modulus). To remedy this, we describe in this work the synthesis and characterization of a modified polymethylsilane (mPMS) which

  16. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  17. De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities.

    Science.gov (United States)

    Farha, Omar K; Yazaydın, A Özgür; Eryazici, Ibrahim; Malliakas, Christos D; Hauser, Brad G; Kanatzidis, Mercouri G; Nguyen, SonBinh T; Snurr, Randall Q; Hupp, Joseph T

    2010-11-01

    Metal-organic frameworks--a class of porous hybrid materials built from metal ions and organic bridges--have recently shown great promise for a wide variety of applications. The large choice of building blocks means that the structures and pore characteristics of the metal-organic frameworks can be tuned relatively easily. However, despite much research, it remains challenging to prepare frameworks specifically tailored for particular applications. Here, we have used computational modelling to design and predictively characterize a metal-organic framework (NU-100) with a particularly high surface area. Subsequent experimental synthesis yielded a material, matching the calculated structure, with a high BET surface area (6,143 m(2) g(-1)). Furthermore, sorption measurements revealed that the material had high storage capacities for hydrogen (164 mg g(-1)) and carbon dioxide (2,315 mg g(-1))--gases of high importance in the contexts of clean energy and climate alteration, respectively--in excellent agreement with predictions from modelling.

  18. Controlled Synthesis of Organic/Inorganic van der Waals Solid for Tunable Light-Matter Interactions.

    Science.gov (United States)

    Niu, Lin; Liu, Xinfeng; Cong, Chunxiao; Wu, Chunyang; Wu, Di; Chang, Tay Rong; Wang, Hong; Zeng, Qingsheng; Zhou, Jiadong; Wang, Xingli; Fu, Wei; Yu, Peng; Fu, Qundong; Najmaei, Sina; Zhang, Zhuhua; Yakobson, Boris I; Tay, Beng Kang; Zhou, Wu; Jeng, Horng Tay; Lin, Hsin; Sum, Tze Chien; Jin, Chuanhong; He, Haiyong; Yu, Ting; Liu, Zheng

    2015-12-16

    High-quality organic and inorganic van der Waals (vdW) solids are realized using methylammonium lead halide (CH3 NH3 PbI3 ) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids exhibit dramatically different light emissions. Futhermore, organic/h-BN vdW solid arrays are patterned for red-light emission. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Gene expression and content of enzymes of noradrenaline synthesis in the rat organ of Zuckerkandl at the critical period of morphogenesis.

    Science.gov (United States)

    Murtazina, A R; Nikishina, Yu O; Bondarenko, N S; Sapronova, A Ya; Volina, E V; Ugrumov, M V

    2017-05-01

    Gene expression and content of the key enzymes involved in the synthesis of noradrenaline-tyrosine hydroxylase and dopamine beta-hydroxylase-was evaluated in the organ of Zuckerkandl of rats in the critical period of morphogenesis. High levels of mRNA and protein of both enzymes in the perinatal period of development and their sharp decline on day 30 of postnatal development were detected. These data indicate that the synthesis of noradrenaline in the organ of Zuckerkandl is maximum during the critical period of morphogenesis and decreases during the involution of this paraganglion.

  20. Bioinformatic tools for using whole genome sequencing as a rapid high resolution diagnostic typing tool when tracing bioterror organisms in the food and feed chain.

    Science.gov (United States)

    Segerman, Bo; De Medici, Dario; Ehling Schulz, Monika; Fach, Patrick; Fenicia, Lucia; Fricker, Martina; Wielinga, Peter; Van Rotterdam, Bart; Knutsson, Rickard

    2011-03-01

    The rapid technological development in the field of parallel sequencing offers new opportunities when tracing and tracking microorganisms in the food and feed chain. If a bioterror organism is deliberately spread it is of crucial importance to get as much information as possible regarding the strain as fast as possible to aid the decision process and select suitable controls, tracing and tracking tools. A lot of efforts have been made to sequence multiple strains of potential bioterror organisms so there is a relatively large set of reference genomes available. This study is focused on how to use parallel sequencing for rapid phylogenomic analysis and screen for genetic modifications. A bioinformatic methodology has been developed to rapidly analyze sequence data with minimal post-processing. Instead of assembling the genome, defining genes, defining orthologous relations and calculating distances, the present method can achieve a similar high resolution directly from the raw sequence data. The method defines orthologous sequence reads instead of orthologous genes and the average similarity of the core genome (ASC) is calculated. The sequence reads from the core and from the non-conserved genomic regions can also be separated for further analysis. Finally, the comparison algorithm is used to visualize the phylogenomic diversity of the bacterial bioterror organisms Bacillus anthracis and Clostridium botulinum using heat plot diagrams. Copyright © 2010 Elsevier B.V. All rights reserved.

  1. Organic synthesis and inhibition action of novel hydrazide derivative for mild steel corrosion in acid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, Zeinab A. [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt); Mohamed Ahmed, Mohamed S., E-mail: mohamedsolimanmohamedahmed@yahoo.co.uk [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt); Saleh, M.M., E-mail: mahmoudsaleh90@yahoo.com [Department of Chemistry, Faculty of Science, Cairo University, Giza (Egypt); Chemistry Department, College of Science, King Faisal University, Al-Hassa (Saudi Arabia)

    2016-05-01

    A new derivative of hydrazide family, 2-(2-hydrazinyl-1,6-dihydro-6-oxopyrimidin-4-yl) acetohydrazide (HDOP) is synthesized and used as a corrosion inhibitor for mild steel both in 1 M HCl and 0.5 M H{sub 2}SO{sub 4} solutions. A facial synthesis of a novel hydrazinyl hydrazide derivative is accomplished via a one-pot synthesis. Reaction of ethyl 2-(1,2,3,6-tetrahydro-6-oxo-2-thiopyrimidin-4-yl)acetate (1) with hydrazine hydrate in an ethanol refluxing produces the target hydrazinyl hydrazide derivative in a good yield. Different techniques such as IR, NMR and mass spectroscopy are used for characterization of the obtained products. The inhibition of mild steel corrosion using HDOP in different concentrations is studied by electrochemical impedance spectroscopy and polarization measurements. The inhibition efficiency (IE) of HDOP is found to be higher in HCl than that in H{sub 2}SO{sub 4} solution. This is attributed to the stronger adsorption of Cl{sup −} on the iron surface which enables better synergism between Cl{sup −} and the protonated inhibitor. The HDOP acts mainly as a cathodic inhibitor (in both acid solutions) and an inhibition efficiency of ∼89% was obtained in the HCl solution. The free energy of adsorption obtained by applying Langmuir adsorption isotherm predicts physisorption of HDOP on the iron surface in the HCl solution. - Highlights: • One-pot synthesis of novel hydrazinyl hydrazide (HDOP) derivative is described. • Both spectral and elemental analyses are used for characterization of the HDOP. • EIS, Tafel plots, SEM and EDX are used in the corrosion study in HCl and H{sub 2}SO{sub 4}.

  2. Electrochemical Synthesis of a Microporous Conductive Polymer Based on a Metal-Organic Framework Thin Film

    KAUST Repository

    Lu, Chunjing

    2014-05-22

    A new approach to preparing 3D microporous conductive polymer has been demonstrated in the electrochemical synthesis of a porous polyaniline network with the utilization of a MOF thin film supported on a conducting substrate. The prepared porous polyaniline with well-defined uniform micropores of 0.84 nm exhibits a high BET surface area of 986 m2 g−1 and a high electric conductivity of 0.125 S cm−1 when doped with I2, which is superior to existing porous conducting materials of porous MOFs, CMPs, and COFs.

  3. Structural organization of films based on polyaniline/polysulfonic acid complexes depending on the synthesis method

    Energy Technology Data Exchange (ETDEWEB)

    Simagina, L. V., E-mail: lsimagina@gmail.com; Gaynutdinov, R. V.; Stepina, N. D.; Sorokina, K. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Morozova, O. V.; Shumakovich, G. P.; Yaropolov, A. I., E-mail: yaropolov@inbi.ras.ru [Russian Academy of Sciences, Bach Institute of Biochemistry (Russian Federation); Tolstikhina, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-07-15

    The optical properties and morphology of complexes based on polyaniline (PANI) and poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPS), depending on their synthesis conditions, have been characterized by UV-visible spectroscopy and atomic force microscopy. The dependence of the electron absorption spectra of PANI/PAMPS complexes and the surface topography of their films on the initiation way of PANI formation (chemical and enzymatic) and the use of promoters of aniline polymerization has been investigated. The aniline polymerization kinetics with and without polymerization promoters has been studied. All PANI/PAMPS complexes are found to have a nanocomposite time-stable structure.

  4. A taxonomy of rapid reviews links report types and methods to specific decision-making contexts.

    Science.gov (United States)

    Hartling, Lisa; Guise, Jeanne-Marie; Kato, Elisabeth; Anderson, Johanna; Belinson, Suzanne; Berliner, Elise; Dryden, Donna M; Featherstone, Robin; Mitchell, Matthew D; Motu'apuaka, Makalapua; Noorani, Hussein; Paynter, Robin; Robinson, Karen A; Schoelles, Karen; Umscheid, Craig A; Whitlock, Evelyn

    2015-12-01

    Describe characteristics of rapid reviews and examine the impact of methodological variations on their reliability and validity. We conducted a literature review and interviews with organizations that produce rapid reviews or related products to identify methods, guidance, empiric evidence, and current practices. We identified 36 rapid products from 20 organizations (production time, 5 minutes to 8 months). Methods differed from systematic reviews at all stages. As time frames increased, methods became more rigorous; however, restrictions on database searching, inclusion criteria, data extracted, and independent dual review remained. We categorized rapid products based on extent of synthesis. "Inventories" list what evidence is available. "Rapid responses" present best available evidence with no formal synthesis. "Rapid reviews" synthesize the quality of and findings from the evidence. "Automated approaches" generate meta-analyses in response to user-defined queries. Rapid products rely on a close relationship with end users and support specific decisions in an identified time frame. Limited empiric evidence exists comparing rapid and systematic reviews. Rapid products have tremendous methodological variation; categorization based on time frame or type of synthesis reveals patterns. The similarity across rapid products lies in the close relationship with the end user to meet time-sensitive decision-making needs. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Rapid, ultrasensitive detection of micro-organisms based on interferometry and lab-on-a-chip nanotechnology

    NARCIS (Netherlands)

    Ymeti, Aurel; Dudia, A.; Nederkoorn, P.H.J.; Nederkoom, Paul H.J.; Subramaniam, Vinod; Kanger, Johannes S.; Halvorson, Craig S.; Southern, Sarka O.; Kumar, B.V.K. Vijaya; Prabhakar, Salil; Ross, Arun A.

    2009-01-01

    Future viral outbreaks are a major threat to societal and economic development throughout the world. A rapid, sensitive, and easy-to-use test for viral infections is essential to prevent and to control such viral pandemics. Furthermore, a compact, portable device is potentially very useful in remote

  6. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  7. Organic-free synthesis of layer-like FAU-type zeolites.

    Science.gov (United States)

    Inayat, A; Schneider, C; Schwieger, W

    2015-01-01

    The formation of layer-like FAU-type zeolites was facilitated in the absence of any organic template. Instead, the addition of simple inorganic salts turned out to be an effective and easy to handle alternative to organic additives to induce morphological and even structural changes during zeolite crystallisation.

  8. Organic Materials in the Undergraduate Laboratory: Microscale Synthesis and Investigation of a Donor-Acceptor Molecule

    Science.gov (United States)

    Pappenfus, Ted M.; Schliep, Karl B.; Dissanayake, Anudaththa; Ludden, Trevor; Nieto-Ortega, Belen; Lopez Navarrete, Juan T.; Ruiz Delgado, M. Carmen; Casado, Juan

    2012-01-01

    A series of experiments for undergraduate courses (e.g., organic, physical) have been developed in the area of small molecule organic materials. These experiments focus on understanding the electronic and redox properties of a donor-acceptor molecule that is prepared in a convenient one-step microscale reaction. The resulting intensely colored…

  9. Green synthesis of silver nanoparticles by microorganism using organic pollutant: its antimicrobial and catalytic application.

    Science.gov (United States)

    Otari, S V; Patil, R M; Nadaf, N H; Ghosh, S J; Pawar, S H

    2014-01-01

    A novel approach for the green synthesis of silver nanoparticles (AgNPs) from aqueous solution of AgNO3 using culture supernatant of phenol degraded broth is reported in this work. The synthesis was observed within 10 h, and AgNPs showed characteristic surface plasmon resonance around 410 nm. Spherical nanoparticles of size less than 30 nm were observed in transmission electron microscopy. X-ray diffraction pattern corresponding to 111, 200, 220, and 311 revealed the crystalline nature of the as-formed nanoparticles. It was found that the colloidal solution of AgNP suspensions exhibited excellent stability over a wide range of ionic strength, pH, and temperature. The effect of pH and ionic strength indicated that stabilization is due to electrostatic repulsion arising from the negative charge of the conjugate proteins. The AgNPs showed highly potent antimicrobial activity against Gram-positive, Gram-negative, and fungal microorganisms. The as-prepared AgNPs showed excellent catalytic activity in reduction of 4-nitrophenol to 4-aminophenol by NaBH4. By manufacturing magnetic alginate beads, the reusability of the AgNPs for the catalytic reaction has been demonstrated.

  10. Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process.

    Science.gov (United States)

    Bignami, Giulia P M; Dawson, Daniel M; Seymour, Valerie R; Wheatley, Paul S; Morris, Russell E; Ashbrook, Sharon E

    2017-04-12

    The great utility and importance of zeolites in fields as diverse as industrial catalysis and medicine has driven considerable interest in the ability to target new framework types with novel properties and applications. The recently introduced and unconventional assembly, disassembly, organization, reassembly (ADOR) method represents one exciting new approach to obtain solids with targeted structures by selectively disassembling preprepared hydrolytically unstable frameworks and then reassembling the resulting products to form materials with new topologies. However, the hydrolytic mechanisms underlying such a powerful synthetic method are not understood in detail, requiring further investigation of the kinetic behavior and the outcome of reactions under differing conditions. In this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of (17)O- and doubly (17)O- and (29)Si-enriched UTL-derived zeolites, by synthesis of (29)Si-enriched starting Ge-UTL frameworks and incorporation of (17)O from (17)O-enriched water during hydrolysis. (17)O and (29)Si NMR experiments are able to demonstrate that the hydrolysis and rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels of (17)O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process and provides insight into the detailed mechanism of the structural changes involved.

  11. Mild Conditions for Deuteration of Primary and Secondary Arylamines for the Synthesis of Deuterated Optoelectronic Organic Molecules

    Directory of Open Access Journals (Sweden)

    Anwen M. Krause-Heuer

    2014-11-01

    Full Text Available Deuterated arylamines demonstrate great potential for use in optoelectronic devices, but their widespread utility requires a method for large-scale synthesis. The incorporation of these deuterated materials into optoelectronic devices also provides the opportunity for studies of the functioning device using neutron reflectometry based on the difference in the scattering length density between protonated and deuterated compounds. Here we report mild deuteration conditions utilising standard laboratory glassware for the deuteration of: diphenylamine, N-phenylnaphthylamine, N-phenyl-o-phenylenediamine and 1-naphthylamine (via H/D exchange in D2O at 80 °C, catalysed by Pt/C and Pd/C. These conditions were not successful in the deuteration of triphenylamine or N,N-dimethylaniline, suggesting that these mild conditions are not suitable for the deuteration of tertiary arylamines, but are likely to be applicable for the deuteration of other primary and secondary arylamines. The deuterated arylamines can then be used for synthesis of larger organic molecules or polymers with optoelectronic applications.

  12. Synthesis, growth and characterization of organic nonlinear optical material: N-benzyl-2-methyl-4-nitroaniline (BNA)

    Science.gov (United States)

    Kalaivanan, R.; Srinivasan, K.

    2017-05-01

    Synthesis of the organic nonlinear optical compound N-benzyl-2-methyl-4-nitroaniline (BNA) was carried out in a newer chemical environment using the mixture of benzyl chloride and 2-methl-4-nitroaniline by a preferred laboratory synthesis process. The synthesized BNA compound was separated by column chromatography (CC) with low pressure silica gell using petrollium benzine and purity of the separated resultant product was confirmed by thin layer chromatography (TLC). Further, the material was recrystallized atleast four times in methanol and the highly purified BNA was used for the growth of single crystals from solutions with selected solvents by slow evaporation method at room temperature. Single crystals having natural growth morphology were harvested and their different growth faces were identified by optical goniometry. The grown crystals were subjected to different characterization techniques such as powder x-ray diffraction (PXRD), fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and UV-vis-Near IR spectroscopy. Further, the second harmonic generation (SHG) efficiency of the grown BNA crystal was studied by Kurtz and Perry powder technique using Nd:YAG laser as fundamental source and found to be twice that of inorganic standard KDP.

  13. Ultrasound-assisted synthesis of nano-structured Zinc(II)-based metal-organic frameworks as precursors for the synthesis of ZnO nano-structures.

    Science.gov (United States)

    Bigdeli, Fahime; Ghasempour, Hosein; Azhdari Tehrani, Alireza; Morsali, Ali; Hosseini-Monfared, Hassan

    2017-07-01

    A 3D, porous Zn(II)-based metal-organic framework {[Zn 2 (oba) 2 (4-bpmn)]·(DMF) 1.5 } n (TMU-21), (4-bpmn=N,N'-Bis-pyridin-4-ylmethylene-naphtalene-1,5-diamine, H 2 oba=4,4'-oxybis(benzoic acid)) with nano-rods morphology under ultrasonic irradiation at ambient temperature and atmospheric pressure was prepared and characterized by scanning electron microscopy. Sonication time and concentration of initial reagents effects on the size and morphology of nano-structured MOFs were studied. Also {[Zn 2 (oba) 2 (4-bpmn)] (TMU-21) and {[Zn 2 (oba) 2 (4-bpmb)] (TMU-6), 4-bpmb=N,N'-(1,4-phenylene)bis(1-(pyridin-4-yl)methanimine) were easily prepared by mechanochemical synthesis. Nanostructures of Zinc(II) oxide were obtained by calcination of these compounds and their de-solvated analogue as activated MOFs, at 550°C under air atmosphere. As a result of that, different Nanostructures of Zinc(II) oxide were obtained. The ZnO nanoparticles were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM) and FT-IR spectroscopy. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Rapid synthesis of rutile TiO2 nano-flowers by dealloying Cu60Ti30Y10 metallic glasses

    Science.gov (United States)

    Wang, Ning; Pan, Ye; Wu, Shikai; Zhang, Enming; Dai, Weiji

    2018-01-01

    The 3D nanostructure rutile TiO2 photocatalyst was rapidly synthesized by dealloying method using Cu60Ti30Y10 amorphous ribbons as precursors. The preparation period was kept down to just 3 h, which is much shorter than those of the samples by dealloying Cu60Ti30Al10, Cu70Ti30 and Cu60Ti30Sn10. The synthesized sample was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). XRD and XPS reveal the successful synthesis of rutile TiO2. The SEM and TEM images show that the synthesized rutile TiO2 nano-material presents homogeneous distributed 3D nanoflowers structure, which is composed of large quantities of fine rice-like nanorods (40-150 nm in diameter and 100-250 nm in length). BET specific surface areas of the samples were investigated by N2 adsorption-desorption isotherms, the fabricated rutile TiO2 exhibits very high specific surface area (194.08 m2/g). The photocatalytic activities of the samples were evaluated by degrading rhodamine B (RhB) dye (10 mg/L) under the irradiation of both simulated visible light (λ > 420 nm) and ultraviolet (UV) light (λ = 365 nm). The results show that the photocatalytic activity of rutile TiO2 prepared by dealloying Cu60Ti30Y10 amorphous ribbons is higher than those of commercial rutile and the sample synthesized by dealloying Cu70Ti30 precursors. The advantages of both short preparation period and superior photocatalytic activity suggest that Cu60Ti30Y10 metallic glasses are really a kind of perfect titanium source for rapidly fabricating high efficient TiO2 nano-materials. In addition, the influence of chemical composition of the amorphous precursors on preparation period of the rutile TiO2 nano-material was investigated from the point of view of standard electrode potentials.

  15. Controllable Synthesis of Organic Microcrystals with Tunable Emission Color and Morphology Based on Molecular Packing Mode.

    Science.gov (United States)

    Li, Zhi-Zhou; Liao, Liang-Sheng; Wang, Xue-Dong

    2018-01-01

    Organic microcrystals are of essential importance for high fluorescence efficiency, ordered molecular packing mode, minimized defects, and smooth shapes, which are extensively applied in organic optoelectronics. The molecular packing mode significantly influences the optical/electrical properties of organic microcrystals, which makes the controllable preparation of organic microcrystals with desired molecular packing mode extremely important. In the study, yellow-emissive α phase organic microcrystals with rectangular morphology and green-emissive β phase perylene microcrystals with rhombic morphology are separately prepared by simply controlling the solution concentration. The distinct molecular staking modes of the H/J-aggregate are found in these two types of perylene microcrystals, which contribute to the different emission color, morphology, and radiative decay rate. What is more interesting, the α-doped β phase and the β-doped α phase organic microcrystals can also be fabricated by modulating the evaporation rate from 100 to 10 µL min-1 . The findings can contribute to the future development of organic optoelectronics at the microscale. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Using Hydrophilic Ionic Liquid, [bmim]BF4 – Ethylene Glycol System as a Novel Media for the Rapid Synthesis of Copper Nanoparticles

    Science.gov (United States)

    Dewan, Manika; Kumar, Ajeet; Saxena, Amit; De, Arnab; Mozumdar, Subho

    2012-01-01

    In this work, we present a novel method for the synthesis of copper nanoparticles. We utilize the charge compensatory effect of ionic liquid [bmim]BF4 in conjunction with ethylene glycol for providing electro-steric stabilization to copper nanoparticles prepared from copper sulphate using hydrazine hydrate as a reducing agent. The formed copper nanoparticles showed extended stability over a period of one year. Copper nanoparticles thus prepared were characterized by powder X-ray diffraction measurements (pXRD), transmission electron microscopy (TEM) and quasi elastic light scattering (QELS) techniques. Powder X-ray diffraction (pXRD) analysis revealed relevant Bragg's reflection for crystal structure of copper. Powder X-ray diffraction plots also revealed no oxidized material of copper nanoparticles. TEM showed nearly uniform distribution of the particles in methanol and confirmed by QELS. Typical applications of copper nanoparticles include uses in conductive films, lubrication and nanofluids. Currently efforts are under way in our laboratory for using these nanoparticles as catalysts for a variety of organic reactions. PMID:22238589

  17. Synthesis and characterization of a helicene-based imidazolium salt and its application in organic molecular electronics.

    Science.gov (United States)

    Storch, Jan; Zadny, Jaroslav; Strasak, Tomas; Kubala, Martin; Sykora, Jan; Dusek, Michal; Cirkva, Vladimir; Matejka, Pavel; Krbal, Milos; Vacek, Jan

    2015-02-02

    Herein we demonstrate the synthesis of a helicene-based imidazolium salt. The salt was prepared by starting from racemic 2-methyl[6]helicene, which undergoes radical bromination to yield 2-(bromomethyl)[6]helicene. Subsequent treatment with 1-butylimidazole leads to the corresponding salt 1-butyl-3-(2-methyl[6]helicenyl)-imidazolium bromide. The prepared salt was subsequently characterized by using NMR spectroscopy and X-ray analysis, various optical spectrometric techniques, and computational chemistry tools. Finally, the imidazolium salt was immobilized onto a SiO2 substrate as a crystalline or amorphous deposit. The deposited layers were used for the development of organic molecular semiconductor devices and the construction of a fully reversible humidity sensor. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis of an extra-large molecular sieve using proton sponges as organic structure-directing agents.

    Science.gov (United States)

    Martínez-Franco, Raquel; Moliner, Manuel; Yun, Yifeng; Sun, Junliang; Wan, Wei; Zou, Xiaodong; Corma, Avelino

    2013-03-05

    The synthesis of crystalline microporous materials containing large pores is in high demand by industry, especially for the use of these materials as catalysts in chemical processes involving bulky molecules. An extra-large-pore silicoaluminophosphate with 16-ring openings, ITQ-51, has been synthesized by the use of bulky aromatic proton sponges as organic structure-directing agents. Proton sponges show exceptional properties for directing extra-large zeolites because of their unusually high basicity combined with their large size and rigidity. This extra-large-pore material is stable after calcination, being one of the very few examples of hydrothermally stable molecular sieves containing extra-large pores. The structure of ITQ-51 was solved from submicrometer-sized crystals using the rotation electron diffraction method. Finally, several hypothetical zeolites related to ITQ-51 have been proposed.

  19. Synthesis of a conjugated pyrrolopyridazinedione–benzodithiophene (PPD–BDT) copolymer and its application in organic and hybrid solar cells

    KAUST Repository

    Knall, Astrid-Caroline

    2017-03-30

    Herein, we describe the synthesis and characterization of a conjugated donor–acceptor copolymer consisting of a pyrrolopyridazinedione (PPD) acceptor unit, and a benzodithiophene (BDT) donor unit. The polymerization was done via a Stille cross-coupling polycondensation. The resulting PPD–BDT copolymer revealed an optical bandgap of 1.8 eV and good processability from chlorobenzene solutions. In an organic solar cell in combination with PC70BM, the polymer led to a power conversion efficiency of 4.5%. Moreover, the performance of the copolymer was evaluated in polymer/nanocrystal hybrid solar cells using non-toxic CuInS2 nanocrystals as inorganic phase, which were prepared from precursors directly in the polymer matrix without using additional capping ligands. The PPD–BDT/CuInS2 hybrid solar cells showed comparably high photovoltages and a power conversion efficiency of 2.2%.Graphical abstract

  20. Hollow metal-organic framework nanospheres via emulsion-based interfacial synthesis and their application in size-selective catalysis.

    Science.gov (United States)

    Yang, Yufen; Wang, Fengwei; Yang, Qihao; Hu, Yingli; Yan, Huan; Chen, Yu-Zhen; Liu, Huarong; Zhang, Guoqing; Lu, Junling; Jiang, Hai-Long; Xu, Hangxun

    2014-10-22

    Metal-organic frameworks (MOFs) represent an emerging class of crystalline materials with well-defined pore structures and hold great potentials in a wide range of important applications. The functionality of MOFs can be further extended by integration with other functional materials, e.g., encapsulating metal nanoparticles, to form hybrid materials with novel properties. In spite of various synthetic approaches that have been developed recently, a facile method to prepare hierarchical hollow MOF nanostructures still remains a challenge. Here we describe a facile emulsion-based interfacial reaction method for the large-scale synthesis of hollow zeolitic imidazolate framework 8 (ZIF-8) nanospheres with controllable shell thickness. We further demonstrate that functional metal nanoparticles such as Pd nanocubes can be encapsulated during the emulsification process and used for heterogeneous catalysis. The inherently porous structure of ZIF-8 shells enables encapsulated catalysts to show size-selective hydrogenation reactions.

  1. Synthesis of five- and six-membered cyclic organic peroxides: Key transformations into peroxide ring-retaining products

    Directory of Open Access Journals (Sweden)

    Alexander O. Terent'ev

    2014-01-01

    Full Text Available The present review describes the current status of synthetic five and six-membered cyclic peroxides such as 1,2-dioxolanes, 1,2,4-trioxolanes (ozonides, 1,2-dioxanes, 1,2-dioxenes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes. The literature from 2000 onwards is surveyed to provide an update on synthesis of cyclic peroxides. The indicated period of time is, on the whole, characterized by the development of new efficient and scale-up methods for the preparation of these cyclic compounds. It was shown that cyclic peroxides remain unchanged throughout the course of a wide range of fundamental organic reactions. Due to these properties, the molecular structures can be greatly modified to give peroxide ring-retaining products. The chemistry of cyclic peroxides has attracted considerable attention, because these compounds are used in medicine for the design of antimalarial, antihelminthic, and antitumor agents.

  2. Bringing research into a first semester organic chemistry laboratory with the multistep synthesis of carbohydrate-based HIV inhibitor mimics.

    Science.gov (United States)

    Pontrello, Jason K

    2015-01-01

    Benefits of incorporating research experiences into laboratory courses have been well documented, yet examples of research projects designed for the first semester introductory organic chemistry lab course are extremely rare. To address this deficiency, a Carbohydrate-Based human immunodeficiency virus (HIV) Inhibitor project consisting of a synthetic scheme of four reactions was developed for and implemented in the first semester organic lab. Students carried out the synthetic reactions during the last 6 of 10 total labs in the course, generating carbohydrate-based dimeric target molecules modeled after published dimers with application in HIV therapy. The project was designed to provide a research experience through use of literature procedures for reactions performed, exploration of variation in linker length in the target structure, and synthesis of compounds not previously reported in the scientific literature. Project assessment revealed strong student support, indicating enhanced engagement and interest in the course as a direct result of the use of scientific literature and the applications of the synthesized carbohydrate-based molecules. Regardless of discussed challenges in designing a research project for the first semester lab course, the finding from data analysis that a project implemented in the first semester lab had significantly greater student impact than a second semester project should provide motivation for development of additional research projects for a first semester organic course. © 2015 The International Union of Biochemistry and Molecular Biology.

  3. Highly stable new organic-inorganic perovskite (CH₃NH₃)₂PdBr₄: synthesis, structure and physical properties.

    Science.gov (United States)

    Liu, Xixia; Huang, Tang Jiao; Zhang, Liuyang; Tang, Baoshan; Zhang, Nengduo; Shi, Diwen; Gong, Hao

    2018-01-11

    Lead halide perovskite has attracted striking attention recently due to their appealing properties. However, toxicity and stability are two main factors restricting its application. In this work, we experimentally synthesized less toxic and highly stable Pd-based hybrid perovskite after exploring different experimental conditions. This new hybrid organic-inorganic perovskite (CH₃NH₃)₂PdBr₄ was found to be an orthorhombic crystal (Cmce, Z=4) with lattice parameters a=8.00 Å, b=7.99 Å, c= 18.89 Å. The Cmce symmetry and lattices parameters were confirmed using Pawley refinement. The atoms positions were testified based on DFT calculation. This perovskite compound was determined to be a p-type semiconductor, with a resistivity of 102.9 kΩ*cm, a carrier concentration of 3.4 ×1012 /cm³ and a mobility of 23.4 cm² /(V*S). Interestingly, XRD and UV-vis measurements indicated that the phase of this new perovskite was maintained with an optical gap of 1.91 eV after leaving in air with a high humidity of 60% for 4 days, and unchanged for months in N₂ ambiance, much more stable than most existing organic-inorganic perovskites. The synthesis and various characterizations of this work further the understanding of this (CH₃NH₃)₂PdBr₄ organic-inorganic hybrid perovskite material. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Experimental Study of Abiotic Organic Synthesis at High Temperature and Pressure Conditions: Carbon Isotope and Mineral Surface Characterizations

    Science.gov (United States)

    Fu, Qi; Socki, R. A.; Niles, P. B.

    2010-01-01

    Abiotic organic synthesis processes have been proposed as potential mechanisms for methane generation in subseafloor hydrothermal systems on Earth, and on other planets. To better understand the detailed reaction pathways and carbon isotope fractionations in this process under a wide range of physical and chemical conditions, hydrothermal experiments at high temperature (750 C) and pressure (0.55 GPa) were performed using piston cylinder apparatus. Formic acid was used as the source of CO2 and H2, and magnetite was the mineral catalyst. The chemical and carbon isotopic compositions of dissolved organic products were determined by GC-C-MS-IRMS, while organic intermediaries on the mineral catalyst were characterized by Pyrolysis-GC-MS. Among experimental products, dissolved CO2 was the dominant carbon species with a relative abundance of 88 mol%. Dissolved CH4 and C2H6 were also identified with a mole ratio of CH4 over C2H6 of 15:1. No dissolved CO was detected in the experiment, which might be attributable to the loss of H2 through the Au capsule used in the experiments at high temperature and pressure conditions and corresponding conversion of CO to CO2 by the water-gas shift reaction. Carbon isotope results showed that the 13C values of CH4 and C2H6 were -50.3% and -39.3% (V-PDB), respectively. CO2 derived from decarboxylation of formic acid had a (sigma)C-13 value of -19.2%, which was 3.2% heavier than its source, formic acid. The (sigma)C-13 difference between CO2 and CH4 was 31.1%, which was higher than the value of 9.4% calculated from theoretical isotopic equilibrium predictions at experimental conditions, suggesting the presence of a kinetic isotope effect. This number was also higher than the values (4.6 to 27.1%) observed in similar experiments previously performed at 400 C and 50 MPa with longer reaction times. CH4 is 11.0% less enriched in C-13 than C2H6. Alcohols were observed as carbon compounds on magnetite surfaces by Pyrolysis-GC-MS, which confirms

  5. Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS

    Directory of Open Access Journals (Sweden)

    Gjergji Shore

    2009-07-01

    Full Text Available Methodology has been developed for laying down a thin gold-on-silver film on the inner surface of glass capillaries for the purpose of catalysing benzannulation reactions. The cycloaddition precursors are flowed through these capillaries while the metal film is being heated to high temperatures using microwave irradiation. The transformation can be optimized rapidly, tolerates a wide number of functional groups, is highly regioselective, and proceeds in good to excellent conversion.

  6. Template-mediated Synthesis of Hollow Microporous Organic Nanorods with Tunable Aspect Ratio

    Science.gov (United States)

    Li, Qingyin; Jin, Shangbin; Tan, Bien

    2016-01-01

    Hollow microporous organic nanorods (HMORs) with hypercrosslinked polymer (HCPs) shells were synthesized through emulsion polymerization followed by hypercrosslinking. The HMORs have tunable aspect ratios, high BET surface areas and monodispersed morphologies, showing good performance in gas adsorpion. PMID:27506370

  7. Synthesis and optical features of an europium organic-inorganic silicate hybrid

    Energy Technology Data Exchange (ETDEWEB)

    Franville, A.C.; Zambon, D.; Mahiou, R.; Chou, S.; Cousseins, J.C. [Universite Blaise Pascal, Aubiere (France). Lab. des Materiaux Inorganiques; Troin, Y. [Laboratoire de Chimie des Heterocycles et des Glucides, EA 987, Universite Blaise-Pascal and ENSCCF, F-63177 Aubiere Cedex (France)

    1998-07-24

    A europium organic-inorganic silicate hybrid was synthesized by grafting a coordinative group (dipicolinic acid) to a silicate network precursor (3-aminopropyltriethoxysilane) via a covalent bonding. Sol-gel process and complexation were performed using different experimental conditions. The hybrid materials, in particular the Eu{sup 3+} coordination mode, were characterized by infrared and luminescence spectroscopies. Morphology of the materials and TG analysis showed that grafted silica enhanced thermal and mechanical resistances of the organic part. (orig.) 7 refs.

  8. STUDY OF SYNTHESIS AND CHARACTERIZATION OF METAL-ORGANIC FRAMEWORKS MOF-5 AS HYDROGEN STORAGE MATERIAL

    OpenAIRE

    Prapti Rahayu; Witri Wahyu Lestari

    2016-01-01

    Metal-organic frameworks (MOFs) are porous coordination polymer containing bi-or polidentate organic linker coordinated with inorganic part, such as metal oxide cluster or metal cation as node which called as secondary building unit (SBU) to form infinite structure. Due to high porosity and surface area, good thermal stability as well as the availability of unsaturated metal center or the linker influence attracts the interaction with gases, thus MOFs have potential to be applied as hydrogen ...

  9. Synthesis and Characterization of Surface Mounted Chiral Metal-Organic Frameworks

    OpenAIRE

    Gu, Zhi-Gang

    2014-01-01

    Chiral surface mounted metal-organic frameworks (SURMOFs), composed of metal ions and chiral organic ligands, have been grown on functionalized substrates and studied in this thesis. On one hand, the impact of the pore size of the chiral SURMOF on the enantioselectivity has been investigated in this thesis. On the other hand, oriented circular dichroism (OCD) was chosen as a tool to investigate the chirality and enantioselective separation property of chiral SURMOFs.

  10. The Future of Organization Design: An Interpretative Synthesis in Three Themes

    Directory of Open Access Journals (Sweden)

    Richard M. Burton

    2013-04-01

    Full Text Available In the inaugural issue of the Journal of Organization Design (Vol. 1, #1, 2012, noted scholars and experienced practitioners presented their views on the future of organization design. The seven wise and provocative statements were subsequently discussed by members of the Organizational Design Community at a conference held at Harvard University on August 3, 2012. I was asked by JOD to monitor the discussion and identify the broad organization design themes that emerged. Although the discussion was wide ranging, three themes were noticeable. The first theme is that there are fundamentals of organization design, and all agreed that design involves creating a cohesive socio-technical system from a number of constituent elements. The second theme is that the boundaries of many newer organizational forms extend beyond that of the single firm, so the scope of organization design needs to expand to include ecosystems, collaborative communities, industries, and other supra-firm architectures. The third theme involves time and change, requiring a shift in focus from how organizations become stable and predictable to how they can become more agile.

  11. Synthesis and Evaluation of Porous Semiconductor Hexaniobate Nanotubes for Photolysis of Organic Dyes in Wastewater

    Directory of Open Access Journals (Sweden)

    Maryam Zarei-Chaleshtori

    2014-10-01

    Full Text Available We present the chemical synthesis of hexaniobate nanotubes using two routes, (1 starting material K4Nb6O17 and (2 parent material of H4Nb6O17 via ion exchange. The as-synthesized materials were exfoliated by adjusting the pH to 9–10 using tetra-n-butylammonioum hydroxide (TBA+OH−, leading to a formation of hexaniobate nanotubes. In order to understand morphology a full characterization was conducted using SEM, HRTEM, BET and powder-XRD. The photocatalytic activity was evaluated using photolysis method using Bromocresol Green (BG and Methyl Orange (MO as model contaminants. Results indicate a nanotube porous oxide with large porous and surface area; the photocatalytic activity is about 95% efficient when comparing with commercial TiO2.

  12. Synthesis and Identification of the Organic Reagent Ereochrom Black T and its Complex with Cobalt (lll

    Directory of Open Access Journals (Sweden)

    Jassem M. Abd Al Hassein

    2017-02-01

    Full Text Available The ligand 1–(4–Hydroxy –3–Naphthalene Azo–4–Nitro–8–Hydroxy–6–Sulfonic Naphthalene Acid Sodium Salt was synthesized (by the reaction between 3–amino–4– hydroxyl naphthalene and 3 – nitro – 7 – hydroxyl –5– sulfonic naphthalene acid sodium salt and characterized by FTIR technique, its ionization constants (PKs were determined. Synthesis and spectroscopic investigations of its complex with Co (III in aqueous solution revealed the sole formation of (1: 2 (metal: ligand complex. Specral and magnatic studies of the isolated complex indicates octahedral coordination via the N atoms of the azo groups and the O atoms of the hydroxyl groups. The molar conductivity of the complex was determined in an alcoholic solutions indicates that the complex has high molar conductivity. The magnetic properties were determined by using Gouy balance which indicates diamagnetic complex.

  13. Carbon Isotope Characterization of Organic Intermediaries in Hydrothermal Hydrocarbon Synthesis by Pyrolysis-GC-MS-C-IRMS

    Science.gov (United States)

    Socki, Richard A.; Fu, Qi; Niles, Paul B.

    2010-01-01

    We report results of experiments designed to characterize the carbon isotope composition of intermediate organic compounds produced as a result of mineral surface catalyzed reactions. The impetus for this work stems from recently reported detection of methane in the Martian atmosphere coupled with evidence showing extensive water-rock interaction during Martian history. Abiotic formation by Fischer-Tropsch-type (FTT) synthesis during serpentinization reactions may be one possible process responsible for methane generation on Mars, and measurement of carbon and hydrogen isotopes of intermediary organic compounds can help constrain the origin of this methane. Of particular interest within the context of this work is the isotopic composition of organic intermediaries produced on the surfaces of mineral catalysts (i.e. magnetite) during hydrothermal experiments, and the ability to make meaningful and reproducible isotope measurements. Our isotope measurements utilize a unique analytical technique combining Pyrolysis-Gas Chromatograph-Mass Spectrometry-Combustion-Isotope Ratio Mass Specrometry (Py-GC-MS-C-IRMS). Others have conducted similar pyrolysis-IRMS experiments on low molecular weight organic acids (Dias, et al, Organic Geochemistry, 33 [2002]). Our technique differs in that it carries a split of the pyrolyzed GC-separated product to a Thermo DSQ-II quadrupole mass spectrometer as a means of making qualitative and semi-quantitative compositional measurements of the organic compounds. A sample of carboxylic acid (mixture of C1 through C6) was pyrolyzed at 100 XC and passed through the GC-MS-C-IRMS (combusted at 940 XC). In order to test the reliability of our technique we compared the _13C composition of different molecular weight organic acids (from C1 through C6) extracted individually by the traditional sealed-tube cupric oxide combustion (940 XC) method with the _13C produced by our pyrolysis technique. Our data indicate that an average 4.3. +/-0.5. (V

  14. The rapid manufacture of uniform composite multicellular-biomaterial micropellets, their assembly into macroscopic organized tissues, and potential applications in cartilage tissue engineering.

    Science.gov (United States)

    Babur, Betul Kul; Kabiri, Mahboubeh; Klein, Travis Jacob; Lott, William B; Doran, Michael Robert

    2015-01-01

    We and others have published on the rapid manufacture of micropellet tissues, typically formed from 100-500 cells each. The micropellet geometry enhances cellular biological properties, and in many cases the micropellets can subsequently be utilized as building blocks to assemble complex macrotissues. Generally, micropellets are formed from cells alone, however when replicating matrix-rich tissues such as cartilage it would be ideal if matrix or biomaterials supplements could be incorporated directly into the micropellet during the manufacturing process. Herein we describe a method to efficiently incorporate donor cartilage matrix into tissue engineered cartilage micropellets. We lyophilized bovine cartilage matrix, and then shattered it into microscopic pieces having average dimensions manufacture of thousands of replica composite micropellets, with each micropellet having a material/CD core and a cellular surface. This micropellet organization enabled the rapid bulking up of the micropellet core matrix content, and left an adhesive cellular outer surface. This morphological organization enabled the ready assembly of the composite micropellets into macroscopic tissues. Generically, this is a versatile method that enables the rapid and uniform integration of biomaterials into multicellular micropellets that can then be used as tissue building blocks. In this study, the addition of CD resulted in an approximate 8-fold volume increase in the micropellets, with the donor matrix functioning to contribute to an increase in total cartilage matrix content. Composite micropellets were readily assembled into macroscopic cartilage tissues; the incorporation of CD enhanced tissue size and matrix content, but did not enhance chondrogenic gene expression.

  15. Response of microbial community of organic-matter-impoverished arable soil to long-term application of soil conditioner derived from dynamic rapid fermentation of food waste.

    Science.gov (United States)

    Hou, Jiaqi; Li, Mingxiao; Mao, Xuhui; Hao, Yan; Ding, Jie; Liu, Dongming; Xi, Beidou; Liu, Hongliang

    2017-01-01

    Rapid fermentation of food waste can be used to prepare soil conditioner. This process consumes less time and is more cost-effective than traditional preparation technology. However, the succession of the soil microbial community structure after long-term application of rapid fermentation-derived soil conditioners remains unclear. Herein, dynamic rapid fermentation (DRF) of food waste was performed to develop a soil conditioner and the successions and diversity of bacterial communities in an organic-matter-impoverished arable soil after six years of application of DRF-derived soil conditioner were investigated. Results showed that the treatment increased soil organic matter (SOM) accumulation and strawberry yield by 5.3 g/kg and 555.91 kg/ha, respectively. Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes became the dominant phyla, occupying 65.95%-77.52% of the bacterial sequences. Principal component analysis (PCA) results showed that the soil bacterial communities were largely influenced by the treatment. Redundancy analysis (RDA) results showed that the relative abundances of Gemmatimonadetes, Chloroflexi, Verrucomicrobia, Nitrospirae, and Firmicutes were significantly correlated with soil TC, TN, TP, NH4+-N, NO3--N, OM, and moisture. These communities were all distributed in the soil samples collected in the sixth year of application. Long-term treatment did not enhance the diversity of bacterial species but significantly altered the distribution of major functional bacterial communities in the soils. Application of DRF-derived soil conditioner could improve the soil quality and optimize the microbial community, ultimately enhancing fruit yields.

  16. Aquatic organism passage at road-stream crossings—synthesis and guidelines for effectiveness monitoring

    Science.gov (United States)

    Hoffman, Robert L.; Dunham, Jason B.; Hansen, Bruce P.

    2012-01-01

    Restoration and maintenance of passage for aquatic organisms at road-stream crossings represents a major management priority, involving an investment of hundreds of millions of dollars (for example, U.S. Government Accounting Office, 2001). In recent years, passage at hundreds of crossings has been restored, primarily by replacing barrier road culverts with bridges or stream simulation culverts designed to pass all species and all life stages of aquatic life and simulate natural hydro-geomorphic processes (U.S. Forest Service, 2008). The current situation has motivated two general questions: 1. Are current design standards for stream simulation culverts adequately re-establishing passage for aquatic biota? and 2. How do we monitor and evaluate effectiveness of passage restoration? To address the latter question, a national workshop was held in March 2010, in Portland, Oregon. The workshop included experts on aquatic organism passage from across the nation (see table of participants, APPENDIX) who addressed four classes of methods for monitoring effectiveness of aquatic organism passage—individual movement, occupancy, demography, and genetics. This report has been written, in part, for field biologists who will be undertaking and evaluating the effectiveness of aquatic organism passage restoration projects at road-stream crossings. The report outlines basic methods for evaluating road-stream crossing passage impairment and restoration and discusses under what circumstances and conditions each method will be useful; what questions each method can potentially answer; how to design and implement an evaluation study; and points out the fundamental reality that most evaluation projects will require special funding and partnerships among researchers and resource managers. The report is organized into the following sections, which can be read independently: 1. Historical context: In this section, we provide a brief history of events leading up to the present situation

  17. Conceiving Scenario-Based IS Support for Knowledge Synthesis: The Organization Architect

    Directory of Open Access Journals (Sweden)

    Kam Hou VAT

    2005-06-01

    Full Text Available This paper examines the idea of creating information systems (IS support for knowledge work through the elaboration of typical organizational scenarios. Specifically, our research is driven by a belief that the design issues of IS support must be situated in the context of social processes in which, in a specific organizational scenario, a particular group of people can conceptualize their knowledge work and hence the purposeful action they wish to undertake. This provides the basis for ascertaining what information support is needed by those who undertake that action, and how modern information technology can help to provide that support. Thereby, designing IS support for knowledge work requires attention to the purposeful action which the IS serves, and hence to the meanings which make those particular actions meaningful and relevant to particular groups of people in a particular situation. This is often facilitated by the provision of an important enquiry process constantly attended to, and integrated into organizational activities by which IS professionals could learn of the organization's continual adjustments to its changing world. Our discussion here brings forth the notion of the learning organization information systems (LOIS, through which each member of the organization is enabled to create his or her own knowledge space, which is subject to some level of description, and thus may be architected and integrated into an organization. Importantly, in order to develop the various LOIS support for knowledge work, we need the correspondent organization scenarios to contextualize the IS design. And we attribute this development philosophy to the essence of systems thinking in conceiving IS support. The paper concludes by reiterating the work of the organization architect, which entails understanding, analyzing, designing, and communicating the most relevant parts of the organization and how they fit together.

  18. Synthesis and post-synthetic modification of amine-, alkyne-, azide- and nitro-functionalized metal-organic frameworks based on DUT-5.

    Science.gov (United States)

    Gotthardt, Meike A; Grosjean, Sylvain; Brunner, Tobias S; Kotzel, Johannes; Gänzler, Andreas M; Wolf, Silke; Bräse, Stefan; Kleist, Wolfgang

    2015-10-14

    Functionalized 4,4'-biphenyldicarboxylic acid molecules with additional amine, alkyne, azide or nitro groups were prepared and applied in the synthesis of novel metal-organic frameworks and mixed-linker metal-organic frameworks isoreticular to DUT-5. The properties of the frameworks could be tuned by varying the number of functional groups in the materials and the amine groups were employed in post-synthetic modification reactions without changing the framework structure or significantly decreasing the porosity of the materials.

  19. Designing Multidimensional Policing Strategy And Organization: Towards A Synthesis Of Professional And Community Police Models

    Directory of Open Access Journals (Sweden)

    Suve Priit

    2015-06-01

    Full Text Available In this article we analyse professional police and community policing in view of professionalism, strategy and structures. We aim to find ways for synthesizing these models that are usually seen as incompatible. Unlike many earlier studies of police organizations or strategies, we view strategies in the organization at the corporate, functional and operational levels, and argue that by combining them with functional and divisional principles of structuring, it is possible to place professional strategy at the core of policing, while using the community policing strategy mainly as a component part of the strategy in the framework of divisional organization. This way it is possible to avoid the risk of alienating police from the community and to ensure the successful implementation of corporate strategy through providing professional police units that perform the narrow functions, with quick and adequate information from the community.

  20. Organic Synthesis via Irradiation and Warming of Ice Grains in the Solar Nebula

    Science.gov (United States)

    Ciesla, Fred J.; Sanford, Scott A.

    2012-01-01

    Complex organic compounds, including many important to life on Earth, are commonly found in meteoritic and cometary samples, though their origins remain a mystery. We examined whether such molecules could be produced within the solar nebula by tracking the dynamical evolution of ice grains in the nebula and recording the environments they were exposed to. We found that icy grains originating in the outer disk, where temperatures were less than 30 K, experienced UV irradiation exposures and thermal warming similar to that which has been shown to produce complex organics in laboratory experiments. These results imply that organic compounds are natural byproducts of protoplanetary disk evolution and should be important ingredients in the formation of all planetary systems, including our own.