WorldWideScience

Sample records for rapid neutron-capture process

  1. Rapid neutron capture process in supernovae and chemical element formation

    NARCIS (Netherlands)

    Baruah, Rulee; Duorah, Kalpana; Duorah, H. L.

    2009-01-01

    The rapid neutron capture process (r-process) is one of the major nucleosynthesis processes responsible for the synthesis of heavy nuclei beyond iron. Isotopes beyond Fe are most exclusively formed in neutron capture processes and more heavier ones are produced by the r-process. Approximately half

  2. Rapid Neutron Capture Process in Supernovae and Chemical ...

    Indian Academy of Sciences (India)

    process in the supernova envelope at a high neutron density and a temperature of 109 degrees. ... Major advances have been made in calculating r-process .... Also electron capture on free protons is limited by the small abundance of free protons. These prob- lems are eased by higher density and higher temperature, ...

  3. Rapid Neutron Capture Process in Supernovae and Chemical ...

    Indian Academy of Sciences (India)

    We have studied the r-process path corresponding to temperatures ranging from 1.0 × 109 K to 3.0 × 109 K and neutron density ranging from 1020 cm-3 to 1030 cm-3. With temperature and density conditions of 3.0 × 109 K and 1020 cm-3 a nucleus of mass 273 was theoretically found corresponding to atomic number 115.

  4. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  5. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  6. Stellar neutron capture rates and the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2012-02-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to helium burning in Red Giant stars (s process and to supernova explosions (r and p processes. The s process, which operates in or near the valley of β-stability, has produced about half of the elemental abundances between Fe and Bi. Accurate (n, γ cross sections are the essential input for s process studies, because they determine the abundances produced by that process. Following a brief summary of the neutron capture processes, the focus will be set on the s process in massive stars, where the role of reliable cross section information is particularly important. Eventually, the intriguing aspects of the origin of 60Fe will be addressed. Attempts to determine the stellar cross section of that isotope are pushing experimental possibilities to their limits and present a pertinent challenge for future facilities.

  7. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    Science.gov (United States)

    Lederer, C.; Giubrone, G.; Massimi, C.; Žugec, P.; Barbagallo, M.; Colonna, N.; Domingo-Pardo, C.; Guerrero, C.; Gunsing, F.; Käppeler, F.; Tain, J. L.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.

    2014-06-01

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n_TOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  8. Neutron Capture Reactions on Fe and Ni Isotopes for the Astrophysical s-process

    CERN Document Server

    Lederer, C; Massimi, C; Žugec, P; Barbagallo, M; Colonna, N; Domingo-Pardo, C; Guerrero, C; Gunsing, F; Käppeler, F; Tain, J L; Altstadt, S; Andrzejewski, J; Audouin, L; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J

    2014-01-01

    Neutron capture cross sections in the keV neutron energy region are the key nuclear physics input to study the astrophysical slow neutron capture process. In the past years, a series of neutron capture cross section measurements has been performed at the neutron time-of-flight facility n\\_TOF at CERN focussing on the Fe/Ni mass region. Recent results and future developments in the neutron time-of-flight technique are discussed.

  9. Measurement of 67,68Zn Neutron Capture for the weak s-process

    Science.gov (United States)

    Macon, Kevin T.; Blackmon, Jeff C.; Rasco, B. C.; Couture, Aaron; Mosby, Shea; O'Donnell, John M.; Ullmann, John L.; Baugher, Travis

    2015-10-01

    The observed abundance distributions for the heavy elements (A > 60) are driven by neutron capture processes. The slow neutron capture process (the s-process) takes place on a timescale of tens of thousands of years and is responsible for the origin of about half the heavy elements. The weak s-process in particular occurs in massive stars and is responsible for the production of a major portion of the elements up to A = 90 . The s-process path follows close to the stable elements and most reactions can be directly studied in the laboratory using neutron beams. Precise measurements on specific isotopes with low neutron capture cross-sections (<~ 100 mb) in the mass 60 < A < 70 region are important for abundance calculations. In the past decade, new capture measurements with calorimeters have seen large discrepancies with liquid scintillator time-of-flight measurements, requiring new measurements on isotopes with high scatter/capture cross-section ratios. I will present preliminary results from a recent measurement for 67,68Zn using the Detector for Advanced Neutron Capture Experiments at LANSCE. Improved capture cross-sections on these isotopes will significantly reduce uncertainties on the synthesis of elements in the weak s-process. This work was supported by the U.S. DOE Office of science by Award No. DE-FG02-96ER40978.

  10. The neutron capture cross section of the ${s}$-process branch point isotope $^{63}$Ni

    CERN Multimedia

    Neutron capture nucleosynthesis in massive stars plays an important role in Galactic chemical evolution as well as for the analysis of abundance patterns in very old metal-poor halo stars. The so-called weak ${s}$-process component, which is responsible for most of the ${s}$ abundances between Fe and Sr, turned out to be very sensitive to the stellar neutron capture cross sections in this mass region and, in particular, of isotopes near the seed distribution around Fe. In this context, the unstable isotope $^{63}$Ni is of particular interest because it represents the first branching point in the reaction path of the ${s}$-process. We propose to measure this cross section at n_TOF from thermal energies up to 500 keV, covering the entire range of astrophysical interest. These data are needed to replace uncertain theoretical predicitons by first experimental information to understand the consequences of the $^{63}$Ni branching for the abundance pattern of the subsequent isotopes, especially for $^{63}$Cu and $^{...

  11. Neutron capture cross section of $^{90}$Zr Bottleneck in the s-process reaction flow

    CERN Document Server

    Tagliente, G; Milazzo, P M; Moreau, C; Aerts, G; Abbondanno, U; Alvarez, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, Panayiotis; Audouin, L; Badurek, G; Baumann, P; Bečvář, F; Berthoumieux, E; Bisterzo, S; Calviño, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Domingo-Pardo, C; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Gonçalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Köhler, P; Kossionides, E; Krtička, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mastinu, P; Mengoni, A; Mosconi, M; Neves, F; Oberhummer, Heinz; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Santos, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M, C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2008-01-01

    The neutron capture cross sections of the Zr isotopes have important implications in nuclear astrophysics and for reactor design. The small cross section of the neutron magic nucleus 90Zr, which accounts for more than 50% of natural zirconium represents one of the key isotopes for the stellar s-process, because it acts as a bottleneck in the neutron capture chain between the Fe seed and the heavier isotopes. The same element, Zr, also is an important component of the structural materials used in traditional and advanced nuclear reactors. The (n,γ) cross section has been measured at CERN, using the n_TOF spallation neutron source. In total, 45 resonances could be resolved in the neutron energy range below 70 keV, 10 being observed for the first time thanks to the high resolution and low backgrounds at n_TOF. On average, the Γγ widths obtained in resonance analyses with the R-matrix code SAMMY were 15% smaller than reported previously. By these results, the accuracy of the Maxwellian averaged cross section f...

  12. Prospects for direct neutron capture measurements on s-process branching point isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, C.; Lerendegui-Marco, J.; Quesada, J.M. [Universidad de Sevilla, Dept. de Fisica Atomica, Molecular y Nuclear, Sevilla (Spain); Domingo-Pardo, C. [CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular, Valencia (Spain); Kaeppeler, F. [Karlsruhe Institute of Technology, Institut fuer Kernphysik, Karlsruhe (Germany); Palomo, F.R. [Universidad de Sevilla, Dept. de Ingenieria Electronica, Sevilla (Spain); Reifarth, R. [Goethe-Universitaet Frankfurt am Main, Frankfurt am Main (Germany)

    2017-05-15

    The neutron capture cross sections of several unstable key isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure directly due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, where high neutron fluxes and effective background rejection capabilities are required. At present there are about 21 relevant s-process branching point isotopes whose cross section could not be measured yet over the neutron energy range of interest for astrophysics. However, the situation is changing with some very recent developments and upcoming technologies. This work introduces three techniques that will change the current paradigm in the field: the use of γ-ray imaging techniques in (n, γ) experiments, the production of moderated neutron beams using high-power lasers, and double capture experiments in Maxwellian neutron beams. (orig.)

  13. Neutron capture at the s-process branching points $^{171}$Tm and $^{204}$Tl

    CERN Multimedia

    Branching points in the s-process are very special isotopes for which there is a competition between the neutron capture and the subsequent b-decay chain producing the heavy elements beyond Fe. Typically, the knowledge on the associated capture cross sections is very poor due to the difficulty in obtaining enough material of these radioactive isotopes and to measure the cross section of a sample with an intrinsic activity; indeed only 2 out o the 21 ${s}$-process branching points have ever been measured by using the time-of-flight method. In this experiment we aim at measuring for the first time the capture cross sections of $^{171}$Tm and $^{204}$Tl, both of crucial importance for understanding the nucleosynthesis of heavy elements in AGB stars. The combination of both (n,$\\gamma$) measurements on $^{171}$Tm and $^{204}$Tl will allow one to accurately constrain neutron density and the strength of the 13C(α,n) source in low mass AGB stars. Additionally, the cross section of $^{204}$Tl is also of cosmo-chrono...

  14. Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis

    NARCIS (Netherlands)

    Heine, M.; Typel, S.; Wu, M. -R.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Caamano, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chakraborty, S.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Crespo, R.; Pramanik, U. Datta; Fernandez, P. Diaz; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Göbel, K.; Golubev, P.; Diaz, D. Gonzalez; Hagdahl, J.; Heftrich, T.; Heil, M.; Heinz, A.; Henriques, A.; Holl, M.; Ickert, G.; Ignatov, A.; Jakobsson, B.; Johansson, H. T.; Jonson, B.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knöbel, R.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Kurz, N.; Labiche, M.; Langer, C.; Bleis, T. Le; Lemmon, R.; Lepyoshkina, O.; Lindberg, S.; Machado, J.; Marganiec, J.; Martínez-Pinedo, G.; Maroussov, V.; Mostazo, M.; Movsesyan, A.; Najafi, A.; Neff, T.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Prochazka, A.; Rahaman, A.; Rastrepina, G.; Reifarth, R.; Ribeiro, G.; Ricciardi, M. V.; Rigollet, C.; Riisager, K.; Röder, M.; Rossi, D.; Rio, J. Sanchez del; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Stoica, V.; Streicher, B.; Taylor, J. T.; Tengblad, O.; Terashima, S.; Thies, R.; Togano, Y.; Uberseder, E.; Walle, J. Van de; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Wheldon, C.; Wilson, G.; Wimmer, C.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M. V.; Zilges, A.; Zuber, K.

    2016-01-01

    With the R$^{3}$B-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of $^{18}$C at a projectile energy around 425~AMeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of $^{17}$C into the ground state of

  15. Determination of the neutron-capture rate of 17C for r -process nucleosynthesis

    Science.gov (United States)

    Heine, M.; Typel, S.; Wu, M.-R.; Adachi, T.; Aksyutina, Y.; Alcantara, J.; Altstadt, S.; Alvarez-Pol, H.; Ashwood, N.; Atar, L.; Aumann, T.; Avdeichikov, V.; Barr, M.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boretzky, K.; Borge, M. J. G.; Burgunder, G.; Caamano, M.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chakraborty, S.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Crespo, R.; Datta Pramanik, U.; Diaz Fernandez, P.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estrade, A.; Farinon, F.; Fraile, L. M.; Freer, M.; Freudenberger, M.; Fynbo, H. O. U.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Göbel, K.; Golubev, P.; Gonzalez Diaz, D.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heinz, A.; Henriques, A.; Holl, M.; Ickert, G.; Ignatov, A.; Jakobsson, B.; Johansson, H. T.; Jonson, B.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knöbel, R.; Kröll, T.; Krücken, R.; Kurcewicz, J.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lepyoshkina, O.; Lindberg, S.; Machado, J.; Marganiec, J.; Martínez-Pinedo, G.; Maroussov, V.; Mostazo, M.; Movsesyan, A.; Najafi, A.; Neff, T.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietri, S.; Plag, R.; Prochazka, A.; Rahaman, A.; Rastrepina, G.; Reifarth, R.; Ribeiro, G.; Ricciardi, M. V.; Rigollet, C.; Riisager, K.; Röder, M.; Rossi, D.; Sanchez del Rio, J.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Stoica, V.; Streicher, B.; Taylor, J. T.; Tengblad, O.; Terashima, S.; Thies, R.; Togano, Y.; Uberseder, E.; Van de Walle, J.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Weigand, M.; Wheldon, C.; Wilson, G.; Wimmer, C.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M. V.; Zilges, A.; Zuber, K.; R3B Collaboration

    2017-01-01

    With the R 3B -LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of 18C at a projectile energy around 425 A MeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of 17C into the ground state of 18C. Those data have been used to constrain theoretical calculations for transitions populating excited states in 18C. This allowed to derive the astrophysical cross section σnγ * accounting for the thermal population of 17C target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures T9≤ 1 GK. Network simulations with updated neutron-capture rates and hydrodynamics according to the neutrino-driven wind model as well as the neutron-star merger scenario reveal no pronounced influence of neutron capture of 17C on the production of second- and third-peak elements in contrast to earlier sensitivity studies.

  16. Determination of the Neutron-Capture Rate of 17C for the R-process Nucleosynthesis

    CERN Document Server

    Heine, M; Wu, M -R; Adachi, T; Aksyutina, Y; Alcantara, J; Altstadt, S; Alvarez-Pol, H; Ashwood, N; Aumann, T; Avdeichikov, V; Barr, M; Beceiro-Novo, S; Bemmerer, D; Benlliure, J; Bertulani, C A; Boretzky, K; Borge, M J G; Burgunder, G; Caamano, M; Caesar, C; Casarejos, E; Catford, W; Cederkäll, J; Chakraborty, S; Chartier, M; Chulkov, L V; Cortina-Gil, D; Crespo, R; Pramanik, U Datta; Fernandez, P Diaz; Dillmann, I; Elekes, Z; Enders, J; Ershova, O; Estrade, A; Farinon, F; Fraile, L M; Freer, M; Freudenberger, M; Fynbo, H O U; Galaviz, D; Geissel, H; Gernhäuser, R; Göbel, K; Golubev, P; Diaz, D Gonzalez; Hagdahl, J; Heftrich, T; Heil, M; Heinz, A; Henriques, A; Holl, M; Ickert, G; Ignatov, A; Jakobsson, B; Johansson, H T; Jonson, B; Kalantar-Nayestanaki, N; Kanungo, R; Kelic-Heil, A; Knöbel, R; Kröll, T; Krücken, R; Kurcewicz, J; Kurz, N; Labiche, M; Langer, C; Bleis, T Le; Lemmon, R; Lepyoshkina, O; Lindberg, S; Machado, J; Marganiec, J; Martínez-Pinedo, G; Maroussov, V; Mostazo, M; Movsesyan, A; Najafi, A; Neff, T; Nilsson, T; Nociforo, C; Panin, V; Paschalis, S; Perea, A; Petri, M; Pietri, S; Plag, R; Prochazka, A; Rahaman, A; Rastrepina, G; Reifarth, R; Ribeiro, G; Ricciardi, M V; Rigollet, C; Riisager, K; Röder, M; Rossi, D; del Rio, J Sanchez; Savran, D; Scheit, H; Simon, H; Sorlin, O; Stoica, V; Streicher, B; Taylor, J T; Tengblad, O; Terashima, S; Thies, R; Togano, Y; Uberseder, E; Van de Walle, J; Velho, P; Volkov, V; Wagner, A; Wamers, F; Weick, H; Weigand, M; Wheldon, C; Wilson, G; Wimmer, C; Winfield, J S; Woods, P; Yakorev, D; Zhukov, M V; Zilges, A; Zuber, K

    2016-01-01

    With the R$^{3}$B-LAND setup at GSI we have measured exclusive relative-energy spectra of the Coulomb dissociation of $^{18}$C at a projectile energy around 425~AMeV on a lead target, which are needed to determine the radiative neutron-capture cross sections of $^{17}$C into the ground state of $^{18}$C. Those data have been used to constrain theoretical calculations for transitions populating excited states in $^{18}$C. This allowed to derive the astrophysical cross section $\\sigma^{*}_{\\mathrm{n}\\gamma}$ accounting for the thermal population of $^{17}$C target states in astrophysical scenarios. The experimentally verified capture rate is significantly lower than those of previously obtained Hauser-Feshbach estimations at temperatures $T_{9}\\leq{}1$~GK. Network simulations with updated neutron-capture rates and hydrodynamics according to the neutrino-driven wind model as well as the neutron-star merger scenario reveal no pronounced influence of neutron capture of $^{17}$C on the production of second- and thi...

  17. Neutron capture measurements on 62Ni, 63Ni and 197Au and their relevance for stellar nucleosynthesis

    CERN Document Server

    Lederer, Claudia

    Neutron capture reactions in stars are responsible for forming about 99% of the elemental abundances heavier than Fe. Two processes contribute about equally to the overall abundance pattern: the slow neutron capture process (s process) where neutron densities are small and therefore radioactive decay is generally faster than subsequent neutron capture on radionuclides, and the rapid neutron capture process (r process) which takes place in environments of high neutron densities, driving the reaction path towards the neutron rich side. The key nuclear physics input for s process studies are stellar neutron capture cross sections, called MACS (Maxwellian-averaged cross section). In the course of this work, dierent reactions relevant to s process nucleosynthesis have been studied. To improve and check existing information, neutron capture cross sections of most stable Fe and Ni isotopes were measured via the time-of-flight technique at the n TOF facility at CERN. This campaign was triggered by a work of Sneden et...

  18. Neutron Capture Cross Sections of the s-Process Branching Points 147Pm, 171Tm, and 204Tl

    Science.gov (United States)

    Guerrero, Carlos; Domingo-Pardo, Cesar; Lerendegui-Marco, Jorge; Casanovas, Adria; Cortes-Giraldo, Miguel A.; Dressler, Rugard; Halfon, Shlomi; Heinitz, Stephan; Kivel, Niko; Köster, Ulli; Paul, Michael; Quesada-Molina, Jose Manuel; Schumann, Dorothea; Tarifeño-Saldivia, Ariel; Tessler, Moshe; Weissman, Leo

    The neutron capture cross section of several key unstable isotopes acting as branching points in the s-process are crucial for stellar nucleosynthesis studies, but they are very challenging to measure due to the difficult production of sufficient sample material, the high activity of the resulting samples, and the actual (n, γ) measurement, for which high neutron fluxes and effective background rejection capabilities are required. As part of a new program to measure some of these important branching points, radioactive targets of 147Pm, 171Tm, and 204Tl have been produced by irradiation of stable isotopes (146Nd, 170Er, and 203Tl) at the Institut Laue-Langevin (ILL) high flux reactor. After breeding in the reactor and a certain cooling period, the resulting mixed 204Tl/203Tl sample was used directly while 147Pm and 171Tm were radiochemically separated in non-carrier-added quality at the Paul Scherrer Institut (PSI), then prepared as targets. A set of theses samples has been used for time-of-flight measurements at the CERN n_TOF facility using the 19 and 185 m beam lines, during 2014 and 2015. The capture cascades were detected with a set of four C6D6 scintillators, allowing to observe the associated neutron capture resonances. The results presented in this work are the first ever determination of the resonance capture cross sections of 147Pm, 171Tm, and 204Tl. Activation experiments on the same 147Pm and 171Tm targets with a high-intensity quasi-Maxwellian flux of neutrons have been performed using the SARAF accelerator and the Liquid-Lithium Target (LiLiT) in order to extract the corresponding Maxwellian Average Cross Section (MACS). The experimental setups are here described together with the first, preliminary results of the n_TOF measurement.

  19. The Helium r-Process and Neutron-Capture Element Abundances in Low Metallicity Stars

    Science.gov (United States)

    Truran, J. W.; Cowan, J. J.

    2000-05-01

    There is increasingly strong observational evidence that the r-process isotopes identified in solar system matter are in fact the products of two distinct classes of r-process nucleosynthesis events. Spectroscopic observations of extremely metal deficient halo field stars and globular cluster stars provide confirmation of the occurrence of a robust r-process mechanism for the production of the main r-process component, at mass numbers A ≳ 130-140. This main component is variously argued to have its origin in regions outside the neutronized core, in magnetic jets from the collapsing core, or in neutron star-neutron star mergers. The stellar abundance data available to date suggests, however, that the bulk of the r-process nuclei in the mass region A post shock conditions insures that this process is not as robust as that responsible for the main r-process component A ≳ 130-140. We discuss the implications of our numerical results for the interpretation both of the abundances in metal poor stars and of the anomalous r-process-like isotopic abundances observed in meteoritic silicon carbide grains (Pellin et al. 2000). This research was funded in part by NSF grant AST-9618332 to JJC and by the ASCI/Alliances Center for Astrophysical Thermonuclear Flashes at the University of Chicago under DOE contract B341495 (JWT).

  20. Stellar neutron capture rates – key data for the s process

    Directory of Open Access Journals (Sweden)

    Käppeler F.

    2013-12-01

    Full Text Available Neutron reactions are responsible for the formation of the elements heavier than iron. The corresponding scenarios relate to the He- and C- burning phases of stellar evolution (s process and to supernova explosions (r and p processes. The s process, which is characterized by low neutron densities, operates in or near the valley of β stability and has produced about half of the elemental abundances between Fe and Bi in the solar system and in the Universe. Because the s abundances are essentially determined by the (n, γ cross sections along the reaction path, accurate neutron data constitute the key input for s process studies. Important constraints for the physical conditions at the stellar sites can be inferred by comparison of the abundance patterns from current s-process models with solar system material or presolar grains. The experimental methods for the determination of stellar (n, γ rates are outlined at the example of recent cross section measurements and remaining quests will be discussed with respect to existing laboratory neutron sources and new developments.

  1. Neutron Capture Cross Sections of Tellurium Isotopes

    Science.gov (United States)

    Eastman, Micah; Krane, Kenneth

    2006-05-01

    Neutron capture by the stable even-mass Te isotopes (A = 120 to 130) produces in the neighboring odd-neutron isotopes a low-spin ground state (1/2 or 3/2) and a high-spin (11/2) isomeric state. By irradiating samples of natural isotopic Te in our reactor, we have measured the neutron capture cross sections for all of the odd-mass radioactive ground states and isomers produced in the capture process. By using Cd-shielded and unshielded irradiations, we have been able to obtain both the effective thermal cross sections and the resonance integrals. Comparison with similar neutron capture processes in Sn isotopes leads to interesting systematic effects, especially among the thermal cross sections of the low-spin and high-spin states.

  2. A Simple Correlation for Neutron Capture Rates from Nuclear Masses

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-01-30

    Recent studies of neutron capture performed at LANL have revealed a previously unrecognized connection between nuclear masses and the average neutron capture cross section. A team of three scientists from Los Alamos (P-27), Yale Univ., and Istanbul Univ. (Turkey) recently discovered this connection and have published their results as a Rapid Communication in Physical Review C. Neutron capture is a reaction in which a free neutron is absorbed by the nucleus, keeping the element unchanged, but changing isotopes. This reaction is typically exothermic. As a result, the reaction can proceed even when many other reaction channels are closed. In an astrophysical environment, this means that neutron capture is the primary mechanism by which all of the elements with atomic number greater than nickel are produced is neutron capture.

  3. The astrophysical r-process and its dependence on properties of nuclei far from stability beta strength functions and neutron capture rates

    CERN Document Server

    Klapdor-Kleingrothaus, H V; Metzinger, J; Oda, T; Thielemann, F K

    1981-01-01

    It is shown that the astrophysical r-process and the question of its site are very sensitive to 'standard' nuclear physics parameters like the beta decay properties and neutron capture rates. Since for these quantities in almost all r-process calculations up to now, and also in all estimates of the production rates of chronometric pairs, only very rough assumptions have been made, it is attempted to present procedures which put the calculation of these quantities for nuclei far from stability on a reliable physical basis. This is done by a microscopic description of the beta strength function and by using a statistical model based on a 'next to first principles' optical potential including effects of deformation for the neutron capture rates. The beta -decay rates for approximately 6000 nuclei between the beta -stability line and the neutron drip line are calculated. The heavy element synthesis by explosive He burning then is calculated using these beta -rates and using realistic star models treating the supe...

  4. Neutron capture cross sections of Kr

    Directory of Open Access Journals (Sweden)

    Fiebiger Stefan

    2017-01-01

    Full Text Available Neutron capture and β− -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL using the Detector for Advanced Neutron Capture Experiments (DANCE. 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  5. Neutron capture cross sections of Kr

    Science.gov (United States)

    Fiebiger, Stefan; Baramsai, Bayarbadrakh; Couture, Aaron; Krtička, Milan; Mosby, Shea; Reifarth, René; O'Donnell, John; Rusev, Gencho; Ullmann, John; Weigand, Mario; Wolf, Clemens

    2018-01-01

    Neutron capture and β- -decay are competing branches of the s-process nucleosynthesis path at 85Kr [1], which makes it an important branching point. The knowledge of its neutron capture cross section is therefore essential to constrain stellar models of nucleosynthesis. Despite its importance for different fields, no direct measurement of the cross section of 85Kr in the keV-regime has been performed. The currently reported uncertainties are still in the order of 50% [2, 3]. Neutron capture cross section measurements on a 4% enriched 85Kr gas enclosed in a stainless steel cylinder were performed at Los Alamos National Laboratory (LANL) using the Detector for Advanced Neutron Capture Experiments (DANCE). 85Kr is radioactive isotope with a half life of 10.8 years. As this was a low-enrichment sample, the main contaminants, the stable krypton isotopes 83Kr and 86Kr, were also investigated. The material was highly enriched and contained in pressurized stainless steel spheres.

  6. Iodine neutron capture therapy

    Science.gov (United States)

    Ahmed, Kazi Fariduddin

    A new technique, Iodine Neutron Capture Therapy (INCT) is proposed to treat hyperthyroidism in people. Present thyroid therapies, surgical removal and 131I treatment, result in hypothyroidism and, for 131I, involve protracted treatment times and excessive whole-body radiation doses. The new technique involves using a low energy neutron beam to convert a fraction of the natural iodine stored in the thyroid to radioactive 128I, which has a 24-minute half-life and decays by emitting 2.12-MeV beta particles. The beta particles are absorbed in and damage some thyroid tissue cells and consequently reduce the production and release of thyroid hormones to the blood stream. Treatment times and whole-body radiation doses are thus reduced substantially. This dissertation addresses the first of the several steps needed to obtain medical profession acceptance and regulatory approval to implement this therapy. As with other such programs, initial feasibility is established by performing experiments on suitable small mammals. Laboratory rats were used and their thyroids were exposed to the beta particles coming from small encapsulated amounts of 128I. Masses of 89.0 mg reagent-grade elemental iodine crystals have been activated in the ISU AGN-201 reactor to provide 0.033 mBq of 128I. This activity delivers 0.2 Gy to the thyroid gland of 300-g male rats having fresh thyroid tissue masses of ˜20 mg. Larger iodine masses are used to provide greater doses. The activated iodine is encapsulated to form a thin (0.16 cm 2/mg) patch that is then applied directly to the surgically exposed thyroid of an anesthetized rat. Direct neutron irradiation of a rat's thyroid was not possible due to its small size. Direct in-vivo exposure of the thyroid of the rat to the emitted radiation from 128I is allowed to continue for 2.5 hours (6 half-lives). Pre- and post-exposure blood samples are taken to quantify thyroid hormone levels. The serum T4 concentration is measured by radioimmunoassay at

  7. The neutron capture process in the He shell in core-collapse supernovae: Presolar silicon carbide grains as a diagnostic tool for nuclear astrophysics

    Science.gov (United States)

    Pignatari, Marco; Hoppe, Peter; Trappitsch, Reto; Fryer, Chris; Timmes, F. X.; Herwig, Falk; Hirschi, Raphael

    2018-01-01

    Carbon-rich presolar grains are found in primitive meteorites, with isotopic measurements to date suggesting a core-collapse supernovae origin site for some of them. This holds for about 1-2% of presolar silicon carbide (SiC) grains, so-called Type X and C grains, and about 30% of presolar graphite grains. Presolar SiC grains of Type X show anomalous isotopic signatures for several elements heavier than iron compared to the solar abundances: most notably for strontium, zirconium, molybdenum, ruthenium and barium. We study the nucleosynthesis of zirconium and molybdenum isotopes in the He-shell of three core-collapse supernovae models of 15, 20 and 25 M⊙ with solar metallicity, and compare the results to measurements of presolar grains. We find the stellar models show a large scatter of isotopic abundances for zirconium and molybdenum, but the mass averaged abundances are qualitatively similar to the measurements. We find all models show an excess of 96Zr relative to the measurements, but the model abundances are affected by the fractionation between Sr and Zr since a large contribution to 90Zr is due to the radiogenic decay of 90Sr. Some supernova models show excesses of 95,97Mo and depletion of 96Mo relative to solar. The mass averaged distribution from these models shows an excess of 100Mo, but this may be alleviated by very recent neutron-capture cross section measurements. We encourage future explorations to assess the impact of the uncertainties in key neutron-capture reaction rates that lie along the n-process path.

  8. Neutron capture cross section of $^{93}$Zr

    CERN Multimedia

    We propose to measure the neutron capture cross section of the radioactive isotope $^{93}$Zr. This project aims at the substantial improvement of existing results for applications in nuclear astrophysics and emerging nuclear technologies. In particular, the superior quality of the data that can be obtained at n_TOF will allow on one side a better characterization of s-process nucleosynthesis and on the other side a more accurate material balance in systems for transmutation of nuclear waste, given that this radioactive isotope is widely present in fission products.

  9. Neutron capture therapy for melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Glass, J.D.; Micca, P.; Fairchild, R.G.

    1988-01-01

    The development of boron-containing compounds which localize selectively in tumor may require a tumor-by-tumor type of approach that exploits any metabolic pathways unique to the particular type of tumor. Melanin-producing melanomas actively transport and metabolize aromatic amino acids for use as precursors in the synthesis of the pigment melanin. It has been shown that the boron-containing amino acid analog p-borono-phenylalanine (BPA) is selectively accumulated in melanoma tissue, producing boron concentrations in tumor that are within the range estimated to be necessary for successful boron neutron capture therapy (BNCT). We report here the results of therapy experiments carried out at the Brookhaven Medical Research Reactor (BMRR). 21 refs., 5 figs., 3 tabs.

  10. Workshop on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Bond, V.P. (eds.)

    1986-01-01

    Potentially optimal conditions for Neutron Capture Therapy (NCT) may soon be in hand due to the anticipated development of band-pass filtered beams relatively free of fast neutron contaminations, and of broadly applicable biomolecules for boron transport such as porphyrins and monoclonal antibodies. Consequently, a number of groups in the US are now devoting their efforts to exploring NCT for clinical application. The purpose of this Workshop was to bring these groups together to exchange views on significant problems of mutual interest, and to assure a unified and effective approach to the solutions. Several areas of preclinical investigation were deemed to be necessary before it would be possible to initiate clinical studies. As neither the monomer nor the dimer of sulfhydryl boron hydride is unequivocally preferable at this time, studies on both compounds should be continued until one is proven superior.

  11. Fast neutron radiotherapy and boron neutron capture therapy: application to a human melanoma test system; Radiotherapie par neutrons rapides et therapie par capture de neutrons par le bore: application a un melanome

    Energy Technology Data Exchange (ETDEWEB)

    Laramore, G.E.; Risler, R.; Griffin, T.W.; Wootton, P.; Wilbur, D.S. [Washington Univ., Seattle, WA (United States)

    1996-12-31

    Fast neutron radiotherapy has proven to be an effective form of treatment in a selected subset of tumors (salivary gland tumors, sarcomas, and locally-advanced prostate cancer), but has not proven to be more beneficial than conventional photon irradiation for the majority of tumor types upon which it has been tested. Normal tissue tolerance limits preclude simply further escalating the neutron dose. Boron neutron capture (BNC) provides a way of selectively augmenting the radiation dose to the tumor. This process is described, and cell culture and animal model data data reviewed. An irradiation configuration was developed where an enhancement of 2-10{sup 3} for 1 {mu}g of {sup 10}B per gram of tissue was achieved. This is similar to the enhancement achievable in the center of a 20 x 20 cm field envisioned for future applications such as metastases in the brain. A boron concentration of 50 {mu}g per gram of tumor tissue leads to a 10 % increase in the delivered physical dose in this scenario. The first human test of BNC enhancement of a fast neutron radiotherapy beam using pharmacologically-acceptable doses of orally-administrated, {sup 10}B-enriched, L-para-bonophenylalanine is reported.. An enhancement of tumor response was demonstrated for a melanoma skin nodule test system. Boron levels achieved in blood, skin, and tumors are presented. Future research plans are discussed. (author). 25 refs.

  12. Neutron capture by hook or by crook

    Science.gov (United States)

    Mosby, Shea

    2016-03-01

    The neutron capture reaction is a topic of fundamental interest for both heavy element (A>60) nucleosynthesis and applications in such fields as nuclear energy and defense. The full suite of interesting isotopes ranges from stable nuclei to the most exotic, and it is not possible to directly measure all the relevant reaction rates. The DANCE instrument at Los Alamos provides direct access to the neutron capture reaction for stable and long-lived nuclei, while Apollo coupled to HELIOS at Argonne has been developed as an indirect probe for cases where a direct measurement is impossible. The basic techniques and their implications will be presented, and the status of ongoing experimental campaigns to address neutron capture in the A=60 and A=100 mass regions will be discussed.

  13. Modern alchemy: Fred Hoyle and element building by neutron capture

    Science.gov (United States)

    Burbidge, E. Margaret

    Fred Hoyle's fundamental work on building the chemical elements by nuclear processes in stars at various stages in their lives began with the building of elements around iron in the very dense hot interiors of stars. Later, in the paper by Burbidge, Burbidge, Fowler and Hoyle, we four showed that Hoyle's "equilibrium process" is one of eight processes required to make all of the isotopes of all the elements detected in the Sun and stars. Neutron capture reactions, which Fred had not considered in his epochal 1946 paper, but for which experimental data were just becoming available in 1957, are very important, in addition to the energy-generating reactions involving hydrogen, helium, carbon, nitrogen and oxygen, for building all of the elements. They are now providing clues to the late stages of stellar evolution and the earliest history of our Galaxy. I describe here our earliest observational work on neutron capture processes in evolved stars, some new work on stars showing the results of the neutron capture reactions, and data relating to processes ending in the production of lead, and I discuss where this fits into the history of stars in our own Galaxy.

  14. Neutron capture reactions on Lu isotopes at DANCE

    CERN Document Server

    Roig, O

    2010-01-01

    The DANCE (Detector for Advanced Neutron Capture Experiments) array located at the Los Alamos national laboratory has been used to obtain the neutron capture cross sections for 175Lu and 176Lu with neutron energies from thermal up to 100 keV. Both isotopes are of current interest for the nucleosynthesis s-process in astrophysics and for applications as in reactor physics or in nuclear medicine. Three targets were used to perform these measurements. One was natLu foil and the other two were isotope-enriched targets of 175Lu and 176Lu. The cross sections are obtained for now through a precise neutron flux determination and a normalization at the thermal neutron cross section value. A comparison with the recent experimental data and the evaluated data of ENDF/B-VII.0 will be presented. In addition, resonances parameters and spin assignments for some resonances will be featured.

  15. Gamma Spectrum from Neutron Capture on Tungsten Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Hurst, Aaron; Summers, Neil; Sleaford, Brad; Firestone, Richard B; Belgya, T.; Revay, Z.S.

    2010-04-29

    An evaluation of thermal neutron capture on the stable tungsten isotopes is presented, with preliminary results for the compound systems 183;184;185;187W. The evaluation procedure compares the g-ray cross-section data collected at the Budapest reactor, with Monte Carlo simulations of g-ray emission following the thermal neutron-capture process. The statistical-decay code DICEBOX was used for the Monte Carlo simulations. The evaluation yields new gamma rays in 185W and the confirmation of spins in 187W, raising the number of levels below which the level schemes are considered complete, thus increasing the number of levels that can be used in neutron data libraries.

  16. Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Rupak, Gautam; Renato, Higa

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix element. The cross section depends on the poorly known p-wave effective range

  17. Spectral tailoring for boron Neutron capture therapy

    NARCIS (Netherlands)

    Nievaart, V.A.

    2007-01-01

    In several places in the world, such as Petten and Delft in the Netherlands, investigations are in progress in the fight against certain types of cancer with Boron Neutron Capture Therapy. The basic idea is very simple: boron is loaded only into the cancer cells, using a special drug, after which

  18. Capturing the Future: Direct and Indirect Probes of Neutron Capture

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-08-31

    This report documents aspects of direct and indirect neutron capture. The importance of neutron capture rates and methods to determine them are presented. The following conclusions are drawn: direct neutron capture measurements remain a backbone of experimental study; work is being done to take increased advantage of indirect methods for neutron capture; both instrumentation and facilities are making new measurements possible; more work is needed on the nuclear theory side to understand what is needed furthest from stability.

  19. Precision Mass Measurements of 129-131Cd and Their Impact on Stellar Nucleosynthesis via the Rapid Neutron Capture Process

    CERN Document Server

    Atanasov, D.; Blaum, K.; Cakirli, R.B.; Cocolios, T.E.; George, S.; Herfurth, F.; Kisler, D.; Janka, H.T.; Just, O.; Kowalska, M.; Kreim, S.; Kisler, D.; Litvinov, Yu. A.; Lunney, D.; Manea, V.; Neidherr, D.; Rosenbusch, M.; Schweikhard, L.; Welker, A.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

    2015-01-01

    Masses adjacent to the classical waiting-point nuclide 130Cd have been measured by using the Penning- trap spectrometer ISOLTRAP at ISOLDE/CERN. We find a significant deviation of over 400 keV from earlier values evaluated by using nuclear beta-decay data. The new measurements show the reduction of the N = 82 shell gap below the doubly magic 132Sn. The nucleosynthesis associated with the ejected wind from type-II supernovae as well as from compact object binary mergers is studied, by using state-of-the-art hydrodynamic simulations. We find a consistent and direct impact of the newly measured masses on the calculated abundances in the A = 128 - 132 region and a reduction of the uncertainties from the precision mass input data.

  20. New aspects of the neutron capture in light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mengoni, A. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    Several neutron capture cross sections of light nuclei (A {<=} 40) for neutron energies up to the MeV region have been recently calculated. Examples are (target nuclei): {sup 12}C, {sup 13}C, {sup 16}O and {sup 10}Be. The results of these calculations will be shown together with a comparison with the most recent experimental data. In the case of n + {sup 10}Be case, the cross section of the inverse process (Coulomb dissociation of {sup 11}Be) is considered and compared with the measurement. A discussion on the relevant nuclear structure information required for the evaluation of nuclear data of light nuclei is given. (author)

  1. Neutron Capture Cross Section of 239Pu

    Science.gov (United States)

    Mosby, S.; Arnold, C.; Bredeweg, T. A.; Couture, A.; Jandel, M.; O'Donnell, J. M.; Rusev, G.; Ullmann, J. L.; Chyzh, A.; Henderson, R.; Kwan, E.; Wu, C. Y.

    2014-09-01

    The 239Pu(n,γ) cross section has been measured over the energy range 10 eV - 10 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) as part of a campaign to produce precision (n,γ) measurements on 239Pu in the keV region. Fission coincidences were measured with a PPAC and used to characterize the prompt fission γ-ray spectrum in this region. The resulting spectra will be used to better characterize the fission component of another experiment with a thicker target to extend the (n,γ) cross section measurement well into the keV region.

  2. Production of Molybdenum-99 using Neutron Capture Methods

    Energy Technology Data Exchange (ETDEWEB)

    Toth, James J; Greenwood, Lawrence R; Soderquist, Chuck Z; Wittman, Richard S; Pierson, Bruce D; Burns, Kimberly A; Lavender, Curt A; Painter, Chad L; Love, Edward F; Wall, Donald E

    2011-01-01

    Pacific Northwest National Laboratory (PNNL), operated by Battelle, has identified a reference process for the production of molybdenum-99 (99Mo) for use in a chromatographic generator to separate the daughter product, technetium-99m (99mTc). The reference process uses the neutron capture reaction of natural or enriched molybdenum oxide via the reaction 98Mo(n,γ)99Mo. The irradiated molybdenum is dissolved in an alkaline solution, whereby the molybdenum, dissolved as the molybdate anion, is loaded on a proprietary ion exchange material in the chromatographic generator. The approach of this investigation is to provide a systematic collection of technologies to make the neutron capture method for Mo-99 production economically viable. This approach would result in the development of a technetium Tc99m generator and a new type of target. The target is comprised of molybdenum, either natural or enriched, and is tailored to the design of currently operating U.S. research reactors. The systematic collection of technologies requires evaluation of new metallurgical methods to produce the target, evaluation of target geometries tailored to research reactors, and chemical methods to dissolve the irradiated target materials for use in a chromatographic generator. A Technical specification for testing the target and neutron capture method in a research reactor is also required. This report includes identification of research and demonstration activities needed to enable deployment of neutron capture production method, including irradiations of prototypic targets, chemical processing of irradiated targets, and loading and extraction tests of Mo99 and Tc99m on the sorbent material in a prototypic generator design. The prototypical generator design is based on the proprietary method and systems for isotope product generation. The proprietary methods and systems described in this report are clearly delineated with footnotes. Ultimately, the Tc-99m generator solution provided by

  3. Thermal neutron capture gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Tuli, J.K.

    1983-01-01

    The energy and intensity of gamma rays as seen in thermal neutron capture are presented. Only those (n,..cap alpha..), E = thermal, reactions for which the residual nucleus mass number is greater than or equal to 45 are included. These correspond to evaluations published in Nuclear Data Sheets. The publication source data are contained in the Evaluated Nuclear Structure Data File (ENSDF). The data presented here do not involve any additional evaluation. Appendix I lists all the residual nuclides for which the data are included here. Appendix II gives a cumulated index to A-chain evaluations including the year of publication. The capture gamma ray data are given in two tables - the Table 1 is the list of all gamma rays seen in (n,..gamma..) reaction given in the order of increasing energy; the Table II lists the gamma rays according to the nuclide.

  4. Positron source based on neutron capture

    Science.gov (United States)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Triftshäuser, W.

    2003-10-01

    A positron beam based on absorption of high-energy prompt γ-rays from thermal neutron capture in 113Cd was installed at a neutron guide of the High Flux Reactor at the ILL in Grenoble. The positron source consists of platinum foils acting as γ-e +e --converter and positron moderator. After acceleration to 3 keV by electrical lenses the positrons were magnetically guided through the beamline. Measurements were performed for various source geometries. The beam diameter and moderation characteristics such as positron work function, moderation efficiency and degradation were determined as well. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II.

  5. Abundances of neutron-capture elements in G 24-25

    DEFF Research Database (Denmark)

    Liu, S.; Nissen, Poul Erik; Schuster, W. J.

    2012-01-01

    Aims. The differences between the neutron-capture element abundances of halo stars are important to our understanding of the nucleosynthesis of elements heavier than the iron group. We present a detailed abundance analysis of carbon and twelve neutron-capture elements from Sr up to Pb...... overabundances of carbon and heavy s-process elements and mild overabundances of Eu and light s-process elements. This abundance distribution is consistent with that of a typical CH giant. The abundance pattern can be explained by mass transfer from a former asymptotic giant branch component, which is now...

  6. Research needs for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Key issues and questions addressed by the workshop related to optimization of Boron Neutron Capture Therapy (BNCT), in general, and to the possibility of success of the present BNCT trials at Brookhaven National Laboratory (BNL) and Massachusetts Institute of Technology (MIT), in particular. Both trials use nuclear fission reactors as neutron sources for BNCT of glioblastoma multiforme (BNL) and of deep seated melanoma (MIT). Presentations and discussions focussed on optimal boron-labeled compounds, mainly for brain tumors such as glioblastoma multiforme, and the best mode of compound delivery to the tumor. Also, optimizing neutron irradiation with dose delivery to the tumor cells and the issues of dosimetry of BNCT especially in the brain were discussed. Planning of treatment and of follow-up of patients, coordination of BNCT at various treatment sites, and the potential of delivering BNCT to various types of cancer with an appropriately tailored protocol were additional issues. The need for multicentric interdisciplinary cooperation among the different medical specialties was highlighted.

  7. Neutron Capture Experiments on Unstable Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Jon M. Schwantes; Ralf Sudowe; Heino Nitsche; Darleane C. Hoffman

    2003-12-16

    A primary objective of this project is to study neutron capture cross sections for various stable and unstable isotopes that will contribute to the Science Based Stockpile Stewardship (SBSS) program by providing improved data for modeling and interpretation of nuclear device performance. The information obtained will also be important in astrophysical modeling of nucleosynthesis. During this reporting period, the emphasis has been on preparing a radioactive target of {sup 155}Eu (half-life = 4.7 years), and several stable targets, including isotopically separated {sup 154}Sm, {sup 151}Eu, and {sup 153}Eu. Measurements of their neutron capture cross sections will be conducted in collaboration with researchers at the Los Alamos Neutron Science Center (LANSCE) facility using the Detector for Advanced Neutron Capture Experiments (DANCE). A suitable backing material (beryllium) for the targets has been selected after careful calculations of its contribution to the background of the measurements. In addition, a high voltage plating procedure has been developed and optimized. Stable targets of {sup 151}Eu and {sup 153}Eu and a target of natural Eu ({approx}50% {sup 151}Eu and {approx}50% {sup 153}Eu) have each been plated to a mass thickness of >1 mg/cm{sup 2} and delivered to the DANCE collaboration at Los Alamos National Laboratory (LANL). Natural Eu targets will be tested first to confirm that the target dimensions and backing are appropriate prior to performing measurements on the extremely valuable targets of separated isotopes. In order to prepare a target of the radioactive {sup 155}Eu, it must first be separated from the {sup 154}Sm target material that was irradiated in a very high neutron flux of 1.5x1015 neutrons/cm{sup 2}/s for 50 days. The reaction is {sup 154}Sm (n,f){sup 155}Sm (half-life = 22 minutes) {sup 155}Eu. Considerable progress has been made in developing a suitable high-yield and high-purity separation method for separating Eu from targets

  8. Thermal-neutron capture for A=36-44

    CERN Document Server

    Chunmei, Z

    2003-01-01

    A new evaluation has been undertaken of the level properties, prompt gamma rays and decay scheme properties of thermal neutron capture for nuclides with mass number A=36-44. The cutoff date is March 2002. This evaluation is effectively an update of the data table of the Prompt Gamma Rays from Thermal Neutron Capture as published in Atomic Data and Nuclear Data Tables 26, 511, (1981).

  9. Neutron capture therapy: Years of experimentation---Years of reflection

    Energy Technology Data Exchange (ETDEWEB)

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven`s Medical Research Center program.

  10. Neutron capture therapy: Years of experimentation---Years of reflection

    Energy Technology Data Exchange (ETDEWEB)

    Farr, L.E.

    1991-12-16

    This report describes early research on neutron capture therapy over a number of years, beginning in 1950, speaking briefly of patient treatments but dwelling mostly on interpretations of our animal experiments. This work carried out over eighteen years, beginning over forty years ago. Yet, it is only fitting to start by relating how neutron capture therapy became part of Brookhaven's Medical Research Center program.

  11. Target studies for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.R.; Ludewig, H.; Todosow, M.; Reich, M.

    1996-03-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron ``filter``, which has a deep ``window`` in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is reaccelerated by an applied DC electric field. The DISCOS approach enables the accelerator -- target facility to operate with a beam energy only slightly above the threshold value for neutron production -- resulting in an output beam of low-energy epithermal neutrons -- while achieving a high yield of neutrons per milliamp of proton beam current.

  12. New measurement of neutron capture resonances of 209Bi

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrillode Albornoz, A.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillman, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marques, L.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, Alberto; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2006-01-01

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At th...

  13. Validating (d,pγ) as a surrogate for neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A. [Rutgers Univ., New Brunswick, NJ (United States); Cizewski, J. A. [Rutgers Univ., New Brunswick, NJ (United States); Pain, S. D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Adekola, A. S. [Rutgers Univ., New Brunswick, NJ (United States); Burke, J. T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Casperson, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fotiadis, Nikolaos [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); McCleskey, M. [Texas A & M Univ., College Station, TX (United States); Burcher, S. [Rutgers Univ., New Brunswick, NJ (United States); Shand, C. M [Rutgers Univ., New Brunswick, NJ (United States); Austin, R. A. E. [Saint Mary' s Univ., Halifax (Canada); Baugher, T. [Rutgers Univ., New Brunswick, NJ (United States); Carpenter, M. P. [Argonne National Lab. (ANL), Argonne, IL (United States); Devlin, Matthew James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Escher, J. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hardy, S. [Rutgers Univ., New Brunswick, NJ (United States); Hatarik, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Howard, M. E. [Rutgers Univ., New Brunswick, NJ (United States); Hughes, R. O. [Univ. of Richmond, VA (United States); Jones, K. L. [Univ. of Tennessee, Knoxville, TN (United States); Kozub, R. L. [Tennessee Technological Univ., Cookeville, TN (United States); Lister, C. J. [Univ. of Massachusetts, Lowell, MA (United States); Manning, B. [Rutgers Univ., New Brunswick, NJ (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Peters, W. A. [oak ridge associated Univ., TN (United States); Ross, T. J. [Univ. of Richmond, VA (United States); Scielzo, N. D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Seweryniak, D. [Argonne National Lab. (ANL), Argonne, IL (United States); Zhu, S. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-02-13

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the r-process may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,pγ) reaction at low energies was identified as a promising surrogate for the (n,γ) reaction, as both reactions share many characteristics. We report on a program to validate (d,pγ) as a surrogate for (n,γ) using 95Mo as a target. The experimental campaign includes direct measurements of the γ-ray intensities from the decay of excited states populated in the 95Mo(n,γ) and 95Mo(d,pγ) reactions.

  14. Thermal-neutron capture for A=36-44

    OpenAIRE

    Chunmei, Z.; Firestone, R. B.

    2003-01-01

    The prompt gamma-ray data of thermal- neutron captures for nuclear mass number A=26-35 had been evaluated and published in "ATOMIC DATA AND NUCLEAR DATA TABLES, 26, 511 (1981)". Since that time the many experimental data of the thermal-neutron captures have been measured and published. The update of the evaluated prompt gamma-ray data is very necessary for use in PGAA of high-resolution analytical prompt gamma-ray spectroscopy. Besides, the evaluation is also very needed in the Evaluated...

  15. Enhancing the Detector for Advanced Neutron Capture Experiments

    Science.gov (United States)

    Couture, A.; Mosby, S.; Baramsai, B.; Bredeweg, T. A.; Jandel, M.; Macon, K.; O'Donnell, J. M.; Rusev, G.; Taddeucci, T. N.; Ullmann, J. L.; Walker, C. L.

    2015-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  16. Enhancing the Detector for Advanced Neutron Capture Experiments

    Directory of Open Access Journals (Sweden)

    Couture A.

    2015-01-01

    Full Text Available The Detector for Advanced Neutron Capture Experiments (DANCE has been used for extensive studies of neutron capture, gamma decay, photon strength functions, and prompt and delayed fission-gamma emission. Despite these successes, the potential measurements have been limited by the data acquisition hardware. We report on a major upgrade of the DANCE data acquisition that simultaneously enables strait-forward coupling to auxiliary detectors, including high-resolution high-purity germanium detectors and neutron tagging array. The upgrade will enhance the time domain accessible for time-of-flight neutron measurements as well as improve the resolution in the DANCE barium fluoride crystals for photons.

  17. Neutron capture cross sections of $^{70,72,73,74,76}$ Ge at n_TOF EAR-1

    CERN Multimedia

    We propose to measure the (n;$\\gamma$ ) cross sections of the isotopes $^{70;72;73;74;76}$Ge. Neutron induced reactions on Ge are of importance for the astrophysical slow neutron capture process, which is responsible for forming about half of the overall elemental abundances heavier than Fe. The neutron capture cross section on Ge affects the abundances produced in this process for a number of heavier isotopes up to a mass number of A = 90. Additionally, neutron capture on Ge is of interest for low background experiments involving Ge detectors. Experimental cross section data presently available for Ge (n;$\\gamma$ ) are scarce and cover only a fraction of the neutron energy range of interest. (n;$\\gamma$ ) cross sections will be measured in the full energy range from 25 meV to about 200 keV at n TOF EAR-1.

  18. Informing neutron capture nucleosynthesis on short-lived nuclei with (d,p) reactions

    Science.gov (United States)

    Cizewski, Jolie A.; Ratkiewicz, Andrew; Escher, Jutta E.; Lepailleur, Alexandre; Pain, Steven D.; Potel, Gregory

    2018-01-01

    Neutron capture on unstable nuclei is important in understanding abundances in r-process nucleosynthesis. Previously, the non-elastic breakup of the deuteron in the (d,p) reaction has been shown to provide a neutron that can be captured by the nucleus and the gamma-ray decay of the subsequent compound nucleus can be modelled to predict the gamma-ray decay of the compound nucleus in the (n,γ) reaction. Preliminary results from the 95Mo(d,pγ) reaction in normal kinematics support the (d,pγ) reaction as a valid surrogate for neutron capture. The techniques to measure the (d,pγ) reaction in inverse kinematics have been developed.

  19. Validating (d,p gamma) as a Surrogate for Neutron Capture

    Energy Technology Data Exchange (ETDEWEB)

    Ratkiewicz, A. [Rutgers University; Cizewski, J. A. [Rutgers University; Pain, S. [Oak Ridge National Laboratory (ORNL); Adekola, A. S. [Rutgers University; Burke, J. T. [Lawrence Livermore National Laboratory (LLNL); Casperson, R.J. [Lawrence Livermore National Laboratory (LLNL); Fotiades, N. [Los Alamos National Laboratory (LANL); McCleskey, M. [Texas A& M University; Burcher, S. [Rutgers University; Shand, C. M. [Rutgers Univ./Univ. of Surrey, UK; Austin, R. A. E. [Saint Mary’s University, Halifa, Canada; Baugher, T. [Rutgers University; Carpenter, M. P. [Argonne National Laboratory (ANL); Devlin, M. [Los Alamos National Laboratory (LANL); Escher, J. E. [Lawrence Livermore National Laboratory (LLNL); Hardy, S. [Rutgers Univ./Univ. of Surrey, UK; Hatarik, R. [Lawrence Livermore National Laboratory (LLNL); Howard, M. [Rutgers University; Hughes, R. [University of Richmond, VA; Jones, K. L. [University of Tennessee, Knoxville (UTK); Kozub, R. L. [Tennessee Technological University (TTU); Lister, C. J. [University of Massachusetts, Lowell; Manning, B. [Rutgers University; O' Donnell, J. M. [Los Alamos National Laboratory (LANL); Peters, W. A. [Oak Ridge Associated Universities (ORAU); Ross, T.J. [University of Richmond, VA; Scielzo, N.D. [Lawrence Livermore National Laboratory (LLNL); Seweryniak, D. [Argonne National Laboratory (ANL); Zhu, S. [Argonne National Laboratory (ANL)

    2015-01-01

    The r-process is responsible for creating roughly half of the elements heavier than iron. It has recently become understood that the rates at which neutron capture reactions proceed at late times in the rprocess may dramatically affect the final abundance pattern. However, direct measurements of neutron capture reaction rates on exotic nuclei are exceptionally difficult, necessitating the development of indirect approaches such as the surrogate technique. The (d,py) reaction at low energies was identified as a promising surrogate for the (n,y) reaction, as both reactions share many characteristics. We report on a program to validate (d,py) as a surrogate for (n,y) using 95Mo as a target. The experimental campaign includes direct measurements of the y-ray intensities from the decay of excited states populated in the 95Mo(n,y) and 95Mo(d,py) reactions.

  20. Double-neutron capture reaction and natural abundance of 183W, 195Pt and 199Hg isotopes

    Science.gov (United States)

    Karamian, S. A.; Aksenov, N. V.; Bozhikov, G. A.

    2016-06-01

    There are much data on neutron cross sections over the chart of nuclides for stable isotopes and not as much for the radioactive ones. Double neutron capture experiments could be fruitful to provide more data. Time-integrated mean flux of slow neutrons reaches the value of 2.3-1012 n/cm2 s at the irradiation port near the active zone of the IBR-2 pulsed reactor of JINR. This is enough to detect the double neutron capture products by the activation method. A high capture cross section is obtained in the present experiment for intermediate radioactive 182Ta and 194Ir target nuclides. Together with the known data for 198Au, these values may prove an essential role of double neutron capture process for nucleosynthesis of 183W, 195Pt and 199Hg isotopes at stellar conditions.

  1. Proceedings of the first international symposium on neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Fairchild, R.G.; Brownell, G.L. (eds.)

    1982-01-01

    This meeting was arranged jointly by MIT and BNL in order to illuminate progress in the synthesis and targeting of boron compounds and to evaluate and document progress in radiobiological and dosimetric aspects of neutron capture therapy. It is hoped that this meeting will facilitate transfer of information between groups working in these fields, and encourage synergistic collaboration.

  2. Resonance Contribution to Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Fernando, Lakma; Higa, Renato; Rupak, Gautam

    2011-01-01

    Using halo eective eld theory, we provide a model-independent calculation of the radiative neutron capture on lithium-7 over an energy range where the contribution from the 3+ resonance becomes important. One nds that a satisfactory description of the capture reaction, in the present single-particle

  3. Shape Isomer in 236U Populated by Thermal Neutron Capture

    DEFF Research Database (Denmark)

    Andersen, Verner; Christensen, Carl Jørgen; Borggreen, J.

    1976-01-01

    The 116 ns shape isomer in 236U was populated by thermal neutron capture. Conversion electrons and X-rays were detected simultaneously in delayed coincidence with fission. The ratio of delayed to prompt fission was measured with the result, σIIf/σf = (1.0±0.2) × 10−5. A branching of the isomeric...

  4. Neutron Capture Gamma-Ray Libraries for Nuclear Applications

    Energy Technology Data Exchange (ETDEWEB)

    Sleaford, B W; Firestone, R B; Summers, N; Escher, J; Hurst, A; Krticka, M; Basunia, S; Molnar, G; Belgya, T; Revay, Z; Choi, H D

    2010-11-04

    The neutron capture reaction is useful in identifying and analyzing the gamma-ray spectrum from an unknown assembly as it gives unambiguous information on its composition. this can be done passively or actively where an external neutron source is used to probe an unknown assembly. There are known capture gamma-ray data gaps in the ENDF libraries used by transport codes for various nuclear applications. The Evaluated Gamma-ray Activation file (EGAF) is a new thermal neutron capture database of discrete line spectra and cross sections for over 260 isotopes that was developed as part of an IAEA Coordinated Research project. EGAF is being used to improve the capture gamma production in ENDF libraries. For medium to heavy nuclei the quasi continuum contribution to the gamma cascades is not experimentally resolved. The continuum contains up to 90% of all the decay energy and is modeled here with the statistical nuclear structure code DICEBOX. This code also provides a consistency check of the level scheme nuclear structure evaluation. The calculated continuum is of sufficient accuracy to include in the ENDF libraries. This analysis also determines new total thermal capture cross sections and provides an improved RIPL database. For higher energy neutron capture there is less experimental data available making benchmarking of the modeling codes more difficult. They are investigating the capture spectra from higher energy neutrons experimentally using surrogate reactions and modeling this with Hauser-Feshbach codes. This can then be used to benchmark CASINO, a version of DICEBOX modified for neutron capture at higher energy. This can be used to simulate spectra from neutron capture at incident neutron energies up to 20 MeV to improve the gamma-ray spectrum in neutron data libraries used for transport modeling of unknown assemblies.

  5. Thermal Neutron Capture Cross Sections of the PalladiumIsotopes

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B.; Krticka, M.; McNabb, D.P.; Sleaford, B.; Agvaanluvsan, U.; Belgya, T.; Revay, Zs.

    2006-07-17

    Precise gamma-ray thermal neutron capture cross sectionshave been measured at the Budapest Reactor for all elements withZ=1-83,92 except for He and Pm. These measurements and additional datafrom the literature been compiled to generate the Evaluated Gamma-rayActivation File (EGAF), which is disseminated by LBNL and the IAEA. Thesedata are nearly complete for most isotopes with Z<20 so the totalradiative thermal neutron capture cross sections can be determineddirectly from the decay scheme. For light isotopes agreement with therecommended values is generally satisfactory although large discrepanciesexist for 11B, 12,13C, 15N, 28,30Si, 34S, 37Cl, and 40,41K. Neutroncapture decay data for heavier isotopes are typically incomplete due tothe contribution of unresolved continuum transitions so only partialradiative thermal neutron capture cross sections can be determined. Thecontribution of the continuum to theneutron capture decay scheme arisesfrom a large number of unresolved levels and transitions and can becalculated by assuming that the fluctuations in level densities andtransition probabilities are statistical. We have calculated thecontinuum contribution to neutron capture decay for the palladiumisotopes with the Monte Carlo code DICEBOX. These calculations werenormalized to the experimental cross sections deexciting low excitationlevels to determine the total radiative thermal neutron capture crosssection. The resulting palladium cross sections values were determinedwith a precision comparable to the recommended values even when only onegamma-ray cross section was measured. The calculated and experimentallevel feedings could also be compared to determine spin and parityassignments for low-lying levels.

  6. MCNP speed advances for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Goorley, J.T.; McKinney, G.; Adams, K.; Estes, G.

    1998-04-01

    The Boron Neutron Capture Therapy (BNCT) treatment planning process of the Beth Israel Deaconess Medical Center-M.I.T team relies on MCNP to determine dose rates in the subject`s head for various beam orientations. In this time consuming computational process, four or five potential beams are investigated. Of these, one or two final beams are selected and thoroughly evaluated. Recent advances greatly decreased the time needed to do these MCNP calculations. Two modifications to the new MCNP4B source code, lattice tally and tracking enhancements, reduced the wall-clock run times of a typical one million source neutrons run to one hour twenty five minutes on a 200 MHz Pentium Pro computer running Linux and using the GNU FORTRAN compiler. Previously these jobs used a special version of MCNP4AB created by Everett Redmond, which completed in two hours two minutes. In addition to this 30% speedup, the MCNP4B version was adapted for use with Parallel Virtual Machine (PVM) on personal computers running the Linux operating system. MCNP, using PVM, can be run on multiple computers simultaneously, offering a factor of speedup roughly the same as the number of computers used. With two 200 MHz Pentium Pro machines, the run time was reduced to forty five minutes, a 1.9 factor of improvement over the single Linux computer. While the time of a single run was greatly reduced, the advantages associated with PVM derive from using computational power not already used. Four possible beams, currently requiring four separate runs, could be run faster when each is individually run on a single machine under Windows NT, rather than using Linux and PVM to run one after another with each multiprocessed across four computers. It would be advantageous, however, to use PVM to distribute the final two beam orientations over four computers.

  7. FY07 LDRD Final Report Neutron Capture Cross-Section Measurements at DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W; Agvaanluvsan, U; Wilk, P; Becker, J; Wang, T

    2008-02-08

    We have measured neutron capture cross sections intended to address defense science problems including mix and the Quantification of Margins and Uncertainties (QMU), and provide details about statistical decay of excited nuclei. A major part of this project included developing the ability to produce radioactive targets. The cross-section measurements were made using the white neutron source at the Los Alamos Neutron Science Center, the detector array called DANCE (The Detector for Advanced Neutron Capture Experiments) and targets important for astrophysics and stockpile stewardship. DANCE is at the leading edge of neutron capture physics and represents a major leap forward in capability. The detector array was recently built with LDRD money. Our measurements are a significant part of the early results from the new experimental DANCE facility. Neutron capture reactions are important for basic nuclear science, including astrophysics and the statistics of the {gamma}-ray cascades, and for applied science, including stockpile science and technology. We were most interested in neutron capture with neutron energies in the range between 1 eV and a few hundred keV, with targets important to basic science, and the s-process in particular. Of particular interest were neutron capture cross-section measurements of rare isotopes, especially radioactive isotopes. A strong collaboration between universities and Los Alamos due to the Academic Alliance was in place at the start of our project. Our project gave Livermore leverage in focusing on Livermore interests. The Lawrence Livermore Laboratory did not have a resident expert in cross-section measurements; this project allowed us to develop this expertise. For many radionuclides, the cross sections for destruction, especially (n,{gamma}), are not well known, and there is no adequate model that describes neutron capture. The modeling problem is significant because, at low energies where capture reactions are important, the neutron

  8. Measurement of internal conversion electrons from Gd neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Kandlakunta, P. [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Cao, L.R., E-mail: cao.152@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States); Mulligan, P. [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 (United States)

    2013-03-21

    Gadolinium (Gd) is a suitable material for neutron conversion because of its superior neutron absorption cross-section. However, the principal secondary particles that generate electron-hole pairs in a semiconductor detector after Gd neutron capture are low-energy internal conversion (IC) electrons. We measured the IC electron spectrum due to Gd neutron capture by using a thermal neutron beam and a digitizer-based multidetector spectroscopy. We also discussed the effective use of the IC electrons in the context of a twin-detector design and the associated gamma-ray rejection issues. Extensive simulations of the spectra of IC electrons and gamma rays agreed well with the experimental results; both types of results support the feasibility of the proposed n–γ separation method.

  9. Progress on the europium neutron capture study using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States)]. E-mail: agvaanluvsan1@llnl.gov; Becker, J.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Macri, R.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Parker, W. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Wilk, P. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Wu, C.Y. [Lawrence Livermore National Laboratory, 7000 East Avenue, P.O. Box 808, L-414, Livermore, CA 94551 (United States); Bredeweg, T.A.; Esch, E.; Haight, R.C.; O' Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wilhelmy, J.B.; Wouters, J.M. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Mitchell, G.E.; Sheets, S. [North Carolina State University, Raleigh, NC 27695 (United States)]|[Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Becvar, F.; Krticka, M. [Charles University in Prague, CZ 180 00 Prague 8 (Czech Republic)

    2007-08-15

    The accurate measurement of neutron capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E {sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  10. Progress on the Europium Neutron-Capture Study using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Agvaanluvsan, U; Becker, J A; Macri, R A; Parker, W; Wilk, P; Wu, C Y; Bredeweg, T A; Esch, E; Haight, R C; O' Donnell, J M; Reifarth, R; Rundberg, R S; Schwantes, J M; Ullmann, J L; Vieira, D J; Wilhelmy, J B; Wouters, J M; Mitchell, G E; Sheets, S A; Becvar, F; Krticka, M

    2006-09-05

    The accurate measurement of neutron-capture cross sections of the Eu isotopes is important for many reasons including nuclear astrophysics and nuclear diagnostics. Neutron capture excitation functions of {sup 151,153}Eu targets were measured recently using a 4{pi} {gamma}-ray calorimeter array DANCE located at the Los Alamos Neutron Science Center for E{sub n} = 0.1-100 keV. The progress on the data analysis efforts is given in the present paper. The {gamma}-ray multiplicity distributions for the Eu targets and Be backing are significantly different. The {gamma}-ray multiplicity distribution is found to be the same for different neutron energies for both {sup 151}Eu and {sup 153}Eu. The statistical simulation to model the {gamma}-ray decay cascade is summarized.

  11. Neutron Capture Measurements Using the Dance Detector at Los Alamos

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J.L. [LANSCE Division, Los Alamos National Laboratory, Los Alamos, NM (United States)

    2006-07-01

    Full text of publication follows: The Detector for Advanced Neutron Capture Measurements (DANCE) is a 160-element BaF{sub 2} gamma-ray detector located at the Los Alamos Neutron Science Centre's moderated neutron source. The high neutron flux, extending from thermal up to about 100 keV, enables neutron-capture measurements on small quantities of rare or radioactive nuclides. Targets of 1 mg and less have been studied. The performance of the detector will be discussed, and capture cross sections in the resonance region and at higher energies for several nuclides, including {sup 234,236}U will be reviewed. Los Alamos Technical Information Reference Number: LA-UR-06-4142. (authors)

  12. Theoretical and experimental physical methods of neutron-capture therapy

    Science.gov (United States)

    Borisov, G. I.

    2011-09-01

    This review is based to a substantial degree on our priority developments and research at the IR-8 reactor of the Russian Research Centre Kurchatov Institute. New theoretical and experimental methods of neutron-capture therapy are developed and applied in practice; these are: A general analytical and semi-empiric theory of neutron-capture therapy (NCT) based on classical neutron physics and its main sections (elementary theories of moderation, diffuse, reflection, and absorption of neutrons) rather than on methods of mathematical simulation. The theory is, first of all, intended for practical application by physicists, engineers, biologists, and physicians. This theory can be mastered by anyone with a higher education of almost any kind and minimal experience in operating a personal computer.

  13. Lunar neutron capture as a tracer for regolith dynamics

    Science.gov (United States)

    Burnett, D. S.; Woolum, D. S.

    1974-01-01

    The Apollo 17 Lunar Neutron Probe Experiment measured both the boron-10 neutron capture rate and the uranium-235 neutron-induced fission rate as a function of depth. Cd absorption gave a measure of the neutron energy spectrum. Comparisons of the results are made with theory, and good agreement is obtained for the magnitudes and depth dependences of the capture rates. While the low-energy neutron spectrum at depth agrees with theory, the spectrum near the peak of the flux profile is harder than predicted. In light of these results, several alternatives for interpreting the magnitude and uniformity of the neutron capture data from lunar surface soil samples are outlined. While none of the alternatives can be unquestionably defended or discarded, a surface layer mixing model is discussed in detail.

  14. Neutron capture cross section of $^{25}$Mg and its astrophysical implications

    CERN Multimedia

    We propose to measure the neutron capture cross section of the stable $^{25}$Mg isotope. This experiment aims at the improvement of existing results for nuclear astrophysics.The measurement will be carried out under similar conditions as for the Mgexperiment that was completed at n_TOF during 2003. A metal $^{25}$Mg-enriched sample will be used in the proposed experiment instead of a MgO powder sample, which was used in the previous measurement and prevented us to minimize the uncertainty of the measured cross section. This experiment will be part of an ongoing study for a comprehensive discussion of the s-process abundances in massive stars.

  15. DANCE : a 4[pi] barium fluoride detector for measuring neutron capture on unstable nuclei /.

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.); Haight, Robert C.; Hunt, L. F. (Lloyd F.); Reifarth, R. (Rene); Rundberg, R. S. (Robert S.); Bredeweg, T. A. (Todd A); Fowler, Malcolm M.; Miller, G. G. (Geoffrey G.); Heil, M.; Käppeler, F. (Franz); Chamberlin, E. P. (Edwin P.)

    2002-01-01

    Measurements of neutron capture on unstable nuclei are important for studies of s-process nucleosynthesis, nuclear waste transmutation, and stewardship science. A 160-element, 4{pi} barium fluoride detector array, and associated neutron flight path, is being constructed to make capture measurements at the moderated neutron spallation source at LANSCE. Measurements can be made on as little as 1 mg of sample material over energies from near thermal to near 100 keV. The design of the DANCE array is described and neutron flux measurements from flight path commissioning are shown. The array is expected to be complete by the end of 2002.

  16. Review of Livermore-led neutron capture studies using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W.E.; Agvaanluvsan, U.; Becker, J.A.; Macri, R.; Wilk, P.A. [Lawrence Livermore National Lab., Livermore, CA (United States); Sheets, S.A. [North Carolina State Univ., Raleigh, NC (United States); Becvar, F.; Krticka, M. [Prague Charles Univ. (Czech Republic); Bredeweg, T.A.; Clement, R.; Couture, A.; Esch, E.; Haight, R.C.; Jandel, M.; O' Donnell, J.M.; Reifarth, R.; Rundberg, R.S.; Schwantes, J.M.; Ullmann, J.L.; Vieira, D.J.; Wouters, J.M. [Los Alamos National Lab., Los Alamos, NM (United States); Mitchell, G.E. [North Carolina State Univ., Raleigh, NC (United States); Triangle Univ.s Nuclear Lab., Durham, NC (United States)

    2008-07-01

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1 eV up to about 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am. (authors)

  17. Review of Livermore-Led Neutron Capture Studies Using DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W; Sheets, S; Agvaanluvsan, U; Becker, J; Becvar, F; Bredeweg, T; Clement, R; Couture, A; Esch, E; Haight, R; Jandel, M; Krticka, M; Mitchell, G; Macri, R; O' Donnell, J; Reifarth, R; Rundberg, R; Schwantes, J; Ullmann, J; Vieira, D; Wouters, J; Wilk, P

    2007-05-11

    We have made neutron capture cross-section measurements using the white neutron source at the Los Alamos Science Center, the DANCE detector array (Detector for Advanced Neutron Capture Experiments) and targets important for basic science and stockpile stewardship. In this paper, we review results from (n,{gamma}) reactions on {sup 94,95}Mo, {sup 152,154,157,160,nat}Gd, {sup 151,153}Eu and {sup 242m}Am for neutron energies from < 1eV up to {approx} 20 keV. We measured details of the {gamma}-ray cascade following neutron capture, for comparison with results of statistical model simulations. We determined the neutron energy dependent (n,{gamma}) cross section and gained information about statistical decay properties, including the nuclear level density and the photon strength function. Because of the high granularity of the detector array, it is possible to look at gamma cascades with a specified number of transitions (a specific multiplicity). We simulated {gamma}-ray cascades using a combination of the DICEBOX/GEANT computer codes. In the case of the deformed nuclei, we found evidence of a scissors-mode resonance. For the Eu, we also determined the (n,{gamma}) cross sections. For the {sup 94,95}Mo, we focused on the spin and parity assignments of the resonances and the determination of the photon strength functions for the compound nuclei {sup 95,96}Mo. Future plans include measurements on actinide targets; our immediate interest is in {sup 242m}Am.

  18. Levels of Yb174 populated in average resonance neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Granja, C. [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague 2 (Czech Republic)]. E-mail: carlos.granja@utef.cvut.cz; Pospisil, S. [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague 2 (Czech Republic); Chrien, R.E. [Brookhaven National Laboratory, Upton, NY 119 73 (United States); Telezhnikov, S.A. [Joint Institute for Nuclear Research, 141-980 Dubna (Russian Federation)

    2005-08-22

    The primary {gamma} rays and energy levels in Yb174 were investigated in average resonance neutron capture using tailored neutron beams at 2 and 24 keV and a pair spectrometer at the High Flux Reactor at Brookhaven. A thermal neutron beam was also used. Nearly 300 levels with spin up to J=4 are reported below 4 MeV. The distribution of radiative strength in this nucleus was derived and is analyzed with a giant dipole resonance and single-particle strength models. The neutron binding energy in Yb174 was determined at 7464.4(3) keV.

  19. Neutron capture strategy and technique developments for GNEP

    Energy Technology Data Exchange (ETDEWEB)

    Couture, Aaron Joseph [Los Alamos National Laboratory

    2008-01-01

    The initial three years of neutron capture measurements have been very successful in providing data for the Advanced Fuel Cycle Initiative/Global Nuclear Energy Partnership (AFCI/GNEP) program. Now that the most straightforward measurements have been completed, additional technical challenges face future measurements. In particular, techniques are needed to perform measurements that exhibit at least one of three major problems -- large fission:capture ratios, large capture:capture ratios, and high intrinsic activity samples. This paper will set forward a plan for attacking these technical challenges and moving forward with future measurements.

  20. Experimental and Theoretical Understanding of Neutron Capture on Uranium Isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-21

    Neutron capture cross sections on uranium isotopes are important quantities needed to model nuclear explosion performance, nuclear reactor design, nuclear test diagnostics, and nuclear forensics. It has been difficult to calculate capture accurately, and factors of 2 or more be- tween calculation and measurements are not uncommon, although normalization to measurements of the average capture width and nuclear level density can improve the result. The calculations of capture for 233,235,237,239U are further complicated by the need to accurately include the fission channel.

  1. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Science.gov (United States)

    Rochman, D.; Goriely, S.; Koning, A. J.; Ferroukhi, H.

    2017-01-01

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the ;High Fidelity Resonance; (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  2. Radiative neutron capture: Hauser Feshbach vs. statistical resonances

    Energy Technology Data Exchange (ETDEWEB)

    Rochman, D., E-mail: dimitri-alexandre.rochman@psi.ch [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland); Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Koning, A.J. [Nuclear Data Section, IAEA, Vienna (Austria); Uppsala University, Uppsala (Sweden); Ferroukhi, H. [Reactor Physics and Systems Behavior Laboratory, Paul Scherrer Institute, Villigen (Switzerland)

    2017-01-10

    The radiative neutron capture rates for isotopes of astrophysical interest are commonly calculated on the basis of the statistical Hauser Feshbach (HF) reaction model, leading to smooth and monotonically varying temperature-dependent Maxwellian-averaged cross sections (MACS). The HF approximation is known to be valid if the number of resonances in the compound system is relatively high. However, such a condition is hardly fulfilled for keV neutrons captured on light or exotic neutron-rich nuclei. For this reason, a different procedure is proposed here, based on the generation of statistical resonances. This novel technique, called the “High Fidelity Resonance” (HFR) method is shown to provide similar results as the HF approach for nuclei with a high level density but to deviate and be more realistic than HF predictions for light and neutron-rich nuclei or at relatively low sub-keV energies. The MACS derived with the HFR method are systematically compared with the traditional HF calculations for some 3300 neutron-rich nuclei and shown to give rise to significantly larger predictions with respect to the HF approach at energies of astrophysical relevance. For this reason, the HF approach should not be applied to light or neutron-rich nuclei. The Doppler broadening of the generated resonances is also studied and found to have a negligible impact on the calculated MACS.

  3. Boron neutron capture therapy for malignant melanoma: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, B.S.; Larsson, B.; Roberto, A. (Uppsala Univ. (Sweden))

    1989-07-01

    Previous studies have shown that some thioamides, e.g., thiouracil, are incorporated as false precursors into melanin during its synthesis. If boronated analogs of the thioamides share this property, the melanin of melanotic melanomas offers a possibility for specific tumoural uptake and retention of boron as a basis for neutron capture therapy. We report on the synthesis of boronated 1H-1,2,4-triazole-3-thiol (B-TZT), boronated 5-carboxy-2-thiouracil (B-CTU), and boronated 5-diethylaminomethyl-2-thiouracil (B-DEAMTU) and the localization of these substances in melanotic melanomas transplanted to mice. The distribution in the mice was studied by boron neutron capture radiography. B-TZT and B-CTU showed the highest tumour:normal tissue concentration ratios, with tumour:liver ratios of about 4 and tumour:muscle ratios of about 14; B-DEAMTU showed corresponding ratios of 1.4 and 5, respectively. The absolute concentration of boron in the tumours, however, was more than three times higher in the mice injected with B-TZT, compared with B-CTU. The results suggest that B-TZT may be the most promising compound of the three tested with regard to possible therapy of melanotic melanomas.

  4. 242Pu absolute neutron-capture cross section measurement

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  5. 242Pu absolute neutron-capture cross section measurement

    Directory of Open Access Journals (Sweden)

    Buckner M.Q.

    2017-01-01

    Full Text Available The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ cross section could be set according to the known 239Pu(n,f resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ cross section.

  6. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Galactic Neutron CaptureAbundance Gradients

    Science.gov (United States)

    O'Connell, Julia; Frinchaboy, Peter M.; Shetrone, Matthew D.; Melendez, Matthew; Cunha, Katia; Majewski, Steven R.; Zasowski, Gail; APOGEE Team

    2017-06-01

    The evolution of elements, as a function or age, throughout the Milky Way disk provides a key constraint for galaxy evolution models. In an effort to provide these constraints, we have conducted an investigation into the r- and s- process elemental abundances for a large sample of open clusters as part of an optical follow-up to the SDSS-III/APOGEE-1 survey. Stars were identified as cluster members by the Open Cluster Chemical Abundance & Mapping (OCCAM) survey, which culls member candidates by radial velocity, metallicity and proper motion from the observed APOGEE sample. To obtain data for neutron capture elements in these clusters, we conducted a long-term observing campaign covering three years (2013-2016) using the McDonald Observatory Otto Struve 2.1-m telescope and Sandiford Cass Echelle Spectrograph (R ~ 60,000). We present Galactic neutron capture abundance gradients using 30+ clusters, within 6 kpc of the Sun, covering a range of ages from ~80 Myr to ~10 Gyr .

  7. The stellar neutron capture cross section of 60Fe

    Energy Technology Data Exchange (ETDEWEB)

    Reifarth, Rene; Heil, Michael [GSI, Planckstr. 1, 64291 Darmstadt (Germany); Schumann, Dorothea [PSI, 5313 Villigen (Switzerland); Dillmann, Iris; Domingo-Pardo, Cesar; Kaeppeler, Franz; Maganiec, Justyna; Voss, Fritz; Walter, Stefan [FZK, P.O. Box 3640, 76021 Karlsruhe (Germany); Uberseder, Ethan; Goerres, Joachim; Wiescher, Michael [University of Notre Dame, Physics Department, Notre Dame, IN 46556 (United States)

    2008-07-01

    60Fe is one of the most interesting radioisotopes found on earth. With an halflife of 1.5 Myr it is sensitive to the younger history of the universe (seen as 60Co decays) and the earth (seen as 60Fe in deep see manganese crusts), but contains basically no pre-solar information. In order to use the observational information in a quantitative manner, production and destruction mechanisms of 60Fe have to be understood. Therefore we measured the neutron capture cross section of 60Fe in the astrophysically interesting energy region applying the activation technique at the Forschungszentrum Karlsruhe (FZK). The sample material of 1.1{sup *}10{sup **}16 atoms has been retrieved from a cupper beam stop, which has been irradiated with protons at the Paul Scherrer Institute (PSI).

  8. Radiative neutron capture cross section from 236U

    Science.gov (United States)

    Baramsai, B.; Jandel, M.; Bredeweg, T. A.; Bond, E. M.; Roman, A. R.; Rusev, G.; Walker, C. L.; Couture, A.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Kawano, T.

    2017-08-01

    The 236U(n ,γ ) reaction cross section has been measured for the incident neutron energy range from 10 eV to 800 keV by using the Detector for Advanced Neutron Capture Experiments (DANCE) γ -ray calorimeter at the Los Alamos Neutron Science Center. The cross section was determined with the ratio method, which is a technique that uses the 235U(n ,f ) reaction as a reference. The results of the experiment are reported in the resolved and unresolved resonance energy regions. Individual neutron resonance parameters were obtained below 1 keV incident energy by using the R -matrix code sammy. The cross section in the unresolved resonance region is determined with improved experimental uncertainty. It agrees with both ENDF/B-VII.1 and JEFF-3.2 nuclear data libraries. The results above 10 keV agree better with the JEFF-3.2 library.

  9. Improved neutron capture cross section of Pu239

    Science.gov (United States)

    Mosby, S.; Bredeweg, T. A.; Chyzh, A.; Couture, A.; Henderson, R.; Jandel, M.; Kwan, E.; O'Donnell, J. M.; Ullmann, J.; Wu, C. Y.

    2014-03-01

    The 239Pu(n ,γ) cross section has been measured over the energy range 10 eV to 1 keV using the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos Neutron Science Center as part of a campaign to produce precision (n ,γ) measurements on 239Pu. Fission coincidences were measured with a parallel-plate avalanche counter and used to measure the prompt fission γ-ray spectrum in this region to accurately characterize background. The resulting (n ,γ) cross section is generally in agreement with current evaluations. The experimental method utilizes much more detailed information than past measurements on 239Pu and can be used to extend the measurement to higher incident neutron energies.

  10. Neutron capture measurements and resonance parameters of dysprosium

    Energy Technology Data Exchange (ETDEWEB)

    Shin, S.G.; Kye, Y.U.; Namkung, W.; Cho, M.H. [Pohang University of Science and Technology, Division of Advanced Nuclear Engineering, Pohang, Gyeongbuk (Korea, Republic of); Kang, Y.R.; Lee, M.W. [Dongnam Inst. of Radiological and Medical Sciences, Research Center, Busan (Korea, Republic of); Kim, G.N. [Kyungpook National University, Department of Physics, Daegu (Korea, Republic of); Ro, T.I. [Dong-A University, Department of Physics, Busan (Korea, Republic of); Danon, Y.; Williams, D. [Rensselaer Polytechnic Institute, Department of Mechanical, Aerospace, and Nuclear Engineering, Troy, NY (United States); Leinweber, G.; Block, R.C.; Barry, D.P.; Rapp, M.J. [Naval Nuclear Laboratory, Knolls Atomic Power Laboratory, Schenectady, NY (United States)

    2017-10-15

    Neutron capture yields of dysprosium isotopes ({sup 161}Dy, {sup 162}Dy, {sup 163}Dy, and {sup 164}Dy) were measured using the time-of-flight method with a 16 segment sodium iodide multiplicity detector. The measurements were made at the 25m flight station at the Gaerttner LINAC Center at Rensselaer Polytechnic Institute. Resonance parameters were obtained using the multilevel R-matrix Bayesian code SAMMY. The neutron capture data for four enriched dysprosium isotopes and one natural dysprosium sample were sequentially fitted. New resonances not listed in ENDF/B-VII.1 were observed. There were 29 and 17 new resonances from {sup 161}Dy and {sup 163}Dy isotopes, respectively. Six resonances from {sup 161}Dy isotope, two resonances from {sup 163}Dy, and four resonances from {sup 164}Dy were not observed. The capture resonance integrals of each isotope were calculated with the resulting resonance parameters and those of ENDF/B-VII.1 in the energy region from 0.5 eV to 20 MeV and were compared to the capture resonance integrals with the resonance parameters from ENDF/B-VII.1. A resonance integral value of the natural dysprosium calculated with present resonance parameters was 1405 ± 3.5 barn. The value is ∝ 0.3% higher than that obtained with the ENDF/B-VII.1 parameters. The distributions of the present and ENDF/B-VII.1 neutron widths were compared to a Porter-Thomas distribution. Neutron strength functions for {sup 161}Dy and {sup 163}Dy were calculated with the present resonance parameters and both values were in between the values of ''Atlas of Neutron Resonances'' and ENDF/B-VII.1. The present radiation width distributions of {sup 161}Dy and {sup 163}Dy were fitted with the χ{sup 2} distribution by varying the degrees of freedom. (orig.)

  11. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.; Barth, R.F.

    1990-01-01

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  12. Neutron capture on (94)Zr: Resonance parameters and Maxwellian-averaged cross sections

    CERN Document Server

    Tagliente, G; Fujii, K; Abbondanno, U; Aerts, G; Alvarez, H; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Bisterzo, S; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Furman, W; Gallino, R; Goncalves, I; Gonzalez-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tain, J.L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vincente, M.C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    The neutron capture cross sections of the Zr isotopes play an important role in nucleosynthesis studies. The s-process reaction flow between the Fe seed and the heavier isotopes passes through the neutron magic nucleus (90)Zr and through (91,92,93,94)Zr, but only part of the flow extends to (96)Zr because of the branching point at (95)Zr. Apart from their effect on the s-process flow, the comparably small isotopic (n, gamma) cross sections make Zr also an interesting structural material for nuclear reactors. The (94)Zr (n, gamma) cross section has been measured with high resolution at the spallation neutron source n_TOF at CERN and resonance parameters are reported up to 60 keV neutron energy.

  13. Neutronic effects on tungsten-186 double neutron capture

    Science.gov (United States)

    Garland, Marc Alan

    Rhenium-188, a daughter product of tungsten-188, is an isotope of great interest in therapeutic nuclear medicine, being used in dozens of laboratory and clinical investigations worldwide. Applications include various cancer therapy strategies, treatment of rheumatoid arthritis, prevention of restenosis following coronary artery angioplasty, and palliation of bone pain associated with cancer metastases. With its half-life of 17 hours, 2.12 MeV (maximum) beta-particle emission, chemical similarity to technetium-99m (the most widely used diagnostic radioisotope), and its availability in a convenient tungsten-188/rhenium-188 generator system, rhenium-188 is a superb candidate for a broad range of applications. Production of 188W is typically via double neutron capture by 186W in a high flux nuclear reactor, predominantly the High Flux Isotope Reactor at the Oak Ridge National Laboratory in Tennessee. Experience at HFIR has shown that production yields (measured in Ci of 188W produced per g of 186W target) decrease considerably as target size increases. While the phenomenon of neutron resonance self-shielding would be expected to produce such an effect, temperature effects on neutron flux distribution and neutron capture rates may also be involved. Experimental investigations of these phenomena have not been previously performed. The work presented in this thesis evaluates the factors that contribute to the decrease in 188W yield from both theoretical and experimental standpoints. Neutron self-shielding and temperature effects were characterized to develop a strategy for target design that would optimize production yield, an important factor in minimizing health care costs. It was determined that decrease in yield due to neutron self-shielding can be attributed to depletion of epithermal neutrons at resonant energies, most significantly within the initial 0.4 mm depth of the target. The results from these studies further show that 188W yield in the interior of the

  14. 238U Neutron Capture Cross Section Measurements at the GELINA Facility

    Science.gov (United States)

    Lampoudis, C.; Kopecky, S.; Becker, B.; Gunsing, F.; Schillebeeckx, P.; Wynants, R.

    2014-05-01

    A set of neutron capture experiments based on the time-of-flight technique were performed in order to determine the 238U capture cross section in the unresolved resonance region. The GELINA facility of the Institute for Reference Materials and Measurements (IRMM) served as the neutron source. A pair of C6D6 liquid scintillators was used to register the prompt gamma rays emerging from the uranium sample. The analysis of the experimental data is based on the total energy principle applied in combination with the pulse height weighting technique. The experimental details along with the analysis process are described. The first results in the resolved resonance region are presented and their validity provide a solid base to extend the analysis and extract the average cross section in the keV region.

  15. Progress Towards an Indirect Neutron Capture Capability at LANSCE

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, Paul E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-20

    There are many neutron-capture cross sections of importance to radiochemical diagnostics and nuclear forensics which are beyond the reach of direct measurements. Hence, we have been developing an apparatus on flight path (FP) 13 at target 1 at LANSCE for tightly constraining these cross sections via determination of the underlying physical quantities. FP-13 was initially a cold-neutron beam line for materials science and therefore required substantial modification for use for nuclear physics. In FY17, we made several improvements to FP-13, demonstrated improved performance due to these changes via measurements on a variety of samples, identified a few more needed improvements, and reconfigured the beam line to implement the most important of these. New measurements to assess the impact of the most recent improvement will commence when beam is restored to LANSCE. Although FP-13 has not yet reached the performance required for small radioactive samples, measurements on a gold sample have led to an important science result which we are preparing for publication.

  16. Neutron Capture Cross Section Measurement on $^{238}$Pu at DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Chyzh, A; Wu, C Y

    2011-02-14

    The proposed neutron capture measurement for {sup 238}Pu was carried out in Nov-Dec, 2010, using the DANCE array at LANSCE, LANL. The total beam-on-target time is about 14 days plus additional 5 days for the background measurement. The target was prepared at LLNL with the new electrplating cell capable of plating the {sup 238}Pu isotope simultaneously on both sides of the 3-{micro}m thick Ti backing foil. A total mass of 395 {micro}g with an activity of 6.8 mCi was deposited onto the area of 7 mm in diameter. The {sup 238}Pu sample was enriched to 99.35%. The target was covered by 1.4 {micro}m double-side aluminized mylar and then inserted into a specially designed vacuum-tight container, shown in Fig. 1, for the {sup 238}Pu containment. The container was tested for leaks in the vacuum chamber at LLNL. An identical container without {sup 238}Pu was made as well and used as a blank for the background measurement.

  17. First platinum moderated positron beam based on neutron capture

    CERN Document Server

    Hugenschmidt, C; Repper, R; Schreckenbach, K; Sperr, P; Triftshaeuser, W

    2002-01-01

    A positron beam based on absorption of high energy prompt gamma-rays from thermal neutron capture in sup 1 sup 1 sup 3 Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as gamma-e sup + e sup - -converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV gamma-radiation of the annihilating positrons. The posi...

  18. First platinum moderated positron beam based on neutron capture

    Science.gov (United States)

    Hugenschmidt, C.; Kögel, G.; Repper, R.; Schreckenbach, K.; Sperr, P.; Triftshäuser, W.

    2002-12-01

    A positron beam based on absorption of high energy prompt γ-rays from thermal neutron capture in 113Cd was installed at a neutron guide of the high flux reactor at the ILL in Grenoble. Measurements were performed for various source geometries, dependent on converter mass, moderator surface and extraction voltages. The results lead to an optimised design of the in-pile positron source which will be implemented at the Munich research reactor FRM-II. The positron source consists of platinum foils acting as γ-e +e --converter and positron moderator. Due to the negative positron work function moderation in heated platinum leads to emission of monoenergetic positrons. The positron work function of polycrystalline platinum was determined to 1.95(5) eV. After acceleration to several keV by four electrical lenses the beam was magnetically guided in a solenoid field of 7.5 mT leading to a NaI-detector in order to detect the 511 keV γ-radiation of the annihilating positrons. The positron beam with a diameter of less than 20 mm yielded an intensity of 3.1×10 4 moderated positrons per second. The total moderation efficiency of the positron source was about ɛ=1.06(16)×10 -4. Within the first 20 h of operation a degradation of the moderation efficiency of 30% was observed. An annealing procedure at 873 K in air recovers the platinum moderator.

  19. Synovectomy by Neutron capture; Sinovectomia por captura de neutrones

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R.; Torres M, C. [Centro Regional de Estudios Nucleares, Universidad Autonoma de Zacatecas, C. Cipres 10, Fracc. La Penuela, 98000 Zacatecas (Mexico)

    1998-12-31

    The Synovectomy by Neutron capture has as purpose the treatment of the rheumatoid arthritis, illness which at present does not have a definitive curing. This therapy requires a neutron source for irradiating the articulation affected. The energy spectra and the intensity of these neutrons are fundamental since these neutrons induce nuclear reactions of capture with Boron-10 inside the articulation and the freely energy of these reactions is transferred at the productive tissue of synovial liquid, annihilating it. In this work it is presented the neutron spectra results obtained with moderator packings of spherical geometry which contains in its center a Pu{sup 239} Be source. The calculations were realized through Monte Carlo method. The moderators assayed were light water, heavy water base and the both combination of them. The spectra obtained, the average energy, the neutron total number by neutron emitted by source, the thermal neutron percentage and the dose equivalent allow us to suggest that the moderator packing more adequate is what has a light water thickness 0.5 cm (radius 2 cm) and 24.5 cm heavy water (radius 26.5 cm). (Author)

  20. Boron Neutron Capture Therapy for Malignant Brain Tumors

    Science.gov (United States)

    MIYATAKE, Shin-Ichi; KAWABATA, Shinji; HIRAMATSU, Ryo; KUROIWA, Toshihiko; SUZUKI, Minoru; KONDO, Natsuko; ONO, Koji

    2016-01-01

    Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Therefore, BNCT enables the application of a high dose of particle radiation selectively to tumor cells in which boron-10 compound has been accumulated. We applied BNCT using nuclear reactors for 167 cases of malignant brain tumors, including recurrent malignant gliomas, newly diagnosed malignant gliomas, and recurrent high-grade meningiomas from January 2002 to May 2014. Here, we review the principle and history of BNCT. In addition, we introduce fluoride-18-labeled boronophenylalanine positron emission tomography and the clinical results of BNCT for the above-mentioned malignant brain tumors. Finally, we discuss the recent development of accelerators producing epithermal neutron beams. This development could provide an alternative to the current use of specially modified nuclear reactors as a neutron source, and could allow BNCT to be performed in a hospital setting. PMID:27250576

  1. Boron neutron capture therapy: Moving toward targeted cancer therapy

    Directory of Open Access Journals (Sweden)

    Hamid Reza Mirzaei

    2016-01-01

    Full Text Available Boron neutron capture therapy (BNCT occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  2. Boron neutron capture therapy: Moving toward targeted cancer therapy.

    Science.gov (United States)

    Mirzaei, Hamid Reza; Sahebkar, Amirhossein; Salehi, Rasoul; Nahand, Javid Sadri; Karimi, Ehsan; Jaafari, Mahmoud Reza; Mirzaei, Hamed

    2016-01-01

    Boron neutron capture therapy (BNCT) occurs when a stable isotope, boton-10, is irradiated with low-energy thermal neutrons to yield stripped down helium-4 nuclei and lithium-7 nuclei. It is a binary therapy in the treatment of cancer in which a cytotoxic event is triggered when an atom placed in a cancer cell. Here, we provide an overview on the application of BNCT in cancer therapy as well as current preclinical and clinical evidence on the efficacy of BNCT in the treatment of melanoma, brain tumors, head and neck cancer, and thyroid cancer. Several studies have shown that BNCT is effective in patients who had been treated with a full dose of conventional radiotherapy, because of its selectivity. In addition, BNCT is dependent on the normal/tumor tissue ratio of boron distribution. Increasing evidence has shown that BNCT can be combined with different drug delivery systems to enhance the delivery of boron to cancer cells. The flexibility of BNCT to be used in combination with different tumor-targeting approaches has made this strategy a promising option for cancer therapy. This review aims to provide a state-of-the-art overview of the recent advances in the use of BNCT for targeted therapy of cancer.

  3. Systematic study of neutron capture including the compound, pre-equilibrium, and direct mechanisms

    Science.gov (United States)

    Xu, Y.; Goriely, S.; Koning, A. J.; Hilaire, S.

    2014-08-01

    The neutron capture reaction is investigated. The three major reaction mechanisms, namely, compound-nucleus capture (CNC), pre-equilibrium capture (PEC), and direct capture (DIC), are considered on the basis of the Hauser-Feshbach model, the exciton model, and potential model, respectively. The three mechanisms are treated simultaneously and consistently, i.e, they are obtained on the basis of the same nuclear ingredients, such as the optical potential and nuclear-level densities. In this framework, the three components are calculated on the same footing and represent partial fluxes of the same total reaction cross section. The total neutron-capture cross sections and astrophysical reaction rates are calculated within the updated modern reaction code talys for about 8000 nuclei with 8≤Z≤110 lying between the proton and neutron drip lines. The nuclear-structure ingredients involved in the calculation are determined from experimental data whenever available and, if not, from global microscopic nuclear models. For the targets with mass number A >26, a fair agreement between the computed total-capture cross sections and experimental data is found but, for the lightest nuclei, only the predicted DIC cross sections reproduce the experimental results satisfactorily. Significant and even dominant contribution to the total reaction rate comes from the DIC component for neutron-rich nuclei, especially in the Z =50-70 region. The impact of the newly determined reaction rates on the r process abundances resulting from the ejection of matter in neutrino-driven winds or the decompression of neutron star matter is investigated.

  4. Tomographic image of prompt gamma ray from boron neutron capture therapy: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Dokun; Suh, Tae Suk [Catholic Univ. of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Stanford Univ., Stanford (United States)

    2014-05-15

    The resulting neutron captures in {sup 10}B are used for radiation therapy. The occurrence point of the characteristic 478 keV prompt gamma rays agrees with the neutron capture point. If these prompt gamma rays are detected by external instruments such as a gamma camera or single photon emission computed tomography (SPECT), the therapy region can be monitored during the treatment using images. A feasibility study and analysis of a reconstructed image using many projections (128) were conducted. The optimization of the detection system and a detailed neutron generator simulation were beyond the scope of this study. The possibility of extracting a 3D BNCT-SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The quality of the prompt gamma ray SPECT image obtained from BNCT was evaluated quantitatively using three different boron uptake regions and was shown to depend on the location and size relations. The prospects for obtaining an actual BNCT-SPECT image were also estimated from the quality of the simulated image and the simulation conditions. When multi tumor regions should be treated using the BNCT method, a reasonable model to determine how many useful images can be obtained from SPECT can be provided to the BNCT facilities based on the preceding imaging research. However, because the scope of this research was limited to checking the feasibility of 3D BNCT-SPECT image reconstruction using multiple projections, along with an evaluation of the image, some simulation conditions were taken from previous studies. In the future, a simulation will be conducted that includes optimized conditions for an actual BNCT facility, along with an imaging process for motion correction in BNCT. Although an excessively long simulation time was required to obtain enough events for image reconstruction, the feasibility of acquiring a 3D BNCT-SPECT image using multiple projections was confirmed using a Monte Carlo simulation, and a quantitative image

  5. Gadolinium as an element for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-12-31

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  6. Gadolinium as an element for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Brugger, R.M.; Liu, H.B.; Laster, B.H.; Gordon, C.R.; Greenberg, D.D.; Warkentien, L.S.

    1992-01-01

    At BNL, preparations are being made to test in vitro compounds containing Gd and compare their response to the response of GD-DTPA to determine if one or several compounds can be located that enter the cells and enhance the Auger effect. Two similar rotators with positions for cell vials that have been constructed for these tests. The first rotator is made of only paraffin which simulates healthy tissue and provides control curves. The second rotator has 135 ppM of Gd-157 in the paraffin to simulate a Gd loaded tumor. Cells are irradiated in vials in the paraffin rotator and in the Gd-paraffin rotator at the epithermal beam of the Brookhaven Medical Research Reactor (BMRR). This produces an irradiation similar to what a patient would receive In an actual treatment. A combination of irradiations are made with both rotators; with no Gd compound or IdUrd In the cell media, with only Gd compound in the cell media and with both Gd compound and IdUrd in the cell media. The first set shows the effects of gamma rays from the H(n,gamma) reaction and the prompt gamma rays from capture of neutrons by Gd. The second set shows if there is any effect of Gd being in the cell media or inside the cells, i.e., an Auger effect. The third set shows the effect of enhancement by the IdUrd produced by the gamma rays from neutrons captured by either H or Gd. The fourth set combines all of the reactions and enhancements. Preliminary calculations and physical measurements of the doses that the cells will receive In these rotators have been made.

  7. Radiation Transport Simulation for Boron Neutron Capture Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Ziegner, M.; Blaickner, M. [AIT Austrian Institute of Technology GmbH, Health and Environment Department, Molecular Medicine, Muthgasse 11, 1190 Wien (Austria); Ziegner, M.; Khan, R.; Boeck, H. [Vienna University of Technology, Institute of Atomic and Subatomic Physics, Stadionallee 2, 1020 Wien (Austria); Bortolussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics, University of Pavia, National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Schmitz, T.; Hampel, G. [Nuclear Chemistry, University of Mainz, Fritz Strassmann Weg 2, 55099 Mainz (Germany)

    2011-07-01

    This work is part of a larger project initiated by the University of Mainz and aiming to use the university's TRIGA reactor to develop a treatment for liver metastases based on Boron Neutron Capture Therapy (BNCT). Diffuse distribution of cancerous cells within the organ makes complete resection difficult and the vicinity to radiosensitive organs impedes external irradiation. Therefore the method of 'autotransplantation', first established at the University of Pavia, is used. The liver is taken out of the body, irradiated in the thermal column of the reactor, therewith purged of metastases and then reimplanted. A highly precise dosimetry system is to be developed by means of measurements at the University of Mainz and computational calculations at the AIT. The stochastic MCNP-5 Monte Carlo-Code, developed by Los Alamos Laboratories, is applied. To verify the calculations of the flux and the absorbed dose in matter a number of measurements are performed irradiating different phantoms and liver sections in a 20cm x 20cm beam tube, which was created by removing graphite blocks from the thermal column of the reactor. The detector material consists of L- {alpha} -alanine pellets which are thought to be the most suitable because of their good tissue equivalence, small size and their wide response range. Another experiment focuses on the determination of the relative biological effectiveness (RBE-factor) of the neutron and photon dose for liver cells. Therefore cell culture plates with the cell medium enriched with {sup 157}Gd and {sup 10}B at different concentrations are irradiated. With regard to the alanine pellets MCNP-5 calculations give stable results. Nevertheless the absorbed dose is underestimated compared to the measurements, a phenomenon already observed in previous works. The cell culture calculations showed the enormous impact of the added isotopes with high thermal neutron cross sections, especially {sup 157}Gd, on the absorbed dose

  8. Measurement of the 242Pu neutron capture cross section

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Chyzh, A.; Dance Collaboration

    2015-10-01

    Precision (n,f) and (n, γ) cross sections are important for the network calculations of the radiochemical diagnostic chain for the U.S. DOE's Stockpile Stewardship Program. 242Pu(n, γ) cross section is relevant to the network calculations of Pu and Am. Additionally, new reactor concepts have catalyzed considerable interest in the measurement of improved cross sections for neutron-induced reactions on key actinides. To date, little or no experimental data has been reported on 242Pu(n, γ) for incident neutron energy below 50 keV. A new measurement of the 242Pu(n, γ) reaction was performed with the DANCE together with an improved PPAC for fission-fragment detection at LANSCE during FY14. The relative scale of the 242Pu(n, γ) cross section spans four orders of magnitude for incident neutron energies from thermal to ~ 30 keV. The absolute scale of the 242Pu(n, γ) cross section is set according to the measured 239Pu(n,f) resonance at 7.8 eV; the target was spiked with 239Pu for this measurement. The absolute 242Pu(n, γ) neutron capture cross section is ~ 30% higher than the cross section reported in ENDF for the 2.7 eV resonance. Latest results to be reported. Funded by U.S. DOE Contract No. DE-AC52-07NA27344 (LLNL) and DE-AC52-06NA25396 (LANL). U.S. DOE/NNSA Office of Defense Nuclear Nonproliferation Research and Development. Isotopes (ORNL).

  9. Comparison of neutron capture cross sections obtained from two Hauser-Feshbach statistical models on a short-lived nucleus using experimentally constrained input

    Science.gov (United States)

    Lewis, Rebecca; Liddick, Sean; Spyrou, Artemis; Crider, Benjamin; Dombos, Alexander; Naqvi, Farheen; Prokop, Christopher; Quinn, Stephen; Larsen, Ann-Cecilie; Crespo Campo, Lucia; Guttormsen, Magne; Renstrom, Therese; Siem, Sunniva; Bleuel, Darren; Couture, Aaron; Mosby, Shea; Perdikakis, George

    2017-09-01

    A majority of the abundance of the elements above iron are produced by neutron capture reactions, and, in explosive stellar processes, many of these reactions take place on unstable nuclei. Direct neutron capture experiments can only be performed on stable and long-lived nuclei, requiring indirect methods for the remaining isotopes. Statistical neutron capture can be described using the nuclear level density (NLD), the γ strength function (γSF), and an optical model. The NLD and γSF can be obtained using the β-Oslo method. The NLD and γSF were recently determined for 74Zn using the β-Oslo method, and were used in both TALYS and CoH to calculate the 73Zn(n, γ)74Zn neutron capture cross section. The cross sections calculated in TALYS and CoH are expected to be identical if the inputs for both codes are the same, however, after a thorough investigation into the inputs for the 73Zn(n, γ)74Zn reaction there is still a factor of two discrepancy between the two codes.

  10. A suggestion for B-10 imaging during boron neutron capture therapy

    OpenAIRE

    Cortesi, M

    2007-01-01

    Selective accumulation of B-10 compound in tumour tissue is a fundamental condition for the achievement of BNCT (Boron Neutron Capture Therapy), since the effectiveness of therapy irradiation derives just from neutron capture reaction of B-10. Hence, the determination of the B-10 concentration ratio, between tumour and healthy tissue, and a control of this ratio, during the therapy, are essential to optimise the effectiveness of the BNCT, which it is known to be based on the selective uptake ...

  11. Chemical Enrichment Mechanisms in Omega Centauri: Clues from Neutron-Capture Elements

    Science.gov (United States)

    D'Orazi, V.; Gratton, R.; Pancino, E.; Bragaglia, A.; Carretta, E.; Lucatello, S.; Sneden, C.

    2012-08-01

    In the complex picture of multiple stellar populations in globular clusters (GCs), a special role is played by NGC 5139 (ω Centauri). At variance with the majority of GCs, ω Cen exhibits significant star-to-star variations in metallicity and in relative neutron-capture element abundance ratios with respect to Fe, along with split evolutionary sequences as revealed from colour-magnitude diagrams. Combining information from photometry and spectroscopy, several studies suggested that an age spread of several Gyr has to be invoked to explain (at least partially) some of the observed features. However, a comprehensive understanding of the formation, evolution and chemical enrichment processes is still not at hand. Relatively metal-rich ω Cen stars display neutron-capture abundance distributions dominated by contributions from the s-process, but it is not clear what roles have been played by the so-called main and weak s-process components in generating these abundances. To gain better insight into this question we derived lead (Pb) abundances for several ω Cen cluster members, because this element can only be produced by the mains-process. We analysed high-resolution UVES@VLT spectra of a sample of twelve red-giant branch stars, deriving abundances of Pb and also of Y, Zr, La, Ce, Eu, and the C+N+O sum. Spectral synthesis was applied to all features, taking into account isotopic shifts and/or hyperfine structure as needed. We measured for the first time the Pb content in ω Cen, discovering a clear hint for a Pb production occurring at [Fe/H]> -1.7 dex. Our data suggest that the role of the weak component in the production of s-process elements is negligible. Moreover, evidence gathered from the abundances of other elements indicates that the main component occurring in this GC is peculiar and shifted towards higher mass polluters than the standard one. These results are now published in D'Orazi et al. (2011).

  12. Potential of using boric acid as a boron drug for boron neutron capture therapy for osteosarcoma

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.F.; Lin, S.Y. [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Peir, J.J. [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liao, J.W. [Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taiwan (China); Lin, Y.C. [Department of Veterinary Medicine, National Chung Hsing University, Taiwan (China); Chou, F.I., E-mail: fichou@mx.nthu.edu.tw [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China)] [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China)

    2011-12-15

    Osteosarcoma is a malignant tumor commonly found in human and animals. The ability of boric acid (BA) to accumulate in osteosarcoma due to the mechanism of the bone formation of cancer cells would make boron neutron capture therapy (BNCT) an alternative therapy for osteosarcoma. This study evaluated the feasibility of using BA as the boron drug for BNCT of bone cancer. The cytotoxicity of BA to L929 cells exceeded that of UMR-106 cells. With 25 {mu}g {sup 10}B/mL medium of BA treatment, the boron concentration in UMR-106 cells was higher than that in L929 cells. The biodistribution and pharmacokinetics of BA in Sprague-Dawley (SD) rats were studied by administrating 25 mg {sup 10}B/kg body weight to SD rats. Blood boron level decreased rapidly within one hour after BA injection. Boron concentration in the long bone was 4-6 time higher than that of blood. Results of this study suggest that BA may be a potential drug for BNCT for osteosarcoma.

  13. Boron-Containing Compounds for Liposome-Mediated Tumor Localization and Application to Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Hawthorne, M. Frederick [Univ. of California, Los Angeles, CA (United States)

    2005-04-07

    Medical application of boron neutron capture therapy (BNCT) has been significantly hindered by the slow development of boron drug-targeting methodologies for the selective delivery of high boron concentration sto malignant cells. We have successfully sought to fill this need by creating liposomes suitable as in vivo boron delivery vehicles for BNCT. Delivery of therapeutic quantities of boron to tumors in murine models has been achieved with small unilamellar boron-rich liposomes. Subsequently, attempts have been made to improve delivery efficiency of liposomes encapsulating boron-containing water-soluble species into their hollow core by incorporating lipophilic boron compounds as addenda to the liposome bilayer, incorporating boron compounds as structural components of the bilayer (which however, poses the risk of sacrificing some stability), and combinations thereof. Regardless of the method, approximately 90% of the total liposome mass remains therapeutically inactive and comprised of the vehicle's construction materials, while less than 5% is boron for neutron targeting. Following this laboratory's intensive study, the observed tumor specificity of certain liposomes has been attributed to their diminutive size of these liposomes (30-150 nm), which enables these small vesicles to pass through the porous, immature vasculature of rapidly growing tumor tissue. We surmised that any amphiphilic nanoparticle of suitable size could possess some tumor selectivity. Consequently, the discovery of a very boron-rich nanoparticle delivery agent with biodistribution performance similar to unilamellar liposomes became one of our goals. Closomers, a new class of polyhedral borane derivatives, attracted us as an alternative BNCT drug-delivery system. We specifically envisioned dodeca (nido-carboranyl)-substituted closomers as possibly having a great potential role in BNCT drug delivery. They could function as extraordinarily boron-rich BNCT drugs since they are

  14. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Energy Technology Data Exchange (ETDEWEB)

    Jandel, Marian [Los Alamos National Laboratory

    2008-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for {sup 241}Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for {sup 243}Am for neutron energies between 35 eV and 200 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on {sup 242m}Am will be presented, where the fission events were actively triggered during the experiments. In these experiments, the Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,{gamma}) from (n,f) events. The first evidence of neutron capture on {sup 242m}Am in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  15. GPU-based prompt gamma ray imaging from boron neutron capture therapy.

    Science.gov (United States)

    Yoon, Do-Kun; Jung, Joo-Young; Jo Hong, Key; Sil Lee, Keum; Suk Suh, Tae

    2015-01-01

    The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  16. GPU-based prompt gamma ray imaging from boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Do-Kun; Jung, Joo-Young; Suk Suh, Tae, E-mail: suhsanta@catholic.ac.kr [Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul 505 137-701 (Korea, Republic of); Jo Hong, Key [Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, 300 Pasteur Drive, Stanford, California 94305 (United States); Sil Lee, Keum [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Stanford, California 94305-5847 (United States)

    2015-01-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusions: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray image reconstruction using the GPU computation for BNCT simulations.

  17. Neutron-capture rates for explosive nucleosynthesis: the case of 68Ni(n, γ)69Ni

    Science.gov (United States)

    Spyrou, A.; Larsen, A. C.; Liddick, S. N.; Naqvi, F.; Crider, B. P.; Dombos, A. C.; Guttormsen, M.; Bleuel, D. L.; Couture, A.; Crespo Campo, L.; Lewis, R.; Mosby, S.; Mumpower, M. R.; Perdikakis, G.; Prokop, C. J.; Quinn, S. J.; Renstrøm, T.; Siem, S.; Surman, R.

    2017-04-01

    Neutron-capture reactions play an important role in heavy element nucleosynthesis, since they are the driving force for the two processes that create the vast majority of the heavy elements. When a neutron capture occurs on a short-lived nucleus, it is extremely challenging to study the reaction directly and therefore the use of indirect techniques is essential. The present work reports on such an indirect measurement that provides strong constraints on the 68Ni(n, γ)69Ni reaction rate. This is done by populating the compound nucleus 69Ni via the β decay of 69Co and measuring the γ-ray deexcitation of excited states in 69Ni. The β-Oslo method was used to extract the γ-ray strength function and the nuclear level density. In addition the half-life of 69Co was extracted and found to be in agreement with previous literature values. Before the present results, the 68Ni(n, γ)69Ni reaction was unconstrained and the purely theoretical reaction rate was highly uncertain. The new uncertainty on the reaction rate based on the present experiment (variation between upper and lower limit) is approximately a factor of 3. The commonly used reaction libraries JINA-REACLIB and BRUSLIB are in relatively good agreement with the experimental rate. The impact of the new rate on weak r-process calculations is discussed.

  18. New measurement of $\\theta_{13}$ via neutron capture on hydrogen at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Bishai, M; Blyth, S; Cao, D; Cao, G F; Cao, J; Cen, W R; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chen, H S; Chen, Q Y; Chen, S M; Chen, Y X; Chen, Y; Cheng, J H; Cheng, J -H; Cheng, J; Cheng, Y P; Cheng, Z K; Cherwinka, J J; Chu, M C; Chukanov, A; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, X F; Ding, Y Y; Diwan, M V; Dolgareva, M; Dove, J; Dwyer, D A; Edwards, W R; Gill, R; Gonchar, M; Gong, G H; Gong, H; Grassi, M; Gu, W Q; Guan, M Y; Guo, L; Guo, R P; Guo, X H; Guo, Z; Hackenburg, R W; Han, R; Hans, S; He, M; Heeger, K M; Heng, Y K; Higuera, A; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, T; Hu, W; Huang, E C; Huang, H X; Huang, X T; Huber, P; Huo, W; Hussain, G; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiao, J B; Johnson, R A; Joshi, J; Kang, L; Kettell, S H; Kohn, S; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Langford, T J; Lau, K; Lebanowski, L; Lee, J; Lee, J H C; Lei, R T; Leitner, R; Leung, J K C; Li, C; Li, D J; Li, F; Li, G S; Li, Q J; Li, S; Li, S C; Li, W D; Li, X N; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, S; Lin, S K; Lin, Y -C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, J J; Liu, J L; Liu, J C; Loh, C W; Lu, C; Lu, H Q; Lu, J S; Luk, K B; Lv, Z; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; Malyshkin, Y; Caicedo, D A Martinez; McDonald, K T; McKeown, R D; Mitchell, I; Mooney, M; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevskiy, A; Pan, H -R; Park, J; Patton, S; Pec, V; Peng, J C; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Steiner, H; Sun, G X; Sun, J L; Tang, W; Taychenachev, D; Konstantin, T; Tsang, K V; Tull, C E; Viaux, N; Viren, B; Vorobel, V; Wang, C H; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Wei, H Y; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, C -H; Wu, Q; Xia, D M; Xia, J K; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C G; Yang, H; Yang, L; Yang, M S; Yang, M T; Ye, M; Ye, Z; Yeh, M; Young, B L; Yu, G Y; Yu, Z Y; Zhan, L; Zhang, C; Zhang, H H; Zhang, J W; Zhang, Q M; Zhang, X T; Zhang, Y M; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y F; Zhao, Y B; Zhong, W L; Zhou, L; Zhou, N; Zhuang, H L; Zou, J H

    2016-01-01

    This article reports an improved independent measurement of neutrino mixing angle $\\theta_{13}$ at the Daya Bay Reactor Neutrino Experiment. Electron antineutrinos were identified by inverse $\\beta$-decays with the emitted neutron captured by hydrogen, yielding a data-set with principally distinct uncertainties from that with neutrons captured by gadolinium. With the final two of eight antineutrino detectors installed, this study used 621 days of data including the previously reported 217-day data set with six detectors. The dominant statistical uncertainty was reduced by 49%. Intensive studies of the cosmogenic muon-induced $^9$Li and fast neutron backgrounds and the neutron-capture energy selection efficiency, resulted in a reduction of the systematic uncertainty by 26%. The deficit in the detected number of antineutrinos at the far detectors relative to the expected number based on the near detectors yielded $\\sin^22\\theta_{13} = 0.071 \\pm 0.011$ in the three-neutrino-oscillation framework. The combination...

  19. Monte Carlo based dosimetry for neutron capture therapy of brain tumors

    Science.gov (United States)

    Zaidi, Lilia; Belgaid, Mohamed; Khelifi, Rachid

    2016-11-01

    Boron Neutron Capture Therapy (BNCT) is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET) emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].

  20. Monte Carlo based dosimetry for neutron capture therapy of brain tumors

    Directory of Open Access Journals (Sweden)

    Zaidi Lilia

    2016-01-01

    Full Text Available Boron Neutron Capture Therapy (BNCT is a biologically targeted, radiation therapy for cancer which combines neutron irradiation with a tumor targeting agent labeled with a boron10 having a high thermal neutron capture cross section. The tumor area is subjected to the neutron irradiation. After a thermal neutron capture, the excited 11B nucleus fissions into an alpha particle and lithium recoil nucleus. The high Linear Energy Transfer (LET emitted particles deposit their energy in a range of about 10μm, which is of the same order of cell diameter [1], at the same time other reactions due to neutron activation with body component are produced. In-phantom measurement of physical dose distribution is very important for BNCT planning validation. Determination of total absorbed dose requires complex calculations which were carried out using the Monte Carlo MCNP code [2].

  1. An accelerator-based epithermal photoneutron source for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Hannah E. [Georgia Inst. of Technology, Atlanta, GA (United States)

    1996-04-01

    Boron neutron capture therapy is an experimental binary cancer radiotherapy modality in which a boronated pharmaceutical that preferentially accumulates in malignant tissue is first administered, followed by exposing the tissue in the treatment volume to a thermal neutron field. Current usable beams are reactor-based but a viable alternative is the production of an epithermal neutron beam from an accelerator. Current literature cites various proposed accelerator-based designs, most of which are based on proton beams with beryllium or lithium targets. This dissertation examines the efficacy of a novel approach to BNCT treatments that incorporates an electron linear accelerator in the production of a photoneutron source. This source may help to resolve some of the present concerns associated with accelerator sources, including that of target cooling. The photoneutron production process is discussed as a possible alternate source of neutrons for eventual BNCT treatments for cancer. A conceptual design to produce epithermal photoneutrons by high photons (due to bremsstrahlung) impinging on deuterium targets is presented along with computational and experimental neutron production data. A clinically acceptable filtered epithermal neutron flux on the order of 107 neutrons per second per milliampere of electron current is shown to be obtainable. Additionally, the neutron beam is modified and characterized for BNCT applications by employing two unique moderating materials (an Al/AlF3 composite and a stacked Al/Teflon design) at various incident electron energies.

  2. Experimental neutron capture data of $^{58}$Ni from the CERN n_TOF facility

    CERN Document Server

    Žugec, P.; Colonna, N.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M.A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A.R.; Giubrone, G.; Gómez-Hornillos, M.B.; Gonçalves, I.F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D.G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L.S.; Losito, R.; Manousos, A.; Marganiec, J.; Martìnez, T.; Massimi, C.; Mastinu, P.F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P.M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J.M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Tagliente, G.; Tain, J.L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M.J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2013-01-01

    The $^{58}$Ni $(n,\\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\\pm$0.6$_\\mathrm{stat}\\pm$1.8$_\\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When included in models of the s-process nucleosynthesis in massive stars, this change results in a 60% increase of the abundance of $^{58}$Ni, with a negligible propagation on heavier isotopes. The reason is that, using both the old or the new MACS, 58Ni is efficiently depleted by neutron captures.

  3. An Assessment of the Potential Use of BNNTs for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Ferreira, Tiago H; Miranda, Marcelo C; Rocha, Zildete; Leal, Alexandre S; Gomes, Dawidson A; Sousa, Edesia M B

    2017-04-12

    Currently, nanostructured compounds have been standing out for their optical, mechanical, and chemical features and for the possibilities of manipulation and regulation of complex biological processes. One of these compounds is boron nitride nanotubes (BNNTs), which are a nanostructured material analog to carbon nanotubes, but formed of nitrogen and boron atoms. BNNTs present high thermal stability along with high chemical inertia. Among biological applications, its biocompatibility, cellular uptake, and functionalization potential can be highlighted, in addition to its eased utilization due to its nanometric size and tumor cell internalization. When it comes to new forms of therapy, we can draw attention to boron neutron capture therapy (BNCT), an experimental radiotherapy characterized by a boron-10 isotope carrier inside the target and a thermal neutron beam focused on it. The activation of the boron-10 atom by a neutron generates a lithium atom, a gamma ray, and an alpha particle, which can be used to destroy tumor tissues. The aim of this work was to use BNNTs as a boron-10 carrier for BNCT and to demonstrate its potential. The nanomaterial was characterized through XRD, FTIR, and SEM. The WST-8 assay was performed to confirm the cell viability of BNNTs. The cells treated with BNNTs were irradiated with the neutron beam of a Triga reactor, and the apoptosis caused by the activation of the BNNTs was measured with a calcein AM/propidium iodide test. The results demonstrate that this nanomaterial is a promising candidate for cancer therapy through BNCT.

  4. Level structure of 89Sr investigated with thermal and fast neutron capture and the (d, p) reaction

    Science.gov (United States)

    Winter, Ch.; Krusche, B.; Lieb, K. P.; Michaelsen, S.; Hlawatsch, G.; Linder, H.; Von Egidy, T.; Hoyler, F.; Casten, R. F.

    1989-01-01

    The γ-ray spectrum emitted after thermal neutron capture in 88Sr was studied at the ILL high flux reactor with a pair-spectrometer and an intrinsic Ge detector. A total of 221 transitions were assigned to the decay 89Sr, and 55 of these, representing 55% of the observed flux, were placed in a level scheme of 19 states. The neutron binding energy was determined as 6358.73 (13) keV. Neutron capture in the 23.6 keV{3}/{2}- resonance was studied at the BNL filtered beam facility. Only seven transitions were attributed to 89Sr, and the decay of the capture state was found to be dominated by the valence process. High resolution (d, p) spectra were recorded at 20 MeV beam energy at the Munich Q3D spectrometer, and 55 states up to 4.5 MeV excitation energy in 89Sr were populated. The density of states observed in (n, γ) and (d, p) is analyzed in the Fermi-gas model, and the distribution of single-particle strengths is discussed from a statistical point of view.

  5. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ) at DANCE

    Science.gov (United States)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2017-09-01

    The isomeric ratios for the neutron capture reaction 176Lu(n,γ) to the Jπ = 5/2-, 761.7 keV, T1/2 = 32.8 ns and the Jπ = 15/2+, 1356.9 keV, T1/2 = 11.1 ns levels of 177Lu, have been measured for the first time with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. These measured isomeric ratios are compared with TALYS calculations.

  6. Isomeric ratio measurements for the radiative neutron capture 176Lu(n,γ at DANCE

    Directory of Open Access Journals (Sweden)

    Denis-Petit D.

    2017-01-01

    Full Text Available The isomeric ratios for the neutron capture reaction 176Lu(n,γ to the Jπ = 5/2−, 761.7 keV, T1/2 = 32.8 ns and the Jπ = 15/2+, 1356.9 keV, T1/2 = 11.1 ns levels of 177Lu, have been measured for the first time with the Detector for Advanced Neutron Capture Experiments (DANCE at the Los Alamos National Laboratory. These measured isomeric ratios are compared with TALYS calculations.

  7. Sensitivity studies for r-process nucleosynthesis in three astrophysical scenarios

    Directory of Open Access Journals (Sweden)

    Surman R.

    2014-03-01

    Full Text Available In rapid neutron capture, or r-process, nucleosynthesis, heavy elements are built up via a sequence of neutron captures and β decays that involves thousands of nuclei far from stability. Though we understand the basics of how the r process proceeds, its astrophysical site is still not conclusively known. The nuclear network simulations we use to test potential astrophysical scenarios require nuclear physics data (masses, β decay lifetimes, neutron capture rates, fission probabilities for all of the nuclei on the neutron-rich side of the nuclear chart, from the valley of stability to the neutron drip line. Here we discuss recent sensitivity studies that aim to determine which individual pieces of nuclear data are the most crucial for r-process calculations. We consider three types of astrophysical scenarios: a traditional hot r process, a cold r process in which the temperature and density drop rapidly, and a neutron star merger trajectory.

  8. Rapid thermal processing of semiconductors

    CERN Document Server

    Borisenko, Victor E

    1997-01-01

    Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions They thoroughly cover the work of international investigators in the field

  9. Model-Independent Calculation of Radiative Neutron Capture on Lithium-7

    NARCIS (Netherlands)

    Rupak, Gautam; Higa, Renato

    2011-01-01

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter

  10. High precision neutron capture gamma-ray and conversion electron measurements of 181Ta

    Science.gov (United States)

    Förster, I.; Börner*, H. G.; v. Brentano, P.; Colvin*, G.; Haque, A. M. I.; Kerr*, S. A.; Rascher, R.; Richter, R.; Schreckenbach*, K.

    1985-01-01

    As part of neutron capture γ-ray studies in the rare earth region the deexcitation spectra of the reactions 180Ta(n,γ)181Ta and 180Ta(n,e-)181Ta have been measured at the ILL high flux reactor, using bent crystal, pair and electron spectrometers. (AIP)

  11. Thermal-neutron capture gamma rays from natural magnesium and enriched 25Mg

    NARCIS (Netherlands)

    Spilling, P.; Gruppelaar, H.; Kamp, A.M.F. op den

    1967-01-01

    Gamma rays from neutron capture in natural magnesium and in enriched 25Mg have been studied with Ge(Li) detectors. Altogether 101 γ-rays have been observed. Most of these γ-rays could be fitted into the level schemes of 25Mg, 26Mg and 27Mg. If it is assumed that the capture cross section for

  12. Proceedings of workshop on 'boron science and boron neutron capture therapy'

    Energy Technology Data Exchange (ETDEWEB)

    Kitaoka, Y. [ed.

    1998-12-01

    This volume contains the abstracts and programs of the 8th (1996), 9th (1997) and 10th (1998) of the workshop on 'the Boron Science and Boron Neutron Capture Therapy' and the recent progress reports especially subscribed. The 11 of the presented papers are indexed individually. (J.P.N.)

  13. Boron nanoparticles inhibit turnour growth by boron neutron capture therapy in the murine B16-OVA model

    DEFF Research Database (Denmark)

    Petersen, Mikkel Steen; Petersen, Charlotte Christie; Agger, Ralf

    2008-01-01

    Background: Boron neutron capture therapy usually relies on soluble, rather than particulate, boron compounds. This study evaluated the use of a novel boron nanoparticle for boron neutron capture therapy. Materials and Methods: Two hundred and fifty thousand B16-OVA tumour cells, pre...

  14. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    Energy Technology Data Exchange (ETDEWEB)

    Kumada, Hiroaki; Yamamoto, Kazuyoshi; Torii, Yoshiya; Uchiyama, Junzo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Matsumura, Akira; Yamamoto, Tetsuya; Nose, Tadao [Tsukuba Univ., Tsukuba, Ibaraki (Japan); Nakagawa, Yoshinobu [National Sanatorium Kagawa-Children' s Hospital, Kagawa (Japan); Kageji, Teruyoshi [Tokushima Univ., Tokushima (Japan)

    2003-03-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to simulate the state of a head after its surgical processes such as skin flap opening and bone removal in the BNCT with craniotomy that are being performed in Japan. JCDS can provide information for the Patient Setting System which can support to set the patient to an actual irradiation position swiftly and accurately. This report describes basic design of JCDS and functions in several processing, calculation methods, characteristics and performance of JCDS. (author)

  15. Biodistribution of sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) in an oral cancer model.

    Science.gov (United States)

    Garabalino, Marcela A; Heber, Elisa M; Monti Hughes, Andrea; González, Sara J; Molinari, Ana J; Pozzi, Emiliano C C; Nievas, Susana; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Bauer, William; Trivillin, Verónica A; Schwint, Amanda E

    2013-08-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of ¹⁰B carriers in tumor followed by neutron irradiation. We previously proved the therapeutic success of BNCT mediated by the boron compounds boronophenylalanine and sodium decahydrodecaborate (GB-10) in the hamster cheek pouch oral cancer model. Based on the clinical relevance of the boron carrier sodium borocaptate (BSH) and the knowledge that the most effective way to optimize BNCT is to improve tumor boron targeting, the specific aim of this study was to perform biodistribution studies of BSH in the hamster cheek pouch oral cancer model and evaluate the feasibility of BNCT mediated by BSH at nuclear reactor RA-3. The general aim of these studies is to contribute to the knowledge of BNCT radiobiology and optimize BNCT for head and neck cancer. Sodium borocaptate (50 mg ¹⁰B/kg) was administered to tumor-bearing hamsters. Groups of 3-5 animals were killed humanely at nine time-points, 3-12 h post-administration. Samples of blood, tumor, precancerous pouch tissue, normal pouch tissue and other clinically relevant normal tissues were processed for boron measurement by optic emission spectroscopy. Tumor boron concentration peaked to therapeutically useful boron concentration values of 24-35 ppm. The boron concentration ratio tumor/normal pouch tissue ranged from 1.1 to 1.8. Pharmacokinetic curves showed that the optimum interval between BSH administration and neutron irradiation was 7-11 h. It is concluded that BNCT mediated by BSH at nuclear reactor RA-3 would be feasible.

  16. Neutron Capture Cross Sections of Zr and La: Probing Neutron Exposure and Neutron Flux in Red Giant Stars

    CERN Multimedia

    Kitis, G; Wiescher, M; Dahlfors, M; Soares, J

    2002-01-01

    We propose to measure the neutron capture cross sections of $^{139}$La, of $^{93}$Zr (t$_{1/2}$)=1.5 10$^{6}$ yr), and of all the stable Zr isotopes at n_TOF. The aim of these measurements is to improve the accuracy of existing results by at least a factor of three in order to meet the quality required for using the s-process nucleosynthesis as a diagnostic tool for neutron exposure and neutron flux during the He burning stages of stellar evolution. Combining these results with a wealth of recent information coming from high-resolution stellar spectroscopy and from the detailed analysis of presolar dust grains will shed new light on the chemical history of the universe. The investigated cross sections are also needed for technological applications, in particular since $^{93}$Zr is one of the major long-lived fission products.

  17. Advances in boron neutron capture therapy (BNCT) at kyoto university - From reactor-based BNCT to accelerator-based BNCT

    Science.gov (United States)

    Sakurai, Yoshinori; Tanaka, Hiroki; Takata, Takushi; Fujimoto, Nozomi; Suzuki, Minoru; Masunaga, Shinichiro; Kinashi, Yuko; Kondo, Natsuko; Narabayashi, Masaru; Nakagawa, Yosuke; Watanabe, Tsubasa; Ono, Koji; Maruhashi, Akira

    2015-07-01

    At the Kyoto University Research Reactor Institute (KURRI), a clinical study of boron neutron capture therapy (BNCT) using a neutron irradiation facility installed at the research nuclear reactor has been regularly performed since February 1990. As of November 2014, 510 clinical irradiations were carried out using the reactor-based system. The world's first accelerator-based neutron irradiation system for BNCT clinical irradiation was completed at this institute in early 2009, and the clinical trial using this system was started in 2012. A shift of BCNT from special particle therapy to a general one is now in progress. To promote and support this shift, improvements to the irradiation system, as well as its preparation, and improvements in the physical engineering and the medical physics processes, such as dosimetry systems and quality assurance programs, must be considered. The recent advances in BNCT at KURRI are reported here with a focus on physical engineering and medical physics topics.

  18. Astrophysical quests for neutron capture data of unstable nuclei

    Science.gov (United States)

    Käppeler, F.

    2016-11-01

    The abundances of the chemical elements heavier than iron can be attributed in about equal parts to the r and to the s process, which are taking place in supernova explosions and during the He and C burning phases of stellar evolution, respectively. So far, quantitative studies on the extremely short-lived neutron-rich nuclei constituting the ( n, γ) network of the r process are out of reach. On the contrary, the situation for the s -process is far advanced, as the reaction path of the s process from 12C to the Pb/Bi region is located within the valley of stability. Accordingly, a comprehensive database of experimental ( n, γ) cross sections has been established. While for many stable isotopes the necessary accuracy is still to be reached, reliable cross sections for the involved unstable isotopes are almost completely missing. Because of the intrinsic γ background of radioactive samples, successful time-of-flight measurements are depending on intense pulsed neutron sources. Such data are fundamental for our understanding of branchings in the s -process reaction path, which carry important model-independent information on neutron flux and temperature in the deep stellar interior.

  19. Furnace for rapid thermal processing

    NARCIS (Netherlands)

    Roozeboom, F.; Duine, P.A.; Sluis, P. van der

    2001-01-01

    A Method (1) for Rapid Thermal Processing of a wafer (7), wherein the wafer (7) is heated by lamps (9), and the heat radiation is reflected by an optical switching device (15,17) which is in the reflecting state during the heating stage. During the cooling stage of the wafer (7), the heat is

  20. Neutron capture measurements on Tl-isotopes at Dance

    Energy Technology Data Exchange (ETDEWEB)

    Couture, A.; Reifarth, R.; Bredeweg, T.A.; Haight, R.C.; Jandel, M.; Mertz, A.F.; O' Donnell, J.M.; Rundberg, R.S.; Ullmann, J.L.; Viera, D.J.; Wouters, J.M. [Los Alamos National Laboratory, NM (United States); Baker, J.D. [Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    The thallium isotopes play an important role in the s-process nucleosynthesis at the s-process endpoint. Furthermore, {sup 204}Tl is one of few branch point isotopes in the endpoint region. The understanding of branch point isotopes provides modeling constraints on the temperatures and neutron densities during which the process takes place. The production of s-only {sup 204}Pb is controlled almost entirely by {sup 204}Tl. Measurements of the capture cross-sections of the stable Tl isotopes have recently been made using the DANCE 4{pi} array at LANSCE. This provides needed resonance information in the region as well as preparing the way for measurements of as yet unmeasured capture cross-section of the unstable {sup 204}Tl. (authors)

  1. Neutron-capture Element Abundances in Magellanic Cloud Planetary Nebulae

    Science.gov (United States)

    Mashburn, A. L.; Sterling, N. C.; Madonna, S.; Dinerstein, Harriet L.; Roederer, I. U.; Geballe, T. R.

    2016-11-01

    We present near-infrared spectra of 10 planetary nebulae (PNe) in the Large and Small Magellanic Clouds (LMC and SMC), acquired with the FIRE and GNIRS spectrometers on the 6.5 m Baade and 8.1 m Gemini South Telescopes, respectively. We detect Se and/or Kr emission lines in eight of these objects, the first detections of n-capture elements in Magellanic Cloud PNe. Our abundance analysis shows large s-process enrichments of Kr (0.6-1.3 dex) in the six PNe in which it was detected, and Se is enriched by 0.5-0.9 dex in five objects. We also estimate upper limits to Rb and Cd abundances in these objects. Our abundance results for the LMC are consistent with the hypothesis that PNe with 2-3 M ⊙ progenitors dominate the bright end of the PN luminosity function in young gas-rich galaxies. We find no significant correlations between s-process enrichments and other elemental abundances, central star temperature, or progenitor mass, though this is likely due to our small sample size. We determine S abundances from our spectra and find that [S/H] agrees with [Ar/H] to within 0.2 dex for most objects, but is lower than [O/H] by 0.2-0.4 dex in some PNe, possibly due to O enrichment via third dredge-up. Our results demonstrate that n-capture elements can be detected in PNe belonging to nearby galaxies with ground-based telescopes, allowing s-process enrichments to be studied in PN populations with well-determined distances. This paper includes data obtained with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile, and with the Gemini-South Telescope at Cerro Pachon, Chile.

  2. Using 171,173Yb(d,p) to benchmark a surrogate reaction for neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Hatarik, R; Bersntein, L; Burke, J; Cizewski, J; Gibelin, J; Lesher, S; O' Malley, P; Phair, L; Swan, T

    2008-08-08

    Neutron capture cross sections on unstable nuclei are important for many applications in nuclear structure and astrophysics. Measuring these cross sections directly is a major challenge and often impossible. An indirect approach for measuring these cross sections is the surrogate reaction method, which makes it possible to relate the desired cross section to a cross section of an alternate reaction that proceeds through the same compound nucleus. To benchmark the validity of using the (d,p{gamma}) reaction as a surrogate for (n,{gamma}), the {sup 171,173}Yb(d,p{gamma}) reactions were measured with the goal to reproduce the known [1] neutron capture cross section ratios of these nuclei.

  3. Primary gamma transitions in {sup 173,174}Yb in neutron capture at isolated resonances

    Energy Technology Data Exchange (ETDEWEB)

    Telezhnikov, S.A. [Joint Institute for Nuclear Research, 141-980 Dubna, MR (Russian Federation); Granja, C. [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague 2 (Czech Republic)]. E-mail: carlos.granja@utef.cvut.cz; Hiep, H.T. [Joint Institute for Nuclear Research, 141-980 Dubna, MR (Russian Federation); Honzatko, J. [Joint Institute for Nuclear Research, 141-980 Dubna, MR (Russian Federation); Kralik, M. [Joint Institute for Nuclear Research, 141-980 Dubna, MR (Russian Federation); Montero-Cabrera, M.-E. [Joint Institute for Nuclear Research, 141-980 Dubna, MR (Russian Federation); Pospisil, S. [Institute of Experimental and Applied Physics, Czech Technical University, 128 00 Prague 2 (Czech Republic)

    2005-12-26

    Gamma transitions in {sup 174}Yb were investigated in radiative neutron capture at 23 isolated and additional 7 partially resolved summed resonances of {sup 173}Yb. The time-of-flight technique was used on an enriched target at the IBR-30 reactor at JINR Dubna. A total of 77 primary gamma transitions are reported populating levels in {sup 174}Yb up to 2.8 MeV in the spin-parity range 1{sup +}/-,2{sup +}/-,3{sup +}/-,4{sup +}/-. Spin and parity assignments of neutron resonances and of populated levels are proposed. In addition to these results, seven primary gamma transitions in {sup 173}Yb were also observed from neutron capture at three isolated resonances of {sup 172}Yb.

  4. Analysis of MCNP simulated gamma spectra of CdTe detectors for boron neutron capture therapy.

    Science.gov (United States)

    Winkler, Alexander; Koivunoro, Hanna; Savolainen, Sauli

    2017-06-01

    The next step in the boron neutron capture therapy (BNCT) is the real time imaging of the boron concentration in healthy and tumor tissue. Monte Carlo simulations are employed to predict the detector response required to realize single-photon emission computed tomography in BNCT, but have failed to correctly resemble measured data for cadmium telluride detectors. In this study we have tested the gamma production cross-section data tables of commonly used libraries in the Monte Carlo code MCNP in comparison to measurements. The cross section data table TENDL-2008-ACE is reproducing measured data best, whilst the commonly used ENDL92 and other studied libraries do not include correct tables for the gamma production from the cadmium neutron capture reaction that is occurring inside the detector. Furthermore, we have discussed the size of the annihilation peaks of spectra obtained by cadmium telluride and germanium detectors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Thermal Neutron Capture Branching Ratio of 209BI Using a Gamma-Ray Technique

    Science.gov (United States)

    Letourneau, A.; Berthoumieux, E.; Deruelle, O.; Fadil, M.; Fioni, G.; Gunsing, F.; Marie, F.; Perrot, L.; Ridikas, D.; Boerner, H.; Faust, H.; Mutti, P.; Simpson, G.; Schillebeeckx, P.

    2003-06-01

    A new experimental program concerning the measurement of the neutron capture branching ratio of 209Bi as a function of neutron energy has been proposed recently. The preliminary results obtained at the high neutron flux reactor of ILL with a thermal neutron flux are presented in this paper. The neutron capture cross section and the corresponding branching ratio are measured with an on-line gamma-ray spectroscopy method. We find for the capture cross section 35±1.75 mb, what is in a good agreement with existing results. For the partial cross sections we get σ210gs = 17.9±2 mb and σ210m =17.1±2 mb giving a branching ratio of 51%±5%. This value is by 25% smaller than values from evaluated libraries.

  6. The Open Cluster Chemical Abundances and Mapping (OCCAM) Survey: Optical Extension for Neutron Capture Elements

    Science.gov (United States)

    Melendez, Matthew; O'Connell, Julia; Frinchaboy, Peter M.; Donor, John; Cunha, Katia M. L.; Shetrone, Matthew D.; Majewski, Steven R.; Zasowski, Gail; Pinsonneault, Marc H.; Roman-Lopes, Alexandre; Stassun, Keivan G.; APOGEE Team

    2017-01-01

    The Open Cluster Chemical Abundance & Mapping (OCCAM) survey is a systematic survey of Galactic open clusters using data primarily from the SDSS-III/APOGEE-1 survey. However, neutron capture elements are very limited in the IR region covered by APOGEE. In an effort to fully study detailed Galactic chemical evolution, we are conducting a high resolution (R~60,000) spectroscopic abundance analysis of neutron capture elements for OCCAM clusters in the optical regime to complement the APOGEE results. As part of this effort, we present Ba II, La II, Ce II and Eu II results for a few open clusters without previous abundance measurements using data obtained at McDonald Observatory with the 2.1m Otto Struve telescope and Sandiford Echelle Spectrograph.This work is supported by an NSF AAG grant AST-1311835.

  7. Boron neutron capture therapy for oral precancer: proof of principle in an experimental animal model

    Energy Technology Data Exchange (ETDEWEB)

    A. Monti Hughes; ECC Pozzi; S. Thorp; M. A. Garabalino; R. O. Farias; S. J. Gonzalez; E. M. Heber; M. E. Itoiz; R. F. Aromando; A. J. Molinari; M. Miller; D. W. Nigg; P. Curotto; V. A. Trivillin; A. E. Schwint

    2013-11-01

    Field-cancerized tissue can give rise to second primary tumours, causing therapeutic failure. Boron neutron capture therapy (BNCT) is based on biological targeting and would serve to treat undetectable foci of malignant transformation. The aim of this study was to optimize BNCT for the integral treatment for oral cancer, with particular emphasis on the inhibitory effect on tumour development originating in precancerous conditions, and radiotoxicity of different BNCT protocols in a hamster cheek pouch oral precancer model.

  8. Parity violation in neutron capture on the proton: Determining the weak pion–nucleon coupling

    Directory of Open Access Journals (Sweden)

    J. de Vries

    2015-07-01

    Full Text Available We investigate the parity-violating analyzing power in neutron capture on the proton at thermal energies in the framework of chiral effective field theory. By combining this analysis with a previous analysis of parity violation in proton–proton scattering, we are able to extract the size of the weak pion–nucleon coupling constant. The uncertainty is significant and dominated by the experimental error which is expected to be reduced soon.

  9. Neutron capture measurement on {sup 173}Lu at LANSCE with DANCE detector

    Energy Technology Data Exchange (ETDEWEB)

    Theroine, C.; Ebran, A.; Meot, V.; Roig, O. [CEA DAM DIF, F-91297 Arpajon (France); Bond, E. M.; Bredeweg, T. A.; Couture, A.; Haight, R. C.; Jandel, M.; Nortier, F. M.; O' Donnell, J. M.; Rundberg, R. S.; Taylor, W. A.; Ullmann, J. L.; Viera, D. J.; Wilhelmy, J. B.; Wouters, J. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2013-06-10

    The (n,{gamma}) cross section on the unstable {sup 173}Lu(t{sub 1/2} = 1.37y) has been measured from thermal energy up to 200 eV at Los Alamos Neutron Science Center (LANSCE) with The Detector for Advanced Neutron Capture Experiements (DANCE). The main aim of this study is to validate and optimize reaction models for unstable nucleus. A preliminary capture yield will be presented in this paper.

  10. Leading E1 and M1 contributions to radiative neutron capture on lithium-7

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, L.; Rupak, G. [Mississippi State University, Department of Physics and Astronomy and HPC2 Center for Computational Sciences, Mississippi State, MS (United States); Higa, R. [University of Groningen, Kernfysisch Versneller Instituut, Theory Group, Groningen (Netherlands); Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo, SP (Brazil)

    2012-02-15

    Using halo effective field theory, we provide a model-independent calculation of the radiative neutron capture on lithium-7 over an energy range where the contribution from the 3{sup +} resonance becomes important. We also present power counting arguments that establish a hierarchy for electromagnetic one- and two-body currents. One finds that a satisfactory description of the capture reaction, in the present single-particle approximation, requires a resonance width about three times larger than the experimentally quoted value. (orig.)

  11. Neutron-capture experiment on 77Se with EXILL at ILL Grenoble

    Directory of Open Access Journals (Sweden)

    Lorenz Ch.

    2015-01-01

    Full Text Available The neutron capture reaction at 77Se has been studied with cold neutrons in the course of the EXILL campaign at the high-flux reactor of the Institut Laue-Langevin Grenoble. A simulation of the detector array with Geant4 has been accomplished and evaluated. The detector response has been deduced and measured spectra were unfolded, which have been compared with simulations using γDex to determine strength functions.

  12. Neutron-capture experiment on 77Se with EXILL at ILL Grenoble

    Science.gov (United States)

    Lorenz, Ch.; John, R.; Massarczyk, R.; Schwengner, R.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Urban, W.; Valenta, S.; Belgya, T.

    2015-05-01

    The neutron capture reaction at 77Se has been studied with cold neutrons in the course of the EXILL campaign at the high-flux reactor of the Institut Laue-Langevin Grenoble. A simulation of the detector array with Geant4 has been accomplished and evaluated. The detector response has been deduced and measured spectra were unfolded, which have been compared with simulations using γDex to determine strength functions.

  13. Neutron-capture experiment on 77Se with EXILL at ILL Grenoble

    OpenAIRE

    Lorenz, C.; John, R.; Massarczyk, R.; Schwengner, R.; Blanc, A.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Urban, W.; Valenta, S.; Belgya, T.

    2015-01-01

    The neutron capture reaction at 77Se has been studied with cold neutrons in the course of the EXILL campaign at the high-flux reactor of the Institut Laue-Langevin Grenoble. A simulation of the detector array with Geant4 has been accomplished and evaluated. The detector response has been deduced and measured spectra were unfolded, which have been compared with simulations using γDex to determine strength functions.

  14. Neutron transfer reactions: Surrogates for neutron capture for basic and applied nuclear science

    Energy Technology Data Exchange (ETDEWEB)

    Cizewski, J. A. [Rutgers University; Jones, K. L. [University of Tennessee; Kozub, R. L. [Tennessee Technological University; Pain, Steven D [ORNL; Peters, W. A. [Rutgers University; Adekola, Aderemi S [ORNL; Allen, J. [Rutgers University; Bardayan, Daniel W [ORNL; Becker, J. [Lawrence Livermore National Laboratory (LLNL); Blackmon, Jeff C [ORNL; Chae, K. Y. [University of Tennessee; Chipps, K. [Colorado School of Mines, Golden; Erikson, Luke [Colorado School of Mines, Golden; Gaddis, A. L. [Furman University; Harlin, Christopher W [ORNL; Hatarik, Robert [Rutgers University; Howard, Joshua A [ORNL; Jandel, M. [Los Alamos National Laboratory (LANL); Johnson, Micah [ORNL; Kapler, R. [University of Tennessee; Krolas, W. [University of Warsaw; Liang, J Felix [ORNL; Livesay, Jake [ORNL; Ma, Zhanwen [ORNL; Matei, Catalin [Oak Ridge Associated Universities (ORAU); Matthews, C. [Rutgers University; Moazen, Brian [University of Tennessee; Nesaraja, Caroline D [ORNL; O' Malley, Patrick [Rutgers University; Patterson, N. P. [University of Surrey, UK; Paulauskas, Stanley [University of Tennessee; Pelham, T. [University of Surrey, UK; Pittman, S. T. [University of Tennessee, Knoxville (UTK); Radford, David C [ORNL; Rogers, J. [Tennessee Technological University; Schmitt, Kyle [University of Tennessee; Shapira, Dan [ORNL; ShrinerJr., J. F. [Tennessee Technological University; Sissom, D. J. [Tennessee Technological University; Smith, Michael Scott [ORNL; Swan, T. P. [University of Surrey, UK; Thomas, J. S. [Rutgers University; Vieira, D. J. [Los Alamos National Laboratory (LANL); Wilhelmy, J. B. [Los Alamos National Laboratory (LANL); Wilson, Gemma L [ORNL

    2009-04-01

    Neutron capture reactions on unstable nuclei are important for both basic and applied nuclear science. A program has been developed at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory to study single-neutron transfer (d,p) reactions with rare isotope beams to provide information on neutron-induced reactions on unstable nuclei. Results from (d,p) studies on {sup 130,132}Sn, {sup 134}Te and {sup 75}As are discussed.

  15. A Study of the Production of Neutrons for Boron Neutron Capture Therapy using a Proton Accelerator

    OpenAIRE

    Edgecock, R.; Bennett, J. R. J.; Green, S.; Phoenix, B; Scott, MC

    2014-01-01

    Boron Neutron Capture Therapy (BNCT) is a binary cancer therapy particularly well-suited to treating aggressive tumours that exhibit a high degree of infiltration of the surrounding healthy tissue. Such tumours, for example of the brain and lung, provide some of the most challenging problems in oncology. The first element of the therapy is boron-10 which is preferentially introduced into the cancerous cells using a carrier compound. Boron-10 has a very high capture cross-section with the othe...

  16. Power Burst Facility/Boron Neutron Capture Therapy Program for cancer treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.); Dorn, R.V. III.

    1990-08-01

    This report discusses monthly progress in the Power Boron Facility/Boron Neutron Capture Therapy (PBF/BNCT) Program for Cancer Treatment. Highlights of the PBF/BNCT Program during August 1990 include progress within the areas of: Gross Boron Analysis in Tissue, Blood, and Urine, boron microscopic (subcellular) analytical development, noninvasive boron quantitative determination, analytical radiation transport and interaction modeling for BNCT, large animal model studies, neutron source and facility preparation, administration and common support and PBF operations.

  17. Power Burst Facility/Boron Neutron Capture Therapy program for cancer treatment, Volume 4, No. 7

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, A.L. (ed.)

    1990-07-01

    This report discusses the monthly progress of the Power Burst Facility/Boron Neutron Capture Therapy (PBF/BNLT) program for cancer treatment. Highlights of the PBF/BNCT Program during July 1990 include progress within the areas of: Gross boron analysis in tissue, blood, and urine; noninvasive boron quantitative determination; analytical radiation transport and interaction modeling for BNCT; large animal model studies; neutron source and facility preparation; administration and common support and PBF operations.

  18. Physics of epi-thermal boron neutron capture therapy (epi-thermal BNCT).

    Science.gov (United States)

    Seki, Ryoichi; Wakisaka, Yushi; Morimoto, Nami; Takashina, Masaaki; Koizumi, Masahiko; Toki, Hiroshi; Fukuda, Mitsuhiro

    2017-12-01

    The physics of epi-thermal neutrons in the human body is discussed in the effort to clarify the nature of the unique radiologic properties of boron neutron capture therapy (BNCT). This discussion leads to the computational method of Monte Carlo simulation in BNCT. The method is discussed through two examples based on model phantoms. The physics is kept at an introductory level in the discussion in this tutorial review.

  19. Intermediate structure in the /sup 238/U neutron capture cross section

    Energy Technology Data Exchange (ETDEWEB)

    Perez, R.B.; de Saussure, G.

    1975-10-01

    Recent measurements of the /sup 238/U neutron capture cross section show large fluctuations in the unresolved resonance region. To test whether or not the observed long-range fluctuation of the neutron capture represent departures from the compound nuclear model, the Wald-Wolfowitz runs and correlation tests were applied to the /sup 238/U neutron capture data obtained at ORELA. The Wald-Wolfowitz runs test deals with the statistic, R, which is the number of unbroken sequences of data points above or below a given reference line. This statistic is to be compared with the expected value of runs E(R) +- sigma(R) arising from randomly distributed data. In the correlation test we have computed the first serial correlation coefficient of the data as well as its expected value and variance for a set of random data. In both tests one computes the probability, P, for the given statistical entity to depart from its expected value by more than epsilon standard deviations. Both tests confirm the presence of intermediate structure between 5 and 100 keV. The range of the structure far exceeds the width of the experimental resolution and level widths. 3 tables, 2 figures. (auth)

  20. Nominal effective radiation doses delivered during clinical trials of boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J.; Diaz, A.Z.; Chanana, A.D.

    1997-12-31

    Boron neutron capture therapy (BNCT) is a binary system that, in theory, should selectively deliver lethal, high linear energy transfer (LET) radiation to tumor cells dispersed within normal tissues. It is based on the nuclear reaction 10-B(n, {alpha})7-Li, which occurs when the stable nucleus of boron-10 captures a thermal neutron. Due to the relatively high cross-section of the 10-B nucleus for thermal neutron capture and short ranges of the products of this reaction, tumor cells in the volume exposed to thermal neutrons and containing sufficiently high concentration of 10-B would receive a much higher radiation dose than the normal cells contained within the exposed volume. Nevertheless, radiation dose deposited in normal tissue by gamma and fast neutron contamination of the neutron beam, as well as neutron capture in nitrogen, 14-N(n,p)14-C, hydrogen, 1-H(n,{gamma})2-H, and in boron present in blood and normal cells, limits the dose that can be delivered to tumor cells. It is, therefore, imperative for the success of the BNCT the dosed delivered to normal tissues be accurately determined in order to optimize the irradiation geometry and to limit the volume of normal tissue exposed to thermal neutrons. These are the major objectives of BNCT treatment planning.

  1. Development of a Boron Neutron Capture Enhanced Fast Neutron Therapy Beam

    Energy Technology Data Exchange (ETDEWEB)

    Sweezy, Jeremy Ed [Georgia Tech

    2002-01-01

    The combination of fast neutron therapy and boron neutron capture therapy is currently under investigation at several fast neutron therapy centers worldwide. This treatment method, termed boron neutron capture enhanced fast neutron therapy (BNCEFNT) utilizes a boron containing drug to selectively increase the dose to the target tumor. BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiforme. A neutron therapy beam for boron neutron capture enhanced fast neutron therapy has been developed for the existing Fermilab Neutron Therapy Facility. This beam produces a significant dose enhancement due to the the boron neutron capture reaction. The beam was developed by designing a filter and collimator system using the Monte Carlo radiation transport code, MCNPX. The MCNPX code was benchmarked against depth-dose measurements of the standard treatment beam. The new BNCEFNT beam is filtered with 18.3-cm of low carbon steel and is collimated with steel. Measurements of the dose enhancement of the new BNCEFNT beam were performed with paired tissue equivalent ion chambers. One of the ion chambers has boron incorporated in the wall of the chamber to measure the dose due to boron neutron capture. The measured boron dose enhancement of the BNCEFNT beam is (16.3 ± 2.6)% per 100-ppm 10B for a 20-cm diameter beam and (10.0 ± 1.6)% per 100-ppm 10B for a 10-cm diameter beam. The dose rate of the new beam is reduced to 4.4% of the dose rate of the standard treatment beam. xxi A conceptual design that overcomes the reduced dose rate is also presented. This design uses a tungsten collimator placed near the patient, with a 1.5-cm tungsten filter just upstream of the collimator. Using graphite moderation of neutrons around the patient a percent dose enhancement of 15% can be attained with good collimation, for field sizes as small as 5 × 5 cm2 , and without a reduction in dose rate.

  2. Radiologic findings in patients treated with boron neutron capture therapy for glioblastoma multiforme within EORTC trial 11961

    NARCIS (Netherlands)

    Vos, Maaike J.; Turowski, Bernd; Zanella, Friedhelm E.; Paquis, Philippe; Siefert, Axel; Hideghéty, Katalin; Haselsberger, Klaus; Grochulla, Frank; Postma, Tjeerd J.; Wittig, Andrea; Heimans, Jan J.; Slotman, Ben J.; Vandertop, W. Peter; Sauerwein, Wolfgang

    2005-01-01

    PURPOSE: To assess the occurrence and development of cerebral radiologic changes (cerebral atrophy and white matter lesions) in patients treated with boron neutron capture therapy (BNCT) for primary supratentorial glioblastoma multiforme within the European Organization for Research and Treatment of

  3. Cyclic-RGDyC functionalized liposomes for dual-targeting of tumor vasculature and cancer cells in glioblastoma: An in vitro boron neutron capture therapy study.

    Science.gov (United States)

    Kang, Weirong; Svirskis, Darren; Sarojini, Vijayalekshmi; McGregor, Ailsa L; Bevitt, Joseph; Wu, Zimei

    2017-05-30

    The efficacy of boron neutron capture therapy depends on the selective delivery of 10B to the target. Integrins αvβ3 are transmembrane receptors over-expressed in both glioblastoma cells and its neovasculature. In this study, a novel approach to dual-target glioblastoma vasculature and tumor cells was investigated. Liposomes (124 nm) were conjugated with a αvβ3 ligand, cyclic arginine-glycine-aspartic acid-tyrosine-cysteine peptide (c(RGDyC)-LP) (1% molar ratio) through thiol-maleimide coupling. Expression of αvβ3 in glioblastoma cells (U87) and human umbilical vein endothelial cells (HUVEC), representing tumor angiogenesis, was determined using Western Blotting with other cells as references. The results showed that both U87 and HUVEC had stronger expression of αvβ3 than other cell types, and the degree of cellular uptake of c(RGDyC)-LP correlated with the αvβ3-expression levels of the cells. In contrast, control liposomes without c(RGDyC) showed little cellular uptake, regardless of cell type. In an in vitro boron neutron capture therapy study, the c(RGDyC)-LP containing sodium borocaptate generated more rapid and significant lethal effects to both U87 and HUVEC than the control liposomes and drug solution. Interestingly, neutron irradiated U87 and HUVEC showed different types of subsequent cell death. In conclusion, this study has demonstrated the potential of a new dual-targeting strategy using c(RGDyC)-LP to improve boron neutron capture therapy for glioblastoma.

  4. Design of a boron neutron capture enhanced fast neutron therapy assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhonglu [Georgia Inst. of Technology, Atlanta, GA (United States)

    2006-12-01

    The use of boron neutron capture to boost tumor dose in fast neutron therapy has been investigated at several fast neutron therapy centers worldwide. This treatment is termed boron neutron capture enhanced fast neutron therapy (BNCEFNT). It is a combination of boron neutron capture therapy (BNCT) and fast neutron therapy (FNT). It is believed that BNCEFNT may be useful in the treatment of some radioresistant brain tumors, such as glioblastoma multiform (GBM). A boron neutron capture enhanced fast neutron therapy assembly has been designed for the Fermilab Neutron Therapy Facility (NTF). This assembly uses a tungsten filter and collimator near the patient's head, with a graphite reflector surrounding the head to significantly increase the dose due to boron neutron capture reactions. The assembly was designed using Monte Carlo radiation transport code MCNP version 5 for a standard 20x20 cm2 treatment beam. The calculated boron dose enhancement at 5.7-cm depth in a water-filled head phantom in the assembly with a 5x5 cm2 collimation was 21.9% per 100-ppm 10B for a 5.0-cm tungsten filter and 29.8% for a 8.5-cm tungsten filter. The corresponding dose rate for the 5.0-cm and 8.5-cm thick filters were 0.221 and 0.127 Gy/min, respectively; about 48.5% and 27.9% of the dose rate of the standard 10x10 cm2 fast neutron treatment beam. To validate the design calculations, a simplified BNCEFNT assembly was built using four lead bricks to form a 5x5 cm2 collimator. Five 1.0-cm thick 20x20 cm2 tungsten plates were used to obtain different filter thicknesses and graphite bricks/blocks were used to form a reflector. Measurements of the dose enhancement of the simplified assembly in a water-filled head phantom were performed using a pair of tissue-equivalent ion chambers. One of the ion chambers is loaded with 1000-ppm natural boron (184-ppm 10B) to measure dose due to boron neutron capture. The

  5. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer.

    Science.gov (United States)

    Haapaniemi, Aaro; Kankaanranta, Leena; Saat, Riste; Koivunoro, Hanna; Saarilahti, Kauko; Mäkitie, Antti; Atula, Timo; Joensuu, Heikki

    2016-05-01

    To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Rates for neutron-capture reactions on tungsten isotopes in iron meteorites. [Abstract only

    Science.gov (United States)

    Masarik, J.; Reedy, R. C.

    1994-01-01

    High-precision W isotopic analyses by Harper and Jacobsen indicate the W-182/W-183 ratio in the Toluca iron meteorite is shifted by -(3.0 +/- 0.9) x 10(exp -4) relative to a terrestrial standard. Possible causes of this shift are neutron-capture reactions on W during Toluca's approximately 600-Ma exposure to cosmic ray particles or radiogenic growth of W-182 from 9-Ma Hf-182 in the silicate portion of the Earth after removal of W to the Earth's core. Calculations for the rates of neutron-capture reactions on W isotopes were done to study the first possibility. The LAHET Code System (LCS) which consists of the Los Alamos High Energy Transport (LAHET) code and the Monte Carlo N-Particle(MCNP) transport code was used to numerically simulate the irradiation of the Toluca iron meteorite by galactic-cosmic-ray (GCR) particles and to calculate the rates of W(n, gamma) reactions. Toluca was modeled as a 3.9-m-radius sphere with the composition of a typical IA iron meteorite. The incident GCR protons and their interactions were modeled with LAHET, which also handled the interactions of neutrons with energies above 20 MeV. The rates for the capture of neutrons by W-182, W-183, and W-186 were calculated using the detailed library of (n, gamma) cross sections in MCNP. For this study of the possible effect of W(n, gamma) reactions on W isotope systematics, we consider the peak rates. The calculated maximum change in the normalized W-182/W-183 ratio due to neutron-capture reactions cannot account for more than 25% of the mass 182 deficit observed in Toluca W.

  7. Measurements of keV-neutron capture {gamma} rays of fission products. 3

    Energy Technology Data Exchange (ETDEWEB)

    Igashira, Masayuki [Tokyo Inst. of Tech. (Japan). Research Lab. for Nuclear Reactors

    1997-03-01

    {gamma} rays from the keV-neutron capture reactions by {sup 143,145}Nd and {sup 153}Eu have been measured in a neutron energy region of 10 to 80 keV, using a large anti-Compton NaI(Tl) {gamma}-ray spectrometer and the {sup 7}Li(p,n){sup 7}Be pulsed neutron source with a 3-MV Pelletron accelerator. The preliminary results for the capture cross sections and {gamma}-ray spectra of those nuclei are presented and discussed. (author)

  8. NCTPlan application for neutron capture therapy dosimetric planning at MEPhI nuclear research reactor.

    Science.gov (United States)

    Elyutina, A S; Kiger, W S; Portnov, A A

    2011-12-01

    The results of modeling of two therapeutic beams HEC-1 and HEC-4 at the NRNU "MEPhI" research nuclear reactor exploitable for preclinical treatments are reported. The exact models of the beams are constructed as an input to the NCTPlan code used for planning Neutron Capture Therapy (NCT) procedure. The computations are purposed to improve the accuracy of prediction of a dose absorbed in tissue with the account of all components of radiation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Model-independent calculation of radiative neutron capture on lithium-7.

    Science.gov (United States)

    Rupak, Gautam; Higa, Renato

    2011-06-03

    The radiative neutron capture on lithium-7 is calculated model independently using a low-energy halo effective field theory. The cross section is expressed in terms of scattering parameters directly related to the S-matrix elements. It depends on the poorly known p-wave effective range parameter r(1). This constitutes the largest uncertainty in traditional model calculations. It is explicitly demonstrated by comparing with potential model calculations. A single parameter fit describes the low-energy data extremely well and yields r(1)≈-1.47  fm(-1).

  10. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    DEFF Research Database (Denmark)

    Hampel, G.; Grunewald, C.; Schütz, C.

    2011-01-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed at Pavia (Italy) a few ...... have also been initiated to investigate radiobiological effects of radiation generated during BNCT. For both experiments and treatment, a reliable dosimetry system is necessary. From work elsewhere, the use of alanine detectors appear to be an appropriate dosimetry technique....

  11. Boron containing magnetic nanoparticles for neutron capture therapy--an innovative approach for specifically targeting tumors.

    Science.gov (United States)

    Tietze, Rainer; Unterweger, Harald; Dürr, Stephan; Lyer, Stefan; Canella, Lea; Kudejova, Petra; Wagner, Franz M; Petry, Winfried; Taccardi, Nicola; Alexiou, Christoph

    2015-12-01

    The selective delivery of (10)B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted (10)B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed. Copyright © 2015. Published by Elsevier Ltd.

  12. Thermal neutron capture γ-ray spectroscopy of59Ni and61Ni

    Science.gov (United States)

    Harder, A.; Michaelsen, S.; Lieb, K. P.; Williams, A. P.

    1993-06-01

    The γ-radiation emitted after thermal neutron capture in isotopically enriched58Ni and60Ni was measured at the ILL high flux reactor by means of Ge/NaI detectors operated in Compton suppression and pair spectrometer mode. The neutron binding energies were determined as B n (59Ni)=8999.15(23) keV and Bn(61Ni)=7820.07(20) keV; some 95% of the total γ-ray fluxes through59,61Ni were assigned. The γ-ray strength functions of the primary transitions and the level densities are discussed.

  13. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy

    OpenAIRE

    Fujiwara, Keiko; Kinashi, Yuko; TAKAHASHI, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-01-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their 24Na and 38Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to 24Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive 24Na is mainly generated from 23Na in the target tissue that is exposed to the...

  14. Simultaneous measurement of the neutron capture and fission yields of {sup 233}U

    Energy Technology Data Exchange (ETDEWEB)

    Berthoumieux, E.; Abbondanno, U.; Aerts, G.; Alvarez, H.A.; Alvarez-Velarde, F.A.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Calvino, F.; Calviani, M.; Cano Ott, D.; Capote, R.; Carrapic, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    We have measured the neutron capture and fission cross section of {sup 233}U at the neutron time-of-flight facility n-TOF at CERN in the energy range from 1 eV to 1 MeV with high accuracy by using a high performance 4{pi} BaF{sub 2} Total Absorption Calorimeter (TAC) as a detection device. The method, based on the shape analysis of the TAC energy response, allowing to disentangle between {gamma}'s originating from fission and capture will be presented as well as the first very preliminary results. (authors)

  15. The n{sub T}OF Total Absorption Calorimeter for neutron capture measurements at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, C. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Madrid (Spain)], E-mail: carlos.guerrero@ciemat.es; Abbondanno, U. [Istituto Nazionale di Fisica Nucleare, Trieste (Italy); Aerts, G. [CEA/Saclay - DSM/DAPNIA, Gif-sur-Yvette (France); Alvarez, H. [Universidade de Santiago de Compostela (Spain); Alvarez-Velarde, F. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Madrid (Spain); Andriamonje, S. [CEA/Saclay - DSM/DAPNIA, Gif-sur-Yvette (France); Andrzejewski, J. [University of Lodz, Lodz (Poland); Assimakopoulos, P. [University of Ioannina (Greece); Audouin, L. [Centre National de la Recherche Scientifique/IN2P3-IReS, Strasbourg (France); Badurek, G. [Atominstitut der Osterreichischen Universitaeten, Technische Universitaet Wien (Austria); Baumann, P. [Centre National de la Recherche Scientifique/IN2P3-IReS, Strasbourg (France); Becvar, F. [Charles University, Prague (Czech Republic); Berthoumieux, E. [CEA/Saclay - DSM/DAPNIA, Gif-sur-Yvette (France); Calvino, F. [Universidad Politecnica de Catalunya (Spain); Calviani, M. [Istituto Nazionale di Fisica Nucleare (INFN), Laboratori Nazionali di Legnaro (Italy); Cano-Ott, D. [Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, Madrid (Spain); Capote, R. [International Atomic Energy Agency (IAEA), Nuclear Data Section, Vienna (Austria); Universidad de Sevilla (Spain); Carrapico, C. [CEA/Saclay - DSM/DAPNIA, Gif-sur-Yvette (France); Instituto Tecnologico e Nuclear(ITN), Lisbon (Portugal); Cennini, P. [CERN, Geneva (Switzerland); Chepel, V. [LIP - Coimbra and Departamento de Fisica da Universidade de Coimbra (Portugal)] (and others)

    2009-09-21

    The n{sub T}OF Collaboration has built and commissioned a high-performance detector for (n,{gamma}) measurements called the Total Absorption Calorimeter (TAC). The TAC was especially designed for measuring neutron capture cross-sections of low-mass and/or radioactive samples with the accuracy required for nuclear technology and stellar nucleosynthesis. We present a detailed description of the TAC and discuss its overall performance in terms of energy and time resolution, background discrimination, detection efficiency and neutron sensitivity.

  16. [Possibilities of boron neutron capture therapy in the treatment of malignant brain tumors].

    Science.gov (United States)

    Kanygin, V V; Kichigin, A I; Gubanova, N V; Taskaev, S Yu

    2015-01-01

    Boron neutron capture therapy (BNCT) that is of the highest attractiveness due to its selective action directly on malignant tumor cells is a promising approach to treating cancers. Clinical interest in BNCT focuses in neuro-oncology on therapy for gliomas, glioblastoma in particular, and BNCT may be used in brain metastatic involvement. This needs an epithermal neutron source that complies with the requirements for BNCT, as well as a 10B-containing agent that will selectively accumulate in tumor tissue. The introduction of BNCT into clinical practice to treat patients with glial tumors will be able to enhance therapeutic efficiency.

  17. Single photon image from position emission tomography with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Joo Young; Yoo, Do Kun; Suh, Tae Suk [Dept. of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, Catholic University of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Molecular Imaging Program at Stanford (MIPS), Dept. of Radiology, Stanford University, Stanford (United States)

    2014-04-15

    The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one positron emission tomography (PET) module with an insertable collimator for brain tumor treatment during the boron neutron capture therapy (BNCT). The BNCT theory and conceptual diagram of our proposed system are shown fig.1. Data from the PET module, neutron source, and collimator was entered in the Monte Carlon-particle extende source code. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  18. Potential of boron neutron capture therapy (BNCT) for malignant peripheral nerve sheath tumors (MPNST).

    Science.gov (United States)

    Fujimoto, Takuya; Andoh, Tooru; Sudo, Tamotsu; Fujita, Ikuo; Fukase, Naomasa; Takeuchi, Tamotsu; Sonobe, Hiroshi; Inoue, Masayoshi; Hirose, Tkanori; Sakuma, Toshiko; Moritake, Hiroshi; Sugimoto, Tohru; Kawamoto, Teruya; Fukumori, Yoshinobu; Yamamoto, Satomi; Atagi, Shinji; Sakurai, Yoshinori; Kurosaka, Masahiro; Ono, Koji; Ichikawa, Hideki; Suzuki, Minoru

    2015-12-01

    Malignant peripheral nerve sheath tumors (MPNST) are relatively rare neoplasms with poor prognosis. At present there is no effective treatment for MPNST other than surgical resection. Nonetheless, the anti-tumor effect of boron neutron capture therapy (BNCT) was recently demonstrated in two patients with MPNST. Subsequently, tumor-bearing nude mice subcutaneously transplanted with a human MPNST cell line were injected with p-borono-L-phenylalanine (L-BPA) and subjected to BNCT. Pathological studies then revealed that the MPNST cells were selectively destroyed by BNCT. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations.

    Science.gov (United States)

    Brandão, S F; Campos, T P R

    2015-07-01

    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  20. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    Science.gov (United States)

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  1. Homogeneous immunoconjugates for boron neutron-capture therapy: Design, synthesis, and preliminary characterization

    Science.gov (United States)

    Guan, Lufeng; Wims, Letitia A.; Kane, Robert R.; Smuckler, Mark B.; Morrison, Sherie L.; Hawthorne, M. Frederick

    1998-01-01

    The application of immunoprotein-based targeting strategies to the boron neutron-capture therapy of cancer poses an exceptional challenge, because viable boron neutron-capture therapy by this method will require the efficient delivery of 103 boron-10 atoms by each antigen-binding protein. Our recent investigations in this area have been focused on the development of efficient methods for the assembly of homogeneous immunoprotein conjugates containing the requisite boron load. In this regard, engineered immunoproteins fitted with unique, exposed cysteine residues provide attractive vehicles for site-specific modification. Additionally, homogeneous oligomeric boron-rich phosphodiesters (oligophosphates) have been identified as promising conjugation reagents. The coupling of two such boron-rich oligophosphates to sulfhydryls introduced to the CH2 domain of a chimeric IgG3 has been demonstrated. The resulting boron-rich immunoconjugates are formed efficiently, are readily purified, and have promising in vitro and in vivo characteristics. Encouragingly, these studies showed subtle differences in the properties of the conjugates derived from the two oligophosphate molecules studied, providing a basis for the application of rational design to future work. Such subtle details would not have been as readily discernible in heterogeneous conjugates, thus validating the rigorous experimental design employed here. PMID:9789066

  2. Neutron capture nuclei-containing carbon nanoparticles for destruction of cancer cells.

    Science.gov (United States)

    Hwang, Kuo Chu; Lai, Po Dong; Chiang, Chi-Shiun; Wang, Pei-Jen; Yuan, Chiun-Jye

    2010-11-01

    HeLa cells were incubated with neutron capture nuclei (boron-10 and gadolinium)-containing carbon nanoparticles, followed by irradiation of slow thermal neutron beam. Under a neutron flux of 6 x 10(11) n/cm(2) (or 10 min irradiation at a neutron flux of 1 x 10(9) n/cm(2) s), the percentages of acute cell death at 8 h after irradiation are 52, 55, and 28% for HeLa cells fed with BCo@CNPs, GdCo@CNPs, and Co@CNPs, respectively. The proliferation capability of the survived HeLa cells was also found to be significantly suppressed. At 48 h after neutron irradiation, the cell viability further decreases to 35 +/- 5% as compared to the control set receiving the same amount of neutron irradiation dose but in the absence of carbon nanoparticles. This work demonstrates "proof-of-concept" examples of neutron capture therapy using (10)B-, (157)Gd-, and (59)Co-containing carbon nanoparticles for effective destruction of cancer cells. It will also be reported the preparation and surface functionalization of boron or gadolinium doped core-shell cobalt/carbon nanoparticles (BCo@CNPs, GdCo@CNPs and Co@CNPs) using a modified DC pulsed arc discharge method, and their characterization by various spectroscopic measurements, including TEM, XRD, SQUID, FT-IR, etc. Tumor cell targeting ability was introduced by surface modification of these carbon nanoparticles with folate moieties. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  3. Boron neutron capture therapy of malignant brain tumors at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Coderre, J.A.; Chanana, A.D. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1996-12-31

    Boron neutron capture therapy (BNCT) is a bimodal form of radiation therapy for cancer. The first component of this treatment is the preferential localization of the stable isotope {sup 10}B in tumor cells by targeting with boronated compounds. The tumor and surrounding tissue is then irradiated with a neutron beam resulting in thermal neutron/{sup 10}B reactions ({sup 10}B(n,{alpha}){sup 7}Li) resulting in the production of localized high LET radiation from alpha and {sup 7}Li particles. These products of the neutron capture reaction are very damaging to cells, but of short range so that the majority of the ionizing energy released is microscopically confined to the vicinity of the boron-containing compound. In principal it should be possible with BNCT to selectively destroy small nests or even single cancer cells located within normal tissue. It follows that the major improvements in this form of radiation therapy are going to come largely from the development of boron compounds with greater tumor selectivity, although there will certainly be advances made in neutron beam quality as well as the possible development of alternative sources of neutron beams, particularly accelerator-based epithermal neutron beams.

  4. Monte Carlo assessment of boron neutron capture therapy for the treatment of breast cancer

    Directory of Open Access Journals (Sweden)

    Mundy Daniel W.

    2005-01-01

    Full Text Available For a large number of women who are diagnosed with breast cancer every year the avail able treatment options are effective, though physically and mentally taxing. This work is a starting point of a study of the efficacy of boron neutron capture therapy as an alternative treatment for HER-2+ breast tumors. Using HER-2-specific monoclonal anti bodies coupled with a boron-rich oligomeric phosphate diester, it may be possible to deliver sufficient amounts of 10B to a tumor of the breast to al low for selective cell destruction via irradiation by thermal neutrons. A comprehensive computational model (MCNP for thermal neutron irradiation of the breast is described, as well as the results of calculations made using this model, in order to determine the optimum boron concentration within the tumor for an effective boron neutron capture therapy treatment, as compared with traditional X-ray radiotherapy. The results indicate that a boron concentration of 50-60 mg per gram of tumor tissue is optimal when considering treatment times, dose distributions and skin sparing. How ever these results are based upon best-guess assumptions that must be experimentally verified.

  5. Detector-Response Correction of Two-Dimensional γ-Ray Spectra from Neutron Capture

    Science.gov (United States)

    Rusev, G.; Jandel, M.; Arnold, C. W.; Bredeweg, T. A.; Couture, A.; Mosby, S. M.; Ullmann, J. L.

    2015-05-01

    The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity) have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ) and 113Cd(n, γ) reactions.

  6. Detector-Response Correction of Two-Dimensional γ-Ray Spectra from Neutron Capture

    Directory of Open Access Journals (Sweden)

    Rusev G.

    2015-01-01

    Full Text Available The neutron-capture reaction produces a large variety of γ-ray cascades with different γ-ray multiplicities. A measured spectral distribution of these cascades for each γ-ray multiplicity is of importance to applications and studies of γ-ray statistical properties. The DANCE array, a 4π ball of 160 BaF2 detectors, is an ideal tool for measurement of neutron-capture γ-rays. The high granularity of DANCE enables measurements of high-multiplicity γ-ray cascades. The measured two-dimensional spectra (γ-ray energy, γ-ray multiplicity have to be corrected for the DANCE detector response in order to compare them with predictions of the statistical model or use them in applications. The detector-response correction problem becomes more difficult for a 4π detection system than for a single detector. A trial and error approach and an iterative decomposition of γ-ray multiplets, have been successfully applied to the detector-response correction. Applications of the decomposition methods are discussed for two-dimensional γ-ray spectra measured at DANCE from γ-ray sources and from the 10B(n, γ and 113Cd(n, γ reactions.

  7. Absolute measurement of the 242Pu neutron-capture cross section

    Science.gov (United States)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.; Dance Collaboration

    2016-04-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. The first direct measurement of the 242Pu(n ,γ ) cross section was made over the incident neutron energy range from thermal to ≈6 keV, and the absolute scale of the (n ,γ ) cross section was set according to the known 239Pu(n ,f ) resonance at En ,R=7.83 eV. This was accomplished by adding a small quantity of 239Pu to the 242Pu sample. The relative scale of the cross section, with a range of four orders of magnitude, was determined for incident neutron energies from thermal to ≈40 keV. Our data, in general, are in agreement with previous measurements and those reported in ENDF/B-VII.1; the 242Pu(n ,γ ) cross section at the En ,R=2.68 eV resonance is within 2.4 % of the evaluated value. However, discrepancies exist at higher energies; our data are ≈30 % lower than the evaluated data at En≈1 keV and are approximately 2 σ away from the previous measurement at En≈20 keV.

  8. Biocompatibility of functionalized boron phosphate (BPO4) nanoparticles for boron neutron capture therapy (BNCT) application.

    Science.gov (United States)

    Achilli, Cesare; Grandi, Stefania; Ciana, Annarita; Guidetti, Gianni F; Malara, Alessandro; Abbonante, Vittorio; Cansolino, Laura; Tomasi, Corrado; Balduini, Alessandra; Fagnoni, Maurizio; Merli, Daniele; Mustarelli, Piercarlo; Canobbio, Ilaria; Balduini, Cesare; Minetti, Giampaolo

    2014-04-01

    Boron neutron capture therapy (BNCT) is a radiotherapy treatment based on the accumulation in the tumor of a (10)B-containing drug and subsequent irradiation with low energy neutrons, which bring about the decay of (10)B to (7)Li and an α particle, causing the death of the neoplastic cell. The effectiveness of BNCT is limited by the low delivery and accumulation of the used boron-containing compounds. Here we report the development and the characterization of BPO4 nanoparticles (NPs) as a novel possible alternative drug for BNCT. An extensive analysis of BPO4 NP biocompatibility was performed using both mature blood cells (erythrocytes, neutrophils and platelets) and a model of hematopoietic progenitor cells. A time- and concentration-dependent cytotoxicity study was performed on neoplastic coloncarcinoma and osteosarcoma cell lines. BPO4 functionalization with folic acid, introduced to improve the uptake by tumor cells, appeared to effectively limit the unwanted effects of NPs on the analyzed blood components. Boron neutron capture therapy (BNCT) is a radiotherapy treatment modality based on the accumulation of a (10)B-containing drug and subsequent irradiation with low energy neutrons, inducing the decay of (10)B to (7)Li and an α particle, causing neoplastic cell death. This team of authors reports on a folic acid functionalized BPO4 nanoparticle with improved characteristics compared with conventional BNCT approaches, as demonstrated in tumor cell lines, and hopefully to be followed by translational human studies. © 2014.

  9. New time-of-flight data for the neutron capture cross-section of {sup 63}Cu

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, M.; Reifarth, R. [Goethe Universitaet, Frankfurt (Germany); Bredeweg, T.A.; Couture, A.; Jandel, M.; O' Donnell, J.M.; Ullmann, J.L. [LANL, Los Alamos (United States)

    2014-07-01

    One of the important questions in nuclear astrophysics is how the observed abundances of elements came to be. Nearly all of the elements beyond the iron peak are either formed by the s- or the r-process in almost equal shares. The precise s-process path depends on stellar parameters like temperature and neutron density, and on nuclear parameters like half-lifes and neutron capture cross-sections (NCS). Thus, there is a big need for experimental data on the involved reactions to calculate their stellar rates to understand s-process nucleosynthesis. The NCS of the copper isotopes influences the isotopic ratios of Zn. Former experiments concerning the NCS of {sup 63}Cu showed large discrepancies. In order to determine the {sup 63}Cu(n,γ) cross-section in the astrophysical energy region, an experiment has been performed using the calorimetric 4π-BaF{sub 2} array DANCE at the Los Alamos National Lab (LANL). The results of the experiment will be presented.

  10. TU-FG-BRB-07: GPU-Based Prompt Gamma Ray Imaging From Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S; Suh, T; Yoon, D; Jung, J; Shin, H; Kim, M [The catholic university of Korea, Seoul (Korea, Republic of)

    2016-06-15

    Purpose: The purpose of this research is to perform the fast reconstruction of a prompt gamma ray image using a graphics processing unit (GPU) computation from boron neutron capture therapy (BNCT) simulations. Methods: To evaluate the accuracy of the reconstructed image, a phantom including four boron uptake regions (BURs) was used in the simulation. After the Monte Carlo simulation of the BNCT, the modified ordered subset expectation maximization reconstruction algorithm using the GPU computation was used to reconstruct the images with fewer projections. The computation times for image reconstruction were compared between the GPU and the central processing unit (CPU). Also, the accuracy of the reconstructed image was evaluated by a receiver operating characteristic (ROC) curve analysis. Results: The image reconstruction time using the GPU was 196 times faster than the conventional reconstruction time using the CPU. For the four BURs, the area under curve values from the ROC curve were 0.6726 (A-region), 0.6890 (B-region), 0.7384 (C-region), and 0.8009 (D-region). Conclusion: The tomographic image using the prompt gamma ray event from the BNCT simulation was acquired using the GPU computation in order to perform a fast reconstruction during treatment. The authors verified the feasibility of the prompt gamma ray reconstruction using the GPU computation for BNCT simulations.

  11. Boron Neutron Capture Therapy in the Treatment of Recurrent Laryngeal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Haapaniemi, Aaro, E-mail: aaro.haapaniemi@hus.fi [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Kankaanranta, Leena [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Saat, Riste [Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Koivunoro, Hanna; Saarilahti, Kauko [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Mäkitie, Antti; Atula, Timo [Department of Otorhinolaryngology–Head and Neck Surgery, Helsinki University Hospital and University of Helsinki, Helsinki (Finland); Joensuu, Heikki [Department of Oncology, Helsinki University Hospital and University of Helsinki, Helsinki (Finland)

    2016-05-01

    Purpose: To investigate the safety and efficacy of boron neutron capture therapy (BNCT) as a larynx-preserving treatment option for patients with recurrent laryngeal cancer. Methods and Materials: Six patients with locally recurrent squamous cell laryngeal carcinoma and 3 patients with persistent laryngeal cancer after prior treatment were treated with BNCT at the FiR1 facility (Espoo, Finland) in 2006 to 2012. The patients had received prior radiation therapy with or without concomitant chemotherapy to a cumulative median dose of 66 Gy. The median tumor diameter was 2.9 cm (range, 1.4-10.9 cm) before BNCT. Boron neutron capture therapy was offered on a compassionate basis to patients who either refused laryngectomy (n=7) or had an inoperable tumor (n=2). Boronophenylalanine-fructose (400 mg/kg) was used as the boron carrier and was infused over 2 hours intravenously before neutron irradiation. Results: Six patients received BNCT once and 3 twice. The estimated average gross tumor volume dose ranged from 22 to 38 Gy (W) (mean; 29 Gy [W]). Six of the 8 evaluable patients responded to BNCT; 2 achieved complete and 4 partial response. One patient died early and was not evaluable for response. Most common side effects were stomatitis, fatigue, and oral pain. No life-threatening or grade 4 toxicity was observed. The median time to progression within the target volume was 6.6 months, and the median overall survival time 13.3 months after BNCT. One patient with complete response is alive and disease-free with a functioning larynx 60 months after BNCT. Conclusions: Boron neutron capture therapy given after prior external beam radiation therapy is well tolerated. Most patients responded to BNCT, but long-term survival with larynx preservation was infrequent owing to cancer progression. Selected patients with recurrent laryngeal cancer may benefit from BNCT.

  12. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    To avoid high tooling costs in product development, a rapid prototyping process chain has been established that enables rapid manufacturing of ceramic microcomponents from functional models to small lot series within a short time. This process chain combines the fast and inexpensive supply of master models by rapid ...

  13. Detection Optimization for Prompt Gamma Ray Imaging during Boron Neutron Capture Therapy (BNCT): A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moo Sub; Yoon, Do Kun; Suh, Tae Suk [Catholic University of Korea, Seoul (Korea, Republic of)

    2016-05-15

    The purpose of this study was the statistical analysis of the prompt gamma ray peak induced by the boron neutron capture therapy (BNCT) from spectra using Monte Carlo simulation. For the simulation, the information of the sixteen detector materials was used to simulate spectra by the neutron capture reaction. The results in this study are the first reported data regarding the peak discrimination of 478 keV energy prompt gamma ray using the many cases. (sixteen detector materials). The reliable data based on the Monte Carlo method and statistical method with the identical conditions was deducted. Our results are important data in the BNCT study for the peak detection within actual experiments.

  14. First Measurement of \\theta_13 from Delayed Neutron Capture on Hydrogen in the Double Chooz Experiment

    CERN Document Server

    Abe, Y; Anjos, J C dos; Barriere, J C; Bergevin, M; Bernstein, A; Bezerra, T J C; Bezrukhov, L; Blucher, E; Bowden, N S; Buck, C; Busenitz, J; Cabrera, A; Caden, E; Camilleri, L; Carr, R; Cerrada, M; Chang, P -J; Chimenti, P; Classen, T; Collin, A P; Conover, E; Conrad, J M; Crespo-Anadón, J I; Crum, K; Cucoanes, A; Damon, E; Dawson, J V; Dazeley, S; Dietrich, D; Djurcic, Z; Dracos, M; Durand, V; Ebert, J; Efremenko, Y; Elnimr, M; Erickson, A; Etenko, A; Fallot, M; Fechner, M; von Feilitzsch, F; Felde, J; Fernandes, S M; Fischer, V; Franco, D; Franke, A J; Franke, M; Furuta, H; Gama, R; Gil-Botella, I; Giot, L; Göger-Neff, M; Gonzalez, L F G; Goodenough, L; Goodman, M C; Goon, J TM; Greiner, D; Haag, N; Habib, S; Hagner, C; Hara, T; Hartmann, F X; Haser, J; Hatzikoutelis, A; Hayakawa, T; Hofmann, M; Horton-Smith, G A; Hourlier, A; Ishitsuka, M; Jochum, J; Jollet, C; Jones, C L; Kaether, F; Kalousis, L N; Kamyshkov, Y; Kaplan, D M; Kawasaki, T; Keefer, G; Kemp, E; de Kerret, H; Konno, T; Kryn, D; Kuze, M; Lachenmaier, T; Lane, C E; Langbrandtner, C; Lasserre, T; Letourneau, A; Lhuillier, D; Lima, H P; Lindner, M; López-Castaño, J M; LoSecco, J M; Lubsandorzhiev, B K; Lucht, S; McKee, D; Maeda, J; Maesano, C N; Mariani, C; Maricic, J; Martino, J; Matsubara, T; Mention, G; Meregaglia, A; Meyer, M; Miletic, T; Milincic, R; Miyata, H; Mueller, Th A; Nagasaka, Y; Nakajima, K; Novella, P; Obolensky, M; Oberauer, L; Onillon, A; Osborn, A; Ostrovskiy, I; Palomares, C; Pepe, I M; Perasso, S; Perrin, P; Pfahler, P; Porta, A; Potzel, W; Pronost, G; Reichenbacher, J; Reinhold, B; Remoto, A; Röhling, M; Roncin, R; Roth, S; Rybolt, B; Sakamoto, Y; Santorelli, R; Sato, F; Schönert, S; Schoppmann, S; Schwetz, T; Shaevitz, M H; Shimojima, S; Shrestha, D; Sida, J-L; Sinev, V; Skorokhvatov, M; Smith, E; Spitz, J; Stahl, A; Stancu, I; Stokes, L F F; Strait, M; Stüken, A; Suekane, F; Sukhotin, S; Sumiyoshi, T; Sun, Y; Svoboda, R; Terao, K; Tonazzo, A; Toups, M; Thi, H H Trinh; Valdiviesso, G; Veyssiere, C; Wagner, S; Watanabe, H; White, B; Wiebusch, C; Winslow, L; Worcester, M; Wurm, M; Yermia, F; Zimmer, V

    2013-01-01

    The Double Chooz experiment has determined the value of the neutrino oscillation parameter $\\theta_{13}$ from an analysis of inverse beta decay interactions with neutron capture on hydrogen. This analysis uses a three times larger fiducial volume than the standard Double Chooz assessment, which is restricted to a region doped with gadolinium (Gd), yielding an exposure of 113.1 GW-ton-years. The data sample used in this analysis is distinct from that of the Gd analysis, and the systematic uncertainties are also largely independent, with some exceptions, such as the reactor neutrino flux prediction. A combined rate- and energy-dependent fit finds $\\sin^2 2\\theta_{13}=0.097\\pm 0.034(stat.) \\pm 0.034 (syst.)$, excluding the no-oscillation hypothesis at 2.0 \\sigma. This result is consistent with previous measurements of $\\sin^2 2\\theta_{13}$.

  15. Neutron capture surrogate reaction on 75As in inverse kinematics using (d,pγ

    Directory of Open Access Journals (Sweden)

    Smith M.S.

    2010-03-01

    Full Text Available The 75As(d,pγ reaction in inverse kinematics as a surrogate for neutron capture was performed at Oak Ridge National Laboratory using a deuterated plastic target. The intensity of the 165 keV γ-ray from 76As in coincidence with ejected protons, from exciting 76As above the neutron separation energy populating a compound state, was measured. A tight geometry of four segmented germanium clover γ-ray detectors together with eight ORRUBA-type silicon-strip charged-particle detectors was used to optimize geometric acceptance. The preliminary analysis of the 75As experiment, and the eïňČcacy and future plans of the (d,pγ surrogate campaign in inverse kinematics, are discussed.

  16. Boron neutron capture therapy of ocular melanoma and intracranial glioma using p-boronophenylalanine

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Greenberg, D.; Micca, P.L.; Joel, D.D.; Saraf, S. (Brookhaven National Lab., Upton, NY (USA)); Packer, S. (North Shore Univ. Hospital, Manhasset, NY (USA). Div. of Ophthalmology)

    1990-01-01

    During conventional radiotherapy, the dose that can be delivered to the tumor is limited by the tolerance of the surrounding normal tissue within the treatment volume. Boron Neutron Capture Therapy (BNCT) represents a promising modality for selective tumor irradiation. The key to effective BNCT is selective localization of {sup 10}B in the tumor. We have shown that the synthetic amino acid p-boronophenylalanine (BPA) will selectively deliver boron to melanomas and other tumors such as gliosarcomas and mammary carcinomas. Systemically delivered BPA may have general utility as a boron delivery agent for BNCT. In this paper, BNCT with BPA is used in treatment of experimentally induced gliosarcoma in rats and nonpigmented melanoma in rabbits. The tissue distribution of boron is described, as is response to the BNCT. 6 refs., 4 figs., 1 tab.

  17. Boron analysis for neutron capture therapy using particle-induced gamma-ray emission.

    Science.gov (United States)

    Nakai, Kei; Yamamoto, Yohei; Okamoto, Emiko; Yamamoto, Tetsuya; Yoshida, Fumiyo; Matsumura, Akira; Yamada, Naoto; Kitamura, Akane; Koka, Masashi; Satoh, Takahiro

    2015-12-01

    The neutron source of BNCT is currently changing from reactor to accelerator, but peripheral facilities such as a dose-planning system and blood boron analysis have still not been established. To evaluate the potential application of particle-induced gamma-ray emission (PIGE) for boron measurement in clinical boron neutron capture therapy, boronophenylalanine dissolved within a cell culture medium was measured using PIGE. PIGE detected 18 μgB/mL f-BPA in the culture medium, and all measurements of any given sample were taken within 20 min. Two hours of f-BPA exposure was required to create a boron distribution image. However, even though boron remained in the cells, the boron on the cell membrane could not be distinguished from the boron in the cytoplasm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Independent Measurement of Theta13 via Neutron Capture on Hydrogen at Daya Bay

    CERN Document Server

    An, F P; Band, H R; Beriguete, W; Bishai, M; Blyth, S; Butorov, I; Cao, G F; Cao, J; Chan, Y L; Chang, J F; Chang, L C; Chang, Y; Chasman, C; Chen, H; Chen, Q Y; Chen, S M; Chen, X; Chen, Y X; Chen, Y; Cheng, Y P; Cherwinka, J J; Chu, M C; Cummings, J P; de Arcos, J; Deng, Z Y; Ding, Y Y; Diwan, M V; Draeger, E; Du, X F; Dwyer, D A; Edwards, W R; Ely, S R; Fu, J Y; Ge, L Q; Gill, R; Gonchar, M; Gong, G H; Gong, H; Gornushkin, Y A; Gu, W Q; Guan, M Y; Guo, X H; Hackenburg, R W; Han, G H; Hans, S; He, M; Heeger, K M; Heng, Y K; Hinrichs, P; Hor, Y K; Hsiung, Y B; Hu, B Z; Hu, L M; Hu, L J; Hu, T; Hu, W; Huang, E; Huang, H; Huang, X T; Huber, P; Hussain, G; Isvan, Z; Jaffe, D E; Jaffke, P; Jen, K L; Jetter, S; Ji, X P; Ji, X L; Jiang, H J; Jiao, J B; Johnson, R A; Kang, L; Kettell, S H; Kramer, M; Kwan, K K; Kwok, M W; Kwok, T; Lai, W C; Lau, K; Lebanowski, L; Lee, J; Lei, R T; Leitner, R; Leung, A; Leung, J K C; Lewis, C A; Li, D J; Li, F; Li, G S; Li, Q J; Li, W D; Li, X N; Li, X Q; Li, Y F; Li, Z B; Liang, H; Lin, C J; Lin, G L; Lin, P Y; Lin, S K; Lin, Y C; Ling, J J; Link, J M; Littenberg, L; Littlejohn, B R; Liu, D W; Liu, H; Liu, J L; Liu, J C; Liu, S S; Liu, Y B; Lu, C; Lu, H Q; Luk, K -B; Ma, Q M; Ma, X Y; Ma, X B; Ma, Y Q; McDonald, K T; McFarlane, M C; McKeown, R D; Meng, Y; Mitchell, I; Kebwaro, J Monari; Nakajima, Y; Napolitano, J; Naumov, D; Naumova, E; Nemchenok, I; Ngai, H Y; Ning, Z; Ochoa-Ricoux, J P; Olshevski, A; Patton, S; Pec, V; Peng, J C; Piilonen, L E; Pinsky, L; Pun, C S J; Qi, F Z; Qi, M; Qian, X; Raper, N; Ren, B; Ren, J; Rosero, R; Roskovec, B; Ruan, X C; Shao, B B; Steiner, H; Sun, G X; Sun, J L; Y,; Tam, H; Tang, X; Themann, H; Tsang, K V; Tsang, R H M; Tull, C E; Tung, Y C; Viren, B; Vorobel, V; Wang, C H; Wang, L S; Wang, L Y; Wang, M; Wang, N Y; Wang, R G; Wang, W; Wang, W W; Wang, X; Wang, Y F; Wang, Z; Wang, Z M; Webber, D M; Wei, H Y; Wei, Y D; Wen, L J; Whisnant, K; White, C G; Whitehead, L; Wise, T; Wong, H L H; Wong, S C F; Worcester, E; Wu, Q; Xia, D M; Xia, J K; Xia, X; Xing, Z Z; Xu, J Y; Xu, J L; Xu, J; Xu, Y; Xue, T; Yan, J; Yang, C C; Yang, L; Yang, M S; Yang, M T; Ye, M; Yeh, M; Yeh, Y S; Young, B L; Yu, G Y; Yu, J Y; Yu, Z Y; Zang, S L; Zeng, B; Zhan, L; Zhang, C; Zhang, F H; Zhang, J W; Zhang, Q M; Zhang, Q; Zhang, S H; Zhang, Y C; Zhang, Y M; Zhang, Y H; Zhang, Y X; Zhang, Z J; Zhang, Z Y; Zhang, Z P; Zhao, J; Zhao, Q W; Zhao, Y; Zhao, Y B; Zheng, L; Zhong, W L; Zhou, L; Zhou, Z Y; Zhuang, H L; Zou, J H

    2014-01-01

    A new measurement of the $\\theta_{13}$ mixing angle has been obtained at the Daya Bay Reactor Neutrino Experiment via the detection of inverse beta decays tagged by neutron capture on hydrogen. The antineutrino events for hydrogen capture are distinct from those for gadolinium capture with largely different systematic uncertainties, allowing a determination independent of the gadolinium-capture result and an improvement on the precision of $\\theta_{13}$ measurement. With a 217-day antineutrino data set obtained with six antineutrino detectors and from six 2.9 GW$_{th}$ reactors, the rate deficit observed at the far hall is interpreted as $\\sin^22\\theta_{13}=0.083\\pm0.018$ in the three-flavor oscillation model. When combined with the gadolinium-capture result from Daya Bay, we obtain $\\sin^22\\theta_{13}=0.089\\pm0.008$ as the final result for the six-antineutrino-detector configuration of the Daya Bay experiment.

  19. Neutron-beam-shaping assembly for boron neutron-capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zaidi, L. [University of Science and Technology Houari Boumediene (Algeria); Kashaeva, E. A. [Zababakhin All-Russian Scientific Research Institute for Technical Physics (VNIITF) (Russian Federation); Lezhnin, S. I. [Russian Academy of Sciences, Novosibirsk Branch, Nuclear Safety Institute (Russian Federation); Malyshkin, G. N.; Samarin, S. I. [Zababakhin All-Russian Scientific Research Institute for Technical Physics (VNIITF) (Russian Federation); Sycheva, T. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Taskaev, S. Yu., E-mail: taskaev@inp.nsk.su [Novosibirsk State University (Russian Federation); Frolov, S. A. [Zababakhin All-Russian Scientific Research Institute for Technical Physics (VNIITF) (Russian Federation)

    2017-01-15

    A neutron-beam-shaping assembly consisting of a moderator, a reflector, and an absorber is used to form a therapeutic neutron beam for the boron neutron-capture therapy of malignant tumors at accelerator neutron sources. A new structure of the moderator and reflector is proposed in the present article, and the results of a numerical simulation of the neutron spectrum and of the absorbed dose in a modified Snyder head phantom are presented. The application of a composite moderator and of a composite reflector and the implementation of neutron production at the proton energy of 2.3MeV are shown to permit obtaining a high-quality therapeutic neutron beam.

  20. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  1. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  2. Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Directory of Open Access Journals (Sweden)

    Žugec P.

    2015-01-01

    Full Text Available The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 – 100 keV, and their astrophysical implications were investigated.

  3. Dopper shift attenuation lifetime measurement in 54Cr following thermal neutron capture

    Science.gov (United States)

    Lieb, K. P.; Börner, H. G.; Dewey, M. S.; Jolie, J.; Robinson, S. J.; Ulbig, S.; Winter, Ch.

    1988-12-01

    The double crystal spectrometer GAMS4 in combination with the ILL high flux reactor has been used to determine the lifetimes of the 2620 KeV 2 +2, 3074 KeV 2 +3 and 3720 KeV (1, 2) + states in 54Cr. The initial recoil energy of about 0.5 KeV imparted by the primary γ-radiation after thermal neutron capture in 53Cr produces Doppler broadened line shapes of the secondary transitions. The large 2 +3→2 +1 M1 strength of B(M1)=0.39(6) μ2N suggests the 2 +3 state to be mixed symmetry character within the interacting boson model IBM-2.

  4. Experimental neutron capture data of 58Ni from the CERN n_TOF facility

    Science.gov (United States)

    Žugec, P.; Barbagallo, M.; Colonna, N.; Bosnar, D.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Duran, I.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Heinitz, S.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Krtička, M.; Kroll, J.; Langer, C.; Lederer, C.; Leeb, H.; Leong, L. S.; Lo Meo, S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riegov, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T.

    2015-05-01

    The neutron capture cross section of 58Ni was measured at the neutron time of flight facility n_TOF at CERN, from 27 meV to 400 keV neutron energy. Special care has been taken to identify all the possible sources of background, with the so-called neutron background obtained for the first time using high-precision GEANT4 simulations. The energy range up to 122 keV was treated as the resolved resonance region, where 51 resonances were identified and analyzed by a multilevel R-matrix code SAMMY. Above 122 keV the code SESH was used in analyzing the unresolved resonance region of the capture yield. Maxwellian averaged cross sections were calculated in the temperature range of kT = 5 - 100 keV, and their astrophysical implications were investigated.

  5. The {sup 234}U neutron capture cross section measurement at the n TOF facility

    Energy Technology Data Exchange (ETDEWEB)

    Lampoudis, C.; Abbondanno, U.; Aerts, G.; A lvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, O.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    The neutron capture cross-section of {sup 234}U has been measured for energies from thermal up to the keV region in the neutron time-of-flight facility n-TOF, based on a spallation source located at CERN. A 4{pi} BaF{sub 2} array composed of 40 crystals, placed at a distance of 184.9 m from the neutron source, was employed as a total absorption calorimeter (TAC) for detection of the prompt {gamma}-ray cascade from capture events in the sample. This text describes the experimental setup, all necessary steps followed during the data analysis procedure. Results are presented in the form of R-matrix resonance parameters from fits with the SAMMY code and compared to the evaluated data of Endf in the relevant energy region, indicating the good performance of the n-TOF facility and the TAC. (authors)

  6. Improved Neutron Capture Cross Section Measurements with the n_TOF Total Absorption Calorimeter

    CERN Document Server

    Mendoza, E; Perkowski, J; Andriamonje, S; Carrapico, C; Moinul, M; Vannini, G; Quesada, J M; Harrisopulos, S; Milazzo, P M; Berthier, B; Lozano, M; Krticka, M; Domingo-Pardo, C; Nolte, R; Chiaveri, E; Saarmento, H; Jericha, E; Ferrari, A; Massimi, C; Giubrone, G; Avrigeanu, V; Martinez, T; Guerrero, C; Andrzejewski, J; Karadimos, D; Mengoni, A; Ganesan, S; Vlachoudis, V; Becares, V; Cortes, G; Variale, V; Losito, H; Calvino, F; Kappeler, F; Gunsing, F; Gramegna, F; Colonna, N; Marrone, S; Pavlik, A; Berthoumieux, E; Paradela, C; Mastinu, P F; Vaz, P; Tassan-Got, L; Kadi, Y; Tarrio, D; Cano-Ott, D; Brugger, M; Wallner, A; Audouin, L; Fernandez-Ordonez, M; Becvar, F; Goncalves, I F; Cerutti, F; Ventura, A; Mosconi, M; Tagliente, G; Duran, I; Casado, A; Ioannides, K; Weiss, C; Mirea, M; Gomez-Hornillos, M B; Vlastou, R; Calviani, M; Lederer, C; Gonzalez-Romero, E; Marganiec, J; Vidriales, J J; Lebbos, E; Leeb, H; Heil, M; Dillmann, I; Tain, J L; Belloni, F

    2011-01-01

    The n\\_TOF collaboration operates a Total Absorption Calorimeter (TAC) {[}1] for measuring neutron capture cross-sections of low-mass and/or radioactive samples. The results obtained with the TAC have led to a substantial improvement of the capture cross sections of (237)Np and (240)Pu {[}2]. The experience acquired during the first measurements has allowed us to optimize the performance of the TAC and to improve the capture signal to background ratio, thus opening the way to more complex and demanding measurements on rare radioactive materials. The new design has been reached by a series of detailed Monte Carlo simulations of complete experiments and dedicated test measurements. The new capture setup will be presented and the main achievements highlighted.

  7. The Boron Neutron Capture Therapy (BNCT) Project at the TRIGA Reactor in Mainz, Germany

    Energy Technology Data Exchange (ETDEWEB)

    Hampel, G.; Grunewald, C.; Schutz, C.; Schmitz, T.; Kratz, J.V. [Nuclear Chemistry, University of Mainz, D-55099 Mainz (Germany); Brochhausen, C.; Kirkpatrick, J. [Department of Pathology, University of Mainz, D-55099 Mainz (Germany); Bortulussi, S.; Altieri, S. [Department of Nuclear and Theoretical Physics University of Pavia, Pavia (Italy); National Institute of Nuclear Physics (INFN) Pavia Section, Pavia (Italy); Kudejova, P. [Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, D-85748 Garching (Germany); Appelman, K.; Moss, R. [Joint Research Centre (JRC) of the European Commission, NL-1755 ZG Petten (Netherlands); Bassler, N. [University of Aarhus, Norde Ringade, DK-8000, Aarhus C (Denmark); Blaickner, M.; Ziegner, M. [Molecular Medicine, Health and Environment Department, AIT Austrian Institute of Technology GmbH (Austria); Sharpe, P.; Palmans, H. [National Physical Laboratory, Teddington TW11 0LW, Middlesex (United Kingdom); Otto, G. [Department of Hepatobiliary, Pancreatic and Transplantation Surgery, University of Mainz, D-55099 Mainz (Germany)

    2011-07-01

    The thermal column of the TRIGA reactor in Mainz is being used very effectively for medical and biological applications. The BNCT (boron neutron capture therapy) project at the University of Mainz is focussed on the treatment of liver tumours, similar to the work performed in Pavia (Italy) a few years ago, where patients with liver metastases were treated by combining BNCT with auto-transplantation of the organ. Here, in Mainz, a preclinical trial has been started on patients suffering from liver metastases of colorectal carcinoma. In vitro experiments and the first animal tests have also been initiated to investigate radiobiological effects of radiation generated during BNCT. For both experiments and the treatment, a reliable dosimetry system is necessary. From work elsewhere, the use of alanine detectors appears to be an appropriate dosimetry technique. (author)

  8. Boron Neutron Capture Therapy (BNCT) Dose Calculation using Geometrical Factors Spherical Interface for Glioblastoma Multiforme

    Science.gov (United States)

    Zasneda, Sabriani; Widita, Rena

    2010-06-01

    Boron Neutron Capture Therapy (BNCT) is a cancer therapy by utilizing thermal neutron to produce alpha particles and lithium nuclei. The superiority of BNCT is that the radiation effects could be limited only for the tumor cells. BNCT radiation dose depends on the distribution of boron in the tumor. Absorbed dose to the cells from the reaction 10B (n, α) 7Li was calculated near interface medium containing boron and boron-free region. The method considers the contribution of the alpha particle and recoiled lithium particle to the absorbed dose and the variation of Linear Energy Transfer (LET) charged particles energy. Geometrical factor data of boron distribution for the spherical surface is used to calculate the energy absorbed in the tumor cells, brain and scalp for case Glioblastoma Multiforme. The result shows that the optimal dose in tumor is obtained for boron concentrations of 22.1 mg 10B/g blood.

  9. Study on High Speed Lithium Jet For Neutron Source of Boron Neutron Capture Therapy (BNCT)

    Science.gov (United States)

    Takahashi, Minoru; Kobayashi, Tooru; Zhang, Mingguang; Mák, Michael; Štefanica, Jirí; Dostál, Václav; Zhao, Wei

    The feasibility study of a liquid lithium type proton beam target was performed for the neutron source of the boron neutron capture therapy (BNCT). As the candidates of the liquid lithium target, a thin sheet jet and a thin film flow on a concave wall were chosen, and a lithium flow experiment was conducted to investigate the hydrodynamic stability of the targets. The surfaces of the jets and film flows with a thickness of 0.5 mm and a width of 50 mm were observed by means of photography. It has been found that a stable sheet jet and a stable film flow on a concave wall can be formed up to certain velocities by using a straight nozzle and a curved nozzle with the concave wall, respectively.

  10. Conceptual Design of Target Assembly System for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kye, Y. U.; Shin, S. G. [POSTECH, Pohang (Korea, Republic of); Namkung, W.; Cho, M. H. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Bae, Y. S. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-05-15

    There are many type of accelerator based BNCT. Cyclotron based proton beam is high energy. But it has weakness about low current, severe target damage, and radioactivity problem. This research would be treat by LINAC based proton beam because LINAC based proton beam has high current and low energy. These point are possible to reduce treatment time. Therefore, patients don't have to irradiate at normal cell by neutron beam. Monte Carlo and thermal hydraulics simulation were conducted as neutron flux after moderator assembly, temperature distribution of beryllium target. General consensus is that an epithermal neutron fluence of about 1 x 10{sup 13} /cm{sup 2} is required for successful Neutron Capture Therapy (NCT). If epithermal neutron flux is 1 x 10{sup 10} /cm{sup 2}· sec, the neutron irradiation time would be necessary about 3 hours for therapy.

  11. Single step synthesis of nanostructured boron nitride for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Bikramjeet; Singh, Paviter; Kumar, Akshay, E-mail: akshaykumar.tiet@gmail.com [Advanced Functional Materials lab, Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib-140406 Punjab (India); Kumar, Manjeet [Department of Materials Engineering, Defense Institute of Advanced Technology (DU), Pune 411025 (India); Thakur, Anup [Material Science Research Lab, Department of basic and Applied Sciences, Punjabi University Patiala 147002 (India)

    2015-05-15

    Nanostructured Boron Nitride (BN) has been successfully synthesized by carbo-thermic reduction of Boric Acid (H{sub 3}BO{sub 3}). This method is a relatively low temperature synthesis route and it can be used for large scale production of nanostructured BN. The synthesized nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and differential thermal analyzer (DTA). XRD analysis confirmed the formation of single phase nanostructured Boron Nitride. SEM analysis showed that the particles are spherical in shape. DTA analysis showed that the phase is stable upto 900 °C and the material can be used for high temperature applications as well boron neutron capture therapy (BNCT)

  12. Boron neutron capture therapy (BNCT) in Finland: technological and physical prospects after 20 years of experiences.

    Science.gov (United States)

    Savolainen, Sauli; Kortesniemi, Mika; Timonen, Marjut; Reijonen, Vappu; Kuusela, Linda; Uusi-Simola, Jouni; Salli, Eero; Koivunoro, Hanna; Seppälä, Tiina; Lönnroth, Nadja; Välimäki, Petteri; Hyvönen, Heini; Kotiluoto, Petri; Serén, Tom; Kuronen, Antti; Heikkinen, Sami; Kosunen, Antti; Auterinen, Iiro

    2013-05-01

    Boron Neutron Capture Therapy (BNCT) is a binary radiotherapy method developed to treat patients with certain malignant tumours. To date, over 300 treatments have been carried out at the Finnish BNCT facility in various on-going and past clinical trials. In this technical review, we discuss our research work in the field of medical physics to form the groundwork for the Finnish BNCT patient treatments, as well as the possibilities to further develop and optimize the method in the future. Accordingly, the following aspects are described: neutron sources, beam dosimetry, treatment planning, boron imaging and determination, and finally the possibilities to detect the efficacy and effects of BNCT on patients. Copyright © 2012 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  13. Geant4 beam model for boron neutron capture therapy: investigation of neutron dose components.

    Science.gov (United States)

    Moghaddasi, Leyla; Bezak, Eva

    2018-01-23

    Boron neutron capture therapy (BNCT) is a biochemically-targeted type of radiotherapy, selectively delivering localized dose to tumour cells diffused in normal tissue, while minimizing normal tissue toxicity. BNCT is based on thermal neutron capture by stable [Formula: see text]B nuclei resulting in emission of short-ranged alpha particles and recoil [Formula: see text]Li nuclei. The purpose of the current work was to develop and validate a Monte Carlo BNCT beam model and to investigate contribution of individual dose components resulting of neutron interactions. A neutron beam model was developed in Geant4 and validated against published data. The neutron beam spectrum, obtained from literature for a cyclotron-produced beam, was irradiated to a water phantom with boron concentrations of 100 μg/g. The calculated percentage depth dose curves (PDDs) in the phantom were compared with published data to validate the beam model in terms of total and boron depth dose deposition. Subsequently, two sensitivity studies were conducted to quantify the impact of: (1) neutron beam spectrum, and (2) various boron concentrations on the boron dose component. Good agreement was achieved between the calculated and measured neutron beam PDDs (within 1%). The resulting boron depth dose deposition was also in agreement with measured data. The sensitivity study of several boron concentrations showed that the calculated boron dose gradually converged beyond 100 μg/g boron concentration. This results suggest that 100μg/g tumour boron concentration may be optimal and above this value limited increase in boron dose is expected for a given neutron flux.

  14. Synthesis and evaluation of boron compounds for neutron capture therapy of malignant brain tumors. Technical progress report No. 1, May 1, 1990--January 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Soloway, A.H.; Barth, R.F.

    1990-12-31

    Boron neutron capture therapy offers the potentiality for treating brain tumors currently resistant to treatment. The success of this form of therapy is directly dependent upon the delivery of sufficient numbers of thermal-neutrons to tumor cells which possess high concentrations of B-10. The objective of this project is to develop chemical methodology to synthesize boron-containing compounds with the potential for becoming incorporated into rapidly-dividing malignant brain tumor cells and excluded from normal components of the brain and surrounding tissues, to develope biological methods for assessing the potential of the compound by use of cell culture or intratumoral injection, to develop analytical methodology for measuring boron in cells and tissue using direct current plasma atomic emission spectroscopy (DCP-AES) and alpha track autoradiography, to develop biochemical and HPLC procedures for evaluating compound uptake and tissue half-life, and to develop procedures required to assess both in vitro and vivo efficacy of BNCT with selected compounds.

  15. Synthesis and biological evaluation of new boron-containing chlorin derivatives as agents for both photodynamic therapy and boron neutron capture therapy of cancer.

    Science.gov (United States)

    Asano, Ryuji; Nagami, Amon; Fukumoto, Yuki; Miura, Kaori; Yazama, Futoshi; Ito, Hideyuki; Sakata, Isao; Tai, Akihiro

    2014-03-01

    New boron-containing chlorin derivatives 9 and 13 as agents for both photodynamic therapy (PDT) and boron neutron capture therapy (BNCT) of cancer were synthesized from photoprotoporphyrin IX dimethyl ester (2) and L-4-boronophenylalanine-related compounds. The in vivo biodistribution and clearance of 9 and 13 were investigated in tumor-bearing mice. The time to maximum accumulation of compound 13 in tumor tissue was one-fourth of that of compound 9, and compound 13 showed rapid clearance from normal tissues within 24h after injection. The in vivo therapeutic efficacy of PDT using 13 was evaluated by measuring tumor growth rates in tumor-bearing mice with 660 nm light-emitting diode irradiation at 3h after injection of 13. Tumor growth was significantly inhibited by PDT using 13. These results suggested that 13 might be a good candidate for both PDT and BNCT of cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. NIFTI and DISCOS: New concepts for a compact accelerator neutron source for boron neutron capture therapy applications

    Energy Technology Data Exchange (ETDEWEB)

    Powell, J.; Ludewig, H.; Todosow, M.; Reich, M. [Brookhaven National Lab., Upton, NY (United States). Dept. of Advanced Technology

    1995-06-01

    Two new concepts, NIFTI and DISCOS, are described. These concepts enable the efficient production of epithermal neutrons for BNCT (Boron Neutron Capture Therapy) medical treatment, utilizing a low current, low energy proton beam impacting on a lithium target. The NIFTI concept uses fluoride compounds, such as lead or beryllium fluoride, to efficiently degrade high energy neutrons from the lithium target to the lower energies required for BNCT. The fluoride compounds are in turn encased in an iron layer that strongly impedes the transmission of neutrons with energies above 24 KeV. Lower energy neutrons readily pass through this iron filter, which has a deep window in its scattering cross section at 24 KeV. The DISCOS concept uses a rapidly rotating, high g disc to create a series of thin ({approximately} 1 micron thickness) liquid lithium targets in the form of continuous films or sheets of discrete droplets--through which the proton beam passes. The average energy lost by a proton as it passes through a single target is small, approximately 10 KeV. Between the targets, the proton beam is re-accelerated by an applied DC electric field. The DISCOS approach enables the accelerator--target facility to operate with a beam energy only slightly above the threshold value for neutron production--resulting in an output beam of low-energy epithermal neutrons--while achieving a high yield of neutrons per milliamp of proton beam current. Parametric trade studies of the NIFTI and DISCOS concepts are described. These include analyses of a broad range of NIFTI designs using the Monte carlo MCNP neutronics code, as well as mechanical and thermal-hydraulic analyses of various DISCOS designs.

  17. Synovectomy by neutron capture in boron; Sinovectomia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Vega C, H.R. [Unidades Academicas de Estudios Nucleares, Ingenieria Electrica y Matematicas, Universidad Autonoma de Zacatecas, A.P. 336, C.P. 98000 Zacatecas (Mexico)

    2002-07-01

    The rheumatoid arthritis is an illness which affect approximately at 3% of the World population. This illness is characterized by the inflammation of the joints which reduces the quality of life and the productivity of the patients. Since, it is an autoimmune illness, the inflammation is due to the overproduction of synovial liquid by the increase in the quantity of synoviocytes. The rheumatoid arthritis does not have a definitive recovery and the patients have three options of treatment: the use of drugs, the surgery and the radio synovectomy. The synovectomy by neutron capture in Boron is a novel proposal of treatment of the rheumatoid arthritis that consists in using a charged compound with Boron 10 that is preferently incorporated in the synoviocytes and to a less extent in the rest of surrounding tissues of the joint. Then, the joint is exposed to a thermal neutron field that induces the reaction (n, {alpha}) in the {sup 10} B. the products of this reaction place their energy inside synoviocytes producing their reduction and therefore the reduction of the joint inflammation. Since it is a novel procedure, the synovectomy by neutron capture in boron has two problems: the source design and the design of the adequate drug. In this work it has been realized a Monte Carlo study with the purpose to design a moderating medium that with a {sup 239} Pu Be source in its center, produces a thermal neutron field. With the produced neutron spectra, the neutrons spectra and neutron doses were calculated in different sites inside a model of knee joint. In Monte Carlo studies it is necessary to know the elemental composition of all the joint components, for the case of synovia and the synovial liquid this information does not exist in such way that it is supposed that its composition is equal than the water. In this work also it has been calculated the kerma factors by neutrons of synovia and the synovial liquid supposing that their elemental composition are similar to the

  18. Atomic Data for Neutron-capture Elements I. Photoionization and Recombination Properties of Low-charge Selenium Ions

    Science.gov (United States)

    Sterling, N. C.; Witthoeft, Michael

    2011-01-01

    We present multi-configuration Breit-Pauli AUTOSTRUCTURE calculations of distorted-wave photoionization (PI) cross sections. and total and partial final-state resolved radiative recombination (RR) and dielectronic recombination (DR) rate coefficients for the first six ions of the trans-iron element Se. These calculations were motivated by the recent detection of Se emission lines in a large number of planetary nebulae. Se is a potentially useful tracer of neutron-capture nucleosynthesis. but accurate determinations of its abundance in photoionized nebulae have been hindered by the lack of atomic data governing its ionization balance. Our calculations were carried out in intermediate coupling with semi re1ativistic radial wavefunctions. PI and recombination data were determined for levels within the ground configuration of each ion, and experimental PI cross-section measurements were used to benchmark our results. For DR, we allowed (Delta)n = 0 core excitations, which are important at photoionized plasma temperatures. We find that DR is the dominant recombination process for each of these Se ions at temperatures representative of photoionized nebulae (approx.10(exp 4) K). In order to estimate the uncertainties of these data, we compared results from three different configuration-interaction expansions for each ion, and also tested the sensitivity of the results to the radial scaling factors in the structure calculations. We find that the internal uncertainties are typically 30-50% for the direct PI cross sections and approx.10% for the computed RR rate coefficients, while those for low-temperature DR can be considerably larger (from 15-30% up to two orders of magnitude) due to the unknown energies of near-threshold autoionization resonances. These data are available at the CDS, and fitting coefficients to the total RR and DR rate coefficients are presented. The results are suitable for incorporation into photoionization codes used to numerically simulate

  19. Boron neutron capture therapy (BNCT) for the treatment of liver metastases: biodistribution studies of boron compounds in an experimental model.

    Science.gov (United States)

    Garabalino, Marcela A; Monti Hughes, Andrea; Molinari, Ana J; Heber, Elisa M; Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Nievas, Susana; Nigg, David W; Aromando, Romina F; Itoiz, Maria E; Trivillin, Verónica A; Schwint, Amanda E

    2011-03-01

    We previously demonstrated the therapeutic efficacy of different boron neutron capture therapy (BNCT) protocols in an experimental model of oral cancer. BNCT is based on the selective accumulation of (10)B carriers in a tumor followed by neutron irradiation. Within the context of exploring the potential therapeutic efficacy of BNCT for the treatment of liver metastases, the aim of the present study was to perform boron biodistribution studies in an experimental model of liver metastases in rats. Different boron compounds and administration conditions were assayed to determine which administration protocols would potentially be therapeutically useful in in vivo BNCT studies at the RA-3 nuclear reactor. A total of 70 BDIX rats were inoculated in the liver with syngeneic colon cancer cells DHD/K12/TRb to induce the development of subcapsular tumor nodules. Fourteen days post-inoculation, the animals were used for biodistribution studies. We evaluated a total of 11 administration protocols for the boron compounds boronophenylalanine (BPA) and GB-10 (Na(2)(10)B(10)H(10)), alone or combined at different dose levels and employing different administration routes. Tumor, normal tissue, and blood samples were processed for boron measurement by atomic emission spectroscopy. Six protocols proved potentially useful for BNCT studies in terms of absolute boron concentration in tumor and preferential uptake of boron by tumor tissue. Boron concentration values in tumor and normal tissues in the liver metastases model show it would be feasible to reach therapeutic BNCT doses in tumor without exceeding radiotolerance in normal tissue at the thermal neutron facility at RA-3. © Springer-Verlag 2010

  20. Rapid gas hydrate formation process

    Science.gov (United States)

    Brown, Thomas D.; Taylor, Charles E.; Unione, Alfred J.

    2013-01-15

    The disclosure provides a method and apparatus for forming gas hydrates from a two-phase mixture of water and a hydrate forming gas. The two-phase mixture is created in a mixing zone which may be wholly included within the body of a spray nozzle. The two-phase mixture is subsequently sprayed into a reaction zone, where the reaction zone is under pressure and temperature conditions suitable for formation of the gas hydrate. The reaction zone pressure is less than the mixing zone pressure so that expansion of the hydrate-forming gas in the mixture provides a degree of cooling by the Joule-Thompson effect and provides more intimate mixing between the water and the hydrate-forming gas. The result of the process is the formation of gas hydrates continuously and with a greatly reduced induction time. An apparatus for conduct of the method is further provided.

  1. Perspectives of boron-neutron capture therapy of malignant brain tumors

    Science.gov (United States)

    Kanygin, V. V.; Kichigin, A. I.; Krivoshapkin, A. L.; Taskaev, S. Yu.

    2017-09-01

    Boron neutron capture therapy (BNCT) is characterized by a selective effect directly on the cells of malignant tumors. The carried out research showed the perspective of the given kind of therapy concerning malignant tumors of the brain. However, the introduction of BNCT into clinical practice is hampered by the lack of a single protocol for the treatment of patients and the difficulty in using nuclear reactors to produce a neutron beam. This problem can be solved by using a compact accelerator as a source of neutrons, with the possibility of installation in a medical institution. Such a neutron accelerator for BNCT was developed at Budker Institute of Nuclear Physics, Novosibirsk. A neutron beam was obtained on this accelerator, which fully complies with the requirements of BNCT, as confirmed by studies on cell cultures and experiments with laboratory animals. The conducted experiments showed the relative safety of the method with the absence of negative effects on cell cultures and living organisms, and also confirmed the effectiveness of BNCT for malignant brain tumors.

  2. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Halfon, S; Paul, M; Arenshtam, A; Berkovits, D; Bisyakoev, M; Eliyahu, I; Feinberg, G; Hazenshprung, N; Kijel, D; Nagler, A; Silverman, I

    2011-12-01

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the (7)Li(p,n)(7)Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the (7)Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. High-power liquid-lithium target prototype for accelerator-based boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S., E-mail: halfon@phys.huji.ac.il [Soreq NRC, Yavne, Israel 81800 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Arenshtam, A.; Berkovits, D.; Bisyakoev, M.; Eliyahu, I. [Soreq NRC, Yavne, 81800 (Israel); Feinberg, G. [Soreq NRC, Yavne, Israel 81800 (Israel)] [Racah Institute of Physics, Hebrew University, Jerusalem, 91904 (Israel); Hazenshprung, N.; Kijel, D.; Nagler, A.; Silverman, I. [Soreq NRC, Yavne, 81800 (Israel)

    2011-12-15

    A prototype of a compact Liquid-Lithium Target (LiLiT), which will possibly constitute an accelerator-based intense neutron source for Boron Neutron Capture Therapy (BNCT) in hospitals, was built. The LiLiT setup is presently being commissioned at Soreq Nuclear Research Center (SNRC). The liquid-lithium target will produce neutrons through the {sup 7}Li(p,n){sup 7}Be reaction and it will overcome the major problem of removing the thermal power generated using a high-intensity proton beam (>10 kW), necessary for sufficient neutron flux. In off-line circulation tests, the liquid-lithium loop generated a stable lithium jet at high velocity, on a concave supporting wall; the concept will first be tested using a high-power electron beam impinging on the lithium jet. High intensity proton beam irradiation (1.91-2.5 MeV, 2-4 mA) will take place at Soreq Applied Research Accelerator Facility (SARAF) superconducting linear accelerator currently in construction at SNRC. Radiological risks due to the {sup 7}Be produced in the reaction were studied and will be handled through a proper design, including a cold trap and appropriate shielding. A moderator/reflector assembly is planned according to a Monte Carlo simulation, to create a neutron spectrum and intensity maximally effective to the treatment and to reduce prompt gamma radiation dose risks.

  4. Photonuclear cross sections of Pu-239 using neutron capture gamma rays, near threshold

    Science.gov (United States)

    Antonio, Marco; de Moraes, P. V.; Cesar, Marilia F.

    1993-04-01

    The photofission and photoneutron cross sections of Pu-239 have been measured by using monochromatic and discrete photons produced by thermal neutron capture gamma rays in several targets placed at the core of the IEA-R1 reactor in the energy interval from 5.43 MeV to 9.72 MeV. Analysing the photofission and photoneutron data we have observed similarities between the cross sections obtained for Pu-239 in comparison with the data obtained by other authors. From the photofission cross sections obtained and according to the liquid drop model, the height of the simple fission barrier was determined: F.B. = (5.7 ± 0.2) MeV. The relative fissionability to U-238 was also determined and shown to be energy independent: F.R. = (3.32 ± 0.41). For the competition between the photoneutron and the photofission emission (Γn/Γf) a constant value was found: (0.44 ± 0.05). By using this result the following nuclear temperature for Pu-239 was determined on basis of Nuclear Constant Temperature model of level density: T = (0.49 ± 0.05) MeV. The total photoabsorption cross sections were calculated as well as the photofission branching ratio (Γf/ΓA), or fission probability Pf. A constant value was also found: Pf = (0.70 ± 0.06).

  5. Long term outcome of boron neutron capture therapy for malignant melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Hiratsuka, J. [Kawasaki Medical School, Kurashiki, Okayama (Japan); Fukuda, H. [Tohoku Univ., Sendai (Japan); Kobayashi, T. [Kyoto Univ. (Japan); Yoshino, K. [Shinshu Univ., Matsumoto, Nagano (Japan); Honda, C.; Ichihashi, M. [Kobe Univ., Kobe, Hyogo (Japan); Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan)

    2000-10-01

    Eighteen patients with cutaneous malignant melanoma were treated by boron neutron capture therapy (BNCT) using {sup 10}B-BPA. Our aim was to assess the long term clinical outcome of BNCT on these patients. The target areas were 15 primary lesions and 5 metastatic lesions. The primary lesions were consisted of acral lentigious melanoma (ALM) in six patients, nodular melanoma (NM) in six and lentigo maligna melanoma (LMM) in three. The complete regression (CR) rates were 73% for the primary lesions, 20% for the metastatic lesions. The CR rates for the primary lesions according to melanoma type were 33% for NM and 100% for non-NM. None of the patients with CR showed local recurrence in the radiation field during follow up ranging from 5.5 to 10.6 years (mean 6.7 years). The five year cause specific survival rate was 92% in the cases without distant metastasis at the time of BNCT. BNCT proves to be a very useful therapeutic modality for the management of cutaneous malignant melanoma. (author)

  6. Investigation of current status in Europe and USA on boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    This report describes on the spot investigation results of current status of medical irradiation in Europe and USA at Feb. 1999. In HFR (Netherlands), the phase 1 study with the Joint Research Centre (JRC) of the EU had been already finished in those days, at the same time, an improvement of medical irradiation field of VTT(Finland) had been finishing and then clinical trial research had been about to start. On the other hand, phase 1 studies by two groups of BNL (Brook heaven National Laboratory) and MIT (Nuclear Engineering of Massachusetts Institute of Technology) in US were now in almost final stage, and they would start on phase 2 study. Either reactors of MIT and BNL were in modification to increase neutron flux, especially that employing fission converter into the irradiation facility and installation of irradiation room were carrying out in the former. In Europe and USA, the accelerator-based BNCT planes are now in progress vigorously, and will have reality. A reform of dynamitron accelerator at University of Birmingham was progressed, and the clinical treatment would be started from September 2000. The accelerator group at MIT has a small type of tandem accelerator, and they were performing basic experiment for BNCS (Boron Neutron Capture Synovectomy) with this accelerator. The concept design for an accelerator and a moderator had been finished at Lawrence Berkeley National Laboratory and University of Berkeley. (author)

  7. Thermal neutron capture cross section of gadolinium by pile-oscillation measurements in MINERVE

    Energy Technology Data Exchange (ETDEWEB)

    Leconte, P.; Di-Salvo, J.; Antony, M.; Pepino, A. [CEA, DEN, DER, Cadarache, F-13108 Saint-Paul-Lez-Durance (France); Hentati, A. [International School in Nuclear Engineering, Cadarache, F-13108 Saint-Paul-Lez-Durance (France)

    2012-07-01

    Natural gadolinium is used as a burnable poison in most LWR to account for the excess of reactivity of fresh fuels. For an accurate prediction of the cycle length, its nuclear data and especially its neutron capture cross section needs to be known with a high precision. Recent microscopic measurements at Rensselaer Polytechnic Inst. (RPI) suggest a 11% smaller value for the thermal capture cross section of {sup 157}Gd, compared with most of evaluated nuclear data libraries. To solve this inconsistency, we have analyzed several pile-oscillation experiments, performed in the MINERVE reactor. They consist in the measurement of the reactivity variation involved by the introduction in the reactor of small-samples, containing different mass amounts of natural gadolinium. The analysis of these experiments is done through the exact perturbation theory, using the PIMS calculation tool, in order to link the reactivity effect to the thermal capture cross section. The measurement of reactivity effects is used to deduce the 2200 m.s-1 capture cross section of {sup nat}Gd which is (49360 {+-} 790) b. This result is in good agreement with the JEFF3.1.1 value (48630 b), within 1.6% uncertainty at 1{sigma}, but is strongly inconsistent with the microscopic measurements at RPI which give (44200 {+-} 500) b. (authors)

  8. Effectiveness of boron neutron capture therapy for recurrent head and neck malignancies

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Itsuro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan)], E-mail: katoitsu@dent.osaka-u.ac.jp; Fujita, Yusei [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Maruhashi, Akira [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Kumada, Hiroaki [Japan Atomic Energy Agency, Tokai Research and Development Center, Ibaraki (Japan); Ohmae, Masatoshi [Department of Oral and Maxillofacial Surgery, Izimisano Municipal Hospital, Rinku General Hospital, Izumisano, Osaka (Japan); Kirihata, Mitsunori [Graduate School of Environment and Life Science, Osaka prefectural University, Osaka (Japan); Imahori, Yoshio [Department of Neurosurgery, Kyoto Prefectural University, Kyoto (Japan); CEO of Cancer Intelligence Care Systems, Inc., Tokyo (Japan); Suzuki, Minoru [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan); Sakrai, Yoshinori [Graduate School of Medicine, Sapporo Medical University of Medicine, Hokkaido (Japan); Sumi, Tetsuro; Iwai, Soichi; Nakazawa, Mitsuhiro [Department of Oral and Maxillofacial Surgery, II Osaka University, Graduate School of Dentistry, Osaka (Japan); Murata, Isao; Miyamaru, Hiroyuki [Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University (Japan); Ono, Koji [Radiation Oncology Research Laboratory, Research Reactor Institut, Kyoto University, Osaka (Japan)

    2009-07-15

    It is necessary to explore new treatments for recurrent head and neck malignancies (HNM) to avoid severe impairment of oro-facial structures and functions. Boron neutron capture therapy (BNCT) is tumor-cell targeted radiotherapy that has significant superiority over conventional radiotherapies in principle. We have treated with BNCT 42 times for 26 patients (19 squamous cell carcinomas (SCC), 4 salivary gland carcinomas and 3 sarcomas) with a recurrent and far advanced HNM since 2001. Results of (1) {sup 10}B concentration of tumor/normal tissue ratios (T/N ratio) of FBPA-PET studies were SCC: 1.8-5.7, sarcoma: 2.5-4.0, parotid tumor: 2.5-3.7. (2) Therapeutic effects were CR: 12 cases, PR: 10 cases, PD: 3 cases NE (not evaluated): 1 case. Response rate was 85%. (3) Improvement of QOL such as a relief of severe pain, bleeding, and exudates at the local lesion, improvement of PS, disappearance of ulceration, covered with normal skin and preserved oral and maxillofacial functions and tissues. (4) Survival periods after BNCT were 1-72 months (mean: 13.6 months). Six-year survival rate was 24% by Kaplan-Meier analysis. (5) Adverse-events were transient mucositis and alopecia in most of the cases; three osteomyelitis and one brain necrosis were recognized. These results indicate that BNCT represents a new and promising treatment approach for advanced HNM.

  9. Spectroscopy of 41K by thermal neutron capture in 40K

    Science.gov (United States)

    Krusche, B.; Lieb, K. P.; Ziegeler, L.; Daniel, H.; Von Egidy, T.; Rascher, R.; Barreau, G.; Börner, H. G.; Warner, D. D.

    1984-04-01

    The γ-ray spectrum emitted after thermal neutron capture in 40K has been studied at the ILL high flux reactor with curved crystal Bragg, pair and Ge(Li) spectometers. 585 transitions were assigned to the reaction 40K(n, γ) 41K and 490 of them were placed into a 41K level scheme; 68 new states are proposed. On the basis of γ-ray branches to states with established spin and parity, many new spin-parity assignments were made. The level energies up to 4 MeV were measured with a precision of 8-50 eV relative to the 411.8 keV 198Au standard, those above 4 MeV with a precision of 50-100 eV. The spin of the capture state was found to be I = {7}/{2}; the neutron binding energy was determined to EB = 10095.25(10) keV. The level density of I π = {5}/{2}±, {7}/{2}±, {9}/{2}± states was analyzed in terms of the constant-temperature Fermi gas model. It was shown that in this spin window the level scheme is almost complete up to an excitation energy of 5 MeV.

  10. Basic and clinical study of boron neutron capture therapy for malignant brain tumor

    Energy Technology Data Exchange (ETDEWEB)

    Nose, Tadao; Matsumura, Akira; Nakai, Kei; Nakagawa, Kunio; Yoshii, Yoshihiko [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine; Shibata, Yasushi; Yamamoto, Tetsuya; Hayakawa, Yoshinori; Yamada, Takashi

    1998-01-01

    Rat malignant cells (9L glioma cell) were exposed to neutron radiation after culturing with boron compounds; BSH and STA-BX909, and cell growing ability after the exposure was determined by colony forming assay. The effects of in vivo radiation were examined by measuring neutron flux levels in rat brain and skin aiming to use neutron radiation in clinical study. STA-BX909 was found to show a dose-dependent cell toxicity, which was higher than that of BSH. The radiation induced G2/M block in 9L-glioma cells and their cell cycles recovered thereafter in low-dose radiated cells, but high-dose radiated cells became aneuploidy. Furthermore, boron neutron capture therapy (BNCT) was applied in two patients, 41-year old woman with glioma grade 3 recurred and 45-year old man with glioblastoma multiforme. The former died from systemic deterioration due to ileus, but BNCT was made only one time although conventional radiotherapy is carried out for a relatively long period. Therefore, BNCT was thought to be beneficial from an aspect of `quality of life` and the effects to repress a recurrence of cancer also seemed larger than the conventional one. (M.N.)

  11. Induced radioactivity in the blood of cancer patients following Boron Neutron Capture Therapy.

    Science.gov (United States)

    Fujiwara, Keiko; Kinashi, Yuko; Takahashi, Tomoyuki; Yashima, Hiroshi; Kurihara, Kouta; Sakurai, Yoshinori; Tanaka, Hiroki; Ono, Koji; Takahashi, Sentaro

    2013-07-01

    Since 1990, Boron Neutron Capture Therapy (BNCT) has been used for over 400 cancer patients at the Kyoto University Research Reactor Institute (KURRI). After BNCT, the patients are radioactive and their (24)Na and (38)Cl levels can be detected via a Na-I scintillation counter. This activity is predominantly due to (24)Na, which has a half-life of 14.96 h and thus remains in the body for extended time periods. Radioactive (24)Na is mainly generated from (23)Na in the target tissue that is exposed to the neutron beam in BNCT. The purpose of this study is to evaluate the relationship between the radioactivity of blood (24)Na following BNCT and the absorbed gamma ray dose in the irradiated field. To assess blood (24)Na, 1 ml of peripheral blood was collected from 30 patients immediately after the exposure, and the radioactivity of blood (24)Na was determined using a germanium counter. The activity of (24)Na in the blood correlated with the absorbed gamma ray doses in the irradiated field. For the same absorbed gamma ray dose in the irradiated field, the activity of blood (24)Na was higher in patients with neck or lung tumors than in patients with brain or skin tumors. The reasons for these findings are not readily apparent, but the difference in the blood volume and the ratio of bone to soft tissue in the irradiated field, as well as the dose that leaked through the clinical collimator, may be responsible.

  12. Development of the JAERI computational dosimetry system (JCDS) for boron neutron capture therapy. Cooperative research

    CERN Document Server

    Kumada, H; Matsumura, A; Nakagawa, Y; Nose, T; Torii, Y; Uchiyama, J; Yamamoto, K; Yamamoto, T

    2003-01-01

    The Neutron Beam Facility at JRR-4 enables us to carry out boron neutron capture therapy with epithermal neutron beam. In order to make treatment plans for performing the epithermal neutron beam BNCT, it is necessary to estimate radiation doses in a patient's head in advance. The JAERI Computational Dosimetry System (JCDS), which can estimate distributions of radiation doses in a patient's head by simulating in order to support the treatment planning for epithermal neutron beam BNCT, was developed. JCDS is a software that creates a 3-dimentional head model of a patient by using CT and MRI images, and that generates a input data file automatically for calculation of neutron flux and gamma-ray dose distributions in the brain with the Monte Carlo code MCNP, and that displays these dose distributions on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By using CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is...

  13. Characteristics of a heavy water photoneutron source in boron neutron capture therapy

    Science.gov (United States)

    Danial, Salehi; Dariush, Sardari; M. Salehi, Jozani

    2013-07-01

    Bremsstrahlung photon beams produced by medical linear accelerators are currently the most commonly used method of radiation therapy for cancerous tumors. Photons with energies greater than 8-10 MeV potentially generate neutrons through photonuclear interactions in the accelerator's treatment head, patient's body, and treatment room ambient. Electrons impinging on a heavy target generate a cascade shower of bremsstrahlung photons, the energy spectrum of which shows an end point equal to the electron beam energy. By varying the target thickness, an optimum thickness exists for which, at the given electron energy, maximum photon flux is achievable. If a source of high-energy photons i.e. bremsstrahlung, is conveniently directed to a suitable D2O target, a novel approach for production of an acceptable flux of filterable photoneturons for boron neutron capture therapy (BNCT) application is possible. This study consists of two parts. 1. Comparison and assessment of deuterium photonuclear cross section data. 2. Evaluation of the heavy water photonuclear source.

  14. Dynamic infrared imaging for biological and medical applications in Boron neutron capture therapy

    Science.gov (United States)

    Santa Cruz, Gustavo A.; González, Sara J.; Dagrosa, Alejandra; Schwint, Amanda E.; Carpano, Marina; Trivillin, Verónica A.; Boggio, Esteban F.; Bertotti, José; Marín, Julio; Monti Hughes, Andrea; Molinari, Ana J.; Albero, Miguel

    2011-05-01

    Boron Neutron Capture Therapy (BNCT) is a treatment modality, currently focused on the treatment of cancer, which involves a tumor selective 10B compound and a specially tuned neutron beam to produce a lethal nuclear reaction. BNCT kills target cells with microscopic selectivity while sparing normal tissues from potentially lethal doses of radiation. In the context of the Argentine clinical and research BNCT projects at the National Atomic Energy Commission and in a strong collaboration with INVAP SE, we successfully implemented Dynamic Infrared Imaging (DIRI) in the clinical setting for the observation of cutaneous melanoma patients and included DIRI as a non invasive methodology in several research protocols involving small animals. We were able to characterize melanoma lesions in terms of temperature and temperature rate-of-recovery after applying a mild cold thermal stress, distinguishing melanoma from other skin pigmented lesions. We observed a spatial and temporal correlation between skin acute reactions after irradiation, the temperature pattern and the dose distribution. We studied temperature distribution as a function of tumor growth in mouse xenografts, observing a significant correlation between tumor temperature and drug uptake; we investigated temperature evolution in the limbs of Wistar rats for a protocol of induced rheumatoid arthritis (RA), DIRI being especially sensitive to RA induction even before the development of clinical signs and studied surface characteristics of tumors, precancerous and normal tissues in a model of oral cancer in the hamster cheek pouch.

  15. Design and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Mona Zolfaghari

    2015-07-01

    Full Text Available Introduction Electron linear accelerator (LINAC can be used for neutron production in Boron Neutron Capture Therapy (BNCT. BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources were simulated, using MCNPX Monte Carlo code. In this study, a 20 MeV LINAC was utilized for electron-photon reactions. After the evaluation of cross-sections and threshold energies, lead (Pb, uranium (U and beryllium deuteride (BeD2were selected as photoneutron sources. Results According to the simulation results, optimized photoneutron sources with a compact volume and photoneutron yields of 107, 108 and 109 (n.cm-2.s-1 were obtained for Pb, U and BeD2 composites. Also, photoneutrons increased by using enriched U (10-60% as an electron accelerator-based photoneutron source. Conclusion Optimized photoneutron sources were obtained with compact sizes of 107, 108 and 109 (n.cm-2.s-1, respectively. These fluxs can be applied for BNCT by decelerating fast neutrons and using a suitable beam-shaping assembly, surrounding electron-photon and photoneutron sources.

  16. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model.

    Science.gov (United States)

    Pozzi, Emiliano C C; Cardoso, Jorge E; Colombo, Lucas L; Thorp, Silvia; Monti Hughes, Andrea; Molinari, Ana J; Garabalino, Marcela A; Heber, Elisa M; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Trivillin, Verónica A; Schwint, Amanda E

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA-BNCT, boronophenylalanine (BPA) + neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA-BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks post-treatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA-BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mg fell significantly to 19 ± 16 mg for BPA-BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA-BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA-BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  17. Accelerator-based neutron source for boron neutron capture therapy (BNCT) and method

    Science.gov (United States)

    Yoon, Woo Y.; Jones, James L.; Nigg, David W.; Harker, Yale D.

    1999-01-01

    A source for boron neutron capture therapy (BNCT) comprises a body of photoneutron emitter that includes heavy water and is closely surrounded in heat-imparting relationship by target material; one or more electron linear accelerators for supplying electron radiation having energy of substantially 2 to 10 MeV and for impinging such radiation on the target material, whereby photoneutrons are produced and heat is absorbed from the target material by the body of photoneutron emitter. The heavy water is circulated through a cooling arrangement to remove heat. A tank, desirably cylindrical or spherical, contains the heavy water, and a desired number of the electron accelerators circumferentially surround the tank and the target material as preferably made up of thin plates of metallic tungsten. Neutrons generated within the tank are passed through a surrounding region containing neutron filtering and moderating materials and through neutron delimiting structure to produce a beam or beams of epithermal neutrons normally having a minimum flux intensity level of 1.0.times.10.sup.9 neutrons per square centimeter per second. Such beam or beams of epithermal neutrons are passed through gamma ray attenuating material to provide the required epithermal neutrons for BNCT use.

  18. Investigation of Isfahan miniature neutron source reactor (MNSR for boron neutron capture therapy by MCNP simulation

    Directory of Open Access Journals (Sweden)

    S.Z Kalantari

    2015-01-01

    Full Text Available One of the important neutron sources for Boron Neutron Capture Therapy (BNCT is a nuclear reactor. It needs a high flux of epithermal neutrons. The optimum conditions of the neutron spectra for BNCT are provided by the International Atomic Energy Agency (IAEA. In this paper, Miniature Neutron Source Reactor (MNSR as a neutron source for BNCT was investigated. For this purpose, we designed a Beam Shaping Assembly (BSA for the reactor and the neutron transport from the core of the reactor to the output windows of BSA was simulated by MCNPX code. To optimize the BSA performance, two sets of parameters should be evaluated, in-air and in-phantom parameters. For evaluating in-phantom parameters, a Snyder head phantom was used and biological dose rate and dose-depth curve were calculated in brain normal and tumor tissues. Our calculations showed that the neutron flux of the MNSR reactor can be used for BNCT, and the designed BSA in optimum conditions had a good therapeutic characteristic for BNCT.

  19. Beam neutron energy optimization for boron neutron capture therapy using Monte Carlo method

    Directory of Open Access Journals (Sweden)

    Ali Pazirandeh

    2006-06-01

    Full Text Available  In last two decades the optimal neutron energy for the treatment of deep seated tumors in boron neutron capture therapy in view of neutron physics and chemical compounds of boron carrier has been under thorough study. Although neutron absorption cross section of boron is high (3836b, the treatment of deep seated tumors such as gliobelastoma multiform (GBM requires beam of neutrons of higher energy that can penetrate deeply into the brain and thermalize in the proximity of the tumor. Dosage from recoil proton associated with fast neutrons however poses some constraints on maximum neutron energy that can be used in the treatment. For this reason neutrons in the epithermal energy range of 10eV-10keV are generally to be the most appropriate. The simulation carried out by Monte Carlo methods using MCBNCT and MCNP4C codes along with the cross section library in 290 groups extracted from ENDF/B6 main library. The optimal neutron energy for deep seated tumors depends on the size and depth of tumor. Our estimated optimized energy for the tumor of 5cm wide and 1-2cm thick stands at 5cm depth is in the range of 3-5keV

  20. Boron neutron capture therapy (BNCT) for liver metastasis: therapeutic efficacy in an experimental model

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-08-01

    Boron neutron capture therapy (BNCT) was proposed for untreatable colorectal liver metastases. The present study evaluates tumor control and potential radiotoxicity of BNCT in an experimental model of liver metastasis. BDIX rats were inoculated with syngeneic colon cancer cells DHD/K12/TRb. Tumor-bearing animals were divided into three groups: BPA–BNCT, boronophenylalanine (BPA) ? neutron irradiation; Beam only, neutron irradiation; Sham, matched manipulation. The total absorbed dose administered with BPA–BNCT was 13 ± 3 Gy in tumor and 9 ± 2 Gy in healthy liver. Three weeks posttreatment, the tumor surface area post-treatment/pre-treatment ratio was 0.46 ± 0.20 for BPA–BNCT, 2.7 ± 1.8 for Beam only and 4.5 ± 3.1 for Sham. The pre-treatment tumor nodule mass of 48 ± 19 mgfell significantly to 19 ± 16 mg for BPA–BNCT, but rose significantly to 140 ± 106 mg for Beam only and to 346 ± 302 mg for Sham. For both end points, the differences between the BPA–BNCT group and each of the other groups were statistically significant (ANOVA). No clinical, macroscopic or histological normal liver radiotoxicity was observed. It is concluded that BPA– BNCT induced a significant remission of experimental colorectal tumor nodules in liver with no contributory liver toxicity.

  1. Synthesis and evaluation of boron folates for Boron-Neutron-Capture-Therapy (BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Kettenbach, Kathrin; Schieferstein, Hanno; Grunewald, Catrin; Hampel, Gabriele; Schuetz, Christian L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Iffland, Dorothee; Bings, Nicolas H. [Mainz Univ. (Germany). Inst. of Inorganic Chemistry and Analytical Chemistry; Reffert, Laura M. [Hannover Medical School (Germany). Radiopharmaceutical Chemistry; Ross, Tobias L. [Mainz Univ. (Germany). Inst. of Nuclear Chemistry; Hannover Medical School (Germany). Radiopharmaceutical Chemistry

    2015-07-01

    Boron neutron capture therapy (BNCT) employs {sup 10}B-pharmaceuticals administered for the treatment of malignancies, and subsequently irradiated with thermal neutrons. So far, clinical established pharmaceuticals like boron phenylalanine (BPA) or sodium boron mercaptate (BSH) use imperfect (BPA) or passive (BSH) targeting for accumulation at target sites. Due to the need of a selective transportation of boron drugs into cancer cells and sparing healthy tissues, we combined the BNCT approach with the specific and effective folate receptor (FR) targeting concept. The FR is overexpressed on many human carcinomas and provides a selective and specific target for molecular imaging as well as for tumor therapy. We synthesized and characterized a carborane-folate as well as a BSH-folate to study their in vitro characteristics and their potential as new boron-carriers for BNCT. Uptake studies were carried out using human KB cells showing a significant increase of the boron content in cells and demonstrating the successful combination of active FR-targeting and BNCT.

  2. Single photon image from PET with insertable collimator for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Jooyoung; Suh, Tae Suk [Catholic Univ. of Korea, Seoul (Korea, Republic of); Hong, Key Jo [Stanford Univ., Stanford (United States)

    2014-05-15

    Boron neutron capture therapy (BNCT) is a radiation therapy technique for treating deep-seated brain tumors by irradiation with a thermal neutron in which boron-labelled low molecular weight compounds. Once completed, a single photon emission computed tomography (SPECT) scan is conducted to investigate for the region of therapy using an isotope exclusive to SPECT. In the case of an existing PET/SPECT combination system, at least two types of isotopes should be used for each scan with their purposes. Recently, researchers examined the effects of PET/SPECT dual modality on animal imaging systems. They reported that the PET/SPECT combination system was effective for simultaneous achievement of a single event and coincidence. The aim of our proposed system is to confirm the feasibility of extraction of two types of images from one PET module with an insertable collimator for brain tumor treatment during the BNCT. We attempted to acquire the PET and SPECT images simultaneously using only PET without an additional isotope. Single photon images were acquired using an insertable collimator on a PET detector.

  3. Gyrotron-driven high current ECR ion source for boron-neutron capture therapy neutron generator

    Energy Technology Data Exchange (ETDEWEB)

    Skalyga, V., E-mail: skalyga.vadim@gmail.com [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Izotov, I.; Golubev, S.; Razin, S. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Sidorov, A. [Institute of Applied Physics, RAS, 46 Ul’yanova st., 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Maslennikova, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Nizhny Novgorod State Medical Academy, 10/1 Minina Sq., 603005 Nizhny Novgorod (Russian Federation); Volovecky, A. [Lobachevsky State University of Nizhny Novgorod (UNN), 23 Gagarina st., 603950 Nizhny Novgorod (Russian Federation); Kalvas, T.; Koivisto, H.; Tarvainen, O. [University of Jyvaskyla, Department of Physics, PO Box 35 (YFL), 40500 Jyväskylä (Finland)

    2014-12-21

    Boron-neutron capture therapy (BNCT) is a perspective treatment method for radiation resistant tumors. Unfortunately its development is strongly held back by a several physical and medical problems. Neutron sources for BNCT currently are limited to nuclear reactors and accelerators. For wide spread of BNCT investigations more compact and cheap neutron source would be much more preferable. In present paper an approach for compact D–D neutron generator creation based on a high current ECR ion source is suggested. Results on dense proton beams production are presented. A possibility of ion beams formation with current density up to 600 mA/cm{sup 2} is demonstrated. Estimations based on obtained experimental results show that neutron target bombarded by such deuteron beams would theoretically yield a neutron flux density up to 6·10{sup 10} cm{sup −2}/s. Thus, neutron generator based on a high-current deuteron ECR source with a powerful plasma heating by gyrotron radiation could fulfill the BNCT requirements significantly lower price, smaller size and ease of operation in comparison with existing reactors and accelerators.

  4. An overview of DANCE: a 4II BaF[2] detector for neutron capture measurements at LANSCE.

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, J. L. (John L.)

    2004-01-01

    The Detector for Advanced Neutron Capture experiments (DANCE) is a 162-element, 4{pi} BaF{sub 2} array designed to make neutron capture cross-section measurements on rare or radioactive targets with masses as little as 1 mg. Accurate capture cross sections are needed in many research areas, including stellar nucleosynthesis, advanced nuclear fuel cycles, waste transmutation, and other applied programs. These cross sections are difficult to calculate accurately and must be measured. Up to now, except for a few long-lived nuclides there are essentially no differential capture measurements on radioactive nuclei. The DANCE array is located at the Lujan Neutron Scattering Center at LANSCE, which is a continuous-spectrum neutron source with useable energies from below thermal to about 100 keV. Data acquisition is done with 320 fast waveform digitizers. The design and initial performance results, including background minimization, will be discussed.

  5. Isomeric ratio measurements for the radiative neutron capture 176Lu(n ,γ ) at the LANL DANCE facility

    Science.gov (United States)

    Denis-Petit, D.; Roig, O.; Méot, V.; Morillon, B.; Romain, P.; Jandel, M.; Kawano, T.; Vieira, D. J.; Bond, E. M.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Keksis, A. L.; Rundberg, R. S.; Ullmann, J. L.

    2016-11-01

    The isomeric ratios for the neutron capture reaction 176Lu(n ,γ ) to the Jπ=5 /2- , 761.7 keV, T1 /2=32.8 ns and the Jπ=15 /2+ , 1356.9 keV, T1 /2=11.1 ns levels of 177Lu have been measured for the first time. The experiment was carried out with the Detector for Advanced Neutron Capture Experiments (DANCE) at the Los Alamos National Laboratory. Measured isomeric ratios are compared with talys calculations using different models for photon strength functions, level densities, and optical potentials. In order to reproduce the experimental γ -ray spectra, a low-energy resonance must be added in the photon strength function used in our Hauser-Feshbach calculations.

  6. Evaluation of boron neutron capture effects in cell culture using sulforhodamine-B assay and a colony assay.

    Science.gov (United States)

    Wittig, A; Sauerwein, W; Pöller, F; Fuhrmann, C; Hideghéty, K; Streffer, C

    1998-06-01

    The purpose of this study was to find an in vitro method for determining the cytotoxicity of boronated drugs as well as their potential suitability for neutron capture therapy. The survival of human melanoma cells has been determined by a colony assay and the sulforhodamine-B assay after X-irradiation and irradiation with fast d(14) + Be-neutrons using the boronated compound borocaptate sodium (BSH). The cytotoxic effects of BSH have been studied using both methods. Under well-defined experimental conditions, and after a sufficient amount of time for the expression of radiation damage, the results of the sulforhodamine-B assay are qualitatively comparable with the results of the colony assay. The sulforhodamine-B assay is suitable for the screening of compounds for potential use in neutron capture therapy because it is a fast and efficient method that is reproducible and technically advantageous.

  7. Neutron Capture by Cadmium: Thermal Cross Sections and Resonance Integrals of ^106,108,110,112,114,116Cd

    Science.gov (United States)

    Gicking, Allison M.; Krane, Kenneth S.

    2011-10-01

    The neutron capture cross sections of the stable, even-mass Cd isotopes (A = 106, 108, 110, 112, 114, and 116) have been previously measured in sources of natural abundance or low enrichment, often making the results uncertain owing to the large absorption cross section of naturally occurring ^113Cd. Ambiguities in values of the isomeric branching ratios have also contributed to uncertainties in previous results. We have remeasured the Cd neutron capture cross sections using samples of greater than 90% isotopic enrichment irradiated in the OSU TRIGA reactor. Gamma-ray emission spectra were analyzed to determine the effective resonance integrals and thermal cross sections leading to eight radioactive ground and isomeric states in the Cd isotopes.

  8. Neutron Capture Measuremetns on Minor Actinides at the n_TOF Facility at CERN: Past, Present and Future

    CERN Document Server

    Cano-Ott, D; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Abbondanno, U; Vannini, G; Oshima, M; Gramegna, F; Wiescher, M; Pigni, M T; Wiendler, H; Mengoni, A; Quesada, J; Becvar, F; Rosetti, M; Cennini, P; Mosconi, M; Duran, I; Rauscher, T; Ketlerov, V; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Pavlopoulos, P; Karamanis, D; Krticka, M; Griesmayer, E; Jericha, E; Ferrari, A; Martinez, T; Oberhummer, H; Karadimos, D; Plompen, A; Mendoza, E; Terlizzi, R; Cortes, G; Cox, J; Voss, F; Pretel, C; Colonna, N; Berthoumieux, E; Dolfini, R; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Stephan, C; Tain, J L; Belloni, F; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Milazzo, P M; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Meaze, M H; O'Brien, S; Gunsing, F; Reifarth, R; Perrot, L; Lindote, A; Neves, F; Poch, A; Konovalov, V; Kerveno, M; Marques, L; Rubbia, C; Koehler, P; Dahlfors, M; Wisshak, K; Fujii, K; De Albornoz, A C; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Dillman, I; Assimakopoulos, P; Ferrant, L; Lozano, M; Patronis, N; Chiaveri, E; Guerrero, C; Kadi, Y; Vicente, M C; Praena, J; Baumann, P; Moreau, C; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Paradela, C; Audouin, L; Tassan-Got, L; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Isaev, S; Pancin, J; Papadopoulos, C; Tagliente, G; Alvarez, H; Haight, R; Goverdovski, A; Chepel, V; Plag, R; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Frais-Koelbl, H; Pavlik, A; Goncalves, I

    2011-01-01

    The successful development of advanced nuclear systems for sustainable energy production and nuclear waste management depends on high quality nuclear data libraries. Recent sensitivity studies and reports {[}1-3] have identified the need for substantially improving the accuracy of neutron cross-section data for minor actinides. The n\\_TOF collaboration has initiated an ambitious experimental program for the measurement of neutron capture cross sections of minor actinides. Two experimental setups have been constructed for this purpose: a Total Absorption Calorimeter (TAC) {[}4] for measuring neutron capture cross-sections of low-mass and/or radioactive samples and a set of two low neutron sensitivity C(6)D(6) detectors for the less radioactive materials.

  9. Multi-element measurements of various industrial samples by neutron capture prompt gamma-ray activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, A.M. (Atomic Energy Establishment, Cairo (Egypt)); El-Enany, N. (Ain Shams Univ., Cairo (Egypt). Faculty of Science); El-Tanahy, Z. (Al-Azhar Univ., Cairo (Egypt). Faculty of Science); Abdulmomen, M.A. (King Abdulaziz Univ., Jeddah (Saudi Arabia). Faculty of Science)

    1994-02-01

    The qualitative and quantitative analysis of corn oil (1), corn oil (2), soyabean oil and nakheel oil used in Saudi Arabia as well as hematite, phosphate ore samples and Saudi petroleum has been achieved by using the neutron capture [gamma]-ray technique. An isotopic neutron source of (5 Ci[sup 241]Am/Be) and a hyper pure germanium detection system were used. The percentage concentration values by mass of some elements for each sample are given. (Author).

  10. Intracellular delivery and passive tumor targeting of a self-assembled nanogel containing carborane clusters for boron neutron capture therapy.

    Science.gov (United States)

    Kawasaki, Riku; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2017-01-29

    Boron neutron capture therapy, based on the release of thermal neutron irradiation from boron, is a targeted radiation therapy for cancer. Targeted and sufficient accumulation of boron in tumor cells to achieve cytotoxic efficacy and reduce off-target effects remains a challenge. Carborane has been investigated for use as a delivery agent in boron neutron capture therapy because of its high boron content and chemical stability; however, it is cytotoxic, making safe delivery difficult. The aim of this study was to investigate the potential of carborane-bearing pullulan nanogels to safely and effectively deliver boron to tumor cells in vitro and in vivo and, consequently, assess their potential as a boron neutron capture therapeutic. Murine fibrosarcoma cells (CMS5a) were used for in vitro investigations of nanogel cytotoxicity, cell uptake. A mouse fibrosarcoma xenograft model was used to investigate the bio-distribution of nanogels after intravenous administration. The nanogels produced no apparent cytotoxicity and underwent cell uptake in CMS5a cells after a 24 h incubation at up to 2000 μg/mL and 400 μg/mL, respectively. The internalized nanogels were localized around the nuclear membrane. The nanogels were administered intravenously to mice bearing fibrosarcoma xenografts. Nanogel tumor localization likely occurred through the enhanced permeation and retention effect. The nanogels successfully reduced the cytotoxicity of carborane, were internalized into tumor cells, acted as a dual-delivery therapeutic and accumulated in tumors in vivo. Consequently, they demonstrate significant potential as a boron neutron capture therapeutic. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Preparation of a one-curie 171Tm target for the Detector for Advanced Neutron Capture Experiments (DANCE)

    Energy Technology Data Exchange (ETDEWEB)

    Schwantes, Jon M.; Taylor, Wayne A.; Rundberg, Robert S.; Vieira, David J.

    2008-05-15

    Roughly one curie of 171Tm (t1/2=1.92a) has been produced and purified for the purpose of making a nuclear target for the first measurements of its neutron capture cross section. Target preparation consisted of three key steps: (1) material production; (2) separation and purification; and (3) electrodeposition onto a suitable backing material. Approximately 1.5 mg of the target material (at the time of separation) was produced by irradiating roughly 250 mg of its stable enriched 170Er lanthanide neighbor with neutrons at the ILL reactor in France. This production method resulted in a “difficult-to-separate” 1:167 mixture of near-neighboring lanthanides, Tm and Er. Separation and purification was accomplished using high-performance liquid chromatorgraphy (HPLC), with a proprietary cation exchange column (Dionex, CS-3) and alpha-hydroxyisobutyric acid (a-HIB) eluent. This technique yielded a final product of ~95% purity with respect to Tm. A portion (20 ug) of the Tm was electrodeposited on thin Be foil and delivered to the Los Alamos Neutron Science CEnter (LANSCE) for preliminary analysis of its neutron capture cross section using the Detector for Advanced Neutron Capture Experiments (DANCE). This paper discusses the major hurdles associated with the separation and purification step including, scale-up issues related to the use of HPLC for material separation and purification of the target material from a-HIB and 4-(2-pyridylazo)resorcinol (PAR) colorant.

  12. Assessment of (10)B concentration in boron neutron capture therapy: potential of image-guided therapy using (18)FBPA PET.

    Science.gov (United States)

    Shimosegawa, Eku; Isohashi, Kayako; Naka, Sadahiro; Horitsugi, Genki; Hatazawa, Jun

    2016-12-01

    In boron neutron capture therapy (BNCT) for cancer, the accurate estimation of (10)B tissue concentrations, especially in neighboring normal organs, is important to avoid adverse effects. The (10)B concentration in normal organs after loading with (10)B, however, has not been established in humans. In this study, we performed 4-borono-2-[(18)F]-fluoro-phenylalanine ((18)FBPA) PET in healthy volunteers and estimated the chronological changes in the (10)B concentrations of normal organs. In 6 healthy volunteers, whole-body (18)FBPA PET scans were repeated 7 times during 1 h, and the mean (18)FBPA distributions of 13 organs were measured. Based on the (18)FBPA PET data, we then estimated the changes in the (10)B concentrations of the organs when the injection of a therapeutic dose of (10)BPA-fructose complex ((10)BPA-fr; 30 g, 500 mg/kg body weight) was assumed. The maximum mean (18)FBPA concentrations were reached at 2-6 min after injection in all the organs except the brain and urinary bladder. The mean (18)FBPA concentration in normal brain plateaued at 24 min after injection. When the injection of a therapeutic dose of (10)BPA-fr was assumed, the estimated mean (10)B concentration in the kidney increased to 126.1 ± 24.2 ppm at 3 min after injection and then rapidly decreased to 30.9 ± 7.4 ppm at 53 min. The estimated mean (10)B concentration in the bladder gradually increased and reached 383.6 ± 214.7 ppm at 51 min. The mean (10)B concentration in the brain was estimated to be 7.6 ± 1.5 ppm at 57 min. (18)FBPA PET has a potential to estimate (10)B concentration of normal organs before neutron irradiation of BNCT when several assumptions are validated in the future studies.

  13. Enhancement of a 252Cf-based neutron beam via subcritical multiplication for neutron capture therapy.

    Science.gov (United States)

    Wang, C K; Zino, J F; Kessler, G

    2000-01-01

    Previous studies indicated that an epithermal-neutron beam based on bare 252Cf is not feasible for neutron capture therapy (NCT). It was reported that a clinically useful epithermal-neutron beam requires a minimum of 1.0 g of 252Cf, which is more than twice the US current annual supply. However, it was reasoned that the required quantity of 252Cf could be dramatically reduced when used with a subcritical multiplying assembly (SMA). This reasoning is based on the assumption that the epithermal-neutron beam intensity for NCT is directly proportional to the fission neutron population, and that the neutron multiplying factor of the SMA can be estimated by 1/(1 - k(eff)). We have performed detailed Monte Carlo calculations to investigate the validity of the above reasoning. Our results show that 1/(1 - k(eff)) grossly overestimates the beam enhancement factor for NCT. For example, Monte Carlo calculations predict a beam enhancement factor of 6.0 for an optimized SMA geometry with k(eff) = 0.968. This factor is much less than 31 predicted by 1/(1 - k(eff)). The overestimation is due to the fact that most of the neutrons produced in the SMA are self-shielded, whereas self-shielding is negligible in a bare 252Cf source. Since the beam intensity of a 0.1 g 252Cf with the optimized SMA enhancement is still more than an order of magnitude too low compared to the existing reactor beams, we conclude that the enhancement via an SMA for a 252Cf-based epithermal-neutron beam is inadequate for NCT.

  14. Radiation effects of boron neutron capture therapy on brain, skin, and eye of rats

    Energy Technology Data Exchange (ETDEWEB)

    Matalka, K.Z.; Barth, R.F.; Bailey, M.Q.; Wilkie, D.A.; Koestner, A. (Ohio State Univ., Columbus, OH (United States)); Hopewell, J.W. (Univ. of Oxford (United Kingdom))

    1994-03-30

    The present study was carried out to evaluate the radiation effects of boron neutron capture therapy (BNCT) on the brain, skin, and eyes of nude rats following systemic administration of boronophenylalanine (BPA) and neutron irradiation to the head. A solution containing 120 mg of [sup 10]B-enriched-L-BPA complexed with fructose was administered IP to nude rats. Boron concentrations were [approximately] 8.4, 9.4, 10.0, and 11.0 [mu]g/g in the brain, blood, skin, and eyes, respectively, at 6 h when the animals were irradiated at the Brookhaven Medical Research Reactor to cause tumor regression in nude rats carrying intracerebral implants of the human melanoma cell line MRA 27. Mild to moderate increases in loose fibrous tissue were observed in the choroid plexus at estimated physical doses to the brain and blood that ranged from 4.3-7.1 Gy and 4.6-7.7 Gy, respectively, and these appeared to be dose and time dependent. Other changes in the choroid plexus included occasional infiltrates of macrophages and polymorphonuclear leukocytes and vacuolation of epithelial cells. Dose-dependent moist desquamation of the skin was observed in all rats, but this had healed by 28 days following irradiation. Cataracts and keratitis developed in the eyes of most animals, and these were dose dependent. The minimal histopathological changes seen in the brain at doses that were sufficient to eradicate intracerebral melanoma indicates that BNCT has the potential to cure a tumor-bearing host without producing the normal brain injury usually associated with conventional external beam radiation therapy. Studies in canines, which currently are in progress, should further define the dose-effect relationships of BNCT on critical neuroanatomic structures within the brain. 42 refs., 4 figs., 3 tabs.

  15. A benchmark analysis of radiation flux distribution for Boron Neutron Capture Therapy of canine brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Moran, J.M.

    1992-02-01

    Calculations of radiation flux and dose distributions for Boron Neutron Capture Therapy (BNCT) of brain tumors are typically performed using sophisticated three-dimensional analytical models based on either a homogeneous approximation or a simplified few-region approximation to the actual highly-heterogeneous geometry of the irradiation volume. Such models should be validated by comparison with calculations using detailed models in which all significant macroscopic tissue heterogeneities and geometric structures are explicitly represented as faithfully as possible. This work describes a validation exercise for BNCT of canine brain tumors. Geometric measurements of the canine anatomical structures of interest for this work were performed by dissecting and examining two essentially identical Labrador Retriever heads. Chemical analyses of various tissue samples taken during the dissections were conducted to obtain measurements of elemental compositions for tissues of interest. The resulting geometry and tissue composition data were then used to construct a detailed heterogeneous calculational model of the Labrador Retriever head. Calculations of three-dimensional radiation flux distributions pertinent to BNCT were performed for the model using the TORT discrete-ordinates radiation transport code. The calculations were repeated for a corresponding volume-weighted homogeneous tissue model. Comparison of the results showed that the peak neutron and photon flux magnitudes were quite similar for the two models (within 5%), but that the spatial flux profiles were shifted in the heterogeneous model such that the fluxes in some locations away from the peak differed from the corresponding fluxes in the homogeneous model by as much as 10-20%. Differences of this magnitude can be therapeutically significant, emphasizing the need for proper validation of simplified treatment planning models.

  16. Antiproliferative effect and apoptosis induction in melanoma treatment by boron neutron capture therapy (BCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Faiao-Flores, Fernanda; Coelho, Paulo; Arruda-Neto, Joao; Maria, Durvanei [University of Sao Paulo (USP), SP (Brazil)

    2011-07-01

    Full text: Introduction: Boron neutron capture therapy (BNCT) is an experimental radiotherapy where a compound having {sup 10}B is administered to cancer patients and is accumulated in tumor tissues. Thus, the tumor is irradiated with thermal neutrons, {sup 10}B absorbs and destroys them, producing alpha radiation. Boronophenylalanine (BPA) is the agent responsible for delivering boron to the tumor tissue. After BPA administration, BNCT is used as a localized radiotherapy for many tumors treatment, mainly melanoma, which has a high mortality rate among all types of tumors. The aim of this study was to evaluate in vitro antiproliferative and antitumor effects of BNCT application in human melanoma treatment. Materials and Methods: MEWO cells (human melanoma) were cultured and treated with different concentrations of BPA (8.36 to 0.52 mg/ml). After 90 minutes, they were irradiated with thermal neutron flux up to a dose of 8.4 Gy. The parameters analyzed were free radical production, cell cycle progression, cell death signaling pathways, cycling D1, caspase-3 and extracellular matrix synthesis produced, beyond the mitochondrial electric potential analysis. Results: After BNCT treatment, MEWO cells showed an amount of free radical increase about 10 times. Still, there was a significant decrease of cyclin D1, G0/G1 proliferation, synthesis and G2/M cell cycle phases. BNCT induced a mitochondrial electrical potential decrease, as well as fibrillar proteins of extracellular matrix. BNCT had a significant number of dead cell increase, mainly by necrosis. However, BNCT induced phosphorylated caspase 3 increase. Discussion/Conclusion: BNCT induced cell death increase by necrosis, mitochondrial electric potential decrease and free radical production increase. BNCT is cytotoxic to melanoma cells. Besides necrosis, phosphorylated caspase 3 increase was observed, accompanied by a proliferative response decrease regulated by the G1/S checkpoint and matrix extracellular synthesis

  17. A (13)C(d,n)-based epithermal neutron source for Boron Neutron Capture Therapy.

    Science.gov (United States)

    Capoulat, M E; Kreiner, A J

    2017-01-01

    Boron Neutron Capture Therapy (BNCT) requires neutron sources suitable for in-hospital siting. Low-energy particle accelerators working in conjunction with a neutron producing reaction are the most appropriate choice for this purpose. One of the possible nuclear reactions is (13)C(d,n)(14)N. The aim of this work is to evaluate the therapeutic capabilities of the neutron beam produced by this reaction, through a 30mA beam of deuterons of 1.45MeV. A Beam Shaping Assembly design was computationally optimized. Depth dose profiles in a Snyder head phantom were simulated with the MCNP code for a number of BSA configurations. In order to optimize the treatment capabilities, the BSA configuration was determined as the one that allows maximizing both the tumor dose and the penetration depth while keeping doses to healthy tissues under the tolerance limits. Significant doses to tumor tissues were achieved up to ∼6cm in depth. Peak doses up to 57Gy-Eq can be delivered in a fractionated scheme of 2 irradiations of approximately 1h each. In a single 1h irradiation, lower but still acceptable doses to tumor are also feasible. Treatment capabilities obtained here are comparable to those achieved with other accelerator-based neutron sources, making of the (13)C(d,n)(14)N reaction a realistic option for producing therapeutic neutron beams through a low-energy particle accelerator. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  18. Application of generalized perturbation theory to sensitivity analysis in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas

    2011-07-01

    Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)

  19. Radiobiology of boron neutron capture therapy: Problems with the concept of relative biological effectiveness

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Makar, M.S.

    1990-01-01

    The radiation dose delivered to cells in vitro or vivo during boron neutron capture therapy (BNCT) is a mixture of photons, fast neutrons and heavy charged particles from the interaction of neutrons with nitrogen and born. The concept of relative biological effectiveness (RBE) had been developed to allow comparison of the effects of these radiations with the effects of standard photon treatments such as 250 kVp x-rays or {sup 60}Co gamma rays. The RBE value for all of these high linear energy transfer radiations can vary considerably depending upon the experimental conditions and endpoint utilized. The short range of the particles from the {sup 10}B(n,{alpha}) {sup 7}Li reaction make the precise subcellular location of the {sup 10}B atom of critical importance. The microscopic distribution of the {sup 10}B has a decided effect on the dosimetry. Monte Carlo simulations have shown that, at the cellular level, there is a profound difference in the probability of cell kill depending on the location of the {sup 10}B relative to the nucleus. Different boron-delivery agents will almost certainly have different distribution patterns at the subcellular level. The effect of BNCT with the amino acid p-boronophenylalanine (BPA) was compared with the effect of 250 kVp x-rays on a pigmented B16 melanoma subclone, both in vitro and in vivo. Generally accepted RBE values were applied to the relevant components of the Brookhaven Medical Research Reactor (BMRR) thermal neutron beam, however, there were still discrepancies when the resulting dose response curves were compared with the response to 250 kVp x-rays.

  20. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model.

    Directory of Open Access Journals (Sweden)

    Kiyoshi Takahara

    Full Text Available Boron neutron capture therapy (BNCT is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa using an in vivo mouse xenograft model that we have developed.Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA; Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment.The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean ± SD 6.9 ± 1.5 vs 12.7 ± 4.0, p<0.05, while there was no difference in the number of apoptotic cells, suggesting that BPA-mediated BNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment.This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.

  1. The Anti-Proliferative Effect of Boron Neutron Capture Therapy in a Prostate Cancer Xenograft Model.

    Science.gov (United States)

    Takahara, Kiyoshi; Inamoto, Teruo; Minami, Koichiro; Yoshikawa, Yuki; Takai, Tomoaki; Ibuki, Naokazu; Hirano, Hajime; Nomi, Hayahito; Kawabata, Shinji; Kiyama, Satoshi; Miyatake, Shin-Ichi; Kuroiwa, Toshihiko; Suzuki, Minoru; Kirihata, Mitsunori; Azuma, Haruhito

    2015-01-01

    Boron neutron capture therapy (BNCT) is a selective radiation treatment for tumors that preferentially accumulate drugs carrying the stable boron isotope, 10B. BNCT has been evaluated clinically as an alternative to conventional radiation therapy for the treatment of brain tumors, and more recently, recurrent advanced head and neck cancer. Here we investigated the effect of BNCT on prostate cancer (PCa) using an in vivo mouse xenograft model that we have developed. Mice bearing the xenotransplanted androgen-independent human PCa cell line, PC3, were divided into four groups: Group 1: untreated controls; Group 2: Boronophenylalanine (BPA); Group 3: neutron; Group 4: BPA-mediated BNCT. We compared xenograft growth among these groups, and the body weight and any motility disturbance were recorded. Immunohistochemical (IHC) studies of the proliferation marker, Ki-67, and TUNEL staining were performed 9 weeks after treatment. The in vivo studies demonstrated that BPA-mediated BNCT significantly delayed tumor growth in comparison with the other groups, without any severe adverse events. There was a significant difference in the rate of freedom from gait abnormalities between the BPA-mediated BNCT group and the other groups. The IHC studies revealed that BNCT treatment significantly reduced the number of Ki-67-positive cells in comparison with the controls (mean ± SD 6.9 ± 1.5 vs 12.7 ± 4.0, pBNCT reduced PCa progression without affecting apoptosis at 9 weeks post-treatment. This study has provided the first preclinical proof-of-principle data to indicate that BPA-mediated BNCT reduces the in vivo growth of PCa. Although further studies will be necessary, BNCT might be a novel potential treatment for PCa.

  2. Selective uptake of p-boronophenylalanine by osteosarcoma cells for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, C. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy)], E-mail: ferraric@unipv.it; Zonta, C.; Cansolino, L.; Clerici, A.M.; Gaspari, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy); Altieri, S.; Bortolussi, S.; Stella, S. [Department of Nuclear and Theoretical Physics of University, Via Bassi, 6, Pavia (Italy); National Institute of Nuclear Physics (INFN) Section of Pavia, Via Bassi, 6, Pavia (Italy); Bruschi, P. [Department of Nuclear and Theoretical Physics of University, Via Bassi, 6, Pavia (Italy); Dionigi, P.; Zonta, A. [Department of Surgery, Experimental Surgery Laboratory, University of Pavia, Piazza Botta, Pavia (Italy)

    2009-07-15

    Osteosarcoma is the most common non-hematologic primary cancer type that develops in bone. Current osteosarcoma treatments combine multiagent chemotherapy with extensive surgical resection, which in some cases makes necessary the amputation of the entire limb. Nevertheless its infiltrative growth leads to a high incidence of local and distant recurrences that reduce the percentage of cured patients to less than 60%. These poor data required to set up a new therapeutic approach aimed to restrict the surgical removal meanwhile performing a radical treatment. Boron neutron capture therapy (BNCT), a particular radiotherapy based on the nuclear capture and fission reactions by atoms of {sup 10}B, when irradiated with thermal neutrons, could be a valid alternative or integrative option in case of osteosarcoma management, thanks to its peculiarity in selectively destroying neoplastic cells without damaging normal tissues. Aim of the present work is to investigate the feasibility of employing BNCT to treat the limb osteosarcoma. Boronophenylalanine (BPA) is used to carry {sup 10}B inside the neoplastic cells. As a first step the endocellular BPA uptake is tested in vitro on the UMR-106 osteosarcoma cell line. The results show an adequate accumulation capability. For the in vivo experiments, an animal tumor model is developed in Sprague-Dawley rats by means of an intrafemoral injection of UMR-106 cells at the condyle site. The absolute amounts of boron loading and the tumor to normal tissue {sup 10}B ratio are evaluated 2 h after the i.v. administration of BPA. The boron uptake by the neoplastic tissue is almost twice the normal one. However, higher values of boron concentration in tumor are requested before upholding BNCT as a valid therapeutic option in the treatment of osteosarcoma.

  3. Neutron Capture and the Production of 60-Fe in Stellar Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Kevin [Univ. of California, Davis, CA (United States)

    2005-01-01

    The observation of gamma rays associated with the decay of 26Al and 60Fe can provide important information regarding ongoing nucleosynthesis in our galaxy. The half-lives of these radioisotopes (7.2 x 105 y and 1.5 x 106 y, respectively) are long compared to the interval between synthesis events such as supernovae, so they build up in a steady state in the interstellar medium (centered on the galactic plane, where massive stars reside), yet short enough that gamma radiation from their decay may be detected. Additionally, these half-lifes are short compared to the period of galactic revolution, so that observable abundances remain in the proximity of their production sites. Predicted abundances of 26Al and 60Fe vary widely between several calculations in the last decade. In 2004, the first observation of the gamma ray flux from 60Fe decay was reported, with a 60Fe/26Al flux ratio in good agreement with nucleosynthesis modeling from 1995. However, recent calculations that include well motivated updates to the stellar and nuclear physics, predict a flux ratio as much as six times higher than the observed value. It is desirable to understand the discrepancy between the latest calculation, which in principle should have been more accurate, and the observation. In the present study, the uncertainties related to two key nuclear aspects of this problem, namely the neutron capture reaction rates for 59, 60Fe, are investigated. New reaction rates are modeled using local systematics as opposed to the global systematics used in previous studies. Comparisons to experimental data are made whenever possible. The sensitivity of the reaction rates to various input quantities is gauged, and estimates regarding the total uncertainty in the reaction rates are made. The resulting rates and uncertainties are used in parameterized single-zone nucleosynthesis calculations using

  4. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Science.gov (United States)

    2010-01-01

    Background Boron neutron capture therapy (BNCT) is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE) of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR) and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU) in China. Human glioma cells (the U87, U251, and SHG44 cell lines) were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine)-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT) cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM). The apoptosis rate was detected by flow cytometer (FCM). The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P BNCT. Furthermore, the cellular apoptotic rates in Group D and Group E treated with BPA-BNCT were significantly higher than those in Group B and Group C irradiated by [60Co] γ-rays (P BNCT compared with cells

  5. Boron neutron capture therapy induces apoptosis of glioma cells through Bcl-2/Bax

    Directory of Open Access Journals (Sweden)

    Mao Xinggang

    2010-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is an alternative treatment modality for patients with glioma. The aim of this study was to determine whether induction of apoptosis contributes to the main therapeutic efficacy of BNCT and to compare the relative biological effect (RBE of BNCT, γ-ray and reactor neutron irradiation. Methods The neutron beam was obtained from the Xi'an Pulsed Reactor (XAPR and γ-rays were obtained from [60Co] γ source of the Fourth Military Medical University (FMMU in China. Human glioma cells (the U87, U251, and SHG44 cell lines were irradiated by neutron beams at the XAPR or [60Co] γ-rays at the FMMU with different protocols: Group A included control nonirradiated cells; Group B included cells treated with 4 Gy of [60Co] γ-rays; Group C included cells treated with 8 Gy of [60Co] γ-rays; Group D included cells treated with 4 Gy BPA (p-borono-phenylalanine-BNCT; Group E included cells treated with 8 Gy BPA-BNCT; Group F included cells irradiated in the reactor for the same treatment period as used for Group D; Group G included cells irradiated in the reactor for the same treatment period as used for Group E; Group H included cells irradiated with 4 Gy in the reactor; and Group I included cells irradiated with 8 Gy in the reactor. Cell survival was determined using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium (MTT cytotoxicity assay. The morphology of cells was detected by Hoechst33342 staining and transmission electron microscope (TEM. The apoptosis rate was detected by flow cytometer (FCM. The level of Bcl-2 and Bax protein was measured by western blot analysis. Results Proliferation of U87, U251, and SHG44 cells was much more strongly inhibited by BPA-BNCT than by irradiation with [60Co] γ-rays (P 60Co] γ-rays (P P Conclusions Compared with ��-ray and reactor neutron irradiation, a higher RBE can be achieved upon treatment of glioma cells with BNCT. Glioma cell apoptosis induced by

  6. Ceramic microfabrication by rapid prototyping process chains

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    fast and inexpensive supply for polymer master models and a ceramic shaping method that enables the replication of the RP model into multiple ceramic materials within a short time. (Knitter et al 1999). 2. Rapid prototyping process chains. The manufacturing of ceramic microparts presented here set out with the 3D-CAD ...

  7. PEMODELAN KOLIMATOR DI RADIAL BEAM PORT REAKTOR KARTINI UNTUK BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Bemby Yulio Vallenry

    2015-03-01

    Full Text Available Salah satu metode terapi kanker adalah Boron Neutron Capture Therapy (BNCT. BNCT memanfaatkan tangkapan neutron oleh 10B yang terendapkan pada sel kanker. Keunggulan BNCT dibandingkan dengan terapi radiasi lainnya adalah tingkat selektivitas yang tinggi karena tingkatannya adalah sel. Pada penelitian ini dilakukan pemodelan kolimator di radial beamport reaktor Kartini sebagai dasar pemilihan material dan manufature kolimator sebagai sumber neutron untuk BNCT. Pemodelan ini dilakukan dengan simulasi menggunakan perangkat lunak Monte Carlo N-Particle versi 5 (MCNP 5. MCNP 5 adalah suatu paket program untuk memodelkan sekaligus menghitung masalah transpor partikel dengan mengikuti sejarah hidup neutron semenjak lahir, bertranspor pada bahan hingga akhirnya hilang karena mengalami reaksi penyerapan atau keluar dari sistem. Pemodelan ini menggunakan variasi material dan ukurannya agar menghasilkan nilai dari tiap parameter-parameter yang sesuai dengan rekomendasi I International Atomic Energy Agency (IAEA untuk BNCT, yaitu fluks neutron epitermal (Фepi > 9 n.cm-2.s-1, rasio antara laju dosis neutron cepat dan fluks neutron epitermal (Ḋf/Фepi 0,7. Berdasarkan hasil optimasi dari pemodelan ini, material dan ukuran penyusun kolimator yang didapatkan yaitu 0,75 cm Ni sebagai dinding kolimator, 22 cm Al sebagai moderator dan 4,5 cm Bi sebagai perisai gamma. Keluaran berkas radiasi yang dihasilkan dari pemodelan kolimator radial beamport yaitu Фepi = 5,25 x 106 n.cm-2s-1, Ḋf/Фepi =1,17 x 10-13 Gy.cm2.n-1, Ḋγ/Фepi = 1,70 x 10-12 Gy.cm2.n-1, Фth/Фepi = 1,51 dan J/Фepi = 0,731. Berdasarkan penelitian ini, hasil optimasi 5 parameter sebagai persyaratan kolimator untuk BNCT yang keluar dari radial beam port tidak sepenuhnya memenuhi kriteria yang direkomendasikan oleh IAEA sehingga perlu dilakukan penelitian lebih lanjut agar tercapainya persyaratan IAEA. Kata kunci: BNCT, radial beamport, MCNP 5, kolimator   One of the cancer therapy methods is

  8. Experiments with neutron beams for the astrophysical s process

    Science.gov (United States)

    Lederer, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Hernández-Prieto, A.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Leeb, H.; Leong, L. S.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondalaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Robles, M. S.; Roman, F.; Rubbia, C.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiβ, C.; Wright, T.; Žugec, P.

    2016-01-01

    Neutron capture cross sections are the key nuclear physics input to study the slow neutron capture process, which is responsible for forming about half of the elemental abundances above Fe. Stellar neutron capture cross section can be measured by the time-of-flight technique, or by activation. Both techniques will be discussed and recent experiments in the Fe/Ni mass region will be presented.

  9. Molecular Medicine: Synthesis and In Vivo Detection of Agents for use in Boron Neutron Capture Therapy. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kabalka, G. W.

    2005-06-28

    The primary objective of the project was the development of in vivo methods for the detection and evaluation of tumors in humans. The project was focused on utilizing positron emission tomography (PET) to monitor the distribution and pharamacokinetics of a current boron neutron capture therapy (BNCT) agent, p-boronophenylalanine (BPA) by labeling it with a fluorine-18, a positron emitting isotope. The PET data was then used to develop enhanced treatment planning protocols. The study also involved the synthesis of new tumor selective BNCTagents that could be labeled with radioactive nuclides for the in vivo detection of boron.

  10. Radiochemical determination of the neutron capture cross sections of {sup 241}Am irradiated in the JMTR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, N.; Hatsukawa, Y.; Hata, K.; Kohno, N. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The thermal neutron capture cross section {sigma}{sub 0} and Resonance integral I{sub 0} of {sup 241}Am leading to the production of {sup 242m}Am and {sup 242g}Am were measured by radiochemical method. The cross sections obtained in this study are {sigma}{sub 0}=60.9 {+-} 2.6 barn, I{sub 0}=213 {+-} 13 barn for {sup 241}Am(n,{gamma}){sup 242m}Am and {sigma}{sub 0}=736 {+-} 31 barn, I{sub 0}=1684 {+-} 92 barn for {sup 241}Am(n,{gamma}){sup 242g}Am. (author)

  11. Boron neutron capture therapy (BNCT) for glioblastoma multiforme using the epithermal neutron beam at the Brookhaven Medical Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Capala, J. [Brookhaven National Lab., Upton, NY (United States); Diaz, A.Z.; Chadha, M. [Univ. Hospital, State Univ. of New York, NY (United States)] [and others

    1997-12-31

    The abstract describes evaluation of boron neutron capture therapy (BNCT) for two groups of glioblastoma multiforme patients. From September 1994 to February 1996 15 patients have been treated. In September 1997 another 34 patients were examined. Authors determined a safe starting dose for BNCT using epithermal neutrons and BPA-F. They have also evaluated adverse effects of BNCT at this starting dose. Therapeutic effectiveness of this starting dose has been evaluated. No significant side effects from BPA-F infusion or BNCT treatment were observed in normal brains.

  12. Measurement of in-phantom neutron flux and gamma dose in Tehran research reactor boron neutron capture therapy beam line.

    Science.gov (United States)

    Bavarnegin, Elham; Sadremomtaz, Alireza; Khalafi, Hossein; Kasesaz, Yaser

    2016-01-01

    Determination of in-phantom quality factors of Tehran research reactor (TRR) boron neutron capture therapy (BNCT) beam. The doses from thermal neutron reactions with 14N and 10B are calculated by kinetic energy released per unit mass approach, after measuring thermal neutron flux using neutron activation technique. Gamma dose is measured using TLD-700 dosimeter. Different dose components have been measured in a head phantom which has been designed and constructed for BNCT purpose in TRR. Different in-phantom beam quality factors have also been determined. This study demonstrates that the TRR BNCT beam line has potential for treatment of superficial tumors.

  13. Boron neutron capture therapy (BNCT) for newly-diagnosed glioblastoma: comparison of clinical results obtained with BNCT and conventional treatment.

    Science.gov (United States)

    Kageji, Teruyoshi; Nagahiro, Shinji; Mizobuchi, Yoshifumi; Matsuzaki, Kazuhito; Nakagawa, Yoshinobu; Kumada, Hiroaki

    2014-01-01

    The purpose of this study was to evaluate the clinical outcome of boron neutron capture therapy (BNCT) and conventional treatment in patients with newly diagnosed glioblastoma. Since 1998 we treated 23 newly-diagosed GBM patients with BNCT without any additional chemotherapy. Their median survival time was 19.5 months; the 2-, 3-, and 5-year survival rates were 31.8%, 22.7%, and 9.1%, respectively. The clinical results of BNCT in patients with GBM are similar to those of recent conventional treatments based on radiotherapy with concomitant and adjuvant temozolomide.

  14. Correlation between radiation dose and histopathological findings in patients with gliblastoma treated with boron neutron capture therapy (BNCT).

    Science.gov (United States)

    Kageji, T; Mizobuchi, Y; Nagahiro, S; Nakagawa, Y; Kumada, H

    2014-06-01

    The purpose of this study was to clarify the correlation between the radiation dose and histopathological findings in patients with glioblastoma multiforme (GBM) treated with boron neutron capture therapy (BNCT). Histopathological studies were performed on specimens from 8 patients, 3 had undergone salvage surgery and 5 were autopsied. For histopathological cure of GBM at the primary site, the optimal minimal dose to the gross tumor volume (GTV) and the clinical target volume (CTV) were 68Gy(w) and 44Gy(w), respectively. Copyright © 2014. Published by Elsevier Ltd.

  15. Rapid thermal processing science and technology

    CERN Document Server

    Fair, Richard B

    1993-01-01

    This is the first definitive book on rapid thermal processing (RTP), an essential namufacturing technology for single-wafer processing in highly controlled environments. Written and edited by nine experts in the field, this book covers a range of topics for academics and engineers alike, moving from basic theory to advanced technology for wafer manufacturing. The book also provides new information on the suitability or RTP for thin film deposition, junction formation, silicides, epitaxy, and in situ processing. Complete discussions on equipment designs and comparisons between RTP and other

  16. Nuclear reaction secondary particle dose distributions and dose enhancement by boron neutron capture in proton beam therapy evaluated using the LAHET code system

    Science.gov (United States)

    Laky, Peter Gyula

    The objective of this study was to use the LAHET Code System (LCS), which has recently been used in shielding calculations for proton therapy, to model the proton, neutron and photon dose and equivalent dose distributions created in tissue during proton beam cancer therapy. Proton beams used for therapy have shown distinct advantages over other therapeutic radiation treatments due to the rapid distal dose falloff in the region of the Bragg Peak. Nuclear reactions caused by the primary proton beam in beam modifying devices and patient tissues create secondary particles which contribute to the dose received by the patient inside and outside of the targeted region. The spatial distribution of the dose created by these secondary particles is an important consideration in the choice of beam modification methods and treatment volume planning, since a goal of radiation therapy is to minimize dose to normal tissue while maximizing dose to the tumor. The photon dose was found to be negligible in all target regions. The neutron dose and dose equivalent were found to be negligible in the tissue volume targeted for proton beam therapy, but contributed a majority of the dose outside of the treatment volume. Finally, LAHET was used to evaluate the utility of exploiting the secondary neutrons for supplemental boron neutron capture therapy during proton beam therapy. These results indicate that the additional useful dose due to BNCT is negligible.

  17. ESR-dosimetry in thermal and epithermal neutron fields for application in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, Tobias

    2016-01-22

    Dosimetry is essential for every form of radiotherapy. In Boron Neutron Capture Therapy (BNCT) mixed neutron and gamma fields have to be considered. Dose is deposited in different neutron interactions with elements in the penetrated tissue and by gamma particles, which are always part of a neutron field. The therapeutic dose in BNCT is deposited by densely ionising particles, originating from the fragmentation of the isotope boron-10 after capture of a thermal neutron. Despite being investigated for decades, dosimetry in neutron beams or fields for BNCT remains complex, due to the variety in type and energy of the secondary particles. Today usually ionisation chambers combined with metal foils are used. The applied techniques require extensive effort and are time consuming, while the resulting uncertainties remain high. Consequently, the investigation of more effective techniques or alternative dosimeters is an important field of research. In this work the possibilities of ESR-dosimeters in those fields have been investigated. Certain materials, such as alanine, generate stable radicals upon irradiation. Using Electron Spin Resonance (ESR) spectrometry the amount of radicals, which is proportional to absorbed dose, can be quantified. Different ESR detector materials have been irradiated in the thermal neutron field of the research reactor TRIGA research reactor in Mainz, Germany, with five setups, generating different secondary particle spectra. Further irradiations have been conducted in two epithermal neutron beams. The detector response, however, strongly depends on the dose depositing particle type and energy. It is hence necessary to accompany measurements by computational modelling and simulation. In this work the Monte Carlo code FLUKA was used to calculate absorbed doses and dose components. The relative effectiveness (RE), linking absorbed dose and detector response, has been calculated using amorphous track models. For the simulation, detailed models of

  18. Dosimetry and dose planning in boron neutron capture therapy : Monte Carlo studies

    Energy Technology Data Exchange (ETDEWEB)

    Koivunoro, H.

    2012-07-01

    Boron neutron capture therapy (BNCT) is a biologically targeted radiotherapy modality. So far, 249 cancer patients have received BNCT at the Finnish Research Reactor 1 (FiR 1) in Finland. The effectiveness and safety of radiotherapy are dependent on the radiation dose delivered to the tumor and healthy tissues, and on the accuracy of the doses. At FiR 1, patient dose calculations are performed with the Monte Carlo (MC) -based treatmentplanning system (TPS), Simulation Environment for Radiotherapy Applications (SERA). Initially, BNCT was applied to head and neck cancer, brain tumors, and malignant melanoma. To evaluate the applicability of the new target tumors for BNCT, calculation dosimetry studies are needed. So far, clinical BNCT has been performed with the neutrons from a nuclear reactor, while an accelerator based neutron sources applicable for hospital operation would be preferable. In this thesis, BNCT patient dose calculation practice in Finland was evaluated against reference calculations and experimental data in several cases. Calculations with two TPSs applied in clinical BNCT were compared. The suitability of the deuterium-deuterium (DD) and deuterium-tritium (D-T) fusion reaction-based compact neutron sources for BNCT were evaluated. In addition, feasibility of BNCT for noninvasive liver tumor treatments was examined. The deviation between SERA and the reference calculations was within 4% in the phantoms studied and in a brain cancer patient model elsewhere, except on the phantom or skin surface, for the boron, nitrogen, and photon dose components. These dose components produce 99% of the tumor dose and > 90% of the healthy tissue dose at points of relevance for treatment at the FiR 1 facility. The reduced voxel cell size ({<=} 0.5 cm) in the SERA edit mesh improved calculation accuracy on the surface. The erratic biased fastneutron run option in SERA led to significant underestimation (up to 30-60%) of the fastneutron dose, while more accurate fast

  19. Development and in vitro testing of liposomal gadolinium-formulations for neutron capture therapy of glioblastoma multiforme

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Tanja

    2013-10-29

    For the improvement of current neutron capture therapy, several liposomal formulations of neutron capture agent gadolinium were developed and tested in a glioma cell model. Formulations were analyzed regarding physicochemical and biological parameters, such as size, zeta potential, uptake into cancer cells and performance under neutron irradiation. The neutron and photon dose derived from intracellular as well as extracellular Gd was calculated via Monte Carlo simulations and set in correlation with the reduction of cell survival after irradiation. To investigate the suitability of Gd as a radiosensitizer for photon radiation, cells were also irradiated with synchrotron radiation in addition to clinically used photons generated by linear accelerator. Irradiation with neutrons led to significantly lower survival for Gd-liposome-treated F98 and LN229 cells, compared to irradiated control cells and cells treated with non-liposomal Gd-DTPA. Correlation between Gd-content and -dose and respective cell survival displayed proportional relationship for most of the applied formulations. Photon irradiation experiments showed the proof-of-principle for the radiosensitizer approach, although the photon spectra currently used have to be optimized for higher efficiency of the radiosensitizer. In conclusion, the newly developed Gd-liposomes show great potential for the improvement of radiation treatment options for highly malignant glioblastoma.

  20. Preliminary evaluation of neutron capture cross sections for /sup 144/Sm, /sup 145/Sm and /sup 145/Pm

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, D.G.; Gardner, M.A.

    1986-02-13

    We have made preliminary neutron-capture cross-section calculations of the Hauser-Feshbach type for the isotopes /sup 144/Sm, /sup 145/Sm, and /sup 145/Pm to investigate the production of radioactive /sup 145/Pm by neutron capture on the stable isotope /sup 144/Sm. The calculations were made for incident neutron energies from 2.5 MeV to about 1/sup -4/ or 10/sup -5/ MeV, wherever the first unbound resonance was estimated to occur in each case. At that energy, the calculated value was reduced by a somewhat arbitrary factor, and the excitation function extended down to thermal energy using a (E/sub n/)/sup -1/2/ energy dependence. Since very large uncertainties are associated with the position and magnitude of the first unbound resonance and the subsequent extrapolation back to thermal energy, the cross sections in this low-energy region should not be considered more accurate than +- a factor of 10. For incident neutron energies above each step, the calculations represent an average through the separated and overlapping resonance regions and may be accurate to better than +- a factor of 2. 18 refs., 7 figs., 5 tabs.

  1. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234 , 236 , 238U Neutron-Capture Cross Sections

    Science.gov (United States)

    Ullmann, J. L.; Krticka, M.; Kawano, T.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Haight, R. C.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wilhelmy, J. B.; Becker, J. A.; Wu, C. Y.; Chyzh, A.

    2015-10-01

    Calculations of the neutron-capture cross section at low neutron energies (10 eV through 100's of keV) are very sensitive to the nuclear level density and radiative strength function. These quantities are often poorly known, especially for radioactive targets, and actual measurements of the capture cross section are usually required. An additional constraint on the calculation of the capture cross section is provided by measurements of the cascade gamma spectrum following neutron capture. Recent measurements of 234 , 236 , 238U(n, γ) emission spectra made using the DANCE 4 π BaF2 array at the Los Alamos Neutron Science Center will be presented. Calculations of gamma-ray spectra made using the DICEBOX code and of the capture cross section made using the CoH3 code will also be presented. These techniques may be also useful for calculations of more unstable nuclides. This work was performed with the support of the U.S. Department of Energy, National Nuclear Security Administration by Los Alamos National Security, LLC (Contract DE-AC52-06NA25396) and Lawrence Livermore National Security, LLC (Contract DE-AC52-07NA2734).

  2. Apoptosis through Bcl-2/Bax and cleaved caspase up-regulation in melanoma treated by boron neutron capture therapy.

    Directory of Open Access Journals (Sweden)

    Fernanda Faião-Flores

    Full Text Available Boron neutron capture therapy (BNCT is a binary treatment involving selective accumulation of boron carriers in a tumor followed by irradiation with a thermal or epithermal neutron beam. The neutron capture reaction with a boron-10 nucleus yields high linear energy transfer (LET particles, alpha and (7Li, with a range of 5 to 9 µm. These particles can only travel very short distances and release their damaging energy directly into the cells containing the boron compound. We aimed to evaluate proliferation, apoptosis and extracellular matrix (ECM modifications of B16F10 melanoma and normal human melanocytes after BNCT. The amounts of soluble collagen and Hsp47, indicating collagen synthesis in the ECM, as well as the cellular markers of apoptosis, were investigated. BNCT decreased proliferation, altered the ECM by decreasing collagen synthesis and induced apoptosis by regulating Bcl-2/Bax in melanoma. Additionally, BNCT also increased the levels of TNF receptor and the cleaved caspases 3, 7, 8 and 9 in melanoma. These results suggest that multiple pathways related to cell death and cell cycle arrest are involved in the treatment of melanoma by BNCT.

  3. Solar nebula heterogeneity in p-process samarium and neodymium isotopes.

    Science.gov (United States)

    Andreasen, Rasmus; Sharma, Mukul

    2006-11-03

    Bulk carbonaceous chondrites display a deficit of approximately 100 parts per million (ppm) in 144Sm with respect to other meteorites and terrestrial standards, leading to a decrease in their 142Nd/144Nd ratios by approximately 11 ppm. The data require that samarium and neodymium isotopes produced by the p process associated with photodisintegration reactions in supernovae were heterogeneously distributed in the solar nebula. Other samarium and neodymium isotopes produced by rapid neutron capture (r process) in supernovae and by slow neutron capture (s process) in red giants were homogeneously distributed. The supernovae sources supplying the p- and r-process nuclides to the solar nebula were thus disconnected or only weakly connected.

  4. The temporal evolution of neutron-capture elements in the Galactic discs

    Science.gov (United States)

    Spina, Lorenzo; Meléndez, Jorge; Karakas, Amanda I.; dos Santos, Leonardo; Bedell, Megan; Asplund, Martin; Ramírez, Ivan; Yong, David; Alves-Brito, Alan; Bean, Jacob L.; Dreizler, Stefan

    2018-02-01

    Important insights into the formation and evolution of the Galactic disc(s) are contained in the chemical compositions of stars. We analysed high-resolution and high signal-to-noise HARPS spectra of 79 solar twin stars in order to obtain precise determinations of their atmospheric parameters, ages (σ ˜0.4 Gyr) and chemical abundances (σ age relations over a time interval of ˜10 Gyr and among stars belonging to the thin and thick discs. These relations show that (i) the s-process has been the main channel of nucleosynthesis of n-capture elements during the evolution of the thin disc; (ii) the thick disc is rich in r-process elements which suggests that its formation has been rapid and intensive. In addition, the heavy (Ba, La, Ce) and light (Sr, Y, Zr) s-process elements revealed details on the dependence between the yields of AGB stars and the stellar mass or metallicity. Finally, we confirmed that both [Y/Mg] and [Y/Al] ratios can be employed as stellar clocks, allowing ages of solar twin stars to be estimated with an average precision of ˜0.5 Gyr.

  5. Approximating the r-Process on Earth with Thermonuclear Explosions. Lessons Learned and Unanswered Questions

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stephen Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-01-28

    During the astrophysical r-process, multiple neutron captures occur so rapidly on target nuclei that their daughter nuclei generally do not have time to undergo radioactive decay before another neutron is captured. The r-process can be approximately simulated on Earth in certain types of thermonuclear explosions through an analogous process of rapid neutron captures known as the "prompt capture" process. Between 1952 and 1969, 23 nuclear tests were fielded by the US which were involved (at least partially) with the "prompt capture" process. Of these tests, 15 were at least partially successful. Some of these tests were conducted under the Plowshare Peaceful Nuclear Explosion Program as scientific research experiments. It is now known that the USSR conducted similar nuclear tests during 1966 to 1979. The elements einsteinium and fermium were first discovered by this process. The most successful tests achieved 19 successive neutron captures on the initial target nuclei. A review of the US program, target nuclei used, heavy element yields, scientific achievements of the program, and how some of the results have been used by the astrophysical community is given. Finally, some unanswered questions concerning very neutron-rich nuclei that could potentially have been answered with additional nuclear experiments is presented.

  6. Measurement of the neutron capture cross section of the s-only isotope 204Pb from 1 eV to 440 keV

    CERN Document Server

    Domingo-Pardo, C.; Aerts, G.; Alvarez-Pol, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Bisterzo, S.; Calvino, F.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Dolfini, R.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fitzpatrick, L.; Frais-Koelbl, H.; Fujii, K.; Furman, W.; Gallino, R.; Goncalves, I.; Gonzalez-Romero, E.; Goverdovski, A.; Gramegna, F.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Isaev, S.; Jericha, E.; Kadi, Y.; Kappeler, F.; Karamanis, D.; Karadimos, D.; Kerveno, M.; Ketlerov, V.; Koehler, P.; Konovalov, V.; Kossionides, E.; Krticka, M.; Lamboudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; Oshima, M.; O'Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rosetti, M.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wendler, H.; Wiescher, M.; Wisshak, K.

    2007-01-01

    The neutron capture cross section of 204Pb has been measured at the CERN n_TOF installation with high resolution in the energy range from 1 eV to 440 keV. An R-matrix analysis of the resolved resonance region, between 1 eV and 100 keV, was carried out using the SAMMY code. In the interval between 100 keV and 440 keV we report the average capture cross section. The background in the entire neutron energy range could be reliably determined from the measurement of a 208Pb sample. Other systematic effects in this measurement could be investigated and precisely corrected by means of detailed Monte Carlo simulations. We obtain a Maxwellian average capture cross section for 204Pb at kT=30 keV of 79(3) mb, in agreement with previous experiments. However our cross section at kT=5 keV is about 35% larger than the values reported so far. The implications of the new cross section for the s-process abundance contributions in the Pb/Bi region are discussed.

  7. Rapid thermal processing and beyond applications in semiconductor processing

    CERN Document Server

    Lerch, W

    2008-01-01

    Heat-treatment and thermal annealing are very common processing steps which have been employed during semiconductor manufacturing right from the beginning of integrated circuit technology. In order to minimize undesired diffusion, and other thermal budget-dependent effects, the trend has been to reduce the annealing time sharply by switching from standard furnace batch-processing (involving several hours or even days), to rapid thermal processing involving soaking times of just a few seconds. This transition from thermal equilibrium, to highly non-equilibrium, processing was very challenging a

  8. Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum

    Science.gov (United States)

    Sands, D. G.; De Laeter, J. R.; Rosman, K. J. R.

    2001-04-01

    The bombardment of the lunar surface by cosmic rays produces secondary neutrons, some of which are thermalized by the lunar soil and then interact strongly with the isotopes of Cd, Gd and Sm which have high neutron capture cross sections at thermal energies causing changes in their isotopic compositions. We have measured these changes in samples from the Apollo 14, 16 and 17 missions using thermal ionization mass spectrometry. Changes of 114Cd/113Cd of 0.3-0.5% in samples 60501,105, 65701,23 and 72161,73, of 0.4 and 0.8% in 158Gd/157Gd in samples 14163,848 and 60501,105 and of 0.8, 1.2 and 0.06% for 150Sm/149Sm in samples 14163,848 and 60501,105 and 74220,125 respectively, have been observed. This is the first time that neutron capture on Cd has been detected in lunar samples. Thermal neutrons are captured preferentially at resonance energies of 0.03 eV by 155Gd and 157Gd, at 0.09 eV by 149Sm and at 0.178 eV by 113Cd. A comparison of the changes in 114Cd/113Cd, 156Gd/155Gd, 158Gd/157Gd and 150Sm/149Sm due to neutron capture can therefore indicate the energy distribution of the neutrons. Previous work has compared changes in 158Gd/157Gd and 150Sm/149Sm, while this study extends the comparison to 114Cd/113Cd, where the resonance energy is significantly higher. This has enabled us to confirm evidence for a harder neutron energy spectrum in lunar soil than is predicted theoretically. This can be seen in significantly higher capture rates than predicted for 149Sm compared to 157Gd. We also present evidence of enhanced capture rates on 113Cd compared with 149Sm and 157Gd. The concentrations of Cd, Gd and Sm in nine lunar samples have also been measured by isotope dilution mass spectrometry with Cd being measured in lunar samples for the first time by this method. While Cd was found to be heterogeneously distributed in some samples, Gd and Sm showed good agreement with previous measurements, except for sample 14163,848 where it was significantly lower.

  9. Computational characterization and experimental validation of the thermal neutron source for neutron capture therapy research at the University of Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Broekman, J. D. [University of Missouri, Research Reactor Center, 1513 Research Park Drive, Columbia, MO 65211-3400 (United States); Nigg, D. W. [Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415 (United States); Hawthorne, M. F. [University of Missouri, International Institute of Nano and Molecular Medicine, 1514 Research Park Dr., Columbia, MO 65211-3450 (United States)

    2013-07-01

    Parameter studies, design calculations and neutronic performance measurements have been completed for a new thermal neutron beamline constructed for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. Validation protocols based on neutron activation spectrometry measurements and rigorous least-square adjustment techniques show that the beam produces a neutron spectrum that has the anticipated level of thermal neutron flux and a somewhat higher than expected, but radio-biologically insignificant, epithermal neutron flux component. (authors)

  10. Importance of nuclear triaxiality for electromagnetic strength, level density and neutron capture cross sections in heavy nuclei

    CERN Document Server

    Grosse, Eckart; Massarczyk, Ralph

    2014-01-01

    Cross sections for neutron capture in the range of unresolved resonances are predicted simultaneously to level distances at the neutron threshold for more than 100 spin-0 target nuclei with A >70. Assuming triaxiality in nearly all these nuclei a combined parameterization for both, level density and photon strength is presented. The strength functions used are based on a global fit to IVGDR shapes by the sum of three Lorentzians adding up to the TRK sum rule and theory-based predictions for the A-dependence of pole energies and spreading widths. For the small spins reached by capture level densities are well described by only one free global parameter; a significant collective enhancement due to the deviation from axial symmetry is observed. Reliable predictions for compound nuclear reactions also outside the valley of stability as expected from the derived global parameterization are important for nuclear astrophysics and for the transmutation of nuclear waste.

  11. Neutron capture cross section measurements and theoretical calculation for the {sup 186}W(n,γ){sup 187}W reaction

    Energy Technology Data Exchange (ETDEWEB)

    Al-abyad, Mogahed; Mohamed, Gehan Y. [Atomic Energy Authority, Cairo (Egypt). Experimental Nuclear Physics Dept.

    2017-08-01

    Neutron capture cross section (σ{sub 0}) and resonance integral (I{sub 0}) of the reaction {sup 186}W(n,γ){sup 187}W were measured experimentally using the research reactor (ETRR-2) and an Am-Be neutron source, also calculated using TALYS-1.6 code. The present results of σ{sub 0} are (39.08±2.6, 38.75±0.98 and 38.33 barn) and I{sub 0} are (418.5±74, 439.3±36 and 445.5 barn) by using the reactor, neutron source and TALYS-1.6, respectively. The present results are in acceptable agreement with most of the previous experimental and evaluated data as well as the theoretical calculations.

  12. IMPROVED COMPUTATIONAL CHARACTERIZATION OF THE THERMAL NEUTRON SOURCE FOR NEUTRON CAPTURE THERAPY RESEARCH AT THE UNIVERSITY OF MISSOURI

    Energy Technology Data Exchange (ETDEWEB)

    Stuart R. Slattery; David W. Nigg; John D. Brockman; M. Frederick Hawthorne

    2010-05-01

    Parameter studies, design calculations and initial neutronic performance measurements have been completed for a new thermal neutron beamline to be used for neutron capture therapy cell and small-animal radiobiology studies at the University of Missouri Research Reactor. The beamline features the use of single-crystal silicon and bismuth sections for neutron filtering and for reduction of incident gamma radiation. The computational models used for the final beam design and performance evaluation are based on coupled discrete-ordinates and Monte Carlo techniques that permit detailed modeling of the neutron transmission properties of the filtering crystals with very few approximations. This is essential for detailed dosimetric studies required for the anticipated research program.

  13. Boron neutron capture therapy of glioblastoma multiforme using the p- boronophenylalanine-fructose complex and epithermal neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Coderre, J.A.; Chanana, A.D.; Joel, D.D.; Liu, H.B.; Slatkin, D.N.; Wielopolski, L. [Brookhaven National Lab., Upton, NY (United States); Bergland, R.; Elowitz, E. [Beth Israel Medical Center, New York, NY (United States). Dept. of Neurosurgery; Chadha, M. [Beth Israel Medical Center, New York, NY (United States). Dept. of Radiation Oncology

    1994-12-31

    The amino acid analogue p-boronophenylalanine (BPA) is under investigation as a neutron capture agent for BNCT of glioblastoma multiforme. A series of patients undergoing surgical removal of tumor received BPA orally as the free amino acid. Favorable tumor/blood boron concentration ratios were obtained but the absolute amount of boron in the tumor would have been insufficient for BNCT. BPA can be solubilized at neutral pH by complexation with fructose (BPA-F). Studies with rats suggest that intraperitoneal injection of BPA-F complex produces a much higher tumor boron concentration to rat intracerebral 9L gliosarcoma that were possible with oral BPA. Higher boron concentrations have allowed higher tumor radiation doses to be delivered while maintaining the dose to the normal brain vascular endothelium below the threshold of tolerance. The experience to date of the administration of BPA-F to one patient is provided in this report.

  14. Biological activity of N(4)-boronated derivatives of 2'-deoxycytidine, potential agents for boron-neutron capture therapy.

    Science.gov (United States)

    Nizioł, Joanna; Uram, Łukasz; Szuster, Magdalena; Sekuła, Justyna; Ruman, Tomasz

    2015-10-01

    Boron-neutron capture therapy (BNCT) is a binary anticancer therapy that requires boron compound for nuclear reaction during which high energy alpha particles and lithium nuclei are formed. Unnatural, boron-containing nucleoside with hydrophobic pinacol moiety was investigated as a potential BNCT boron delivery agent. Biological properties of this compound are presented for the first time and prove that boron nucleoside has low cytotoxicity and that observed apoptotic effects suggest alteration of important functions of cancer cells. Mass spectrometry analysis of DNA from cancer cells proved that boron nucleoside is inserted into nucleic acids as a functional nucleotide derivative. NMR studies present very high degree of similarity of natural dG-dC base pair with dG-boron nucleoside system. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Investigation of dose distribution in mixed neutron-gamma field of boron neutron capture therapy using N isopropylacrylamide gel

    Energy Technology Data Exchange (ETDEWEB)

    Bavarmegin, Elham; Sadremomtaz, Alireza [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Khalafi, Hossein; Kasesaz, Yaser [Dept. of Physics, University of Guilan, Rasht (Iran, Islamic Republic of); Khajeali, Azim [Medical Education Research Center, Tabriz (Iran, Islamic Republic of)

    2017-02-15

    Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM) polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT). In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  16. Investigation of Dose Distribution in Mixed Neutron-Gamma Field of Boron Neutron Capture Therapy using N-Isopropylacrylamide Gel

    Directory of Open Access Journals (Sweden)

    Elham Bavarnegin

    2017-02-01

    Full Text Available Gel dosimeters have unique advantages in comparison with other dosimeters. Until now, these gels have been used in different radiotherapy techniques as a reliable dosimetric tool. Because dose distribution measurement is an important factor for appropriate treatment planning in different radiotherapy techniques, in this study, we evaluated the ability of the N-isopropylacrylamide (NIPAM polymer gel to record the dose distribution resulting from the mixed neutron-gamma field of boron neutron capture therapy (BNCT. In this regard, a head phantom containing NIPAM gel was irradiated using the Tehran Research Reactor BNCT beam line, and then by a magnetic resonance scanner. Eventually, the R2 maps were obtained in different slices of the phantom by analyzing T2-weighted images. The results show that NIPAM gel has a suitable potential for recording three-dimensional dose distribution in mixed neutron-gamma field dosimetry.

  17. Experimental and Simulated Characterization of a Beam Shaping Assembly for Accelerator- Based Boron Neutron Capture Therapy (AB-BNCT)

    Science.gov (United States)

    Burlon, Alejandro A.; Girola, Santiago; Valda, Alejandro A.; Minsky, Daniel M.; Kreiner, Andrés J.

    2010-08-01

    In the frame of the construction of a Tandem Electrostatic Quadrupole Accelerator facility devoted to the Accelerator-Based Boron Neutron Capture Therapy, a Beam Shaping Assembly has been characterized by means of Monte-Carlo simulations and measurements. The neutrons were generated via the 7Li(p, n)7Be reaction by irradiating a thick LiF target with a 2.3 MeV proton beam delivered by the TANDAR accelerator at CNEA. The emerging neutron flux was measured by means of activation foils while the beam quality and directionality was evaluated by means of Monte Carlo simulations. The parameters show compliance with those suggested by IAEA. Finally, an improvement adding a beam collimator has been evaluated.

  18. Measurement of the thermal neutron capture cross section and the resonance integral of the {sup 109}Ag(n,{gamma}){sup 110m}Ag reaction

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S.; Wada, H.; Furutaka, K.; Harada, H.; Katoh, T. [Japan Nuclear Cycle Development Inst., Tokai Works, Tokai, Ibaraki (Japan)

    2001-03-01

    The thermal neutron capture cross section ({sigma}{sub 0}) and the resonance integral (I{sub 0}) of the {sup 109}Ag(n,{gamma}) reaction were measured by the activation and {gamma}-ray spectroscopic methods to develop a neutron flux monitor for the long irradiation. (author)

  19. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for Boron Neutron Capture Therapy

    NARCIS (Netherlands)

    Nievaart, V.A.; Legrady, D.; Moss, R.L.; Kloosterman, J.L.; Van der Hagen, T.H.; Van Dam, H.

    2007-01-01

    This paper deals with the application of the adjoint transport theory in order to optimize Monte Carlo based radiotherapy treatment planning. The technique is applied to Boron Neutron Capture Therapy where most often mixed beams of neutrons and gammas are involved. In normal forward Monte Carlo

  20. A Rapid Process for Fabricating Gas Sensors

    Directory of Open Access Journals (Sweden)

    Chun-Ching Hsiao

    2014-07-01

    Full Text Available Zinc oxide (ZnO is a low-toxicity and environmentally-friendly material applied on devices, sensors or actuators for “green” usage. A porous ZnO film deposited by a rapid process of aerosol deposition (AD was employed as the gas-sensitive material in a CO gas sensor to reduce both manufacturing cost and time, and to further extend the AD application for a large-scale production. The relative resistance change (△R/R of the ZnO gas sensor was used for gas measurement. The fabricated ZnO gas sensors were measured with operating temperatures ranging from 110 °C to 180 °C, and CO concentrations ranging from 100 ppm to 1000 ppm. The sensitivity and the response time presented good performance at increasing operating temperatures and CO concentrations. AD was successfully for applied for making ZnO gas sensors with great potential for achieving high deposition rates at low deposition temperatures, large-scale production and low cost.

  1. Commercial aspects of rapid thermal processing (RTP)

    Energy Technology Data Exchange (ETDEWEB)

    Graham, R.G.; Huffman, D.R. [Ensyn Technologies Inc., Greely, ON (Canada)

    1996-12-31

    In its broadest sense, Rapid Thermal Processing (RTP{sup TM}) covers the conversion of all types of carbonaceous materials to liquid fuels, high quality fuel gases, and chemicals. Scientifically, it is based on the general premise that products which result from the extremely rapid application of heat to a given feedstock are inherently more valuable than those which are produced when heat is applied much more slowly over longer periods of processing time. Commercial RTP{sup TM} activities (including the actual implementation in the market as well as the short-term R and D initiatives) are much narrower in scope, and are focused on the production of high yields of light, non-tarry liquids (i.e. `bio-crude`) from biomass for fuel and chemical markets. Chemicals are of significant interest from an economical point of view since they typically have a higher value than fuel products. Liquid fuels are of interest for many reasons: (1) Liquid fuels do not have to be used immediately after production, such as is the case with hot combustion gases or combustible gases produced via gasification. This allows the decoupling of fuel production from the end-use (ie. the conversion of fuel to energy). (2) The higher energy density of liquid fuels vs. that of fuel gases and solid biomass results in a large reduction in the costs associated with storage and transportation. (3) The costs to retrofit an existing gas or oil fired combustion system are much lower than replacement with a solid fuel combustor. (4) In general, liquid fuel combustion is much more efficient, controllable, and cleaner than the combustion of solid fuels. (5) The production of liquid `bio-crude` permits the removal of ash from the biomass prior to combustion or other end-use applications. (6) Gas or liquid fuel-fired diesel or turbine engines cannot operate commercially on solid fuels. Although wood represents the biomass which is of principal commercial interest (including a vast array of wood residues

  2. Optimization of the geometry and composition of a neutron system for treatment by Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Rohollah Gheisari

    2015-01-01

    Full Text Available Background: In the field of the treatment by Boron Neutron Capture Therapy (BNCT, an optimized neutron system was proposed. This study (simulation was conducted to optimize the geometry and composition of neutron system and increase the epithermal neutron flux for the treatment of deep tumors is performed. Materials and Methods: A neutron system for BNCT was proposed. The system included 252Cf neutron source, neutron moderator/reflector arrangement, filter and concrete. To capture fast neutrons, different neutron filters Fe, Pb, Ni and PbF2 with various thicknesses were simulated and studied. Li (with 1 mm thick was used for filtering of thermal neutrons. Bi with thickness of 1 cm was used to minimize the intensity of gamma rays. Monte Carlo simulation code MCNPX 2.4.0 was used for design of the neutron system and calculation of the neutron components at the output port of the system. Results: For different thicknesses of the filters, the fast neutron flux, the epithermal and thermal flux were calculated at the output port of the system. The spatial distribution of the fast neutron flux, the epithermal flux and gamma flux in human head phantom with the presence of 40 ppm of 10B were obtained. The present calculations showed that Pb filter (about 1 cm at the output port is suitable for fast neutron capture. The thickness of Li filter was determined due to its high absorption cross-section in thermal region. Bi was used as a gamma filter by the reason of it is good for shielding gamma rays, while having high transmission epithermal neutrons. Conclusion: The epithermal neutron flux has enhanced about 38 percent at the output port of the present system, compared with recent system proposed by Ghassoun et al. At 2 cm depth inside the head phantom, the neutron flux reaches a maximum value about . At this depth, the ratio of the thermal neutron flux to the epithermal flux is about three times, that suggests such a neutron system to treat tumors in the

  3. The neutron capture cross sections of 186;187;188 Os and their application to Re/Os cosmochronometer

    CERN Document Server

    Fujii, Kaori; Mastinu, P; Milazzo, P M

    2009-01-01

    The aim of this thesis is a fine determination of 186;187;188Os neutron capture cross sections, in order to remove principal nuclear physics uncertainties on the age of the universe determined using the Re/Os cosmochronometer. A general introduction including stellar nucleosynthesis, nuclear cosmochronometry,available neutron facilities and neutron reaction features is given. Dedicated measurements of the 186;187;188Os capture cross sections have been performed at the CERN neutron time-of- ight facility, n TOF, in the neutron energy range from 1 eV up to 1 MeV. The details of the measurement and the data treatment are reported. Using obtained capture yields, resolved resonance region analysis is completed. Resonance parameters have been extracted from a full R-matrix fit. A statistical analysis has been performed and the related averaged resonance parameters are derived. This information is crucial for a complete understanding and modelling in terms of the Hauser-Feshbach statistical model of the capture and ...

  4. Boron neutron capture therapy (BNCT). Recent aspect, a change from thermal neutron to epithermal neutron beam and a new protocol

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, Yoshinobu [Dept. of Neurosurgery National Kagawa Children' s Hospital, Zentsuji, Kagawa (Japan)

    1999-08-01

    Since 1968, One-hundred seventy three patients with glioblastoma (n=81), anaplastic astrocytoma (n=44), low grade astrocytoma (n=16) or other types of tumor (n=32) were treated by boron-neutron capture therapy (BNCT) using a combination of thermal neutron and BSH in 5 reactors (HTR n=13, JRR-3 n=1, MuITR n=98, KUR n=28, JRR-2 n=33). Out of 101 patients with glioma treated by BNCT under the recent protocol, 33 (10 glioblastoma, 14 anaplastic astrocytoma, 9 low grade astrocytoma) patients lived or have lived longer than 3 years. Nine of these 33 lived or have lived longer than 10 years. According to the retrospective analysis, the important factors related to the clinical results were tumor dose radiation dose and maximum radiation dose in thermal brain cortex. The result was not satisfied as it was expected. Then, we decided to introduce mixed beams which contain thermal neutron and epithermal neutron beams. KUR was reconstructed in 1996 and developed to be available to use mixed beams. Following the shutdown of the JRR-2, JRR-4 was renewed for medical use in 1998. Both reactors have capacity to yield thermal neutron beam, epithermal neutron beam and mixed beams. The development of the neutron source lead us to make a new protocol. (author)

  5. Neutron spectrum for neutron capture therapy in boron; Espectro de neutrones para terapia por captura de neutrones en boro

    Energy Technology Data Exchange (ETDEWEB)

    Medina C, D.; Soto B, T. G. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Programa de Doctorado en Ciencias Basicas, 98068 Zacatecas, Zac. (Mexico); Baltazar R, A. [Universidad Autonoma de Zacatecas, Unidad Academica de Ingenieria Electrica, Programa de Doctorado en Ingenieria y Tecnologia Aplicada, 98068 Zacatecas, Zac. (Mexico); Vega C, H. R., E-mail: dmedina_c@hotmail.com [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98068 Zacatecas, Zac. (Mexico)

    2016-10-15

    Glioblastoma multiforme is the most common and aggressive of brain tumors and is difficult to treat by surgery, chemotherapy or conventional radiation therapy. One treatment alternative is the Neutron Capture Therapy in Boron, which requires a beam modulated in neutron energy and a drug with {sup 10}B able to be fixed in the tumor. When the patients head is exposed to the neutron beam, they are captured by the {sup 10}B and produce a nucleus of {sup 7}Li and an alpha particle whose energy is deposited in the cancer cells causing it to be destroyed without damaging the normal tissue. One of the problems associated with this therapy is to have an epithermal neutrons flux of the order of 10{sup 9} n/cm{sup 2}-sec, whereby irradiation channels of a nuclear research reactor are used. In this work using Monte Carlo methods, the neutron spectra obtained in the radial irradiation channel of the TRIGA Mark III reactor are calculated when inserting filters whose position and thickness have been modified. From the arrangements studied, we found that the Fe-Cd-Al-Cd polyethylene filter yielded a ratio between thermal and epithermal neutron fluxes of 0.006 that exceeded the recommended value (<0.05), and the dose due to the capture gamma rays is lower than the dose obtained with the other arrangements studied. (Author)

  6. Neutron capture cross section measurements of $^{238}$U, $^{241}$Am and $^{243}$Am at n_TOF

    CERN Multimedia

    Koehler, P E; Plag, R

    The increase of the world energy demand and the need of low carbon energy sources have triggered the renaissance and/or enhancement of nuclear energy in many countries. Fundamental nuclear physics can contribute in a practical way to the sustainability and safety of the nuclear energy production and the management of the nuclear waste. There exists a series of recent studies which address the most relevant isotopes, decay data, nuclear reaction channels and energy ranges which have to be investigated in more detail for improving the design of different advanced nuclear systems [1] and nuclear fuel cycles [2]. In this proposal, we aim at the measurement of the neutron capture cross sections of $^{238}$U, $^{241}$Am and $^{243}$Am. All three isotopes are listed in the NEA High Priority Request List [37], are recommended for measurements [1] and play an important role in the nuclear energy production and fuel cycle scenarios. The measurements will provide as well valuable nuclear structure data necessary for the...

  7. Considerations for boron neutron capture therapy studies; Consideracoes sobre o estudo da BNCT (terapia de captura neutronica por boro)

    Energy Technology Data Exchange (ETDEWEB)

    Faria Gaspar, P. de

    1994-12-31

    Radiotherapy is indispensable as a mean to eradicate deeply or infiltrating tumor tissue that can not be removed surgically. Therefore, it is not selective and may also kill the surrounding health tissue. The principle of BNCT (Boron Neutron Capture Therapy) consist in targeting a tumor selectively with a boron-10 compound. This nuclide has a large capture cross section for thermal neutrons and the nuclear reaction and the delivered energy in locus will selective the tumor. Since its initial proposal in 1963 BNCT has made much progress, however it is not used in a routine treatment. In this work it was approached some complex procedures, as the obtention of selective boron compounds, the adequate set up of neutron beams, the biodistribution, the in vivo and in vitro studies, and also human patients treatments. This work provide fundamentals about BNCT to professional of different areas of knowledge since it comprises multidisciplinary study. It includes appendixes for the ones not related to the field for a better comprehension of the many aspects involved. It is also presented a glossary containing technical and basic aspects involved. It is also presented a glossary containing technical and basic terms referred in the work. (author). 174 refs, 1 fig, 12 apps.

  8. User's manual of a supporting system for treatment planning in boron neutron capture therapy. JAERI computational dosimetry system

    CERN Document Server

    Kumada, H

    2002-01-01

    A boron neutron capture therapy (BNCT) with epithermal neutron beam is expected to treat effectively for malignant tumor that is located deeply in the brain. It is indispensable to estimate preliminarily the irradiation dose in the brain of a patient in order to perform the epithermal neutron beam BNCT. Thus, the JAERI Computational Dosimetry System (JCDS), which can calculate the dose distributions in the brain, has been developed. JCDS is a software that creates a 3-dimensional head model of a patient by using CT and MRI images and that generates a input data file automatically for calculation neutron flux and gamma-ray dose distribution in the brain by the Monte Carlo code: MCNP, and that displays the dose distribution on the head model for dosimetry by using the MCNP calculation results. JCDS has any advantages as follows; By treating CT data and MRI data which are medical images, a detail three-dimensional model of patient's head is able to be made easily. The three-dimensional head image is editable to ...

  9. T2 corrected quantification method of L-p-boronophenylalanine using proton magnetic resonance spectroscopy for boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Yohei [Department of Neurosurgery, Institute of Clinical Medicine, Graduated School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Isobe, Tomonori [Institute of Clinical Medicine, Graduated School of Comprehensive Human Sciences, University of Tsukuba (Japan); Yamamoto, Tetsuya [Department of Neurosurgery, Institute of Clinical Medicine, Graduated School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan)], E-mail: tetsu-ya@md.tsukuba.ac.jp; Shibata, Yasushi [Department of Neurosurgery, Institute of Clinical Medicine, Graduated School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Anno, Izumi [Department of Radiological Sciences, Ibaraki Prefectural University of Health Sciences (Japan); Nakai, Kei; Shirakawa, Makoto; Matsushita, Akira [Department of Neurosurgery, Institute of Clinical Medicine, Graduated School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan); Sato, Eisuke [School of Allied Health Sciences, Kitasato University (Japan); Matsumura, Akira [Department of Neurosurgery, Institute of Clinical Medicine, Graduated School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki (Japan)

    2009-07-15

    In the present study, we aimed to evaluate a T2 corrected quantification method of L-p-boronophenylalanine (BPA) concentration using proton magnetic resonance spectroscopy (MRS). We used five phantoms containing BPA (1.5, 3.0, 5.0, 7.5, and 10 mmol/kg=15, 30, 50, 75, and 100 {mu}g{sup 10}B/g), N-acetyl-aspartic acid (NAA: 3.0 mmol/kg), creatine (Cr: 5.0 mmol/kg), and choline (Cho: 3.0 mmol/kg). The signal intensities of BPA and internal water were corrected by T2 relaxation time. The absolute concentrations of BPA were calculated by proton MRS using an internal water signal as a standard. The major BPA peaks were detected between 7.1 and 7.6 ppm. Mean T2 relaxation time was 314.3{+-}10.8 ms in BPA, 885.1{+-}39.7 ms in internal water. The calculated BPA concentrations were almost same as the actual concentration of BPA and the correlation coefficient was 0.99. Our BPA quantification method was very simple and non-invasive, also it had high accuracy. Therefore, our results indicate that proton MRS can be potentially useful technique for in vivo BPA quantification in boron neutron capture therapy (BNCT)

  10. Boron neutron capture therapy design calculation of a 3H(p,n reaction based BSA for brain cancer setup

    Directory of Open Access Journals (Sweden)

    Bassem Elshahat

    2015-09-01

    Full Text Available Purpose: Boron neutron capture therapy (BNCT is a promising technique for the treatment of malignant disease targeting organs of the human body. Monte Carlo simulations were carried out to calculate optimum design parameters of an accelerator based beam shaping assembly (BSA for BNCT of brain cancer setup.Methods: Epithermal beam of neutrons were obtained through moderation of fast neutrons from 3H(p,n reaction in a high density polyethylene moderator and a graphite reflector. The dimensions of the moderator and the reflector were optimized through optimization of epithermal / fast neutron intensity ratio as a function of geometric parameters of the setup. Results: The results of our calculation showed the capability of our setup to treat the tumor within 4 cm of the head surface. The calculated peak therapeutic ratio for the setup was found to be 2.15. Conclusion: With further improvement in the polyethylene moderator design and brain phantom irradiation arrangement, the setup capabilities can be improved to reach further deep-seated tumor.

  11. Abscopal effect of boron neutron capture therapy (BNCT): proof of principle in an experimental model of colon cancer.

    Science.gov (United States)

    Trivillin, Verónica A; Pozzi, Emiliano C C; Colombo, Lucas L; Thorp, Silvia I; Garabalino, Marcela A; Monti Hughes, Andrea; González, Sara J; Farías, Rubén O; Curotto, Paula; Santa Cruz, Gustavo A; Carando, Daniel G; Schwint, Amanda E

    2017-11-01

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 × 106 DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 × 106 DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume BNCT-responsive animals (post/pre BNCT is capable of inducing an abscopal effect.

  12. Assessing advantages of sequential boron neutron capture therapy (BNCT) in an oral cancer model with normalized blood vessels.

    Science.gov (United States)

    Molinari, Ana J; Thorp, Silvia I; Portu, Agustina M; Saint Martin, Gisela; Pozzi, Emiliano C C; Heber, Elisa M; Bortolussi, Silva; Itoiz, Maria E; Aromando, Romina F; Monti Hughes, Andrea; Garabalino, Marcela A; Altieri, Saverio; Trivillin, Verónica A; Schwint, Amanda E

    2015-01-01

    We previously demonstrated the therapeutic success of sequential boron neutron capture therapy (Seq-BNCT) in the hamster cheek pouch oral cancer model. It consists of BPA-BNCT followed by GB-10-BNCT 24 or 48 hours later. Additionally, we proved that tumor blood vessel normalization with thalidomide prior to BPA-BNCT improves tumor control. The aim of the present study was to evaluate the therapeutic efficacy and explore potential boron microdistribution changes in Seq-BNCT preceded by tumor blood vessel normalization. Tumor bearing animals were treated with thalidomide for tumor blood vessel normalization, followed by Seq-BNCT (Th+ Seq-BNCT) or Seq-Beam Only (Th+ Seq-BO) in the window of normalization. Boron microdistribution was assessed by neutron autoradiography. Th+ Seq-BNCT induced overall tumor response of 100%, with 87 (4)% complete tumor response. No cases of severe mucositis in dose-limiting precancerous tissue were observed. Differences in boron homogeneity between tumors pre-treated and not pre-treated with thalidomide were observed. Th+ Seq-BNCT achieved, for the first time, response in all treated tumors. Increased homogeneity in tumor boron microdistribution is associated to an improvement in tumor control.

  13. Therapeutic efficacy for hepatocellular carcinoma by boric acid-mediated boron neutron capture therapy in a rat model.

    Science.gov (United States)

    Lin, Sy-Yu; Lin, Chen-Jou; Liao, Jiunn-Wang; Peir, Jinn-Jer; Chen, Wei-Lin; Chi, Chin-Wen; Lin, Yung-Chang; Liu, Yu-Ming; Chou, Fong-In

    2013-11-01

    Hepatocellular carcinoma (HCC) is a common malignant tumor with poor prognosis. Boron neutron capture therapy (BNCT) may provide an alternative therapy for HCC. This study investigated the therapeutic efficacy of boric acid (BA)-mediated BNCT for HCC in a rat model. The pharmacokinetic and biodistribution of BA in N1S1 tumor-bearing rats were analyzed. Rats were injected with 25 mg B/kg body weight via tail veins before neutron irradiation at the Tsing Hua Open-pool Reactor, and the efficacy of BNCT was evaluated from the tumor size, tumor blood flow, and biochemical analyses. HCC-bearing rats administered BNCT showed reductions in tumor size on ultrasound imaging, as well as an obvious reduction in the distribution of tumor blood flow. The lesion located in livers had disappeared on the 80th day after BNCT; a recovery of values to normal levels was also recorded. BA-mediated BNCT is a promising alternative for liver cancer therapy since the present study demonstrated the feasibility of curing a liver tumor and restoring liver function in rats. Efforts are underway to investigate the histopathological features and the detailed mechanisms of BA-mediated BNCT.

  14. Comparison between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT): a monte carlo study.

    Science.gov (United States)

    Jung, Joo-Young; Yoon, Do-Kun; Barraclough, Brendan; Lee, Heui Chang; Suh, Tae Suk; Lu, Bo

    2017-06-13

    The aim of this study is to compare between proton boron fusion therapy (PBFT) and boron neutron capture therapy (BNCT) and to analyze dose escalation using a Monte Carlo simulation. We simulated a proton beam passing through the water with a boron uptake region (BUR) in MCNPX. To estimate the interaction between neutrons/protons and borons by the alpha particle, the simulation yielded with a variation of the center of the BUR location and proton energies. The variation and influence about the alpha particle were observed from the percent depth dose (PDD) and cross-plane dose profile of both the neutron and proton beams. The peak value of the maximum dose level when the boron particle was accurately labeled at the region was 192.4% among the energies. In all, we confirmed that prompt gamma rays of 478 keV and 719 keV were generated by the nuclear reactions in PBFT and BNCT, respectively. We validated the dramatic effectiveness of the alpha particle, especially in PBFT. The utility of PBFT was verified using the simulation and it has a potential for application in radiotherapy.

  15. Intercomparison of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Schuetz, C.L. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Johannes Gutenberg-University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Brochhausen, C. [University of Mainz, Institute of Pathology, Mainz (Germany); Hampel, G.; Iffland, D.; Schmitz, T.; Stieghorst, C.; Kratz, J.V. [University of Mainz, Institute for Nuclear Chemistry, Mainz (Germany); Kuczewski, B. [Regional Council Darmstadt, Darmstadt (Germany); Otto, G. [University of Mainz, Department of Hepatobiliary, Pancreatic and Transplantation Surgery, Mainz (Germany)

    2012-10-15

    Boron determination in blood and tissue samples is a crucial task especially for treatment planning, preclinical research, and clinical application of boron neutron capture therapy (BNCT). Comparison of clinical findings remains difficult due to a variety of analytical methods, protocols, and standard reference materials in use. This paper addresses the comparability of inductively coupled plasma mass spectrometry, quantitative neutron capture radiography, and prompt gamma activation analysis for the determination of boron in biological samples. It was possible to demonstrate that three different methods relying on three different principles of sample preparation and boron detection can be validated against each other and yield consistent results for both blood and tissue samples. The samples were obtained during a clinical study for the application of BNCT for liver malignancies and therefore represent a realistic situation for boron analysis. (orig.)

  16. Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF total absorption calorimeter and a fission tagging based on micromegas detectors

    Science.gov (United States)

    Balibrea-Correa, J.; Mendoza, E.; Cano-Ott, D.; Krtička, M.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Bécares, V.; Barbagallo, M.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviño, F.; Calviani, M.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Dressler, R.; Durán, I.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Furman, V.; Göbel, K.; Guerrero, C.; Gómez-Hornillos, M. B.; Ganesan, S.; García, A. R.; Giubrone, G.; Gonçalves, I. F.; González, E.; Goverdovski, A.; Griesmayer, E.; Gunsing, F.; Heftrich, T.; Heinitz, S.; Hernández-Prieto, A.; Heyse, J.; Jenkins, D. G.; Jericha, E.; Käppeler, F.; Kadi, Y.; Karadimos, D.; Katabuchi, T.; Ketlerov, V.; Khryachkov, V.; Kivel, N.; Koehler, P.; Kokkoris, M.; Kroll, J.; Lampoudis, C.; Langer, C.; Leal-Cidoncha, E.; Lederer, C.; Leeb, H.; Leong, L. S.; Lerendegui-Marco, J.; Licata, M.; Losito, R.; Mallick, A.; Manousos, A.; Marganiec, J.; Martínez, T.; Massimi, C.; Mastinu, P.; Mastromarco, M.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Plompen, A. J. M.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego-Perez, A.; Robles, M.; Rubbia, C.; Ryan, J. A.; Sabaté-Gilarte, M.; Sarmento, R.; Saxena, A.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Sedyshev, P.; Tagliente, G.; Tain, J. L.; Tarifeño-Saldivia, A.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiss, C.; Wright, T.; Žugec, P.

    2017-09-01

    The accuracy on neutron capture cross section of fissile isotopes must be improved for the design of future nuclear systems such as Gen-IV reactors and Accelerator Driven Systems. The High Priority Request List of the Nuclear Energy Agency, which lists the most important nuclear data requirements, includes also the neutron capture cross sections of fissile isotopes such as 233,235U and 239,241Pu. A specific experimental setup has been used at the CERN n_TOF facility for the measurement of the neutron capture cross section of 235U by a set of micromegas fission detectors placed inside a segmented BaF2 Total Absorption Calorimeter.

  17. Database of prompt gamma rays from slow neutron capture forelemental analysis

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, R.B.; Choi, H.D.; Lindstrom, R.M.; Molnar, G.L.; Mughabghab, S.F.; Paviotti-Corcuera, R.; Revay, Zs; Trkov, A.; Zhou,C.M.; Zerkin, V.

    2004-12-31

    The increasing importance of Prompt Gamma-ray ActivationAnalysis (PGAA) in a broad range of applications is evident, and has beenemphasized at many meetings related to this topic (e.g., TechnicalConsultants' Meeting, Use of neutron beams for low- andmedium-fluxresearch reactors: radiography and materialscharacterizations, IAEA Vienna, 4-7 May 1993, IAEA-TECDOC-837, 1993).Furthermore, an Advisory Group Meeting (AGM) for the Coordination of theNuclear Structure and Decay Data Evaluators Network has stated that thereis a need for a complete and consistent library of cold- and thermalneutron capture gammaray and cross-section data (AGM held at Budapest,14-18 October 1996, INDC(NDS)-363); this AGM also recommended theorganization of an IAEA CRP on the subject. The International NuclearData Committee (INDC) is the primary advisory body to the IAEA NuclearData Section on their nuclear data programmes. At a biennial meeting in1997, the INDC strongly recommended that the Nuclear Data Section supportnew measurements andupdate the database on Neutron-induced PromptGamma-ray Activation Analysis (21st INDC meeting, INDC/P(97)-20). As aconsequence of the various recommendations, a CRP on "Development of aDatabase for Prompt Gamma-ray Neutron Activation Analysis (PGAA)" wasinitiated in 1999. Prior to this project, several consultants had definedthe scope, objectives and tasks, as approved subsequently by the IAEA.Each CRP participant assumed responsibility for the execution of specifictasks. The results of their and other research work were discussed andapproved by the participants in research co-ordination meetings (seeSummary reports: INDC(NDS)-411, 2000; INDC(NDS)-424, 2001; andINDC(NDS)-443, 200). PGAA is a non-destructive radioanalytical method,capable of rapid or simultaneous "in-situ" multi-element analyses acrossthe entire Periodic Table, from hydrogen to uranium. However, inaccurateand incomplete data were a significant hindrance in the qualitative andquantitative

  18. Preparation and characterization of Boron carbide nanoparticles for use as a novel agent in T cell-guided boron neutron capture therapy

    DEFF Research Database (Denmark)

    Mortensen, M. W.; Sørensen, P. G.; Björkdahl, O.

    2006-01-01

    Boron carbide nanoparticles are proposed as a system for T cell-guided boron neutron capture therapy. Nanoparticles were produced by ball milling in various atmospheres of commercially available boron carbide. The physical and chemical properties of the particles were investigated using...... melanoma cells incubated with sub-100 nm nanoparticles (381.5 microg/g (10)B) induces complete cell death. The nanoparticles alone induce no toxicity....

  19. Boron neutron capture irradiation: setting up a clinical programme in Nice; Irradiation par capture de neutrons: mise en place d`un programme clinique a Nice

    Energy Technology Data Exchange (ETDEWEB)

    Pignol, J.P.; Chauvel, P.; Courdi, A.; Iborra-Brassart, N.; Frenay, M.; Herault, J.; Bensadoun, R.J.; Milano, G.; Demard, F. [Centre de Lutte Contre le Cancer Antoine Lacassagne, 06 - Nice (France); Paquis, P.; Lonjon, M.; Lebrun-Frenay, C.; Grellier, P.; Chatel, M. [Hopital Pasteur, 06 - Nice (France); Nepveu, F.; Patau, J.P. [Toulouse-3 Univ., 31 (France); Breteau, N. [Hopital de la Source, 45 - Orleans (France)

    1996-12-31

    Neutron capture irradiation aims to selectively destroy tumor tumor cell using {sup 10}B(n,{alpha}){sup 7}Li nuclear reactions produced within themselves. Following the capture reaction, an {alpha} particle and a, {sup 7}Li ion are emitted. Carrying an energy of 2.79 MeV, they destroy all molecular structures along their path close to 10 {mu}m. These captures, used exclusively with a `slow` neutron irradiation, provide a neutron capture therapy (BNCT). If they are used in addition to a fast neutron beam irradiation, they provide a neutron capture potentiation (NCP). The Centre Antoine-Lacassagne in Nice is actively involved in the European Demonstration project for BNCT of grade IV glioblastomas (GBM) after surgical excision and BSH administration. Taking into account the preliminary results obtained in Japan, work on an `epithermal` neutron target compatible with various cyclotron beams is in progress to facilitate further developments of this technique. For NCP, thermalized neutron yield has been measured in phantoms irradiated in the fast neutron beam of the biomedical cyclotron in Nice. A thermal peak appears after 5 cm depth in the tissues, delayed after the fast neutron peak at 1.8 cm depth. Thus, a physical overdosage of 10 % may be obtained if 100 ppm of {sup 10}B are assumed in the tissues. Our results using CAL 58 GBM cell line demonstrate a dose modification factor (DMF) of 1.19 when 100 ppm of boric acid are added to the growth medium. Thus for the particles, issued from neutron capture, a biological efficiency at least twice that of fast neutrons can be derived. These results, compared with historical data on fast neutron irradiation of glioblastoma, suggest that a therapeutic window may be obtained for GBM. (author). 26 refs.

  20. New radiative neutron capture measurement of 207Pb and 209Bi

    CERN Document Server

    Domingo-Pardo, Cesar

    This new measurement of the (n, ) capture cross sections of 207Pb and 209Bi has been motivated by i) the aim to achieve a better understanding of the s-process stellar nucleosynthesis in its termination region and ii) the design of accelerator driven systems (ADS) based on a lead-bismuth eutectic spallation core. The measurement has been performed using the total energy detector technique, since the lower neutron sensitivity achievable with such a detection system represents a clear advantage versus the alternative total absorption method. However, the former technique has been a source of controversy between experimentalists and therefore, an important part of the present work has been dedicated rst to the review and further development of the so called Pulse Height Weighting Technique (PHWT). Performing dedicated measurements at the CERN n TOF installation we have experimentally validated this technique, determining that a systematic uncertainty better than 2% can be achieved. Once the measuring technique h...

  1. Measurement of the weak nucleon-nucleon interaction by polarized cold neutron capture on protons

    Directory of Open Access Journals (Sweden)

    Alarcon R.

    2014-03-01

    Full Text Available The NPDGamma Experiment at the Spallation Neutron Source at Oak Ridge National Laboratory is measuring the parity-odd correlation between the neutron spin and the direction of the emitted photon in the capture of polarized cold neutrons on protons. A parity violating asymmetry from this process is directly related to the strength of the hadronic weak interaction between nucleons. The experiment was run first with heavier nuclear targets to check systematic effects, false asymmetries, and backgrounds. Since early 2012 the experiment has been collecting data with a 16-liter liquid parahydrogen target. Data taking will continue through 2013 until statistics for a 10−8 asymmetry measurement are expected. The experiment performance will be discussed as well as the status of the asymmetry measurements.

  2. Neutron Capture Cross Section of Unstable Ni63: Implications for Stellar Nucleosynthesis

    Science.gov (United States)

    Lederer, C.; Massimi, C.; Altstadt, S.; Andrzejewski, J.; Audouin, L.; Barbagallo, M.; Bécares, V.; Bečvář, F.; Belloni, F.; Berthoumieux, E.; Billowes, J.; Boccone, V.; Bosnar, D.; Brugger, M.; Calviani, M.; Calviño, F.; Cano-Ott, D.; Carrapiço, C.; Cerutti, F.; Chiaveri, E.; Chin, M.; Colonna, N.; Cortés, G.; Cortés-Giraldo, M. A.; Diakaki, M.; Domingo-Pardo, C.; Duran, I.; Dressler, R.; Dzysiuk, N.; Eleftheriadis, C.; Ferrari, A.; Fraval, K.; Ganesan, S.; García, A. R.; Giubrone, G.; Gómez-Hornillos, M. B.; Gonçalves, I. F.; González-Romero, E.; Griesmayer, E.; Guerrero, C.; Gunsing, F.; Gurusamy, P.; Jenkins, D. G.; Jericha, E.; Kadi, Y.; Käppeler, F.; Karadimos, D.; Kivel, N.; Koehler, P.; Kokkoris, M.; Korschinek, G.; Krtička, M.; Kroll, J.; Langer, C.; Leeb, H.; Leong, L. S.; Losito, R.; Manousos, A.; Marganiec, J.; Martínez, T.; Mastinu, P. F.; Mastromarco, M.; Meaze, M.; Mendoza, E.; Mengoni, A.; Milazzo, P. M.; Mingrone, F.; Mirea, M.; Mondelaers, W.; Paradela, C.; Pavlik, A.; Perkowski, J.; Pignatari, M.; Plompen, A.; Praena, J.; Quesada, J. M.; Rauscher, T.; Reifarth, R.; Riego, A.; Roman, F.; Rubbia, C.; Sarmento, R.; Schillebeeckx, P.; Schmidt, S.; Schumann, D.; Tagliente, G.; Tain, J. L.; Tarrío, D.; Tassan-Got, L.; Tsinganis, A.; Valenta, S.; Vannini, G.; Variale, V.; Vaz, P.; Ventura, A.; Versaci, R.; Vermeulen, M. J.; Vlachoudis, V.; Vlastou, R.; Wallner, A.; Ware, T.; Weigand, M.; Weiß, C.; Wright, T. J.; Žugec, P.

    2013-01-01

    The Ni63(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from kT=5-100keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of Cu63, Ni64, and Zn64 in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  3. Neutron capture cross section of unstable 63Ni: implications for stellar nucleosynthesis.

    Science.gov (United States)

    Lederer, C; Massimi, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Cano-Ott, D; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Zugec, P

    2013-01-11

    The 63Ni(n,γ) cross section has been measured for the first time at the neutron time-of-flight facility n_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian averaged cross sections were calculated for thermal energies from   kT=5-100  keV with uncertainties around 20%. Stellar model calculations for a 25M⊙ star show that the new data have a significant effect on the s-process production of 63Cu, 64Ni, and 64Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  4. Neutron capture cross section of unstable 63Ni implications for stellar nucleosynthesis

    CERN Document Server

    Lederer, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Becares, V; Becvar, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calvino, F; Cano-Ott, D; Carrapico, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortes, G; Cortes-Giraldo, M.A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; Garcia, A R; Giubrone, G; Gomez-Hornillos, M B; Goncalves, I F; Gonzalez-Romero, E; Griesmayer, E; Guerrero, C; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Kappeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krticka, M; Kroll, J; Langer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martinez, T; Mastinu, P F; Mastromarco, M; Meaze, M; Mendoza, E; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrio, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiss, C; Wright, T J; Zugec, P

    2013-01-01

    The $^{63}$Ni($n, \\gamma$) cross section has been measured for the first time at the neutron time-of-flight facility n\\_TOF at CERN from thermal neutron energies up to 200 keV. In total, capture kernels of 12 (new) resonances were determined. Maxwellian Averaged Cross Sections were calculated for thermal energies from kT = 5 keV to 100 keV with uncertainties around 20%. Stellar model calculations for a 25 M$_\\odot$ star show that the new data have a significant effect on the $s$-process production of $^{63}$Cu, $^{64}$Ni, and $^{64}$Zn in massive stars, allowing stronger constraints on the Cu yields from explosive nucleosynthesis in the subsequent supernova.

  5. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes.

    Science.gov (United States)

    Kueffer, Peter J; Maitz, Charles A; Khan, Aslam A; Schuster, Seth A; Shlyakhtina, Natalia I; Jalisatgi, Satish S; Brockman, John D; Nigg, David W; Hawthorne, M Frederick

    2013-04-16

    The application of boron neutron capture therapy (BNCT) following liposomal delivery of a (10)B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2'-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h--with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)--following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 10(12) neutrons per cm(2) (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study.

  6. Development of Monte Carlo based real-time treatment planning system with fast calculation algorithm for boron neutron capture therapy.

    Science.gov (United States)

    Takada, Kenta; Kumada, Hiroaki; Liem, Peng Hong; Sakurai, Hideyuki; Sakae, Takeji

    2016-12-01

    We simulated the effect of patient displacement on organ doses in boron neutron capture therapy (BNCT). In addition, we developed a faster calculation algorithm (NCT high-speed) to simulate irradiation more efficiently. We simulated dose evaluation for the standard irradiation position (reference position) using a head phantom. Cases were assumed where the patient body is shifted in lateral directions compared to the reference position, as well as in the direction away from the irradiation aperture. For three groups of neutron (thermal, epithermal, and fast), flux distribution using NCT high-speed with a voxelized homogeneous phantom was calculated. The three groups of neutron fluxes were calculated for the same conditions with Monte Carlo code. These calculated results were compared. In the evaluations of body movements, there were no significant differences even with shifting up to 9mm in the lateral directions. However, the dose decreased by about 10% with shifts of 9mm in a direction away from the irradiation aperture. When comparing both calculations in the phantom surface up to 3cm, the maximum differences between the fluxes calculated by NCT high-speed with those calculated by Monte Carlo code for thermal neutrons and epithermal neutrons were 10% and 18%, respectively. The time required for NCT high-speed code was about 1/10th compared to Monte Carlo calculation. In the evaluation, the longitudinal displacement has a considerable effect on the organ doses. We also achieved faster calculation of depth distribution of thermal neutron flux using NCT high-speed calculation code. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  7. A study on the optimum fast neutron flux for boron neutron capture therapy of deep-seated tumors.

    Science.gov (United States)

    Rasouli, Fatemeh S; Masoudi, S Farhad

    2015-02-01

    High-energy neutrons, named fast neutrons which have a number of undesirable biological effects on tissue, are a challenging problem in beam designing for Boron Neutron Capture Therapy, BNCT. In spite of this fact, there is not a widely accepted criterion to guide the beam designer to determine the appropriate contribution of fast neutrons in the spectrum. Although a number of researchers have proposed a target value for the ratio of fast neutron flux to epithermal neutron flux, it can be shown that this criterion may not provide the optimum treatment condition. This simulation study deals with the determination of the optimum contribution of fast neutron flux in the beam for BNCT of deep-seated tumors. Since the dose due to these high-energy neutrons damages shallow tissues, delivered dose to skin is considered as a measure for determining the acceptability of the designed beam. To serve this purpose, various beam shaping assemblies that result in different contribution of fast neutron flux are designed. The performances of the neutron beams corresponding to such configurations are assessed in a simulated head phantom. It is shown that the previously used criterion, which suggests a limit value for the contribution of fast neutrons in beam, does not necessarily provide the optimum condition. Accordingly, it is important to specify other complementary limits considering the energy of fast neutrons. By analyzing various neutron spectra, two limits on fast neutron flux are proposed and their validity is investigated. The results show that considering these limits together with the widely accepted IAEA criteria makes it possible to have a more realistic assessment of sufficiency of the designed beam. Satisfying these criteria not only leads to reduction of delivered dose to skin, but also increases the advantage depth in tissue and delivered dose to tumor during the treatment time. The Monte Carlo Code, MCNP-X, is used to perform these simulations. Copyright © 2014

  8. Abscopal effect of boron neutron capture therapy (BNCT). Proof of principle in an experimental model of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Trivillin, Veronica A.; Monti Hughes, Andrea; Schwint, Amanda E. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Pozzi, Emiliano C.C.; Curotto, Paula [Centro Atomico Ezeiza, Comision Nacional de Energia Atomica (CNEA), Department of Research and Production Reactors, Provincia Buenos Aires (Argentina); Colombo, Lucas L. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Instituto de Oncologia Angel H. Roffo, Ciudad Autonoma de Buenos Aires (Argentina); Thorp, Silvia I.; Farias, Ruben O. [Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Garabalino, Marcela A. [Comision Nacional de Energia Atomica (CNEA), Department of Radiobiology, B1650KNA San Martin, Provincia Buenos Aires (Argentina); Gonzalez, Sara J. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Comision Nacional de Energia Atomica (CNEA), Department of Instrumentation and Control, Provincia Buenos Aires (Argentina); Santa Cruz, Gustavo A. [Comision Nacional de Energia Atomica (CNEA), Department of Boron Neutron Capture Therapy, Provincia Buenos Aires (Argentina); Carando, Daniel G. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Ciudad Autonoma de Buenos Aires (Argentina); Universidad de Buenos Aires, Faculty of Exact and Natural Sciences, Ciudad Autonoma de Buenos Aires (Argentina)

    2017-11-15

    The aim of the present study was to evaluate, for the first time, the abscopal effect of boron neutron capture therapy (BNCT). Twenty-six BDIX rats were inoculated subcutaneously with 1 x 10{sup 6} DHD/K12/TRb syngeneic colon cancer cells in the right hind flank. Three weeks post-inoculation, the right leg of 12 rats bearing the tumor nodule was treated with BPA-BNCT (BPA-Boronophenylalanine) at the RA-3 nuclear reactor located in Buenos Aires, Argentina, at an absorbed dose of 7.5 Gy to skin as the dose-limiting tissue. The remaining group of 14 tumor-bearing rats were left untreated and used as control. Two weeks post-BNCT, 1 x 10{sup 6} DHD/K12/TRb cells were injected subcutaneously in the contralateral left hind flank of each of the 26 BDIX rats. Tumor volume in both legs was measured weekly for 7 weeks to determine response to BNCT in the right leg and to assess a potential influence of BNCT in the right leg on tumor development in the left leg. Within the BNCT group, a statistically significant reduction was observed in contralateral left tumor volume in animals whose right leg tumor responded to BNCT (post-treatment/pre-treatment tumor volume <1) versus animals who failed to respond (post/pre ≥1), i.e., 13 ± 15 vs 271 ± 128 mm{sup 3}. In addition, a statistically significant reduction in contralateral left leg tumor volume was observed in BNCT-responsive animals (post/pre <1) vs untreated animals, i.e., 13 ± 15 vs 254 ± 251 mm{sup 3}. The present study performed in a simple animal model provides proof of principle that the positive response of a tumor to BNCT is capable of inducing an abscopal effect. (orig.)

  9. Dosimetric comparative analysis between 10 MV Megavoltage unidirectional beam and boron neutron capture therapy for brain tumors treatment

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia F.; Campos, Tarcisio P.R., E-mail: samiabrandao@gmail.com, E-mail: campos@nuclear.ufmg.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnicas Nucleares. Departamento de Engenharia Nuclear

    2011-07-01

    This paper present a comparative dosimetric analysis between boron neutron capture therapy and 10 MV megavoltage employed in brain tumor treatments, limited to a unidirectional beam. A computational phantom of a human head was developed to be used in computational simulations of the two protocols, conducted in MCNP5 code. This phantom represents several head's structures, mainly, the central nervous system and a tumor that represents a Glioblastoma Multiform - one of the most malignant and aggressive brain tumors. Absorbed and biological weighted dose rates and neutron fluency in the computational phantom were evaluated from the MCNP5 code. The biologically weighted dose rate to 10 MV megavoltage beam presented no specificity in deposited dose in tumor. The average total biologically weighted dose rate in tumor was 9.93E-04 RBE.Gy.h{sup -1}/Mp.s{sup -1} while in healthy tissue it was 8.67E-04 RBE.Gy.h{sup -1}/Mp.s{sup -}1. On the BNCT simulations the boron concentration was particularly relevant since the largest dose deposition happened in borate tissues. The average total biologically weighted dose rate in tumor was 3.66E-02 RBE.Gy.h{sup -1}/Mp.s{sup -1} while in healthy tissue it was 1.39E-03 RBE.Gy.h{sup -1}/Mp.s{sup -1}. In comparison to the 10 MV megavoltage beam, BNCT showed clearly a largest dose deposition in the tumor, on average, 37 times larger than in the megavoltage beam, while in healthy tissue that average was only 1,6 time larger in BNCT. (author)

  10. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy.

    Science.gov (United States)

    Linko, S; Revitzer, H; Zilliacus, R; Kortesniemi, M; Kouri, M; Savolainen, S

    2008-01-01

    The concept of boron neutron capture therapy (BNCT) involves infusion of a (10)B containing tracer into the patient's bloodstream followed by local neutron irradiation(s). Accurate estimation of the blood boron level for the treatment field before irradiation is required. Boron concentration can be quantified by inductively coupled plasma atomic emission spectrometry (ICP-AES), mass spectrometry (ICP-MS), spectrofluorometric and direct current atomic emission spectrometry (DCP-AES) or by prompt gamma photon detection methods. The blood boron concentrations were analysed and compared using ICP-AES and ICP-MS to ensure congruency of the results if the analysis had to be changed during the treatment, e.g. for technical reasons. The effect of wet-ashing on the results was studied in addition. The mean of all samples analysed with ICP-MS was 5.8 % lower than with ICP-AES coupled to wet-ashing (R (2) = 0.88). Without wet-ashing, the mean of all samples analysed with ICP-MS was 9.1 % higher than with ICP-AES (R (2) = 0.99). Boron concentration analysed from whole blood samples with ICP-AES correlated well with the values of ICP-MS with wet-ashing of the sample matrix, which is generally considered the reference method. When using these methods in parallel at certain intervals during the treatments, reliability of the blood boron concentration values remains satisfactory, taking into account the required accuracy of dose determination in the irradiation of cancer patients.

  11. Cellular influx, efflux, and anabolism of 3-carboranyl thymidine analogs: potential boron delivery agents for neutron capture therapy.

    Science.gov (United States)

    Sjuvarsson, Elena; Damaraju, Vijaya L; Mowles, Delores; Sawyer, Michael B; Tiwari, Rohit; Agarwal, Hitesh K; Khalil, Ahmed; Hasabelnaby, Sherifa; Goudah, Ayman; Nakkula, Robin J; Barth, Rolf F; Cass, Carol E; Eriksson, Staffan; Tjarks, Werner

    2013-11-01

    3-[5-{2-(2,3-Dihydroxyprop-1-yl)-o-carboran-1-yl}pentan-1-yl]thymidine (N5-2OH) is a first generation 3-carboranyl thymidine analog (3CTA) that has been intensively studied as a boron-10 ((10)B) delivery agent for neutron capture therapy (NCT). N5-2OH is an excellent substrate of thymidine kinase 1 and its favorable biodistribution profile in rodents led to successful preclinical NCT of rats bearing intracerebral RG2 glioma. The present study explored cellular influx and efflux mechanisms of N5-2OH, as well as its intracellular anabolism beyond the monophosphate level. N5-2OH entered cultured human CCRF-CEM cells via passive diffusion, whereas the multidrug resistance-associated protein 4 appeared to be a major mediator of N5-2OH monophosphate efflux. N5-2OH was effectively monophosphorylated in cultured murine L929 [thymidine kinase 1 (TK1(+))] cells whereas formation of N5-2OH monophosphate was markedly lower in L929 (TK1(-)) cell variants. Further metabolism to the di- and triphosphate forms was not observed in any of the cell lines. Regardless of monophosphorylation, parental N5-2OH was the major intracellular component in both TK1(+) and TK1(-) cells. Phosphate transfer experiments with enzyme preparations showed that N5-2OH monophosphate, as well as the monophosphate of a second 3-carboranyl thymidine analog [3-[5-(o-carboran-1-yl)pentan-1-yl]thymidine (N5)], were not substrates of thymidine monophosphate kinase. Surprisingly, N5-diphosphate was phosphorylated by nucleoside diphosphate kinase although N5-triphosphate apparently was not a substrate of DNA polymerase. Our results provide valuable information on the cellular metabolism and pharmacokinetic profile of 3-carboranyl thymidine analogs.

  12. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Jr., Thomas Dean [Univ. of Virginia, Charlottesville, VA (United States)

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 x 108 n/cm2 • s. The fast neutron and gamma radiation KERMA factors are 10 x 10-11cGy•cm2/nepi and 20 x 10-11 cGy•cm2/nepi , respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  13. Measurements of neutron distribution in neutrons-gamma-rays mixed field using imaging plate for neutron capture therapy.

    Science.gov (United States)

    Tanaka, Kenichi; Endo, Satoru; Hoshi, Masaharu

    2010-01-01

    The imaging plate (IP) technique is tried to be used as a handy method to measure the spatial neutron distribution via the (157)Gd(n,gamma)(158)Gd reaction for neutron capture therapy (NCT). For this purpose, IP is set in a water phantom and irradiated in a mixed field of neutrons and gamma-rays. The Hiroshima University Radiobiological Research Accelerator is utilized for this experiment. The neutrons are moderated with 20-cm-thick D(2)O to obtain suitable neutron field for NCT. The signal for IP doped with Gd as a neutron-response enhancer is subtracted with its contribution by gamma-rays, which was estimated using IP without Gd. The gamma-ray response of Gd-doped IP to non-Gd IP is set at 1.34, the value measured for (60)Co gamma-rays, in estimating the gamma-ray contribution to Gd-doped IP signal. Then measured distribution of the (157)Gd(n,gamma)(158)Gd reaction rate agrees within 10% with the calculated value based on the method that has already been validated for its reproducibility of Au activation. However, the evaluated distribution of the (157)Gd(n,gamma)(158)Gd reaction rate is so sensitive to gamma-ray energy, e.g. the discrepancy of the (157)Gd(n,gamma)(158)Gd reaction rate between measurement and calculation becomes 30% for the photon energy change from 33keV to 1.253MeV.

  14. Role of p53 mutation in the effect of boron neutron capture therapy on oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Ohnishi Ken

    2009-12-01

    Full Text Available Abstract Background Boron neutron capture therapy (BNCT is a selective radiotherapy, being effective for the treatment of even advanced malignancies in head and neck regions as well as brain tumors and skin melanomas. To clarify the role of p53 gene, the effect of BNCT on oral squamous cell carcinoma (SCC cells showing either wild- (SAS/neo or mutant-type (SAS/mp53 p53 was examined. Methods Cells were exposed to neutron beams in the presence of boronophenylalanine (BPA at Kyoto University Research Reactor. Treated cells were monitored for modulations in colony formation, proliferation, cell cycle, and expression of cell cycle-associated proteins. Results When SAS/neo and SAS/mp53 cells were subjected to BNCT, more suppressive effects on colony formation and cell viability were observed in SAS/neo compared with SAS/mp53 cells. Cell cycle arrest at the G1 checkpoint was observed in SAS/neo, but not in SAS/mp53. Apoptotic cells increased from 6 h after BNCT in SAS/neo and 48 h in SAS/mp53 cells. The expression of p21 was induced in SAS/neo only, but G2 arrest-associated proteins including Wee1, cdc2, and cyclin B1 were altered in both cell lines. Conclusion These results indicate that oral SCC cells with mutant-type are more resistant to BNCT than those with wild-type p53, and that the lack of G1 arrest and related apoptosis may contribute to the resistance. At a physical dose affecting the cell cycle, BNCT inhibits oral SCC cells in p53-dependent and -independent manners.

  15. Hydrophobic boron compound-loaded poly(l-lactide-co-glycolide) nanoparticles for boron neutron capture therapy.

    Science.gov (United States)

    Takeuchi, Issei; Nomura, Kensuke; Makino, Kimiko

    2017-11-01

    Poly(DL-lactide-co-glycolide) (PLGA) has been widely used and studied because of its biocompatibility and biodegradability. Recently, the usefulness of nanoparticles using poly(L-lactide-co-glycolide) (PLLGA) having a higher glass transition temperature than PLGA was suggested. In this study, we investigated the availability of boron compound-loaded PLGA and PLLGA nanoparticles for boron neutron capture therapy (BNCT) by conducting biodistribution study using tumor-bearing mice. o-Carborane, a hydrophobic boron compound, was used as a boron carrier, and o-carborane-albumin conjugate was used as a control. We prepared PLGA and PLLGA nanoparticles with diameters of 100nm and 150nm. In 100-nm PLLGA nanoparticles, the boron concentration in the tumor reached 113.9±15.8μg/g of tissue at 8h after administration. This result indicated that 100-nm PLLGA nanoparticles were able to achieve an intratumoral 10B concentration of 20μg/g without replacing the 11B with 10B. In addition, by nanoparticulation using PLGA7510 and PLLGA7510, intratumoral boron concentration was 1.7-3.2 and 3.5-4.2 times higher than that of the o-carborane-albumin conjugate, respectively. The tumor/blood ratios of boron concentration reached over 5 at 8-12h after injection. Boron atoms in nanoparticles were excreted mainly in the urine, and characteristic accumulation was not observed in other organs. These results suggested that 100-nm PLLGA nanoparticles were particularly useful for BNCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Boron neutron capture therapy with bevacizumab may prolong the survival of recurrent malignant glioma patients: four cases

    Science.gov (United States)

    2014-01-01

    Background and importance Recurrent malignant gliomas (RMGs) are very difficult to control, and no standard treatments have been established for them. We performed boron neutron capture therapy (BNCT) for patients with RMG. BNCT enables high-dose particle radiation to be applied selectively to tumor cells. However, RMG cases generally receive nearly 60 Gy X-ray irradiation prior to re-irradiation by BNCT. Therefore, even with tumor-selective particle radiation BNCT, radiation necrosis in the brain and symptomatic pseudoprogression may develop. In four of our recent patients with RMG after BNCT, we applied the anti-VEGF antibody bevacizumab to treat two pathological entities. This approach appeared to prolong survival. Here we present the case reports of these four consecutive patients with RMG and discuss the novel use of bevacizumab in this context. Clinical presentation Four patients with RMGs were treated with BNCT at our institutes. Upon the referral for BNCT, they were assessed as belonging to the recursive partitioning analysis (RPA) class 3 (n = 3 patients) or RPA class 4 (n = 1 patient) (the RPA classification for RMG was advocated by Carson et al. in 2007). The estimated median survival times for RPA classes 3 and 4 were 3.8 and 10.8 months, respectively, after some treatment at the recurrence. We applied BNCT for these four patients and administered bevacizumab when the lesions were considered radiation necrosis or symptomatic pseudoprogression. The class 3 patients survived after the BNCT for 14, 16.5 and > 23 months, and the class 4 patient survived > 26 months, with favorable improvements in clinical symptoms. Conclusion BNCT with the addition of bevacizumab for radiation necrosis or symptomatic pseudoprogression improved the clinical symptoms and prolonged the survival in RMG patients. PMID:24387301

  17. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential

    Energy Technology Data Exchange (ETDEWEB)

    David W. Nigg

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of 10B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na3 [ae-B20H17NH3], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 {+-} 16.1 ppm at 48 h and to 43.9 {+-} 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  18. Boron delivery with liposomes for boron neutron capture therapy (BNCT): biodistribution studies in an experimental model of oral cancer demonstrating therapeutic potential.

    Science.gov (United States)

    Heber, Elisa M; Kueffer, Peter J; Lee, Mark W; Hawthorne, M Frederick; Garabalino, Marcela A; Molinari, Ana J; Nigg, David W; Bauer, William; Hughes, Andrea Monti; Pozzi, Emiliano C C; Trivillin, Verónica A; Schwint, Amanda E

    2012-05-01

    Boron neutron capture therapy (BNCT) combines selective accumulation of (10)B carriers in tumor tissue with subsequent neutron irradiation. We previously demonstrated the therapeutic efficacy of BNCT in the hamster cheek pouch oral cancer model. Optimization of BNCT depends largely on improving boron targeting to tumor cells. Seeking to maximize the potential of BNCT for the treatment for head and neck cancer, the aim of the present study was to perform boron biodistribution studies in the oral cancer model employing two different liposome formulations that were previously tested for a different pathology, i.e., in experimental mammary carcinoma in BALB/c mice: (1) MAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a hypertonic buffer, administered intravenously at 6 mg B per kg body weight, and (2) MAC-TAC: liposomes incorporating K[nido-7-CH(3)(CH(2))(15)-7,8-C(2)B(9)H(11)] in the bilayer membrane and encapsulating a concentrated aqueous solution of the hydrophilic species Na(3) [ae-B(20)H(17)NH(3)], administered intravenously at 18 mg B per kg body weight. Samples of tumor, precancerous and normal pouch tissue, spleen, liver, kidney, and blood were taken at different times post-administration and processed to measure boron content by inductively coupled plasma mass spectrometry. No ostensible clinical toxic effects were observed with the selected formulations. Both MAC and MAC-TAC delivered boron selectively to tumor tissue. Absolute tumor values for MAC-TAC peaked to 66.6 ± 16.1 ppm at 48 h and to 43.9 ± 17.6 ppm at 54 h with very favorable ratios of tumor boron relative to precancerous and normal tissue, making these protocols particularly worthy of radiobiological assessment. Boron concentration values obtained would result in therapeutic BNCT doses in tumor without exceeding radiotolerance in precancerous/normal tissue at the thermal neutron facility at RA-3.

  19. SU-E-J-100: Reconstruction of Prompt Gamma Ray Three Dimensional SPECT Image From Boron Neutron Capture Therapy(BNCT)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, D; Jung, J; Suh, T [The Catholic University of Korea, College of medicine, Department of biomedical engineering (Korea, Republic of)

    2014-06-01

    Purpose: Purpose of paper is to confirm the feasibility of acquisition of three dimensional single photon emission computed tomography (SPECT) image from boron neutron capture therapy (BNCT) using Monte Carlo simulation. Methods: In case of simulation, the pixelated SPECT detector, collimator and phantom were simulated using Monte Carlo n particle extended (MCNPX) simulation tool. A thermal neutron source (<1 eV) was used to react with the boron uptake region (BUR) in the phantom. Each geometry had a spherical pattern, and three different BURs (A, B and C region, density: 2.08 g/cm3) were located in the middle of the brain phantom. The data from 128 projections for each sorting process were used to achieve image reconstruction. The ordered subset expectation maximization (OSEM) reconstruction algorithm was used to obtain a tomographic image with eight subsets and five iterations. The receiver operating characteristic (ROC) curve analysis was used to evaluate the geometric accuracy of reconstructed image. Results: The OSEM image was compared with the original phantom pattern image. The area under the curve (AUC) was calculated as the gross area under each ROC curve. The three calculated AUC values were 0.738 (A region), 0.623 (B region), and 0.817 (C region). The differences between length of centers of two boron regions and distance of maximum count points were 0.3 cm, 1.6 cm and 1.4 cm. Conclusion: The possibility of extracting a 3D BNCT SPECT image was confirmed using the Monte Carlo simulation and OSEM algorithm. The prospects for obtaining an actual BNCT SPECT image were estimated from the quality of the simulated image and the simulation conditions. When multiple tumor region should be treated using the BNCT, a reasonable model to determine how many useful images can be obtained from the SPECT could be provided to the BNCT facilities. This research was supported by the Leading Foreign Research Institute Recruitment Program through the National Research

  20. Rapid Prototyping and the Human Factors Engineering Process

    Science.gov (United States)

    2016-08-29

    Rapid prototyping and the human factors • • engineering process David Beevis* and Gaetan St Denist *Senior Human Factors Engineer, Defence and...qr-..2. 9 Rapid prototyping or ’virtual prototyping ’ of human-machine interfaces offers the possibility of putting the human operator ’in the loop...8217 without the effort and cost associated with conventional man-in-the-loop simulation. Advocates suggest that rapid prototyping is compatible with

  1. Radiation injury of boron neutron capture therapy using mixed epithermal- and thermal neutron beams in patients with malignant glioma

    Energy Technology Data Exchange (ETDEWEB)

    Kageji, T. E-mail: kageji@clin.med.tokushima-u.ac.jp; Nagahiro, S.; Mizobuchi, Y.; Toi, H.; Nakagawa, Y.; Kumada, H

    2004-11-01

    The purpose of this study was to clarify the radiation injury in acute or delayed stage after boron neutron capture therapy (BNCT) using mixed epithermal- and thermal neutron beams in patients with malignant glioma. Eighteen patients with malignant glioma underwent mixed epithermal- and thermal neutron beam and sodium borocaptate between 1998 and 2004. The radiation dose (i.e. physical dose of boron n-alpha reaction) in the protocol used between 1998 and 2000 (Protocol A, n=8) prescribed a maximum tumor volume dose of 15 Gy. In 2001, a new dose-escalated protocol was introduced (Protocol B, n=4); it prescribes a minimum tumor volume dose of 18 Gy or, alternatively, a minimum target volume dose of 15 Gy. Since 2002, the radiation dose was reduced to 80-90% dose of Protocol B because of acute radiation injury. A new Protocol was applied to 6 glioblastoma patients (Protocol C, n=6). The average values of the maximum vascular dose of brain surface in Protocol A, B and C were 11.4{+-}4.2 Gy, 15.7{+-}1.2 and 13.9{+-}3.6 Gy, respectively. Acute radiation injury such as a generalized convulsion within 1 week after BNCT was recognized in three patients of Protocol B. Delayed radiation injury such as a neurological deterioration appeared 3-6 months after BNCT, and it was recognized in 1 patient in Protocol A, 5 patients in Protocol B. According to acute radiation injury, the maximum vascular dose was 15.8{+-}1.3 Gy in positive and was 12.6{+-}4.3 Gy in negative. There was no significant difference between them. According to the delayed radiation injury, the maximum vascular dose was 13.8{+-}3.8 Gy in positive and was 13.6{+-}4.9 Gy in negative. There was no significant difference between them. The dose escalation is limited because most patients in Protocol B suffered from acute radiation injury. We conclude that the maximum vascular dose does not exceed over 12 Gy to avoid the delayed radiation injury, especially, it should be limited under 10 Gy in the case that tumor

  2. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial.

    Science.gov (United States)

    Wang, Ling-Wei; Chen, Yi-Wei; Ho, Ching-Yin; Hsueh Liu, Yen-Wan; Chou, Fong-In; Liu, Yuan-Hao; Liu, Hong-Ming; Peir, Jinn-Jer; Jiang, Shiang-Huei; Chang, Chi-Wei; Liu, Ching-Sheng; Lin, Ko-Han; Wang, Shyh-Jen; Chu, Pen-Yuan; Lo, Wen-Liang; Kao, Shou-Yen; Yen, Sang-Hue

    2016-05-01

    To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA-positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq. Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Boron neutron capture therapy applied to advanced breast cancers: Engineering simulation and feasibility study of the radiation treatment protocol

    Science.gov (United States)

    Sztejnberg Goncalves-Carralves, Manuel Leonardo

    This dissertation describes a novel Boron Neutron Capture Therapy (BNCT) application for the treatment of human epidermal growth factor receptor type 2 positive (HER2+) breast cancers. The original contribution of the dissertation is the development of the engineering simulation and the feasibility study of the radiation treatment protocol for this novel combination of BNCT and HER2+ breast cancer treatment. This new concept of BNCT, representing a radiation binary targeted treatment, consists of the combination of two approaches never used in a synergism before. This combination may offer realistic hope for relapsed and/or metastasized breast cancers. This treatment assumes that the boronated anti-HER2 monoclonal antibodies (MABs) are administrated to the patient and accumulate preferentially in the tumor. Then the tumor is destroyed when is exposed to neutron irradiation. Since the use of anti-HER2 MABs yields good and promising results, the proposed concept is expected to amplify the known effect and be considered as a possible additional treatment approach to the most severe breast cancers for patients with metastasized cancer for which the current protocol is not successful and for patients refusing to have the standard treatment protocol. This dissertation makes an original contribution with an integral numerical approach and proves feasible the combination of the aforementioned therapy and disease. With these goals, the dissertation describes the theoretical analysis of the proposed concept providing an integral engineering simulation study of the treatment protocol. An extensive analysis of the potential limitations, capabilities and optimization factors are well studied using simplified models, models based on real CT patients' images, cellular models, and Monte Carlo (MCNP5/X) transport codes. One of the outcomes of the integral dosimetry assessment originally developed for the proposed treatment of advanced breast cancers is the implementation of BNCT

  4. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Barth Rolf F

    2012-08-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH. In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger

  5. DNA double-strand break induction in Ku80-deficient CHO cells following Boron Neutron Capture Reaction

    Directory of Open Access Journals (Sweden)

    Masunaga Shinichiro

    2011-09-01

    Full Text Available Abstract Background Boron neutron capture reaction (BNCR is based on irradiation of tumors after accumulation of boron compound. 10B captures neutrons and produces an alpha (4He particle and a recoiled lithium nucleus (7Li. These particles have the characteristics of high linear energy transfer (LET radiation and have marked biological effects. The purpose of this study is to verify that BNCR will increase cell killing and slow disappearance of repair protein-related foci to a greater extent in DNA repair-deficient cells than in wild-type cells. Methods Chinese hamster ovary (CHO-K1 cells and a DNA double-strand break (DSB repair deficient mutant derivative, xrs-5 (Ku80 deficient CHO mutant cells, were irradiated by thermal neutrons. The quantity of DNA-DSBs following BNCR was evaluated by measuring the phosphorylation of histone protein H2AX (gamma-H2AX and 53BP1 foci using immunofluorescence intensity. Results Two hours after neutron irradiation, the number of gamma-H2AX and 53BP1 foci in the CHO-K1 cells was decreased to 36.5-42.8% of the levels seen 30 min after irradiation. In contrast, two hours after irradiation, foci levels in the xrs-5 cells were 58.4-69.5% of those observed 30 min after irradiation. The number of gamma-H2AX foci in xrs-5 cells at 60-120 min after BNCT correlated with the cell killing effect of BNCR. However, in CHO-K1 cells, the RBE (relative biological effectiveness estimated by the number of foci following BNCR was increased depending on the repair time and was not always correlated with the RBE of cytotoxicity. Conclusion Mutant xrs-5 cells show extreme sensitivity to ionizing radiation, because xrs-5 cells lack functional Ku-protein. Our results suggest that the DNA-DSBs induced by BNCR were not well repaired in the Ku80 deficient cells. The RBE following BNCR of radio-sensitive mutant cells was not increased but was lower than that of radio-resistant cells. These results suggest that gamma-ray resistant cells have

  6. Optimum design and criticality safety of a beam-shaping assembly with an accelerator-driven subcritical neutron multiplier for boron neutron capture therapies.

    Science.gov (United States)

    Hiraga, F

    2015-12-01

    The beam-shaping assembly for boron neutron capture therapies with a compact accelerator-driven subcritical neutron multiplier was designed so that an epithermal neutron flux of 1.9×10(9) cm(-2) s(-1) at the treatment position was generated by 5 MeV protons in a beam current of 2 mA. Changes in the atomic density of (135)Xe in the nuclear fuel due to the operation of the beam-shaping assembly were estimated. The criticality safety of the beam-shaping assembly in terms of Xe poisoning is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Khelifi, R. [LPTHIRM, Department of Physics, Saad Dahlab University, Route de Soumaa (Algeria); Department of Radiation, Radionuclide and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)], E-mail: khelifi@mail.univ-blida.dz; Nievaart, V.A. [Institute for Energy, Joint Research Centre, European Commission, Westerduinweg 5, 1755 ZG Petten (Netherlands); Bode, P. [Department of Radiation, Radionuclide and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands); Moss, R.L. [Institute for Energy, Joint Research Centre, European Commission, Westerduinweg 5, 1755 ZG Petten (Netherlands); Krijger, G.C. [Department of Radiation, Radionuclide and Reactors, Faculty of Applied Sciences, Delft University of Technology, Mekelweg 15, 2629 JB Delft (Netherlands)

    2009-07-15

    A Monte Carlo calculation was carried out for boron neutron capture therapy (BNCT) of extra corporal liver phantom. The present paper describes the basis for a subsequent clinical application of the prompt gamma spectroscopy set-up aimed at in vivo monitoring of boron distribution. MCNP code was used first to validate the homogeneity in thermal neutron field in the liver phantom and simulate the gamma ray detection system (collimator and detector) in the treatment room. The gamma ray of 478 keV emitted by boron in small specific region can be detected and a mathematical formalism was used for the tomography image reconstruction.

  8. Toward prompt gamma spectrometry for monitoring boron distributions during extra corporal treatment of liver metastases by boron neutron capture therapy: a Monte Carlo simulation study.

    Science.gov (United States)

    Khelifi, R; Nievaart, V A; Bode, P; Moss, R L; Krijger, G C

    2009-07-01

    A Monte Carlo calculation was carried out for boron neutron capture therapy (BNCT) of extra corporal liver phantom. The present paper describes the basis for a subsequent clinical application of the prompt gamma spectroscopy set-up aimed at in vivo monitoring of boron distribution. MCNP code was used first to validate the homogeneity in thermal neutron field in the liver phantom and simulate the gamma ray detection system (collimator and detector) in the treatment room. The gamma ray of 478 keV emitted by boron in small specific region can be detected and a mathematical formalism was used for the tomography image reconstruction.

  9. {sup 1}H and {sup 10}B NMR and MRI investigation of boron- and gadolinium-boron compounds in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, M., E-mail: marco.bonora@unipv.it [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Corti, M.; Borsa, F. [Physics Department ' A. Volta' , University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [CNISM Unit (Italy); Bortolussi, S.; Protti, N.; Santoro, D.; Stella, S.; Altieri, S. [Nuclear and Theoretical Physics Department, University of Pavia, Via Bassi 6, 27100 Pavia (Italy)] [INFN Pavia (Italy); Zonta, C.; Clerici, A.M.; Cansolino, L.; Ferrari, C.; Dionigi, P. [Surgical Sciences Department, Experimental Surgery Laboratory, University of Pavia, Pavia (Italy); Porta, A.; Zanoni, G.; Vidari, G. [Organic Chemistry Department, University of Pavia, Via Taramelli 10, 27100 Pavia (Italy)

    2011-12-15

    {sup 10}B molecular compounds suitable for Boron Neutron Capture Therapy (BNCT) are tagged with a Gd(III) paramagnetic ion. The newly synthesized molecule, Gd-BPA, is investigated as contrast agent in Magnetic Resonance Imaging (MRI) with the final aim of mapping the boron distribution in tissues. Preliminary Nuclear Magnetic Resonance (NMR) measurements, which include {sup 1}H and {sup 10}B relaxometry in animal tissues, proton relaxivity of the paramagnetic Gd-BPA molecule in water and its absorption in tumoral living cells, are reported.

  10. Boron neutron capture therapy (BNCT) as a new approach for clear cell sarcoma (CCS) treatment: Trial using a lung metastasis model of CCS.

    Science.gov (United States)

    Andoh, Tooru; Fujimoto, Takuya; Suzuki, Minoru; Sudo, Tamotsu; Sakurai, Yoshinori; Tanaka, Hiroki; Fujita, Ikuo; Fukase, Naomasa; Moritake, Hiroshi; Sugimoto, Tohru; Sakuma, Toshiko; Sasai, Hiroshi; Kawamoto, Teruya; Kirihata, Mitsunori; Fukumori, Yoshinobu; Akisue, Toshihiro; Ono, Koji; Ichikawa, Hideki

    2015-12-01

    Clear cell sarcoma (CCS) is a rare malignant tumor with a poor prognosis. In the present study, we established a lung metastasis animal model of CCS and investigated the therapeutic effect of boron neutron capture therapy (BNCT) using p-borono-L-phenylalanine (L-BPA). Biodistribution data revealed tumor-selective accumulation of (10)B. Unlike conventional gamma-ray irradiation, BNCT significantly suppressed tumor growth without damaging normal tissues, suggesting that it may be a potential new therapeutic option to treat CCS lung metastases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy.

    Science.gov (United States)

    Sakurai, Yoshinori; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira

    2015-11-01

    Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a "dual phantom technique" for measuring the fast neutron component of dose is reported. One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % 6LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % 6LiOH solution based on the simulation results. Experimental characterization of the depth dose distributions of the

  12. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Sakurai, Yoshinori, E-mail: yosakura@rri.kyoto-u.ac.jp; Tanaka, Hiroki; Kondo, Natsuko; Kinashi, Yuko; Suzuki, Minoru; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira [Kyoto University Research Reactor Institute, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2015-11-15

    Purpose: Research and development of various accelerator-based irradiation systems for boron neutron capture therapy (BNCT) is underway throughout the world. Many of these systems are nearing or have started clinical trials. Before the start of treatment with BNCT, the relative biological effectiveness (RBE) for the fast neutrons (over 10 keV) incident to the irradiation field must be estimated. Measurements of RBE are typically performed by biological experiments with a phantom. Although the dose deposition due to secondary gamma rays is dominant, the relative contributions of thermal neutrons (below 0.5 eV) and fast neutrons are virtually equivalent under typical irradiation conditions in a water and/or acrylic phantom. Uniform contributions to the dose deposited from thermal and fast neutrons are based in part on relatively inaccurate dose information for fast neutrons. This study sought to improve the accuracy in the dose estimation for fast neutrons by using two phantoms made of different materials in which the dose components can be separated according to differences in the interaction cross sections. The development of a “dual phantom technique” for measuring the fast neutron component of dose is reported. Methods: One phantom was filled with pure water. The other phantom was filled with a water solution of lithium hydroxide (LiOH) capitalizing on the absorbing characteristics of lithium-6 (Li-6) for thermal neutrons. Monte Carlo simulations were used to determine the ideal mixing ratio of Li-6 in LiOH solution. Changes in the depth dose distributions for each respective dose component along the central beam axis were used to assess the LiOH concentration at the 0, 0.001, 0.01, 0.1, 1, and 10 wt. % levels. Simulations were also performed with the phantom filled with 10 wt. % {sup 6}LiOH solution for 95%-enriched Li-6. A phantom was constructed containing 10 wt. % {sup 6}LiOH solution based on the simulation results. Experimental characterization of the

  13. The Rare Earth Peak and the Astrophysical Location of the r Process

    Science.gov (United States)

    Mumpower, M. R.; McLaughlin, G. C.; Surman, R.; Steiner, A. W.

    The question of astrophysical site(s) for the rapid neutron capture or r process of nucleosynthesis remains one of the most challenging open problems in all of physics. Neutron star mergers and core collapse supernovae are the leading candidates, but conclusions regarding both are limited by our knowledge of nuclear physics far from stability. Current and future radioactive beam facilities will aid in this endeavor by providing a plethora of new nuclear data information to be used in theoretical simulations. We present a new theoretical framework which, if used in combination with future measurements, will give strong clues to the astrophysical site of the r process.

  14. Pharmaco-thermodynamics of deuterium-induced oedema in living rat brain via 1H2O MRI: implications for boron neutron capture therapy of malignant brain tumours

    Science.gov (United States)

    Medina, Daniel C.; Li, Xin; Springer, Charles S., Jr.

    2005-05-01

    In addition to its common usage as a tracer in metabolic and physiological studies, deuterium possesses anti-tumoural activity and confers protection against γ-irradiation. A more recent interest in deuterium emanates from the search for alternatives capable of improving neutron penetrance whilst reducing healthy tissue radiation dose deposition in boron neutron capture therapy of malignant brain tumours. Despite this potential clinical application, deuterium induces brain oedema, which is detrimental to neutron capture therapy. In this study, five adult male rats were titrated with deuterated drinking water while brain oedema was monitored via water proton magnetic resonance imaging. This report concludes that deuterium, as well as deuterium-induced brain oedema, possesses a uniform brain bio-distribution. At a steady-state blood fluid deuteration value of 16%, when the deuterium isotope fraction in drinking water was 25%, a mean oedematous volume change of 9 ± 2% (p-value body fluid deuteration enhances thermal neutron flux penetrance and reduces dose deposition, oedema has the opposite effect because it increases the volume of interest, e.g., the brain volume. Thermal neutron enhancement and effective dose reduction factors could be reduced by as much as ~10% in the presence of a 9% water volume increase (oedema). All three authors have contributed equally to this work.

  15. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases.

    Science.gov (United States)

    Halfon, S; Paul, M; Steinberg, D; Nagler, A; Arenshtam, A; Kijel, D; Polacheck, I; Srebnik, M

    2009-07-01

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction (7)Li(p,n)(7)Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  16. A theranostic approach based on the use of a dual boron/Gd agent to improve the efficacy of Boron Neutron Capture Therapy in the lung cancer treatment.

    Science.gov (United States)

    Alberti, Diego; Protti, Nicoletta; Toppino, Antonio; Deagostino, Annamaria; Lanzardo, Stefania; Bortolussi, Silva; Altieri, Saverio; Voena, Claudia; Chiarle, Roberto; Geninatti Crich, Simonetta; Aime, Silvio

    2015-04-01

    This study aims at developing an innovative theranostic approach for lung tumor and metastases treatment, based on Boron Neutron Capture Therapy (BNCT). It relies on to the use of low density lipoproteins (LDL) as carriers able to maximize the selective uptake of boron atoms in tumor cells and, at the same time, to quantify the in vivo boron distribution by magnetic resonance imaging (MRI). Tumor cells uptake was initially assessed by ICP-MS and MRI on four types of tumor (TUBO, B16-F10, MCF-7, A549) and one healthy (N-MUG) cell lines. Lung metastases were generated by intravenous injection of a Her2+ breast cancer cell line (i.e. TUBO) in BALB/c mice and transgenic EML4-ALK mice were used as primary tumor model. After neutron irradiation, tumor growth was followed for 30-40 days by MRI. Tumor masses of boron treated mice increased markedly slowly than the control group. From the clinical editor: In this article, the authors described an improvement to existing boron neutron capture therapy. The dual MRI/BNCT agent, carried by LDLs, was able to maximize the selective uptake of boron in tumor cells, and, at the same time, quantify boron distribution in tumor and in other tissues using MRI. Subsequent in vitro and in vivo experiments showed tumor cell killing after neutron irradiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. A microdosimetric study of {sup 10}B(n,{alpha}){sup 7}Li and {sup 157}Gd(n,{gamma}) reactions for neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.K.C.; Sutton, M.; Evans, T.M. [Georgia Inst. of Tech., Atlanta, GA (United States); Laster, B.H. [Brookhaven National Lab., Upton, NY (United States). Medical Dept.

    1999-01-01

    This paper presents the microdosimetric analysis for the most interesting cell survival experiment recently performed at the Brookhaven National Laboratory (BNL). In this experiment, the cells were first treated with a gadolinium (Gd) labeled tumor-seeking boronated porphyrin (Gd-BOPP) or with BOPP alone, and then irradiated with thermal neutrons. The resulting cell-survival curves indicate that the {sup 157}Gd(n,{gamma}) reactions are very effective in cell killing. The death of a cell treated with Gd-BOPP was attributed to either the {sup 10}B(n,{alpha}){sup 7}Li reactions or the {sup 157}Gd(n,{gamma}) reactions (or both). However, the quantitative relationship between the two types of reaction and the cell-survival fraction was not clear. This paper presents the microdosimetric analysis for the BNL experiment based on the measured experimental parameters, and the results clearly suggest a quantitative relationship between the two types of reaction and the cell survival fraction. The results also suggest new research in gadolinium neutron capture therapy (GdNCT) which may lead to a more practical modality than the boron neutron capture therapy (BNCT) for treating cancers.

  18. High power accelerator-based boron neutron capture with a liquid lithium target and new applications to treatment of infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Halfon, S. [Soreq NRC, Yavne 81800 (Israel); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: halfon@phys.huji.ac.il; Paul, M. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Steinberg, D. [Biofilm Laboratory, Institute of Dental Sciences, Faculty of Dentistry, Hebrew University-Hadassah (Israel); Nagler, A.; Arenshtam, A.; Kijel, D. [Soreq NRC, Yavne 81800 (Israel); Polacheck, I. [Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center (Israel); Srebnik, M. [Department of Medicinal Chemistry and Natural Products, School of Pharmacy, Hebrew University, Jerusalem 91120 (Israel)

    2009-07-15

    A new conceptual design for an accelerator-based boron neutron capture therapy (ABNCT) facility based on the high-current low-energy proton beam driven by the linear accelerator at SARAF (Soreq Applied Research Accelerator Facility) incident on a windowless forced-flow liquid-lithium target, is described. The liquid-lithium target, currently in construction at Soreq NRC, will produce a neutron field suitable for the BNCT treatment of deep-seated tumor tissues, through the reaction {sup 7}Li(p,n){sup 7}Be. The liquid-lithium target is designed to overcome the major problem of solid lithium targets, namely to sustain and dissipate the power deposited by the high-intensity proton beam. Together with diseases conventionally targeted by BNCT, we propose to study the application of our setup to a novel approach in treatment of diseases associated with bacterial infections and biofilms, e.g. inflammations on implants and prosthetic devices, cystic fibrosis, infectious kidney stones. Feasibility experiments evaluating the boron neutron capture effectiveness on bacteria annihilation are taking place at the Soreq nuclear reactor.

  19. The neutron capture cross sections of {sup 237}Np(n,{gamma}) and {sup 240}Pu(n,{gamma}) and its relevance in the transmutation of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, C.; Abbondanno, U.; Aerts, G.; Alvarez, H.; Alvarez-Velarde, F.; Andriamonje, S.; Andrzejewski, J.; Assimakopoulos, P.; Audouin, L.; Badurek, G.; Baumann, P.; Becvar, F.; Berthoumieux, E.; Calvino, F.; Calviani, M.; Cano-Ott, D.; Capote, R.; Carrapico, C.; Cennini, P.; Chepel, V.; Chiaveri, E.; Colonna, N.; Cortes, G.; Couture, A.; Cox, J.; Dahlfors, M.; David, S.; Dillmann, I.; Domingo-Pardo, C.; Dridi, W.; Duran, I.; Eleftheriadis, C.; Embid-Segura, M.; Ferrant, L.; Ferrari, A.; Ferreira-Marques, R.; Fujii, K.; Furman, W.; Goncalves, I.; Gonzalez-Romero, E.; Gramegna, F.; Gunsing, F.; Haas, B.; Haight, R.; Heil, M.; Herrera-Martinez, A.; Igashira, M.; Jericha, E.; Kappeler, F.; Kadi, Y.; Karadimos, D.; Karamanis, D.; Kerveno, M.; Koehler, P.; Kossionides, E.; Krticka, M.; Lampoudis, C.; Leeb, H.; Lindote, A.; Lopes, I.; Lozano, M.; Lukic, S.; Marganiec, J.; Marrone, S.; Martinez, T.; Massimi, C.; Mastinu, P.; Mengoni, A.; Milazzo, P.M.; Moreau, C.; Mosconi, M.; Neves, F.; Oberhummer, H.; O' Brien, S.; Pancin, J.; Papachristodoulou, C.; Papadopoulos, C.; Paradela, C.; Patronis, N.; Pavlik, A.; Pavlopoulos, P.; Perrot, L.; Pigni, M.T.; Plag, R.; Plompen, A.; Plukis, A.; Poch, A.; Praena, J.; Pretel, C.; Quesada, J.; Rauscher, T.; Reifarth, R.; Rubbia, C.; Rudolf, G.; Rullhusen, P.; Salgado, J.; Santos, C.; Sarchiapone, L.; Savvidis, I.; Stephan, C.; Tagliente, G.; Tain, J.L.; Tassan-Got, L.; Tavora, L.; Terlizzi, R.; Vannini, G.; Vaz, P.; Ventura, A.; Villamarin, D.; Vincente, M.C.; Vlachoudis, V.; Vlastou, R.; Voss, F.; Walter, S.; Wiescher, M.; Wisshak, K

    2008-07-01

    Neutron capture cross sections of actinides are of great relevance for the Transmutation of Nuclear Waste in Accelerator Driven Systems (ADS) and Generation-IV reactors. The neutron capture cross sections of {sup 237}Np and {sup 240}Pu in the range of 1 eV to 2 keV were measured at the n-TOF facility with a Total Absorption Calorimeter. The data have been analyzed with the SAMMY code. The corresponding covariance matrices have been generated. The final cross sections are presented and compared to the previously existing ones.The n-TOF {sup 237}Np {sigma}(n,{gamma}) is in agreement with the evaluated data files below 300 eV and its is lower by 10 to 15% up to 2 keV. This discrepancy with the evaluated data files is also observed in the capture cross section derived from the transmission measurements of Gressier et al. In the case of the {sup 240}Pu {sigma}(n,{gamma}), the n-TOF {sigma}(n,{gamma}) agrees within uncertainties with JENDL-3.3 and JEFF-3.1, except for a group of resonances around 800 eV. Endf/B-VII data are lower than n-TOF and the mentioned evaluations, with differences that increase with neutron energy up to 15-20 per cent.

  20. Measurement of the neutron capture resonances for platinum using the Ge spectrometer and pulsed neutron beam at the J-PARC/MLF/ANNRI

    Science.gov (United States)

    Kino, Koichi; Hasemi, Hiroyuki; Kimura, Atsushi; Kiyanagi, Yoshiaki

    2017-09-01

    The neutron capture cross-section for platinum was measured at J-PARC/MLF/ANNRI. The intense pulsed neutron beam was impinging on a natural platinum foil sample and the emitted prompt γ-rays were detected by a Ge spectrometer. The peak energies of the low energy resonances for natural platinum are consistent with those of the JEFF-3.1.2, RUSFOND2010 and next-JENDL data libraries except for the 20-eV resonance. The resonance cross-sections of the next-JENDL library do not contradict the present measurements within the uncertainty of the absolute value of the present work. We analysed the prompt γ-ray spectrum and found a clear 7921.93 keV peak that originates from the transition from the 196Pt compound state to its ground state. The neutron capture cross-section for 195Pt was obtained by choosing events of this peak. The peak energies of most of the low energy resonances are almost consistent with those of the RUSFOND2010 and next-JENDL libraries. However, there was a disagreement for the 20-eV resonance.

  1. Preliminary dosimetric study on feasibility of multi-beam boron neutron capture therapy in patients with diffuse intrinsic pontine glioma without craniotomy.

    Directory of Open Access Journals (Sweden)

    Jia-Cheng Lee

    Full Text Available Diffuse intrinsic pontine glioma is a very frustrating disease. Since the tumor infiltrates the brain stem, surgical removal is often impossible. For conventional radiotherapy, the dose constraint of the brain stem impedes attempts at further dose escalation. Boron neutron capture therapy (BNCT, a targeted radiotherapy, carries the potential to selectively irradiate tumors with an adequate dose while sparing adjacent normal tissue. In this study, 12 consecutive patients treated with conventional radiotherapy in our institute were reviewed to evaluate the feasibility of BNCT. NCTPlan Ver. 1.1.44 was used for dose calculations. Compared with two and three fields, the average maximal dose to the normal brain may be lowered to 7.35 ± 0.72 Gy-Eq by four-field irradiation. The mean ratio of minimal dose to clinical target volume and maximal dose to normal tissue was 2.41 ± 0.26 by four-field irradiation. A therapeutic benefit may be expected with multi-field boron neutron capture therapy to treat diffuse intrinsic pontine glioma without craniotomy, while the maximal dose to the normal brain would be minimized by using the four-field setting.

  2. R-process enrichment from a single event in an ancient dwarf galaxy.

    Science.gov (United States)

    Ji, Alexander P; Frebel, Anna; Chiti, Anirudh; Simon, Joshua D

    2016-03-31

    Elements heavier than zinc are synthesized through the rapid (r) and slow (s) neutron-capture processes. The main site of production of the r-process elements (such as europium) has been debated for nearly 60 years. Initial studies of trends in chemical abundances in old Milky Way halo stars suggested that these elements are produced continually, in sites such as core-collapse supernovae. But evidence from the local Universe favours the idea that r-process production occurs mainly during rare events, such as neutron star mergers. The appearance of a plateau of europium abundance in some dwarf spheroidal galaxies has been suggested as evidence for rare r-process enrichment in the early Universe, but only under the assumption that no gas accretes into those dwarf galaxies; gas accretion favours continual r-process enrichment in these systems. Furthermore, the universal r-process pattern has not been cleanly identified in dwarf spheroidals. The smaller, chemically simpler, and more ancient ultrafaint dwarf galaxies assembled shortly after the first stars formed, and are ideal systems with which to study nucleosynthesis events such as the r-process. Reticulum II is one such galaxy. The abundances of non-neutron-capture elements in this galaxy (and others like it) are similar to those in other old stars. Here, we report that seven of the nine brightest stars in Reticulum II, observed with high-resolution spectroscopy, show strong enhancements in heavy neutron-capture elements, with abundances that follow the universal r-process pattern beyond barium. The enhancement seen in this 'r-process galaxy' is two to three orders of magnitude higher than that detected in any other ultrafaint dwarf galaxy. This implies that a single, rare event produced the r-process material in Reticulum II. The r-process yield and event rate are incompatible with the source being ordinary core-collapse supernovae, but consistent with other possible sources, such as neutron star mergers.

  3. Rapid Prototyping of wax foundry models in an incremental process

    Directory of Open Access Journals (Sweden)

    B. Kozik

    2011-04-01

    Full Text Available The paper presents an analysis incremental methods of creating wax founding models. There are two methods of Rapid Prototypingof wax models in an incremental process which are more and more often used in industrial practice and in scientific research.Applying Rapid Prototyping methods in the process of making casts allows for acceleration of work on preparing prototypes. It isespecially important in case of element having complicated shapes. The time of making a wax model depending on the size and the appliedRP method may vary from several to a few dozen hours.

  4. Measurement of the neutron capture cross section of the fissile isotope 235U with the CERN n_TOF total absorption calorimeter and a fission tagging based on micromegas detectors

    Directory of Open Access Journals (Sweden)

    Balibrea-Correa J.

    2017-01-01

    Full Text Available The accuracy on neutron capture cross section of fissile isotopes must be improved for the design of future nuclear systems such as Gen-IV reactors and Accelerator Driven Systems. The High Priority Request List of the Nuclear Energy Agency, which lists the most important nuclear data requirements, includes also the neutron capture cross sections of fissile isotopes such as 233,235U and 239,241Pu. A specific experimental setup has been used at the CERN n_TOF facility for the measurement of the neutron capture cross section of 235U by a set of micromegas fission detectors placed inside a segmented BaF2 Total Absorption Calorimeter.

  5. Neural correlates of rapid spectrotemporal processing in musicians and nonmusicians.

    Science.gov (United States)

    Gaab, N; Tallal, P; Kim, H; Lakshminarayanan, K; Archie, J J; Glover, G H; Gabrieli, J D E

    2005-12-01

    Our results suggest that musical training alters the functional anatomy of rapid spectrotemporal processing, resulting in improved behavioral performance along with a more efficient functional network primarily involving traditional language regions. This finding may have important implications for improving language/reading skills, especially in children struggling with dyslexia.

  6. Determination of neutron capture cross sections of 232Th at 14.1 MeV and 14.8 MeV using the neutron activation method

    Science.gov (United States)

    Lan, Chang-Lin; Zhang, Yi; Lv, Tao; Xie, Bao-Lin; Peng, Meng; Yao, Ze-En; Chen, Jin-Gen; Kong, Xiang-Zhong

    2017-04-01

    The 232Th(n, γ)233Th neutron capture reaction cross sections were measured at average neutron energies of 14.1 MeV and 14.8 MeV using the activation method. The neutron flux was determined using the monitor reaction 27Al(n,α)24Na. The induced gamma-ray activities were measured using a low background gamma ray spectrometer equipped with a high resolution HPGe detector. The experimentally determined cross sections were compared with the data in the literature, and the evaluated data of ENDF/B-VII.1, JENDL-4.0u+, and CENDL-3.1. The excitation functions of the 232Th(n,γ)233Th reaction were also calculated theoretically using the TALYS1.6 computer code. Supported by Chinese TMSR Strategic Pioneer Science and Technology Project-The Th-U Fuel Physics Term (XDA02010100) and National Natural Science Foundation of China (11205076, 21327801)

  7. Synthesis and characterization of gadolinium nanostructured materials with potential applications in magnetic resonance imaging, neutron-capture therapy and targeted drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Stefanakis, Dimitrios; Ghanotakis, Demetrios F., E-mail: ghanotakis@chemistry.uoc.g [University of Crete, Department of Chemistry (Greece)

    2010-05-15

    Two Gadolinium nanostructured materials, Gd{sub 2}(OH){sub 5}NO{sub 3} nanoparticles and Gd(OH){sub 3} nanorods, were synthesized and extensively characterized by various techniques. In addition to the potential use of Gd{sub 2}(OH){sub 5}NO{sub 3} in magnetic resonance imaging (MRI) and Neutron-capture therapy (NCT) application, it could also be used in targeted drug delivery. An antibiotic (nalidixic acid), two amino acids (aspartic and glutamic acid), a fatty acid and a surfactant (SDS) were intercalated in the nanoparticles. The surface of the nanoparticles was modified with folic acid in order to be capable of targeted delivery to folate receptor expressing sites, such as tumor human cells.

  8. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    Science.gov (United States)

    Avagyan, R. H.; Kerobyan, I. A.

    2015-07-01

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15-1.5 MeV/u) and LINAC2 (1.5-10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  9. Development of an optical fiber type detector using a Eu:LiCaAlF{sub 6} scintillator for neutron monitoring in boron neutron capture therapy

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Kenichi, E-mail: k-watanabe@nucl.nagoya-u.ac.jp [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Kawabata, Yuya; Yamazaki, Atsushi; Uritani, Akira; Iguchi, Tetsuo [Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603 (Japan); Fukuda, Kentaro [Tokuyama Corp., 1-1 Mikage-cho, Shunan-shi, Yamaguchi, 745-8648 (Japan); Yanagida, Takayuki [Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 (Japan)

    2015-12-01

    We have developed a small neutron detector probe as a thermal neutron flux monitor for boron neutron capture therapy. The detector consists of an optical fiber and a small Eu:LiCaAlF{sub 6} scintillator. In order to improve neutron-gamma ray discrimination capability, we use the small-size scintillator, whose size is controlled to be smaller than fast electron range produced by gamma-rays and larger than the range of charged particles induced by {sup 6}Li(n,t) reactions. We confirmed the improved neutron-gamma ray discrimination capability by comparing the detector responses between a small-size scintillator and a slab one. We also evaluated the neutron sensitivity of the fabricated optical fiber type neutron detector to be 2×10{sup −4} cm{sup 2}.

  10. High-resolution spectroscopy of 32P . (II). Level density and primary transition strengths observed after thermal neutron capture in 31P

    Science.gov (United States)

    Michaelsen, S.; Winter, Ch.; Lieb, K. P.; Krusche, B.; Robinson, S.; Von Egidy, T.

    1989-09-01

    The -γ-ray spectrum emitted after thermal neutron capture in 31P was studied at the ILL high flux reactor with a pair spectrometer and an intrinsic Ge detector. A total of 212 transitions were assigned to the decay of 32P and 155 of these, representing 96.7% of the observed flux, were placed in a level scheme of 38 states. The neutron binding energy was determined as 7935.74 (16) keV. The densities of states observed in this reaction and in a recent (d, p) study are analyzed in the constant temperature Fermi-gas model. The primary E1 and M1 transition strengths in 32P are discussed and are compared to other sd-shell nuclei.

  11. Quantitative bioimaging of p-boronophenylalanine in thin liver tissue sections as a tool for treatment planning in boron neutron capture therapy.

    Science.gov (United States)

    Reifschneider, Olga; Schütz, Christian L; Brochhausen, Christoph; Hampel, Gabriele; Ross, Tobias; Sperling, Michael; Karst, Uwe

    2015-03-01

    An analytical method using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was developed and applied to assess enrichment of 10B-containing p-boronophenylalanine-fructose (BPA-f) and its pharmacokinetic distribution in human tissues after application for boron neutron capture therapy (BNCT). High spatial resolution (50 μm) and limits of detection in the low parts-per-billion range were achieved using a Nd:YAG laser of 213 nm wavelength. External calibration by means of 10B-enriched standards based on whole blood proved to yield precise quantification results. Using this calibration method, quantification of 10B in cancerous and healthy tissue was carried out. Additionally, the distribution of 11B was investigated, providing 10B enrichment in the investigated tissues. Quantitative imaging of 10B by means of LA-ICP-MS was demonstrated as a new option to characterise the efficacy of boron compounds for BNCT.

  12. First tests of the applicability of $\\gamma$-ray imaging for background discrimination in time-of-flight neutron capture measurements

    CERN Document Server

    Magán, D L Pérez; Domingo-Pardo, C; Agramunt-Ros, J; Albiol, F; Casanovas, A; González, A; Guerrero, C; Lerendegui-Marco, J; Tarifeño-Saldivia, A

    2016-01-01

    In this work we explore for the first time the applicability of using $\\gamma$-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr$_3$ scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a $^{197}$Au sample have been carried out at n\\_TOF, achieving an enhancement of a factor of 2 in the signal-to-background ratio when selecting only those events coming from the direction of the sample.

  13. Neutron capture cross section measurements of 120Sn, 122Sn and 124Sn with the array of Ge spectrometer at the J-PARC/MLF/ANNRI

    Directory of Open Access Journals (Sweden)

    Kimura Atsushi

    2017-01-01

    Full Text Available Preliminary neutron capture cross section of 120Sn, 122Sn and 124Sn were obtained in the energy range from 20 meV to 4 keV with the array of germanium detectors in ANNRI at MLF,J-PARC. The results of 120Sn, 122Sn and 124Sn were obtained by normalizing the relative cross sections to the data in JENDL-4.0 at the largest 426.7-, 107.0- and 62.05-eV resonances, respectively. The 67.32- and 150-eV resonances for 120Sn and the 579- and 950-eV resonances for 124Sn which are listed in JENDL-4.0 and/or ENDF/B VII.1 were not observed.

  14. Application of modified REFIT code for J-PARC/MLF to evaluation of neutron capture cross section on 155,157Gd

    Science.gov (United States)

    Mizuyama, Kazuhito; Iwamoto, Nobuyuki; Iwamoto, Osamu; Hasemi, Hiroyuki; Kino, Koichi; Kimura, Atsushi; Kiyanagi, Yoshiaki

    2017-09-01

    In order to analyze the experimental data measured by the Accurate Neutron-Nucleus Reaction Measurement Instrument (ANNRI) at the Japan Proton Accelerator Research Complex/Materials and Life Science Experimental Facility (J-PARC/MLF), it is necessary to take into account the double-bunch structure of the neutron pulse and the energy resolution function for the operational condition of the J-PARC/MLF. The modified REFIT code has been developed to treat the double-bunch neutron pulse and the energy resolution function for J-PARC/MLF. In this study, we applied the modified REFIT code to analyze the new data of the neutron capture cross section of 155Gd and 157Gd recently measured by ANNRI in the J-PARC/MLF, and obtained the resonance parameters of two Gd isotopes. We discussed the differences between the our obtained results and the other libraries.

  15. Conceptual design project: Accelerator complex for nuclear physics studies and boron neutron capture therapy application at the Yerevan Physics Institute (YerPhI) Yerevan, Armenia

    Energy Technology Data Exchange (ETDEWEB)

    Avagyan, R.H.; Kerobyan, I.A.

    2015-07-15

    The final goal of the proposed project is the creation of a Complex of Accelerator Facilities at the Yerevan Physics Institute (CAF YerPhI) for nuclear physics basic researches, as well as for applied programs including boron neutron capture therapy (BNCT). The CAF will include the following facilities: Cyclotron C70, heavy material (uranium) target/ion source, mass-separator, LINAC1 (0.15–1.5 MeV/u) and LINAC2 (1.5–10 MeV/u). The delivered by C70 proton beams with energy 70 MeV will be used for investigations in the field of basic nuclear physics and with energy 30 MeV for use in applications.

  16. Evaluation of the medical staff effective dose during boron neutron capture therapy using two high resolution voxel-based whole body phantoms

    Directory of Open Access Journals (Sweden)

    Mohadeseh Golshanian

    2017-10-01

    Full Text Available Because accelerator-based boron neutron capture therapy (BNCT systems are planned for use in hospitals, entry into the medical room should be controlled as hospitals are generally assumed to be public and safe places. In this paper, computational investigation of the medical staff effective dose during BNCT has been performed in different situations using Monte Carlo N-Particle (MCNP4C code and two voxel based male phantoms. The results show that the medical staff effective dose is highly dependent on the position of the medical staff. The results also show that the maximum medical staff effective dose in an emergency situation in the presence of a patient is ∼25.5 μSv/s.

  17. Monitoring the distribution of prompt gamma rays in boron neutron capture therapy using a multiple-scattering Compton camera: A Monte Carlo simulation study

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taewoong; Lee, Hyounggun; Lee, Wonho, E-mail: wonhol@korea.ac.kr

    2015-10-21

    This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by {sup 10}B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.

  18. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models.

    Science.gov (United States)

    Maitz, Charles A; Khan, Aslam A; Kueffer, Peter J; Brockman, John D; Dixson, Jonathan; Jalisatgi, Satish S; Nigg, David W; Everett, Thomas A; Hawthorne, M Frederick

    2017-08-01

    Boron neutron capture therapy (BNCT) was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9)-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Validation and Comparison of the Therapeutic Efficacy of Boron Neutron Capture Therapy Mediated By Boron-Rich Liposomes in Multiple Murine Tumor Models

    Directory of Open Access Journals (Sweden)

    Charles A Maitz

    2017-08-01

    Full Text Available Boron neutron capture therapy (BNCT was performed at the University of Missouri Research Reactor in mice bearing CT26 colon carcinoma flank tumors and the results were compared with previously performed studies with mice bearing EMT6 breast cancer flank tumors. Mice were implanted with CT26 tumors subcutaneously in the caudal flank and were given two separate tail vein injections of unilamellar liposomes composed of cholesterol, 1,2-distearoyl-sn-glycer-3-phosphocholine, and K[nido-7-CH3(CH215–7,8-C2B9H11] in the lipid bilayer and encapsulated Na3[1-(2`-B10H9-2-NH3B10H8] within the liposomal core. Mice were irradiated 30 hours after the second injection in a thermal neutron beam for various lengths of time. The tumor size was monitored daily for 72 days. Despite relatively lower tumor boron concentrations, as compared to EMT6 tumors, a 45 minute neutron irradiation BNCT resulted in complete resolution of the tumors in 50% of treated mice, 50% of which never recurred. Median time to tumor volume tripling was 38 days in BNCT treated mice, 17 days in neutron-irradiated mice given no boron compounds, and 4 days in untreated controls. Tumor response in mice with CT26 colon carcinoma was markedly more pronounced than in previous reports of mice with EMT6 tumors, a difference which increased with dose. The slope of the dose response curve of CT26 colon carcinoma tumors is 1.05 times tumor growth delay per Gy compared to 0.09 times tumor growth delay per Gy for EMT6 tumors, indicating that inherent radiosensitivity of tumors plays a role in boron neutron capture therapy and should be considered in the development of clinical applications of BNCT in animals and man.

  20. Imperceptibly rapid contrast modulations processed in cortex: Evidence from psychophysics.

    Science.gov (United States)

    Falconbridge, Michael; Ware, Adam; MacLeod, Donald I A

    2010-07-01

    Rapid fluctuations in contrast are common in our modern visual environment. They arise, for example, in a room lit by a fluorescent light, when viewing a CRT computer monitor and when watching a movie in a cinema. As we are unconscious of the rapid changes, it has been assumed that they do not affect the operation of our visual systems. By periodically reversing the contrast of a fixed pattern at a rapid rate we render the pattern itself, as well as the modulations, invisible to observers. We show that exposure to these rapidly contrast-modulated patterns alters the way subsequent stationary patterns are processed; patterns similar to the contrast-modulated pattern require more contrast to be detected than dissimilar patterns. We present evidence that the changes are cortically mediated. Taken together, our findings suggest that cortical stages of the visual system respond to the individual frames of a contrast-reversed sequence, even at rates as high as 160 frames per second.

  1. Fast neutron capture cross sections of /sup 169/Tm, /sup 191/Ir, /sup 193/Ir, and /sup 175/Lu for 3 less than or equal to E/sub n/ less than or equal to 2000 keV

    Energy Technology Data Exchange (ETDEWEB)

    Macklin, R.L.; Drake, D.M.; Malanify, J.J.

    1977-11-01

    Fast neutron capture cross sections of /sup 169/Tm, /sup 191/Ir, /sup 193/Ir, and /sup 175/Lu, and the /sup 6/Li(n,..cap alpha..)/sup 3/H cross sections to which they are normalized are presented in tabular form for neutron energies between 3 and 2000 keV.

  2. Sensitivity studies for the main r process: β-decay rates

    Directory of Open Access Journals (Sweden)

    M. Mumpower

    2014-02-01

    Full Text Available The pattern of isotopic abundances produced in rapid neutron capture, or r-process, nucleosynthesis is sensitive to the nuclear physics properties of thousands of unstable neutron-rich nuclear species that participate in the process. It has long been recognized that the some of the most influential pieces of nuclear data for r-process simulations are β-decay lifetimes. In light of experimental advances that have pushed measurement capabilities closer to the classic r-process path, we revisit the role of individual β-decay rates in the r process. We perform β-decay rate sensitivity studies for a main (A > 120 r process in a range of potential astrophysical scenarios. We study the influence of individual rates during (n, γ-(γ, n equilibrium and during the post-equilibrium phase where material moves back toward stability. We confirm the widely accepted view that the most important lifetimes are those of nuclei along the r-process path for each astrophysical scenario considered. However, we find in addition that individual β-decay rates continue to shape the final abundance pattern through the post-equilibrium phase, for as long as neutron capture competes with β decay. Many of the lifetimes important for this phase of the r process are within current or near future experimental reach.

  3. Onboard Radar Processing Development for Rapid Response Applications

    Science.gov (United States)

    Lou, Yunling; Chien, Steve; Clark, Duane; Doubleday, Josh; Muellerschoen, Ron; Wang, Charles C.

    2011-01-01

    We are developing onboard processor (OBP) technology to streamline data acquisition on-demand and explore the potential of the L-band SAR instrument onboard the proposed DESDynI mission and UAVSAR for rapid response applications. The technology would enable the observation and use of surface change data over rapidly evolving natural hazards, both as an aid to scientific understanding and to provide timely data to agencies responsible for the management and mitigation of natural disasters. We are adapting complex science algorithms for surface water extent to detect flooding, snow/water/ice classification to assist in transportation/ shipping forecasts, and repeat-pass change detection to detect disturbances. We are near completion of the development of a custom FPGA board to meet the specific memory and processing needs of L-band SAR processor algorithms and high speed interfaces to reformat and route raw radar data to/from the FPGA processor board. We have also developed a high fidelity Matlab model of the SAR processor that is modularized and parameterized for ease to prototype various SAR processor algorithms targeted for the FPGA. We will be testing the OBP and rapid response algorithms with UAVSAR data to determine the fidelity of the products.

  4. Missile signal processing common computer architecture for rapid technology upgrade

    Science.gov (United States)

    Rabinkin, Daniel V.; Rutledge, Edward; Monticciolo, Paul

    2004-10-01

    Interceptor missiles process IR images to locate an intended target and guide the interceptor towards it. Signal processing requirements have increased as the sensor bandwidth increases and interceptors operate against more sophisticated targets. A typical interceptor signal processing chain is comprised of two parts. Front-end video processing operates on all pixels of the image and performs such operations as non-uniformity correction (NUC), image stabilization, frame integration and detection. Back-end target processing, which tracks and classifies targets detected in the image, performs such algorithms as Kalman tracking, spectral feature extraction and target discrimination. In the past, video processing was implemented using ASIC components or FPGAs because computation requirements exceeded the throughput of general-purpose processors. Target processing was performed using hybrid architectures that included ASICs, DSPs and general-purpose processors. The resulting systems tended to be function-specific, and required custom software development. They were developed using non-integrated toolsets and test equipment was developed along with the processor platform. The lifespan of a system utilizing the signal processing platform often spans decades, while the specialized nature of processor hardware and software makes it difficult and costly to upgrade. As a result, the signal processing systems often run on outdated technology, algorithms are difficult to update, and system effectiveness is impaired by the inability to rapidly respond to new threats. A new design approach is made possible three developments; Moore's Law - driven improvement in computational throughput; a newly introduced vector computing capability in general purpose processors; and a modern set of open interface software standards. Today's multiprocessor commercial-off-the-shelf (COTS) platforms have sufficient throughput to support interceptor signal processing requirements. This application

  5. Evaluation of a novel sodium borocaptate-containing unnatural amino acid as a boron delivery agent for neutron capture therapy of the F98 rat glioma.

    Science.gov (United States)

    Futamura, Gen; Kawabata, Shinji; Nonoguchi, Naosuke; Hiramatsu, Ryo; Toho, Taichiro; Tanaka, Hiroki; Masunaga, Shin-Ichiro; Hattori, Yoshihide; Kirihata, Mitsunori; Ono, Koji; Kuroiwa, Toshihiko; Miyatake, Shin-Ichi

    2017-01-23

    Boron neutron capture therapy (BNCT) is a unique particle radiation therapy based on the nuclear capture reactions in boron-10. We developed a novel boron-10 containing sodium borocaptate (BSH) derivative, 1-amino-3-fluorocyclobutane-1-carboxylic acid (ACBC)-BSH. ACBC is a tumor selective synthetic amino acid. The purpose of this study was to assess the biodistribution of ACBC-BSH and its therapeutic efficacy following Boron Neutron Capture Therapy (BNCT) of the F98 rat glioma. We evaluated the biodistribution of three boron-10 compounds, ACBC-BSH, BSH and boronophenylalanine (BPA), in vitro and in vivo, following intravenous (i.v.) administration and intratumoral (i.t.) convection-enhanced delivery (CED) in F98 rat glioma bearing rats. For BNCT studies, rats were stratified into five groups: untreated controls, neutron-irradiation controls, BNCT with BPA/i.v., BNCT with ACBC-BSH/CED, and BNCT concomitantly using BPA/i.v. and ACBC-BSH/CED. In vitro, ACBC-BSH attained higher cellular uptake F98 rat glioma cells compared with BSH. In vivo biodistribution studies following i.v. administration and i.t. CED of ACBC-BSH attained significantly higher boron concentrations than that of BSH, but much lower than that of BPA. However, following convection enhanced delivery (CED), ACBC-BSH attained significantly higher tumor concentrations than BPA. The i.t. boron-10 concentrations were almost equal between the ACBC-BSH/CED group and BPA/i.v. group of rats. The tumor/brain boron-10 concentration ratio was higher with ACBC-BSH/CED than that of BPA/i.v. group. Based on these data, BNCT studies were carried out in F98 glioma bearing rats using BPA/i.v. and ACBC-BSH/CED as the delivery agents. The corresponding mean survival times were 37.4 ± 2.6d and 44.3 ± 8.0d, respectively, and although modest, these differences were statistically significant. Our findings suggest that further studies are warranted to evaluate ACBC-BSH/CED as a boron delivery agent.

  6. Rapid process for manufacturing of aluminum nitride powder

    Energy Technology Data Exchange (ETDEWEB)

    Weimer, A.W.; Cochran, G.A.; Eisman, G.A.; Henley, J.P.; Hook, B.D.; Mills, L.K. [Dow Chemical Co., Midland, MI (United States). Ceramics and Advanced Materials Research; Guiton, T.A.; Knudsen, A.K.; Nicholas, R.N.; Volmering, J.E.; Moore, W.G. [Dow Chemical Co., Midland, MI (United States). Advanced Ceramics Lab.

    1994-01-01

    A rapid, direct nitridation process for the manufacture of sinterable aluminum nitride (AIN) powder was developed at the pilot scale. Atomized aluminum metal and nitrogen gas were heated and reacted rapidly to synthesize AIN while they passed through the reaction zone of a transport flow reactor. The heated walls of the reactor simultaneously initiated the reaction and removed the generated heat to control the exotherm. Several variations of the process were required to achieve high conversion and reduce wall deposition of the product. The fine AIN powder produced did not require a postreaction grinding step to reduce particle size. However, a secondary heat treatment, following a mild milling step to expose fresh surface, was necessary to ensure complete conversion of the aluminum. In some instances, a final air classification step to remove large particles was necessary to promote densification by pressure less sintering. The AIN powder produced was pressure less sintered with 3 wt% yttria to fabricate fully dense parts which exhibited high thermal conductivity. The powder was shown to be less sinterable than commercially available carbothermally produced powders

  7. The r-process nucleosynthesis during the decompression of neutron star crust material

    Energy Technology Data Exchange (ETDEWEB)

    Goriely, S. [Institut d' Astronomie et d' Astrophysique, CP-226, Université Libre de Bruxelles, 1050 Brussels (Belgium); Bauswein, A. [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece and Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching (Germany); Janka, H.-T. [Max-Planck-Institut für Astrophysik, Postfach 1317, 85741 Garching (Germany); Sida, J.-L.; Lemaître, J.-F.; Panebianco, S. [C.E.A. Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette (France); Dubray, N.; Hilaire, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-05-02

    About half of the nuclei heavier than iron observed in nature are produced by the so-called rapid neutron capture process, or r-process, of nucleosynthesis. The identification of the astrophysics site and the specific conditions in which the r-process takes place remains, however, one of the still-unsolved mysteries of modern astrophysics. Another underlying difficulty associated with our understanding of the r-process concerns the uncertainties in the predictions of nuclear properties for the few thousands exotic neutron-rich nuclei involved, for which essentially no experimental data exist. The present paper emphasizes some important future challenges faced by nuclear physics in this problem, particularly in the determination of the nuclear structure properties of exotic neutron-rich nuclei as well as their radiative neutron capture rates and their fission probabilities. These quantities are particularly relevant to determine the composition of the matter resulting from the r-process. Both the astrophysics and the nuclear physics difficulties are critically reviewed with special attention paid to the r-process taking place during the decompression of neutron star matter following the merging of two neutron stars.

  8. NASA's Genesis and Rapid Intensification Processes (GRIP) Field Experiment

    Science.gov (United States)

    Braun, Scott A.; Kakar, Ramesh; Zipser, Edward; Heymsfield, Gerald; Albers, Cerese; Brown, Shannon; Durden, Stephen; Guimond, Stephen; Halverson, Jeffery; Heymsfield, Andrew; hide

    2013-01-01

    In August–September 2010, NASA, NOAA, and the National Science Foundation (NSF) conducted separate but closely coordinated hurricane field campaigns, bringing to bear a combined seven aircraft with both new and mature observing technologies. NASA's Genesis and Rapid Intensification Processes (GRIP) experiment, the subject of this article, along with NOAA's Intensity Forecasting Experiment (IFEX) and NSF's Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) experiment, obtained unprecedented observations of the formation and intensification of tropical cyclones. The major goal of GRIP was to better understand the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner-core processes. A key focus of GRIP was the application of new technologies to address this important scientific goal, including the first ever use of the unmanned Global Hawk aircraft for hurricane science operations. NASA and NOAA conducted coordinated flights to thoroughly sample the rapid intensification (RI) of Hurricanes Earl and Karl. The tri-agency aircraft teamed up to perform coordinated flights for the genesis of Hurricane Karl and Tropical Storm Matthew and the non-redevelopment of the remnants of Tropical Storm Gaston. The combined GRIP–IFEX–PREDICT datasets, along with remote sensing data from a variety of satellite platforms [Geostationary Operational Environmental Satellite (GOES), Tropical Rainfall Measuring Mission (TRMM), Aqua, Terra, CloudSat, and Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)], will contribute to advancing understanding of hurricane formation and intensification. This article summarizes the GRIP experiment, the missions flown, and some preliminary findings.

  9. “Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Emiliano C. C. Pozzi; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Silvia I. Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz; Veronica A. Trivillin; Amanda E. Schwint

    2011-04-01

    In the present study we evaluated the therapeutic effect and/or potential radiotoxicity of the novel “Tandem” Boron Neutron Capture Therapy (T-BNCT) for the treatment of oral cancer in the hamster cheek pouch model at RA-3 Nuclear Reactor. Two groups of animals were treated with “Tandem BNCT”, i.e. BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (T-24h-BNCT) or 48 h (T-48h-BNCT) later. A total tumor dose-matched single application of BNCT mediated by BPA and GB-10 administered jointly [(BPA + GB-10)-BNCT] was administered to an additional group of animals. At 28 days post-treatment, T-24h-BNCT and T-48h-BNCT induced, respectively, overall tumor control (OTC) of 95% and 91%, with no statistically significant differences between protocols. Tumor response for the single application of (BPA + GB-10)-BNCT was 75%, significantly lower than for T-BNCT. The T-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47% and 60% of the animals respectively. No normal tissue radiotoxicity was associated to tumor control for any of the protocols. “Tandem” BNCT enhances tumor control in oral cancer and reduces or, at worst, does not increase, mucositis in dose-limiting precancerous tissue.

  10. Comparison of intracerebral delivery of carboplatin and photon irradiation with an optimized regimen for boron neutron capture therapy of the F98 rat glioma

    Energy Technology Data Exchange (ETDEWEB)

    Barth, Rolf F., E-mail: rolf.barth@osumc.edu [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Yang Weilian; Huo Tianyao [Department of Pathology, Ohio State University, 165 Hamilton Hall, 1645 Neil Avenue, Columbus, OH 43210 (United States); Riley, Kent J.; Binns, Peter J. [Nuclear Reactor Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Grecula, John C., E-mail: john.grecula@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Gupta, Nilendu, E-mail: nilendu.gupta@osumc.edu [James Cancer Hospital and Solove Research Institute, Department of Radiation Oncology, Ohio State University, Columbus, OH, 43210 (United States); Rousseau, Julia, E-mail: julia.rousseau@yahoo.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France); Elleaume, Helene, E-mail: h.elleaume@esrf.fr [INSERM, U836, Institute of Neurosciences, Grenoble (France)

    2011-12-15

    In this report we have summarized our studies to optimize the delivery of boronophenylalanine (BPA) and sodium borocaptate (BSH) for boron neutron capture therapy (BNCT) of F98 glioma bearing rats. These results have been compared to a chemoradiotherapeutic approach using the same tumor model. The best survival data from our BNCT studies were obtained using a combination of BPA and sodium borocaptate BSH administered via the internal carotid artery, in combination with blood-brain barrier disruption (BBB-D). This treatment resulted in a mean survival time (MST) of 140 d with a 25% cure rate. The other approach combined intracerebral administration of carboplatin by either convection enhanced delivery (CED) or Alzet pump infusion, followed by external beam photon irradiation. This resulted in MSTs of 83 d and 112 d, respectively, with a cure rate of 40% for the latter. However, a significant problem that must be solved for both BNCT and this new chemoradiotherapeutic approach is how to improve drug uptake and microdistribution within the tumor.

  11. Monte Carlo analysis of the long-lived fission product neutron capture rates at the Transmutation by Adiabatic Resonance Crossing (TARC) experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abanades, A., E-mail: abanades@etsii.upm.es [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Alvarez-Velarde, F.; Gonzalez-Romero, E.M. [Centro de Investigaciones Medioambientales y Tecnologicas (CIEMAT), Avda. Complutense, 40, Ed. 17, 28040 Madrid (Spain); Ismailov, K. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Lafuente, A. [Grupo de Modelizacion de Sistemas Termoenergeticos, ETSII, Universidad Politecnica de Madrid, c/Ramiro de Maeztu, 7, 28040 Madrid (Spain); Nishihara, K. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan); Saito, M. [Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550 (Japan); Stanculescu, A. [International Atomic Energy Agency (IAEA), Vienna (Austria); Sugawara, T. [Transmutation Section, J-PARC Center, JAEA, Tokai-mura, Ibaraki-ken 319-1195 (Japan)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer TARC experiment benchmark capture rates results. Black-Right-Pointing-Pointer Utilization of updated databases, included ADSLib. Black-Right-Pointing-Pointer Self-shielding effect in reactor design for transmutation. Black-Right-Pointing-Pointer Effect of Lead nuclear data. - Abstract: The design of Accelerator Driven Systems (ADS) requires the development of simulation tools that are able to describe in a realistic way their nuclear performance and transmutation rate capability. In this publication, we present an evaluation of state of the art Monte Carlo design tools to assess their performance concerning transmutation of long-lived fission products. This work, performed under the umbrella of the International Atomic Energy Agency, analyses two important aspects for transmutation systems: moderation on Lead and neutron captures of {sup 99}Tc, {sup 127}I and {sup 129}I. The analysis of the results shows how shielding effects due to the resonances at epithermal energies of these nuclides affects strongly their transmutation rate. The results suggest that some research effort should be undertaken to improve the quality of Iodine nuclear data at epithermal and fast neutron energy to obtain a reliable transmutation estimation.

  12. In vitro induction of chromosomal aberrations in human lymphocytes, with and without boron 10, by radiations concerned in boron neutron capture therapy.

    Science.gov (United States)

    Lloyd, D C; Edwards, A A; Prosser, J S; Finnon, P; Moquet, J E

    1988-12-01

    A beam consisting of mainly 24 keV neutrons has been constructed for radiobiological studies to evaluate the potential of these particles for treating deep tumours by the boron capture reaction. The induction of chromosomal aberrations in human lymphocytes in vitro was examined and a linear dose effect with a relative biological effectiveness similar to fission neutrons was obtained. For samples placed at depths in a plastic phantom the aberration yields declined with depth at a rate matching the fall in the sum of dose due to proton recoils and neutron capture in nitrogen 14. The presence of boron 10 at 30 micrograms ml-1 did not affect the aberration yield. By using the mixed sample method, the probability of interphase death or mitotic delay in cells crossed by an alpha particle or lithium-7 ion produced in the boron capture reaction was shown to be close to 1.0. Thus these cells are prevented from coming to mitosis in culture. The implications for boron capture therapy are that this filtered beam has a "high LET" effect which could lead to poor normal tissue sparing. However there may be a significant therapeutic advantage due to a high probability of killing tumour cells that have incorporated boron 10.

  13. Engineering Novel Targeted Boron-10-Enriched Theranostic Nanomedicine to Combat against Murine Brain Tumors via MR Imaging-Guided Boron Neutron Capture Therapy.

    Science.gov (United States)

    Kuthala, Naresh; Vankayala, Raviraj; Li, Yi-Nan; Chiang, Chi-Shiun; Hwang, Kuo Chu

    2017-08-01

    Glioblastoma multiforme (GBM) is a very common type of "incurable" malignant brain tumor. Although many treatment options are currently available, most of them eventually fail due to its recurrence. Boron neutron capture therapy (BNCT) emerges as an alternative noninvasive therapeutic treatment modality. The major challenge in treating GBMs using BNCT is to achieve selective imaging, targeting, and sufficient accumulation of boron-containing drug at the tumor site so that effective destruction of tumor cells can be achieved without harming the normal brain cells. To tackle this challenge, this study demonstrates for the first time that an unprecedented 10 B-enriched (96% 10 B enrichment) boron nanoparticle nanomedicine (10 BSGRF NPs) surface-modified with a Fluorescein isothiocyanate (FITC)-labeled RGD-K peptide can pass through the brain blood barrier, selectively target at GBM brain tumor sites, and deliver high therapeutic dosage (50.5 µg 10 B g-1 cells) of boron atoms to tumor cells with a good tumor-to-blood boron ratio of 2.8. The 10 BSGRF NPs not only can enhance the contrast of magnetic resonance (MR) imaging to help diagnose the location/size/progress of brain tumor, but also effectively suppress murine brain tumors via MR imaging-guided BNCT, prolonging the half-life of mice from 22 d (untreated group) to 39 d. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. "Sequential” Boron Neutron Capture Therapy (BNCT): A Novel Approach to BNCT for the Treatment of Oral Cancer in the Hamster Cheek Pouch Model

    Energy Technology Data Exchange (ETDEWEB)

    Ana J. Molinari; Andrea Monti Hughes; Elisa M. Heber; Marcela A. Garabalino; Veronica A. Trivillin; Amanda E. Schwint; Emiliano C. C. Pozzi; Maria E. Itoiz; Silvia I. Thorp; Romina F. Aromando; David W. Nigg; Jorge Quintana; Gustavo A. Santa Cruz

    2011-04-01

    Boron Neutron Capture Therapy (BNCT) is a binary treatment modality that involves the selective accumulation of 10B carriers in tumors followed by irradiation with a thermal or epithermal neutron beam. The minor abundance stable isotope of boron, 10B, interacts with low energy (thermal) neutrons to produce high linear energy transfer (LET) a-particles and 7Li ions. These disintegration products are known to have a high relative biological effectiveness (RBE). Their short range (<10 {micro}m) would limit the damage to cells containing 10B (1,2). Thus, BNCT would target tumor tissue selectively, sparing normal tissue. Clinical trials of BNCT for the treatment of glioblastoma multiforme and/or melanoma and, more recently, head and neck tumors and liver metastases, using boronophenylalanine (BPA) or sodium mercaptoundecahydrododecaborane (BSH) as the 10B carriers, have been performed or are underway in Argentina, Japan, the US and Europe (e.g. 3-8). To date, the clinical results have shown a potential, albeit inconclusive, therapeutic advantage for this technique. Contributory translational studies have been carried out employing a variety of experimental models based on the implantation of tumor cells in normal tissue (e.g. 5).

  15. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of {sup 147,148,149,150,152,154}Sm

    Energy Technology Data Exchange (ETDEWEB)

    Duamet, B.; Igashira, Masayuki; Mizumachi, Mari; Mizuno, Satoshi; Hori, Jun-ichi; Masuda, Koji; Ohsaki, Toshiro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    1999-10-01

    The neutron capture cross sections and capture {gamma}-ray spectra of {sup 147,148,149,150,152,154}Sm were measured in the neutron energy region of 10 to 90 keV and at 550 keV. A neutron time-of-flight method was adopted with a 1.5-ns pulsed neutron source by the {sup 7}Li(p, n){sup 7}Be reaction and with a large anti-Compton NaI(Tl) {gamma}-ray spectrometer. A pulse-height weighting technique was applied to observed capture {gamma}-ray pulse-height spectra to derive capture yields. The capture cross sections were obtained with the error of about 5% by using the standard capture cross sections of {sup 197}Au. The present results were compared with the evaluated values of JENDL-3.2 and previous measurements. The capture {gamma}-ray spectra were obtained by unfolding the observed capture {gamma}-ray pulse-height spectra. An anomalous shoulder was cleary observed around 3 MeV in the {gamma}-ray spectra of {sup 150,152,154}Sm, and the energy position of the shoulder was consistent with the systematics obtained in our previous work. (author)

  16. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of {sup 143,145,146}Nd

    Energy Technology Data Exchange (ETDEWEB)

    Veerapaspong, T.; Igashira, Masayuki; Mizuno, Satoshi; Hori, Jun-ichi; Ohsaki, Toshiro [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo (Japan)

    1999-10-01

    The neutron capture cross sections and capture {gamma}-ray spectra of {sup 143,145,146}Nd were measured in the neutron energy region of 10 to 90 keV and at 550 keV. A neutron time-of-flight method was adopted with a 1.5-ns pulsed neutron source by the {sup 7}Li(p, n){sup 7}Be reaction and with a large anti-Compton NaI(Tl) {gamma}-ray spectrometer. A pulse-height weighing technique was applied to observed capture {gamma}-ray pulse-height spectra to derive capture yields. The capture cross sections were obtained with the error of about 5% by using the standard capture section of {sup 197}Au. The evaluated values of JENDL-3.2 and previous measurements were compared with the present results. The capture {gamma}-ray spectra were obtained by unfolding the observed capture {gamma}-ray pulse-height spectra. An anomalous shoulder was observed around 2 MeV in the {gamma}-ray spectra of {sup 145,146}Nd, and the energy position of the shoulder was consistent with the systematics obtained in our previous work. (author)

  17. Polycomplexes of Hyaluronic Acid and Borates in a Solid State and Solution: Synthesis, Characterization and Perspectives of Application in Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Alexander N. Zelenetskii

    2018-02-01

    Full Text Available In this report, we propose a new polyborate fragment synthesis strategy along the whole chain of the polysaccharide hyaluronic acid (HA to produce boron neutron capture therapy (BNCT compounds. Under high pressure and deformatory solid-state conditions, polymolecular system formation takes place due to association of phase-specific transition components into a more or less distinct microscopic organization. Fourier transform infrared (FTIR spectroscopy shows that HA and polyborates form a network of cyclic polychelate complexes. HA acts as a multidentate ligand using carboxylic and hydroxyl proton donor groups to link oxygen atoms in B–O–B bonds and borate-anions B–O(−: O–H···O, O–H···(−O. With free electron pairs in heteroatoms –O(:···B, –N(:···B, HA can act simultaneously as an electron donor. Nuclear magnetic resonance (NMR with 13C and 1H reveals a preserved complex interaction after both solubilizing and attenuating the HA-polyborate system. Stability of the product in water, low cost, ease of synthesis and scalability of manufacturing indicate that HA-polyborate complexes might have advantages over current chemotherapeutic approaches in creating therapeutic agents for BNCT.

  18. Gamma-Ray Emission Spectra as a Constraint on Calculations of 234,236,238U Neutron-Capture Cross Sections

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, John Leonard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bredeweg, Todd Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Baramsai, Bayarbadrakh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Couture, Aaron Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haight, Robert Cameron [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jandel, Marian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mosby, Shea Morgan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); O' Donnell, John M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rundberg, Robert S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Vieira, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilhelmy, Jerry B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Becker, John A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wu, Ching-Yen [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Krticka, Milan [Charles Univ., Prague (Czech Republic)

    2015-05-28

    Neutron capture cross sections in the “continuum” region (>≈1 keV) and gamma-emission spectra are of importance to basic science and many applied fields. Careful measurements have been made on most common stable nuclides, but physicists must rely on calculations (or “surrogate” reactions) for rare or unstable nuclides. Calculations must be benchmarked against measurements (cross sections, gamma-ray spectra, and <Γγ>). Gamma-ray spectrum measurements from resolved resonances were made with 1 - 2 mg/cm2 thick targets; cross sections at >1 keV were measured using thicker targets. The results show that the shape of capture cross section vs neutron energy is not sensitive to the form of the strength function (although the magnitude is); the generalized Lorentzian E1 strength function is not sufficient to describe the shape of observed gamma-ray spectra; MGLO + “Oslo M1” parameters produces quantitative agreement with the measured 238U(n,γ) cross section; additional strength at low energies (~ 3 MeV) -- likely M1-- is required; and careful study of complementary results on low-lying giant resonance strength is needed to consistently describe observations.

  19. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Science.gov (United States)

    Ciofani, Gianni; Raffa, Vittoria; Menciassi, Arianna; Cuschieri, Alfred

    2009-02-01

    Boron neutron capture therapy (BNCT) is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of 10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly- l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots) to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  20. Folate Functionalized Boron Nitride Nanotubes and their Selective Uptake by Glioblastoma Multiforme Cells: Implications for their Use as Boron Carriers in Clinical Boron Neutron Capture Therapy

    Directory of Open Access Journals (Sweden)

    Ciofani Gianni

    2008-01-01

    Full Text Available Abstract Boron neutron capture therapy (BNCT is increasingly being used in the treatment of several aggressive cancers, including cerebral glioblastoma multiforme. The main requirement for this therapy is selective targeting of tumor cells by sufficient quantities of10B atoms required for their capture/irradiation with low-energy thermal neutrons. The low content of boron targeting species in glioblastoma multiforme accounts for the difficulty in selective targeting of this very malignant cerebral tumor by this radiation modality. In the present study, we have used for the first time boron nitride nanotubes as carriers of boron atoms to overcome this problem and enhance the selective targeting and ablative efficacy of BNCT for these tumors. Following their dispersion in aqueous solution by noncovalent coating with biocompatible poly-l-lysine solutions, boron nitride nanotubes were functionalized with a fluorescent probe (quantum dots to enable their tracking and with folic acid as selective tumor targeting ligand. Initial in vitro studies have confirmed substantive and selective uptake of these nanovectors by glioblastoma multiforme cells, an observation which confirms their potential clinical application for BNCT therapy for these malignant cerebral tumors.

  1. "Sequential" boron neutron capture therapy (BNCT): a novel approach to BNCT for the treatment of oral cancer in the hamster cheek pouch model.

    Science.gov (United States)

    Molinari, Ana J; Pozzi, Emiliano C C; Monti Hughes, Andrea; Heber, Elisa M; Garabalino, Marcela A; Thorp, Silvia I; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Nigg, David W; Quintana, Jorge; Santa Cruz, Gustavo A; Trivillin, Verónica A; Schwint, Amanda E

    2011-04-01

    In the present study the therapeutic effect and potential toxicity of the novel "Sequential" boron neutron capture therapy (Seq-BNCT) for the treatment of oral cancer was evaluated in the hamster cheek pouch model at the RA-3 Nuclear Reactor. Two groups of animals were treated with "Sequential" BNCT, i.e., BNCT mediated by boronophenylalanine (BPA) followed by BNCT mediated by sodium decahydrodecaborate (GB-10) either 24 h (Seq-24h-BNCT) or 48 h (Seq-48h-BNCT) later. In an additional group of animals, BPA and GB-10 were administered concomitantly [(BPA + GB-10)-BNCT]. The single-application BNCT was to the same total physical tumor dose as the "Sequential" BNCT treatments. At 28 days post-treatment, Seq-24h-BNCT and Seq-48h-BNCT induced, respectively, overall tumor responses of 95 ± 2% and 91 ± 3%, with no statistically significant differences between protocols. Overall response for the single treatment with (BPA + GB-10)-BNCT was 75 ± 5%, significantly lower than for Seq-BNCT. Both Seq-BNCT protocols and (BPA + GB-10)-BNCT induced reversible mucositis in the dose-limiting precancerous tissue around treated tumors, reaching Grade 3/4 mucositis in 47 ± 12% and 60 ± 22% of the animals, respectively. No normal tissue toxicity was associated with tumor response for any of the protocols. "Sequential" BNCT enhanced tumor response without an increase in mucositis in dose-limiting precancerous tissue. © 2011 by Radiation Research Society

  2. Experimental Studies of Boronophenylalanine ((10)BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment.

    Science.gov (United States)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla; Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A; Brandizzi, Daniel; Cabrini, Romulo; Pisarev, Mario; Juvenal, Guillermo Juan; Dagrosa, Maria Alejandra

    2015-10-01

    Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ((10)BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10(6) MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (PBNCT treatment for each individual patient and lesion. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: an experimental study that supports a potential new application of BNCT.

    Science.gov (United States)

    Monti Hughes, A; Heber, E M; Pozzi, E; Nigg, D W; Calzetta, O; Blaumann, H; Longhino, J; Nievas, S I; Aromando, R F; Itoiz, M E; Trivillin, V A; Schwint, A E

    2009-07-01

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na(2)(10)B(10)H(10)) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  4. Improvement of the boron neutron capture therapy (BNCT) by the previous administration of the histone deacetylase inhibitor sodium butyrate for the treatment of thyroid carcinoma.

    Science.gov (United States)

    Perona, M; Rodríguez, C; Carpano, M; Thomasz, L; Nievas, S; Olivera, M; Thorp, S; Curotto, P; Pozzi, E; Kahl, S; Pisarev, M; Juvenal, G; Dagrosa, A

    2013-08-01

    We have shown that boron neutron capture therapy (BNCT) could be an alternative for the treatment of poorly differentiated thyroid carcinoma (PDTC). Histone deacetylase inhibitors (HDACI) like sodium butyrate (NaB) cause hyperacetylation of histone proteins and show capacity to increase the gamma irradiation effect. The purpose of these studies was to investigate the use of the NaB as a radiosensitizer of the BNCT for PDTC. Follicular thyroid carcinoma cells (WRO) and rat thyroid epithelial cells (FRTL-5) were incubated with 1 mM NaB and then treated with boronophenylalanine ¹⁰BPA (10 μg ¹⁰B ml⁻¹) + neutrons, or with 2, 4-bis (α,β-dihydroxyethyl)-deutero-porphyrin IX ¹⁰BOPP (10 μg ¹⁰B ml⁻¹) + neutrons, or with a neutron beam alone. The cells were irradiated in the thermal column facility of the RA-3 reactor (flux = (1.0 ± 0.1) × 10¹⁰ n cm⁻² s⁻¹). Cell survival decreased as a function of the physical absorbed dose in both cell lines. Moreover, the addition of NaB decreased cell survival (p BNCT groups (p BNCT.

  5. Measurement of keV-neutron capture cross sections and capture gamma-ray spectra of Cs-133 and I-127

    Directory of Open Access Journals (Sweden)

    Umezawa Seigo

    2017-01-01

    Full Text Available The neutron capture cross sections and the capture gamma-ray spectra of 127I and 133Cs at incident neutron energies from 15 to 100 keV have been measured by the time-of-flight method. Capture gamma-rays were detected with an anti-Compton NaI(Tl spectrometer, and the pulse-height weighting technique was applied to derive capture yields. The capture cross sections of 127I and 133Cs were determined using the standard capture cross section of 197Au. The total errors of the cross sections were 3.8-5.1%. The obtained cross sections were compared with evaluated values in JENDL-4.0 and ENDF/B-VII.1. For 127I, the energy dependence is different between the present results and the evaluations. For 133Cs, the evaluated values in JENDL-4.0 agree with the present results but the evaluated values in ENDF/B-VII.1 are smaller than the present results by 14%–18%. The capture gamma-ray spectra of 133Cs and 127I were derived by unfolding the pulse height spectra with detector response functions.

  6. The Link between Rare-Earth Peak Formation and the Astrophysical Site of the R Process

    Science.gov (United States)

    Mumpower, Matthew R.; McLaughlin, Gail C.; Surman, Rebecca; Steiner, Andrew W.

    2016-12-01

    The primary astrophysical source of the rare-earth elements is the rapid neutron capture process (r process). The rare-earth peak that is seen in the solar r-process residuals has been proposed to originate as a pile-up of nuclei during the end of the r process. We introduce a new method utilizing Monte Carlo studies of nuclear masses in the rare-earth region, that includes self-consistently adjusting β-decay rates and neutron capture rates, to find the mass surfaces necessary for the formation of the rare-earth peak. We demonstrate our method with two types of astrophysical scenario, one corresponding to conditions typical of hot winds from core-collapse supernovae and stellar-mass accretion disks, and one corresponding to conditions typical of the ejection of the material from the tidal tails of neutron star mergers. In each type of astrophysical condition, this method successfully locates a region of enhanced stability in the mass surface that is responsible for the rare-earth peak. For each scenario, we find that the change in the mass surface has qualitatively different features, thus future measurements can shed light on the type of environment in which the r process occurred.

  7. Experimentally Determining β-Decay Intensities for 103,104Nb to Improve R-process Calculations

    Science.gov (United States)

    Gombas, J.; Deyoung, P. D.; Spyrou, A.; Dombos, A. C.; Lyons, S.; The SuN Collaboration

    2017-09-01

    The rapid neutron capture process (r-process) is responsible for the formation of nuclei heavier than iron. This process is theorized to occur in supernovas and/or neutron star mergers. R-process calculations require the accurate knowledge of a significant amount of nuclear properties, the majority of which are not known experimentally. Nuclear masses, β-decay properties and neutron-capture reactions are all input ingredients into r-process models. This present study focuses on the β decay of 103Nb and 104Nb. The β decay of 103Nb and 104Nb, two nuclei found in the r-process, were observed at the NSCL using the Summing NaI (SuN) detector. An unstable beam implanted inside SuN. The γ rays were measured in coincidence with the emitted electrons. The β-decay intensity function was then extracted. The experimentally determined functions for 103Nb and 104Nb will be compared to predictions made by the Quasi Random Phase Approximation (QRPA) model. These theoretical calculations are used in astrophysical models of the r-process. This comparison will lead to a better understanding of the nuclear structure for 103Nb and 104Nb. A more dependable prediction of the formation of heavier nuclei birthed from supernovas or neutron star mergers can then be made. This material is based upon work supported by the National Science Foundation under Grant No. PHY-1613188 and PHY-1306074, and by the Hope College Department of Physics Guess Research Fund.

  8. Gd@C82 metallofullerenes for neutron capture therapy—fullerene solubilization by poly(ethylene glycol-block-poly(2-(N, N-diethylaminoethyl methacrylate and resultant efficacy in vitro

    Directory of Open Access Journals (Sweden)

    Yukichi Horiguchi, Shinpei Kudo and Yukio Nagasaki

    2011-01-01

    Full Text Available Poly(ethylene glycol-block-poly(2-(N,N-diethylaminoethyl methacrylate (PEG-b-PAMA was found to solubilize fullerenes such as C60, and this technique was applied to metallofullerenes. Gd@C82 was easily dissolved in water in the presence of PEG-b-PAMA without any covalent derivatization, forming a transparent complex about 20–30 nm in diameter. Low cytotoxicity was confirmed in vitro. Neutron irradiation of cultured cells (colon-26 adenocarcinoma with Gd@C82-PEG-b-PAMA-complexed nanoparticles showed effective cytotoxicity, indicating the effective emission of gamma rays and internal conversion electrons produced from the neutron capture reaction of Gd. This result suggests a potentially valuable approach to gadolinium-based neutron capture therapy.

  9. Gd-C{sub 82} metallofullerenes for neutron capture therapy-fullerene solubilization by poly(ethylene glycol)-block-poly(2-(N, N-diethylamino)ethyl methacrylate) and resultant efficacy in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Horiguchi, Yukichi; Kudo, Shinpei; Nagasaki, Yukio, E-mail: yukio@ims.tsukuba.ac.jp [Graduate School of Pure and Applied Sciences University of Tsukuba, Ten-noudai 1-1-1, Tsukuba, Ibaraki 305-8573 (Japan)

    2011-08-15

    Poly(ethylene glycol)-block-poly(2-(N,N-diethylamino)ethyl methacrylate) (PEG-b-PAMA) was found to solubilize fullerenes such as C{sub 60}, and this technique was applied to metallofullerenes. Gd-C{sub 82} was easily dissolved in water in the presence of PEG-b-PAMA without any covalent derivatization, forming a transparent complex about 20-30 nm in diameter. Low cytotoxicity was confirmed in vitro. Neutron irradiation of cultured cells (colon-26 adenocarcinoma) with Gd-C{sub 82}-PEG-b-PAMA-complexed nanoparticles showed effective cytotoxicity, indicating the effective emission of gamma rays and internal conversion electrons produced from the neutron capture reaction of Gd. This result suggests a potentially valuable approach to gadolinium-based neutron capture therapy.

  10. Formation of the Abundance Boundaries of the Heavier Neutron-capture Elements in Metal-poor Stars

    Science.gov (United States)

    Yang, Guochao; Li, Hongjie; Liu, Nian; Zhang, Lu; Cui, Wenyuan; Liang, Yanchun; Niu, Ping; Zhang, Bo

    2017-06-01

    The abundance scatter of heavier r-process elements (Z≥slant 56) relative to Fe ([r/Fe]) in metal-poor stars preserves excellent information of the star formation history and provides important insights into the various situations of the Galactic chemical enrichment. In this respect, the upper and lower boundaries of [r/Fe] could present useful clues for investigating the extreme situations of the star formation history and the early Galactic chemical evolution. In this paper, we investigate the formation of the upper and lower boundaries of [r/Fe] for the gas clouds. We find that, for a cloud from which metal-poor stars formed, the formation of the upper limits of [r/Fe] is mainly due to the pollution from a single main r-process event. For a cloud from which metal-poor stars formed, the formation of the lower limits of [r/Fe] is mainly due to the pollution from a single SN II event that ejects primary Fe.

  11. Neutron-captures in Low Mass Stars and the Early Solar System Record of Short-lived Radioactivities

    Science.gov (United States)

    Busso, Maurizio; Vescovi, Diego; Trippella, Oscar; Palmerini, Sara; Cristallo, Sergio; Piersanti, Luciano

    2018-01-01

    Noticeable improvements were recently introduced in the modelling of n-capture nucleosynthesis in the advanced evolutionary stages of giant stars (Asymptotic Giant Branch, or AGB, stars). Two such improvements are closely linked together and concern the introduction of non-parameterized, physical models for extended mixing processes and the adoption of accurate reaction rates for H- and He-burning reactions, including the one for the main neutron source 13C(α,n)16O. These improvements profited of a longstanding collaboration between stellar physicists and C. Spitaleri's team and of his seminal work both as a leader in the Nuclear Astrophysics scenario and as a talent-scout in the recruitment of young researchers in the field. We present an example of the innovative results that can be obtained thanks to the novelties introduced, by estimating the contributions from a nearby AGB star to the synthesis of short-lived (t1/2 ≤ 10 Myr) radioactive nuclei which were alive in early Solar System condensates. We find that the scenario indicating an AGB star as the source of such radioactivities, discussed for many years by researchers in this field, appears now to be no longer viable, when the mentioned improvements of AGB models and nuclear parameters are considered.

  12. Neutron-captures in Low Mass Stars and the Early Solar System Record of Short-lived Radioactivities

    Directory of Open Access Journals (Sweden)

    Busso Maurizio

    2017-01-01

    Full Text Available Noticeable improvements were recently introduced in the modelling of n-capture nucleosynthesis in the advanced evolutionary stages of giant stars (Asymptotic Giant Branch, or AGB, stars. Two such improvements are closely linked together and concern the introduction of non-parameterized, physical models for extended mixing processes and the adoption of accurate reaction rates for H- and He-burning reactions, including the one for the main neutron source 13C(α,n16O. These improvements profited of a longstanding collaboration between stellar physicists and C. Spitaleri’s team and of his seminal work both as a leader in the Nuclear Astrophysics scenario and as a talent-scout in the recruitment of young researchers in the field. We present an example of the innovative results that can be obtained thanks to the novelties introduced, by estimating the contributions from a nearby AGB star to the synthesis of short-lived (t1/2 ≤ 10 Myr radioactive nuclei which were alive in early Solar System condensates. We find that the scenario indicating an AGB star as the source of such radioactivities, discussed for many years by researchers in this field, appears now to be no longer viable, when the mentioned improvements of AGB models and nuclear parameters are considered.

  13. A CONCEPTUAL DESIGN OF NEUTRON COLLIMATOR IN THE THERMAL COLUMN OF KARTINI RESEARCH REACTOR FOR IN VITRO AND IN VIVO TEST OF BORON NEUTRON CAPTURE THERAPY

    Directory of Open Access Journals (Sweden)

    Nina Fauziah

    2015-03-01

    Full Text Available Studies were carried out to design a collimator which results in epithermal neutron beam for IN VITRO and IN VIVO of Boron Neutron Capture Therapy (BNCT at the Kartini research reactor by means of Monte Carlo N-Particle (MCNP codes. Reactor within 100 kW of thermal power was used as the neutron source. The design criteria were based on recommendation from the International Atomic Energy Agency (IAEA. All materials used were varied in size, according to the value of mean free path for each material. MCNP simulations indicated that by using 5 cm thick of Ni as collimator wall, 60 cm thick of Al as moderator, 15 cm thick of 60Ni as filter, 2 cm thick of Bi as γ-ray shielding, 3 cm thick of 6Li2CO3-polyethylene as beam delimiter, with 1 to 5 cm varied aperture size, epithermal neutron beam with maximum flux of 7.65 x 108 n.cm-2.s-1 could be produced. The beam has minimum fast neutron and γ-ray components of, respectively, 1.76 x 10-13 Gy.cm2.n-1 and 1.32 x 10-13 Gy.cm2.n-1, minimum thermal neutron per epithermal neutron ratio of 0.008, and maximum directionality of 0.73. It did not fully pass the IAEA’s criteria, since the epithermal neutron flux was below the recommended value, 1.0 x 109 n.cm-2.s-1. Nonetheless, it was still usable with epithermal neutron flux exceeding 5.0 x 108 n.cm-2.s-1. When it was assumed that the graphite inside the thermal column was not discharged but only the part which was going to be replaced by the collimator, the performance of the collimator became better within the positive effect from the surrounding graphite that the beam resulted passed all criteria with epithermal neutron flux up to 1.68 x 109 n.cm-2.s-1. Keywords: design, collimator, epithermal neutron beam, BNCT, MCNP, criteria   Telah dilakukan penelitian tentang desain kolimator yang menghasilkan radiasi netron epitermal untuk uji in vitro dan in vivo pada Boron Neutron Capture Therapy (BNCT di Reaktor Riset Kartini dengan menggunakan program Monte

  14. Boron neutron capture therapy (BNCT) translational studies in the hamster cheek pouch model of oral cancer at the new "B2" configuration of the RA-6 nuclear reactor.

    Science.gov (United States)

    Monti Hughes, Andrea; Longhino, Juan; Boggio, Esteban; Medina, Vanina A; Martinel Lamas, Diego J; Garabalino, Marcela A; Heber, Elisa M; Pozzi, Emiliano C C; Itoiz, María E; Aromando, Romina F; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2017-11-01

    Boron neutron capture therapy (BNCT) is based on selective accumulation of B-10 carriers in tumor followed by neutron irradiation. We demonstrated, in 2001, the therapeutic effect of BNCT mediated by BPA (boronophenylalanine) in the hamster cheek pouch model of oral cancer, at the RA-6 nuclear reactor. Between 2007 and 2011, the RA-6 was upgraded, leading to an improvement in the performance of the BNCT beam (B2 configuration). Our aim was to evaluate BPA-BNCT radiotoxicity and tumor control in the hamster cheek pouch model of oral cancer at the new "B2" configuration. We also evaluated, for the first time in the oral cancer model, the radioprotective effect of histamine against mucositis in precancerous tissue as the dose-limiting tissue. Cancerized pouches were exposed to: BPA-BNCT; BPA-BNCT + histamine; BO: Beam only; BO + histamine; CONTROL: cancerized, no-treatment. BNCT induced severe mucositis, with an incidence that was slightly higher than in "B1" experiments (86 vs 67%, respectively). BO induced low/moderate mucositis. Histamine slightly reduced the incidence of severe mucositis induced by BPA-BNCT (75 vs 86%) and prevented mucositis altogether in BO animals. Tumor overall response was significantly higher in BNCT (94-96%) than in control (16%) and BO groups (9-38%), and did not differ significantly from the "B1" results (91%). Histamine did not compromise BNCT therapeutic efficacy. BNCT radiotoxicity and therapeutic effect at the B1 and B2 configurations of RA-6 were consistent. Histamine slightly reduced mucositis in precancerous tissue even in this overly aggressive oral cancer model, without compromising tumor control.

  15. Assessment of Proton Microbeam Analysis of 11B for Quantitative Microdistribution Analysis of Boronated Neutron Capture Agent Analogs in Biological Tissues

    Energy Technology Data Exchange (ETDEWEB)

    Bench, G; Grant, P G; Ueda, D L; Autry-Conwell, S A; Hou, Y; Boggan, J E

    2002-12-04

    Purpose: To assess the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction for quantitatively mapping the in-vivo sub-cellular distribution of boron within gliosarcoma tumors treated with boronated neutron capture therapy agent (NCTA) analogs. Materials and Methods: Intracranial tumors were produced in Fisher 344 rats using a 9L gliosarcoma model. Fourteen days later, the majority of rats were treated with f-boronophenylalanine and sacrificed 30 or 180 minutes after intravenous injection. Freeze dried tumor cryosections were imaged using the {sup 11}B(p, {alpha}){sup 8}Be* nuclear reaction and proton microbeams obtained from the nuclear microprobe at Lawrence Livermore National Laboratory. Results/Discussion: With{sup 11}B(p, {alpha}){sup 8}Be* analysis, {sup 11}B distributions within cells can be quantitatively imaged with spatial resolutions down to 1.5 {micro}m, minimum detection limits of 0.8 mg/kg and acquisition times of several hours. These capabilities offer advantages over alpha track autoradiography, electron energy loss spectroscopy and secondary ion mass spectrometry (SIMS) for 'B quantitation in tissues. However, the spatial resolution, multi-isotope capability and analysis times achieved with SIMS are superior to those achieved with {sup 11}B(p, {alpha}){sup 8}Be* analysis. Conclusions: When accuracy in quantitation is crucial, the assessing the microdistribution of {sup 11}B. {sup 11}B(p, {alpha}){sup 8}Be* reaction is well suited for Otherwise, SIMS may well be better suited to image the microdistribution of boron associated with NCTAs in biological tissues.

  16. Boron neutron capture therapy (BNCT) inhibits tumor development from precancerous tissue: An experimental study that supports a potential new application of BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Monti Hughes, A.; Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Pozzi, E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Research and Production Reactors, Ezeiza Atomic Center, CNEA, Buenos Aires (Argentina); Nigg, D.W. [Idaho National Laboratory, Idaho Falls, Idaho (United States); Calzetta, O.; Blaumann, H.; Longhino, J. [Department of Nuclear Engineering, Bariloche Atomic Center, CNEA, Rio Negro (Argentina); Nievas, S.I. [Department of Chemistry, CNEA, Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Trivillin, V.A. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina); Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission (CNEA), Buenos Aires (Argentina)], E-mail: schwint@cnea.gov.ar

    2009-07-15

    We previously demonstrated the efficacy of boron neutron capture therapy (BNCT) mediated by boronophenylalanine (BPA), GB-10 (Na{sub 2}{sup 10}B{sub 10}H{sub 10}) and (GB-10+BPA) to control tumors, with no normal tissue radiotoxicity, in the hamster cheek pouch oral cancer model. Herein we developed a novel experimental model of field-cancerization and precancerous lesions (globally termed herein precancerous tissue) in the hamster cheek pouch to explore the long-term potential inhibitory effect of the same BNCT protocols on the development of second primary tumors from precancerous tissue. Clinically, second primary tumor recurrences occur in field-cancerized tissue, causing therapeutic failure. We performed boron biodistribution studies followed by in vivo BNCT studies, with 8 months follow-up. All 3 BNCT protocols induced a statistically significant reduction in tumor development from precancerous tissue, reaching a maximum inhibition of 77-100%. The inhibitory effect of BPA-BNCT and (GB-10+BPA)-BNCT persisted at 51% at the end of follow-up (8 months), whereas for GB-10-BNCT it faded after 2 months. Likewise, beam-only elicited a significant but transient reduction in tumor development. No normal tissue radiotoxicity was observed. At 8 months post-treatment with BPA-BNCT or (GB-10+BPA)-BNCT, the precancerous pouches that did not develop tumors had regained the macroscopic and histological appearance of normal (non-cancerized) pouches. A potential new clinical application of BNCT would lie in its capacity to inhibit local regional recurrences.

  17. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: Application to the treatment of experimental oral cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pozzi, E. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)], E-mail: epozzi@cnea.gov.ar; Nigg, D.W. [Idaho National Laboratory, Idaho Falls (United States); Miller, M.; Thorp, S.I. [Instrumentation and Control Department, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Heber, E.M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Zarza, L.; Estryk, G. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Monti Hughes, A.; Molinari, A.J.; Garabalino, M. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Itoiz, M.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina); Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Aromando, R.F. [Department of Oral Pathology, Faculty of Dentistry, University of Buenos Aires (Argentina); Quintana, J. [Research and Production Reactors, National Atomic Energy Commission, Ezeiza Atomic Center (Argentina); Trivillin, V.A.; Schwint, A.E. [Department of Radiobiology, National Atomic Energy Commission, Constituyentes Atomic Center (Argentina)

    2009-07-15

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1x10{sup 9} n cm{sup -2} s{sup -1} and the fast neutron flux was 2.5x10{sup 6} n cm{sup -2} s{sup -1}, indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in {sup 6}Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  18. Boron Neutron Capture Therapty (BNCT) in an Oral Precancer Model: Therapeutic Benefits and Potential Toxicity of a Double Application of BNCT with a Six-Week Interval

    Energy Technology Data Exchange (ETDEWEB)

    Andrea Monti Hughes; Emiliano C.C. Pozzi; Elisa M. Heber; Silvia Thorp; Marcelo Miller; Maria E. Itoiz; Romina F. Aromando; Ana J. Molinari; Marcela A. Garabalino; David W. Nigg; Veronica A. Trivillin; Amanda E. Schwint

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10 + BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB- 10 + BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10 + BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues.

  19. Measurement of keV-neutron capture cross-sections and capture gamma-ray spectra of {sup 56}Fe and {sup 57}Fe

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Taofeng; Lee, Manwoo [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Kim, Guinyun, E-mail: gnkim@knu.ac.k [Department of Physics, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Oh, Youngdo; Namkung, Won [Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Ro, Tae-Ik; Kang, Yeong-Rok [Department of Physics, Dong-A University, Busan 604-714 (Korea, Republic of); Igashira, Masayuki; Katabuchi, Tatsuya [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo 152-8550 (Japan)

    2010-03-01

    The neutron capture cross-sections and the capture gamma-ray spectra of {sup 56}Fe and {sup 57}Fe have been measured in the neutron energy range from 10 to 90 keV. Pulsed keV-neutrons were produced from the {sup 7}Li(p,n){sup 7}Be reaction by bombarding a lithium target with a 1.5-ns bunched proton beam from a 3 MV Pelletron accelerator. The incident neutron spectrum on the capture sample was measured using a time-of-flight method with a {sup 6}Li-glass detector. The capture gamma-rays emitted from an iron or standard gold sample were detected with a large anti-Compton NaI(Tl) spectrometer. The capture yield of the iron or gold sample was obtained by applying a pulse-height weighting technique to the corresponding capture gamma-ray pulse-height spectrum. The capture cross-sections of {sup 56,57}Fe were derived with errors less than 5% using the standard capture cross-sections of {sup 197}Au. The capture gamma-ray spectra were obtained by unfolding the observed capture gamma-ray pulse-height spectra. The present results for the capture cross-sections were compared with the previous measurements and the evaluated values of ENDF/B-VII.0 and JENDL-3.3. The Maxwellian-averaged capture cross-sections of {sup 56}Fe and {sup 57}Fe at 30 keV are derived as 12.22 +- 2.06 mb and 44.48 +- 7.56 mb, respectively.

  20. MRI-guided neutron capture therapy by use of a dual gadolinium/boron agent targeted at tumour cells through upregulated low-density lipoprotein transporters.

    Science.gov (United States)

    Geninatti-Crich, Simonetta; Alberti, Diego; Szabo, Ibolya; Deagostino, Annamaria; Toppino, Antonio; Barge, Alessandro; Ballarini, Francesca; Bortolussi, Silva; Bruschi, Piero; Protti, Nicoletta; Stella, Sabrina; Altieri, Saverio; Venturello, Paolo; Aime, Silvio

    2011-07-18

    The upregulation of low-density lipoprotein (LDL) transporters in tumour cells has been exploited to deliver a sufficient amount of gadolinium/boron/ligand (Gd/B/L) probes for neutron capture therapy, a binary chemio-radiotherapy for cancer treatment. The Gd/B/L probe consists of a carborane unit (ten B atoms) bearing an aliphatic chain on one side (to bind LDL particles), and a Gd(III)/1,4,7,10-tetraazacyclododecane monoamide complex on the other (for detection by magnetic resonance imaging (MRI)). Up to 190 Gd/B/L probes were loaded per LDL particle. The uptake from tumour cells was initially assessed on cell cultures of human hepatoma (HepG2), murine melanoma (B16), and human glioblastoma (U87). The MRI assessment of the amount of Gd/B/L taken up by tumour cells was validated by inductively coupled plasma-mass-spectrometric measurements of the Gd and B content. Measurements were undertaken in vivo on mice bearing tumours in which B16 tumour cells were inoculated at the base of the neck. From the acquisition of magnetic resonance images, it was established that after 4-6 hours from the administration of the Gd/B/L-LDL particles (0.1 and 1 mmol kg(-1) of Gd and (10)B, respectively) the amount of boron taken up in the tumour region is above the threshold required for successful NCT treatment. After neutron irradiation, tumour growth was followed for 20 days by MRI. The group of treated mice showed markedly lower tumour growth with respect to the control group. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Folate receptor-mediated boron-10 containing carbon nanoparticles as potential delivery vehicles for boron neutron capture therapy of nonfunctional pituitary adenomas.

    Science.gov (United States)

    Dai, Congxin; Cai, Feng; Hwang, Kuo Chu; Zhou, Yongmao; Zhang, Zizhu; Liu, Xiaohai; Ma, Sihai; Yang, Yakun; Yao, Yong; Feng, Ming; Bao, Xinjie; Li, Guilin; Wei, Junji; Jiao, Yonghui; Wei, Zhenqing; Ma, Wenbin; Wang, Renzhi

    2013-02-01

    Invasive nonfunctional pituitary adenomas (NFPAs) are difficult to completely resect and often develop tumor recurrence after initial surgery. Currently, no medications are clinically effective in the control of NFPA. Although radiation therapy and radiosurgery are useful to prevent tumor regrowth, they are frequently withheld because of severe complications. Boron neutron capture therapy (BNCT) is a binary radiotherapy that selectively and maximally damages tumor cells without harming the surrounding normal tissue. Folate receptor (FR)-targeted boron-10 containing carbon nanoparticles is a novel boron delivery agent that can be selectively taken up by FR-expressing cells via FR-mediated endocytosis. In this study, FR-targeted boron-10 containing carbon nanoparticles were selectively taken up by NFPAs cells expressing FR but not other types of non-FR expressing pituitary adenomas. After incubation with boron-10 containing carbon nanoparticles and following irradiation with thermal neutrons, the cell viability of NFPAs was significantly decreased, while apoptotic cells were simultaneously increased. However, cells administered the same dose of FR-targeted boron-10 containing carbon nanoparticles without neutron irradiation or received the same neutron irradiation alone did not show significant decrease in cell viability or increase in apoptotic cells. The expression of Bcl-2 was down-regulated and the expression of Bax was up-regulated in NFPAs after treatment with FR-mediated BNCT. In conclusion, FR-targeted boron-10 containing carbon nanoparticles may be an ideal delivery system of boron to NFPAs cells for BNCT. Furthermore, our study also provides a novel insight into therapeutic strategies for invasive NFPA refractory to conventional therapy, while exploring these new applications of BNCT for tumors, especially benign tumors.

  2. Radiosensitivity of pimonidazole-unlabelled intratumour quiescent cell population to γ-rays, accelerated carbon ion beams and boron neutron capture reaction.

    Science.gov (United States)

    Masunaga, S; Sakurai, Y; Tanaka, H; Hirayama, R; Matsumoto, Y; Uzawa, A; Suzuki, M; Kondo, N; Narabayashi, M; Maruhashi, A; Ono, K

    2013-01-01

    To detect the radiosensitivity of intratumour quiescent (Q) cells unlabelled with pimonidazole to accelerated carbon ion beams and the boron neutron capture reaction (BNCR). EL4 tumour-bearing C57BL/J mice received 5-bromo-2'-deoxyuridine (BrdU) continuously to label all intratumour proliferating (P) cells. After the administration of pimonidazole, tumours were irradiated with γ-rays, accelerated carbon ion beams or reactor neutron beams with the prior administration of a (10)B-carrier. Responses of intratumour Q and total (P+Q) cell populations were assessed based on frequencies of micronucleation and apoptosis using immunofluorescence staining for BrdU. The response of pimonidazole-unlabelled tumour cells was assessed by means of apoptosis frequency using immunofluorescence staining for pimonidazole. Following γ-ray irradiation, the pimonidazole-unlabelled tumour cell fraction showed significantly enhanced radiosensitivity compared with the whole tumour cell fraction, more remarkably in the Q than total cell populations. However, a significantly greater decrease in radiosensitivity in the pimonidazole-unlabelled cell fraction, evaluated using a delayed assay or a decrease in radiation dose rate, was more clearly observed among the Q than total cells. These changes in radiosensitivity were suppressed following carbon ion beam and neutron beam-only irradiaton. In the BNCR, the use of a (10)B-carrier, especially L-para-boronophenylalanine-(10)B, enhanced the sensitivity of the pimonidazole-unlabelled cells more clearly in the Q than total cells. The radiosensitivity of the pimonidazole-unlabelled cell fraction depends on the quality of radiation delivered and characteristics of the (10)B-carrier used in the BNCR. The pimonidazole-unlabelled subfraction of Q tumour cells may be a critical target in tumour control.

  3. Basic research of boron neutron-capture therapy for treatment of pancreatic cancer. Application of neutron radiography for visualization of boron compound on BNCT

    Energy Technology Data Exchange (ETDEWEB)

    Yanagie, Hironobu [Tokyo Univ. (Japan). Inst. of Medical Science

    1997-02-01

    The cytotoxic effects of locally injected {sup 10}B-immunoliposomes (anti-CEA) on human pancreatic carcinoma xenografts in nude mice were evaluated with thermal neutron irradiation. After thermal neutron irradiation of mice injected with {sup 10}B-immunoliposomes, AsPC-1 tumour growth was suppressed relative to controls. Histopathologically, hyalinization and necrosis were found in {sup 10}B-treated tumours, while tumour tissue injected with saline or saline-containing immunoliposomes showed neither destruction nor necrosis. These results suggest that intratumoral injection of boronated immunoliposomes can increase the retention of {sup 10}B atoms by tumour cells, causing tumour growth suppression in vivo upon thermal neutron irradiation. We prepared boronated PEG-binding bovine serum albumin ({sup 10}B-PEG-BSA). {sup 10}B concentrations in AsPC-1, human pancreatic cancer cells (2 x 10{sup 5} /well) obtained 24 hrs after incubation with {sup 10}B-PEG-BSA was 13.01 {+-} 1.74 ppm. The number of {sup 10}B atoms delivered to the tumor cells was calculated to be 7.83 x 10{sup 11} at 24 hrs after incubation with {sup 10}B-PEG-BSA. These data indicated that the {sup 10}B-PEG-BSA could deliver a sufficient amount of {sup 10}B atoms (more than 10{sup 9} atoms/cell) to the tumor cells to induce cytotoxic effects after incubation upon thermal neutron irradiation. Neutron capture autoradiography by using an Imaging Plate (IP-NCR) was performed on AsPC-1 tumor-bearing mouse that had been given an intratumoral injection of {sup 10}B-PEG BSA or {sup 10}B-cationic liposome. We had demonstrated the {sup 10}B-PEG BSA or {sup 10}B-cationic liposome is taken up by AsPC-1 tumor tissue to a much greater extent than by normal tissues. (J.P.N.)

  4. Tumor-specific delivery of BSH-3R for boron neutron capture therapy and positron emission tomography imaging in a mouse brain tumor model.

    Science.gov (United States)

    Iguchi, Yoshiya; Michiue, Hiroyuki; Kitamatsu, Mizuki; Hayashi, Yuri; Takenaka, Fumiaki; Nishiki, Tei-Ichi; Matsui, Hideki

    2015-07-01

    Glioblastoma, a malignant brain tumor with poor disease outcomes, is managed in modern medicine by multimodality therapy. Boron neutron capture therapy (BNCT) is an encouraging treatment under clinical investigation. In malignant cells, BNCT consists of two major factors: neutron radiation and boron uptake. To increase boron uptake in cells, we created a mercapto-closo-undecahydrododecaborate ([B12HnSH](2-)2Na(+), BSH) fused with a short arginine peptide (1R, 2R, 3R) and checked cellular uptake in vitro and in vivo. In a mouse brain tumor model, only BSH with at least three arginine domains could penetrate cell membranes of glioma cells in vitro and in vivo. Furthermore, to monitor the pharmacokinetic properties of these agents in vivo, we fused BSH and BSH-3R with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA); DOTA is a metal chelating agent for labeling positron emission tomography (PET) probe with (64)Cu. We administered BSH-DOTA-(64)Cu and BSH-3R-DOTA-(64)Cu to the tumor model through a mouse tail vein and determined the drugs' pharmacokinetics by PET imaging. BSH-3R showed a high uptake in the tumor area on PET imaging. We concluded that BSH-3R is the ideal boron compound for clinical use during BNCT and that in developing this compound for clinical use, the BSH-3R PET probe is essential for pharmacokinetic imaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Boron neutron capture synovectomy (BNCS) as a potential therapy for rheumatoid arthritis: boron biodistribution study in a model of antigen-induced arthritis in rabbits.

    Science.gov (United States)

    Trivillin, Verónica A; Abramson, David B; Bumaguin, Gaston E; Bruno, Leandro J; Garabalino, Marcela A; Monti Hughes, Andrea; Heber, Elisa M; Feldman, Sara; Schwint, Amanda E

    2014-11-01

    Boron neutron capture synovectomy (BNCS) is explored for the treatment of rheumatoid arthritis (RA). The aim of the present study was to perform boron biodistribution studies in a model of antigen-induced arthritis (AIA) in female New Zealand rabbits, with the boron carriers boronophenylalanine (BPA) and sodium decahydrodecaborate (GB-10) to assess the potential feasibility of BNCS for RA. Rabbits in chronic phase of AIA were used for biodistribution studies employing the following protocols: intra-articular (ia) (a) BPA-f 0.14 M (0.7 mg (10)B), (b) GB-10 (5 mg (10)B), (c) GB-10 (50 mg (10)B) and intravenous (iv), (d) BPA-f 0.14 M (15.5 mg (10)B/kg), (e) GB-10 (50 mg (10)B/kg), and (f) BPA-f (15.5 mg (10)B/kg) + GB-10 (50 mg (10)B/kg). At different post-administration times (13-85 min for ia and 3 h for iv), samples of blood, pathological synovium (target tissue), cartilage, tendon, muscle, and skin were taken for boron measurement by inductively coupled plasma mass spectrometry. The intra-articular administration protocols at boron concentrations (>20 ppm) in the pathological synovium. Dosimetric estimations suggest that BNCS would be able to achieve a therapeutically useful dose in pathological synovium without exceeding the radiotolerance of normal tissues in the treatment volume, employing boron carriers approved for use in humans. Radiobiological in vivo studies will be necessary to determine the actual therapeutic efficacy of BNCS to treat RA in an experimental model.

  6. Selective boron delivery by intra-arterial injection of BSH-WOW emulsion in hepatic cancer model for neutron capture therapy.

    Science.gov (United States)

    Yanagie, Hironobu; Dewi, Novriana; Higashi, Syushi; Ikushima, Ichiro; Seguchi, Koji; Mizumachi, Ryoji; Murata, Yuji; Morishita, Yasuyuki; Shinohara, Atsuko; Mikado, Shoji; Yasuda, Nakahiro; Fujihara, Mitsuteru; Sakurai, Yuriko; Mouri, Kikue; Yanagawa, Masashi; Iizuka, Tomoya; Suzuki, Minoru; Sakurai, Yoshinori; Masunaga, Shin-Ichiro; Tanaka, Hiroki; Matsukawa, Takehisa; Yokoyama, Kazuhito; Fujino, Takashi; Ogura, Koichi; Nonaka, Yasumasa; Sugiyama, Hirotaka; Kajiyama, Tetsuya; Yui, Sho; Nishimura, Ryohei; Ono, Koji; Takamoto, Sinichi; Nakajima, Jun; Ono, Minoru; Eriguchi, Masazumi; Hasumi, Kenichiro; Takahashi, Hiroyuki

    2017-06-01

    Boron neutron-capture therapy (BNCT) has been used to inhibit the growth of various types of cancers. In this study, we developed a (10)BSH-entrapped water-in-oil-in-water (WOW) emulsion, evaluated it as a selective boron carrier for the possible application of BNCT in hepatocellular carcinoma treatment. We prepared the (10)BSH-entrapped WOW emulsion using double emulsification technique and then evaluated the delivery efficacy by performing biodistribution experiment on VX-2 rabbit hepatic tumour model with comparison to iodized poppy-seed oil mix conventional emulsion. Neutron irradiation was carried out at Kyoto University Research Reactor with an average thermal neutron fluence of 5 × 10(12) n cm(-2). Morphological and pathological analyses were performed on Day 14 after neutron irradiation. Biodistribution results have revealed that (10)B atoms delivery with WOW emulsion was superior compared with those using iodized poppy-seed oil conventional emulsion. There was no dissemination in abdomen or lung metastasis observed after neutron irradiation in the groups treated with (10)BSH-entrapped WOW emulsion, whereas many tumour nodules were recognized in the liver, abdominal cavity, peritoneum and bilateral lobes of the lung in the non-injected group. Tumour growth suppression and cancer-cell-killing effect was observed from the morphological and pathological analyses of the (10)BSH-entrapped WOW emulsion-injected group, indicating its feasibility to be applied as a novel intra-arterial boron carrier for BNCT. Advances in knowledge: The results of the current study have shown that entrapped (10)BSH has the potential to increase the range of therapies available for hepatocellular carcinoma which is considered to be one of the most difficult tumours to cure.

  7. Therapeutic efficacy of boron neutron capture therapy mediated by boron-rich liposomes for oral cancer in the hamster cheek pouch model.

    Science.gov (United States)

    Heber, Elisa M; Hawthorne, M Frederick; Kueffer, Peter J; Garabalino, Marcela A; Thorp, Silvia I; Pozzi, Emiliano C C; Monti Hughes, Andrea; Maitz, Charles A; Jalisatgi, Satish S; Nigg, David W; Curotto, Paula; Trivillin, Verónica A; Schwint, Amanda E

    2014-11-11

    The application of boron neutron capture therapy (BNCT) mediated by liposomes containing (10)B-enriched polyhedral borane and carborane derivatives for the treatment of head and neck cancer in the hamster cheek pouch oral cancer model is presented. These liposomes are composed of an equimolar ratio of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine, incorporating K[nido-7-CH3(CH2)15-7,8-C2B9H11] (MAC) in the bilayer membrane while encapsulating the hydrophilic species Na3[ae-B20H17NH3] (TAC) in the aqueous core. Unilamellar liposomes with a mean diameter of 83 nm were administered i.v. in hamsters. After 48 h, the boron concentration in tumors was 67 ± 16 ppm whereas the precancerous tissue contained 11 ± 6 ppm, and the tumor/normal pouch tissue boron concentration ratio was 10:1. Neutron irradiation giving a 5-Gy dose to precancerous tissue (corresponding to 21 Gy in tumor) resulted in an overall tumor response (OR) of 70% after a 4-wk posttreatment period. In contrast, the beam-only protocol gave an OR rate of only 28%. Once-repeated BNCT treatment with readministration of liposomes at an interval of 4, 6, or 8 wk resulted in OR rates of 70-88%, of which the complete response ranged from 37% to 52%. Because of the good therapeutic outcome, it was possible to extend the follow-up of BNCT treatment groups to 16 wk after the first treatment. No radiotoxicity to normal tissue was observed. A salient advantage of these liposomes was that only mild mucositis was observed in dose-limiting precancerous tissue with a sustained tumor response of 70-88%.

  8. Boron Neutron Capture Therapy for HER2+ breast cancers: A feasibility study evaluating BNCT for potential role in breast conservation therapies

    Science.gov (United States)

    Jenkins, Peter Anthony

    A novel Boron Neutron Capture Therapy (BNCT) regimen for the treatment of HER2+ breast cancers has been proposed as an alternative to whole breast irradiation for breast conservation therapy patients. The proposed therapy regimen is based on the assumed production of boron delivery agents that would be synthesized from compounds of Trastuzumab (Herceptin ®) and oligomeric phosphate diesters (OPDs). The combination of the anti-HER2 monoclonal antibody and the high boron loading capability of OPDs has led to the assumption that boron could be delivered to the HER2+ cancer cells at Tumor to Healthy Tissue ratios (T:H) of up to 35:1 and boron concentrations above 50 μg/g. This significantly increased boron delivery efficiency has opened new BNCT possibilities. This proof of concept study examined treatment parameters derived as the results in previous efforts in the context of patient-specific geometry and compared calculated dose results to those observed during actual patient therapy. These results were based on dose calculations performed with a set of calculated Kerma coefficients derived from tissues specific to the regions of interest for breast cancer. A comparison was made of the dose to the tumor region, the patient's skin, and the peripheral organs. The results of this study demonstrated that, given the performance of the proposed boron delivery agent, the BNCT treatment regimen is feasible. The feasibility is based on the findings that the equivalent dose could be delivered to the treatment volume with less dose to the skin and peripheral organs. This is anticipated to improve the treatment outcomes by maintaining local control of tumor cells while reducing dose to healthy tissues.

  9. Dosimetry and radiobiology at the new RA-3 reactor boron neutron capture therapy (BNCT) facility: application to the treatment of experimental oral cancer.

    Science.gov (United States)

    Pozzi, E; Nigg, D W; Miller, M; Thorp, S I; Heber, E M; Zarza, L; Estryk, G; Monti Hughes, A; Molinari, A J; Garabalino, M; Itoiz, M E; Aromando, R F; Quintana, J; Trivillin, V A; Schwint, A E

    2009-07-01

    The National Atomic Energy Commission of Argentina (CNEA) constructed a novel thermal neutron source for use in boron neutron capture therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The aim of the present study was to perform a dosimetric characterization of the facility and undertake radiobiological studies of BNCT in an experimental model of oral cancer in the hamster cheek pouch. The free-field thermal flux was 7.1 x 10(9) n cm(-2)s(-1) and the fast neutron flux was 2.5 x 10(6) n cm(-2)s(-1), indicating a very well-thermalized neutron field with negligible fast neutron dose. For radiobiological studies it was necessary to shield the body of the hamster from the neutron flux while exposing the everted cheek pouch bearing the tumors. To that end we developed a lithium (enriched to 95% in (6)Li) carbonate enclosure. Groups of tumor-bearing hamsters were submitted to BPA-BNCT, GB-10-BNCT, (GB-10+BPA)-BNCT or beam only treatments. Normal (non-cancerized) hamsters were treated similarly to evaluate normal tissue radiotoxicity. The total physical dose delivered to tumor with the BNCT treatments ranged from 6 to 8.5 Gy. Tumor control at 30 days ranged from 73% to 85%, with no normal tissue radiotoxicity. Significant but reversible mucositis in precancerous tissue surrounding tumors was associated to BPA-BNCT. The therapeutic success of different BNCT protocols in treating experimental oral cancer at this novel facility was unequivocally demonstrated.

  10. Boron neutron capture therapy (BNCT) for glioblastoma multiforme: a phase II study evaluating a prolonged high-dose of boronophenylalanine (BPA).

    Science.gov (United States)

    Henriksson, Roger; Capala, Jacek; Michanek, Annika; Lindahl, Sten-Ake; Salford, Leif G; Franzén, Lars; Blomquist, Erik; Westlin, Jan-Erik; Bergenheim, A Tommy

    2008-08-01

    To evaluate the efficacy and safety of boron neutron capture therapy (BNCT) for glioblastoma multiforme (GBM) using a novel protocol for the boronophenylalanine-fructose (BPA-F) infusion. This phase II study included 30 patients, 26-69 years old, with a good performance status of which 27 have undergone debulking surgery. BPA-F (900 mg BPA/kg body weight) was given i.v. over 6h. Neutron irradiation started 2h after the completion of the infusion. Follow-up reports were monitored by an independent clinical research institute. The boron-blood concentration during irradiation was 15.2-33.7 microg/g. The average weighted absorbed dose to normal brain was 3.2-6.1 Gy (W). The minimum dose to the tumour volume ranged from 15.4 to 54.3 Gy (W). Seven patients suffered from seizures, 8 from skin/mucous problem, 5 patients were stricken by thromboembolism and 4 from abdominal disturbances in close relation to BNCT. Four patients displayed 9 episodes of grade 3-4 events (WHO). At the time for follow-up, minimum ten months, 23 out of the 29 evaluable patients were dead. The median time from BNCT treatment to tumour progression was 5.8 months and the median survival time after BNCT was 14.2 months. Following progression, 13 patients were given temozolomide, two patients were re-irradiated, and two were re-operated. Patients treated with temozolomide lived considerably longer (17.7 vs. 11.6 months). The quality of life analysis demonstrated a progressive deterioration after BNCT. Although, the efficacy of BNCT in the present protocol seems to be comparable with conventional radiotherapy and the treatment time is shorter, the observed side effects and the requirement of complex infrastructure and higher resources emphasize the need of further phase I and II studies, especially directed to improve the accumulation of (10)B in tumour cells.

  11. Early effect of boron neutron capture therapy mediated by boronophenylalanine (BPA-BNCT) on mast cells in premalignant tissue and tumors of the hamster cheek pouch.

    Science.gov (United States)

    Aromando, Romina F; Trivillin, Verónica A; Heber, Elisa M; Pozzi, Emiliano; Schwint, Amanda E; Itoiz, María E

    2010-05-01

    Mast cell (MC) activation in the hamster cheek pouch cancerization model is associated with the increase in tumor cell proliferation, mediated in turn by tryptase, a protease released from mast cell granules after activation. Tryptase induces tumor cell proliferation through the activation of PAR-2 (protease activated receptor-2) on the plasma membrane of carcinoma cells. The therapeutic success of boron neutron capture therapy mediated by boronophenylalanine (BPA-BNCT) in tumor control in the hamster cheek pouch oral cancer model has been previously reported by our laboratory. Early effects of BPA-BNCT on tumors of the hamster cheek pouch include a reduction in DNA-synthesis with the concomitant decrease in the proliferation of malignant cells. The aim of the present study was to investigate the early histological changes in mast cells after BPA-BNCT in tumors and premalignant tissue of the hamster cheek pouch. Tumor-bearing pouches were treated with BPA-BNCT or beam only (neutron irradiation without prior administration of the boron compound) and sacrificed 1day after treatment. The samples were fixed in Carnoy fixative and stained with alcian blue-safranin to identify all the populations of mast cells. Total, active and inactive mast cells (MC) were counted in the connective tissue and the adventitious tissue underlying the pouch wall and at the base of the tumors in pouches treated with BPA-BNCT, in keeping with a previously described technique. BPA-BNCT induced a marked reduction in the total number of mast cells in the pouch (pBNCT and beam only elicited a qualitative change in the secretion modality of the granule content. Although further studies are needed to evaluate the subcellular effect of BNCT on mast cell granule secretion, the reduction in cell proliferation induced by BPA-BNCT would be partially due to the decrease in total mast cells in the hamster check pouch. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  12. Radiobiological response of U251MG, CHO-K1 and V79 cell lines to accelerator-based boron neutron capture therapy.

    Science.gov (United States)

    Sato, Eisuke; Zaboronok, Alexander; Yamamoto, Tetsuya; Nakai, Kei; Taskaev, Sergey; Volkova, Olga; Mechetina, Ludmila; Taranin, Alexander; Kanygin, Vladimir; Isobe, Tomonori; Mathis, Bryan J; Matsumura, Akira

    2017-12-21

    In the current article, we provide in vitro efficacy evaluation of a unique accelerator-based neutron source, constructed at the Budker Institute of Nuclear Physics (Novosibirsk, Russian Federation), for boron neutron capture therapy (BNCT), which is particularly effective in the case of invasive cancers. U251MG, CHO-K1 and V79 cells were incubated and irradiated in various concentrations of boric acid with epithermal neutrons for 2-3 h in a plexiglass phantom, using 2.0 MeV proton energy and 1.5-3.0 mA proton current, resulting in a neutron fluence of 2.16 × 1012 cm-2. The survival curves of cells loaded with boron were normalized to those irradiated without boron (to exclude the influence of the fast neutron and gamma dose components) and fit to the linear-quadratic (LQ) model. Colony formation assays showed the following cell survival rates (means ± SDs): CHO-K1: 0.348 ± 0.069 (10 ppm), 0.058 ± 0.017 (20 ppm), 0.018 ± 0.005 (40 ppm); V79: 0.476 ± 0.160 (10 ppm), 0.346 ± 0.053 (20 ppm), 0.078 ± 0.015 (40 ppm); and U251MG: 0.311 ± 0.061 (10 ppm), 0.131 ± 0.022 (20 ppm), 0.020 ± 0.010 (40 ppm). The difference between treated cells and controls was significant in all cases (P BNCT into the clinical phase. © The Author(s) 2017. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  13. Influence of Neutron Sources and 10B Concentration on Boron Neutron Capture Therapy for Shallow and Deeper Non-small Cell Lung Cancer.

    Science.gov (United States)

    Yu, Haiyan; Tang, Xiaobin; Shu, Diyun; Liu, Yuanhao; Geng, Changran; Gong, Chunhui; Hang, Shuang; Chen, Da

    2017-03-01

    Boron Neutron Capture Therapy (BNCT) is a radiotherapy that combines biological targeting and high Linear Energy Transfer (LET). It is considered a potential therapeutic approach for non-small cell lung cancer (NSCLC). It could avoid the inaccurate treatment caused by the lung motion during radiotherapy, because the dose deposition mainly depends on the boron localization and neutron source. Thus, B concentration and neutron sources are both principal factors of BNCT, and they play significant roles in the curative effect of BNCT for different cases. The purpose was to explore the feasibility of BNCT treatment for NSCLC with either of two neutron sources (the epithermal reactor at the Massachusetts Institute of Technology named "MIT source" and the accelerator neutron source designed in Argentina named "MEC source") and various boron concentrations. Shallow and deeper lung tumors were defined in the Chinese hybrid radiation phantom, and the Monte Carlo method was used to calculate the dose to tumors and healthy organs. The MEC source was more appropriate to treat the shallow tumor (depth of 6 cm) with a shorter treatment time. However, the MIT source was more suitable for deep lung tumor (depth of 9 cm) treatment, as the MEC source is more likely to exceed the skin dose limit. Thus, a neutron source consisting of more fast neutrons is not necessarily suitable for deep treatment of lung tumors. Theoretical distribution of B in tumors and organs at risk (especially skin) was obtained to meet the treatable requirement of BNCT, which may provide the references to identify the feasibility of BNCT for the treatment of lung cancer using these two neutron sources in future clinical applications.

  14. Boron Neutron Capture Therapy (BNCT) in an oral precancer model: therapeutic benefits and potential toxicity of a double application of BNCT with a six-week interval.

    Science.gov (United States)

    Monti Hughes, Andrea; Pozzi, Emiliano C C; Heber, Elisa M; Thorp, Silvia; Miller, Marcelo; Itoiz, Maria E; Aromando, Romina F; Molinari, Ana J; Garabalino, Marcela A; Nigg, David W; Trivillin, Verónica A; Schwint, Amanda E

    2011-11-01

    Given the clinical relevance of locoregional recurrences in head and neck cancer, we developed a novel experimental model of premalignant tissue in the hamster cheek pouch for long-term studies and demonstrated the partial inhibitory effect of a single application of Boron Neutron Capture Therapy (BNCT) on tumor development from premalignant tissue. The aim of the present study was to evaluate the effect of a double application of BNCT with a 6 week interval in terms of inhibitory effect on tumor development, toxicity and DNA synthesis. We performed a double application, 6 weeks apart, of (1) BNCT mediated by boronophenylalanine (BPA-BNCT); (2) BNCT mediated by the combined application of decahydrodecaborate (GB-10) and BPA [(GB-10+BPA)-BNCT] or (3) beam-only, at RA-3 nuclear reactor and followed the animals for 8 months. The control group was cancerized and sham-irradiated. BPA-BNCT, (GB-10+BPA)-BNCT and beam-only induced a reduction in tumor development from premalignant tissue that persisted until 8, 3, and 2 months respectively. An early maximum inhibition of 100% was observed for all 3 protocols. No normal tissue radiotoxicity was detected. Reversible mucositis was observed in premalignant tissue, peaking at 1 week and resolving by the third week after each irradiation. Mucositis after the second application was not exacerbated by the first application. DNA synthesis was significantly reduced in premalignant tissue 8 months post-BNCT. A double application of BPA-BNCT and (GB-10+BPA)-BNCT, 6 weeks apart, could be used therapeutically at no additional cost in terms of radiotoxicity in normal and dose-limiting tissues. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Calculations of Compound Nucleus Spin-Parity Distributions Populated via the (p,t Reaction in Support of Surrogate Neutron Capture Measurements

    Directory of Open Access Journals (Sweden)

    Benstead J.

    2016-01-01

    Full Text Available The surrogate reaction method may be used to determine the cross section for neutron induced reactions not accessible through standard experimental techniques. This is achieved by creating the same compound nucleus as would be expected in the desired reaction, but through a different incident channel, generally a direct transfer reaction. So far, the surrogate technique has been applied with reasonable success to determine the fission cross section for a number of actinides, but has been less successful when applied to other reactions, e.g. neutron capture, due to a ‘spin-parity mismatch’. This mismatch, between the spin and parity distributions of the excited levels of the compound nucleus populated in the desired and surrogate channels, leads to differing decay probabilities and hence reduces the validity of using the surrogate method to infer the cross section in the desired channel. A greater theoretical understanding of the expected distribution of levels excited in both the desired and surrogate channels is therefore required in order to attempt to address this mismatch and allow the method to be utilised with greater confidence. Two neutron transfer reactions, e.g. (p,t, which allow the technique to be utilised for isotopes further removed from the line of stability, are the subject of this study. Results are presented for the calculated distribution of compound nucleus states populated in 90Zr, via the 90Zr(p,t90Zr reaction, and are compared against measured data at an incident proton energy of 28.56 MeV.

  16. Nuclear structure studies for the astrophysical r-process

    CERN Document Server

    Pfeiffer, B; Thielemann, F K; Walters, W B

    2001-01-01

    The production of the heaviest elements in nature occurs via the r-process, i.e. a combination of rapid neutron captures, the inverse photodisintegrations, and slower beta sup - -decays, beta-delayed processes as well as fission and possibly interactions with intense neutrino fluxes. A correct understanding and modeling requires the knowledge of nuclear properties far from stability and a detailed prescription of the astrophysical environment. Experiments at radioactive ion beam facilities have played a pioneering role in exploring the characteristics of nuclear structure in terms of masses and beta-decay properties. Initial examinations paid attention to highly unstable nuclei with magic neutron numbers and their beta-decay properties, related to the location and height of r-process peaks, while recent activities focus on the evolution of shell effects at large distances from the valley of stability. We show in site-independent applications the effect of both types of nuclear properties on r-process abundanc...

  17. Analysis of Rapid Acquisition Processes to Fulfill Future Urgent Needs

    Science.gov (United States)

    2015-12-01

    UAVs , the DOD defines UAVs as “powered aerial vehicle that does not carry a human operator; use aerodynamic forces to provide lift; can be autonomously...25 B. UAV ...25 1. UAV Background ...............................................................................25 2. Rapid Acquisition in UAV

  18. Rapid Tools Compensation in Sheet Metal Stamping Process

    OpenAIRE

    Iorio Lorenzo; Strano Matteo; Monno Michele

    2016-01-01

    The sudden growth of additive manufacturing is generating a renovated interest towards the field of rapid tooling. We propose a geometrical compensation method for rapid tools made by thermoset polyurethane. The method is based on the explicit FEM simulation coupled to a geometrical optimization algorithm for designing the stamping tools. The compensation algorithm is enhanced by considering the deviations between the stamped and designed components. The FEM model validation has been performe...

  19. Is the rapid adaptation paradigm too rapid? Implications for face and object processing.

    Science.gov (United States)

    Nemrodov, Dan; Itier, Roxane J

    2012-07-16

    Rapid adaptation is an adaptation procedure in which adaptors and test stimuli are presented in rapid succession. The current study tested the validity of this method for early ERP components by investigating the specificity of the adaptation effect on the face-sensitive N170 ERP component across multiple test stimuli. Experiments 1 and 2 showed identical response patterns for house and upright face test stimuli using the same adaptor stimuli. The results were also identical to those reported in a previous study using inverted face test stimuli (Nemrodov and Itier, 2011). In Experiment 3 all possible adaptor-test combinations between upright face, house, chair and car stimuli were used and no interaction between adaptor and test category, expected in the case of test-specific adaptation, was found. These results demonstrate that the rapid adaptation paradigm does not produce category-specific adaptation effects around 170-200 ms following test stimulus onset, a necessary condition for the interpretation of adaptation results. These results suggest the rapid categorical adaptation paradigm does not work. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Visual processing in rapid-chase systems: Image processing, attention, and awareness

    Directory of Open Access Journals (Sweden)

    Thomas eSchmidt

    2011-07-01

    Full Text Available Visual stimuli can be classified so rapidly that their analysis may be based on a single sweep of feedforward processing through the visuomotor system. Behavioral criteria for feedforward processing can be evaluated in response priming tasks where speeded pointing or keypress responses are performed towards target stimuli which are preceded by prime stimuli. We apply this method to several classes of complex stimuli. 1 When participants classify natural images into animals or non-animals, the time course of their pointing responses indicates that prime and target signals remain strictly sequential throughout all processing stages, meeting stringent behavioral criteria for feedforward processing (rapid-chase criteria. 2 Such priming effects are boosted by selective visual attention for positions, shapes, and colors, in a way consistent with bottom-up enhancement of visuomotor processing, even when primes cannot be consciously identified. 3 Speeded processing of phobic images is observed in participants specifically fearful of spiders or snakes, suggesting enhancement of feedforward processing by long-term perceptual learning. 4 When the perceived brightness of primes in complex displays is altered by means of illumination or transparency illusions, priming effects in speeded keypress responses can systematically contradict subjective brightness judgments, such that one prime appears brighter than the other but activates motor responses as if it was darker. We propose that response priming captures the output of the first feedforward pass of visual signals through the visuomotor system, and that this output lacks some characteristic features of more elaborate, recurrent processing. This way, visuomotor measures may become dissociated from several aspects of conscious vision. We argue that "fast" visuomotor measures predominantly driven by feedforward processing should supplement "slow" psychophysical measures predominantly based on visual

  1. Fractionated Boron Neutron Capture Therapy in Locally Recurrent Head and Neck Cancer: A Prospective Phase I/II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ling-Wei, E-mail: lwwang@vghtpe.gov.tw [Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (China); National Yang-Ming University, Taiwan (China); Chen, Yi-Wei [Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (China); National Yang-Ming University, Taiwan (China); Ho, Ching-Yin [National Yang-Ming University, Taiwan (China); Department of Otolaryngology, Taipei Veterans General Hospital, Taiwan (China); Hsueh Liu, Yen-Wan [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Chou, Fong-In [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Liu, Yuan-Hao [Nuclear Science and Engineering Department, Nanjing University of Aeronautics and Astronautics, Nanjing (China); Liu, Hong-Ming; Peir, Jinn-Jer [Nuclear Science and Technology Development Center, National Tsing Hua University, Taiwan (China); Jiang, Shiang-Huei [Institute of Nuclear Engineering and Science, National Tsing Hua University, Taiwan (China); Chang, Chi-Wei [National Yang-Ming University, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Liu, Ching-Sheng [Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan (China); National Yang-Ming University, Taiwan (China); Lin, Ko-Han [Taoyuan Veterans Hospital, Taiwan (China); Wang, Shyh-Jen [National Yang-Ming University, Taiwan (China); Department of Nuclear Medicine, Taipei Veterans General Hospital, Taiwan (China); Chu, Pen-Yuan [National Yang-Ming University, Taiwan (China); Department of Otolaryngology, Taipei Veterans General Hospital, Taiwan (China); Lo, Wen-Liang; Kao, Shou-Yen [National Yang-Ming University, Taiwan (China); Department of Stomatology, Taipei Veterans General Hospital, Taiwan (China); and others

    2016-05-01

    Purpose: To investigate the efficacy and safety of fractionated boron neutron capture therapy (BNCT) for recurrent head and neck (H&N) cancer after photon radiation therapy. Methods and Materials: In this prospective phase 1/2 trial, 2-fraction BNCT with intravenous L-boronophenylalanine (L-BPA, 400 mg/kg) was administered at a 28-day interval. Before each fraction, fluorine-18-labeled-BPA–positron emission tomography was conducted to determine the tumor/normal tissue ratio of an individual tumor. The prescription dose (D80) of 20 Gy-Eq per fraction was selected to cover 80% of the gross tumor volume by using a dose volume histogram, while minimizing the volume of oral mucosa receiving >10 Gy-Eq. Tumor responses and adverse effects were assessed using the Response Evaluation Criteria in Solid Tumors v1.1 and the Common Terminology Criteria for Adverse Events v3.0, respectively. Results: Seventeen patients with a previous cumulative radiation dose of 63-165 Gy were enrolled. All but 2 participants received 2 fractions of BNCT. The median tumor/normal tissue ratio was 3.4 for the first fraction and 2.5 for the second, whereas the median D80 for the first and second fraction was 19.8 and 14.6 Gy-Eq, respectively. After a median follow-up period of 19.7 months (range, 5.2-52 mo), 6 participants exhibited a complete response and 6 exhibited a partial response. Regarding acute toxicity, 5 participants showed grade 3 mucositis and 1 participant showed grade 4 laryngeal edema and carotid hemorrhage. Regarding late toxicity, 2 participants exhibited grade 3 cranial neuropathy. Four of six participants (67%) receiving total D80 > 40 Gy-Eq had a complete response. Two-year overall survival was 47%. Two-year locoregional control was 28%. Conclusions: Our results suggested that 2-fraction BNCT with adaptive dose prescription was effective and safe in locally recurrent H&N cancer. Modifications to our protocol may yield more satisfactory results in the future.

  2. Experimental Studies of Boronophenylalanine ({sup 10}BPA) Biodistribution for the Individual Application of Boron Neutron Capture Therapy (BNCT) for Malignant Melanoma Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Carpano, Marina; Perona, Marina; Rodriguez, Carla [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); Nievas, Susana; Olivera, Maria; Santa Cruz, Gustavo A. [Department of Boron Neutron Capture Therapy, National Atomic Energy Commission, San Martín (Argentina); Brandizzi, Daniel; Cabrini, Romulo [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); School of Dentistry, University of Buenos Aires, Buenos Aires (Argentina); Pisarev, Mario [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Department of Human Biochemistry, School of Medicine, University of Buenos Aires, Buenos Aires (Argentina); Juvenal, Guillermo Juan [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina); Dagrosa, Maria Alejandra, E-mail: dagrosa@cnea.gov.ar [Department of Radiobiology, National Atomic Energy Commission, San Martín (Argentina); National Research Council of Argentina, Buenos Aires (Argentina)

    2015-10-01

    Purpose: Patients with the same histopathologic diagnosis of cutaneous melanoma treated with identical protocols of boron neutron capture therapy (BNCT) have shown different clinical outcomes. The objective of the present studies was to evaluate the biodistribution of boronophenilalanina ({sup 10}BPA) for the potential application of BNCT for the treatment of melanoma on an individual basis. Methods and Materials: The boronophenilalanine (BPA) uptake was evaluated in 3 human melanoma cell lines: MEL-J, A375, and M8. NIH nude mice were implanted with 4 10{sup 6} MEL-J cells, and biodistribution studies of BPA (350 mg/kg intraperitoneally) were performed. Static infrared imaging using a specially modified infrared camera adapted to measure the body infrared radiance of small animals was used. Proliferation marker, Ki-67, and endothelial marker, CD31, were analyzed in tumor samples. Results: The in vitro studies demonstrated different patterns of BPA uptake for each analyzed cell line (P<.001 for MEL-J and A375 vs M8 cells). The in vivo studies showed a maximum average boron concentration of 25.9 ± 2.6 μg/g in tumor, with individual values ranging between 11.7 and 52.0 μg/g of {sup 10}B 2 hours after the injection of BPA. Tumor temperature always decreased as the tumors increased in size, with values ranging between 37°C and 23°C. A significant correlation between tumor temperature and tumor-to-blood boron concentration ratio was found (R{sup 2} = 0.7, rational function fit). The immunohistochemical studies revealed, in tumors with extensive areas of viability, a high number of positive cells for Ki-67, blood vessels of large diameter evidenced by the marker CD31, and a direct logistic correlation between proliferative status and boron concentration difference between tumor and blood (R{sup 2} = 0.81, logistic function fit). Conclusion: We propose that these methods could be suitable for designing new screening protocols applied before melanoma BNCT

  3. Boron Neutron Capture Therapy in the Treatment of Locally Recurred Head-and-Neck Cancer: Final Analysis of a Phase I/II Trial

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanranta, Leena [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Seppaelae, Tiina; Koivunoro, Hanna [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Saarilahti, Kauko [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Atula, Timo [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Collan, Juhani [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Salli, Eero; Kortesniemi, Mika [Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Uusi-Simola, Jouni [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Vaelimaeki, Petteri [Department of Physics, University of Helsinki, Helsinki (Finland); Boneca Corporation, Helsinki (Finland); Maekitie, Antti [Department of Otorhinolaryngology, Helsinki University Central Hospital, Helsinki (Finland); Seppaenen, Marko [Turku PET Centre, Turku University Hospital, Turku (Finland); Minn, Heikki [Department of Oncology, Turku University Central Hospital, Turku (Finland); Revitzer, Hannu [Aalto University School of Science and Technology, Esopo (Finland); Kouri, Mauri [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland); Kotiluoto, Petri; Seren, Tom; Auterinen, Iiro [VTT Technical Research Centre of Finland, Espoo (Finland); Savolainen, Sauli [Department of Physics, University of Helsinki, Helsinki (Finland); Helsinki and Uusimaa Hospital District Medical Imaging Center, Helsinki University Central Hospital, Helsinki (Finland); Joensuu, Heikki, E-mail: heikki.joensuu@hus.fi [Department of Oncology, Helsinki University Central Hospital, Helsinki (Finland)

    2012-01-01

    Purpose: To investigate the efficacy and safety of boron neutron capture therapy (BNCT) in the treatment of inoperable head-and-neck cancers that recur locally after conventional photon radiation therapy. Methods and Materials: In this prospective, single-center Phase I/II study, 30 patients with inoperable, locally recurred head-and-neck cancer (29 carcinomas and 1 sarcoma) were treated with BNCT. Prior treatments consisted of surgery and conventionally fractionated photon irradiation to a cumulative dose of 50 to 98 Gy administered with or without concomitant chemotherapy. Tumor responses were assessed by use of the RECIST (Response Evaluation Criteria in Solid Tumors) and adverse effects by use of the National Cancer Institute common terminology criteria version 3.0. Intravenously administered L-boronophenylalanine-fructose (400 mg/kg) was administered as the boron carrier. Each patient was scheduled to be treated twice with BNCT. Results: Twenty-six patients received BNCT twice; four were treated once. Of the 29 evaluable patients, 22 (76%) responded to BNCT, 6 (21%) had tumor growth stabilization for 5.1 and 20.3 months, and 1 (3%) progressed. The median progression-free survival time was 7.5 months (95% confidence interval, 5.4-9.6 months). Two-year progression-free survival and overall survival were 20% and 30%, respectively, and 27% of the patients survived for 2 years without locoregional recurrence. The most common acute Grade 3 adverse effects were mucositis (54% of patients), oral pain (54%), and fatigue (32%). Three patients were diagnosed with osteoradionecrosis (each Grade 3) and one patient with soft-tissue necrosis (Grade 4). Late Grade 3 xerostomia was present in 3 of the 15 evaluable patients (20%). Conclusions: Most patients who have inoperable, locally advanced head-and-neck carcinoma that has recurred at a previously irradiated site respond to boronophenylalanine-mediated BNCT, but cancer recurrence after BNCT remains frequent. Toxicity was

  4. Synthesis and characterization of boron fenbufen and its F-18 labeled homolog for boron neutron capture therapy of COX-2 overexpressed cholangiocarcinoma.

    Science.gov (United States)

    Yeh, Chun-Nan; Chang, Chi-Wei; Chung, Yi-Hsiu; Tien, Shi-Wei; Chen, Yong-Ren; Chen, Tsung-Wen; Huang, Ying-Cheng; Wang, Hsin-Ell; Chou, You-Cheng; Chen, Ming-Huang; Chiang, Kun-Chun; Huang, Wen-Sheng; Yu, Chung-Shan

    2017-09-30

    Boron neutron capture therapy (BNCT) is a binary therapy that employs neutron irradiation on the boron agents to release high-energy helium and alpha particles to kill cancer cells. An optimal response to BNCT depends critically on the time point of maximal 10B accumulation and highest tumor to normal ratio (T/N) for performing the neutron irradiation. The aggressive cholangiocarcinoma (CCA) representing a liver cancer that overexpresses COX-2 enzyme is aimed to be targeted by COX-2 selective boron carrier, fenbufen boronopinacol (FBPin). Two main works were performed including: 1) chemical synthesis of FBPin as the boron carrier and 2) radiochemical labeling with F-18 to provide the radiofluoro congener, m-[18F]fluorofenbufen ester boronopinacol (m-[18F]FFBPin), to assess the binding affinity, cellular accumulation level and distribution profile in CCA rats. FBPin was prepared from bromofenbufen via 3 steps with 82% yield. The binding assay employed [18F]FFBPin to compete FBPin for binding to COX-1 (IC50=0.91±0.68μM) and COX-2 (IC50=0.33±0.24μM). [18F]FFBPin-derived 60-min dynamic PET scans predict the 10B-accumulation of 0.8-1.2ppm in liver and 1.2-1.8ppm in tumor and tumor to normal ratio=1.38±0.12. BNCT was performed 40-55min post intravenous administration of FBPin (20-30mg) in the CCA rats. CCA rats treated with BNCT display more tumor reduction than that by NCT with respect of 2-[18F]fluoro-2-deoxy glucose uptake in the tumor region of interest, 20.83±3.00% (n=12) vs. 12.83±3.79% (n=10), P=0.05. The visualizing agent [18F]FFBPin resembles FBPin to generate the time-dependent boron concentration profile. Optimal neutron irradiation period is thus determinable for BNCT. A boron-substituted agent based on COX-2-binding features has been prepared. The moderate COX-2/COX-1 selectivity index of 2.78 allows a fair tumor selectivity index of 1.38 with a mild cardiovascular effect. The therapeutic effect from FBPin with BNCT warrants a proper COX-2 targeting

  5. Understanding the potentiality of accelerator based-boron neutron capture therapy for osteosarcoma: dosimetry assessment based on the reported clinical experience.

    Science.gov (United States)

    Bortolussi, Silva; Postuma, Ian; Protti, Nicoletta; Provenzano, Lucas; Ferrari, Cinzia; Cansolino, Laura; Dionigi, Paolo; Galasso, Olimpio; Gasparini, Giorgio; Altieri, Saverio; Miyatake, Shin-Ichi; González, Sara J

    2017-08-15

    Osteosarcoma is the most frequent primary malignant bone tumour, and its incidence is higher in children and adolescents, for whom it represents more than 10% of solid cancers. Despite the introduction of adjuvant and neo-adjuvant chemotherapy that markedly increased the success rate in the treatment, aggressive surgery is still needed and a considerable percentage of patients do not survive due to recurrences or early metastases. Boron Neutron Capture Therapy (BNCT), an experimental radiotherapy, was investigated as a treatment that could allow a less aggressive surgery by killing infiltrated tumour cells in the surrounding healthy tissues. BNCT requires an intense neutron beam to ensure irradiation times of the order of 1 h. In Italy, a Radio Frequency Quadrupole (RFQ) proton accelerator has been designed and constructed for BNCT, and a suitable neutron spectrum was tailored by means of Monte Carlo calculations. This paper explores the feasibility of BNCT to treat osteosarcoma using this neutron source based on accelerator. The therapeutic efficacy of BNCT was analysed evaluating the dose distribution obtained in a clinical case of femur osteosarcoma. Mixed field dosimetry was assessed with two different formalisms whose parameters were specifically derived from radiobiological experiments involving in vitro UMR-106 osteosarcoma cell survival assays and boron concentration assessments in an animal model of osteosarcoma. A clinical case of skull osteosarcoma treated with BNCT in Japan was re-evaluated from the point of view of dose calculation and used as a reference for comparison. The results in the case of femur osteosarcoma show that the RFQ beam would ensure a suitable tumour dose painting in a total irradiation time of less than an hour. Comparing the dosimetry between the analysed case and the treated patient in Japan it turns out that doses obtained in the femur tumour are at least as good as the ones delivered in the skull osteosarcoma. The same is

  6. SU-E-T-21: A D-D Based Neutron Generator System for Boron Neutron Capture Therapy: A Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, M; Liu, Y; Nie, L [Purdue University, West Lafayette, IN (United States)

    2015-06-15

    Purpose: To investigate the feasibility of a deuterium-deuterium (DD) neutron generator for application in boron neutron capture therapy (BNCT) of brain cancer Methods: MCNP simulations were performed using a head phantom and a monoenergetic neutron source, which resembles the point source in a DD generator that emits 2.45-MeV neutrons. Source energies ranging from 5eV to 2.45MeV were simulated to determine the optimal treatment energy. The phantom consisted of soft tissue, brain tissue, skull, skin layer, and a brain tumor of 5 cm in diameter. Tumor depth was varied from 5–10 cm. Boron-10 concentrations of 10 ppm, 15 ppm, and 30 ppm were used in the soft/brain tissues, skin, and tumor, respectively. The neutron flux required to deliver 60 Gy to the tumor as well as the normal tissue doses were determined. Results: Beam energies between 5eV and 10keV obtained doses with the highest dose ratios (3.3–25.9) between the tumor and the brain at various depths. The dose ratio with 2.45-MeV neutrons ranged from 0.8–6.6. To achieve the desired tumor dose in 40 minutes, the required neutron flux for a DD generator was between 8.8E10 and 5.2E11 n/s and the resulting brain dose was between 2.3 and 18 Gy, depending on the tumor depth. The skin and soft tissue doses were within acceptable tolerances. The boron-neutron interaction accounted for 54–58% of the total dose. Conclusion: This study shows that the DD neutron generator can be a feasible neutron source for BNCT. The required neutron flux for treatment is achievable with the current DD neutron technology. With a well-designed beam shaping assembly and treatment geometry, the neutron flux can be further improved and a 60-Gy prescription can be accurately delivered to the target while maintaining tolerable normal tissue doses. Further experimental studies will be developed and conducted to validate the simulation results.

  7. Rapid Tools Compensation in Sheet Metal Stamping Process

    Directory of Open Access Journals (Sweden)

    Iorio Lorenzo

    2016-01-01

    Full Text Available The sudden growth of additive manufacturing is generating a renovated interest towards the field of rapid tooling. We propose a geometrical compensation method for rapid tools made by thermoset polyurethane. The method is based on the explicit FEM simulation coupled to a geometrical optimization algorithm for designing the stamping tools. The compensation algorithm is enhanced by considering the deviations between the stamped and designed components. The FEM model validation has been performed by comparing the results of a DOE done at different values of press force.

  8. Rapid Prototyping of High Performance Signal Processing Applications

    Science.gov (United States)

    Sane, Nimish

    Advances in embedded systems for digital signal processing (DSP) are enabling many scientific projects and commercial applications. At the same time, these applications are key to driving advances in many important kinds of computing platforms. In this region of high performance DSP, rapid prototyping is critical for faster time-to-market (e.g., in the wireless communications industry) or time-to-science (e.g., in radio astronomy). DSP system architectures have evolved from being based on application specific integrated circuits (ASICs) to incorporate reconfigurable off-the-shelf field programmable gate arrays (FPGAs), the latest multiprocessors such as graphics processing units (GPUs), or heterogeneous combinations of such devices. We, thus, have a vast design space to explore based on performance trade-offs, and expanded by the multitude of possibilities for target platforms. In order to allow systematic design space exploration, and develop scalable and portable prototypes, model based design tools are increasingly used in design and implementation of embedded systems. These tools allow scalable high-level representations, model based semantics for analysis and optimization, and portable implementations that can be verified at higher levels of abstractions and targeted toward multiple platforms for implementation. The designer can experiment using such tools at an early stage in the design cycle, and employ the latest hardware at later stages. In this thesis, we have focused on dataflow-based approaches for rapid DSP system prototyping. This thesis contributes to various aspects of dataflow-based design flows and tools as follows: 1. We have introduced the concept of topological patterns, which exploits commonly found repetitive patterns in DSP algorithms to allow scalable, concise, and parameterizable representations of large scale dataflow graphs in high-level languages. We have shown how an underlying design tool can systematically exploit a high

  9. Rapid Delivery of Cyber Capabilities: Evaluation of the Requirement for a Rapid Cyber Acquisition Process

    Science.gov (United States)

    2012-06-01

    capabilities and rapid implementation of tactics—all aspects readily addressed using non-material solutions. Additionally, configuration and maintenance of...Offict Symbol: 4. Co~ttac-t 1nror11tation: (l\\’am~ Pj Rcqu.-$1/.Uomtlt’nttNU POC) (RD.11J.!Crrult’) (0/ Jit ’’ Spn) Phone’ 1\\’un.rbo S. T ec:hni<’lll POC 6

  10. The impact of global nuclear mass model uncertainties on r-process abundance predictions

    Directory of Open Access Journals (Sweden)

    Mumpower M.

    2015-01-01

    Full Text Available Rapid neutron capture or ‘r-process’ nucleosynthesis may be responsible for half the production of heavy elements above iron on the periodic table. Masses are one of the most important nuclear physics ingredients that go into calculations of r-process nucleosynthesis as they enter into the calculations of reaction rates, decay rates, branching ratios and Q-values. We explore the impact of uncertainties in three nuclear mass models on r-process abundances by performing global monte carlo simulations. We show that root-mean-square (rms errors of current mass models are large so that current r-process predictions are insufficient in predicting features found in solar residuals and in r-process enhanced metal poor stars. We conclude that the reduction of global rms errors below 100 keV will allow for more robust r-process predictions.

  11. Improving the Acute Myocardial Infarction Rapid Rule Out process.

    Science.gov (United States)

    Hyden, Rachel; Fields, Willa

    2010-01-01

    Bedside staff nurses are in a unique position to identify implementation problems and ways to improve compliance with evidence-based practice guidelines. The goal of this performance improvement project was to improve compliance with an evidence-based Acute Myocardial Infarction Rapid Rule Out pathway. The purpose of the article is to demonstrate how a bedside staff nurse was able to decrease wait times and length of stay for patients with low-risk chest pain while applying evidence-based practice.

  12. Phase II clinical study of boron neutron capture therapy combined with X-ray radiotherapy/temozolomide in patients with newly diagnosed glioblastoma multiforme-Study design and current status report

    Energy Technology Data Exchange (ETDEWEB)

    Kawabata, Shinji, E-mail: neu046@poh.osaka-med.ac.jp [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Miyatake, Shin-Ichi; Hiramatsu, Ryo; Hirota, Yuki; Miyata, Shiro; Takekita, Yoko; Kuroiwa, Toshihiko [Department of Neurosurgery, Osaka Medical College, 2-7 Daigaku-Machi, Takatsuki, Osaka 569-8686 (Japan); Kirihata, Mitsunori [Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8931 (Japan); Sakurai, Yoshinori; Maruhashi, Akira; Ono, Koji [Kyoto University Research Reactor Institute, 2 Asashiro-Nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-12-15

    Recently, we reported our clinical experiences of boron neutron capture therapy (BNCT) for the newly diagnosed glioblastoma. The major differences of our protocol from the other past studies were simultaneous use of both sodium borocapate and boronophenylalanine, and combination with fractionated X-ray irradiation. These results showed the efficacy of combination therapy with external beam X-ray irradiation and BNCT. For our future study, we planned the multi-centric phase II clinical study for newly diagnosed glioblastoma patients in Japan (OSAKA-TRIBRAIN0902, NCT00974987).

  13. Fission in R-processes Elements (FIRE) - Annual Report: Fiscal Year 2017

    Energy Technology Data Exchange (ETDEWEB)

    Schunck, Nicolas [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-18

    The goal of the FIRE topical collaboration in nuclear theory is to determine the astrophysical conditions of the rapid neutron capture process (r-process), which is responsible for the formation of heavy elements. This will be achieved by including in r-process simulations the most advanced models of fission (spontaneous, neutron-induced, beta-delayed) that have been developed at LLNL and LANL. The collaboration is composed of LLNL (lead) and LANL for work on nuclear data (ground-state properties, fission, beta-decay), BNL for nuclear data management, and the university of Notre Dame and North Carolina State University for r-process simulations. Under DOE/NNSA agreement, both universities receive funds from the DOE Office of Science, while national laboratories receive funds directly from NA221.

  14. Drell-Yan process at forward rapidity at the LHC

    OpenAIRE

    Golec-Biernat, Krzysztof; Lewandowska, Emilia(Institute of Nuclear Physics Polish Academy of Sciences, Cracow, 31-342, Poland); Stasto, Anna M.

    2010-01-01

    We analyze the Drell-Yan lepton pair production at forward rapidity at the Large Hadron Collider. Using the dipole framework for the computation of the cross section we find a significant suppression in comparison to the collinear factorization formula due to saturation effects in the dipole cross section. We develop a twist expansion in powers of Q_s^2/M^2 where Q_s is the saturation scale and M the invariant mass of the produced lepton pair. For the nominal LHC energy the leading twist desc...

  15. Rapid Sterilization of Escherichia coli by Solution Plasma Process

    Science.gov (United States)

    Andreeva, Nina; Ishizaki, Takahiro; Baroch, Pavel; Saito, Nagahiro

    2012-12-01

    Solution plasma (SP), which is a discharge in the liquid phase, has the potential for rapid sterilization of water without chemical agents. The discharge showed a strong sterilization performance against Escherichia coli bacteria. The decimal value (D value) of the reduction time for E. coli by this system with an electrode distance of 1.0 mm was estimated to be approximately 1.0 min. Our discharge system in the liquid phase caused no physical damage to the E. coli and only a small increase in the temperature of the aqueous solution. The UV light generated by the discharge was an important factor in the sterilization of E. coli.

  16. Neutron-photon mixed field dosimetry by TLD-700 glow curve analysis and its implementation in dose monitoring for Boron Neutron Capture Therapy (BNCT) treatments

    Energy Technology Data Exchange (ETDEWEB)

    Boggio, E. F.; Longhino, J. M. [Centro Atomico Bariloche, Departamento de Fisica de Reactores y Radiaciones / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina); Andres, P. A., E-mail: efboggio@cab.cnea.gov.ar [Centro Atomico Bariloche, Division Proteccion Radiologica / CNEA, Av. E. Bustillo Km 9.5, R8402AGP San Carlos de Bariloche (Argentina)

    2015-10-15

    BNCT is a cancerous cells selective, non-conventional radiotherapy modality to treat malignant tumors such as glioblastoma, melanoma and recurrent head and neck cancer. It consists of a two-step procedure: first, the patient is injected with a tumor localizing drug containing a non-radioactive isotope (Boron-10) with high slow neutron capture cross-section. In a second step, the patient is irradiated with neutrons, which are absorbed by the Boron-10 agent with the subsequently nuclear reaction B- 10(n,a)Li-7, thereby resulting in dose at cellular level due to the high-Let particles. The neutron fields suitable for BNCT are characterized by high neutron fluxes and low gamma dose. Determination of each component is not an easy task, especially when the volume of measurement is quite small or inaccessible for a miniature ionization chamber, for example. A method of measuring the photon and slow neutron dose(mainly by N-14 and B-10) from the glow curve (GC) analysis of a single {sup 7}LiF thermoluminescence detector is evaluated. This method was suggested by the group headed by Dr. Grazia Gambarini. The dosemeters used were TLD-600 ({sup 6}LiF:Mg,Ti with 95.6% {sup 6}Li) and TLD-700 ({sup 7}LiF:Mg,Ti with 99.9% {sup 7}LiF) from Harshaw. Photon dose measurement using the GC analysis method with TLD-700 in mixed fields requires the relation of the two main peaks of a TLD-600 GC shape obtained from an exposition to the same neutron field, and a photon calibrated GC with TLD-700. The requirements for slow neutron dose measurements are similar. In order to properly apply the GC analysis method at the Ra-6 Research Reactor BNCT facility, measurements were carried out in a standard water phantom, fully characterized on the BNCT beam by conventional techniques (activation detectors and paired ionization chambers technique). Next, the method was implemented in whole body dose monitoring of a patient undergoing a BNCT treatment, using a Bo MAb (Bottle Manikin Absorption) phantom

  17. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina.

    Science.gov (United States)

    Farías, R O; Garabalino, M A; Ferraris, S; Santa María, J; Rovati, O; Lange, F; Trivillin, V A; Monti Hughes, A; Pozzi, E C C; Thorp, S I; Curotto, P; Miller, M E; Santa Cruz, G A; Bortolussi, S; Altieri, S; Portu, A M; Saint Martin, G; Schwint, A E; González, S J

    2015-07-01

    Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (l)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect quantification of the

  18. Toward a clinical application of ex situ boron neutron capture therapy for lung tumors at the RA-3 reactor in Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Farías, R. O.; Trivillin, V. A.; Portu, A. M.; Schwint, A. E.; González, S. J., E-mail: srgonzal@cnea.gov.ar [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1033 (Argentina); Garabalino, M. A.; Monti Hughes, A.; Pozzi, E. C. C.; Thorp, S. I.; Curotto, P.; Miller, M. E.; Santa Cruz, G. A.; Saint Martin, G. [Comisión Nacional de Energía Atómica (CNEA), San Martín 1650 (Argentina); Ferraris, S.; Santa María, J.; Rovati, O.; Lange, F. [CIDME, Universidad Maimónides, Buenos Aires 1405 (Argentina); Bortolussi, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100 (Italy); Altieri, S. [Istituto Nazionale di Fisica Nucleare, Sezione di Pavia 27100, Italy and Dipartimento di Fisica, Università di Pavia, Pavia 27100 (Italy)

    2015-07-15

    Purpose: Many types of lung tumors have a very poor prognosis due to their spread in the whole organ volume. The fact that boron neutron capture therapy (BNCT) would allow for selective targeting of all the nodules regardless of their position, prompted a preclinical feasibility study of ex situ BNCT at the thermal neutron facility of RA-3 reactor in the province of Buenos Aires, Argentina. (L)-4p-dihydroxy-borylphenylalanine fructose complex (BPA-F) biodistribution studies in an adult sheep model and computational dosimetry for a human explanted lung were performed to evaluate the feasibility and the therapeutic potential of ex situ BNCT. Methods: Two kinds of boron biodistribution studies were carried out in the healthy sheep: a set of pharmacokinetic studies without lung excision, and a set that consisted of evaluation of boron concentration in the explanted and perfused lung. In order to assess the feasibility of the clinical application of ex situ BNCT at RA-3, a case of multiple lung metastases was analyzed. A detailed computational representation of the geometry of the lung was built based on a real collapsed human lung. Dosimetric calculations and dose limiting considerations were based on the experimental results from the adult sheep, and on the most suitable information published in the literature. In addition, a workable treatment plan was considered to assess the clinical application in a realistic scenario. Results: Concentration-time profiles for the normal sheep showed that the boron kinetics in blood, lung, and skin would adequately represent the boron behavior and absolute uptake expected in human tissues. Results strongly suggest that the distribution of the boron compound is spatially homogeneous in the lung. A constant lung-to-blood ratio of 1.3 ± 0.1 was observed from 80 min after the end of BPA-F infusion. The fact that this ratio remains constant during time would allow the blood boron concentration to be used as a surrogate and indirect

  19. A feasibility study of a deuterium-deuterium neutron generator-based boron neutron capture therapy system for treatment of brain tumors.

    Science.gov (United States)

    Hsieh, Mindy; Liu, Yingzi; Mostafaei, Farshad; Poulson, Jean M; Nie, Linda H

    2017-02-01

    Boron neutron capture therapy (BNCT) is a binary treatment modality that uses high LET particles to achieve tumor cell killing. Deuterium-deuterium (DD) compact neutron generators have advantages over nuclear reactors and large accelerators as the BNCT neutron source, such as their compact size, low cost, and relatively easy installation. The purpose of this study is to design a beam shaping assembly (BSA) for a DD neutron generator and assess the potential of a DD-based BNCT system using Monte Carlo (MC) simulations. The MC model consisted of a head phantom, a DD neutron source, and a BSA. The head phantom had tally cylinders along the centerline for computing neutron and photon fluences and calculating the dose as a function of depth. The head phantom was placed at 4 cm from the BSA. The neutron source was modeled to resemble the source of our current DD neutron generator. A BSA was designed to moderate and shape the 2.45-MeV DD neutrons to the epithermal (0.5 eV to 10 keV) range. The BSA had multiple components, including moderator, reflector, collimator, and filter. Various materials and configurations were tested for each component. Each BSA layout was assessed in terms of the in-air and in-phantom parameters. The maximum brain dose was limited to 12.5 Gray-Equivalent (Gy-Eq) and the skin dose to 18 Gy-Eq. The optimized BSA configuration included 30 cm of lead for reflector, 45 cm of LiF, and 10 cm of MgF2 for moderator, 10 cm of lead for collimator, and 0.1 mm of cadmium for thermal neutron filter. Epithermal flux at the beam aperture was 1.0 × 105  nepi /cm2 -s; thermal-to-epithermal neutron ratio was 0.05; fast neutron dose per epithermal was 5.5 × 10-13  Gy-cm2 /φepi , and photon dose per epithermal was 2.4 × 10-13  Gy-cm2 /φepi . The AD, AR, and the advantage depth dose rate were 12.1 cm, 3.7, and 3.2 × 10-3  cGy-Eq/min, respectively. The maximum skin dose was 0.56 Gy-Eq. The DD neutron yield that is needed to irradiate in

  20. Thermodynamic properties of pulverized coal during rapid heating devolatilization processes

    Energy Technology Data Exchange (ETDEWEB)

    Proscia, W.M.; Freihaut, J.D. [United Technologies Research Center, E. Hartford, CT (United States); Rastogi, S.; Klinzing, G.E. [Univ. of Pittsburg, PA (United States)

    1994-07-01

    The thermodynamic properties of coal under conditions of rapid heating have been determined using a combination of UTRC facilities including a proprietary rapid heating rate differential thermal analyzer (RHR-DTA), a microbomb calorimeter (MBC), an entrained flow reactor (EFR), an elemental analyzer (EA), and a FT-IR. The total heat of devolatilization, was measured for a HVA bituminous coal (PSOC 1451D, Pittsburgh No. 8) and a LV bituminous coal (PSOC 1516D, Lower Kittaning). For the HVA coal, the contributions of each of the following components to the overall heat of devolatilization were measured: the specific heat of coal/char during devolatilization, the heat of thermal decomposition of the coal, the specific heat capacity of tars, and the heat of vaporization of tars. Morphological characterization of coal and char samples was performed at the University of Pittsburgh using a PC-based image analysis system, BET apparatus, helium pcynometer, and mercury porosimeter. The bulk density, true density, CO{sub 2} surface area, pore volume distribution, and particle size distribution as a function of extent of reaction are reported for both the HVA and LV coal. Analyses of the data were performed to obtain the fractal dimension of the particles as well as estimates for the external surface area. The morphological data together with the thermodynamic data obtained in this investigation provides a complete database for a set of common, well characterized coal and char samples. This database can be used to improve the prediction of particle temperatures in coal devolatilization models. Such models are used both to obtain kinetic rates from fundamental studies and in predicting furnace performance with comprehensive coal combustion codes. Recommendations for heat capacity functions and heats of devolatilization for the HVA and LV coals are given. Results of sample particle temperature calculations using the recommended thermodynamic properties are provided.

  1. Measurements and analysis of the {sup 127}I and {sup 129}I neutron capture and total cross sections; Mesure et analyses des sections efficaces neutroniques totales et de capture radiative des iodes 127 et 129 de 0.5 eV a 100keV

    Energy Technology Data Exchange (ETDEWEB)

    Noguere, G

    2005-07-01

    Most of the experimental work on the interaction of neutrons with matter has focused on materials important to reactor physics and reactor structures. By comparison, the corresponding data for minor actinides or long-lived fission products are poor. A significant demand has developed for improved neutron cross-section data of these little-studied nuclides due to the surge of interest in the transmutation of nuclear waste. With 400 kg of {sup 129}I produced yearly in the reactors of the EU countries and a very long {beta}{sup -} half-life of 1.57 x 10{sup 7} years, iodine requires disposal strategies that will isolate this isotope from the environment for long periods of time. Therefore, {sup 129}I is potentially a key long-lived fission product for transmutation applications, since {sup 129}I transmutes in {sup 130}I after a single neutron capture and decays to {sup 130}Xe with a 12.36 h half-life. Accurate capture cross sections would help to reduce uncertainties in waste management concepts. For that purpose, Time-Of-Flight measurements covering the [0.5 eV-100 keV] energy range have been carried out at the 150 MeV pulsed neutron source GELINA of the Institute for Reference Materials and Measurements (IRMM). Two types of experiments have been performed at the IRMM, namely capture and transmission experiments. They are respectively related to the neutron capture and total cross sections. Since the PbI{sub 2} samples used in this work contain natural and radioactive iodine, extensive measurements of {sup 129}I have been carried out under the same experimental conditions as for the {sup 129}I. The data reduction process was performed with the AGS system, and the resonance parameters were extracted with the SAMMY and REFIT shape analysis codes. In a last step, the parameters have been converted into ENDF-6 format and processed with the NJOY code to produce point-wise and multigroup cross sections, as well as MCNP and ERANOS libraries. (author)

  2. Half Life of the Doubly-magic r-Process Nucleus 78Ni

    CERN Document Server

    Hosmer, P T; Aprahamian, A; Arndt, O; Clément, R; Estrade, A; Kratz, K L; Liddick, S N; Mantica, P F; Müller, W F; Montes, F; Morton, A C; Ouellette, M S; Pellegrini, E; Pfeiffer, B; Reeder, P; Santi, P; Steiner, M; Stolz, A; Tomlin, B E; Walters, W B; Wöhr, A

    2005-01-01

    Nuclei with magic numbers serve as important benchmarks in nuclear theory. In addition, neutron-rich nuclei play an important role in the astrophysical rapid neutron-capture process (r-process). 78Ni is the only doubly-magic nucleus that is also an important waiting point in the r-process, and serves as a major bottleneck in the synthesis of heavier elements. The half-life of 78Ni has been experimentally deduced for the first time at the Coupled Cyclotron Facility of the National Superconducting Cyclotron Laboratory at Michigan State University, and was found to be 110 (+100 -60) ms. In the same experiment, a first half-life was deduced for 77Ni of 128 (+27 -33) ms, and more precise half-lives were deduced for 75Ni and 76Ni of 344 (+20 -24) ms and 238 (+15 -18) ms respectively.

  3. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    Science.gov (United States)

    Mikado, S.; Yanagie, H.; Yasuda, N.; Higashi, S.; Ikushima, I.; Mizumachi, R.; Murata, Y.; Morishita, Y.; Nishimura, R.; Shinohara, A.; Ogura, K.; Sugiyama, H.; Iikura, H.; Ando, H.; Ishimoto, M.; Takamoto, S.; Eriguchi, M.; Takahashi, H.; Kimura, M.

    2009-06-01

    It is necessary to accumulate the 10B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of 10B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of 10BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The 10B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of 10B atoms in the VX-2 tumor by intra-arterial injection of 10B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping).

  4. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  5. Application of neutron capture autoradiography to Boron Delivery seeking techniques for selective accumulation of boron compounds to tumor with intra-arterial administration of boron entrapped water-in-oil-in-water emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Mikado, S. [Physical Science Laboratories, College of Industrial Technology, Nihon University, Chiba (Japan)], E-mail: mikado@cit.nihon-u.ac.jp; Yanagie, H. [Department of Nuclear Engineering and Management, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Yasuda, N. [Fundamental Technology Center, National Institute of Radiological Sciences, Chiba (Japan); Higashi, S.; Ikushima, I. [Miyakonojyo Metropolitan Hospital, Miyazaki (Japan); Mizumachi, R.; Murata, Y. [Department of Pharmacology, Kumamoto Institute Branch, Mitsubishi Chemical Safety Institute Ltd., Kumamoto (Japan); Morishita, Y. [Department of Human and Molecular Pathology, University of Tokyo, Tokyo (Japan); Nishimura, R. [Faculty of Agriculture, Laboratory of Veterinary Surgery, University of Tokyo (Japan); Shinohara, A. [Department of Humanities, The Graduate School of Seisen University, Tokyo (Japan); Ogura, K. [Physical Science Laboratories, College of Industrial Technology, Nihon University, Chiba (Japan); Sugiyama, H. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Iikura, H.; Ando, H. [Japan Atomic Energy Agency, Ibaraki (Japan); Ishimoto, M. [Department of Nuclear Professional School, University of Tokyo (Japan); Takamoto, S. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Cardiac Surgery, University of Tokyo Hospital, Tokyo (Japan); Eriguchi, M. [Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Department of Microbiology, Syowa University School of Pharmaceutical Sciences, Tokyo (Japan); Takahashi, H. [Department of Nuclear Engineering and Management, University of Tokyo, Tokyo (Japan); Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, Tokyo (Japan); Kimura, M. [Department of Physics, Toho University, Chiba (Japan)

    2009-06-21

    It is necessary to accumulate the {sup 10}B atoms selectively to the tumor cells for effective Boron Neutron Capture Therapy (BNCT). In order to achieve an accurate measurement of {sup 10}B accumulations in the biological samples, we employed a technique of neutron capture autoradiography (NCAR) of sliced samples of tumor tissues using CR-39 plastic track detectors. The CR-39 track detectors attached with the biological samples were exposed to thermal neutrons in the thermal column of the JRR3 of Japan Atomic Energy Agency (JAEA). We obtained quantitative NCAR images of the samples for VX-2 tumor in rabbit liver after injection of {sup 10}BSH entrapped water-in-oil-in-water (WOW) emulsion by intra-arterial injection via proper hepatic artery. The {sup 10}B accumulations and distributions in VX-2 tumor and normal liver of rabbit were investigated by means of alpha-track density measurements. In this study, we showed the selective accumulation of {sup 10}B atoms in the VX-2 tumor by intra-arterial injection of {sup 10}B entrapped WOW emulsion until 3 days after injection by using digitized NCAR images (i.e. alpha-track mapping)

  6. Rapid digestion process for determination of trichinellae in meat

    Energy Technology Data Exchange (ETDEWEB)

    Giles, P.M.

    1975-07-01

    This patent relates to an accelerated digestion process for releasing trichinellae from meat (usually pork) as excysted and encysted worms in transparent fluid whereby they may be easily identified and/or counted visually or automatically. This improved digestion process for the determination of trichinellae in meat comprises placing the meat in a blender, adding a digestant consisting of one of the following ingredients, namely sodium hypochlorite, hydrochloric acid and pepsin, bromelin, trypsin, or dilute papain; and blending the meat and digestant for about one minute and then pouring the solution into a receptacle, allowing particulate to settle to the bottom, extracting samples from the bottom of said receptacle, and visually or automatically identifying and/or counting any trichinellae that may be present. (auth)

  7. Rapid Prototyping of High Performance Signal Processing Applications

    Science.gov (United States)

    2011-01-01

    Bank Ultimate Pulsar Processing Instrument (GUPPI at the NRAO, Green Bank , finds its use in the spectrometers currently under development for the GBT...rates. The single dish Green Bank Telescope (GBT) [68], for example, is used for pulsar searches and high-precision timing studies, which drive...their support. I am extremely thankful to Dr. Richard Prestage of the NRAO, Green Bank , WV, for his initial support and continued guidance in

  8. Systems and methods for rapid processing and storage of data

    Science.gov (United States)

    Stalzer, Mark A.

    2017-01-24

    Systems and methods of building massively parallel computing systems using low power computing complexes in accordance with embodiments of the invention are disclosed. A massively parallel computing system in accordance with one embodiment of the invention includes at least one Solid State Blade configured to communicate via a high performance network fabric. In addition, each Solid State Blade includes a processor configured to communicate with a plurality of low power computing complexes interconnected by a router, and each low power computing complex includes at least one general processing core, an accelerator, an I/O interface, and cache memory and is configured to communicate with non-volatile solid state memory.

  9. Rapid and continuous analyte processing in droplet microfluidic devices

    Energy Technology Data Exchange (ETDEWEB)

    Strey, Helmut; Kimmerling, Robert; Bakowski, Tomasz

    2017-04-18

    The compositions and methods described herein are designed to introduce functionalized microparticles into droplets that can be manipulated in microfluidic devices by fields, including electric (dielectrophoretic) or magnetic fields, and extracted by splitting a droplet to separate the portion of the droplet that contains the majority of the microparticles from the part that is largely devoid of the microparticles. Within the device, channels are variously configured at Y- or T junctions that facilitate continuous, serial isolation and dilution of analytes in solution. The devices can be limited in the sense that they can be designed to output purified analytes that are then further analyzed in separate machines or they can include additional channels through which purified analytes can be further processed and analyzed.

  10. Rapid e-Learning Tools Selection Process for Cognitive and Psychomotor Learning Objectives

    Science.gov (United States)

    Ku, David Tawei; Huang, Yung-Hsin

    2012-01-01

    This study developed a decision making process for the selection of rapid e-learning tools that could match different learning domains. With the development of the Internet, the speed of information updates has become faster than ever. E-learning has rapidly become the mainstream for corporate training and academic instruction. In order to reduce…

  11. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    Energy Technology Data Exchange (ETDEWEB)

    Baruah, Sudarshan

    2008-07-15

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier