WorldWideScience

Sample records for rapid molecular evolution

  1. Rapid molecular evolution of human bocavirus revealed by Bayesian coalescent inference.

    Science.gov (United States)

    Zehender, Gianguglielmo; De Maddalena, Chiara; Canuti, Marta; Zappa, Alessandra; Amendola, Antonella; Lai, Alessia; Galli, Massimo; Tanzi, Elisabetta

    2010-03-01

    Human bocavirus (HBoV) is a linear single-stranded DNA virus belonging to the Parvoviridae family that has recently been isolated from the upper respiratory tract of children with acute respiratory infection. All of the strains observed so far segregate into two genotypes (1 and 2) with a low level of polymorphism. Given the recent description of the infection and the lack of epidemiological and molecular data, we estimated the virus's rates of molecular evolution and population dynamics. A dataset of forty-nine dated VP2 sequences, including also eight new isolates obtained from pharyngeal swabs of Italian patients with acute respiratory tract infections, was submitted to phylogenetic analysis. The model parameters, evolutionary rates and population dynamics were co-estimated using a Bayesian Markov Chain Monte Carlo approach, and site-specific positive and negative selection was also investigated. Recombination was investigated by seven different methods and one suspected recombinant strain was excluded from further analysis. The estimated mean evolutionary rate of HBoV was 8.6x10(-4)subs/site/year, and that of the 1st+2nd codon positions was more than 15 times less than that of the 3rd codon position. Viral population dynamics analysis revealed that the two known genotypes diverged recently (mean tMRCA: 24 years), and that the epidemic due to HBoV genotype 2 grew exponentially at a rate of 1.01year(-1). Selection analysis of the partial VP2 showed that 8.5% of sites were under significant negative pressure and the absence of positive selection. Our results show that, like other parvoviruses, HBoV is characterised by a rapid evolution. The low level of polymorphism is probably due to a relatively recent divergence between the circulating genotypes and strong purifying selection acting on viral antigens.

  2. Rapid molecular evolution across amniotes of the IIS/TOR network.

    Science.gov (United States)

    McGaugh, Suzanne E; Bronikowski, Anne M; Kuo, Chih-Horng; Reding, Dawn M; Addis, Elizabeth A; Flagel, Lex E; Janzen, Fredric J; Schwartz, Tonia S

    2015-06-02

    The insulin/insulin-like signaling and target of rapamycin (IIS/TOR) network regulates lifespan and reproduction, as well as metabolic diseases, cancer, and aging. Despite its vital role in health, comparative analyses of IIS/TOR have been limited to invertebrates and mammals. We conducted an extensive evolutionary analysis of the IIS/TOR network across 66 amniotes with 18 newly generated transcriptomes from nonavian reptiles and additional available genomes/transcriptomes. We uncovered rapid and extensive molecular evolution between reptiles (including birds) and mammals: (i) the IIS/TOR network, including the critical nodes insulin receptor substrate (IRS) and phosphatidylinositol 3-kinase (PI3K), exhibit divergent evolutionary rates between reptiles and mammals; (ii) compared with a proxy for the rest of the genome, genes of the IIS/TOR extracellular network exhibit exceptionally fast evolutionary rates; and (iii) signatures of positive selection and coevolution of the extracellular network suggest reptile- and mammal-specific interactions between members of the network. In reptiles, positively selected sites cluster on the binding surfaces of insulin-like growth factor 1 (IGF1), IGF1 receptor (IGF1R), and insulin receptor (INSR); whereas in mammals, positively selected sites clustered on the IGF2 binding surface, suggesting that these hormone-receptor binding affinities are targets of positive selection. Further, contrary to reports that IGF2R binds IGF2 only in marsupial and placental mammals, we found positively selected sites clustered on the hormone binding surface of reptile IGF2R that suggest that IGF2R binds to IGF hormones in diverse taxa and may have evolved in reptiles. These data suggest that key IIS/TOR paralogs have sub- or neofunctionalized between mammals and reptiles and that this network may underlie fundamental life history and physiological differences between these amniote sister clades.

  3. Bringing molecules back into molecular evolution.

    Directory of Open Access Journals (Sweden)

    Claus O Wilke

    Full Text Available Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events.

  4. Evolution under changing climates: climatic niche stasis despite rapid evolution in a non-native plant.

    Science.gov (United States)

    Alexander, Jake M

    2013-09-22

    A topic of great current interest is the capacity of populations to adapt genetically to rapidly changing climates, for example by evolving the timing of life-history events, but this is challenging to address experimentally. I use a plant invasion as a model system to tackle this question by combining molecular markers, a common garden experiment and climatic niche modelling. This approach reveals that non-native Lactuca serriola originates primarily from Europe, a climatic subset of its native range, with low rates of admixture from Asia. It has rapidly refilled its climatic niche in the new range, associated with the evolution of flowering phenology to produce clines along climate gradients that mirror those across the native range. Consequently, some non-native plants have evolved development times and grow under climates more extreme than those found in Europe, but not among populations from the native range as a whole. This suggests that many plant populations can adapt rapidly to changed climatic conditions that are already within the climatic niche space occupied by the species elsewhere in its range, but that evolution to conditions outside of this range is more difficult. These findings can also help to explain the prevalence of niche conservatism among non-native species.

  5. Rapidity evolution of gluon TMD from low to moderate x

    International Nuclear Information System (INIS)

    Balitsky, I.

    2016-01-01

    I discuss how the rapidity evolution of gluon transverse momentum dependent distribution (TMD) changes from nonlinear evolution at small x << 1 to linear evolution at moderate x ∼ 1. I have described the rapidity evolution of gluon TMD in the whole range of Bjorken x B and the whole range of transverse momentum. It should be emphasized that with our definition of rapidity cutoff the leading-order matrix elements of TMD operators are UV-finite so the rapidity evolution is the only evolution and it describes all the dynamics of gluon TMDs in the leading-log approximation

  6. Molecular evolution and the latitudinal biodiversity gradient.

    Science.gov (United States)

    Dowle, E J; Morgan-Richards, M; Trewick, S A

    2013-06-01

    Species density is higher in the tropics (low latitude) than in temperate regions (high latitude) resulting in a latitudinal biodiversity gradient (LBG). The LBG must be generated by differential rates of speciation and/or extinction and/or immigration among regions, but the role of each of these processes is still unclear. Recent studies examining differences in rates of molecular evolution have inferred a direct link between rate of molecular evolution and rate of speciation, and postulated these as important drivers of the LBG. Here we review the molecular genetic evidence and examine the factors that might be responsible for differences in rates of molecular evolution. Critical to this is the directionality of the relationship between speciation rates and rates of molecular evolution.

  7. Nitrogen evolution during rapid hydropyrolysis of coal

    Energy Technology Data Exchange (ETDEWEB)

    Xu, W.-C.; Kumagai, M. [Institute of Research and Innovation, Kashiwa (Japan)

    2002-12-01

    The behavior of nitrogen evolution during rapid hydropyrolysis of coal has been investigated at temperatures ranging from 923 to 1123 K and hydrogen pressure up to 5 MPa using a continuous free fall pyrolyzer. Three coals have been tested in this study. The dominant nitrogen gaseous species is ammonia, together with a little amount of HCN because most of HCN is converted to NH{sub 3} through secondary reactions. The results show that the evolution of nitrogen in coal is caused mainly by devolatilization at temperatures below 973 K, while the evolution of volatile nitrogen in char is accelerated with increasing temperature and hydrogen pressure. The mineral matter in coal act as catalysts to promote the evolution of volatile nitrogen in char to N{sub 2} apparently at high temperatures of 1123 K, as found during pyrolysis of coal by Ohtsuka et al. A pseudo-first-order kinetic model was applied to the evolution of nitrogen in coal during rapid hydropyrolysis. The model shows the activation energy for the nitrogen evolution from coal is 36.6 58.6 kJ/mol while the rate of the nitrogen evolution depends on hydrogen pressure in the order of 0.16 0.24. 41 refs., 11 figs., 3 tabs.

  8. Molecular outflows in protostellar evolution

    International Nuclear Information System (INIS)

    Fukui, Y.; Iwata, T.; Mizuno, A.; Ogawa, H.; Kawabata, K.; Sugitani, K.

    1989-01-01

    Molecular outflow is an energetic mass-ejection phenomenon associated with very early stage of stellar evolution. The large kinetic energy involved in the phenomenon indicates that outflow may play an essential role in the process of star formation, particularly by extracting angular momentum. Most of the previous searches have been strongly biased toward optical or near-infrared signposts of star formation. They are not able, therefore, to provide the complete database necessary for a statistical study of the evolutionary status of molecular outflow. To overcome this difficulty, it is of vital importance to make an unbiased search of single molecular clouds for molecular outflows; here we report the final result of such a survey of the Lynds 1641 dark cloud. We show that molecular outflows are characterized by a total luminosity significantly greater than that of T Tauri stars. This indicates that molecular outflow corresponds to the main accretion phase of protostellar evolution, in which the luminosity excess is due to the gravitational energy released by dynamical mass accretion onto the protostellar core. (author)

  9. Does rapid evolution matter? Measuring the rate of contemporary evolution and its impacts on ecological dynamics.

    Science.gov (United States)

    Ellner, Stephen P; Geber, Monica A; Hairston, Nelson G

    2011-06-01

    Rapid contemporary evolution due to natural selection is common in the wild, but it remains uncertain whether its effects are an essential component of community and ecosystem structure and function. Previously we showed how to partition change in a population, community or ecosystem property into contributions from environmental and trait change, when trait change is entirely caused by evolution (Hairston et al. 2005). However, when substantial non-heritable trait change occurs (e.g. due to phenotypic plasticity or change in population structure) that approach can mis-estimate both contributions. Here, we demonstrate how to disentangle ecological impacts of evolution vs. non-heritable trait change by combining our previous approach with the Price Equation. This yields a three-way partitioning into effects of evolution, non-heritable phenotypic change and environment. We extend the approach to cases where ecological consequences of trait change are mediated through interspecific interactions. We analyse empirical examples involving fish, birds and zooplankton, finding that the proportional contribution of rapid evolution varies widely (even among different ecological properties affected by the same trait), and that rapid evolution can be important when it acts to oppose and mitigate phenotypic effects of environmental change. Paradoxically, rapid evolution may be most important when it is least evident. © 2011 Blackwell Publishing Ltd/CNRS.

  10. Evolution as a molecular cooperative phenomenon

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1991-06-01

    We discuss an hypothesis according to which microscopic mechanisms due to cooperation, at the molecular level, may have been key factors in the evolution of life on Earth. We view our hypothesis as a natural extension to the molecular level of viewing cooperation (symbiosis) as an evolutionary driving force; this does not restrict the interpretation of the evolutionary process to be the result of slow accumulation of mutations in the DNA. Some evidence supporting this hypothesis is discussed: (a) The Salam enhancement factor. This molecular phenomenon was recently introduced in order to understand the bases of the first unifying principle of biochemistry, namely that transcription of all known genes in prokaryotes, protists, metazoan, and metaphytes are translated into L-amino acids, except for some bacterial membrane proteins. (b) The role that cooperative phenomena may have played in the origin of evolution itself, i.e., in the resolution of Sagan's ultraviolet paradox. (c) The relationship between evolution and the constraints imposed by embryonic development. This is considered from the point of view of molecular cooperative phenomena. (author). Refs

  11. PAL: an object-oriented programming library for molecular evolution and phylogenetics.

    Science.gov (United States)

    Drummond, A; Strimmer, K

    2001-07-01

    Phylogenetic Analysis Library (PAL) is a collection of Java classes for use in molecular evolution and phylogenetics. PAL provides a modular environment for the rapid construction of both special-purpose and general analysis programs. PAL version 1.1 consists of 145 public classes or interfaces in 13 packages, including classes for models of character evolution, maximum-likelihood estimation, and the coalescent, with a total of more than 27000 lines of code. The PAL project is set up as a collaborative project to facilitate contributions from other researchers. AVAILIABILTY: The program is free and is available at http://www.pal-project.org. It requires Java 1.1 or later. PAL is licensed under the GNU General Public License.

  12. Evosystem Services: Rapid Evolution and the Provision of Ecosystem Services.

    Science.gov (United States)

    Rudman, Seth M; Kreitzman, Maayan; Chan, Kai M A; Schluter, Dolph

    2017-06-01

    Evolution is recognized as the source of all organisms, and hence many ecosystem services. However, the role that contemporary evolution might play in maintaining and enhancing specific ecosystem services has largely been overlooked. Recent advances at the interface of ecology and evolution have demonstrated how contemporary evolution can shape ecological communities and ecosystem functions. We propose a definition and quantitative criteria to study how rapid evolution affects ecosystem services (here termed contemporary evosystem services) and present plausible scenarios where such services might exist. We advocate for the direct measurement of contemporary evosystem services to improve understanding of how changing environments will alter resource availability and human well-being, and highlight the potential utility of managing rapid evolution for future ecosystem services. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Biomechanical consequences of rapid evolution in the polar bear lineage.

    Science.gov (United States)

    Slater, Graham J; Figueirido, Borja; Louis, Leeann; Yang, Paul; Van Valkenburgh, Blaire

    2010-11-05

    The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA) to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.

  14. Molecular clock in neutral protein evolution

    Directory of Open Access Journals (Sweden)

    Wilke Claus O

    2004-08-01

    Full Text Available Abstract Background A frequent observation in molecular evolution is that amino-acid substitution rates show an index of dispersion (that is, ratio of variance to mean substantially larger than one. This observation has been termed the overdispersed molecular clock. On the basis of in silico protein-evolution experiments, Bastolla and coworkers recently proposed an explanation for this observation: Proteins drift in neutral space, and can temporarily get trapped in regions of substantially reduced neutrality. In these regions, substitution rates are suppressed, which results in an overall substitution process that is not Poissonian. However, the simulation method of Bastolla et al. is representative only for cases in which the product of mutation rate μ and population size Ne is small. How the substitution process behaves when μNe is large is not known. Results Here, I study the behavior of the molecular clock in in silico protein evolution as a function of mutation rate and population size. I find that the index of dispersion decays with increasing μNe, and approaches 1 for large μNe . This observation can be explained with the selective pressure for mutational robustness, which is effective when μNe is large. This pressure keeps the population out of low-neutrality traps, and thus steadies the ticking of the molecular clock. Conclusions The molecular clock in neutral protein evolution can fall into two distinct regimes, a strongly overdispersed one for small μNe, and a mostly Poissonian one for large μNe. The former is relevant for the majority of organisms in the plant and animal kingdom, and the latter may be relevant for RNA viruses.

  15. Nuclear Architecture and Patterns of Molecular Evolution Are Correlated in the Ciliate Chilodonella uncinata.

    Science.gov (United States)

    Maurer-Alcalá, Xyrus X; Katz, Laura A

    2016-06-08

    The relationship between nuclear architecture and patterns of molecular evolution in lineages across the eukaryotic tree of life is not well understood, partly because molecular evolution is traditionally explored as changes in base pairs along a linear sequence without considering the context of nuclear position of chromosomes. The ciliate Chilodonella uncinata is an ideal system to address the relationship between nuclear architecture and patterns of molecular evolution as the somatic macronucleus of this ciliate is composed of a peripheral DNA-rich area (orthomere) and a DNA-poor central region (paramere) to form a "heteromeric" macronucleus. Moreover, because the somatic chromosomes of C. uncinata are highly processed into "gene-sized" chromosomes (i.e., nanochromosomes), we can assess fine-scale relationships between location and sequence evolution. By combining fluorescence microscopy and analyses of transcriptome data from C. uncinata, we find that highly expressed genes have the greatest codon usage bias and are enriched in DNA-poor regions. In contrast, genes with less biased sequences tend to be concentrated in DNA abundant areas, at least during vegetative growth. Our analyses are consistent with recent work in plants and animals where nuclear architecture plays a role in gene expression. At the same time, the unusual localization of nanochromosomes suggests that the highly structured nucleus in C. uncinata may create a "gene bank" that facilitates rapid changes in expression of genes required only in specific life history stages. By using "nonmodel" organisms like C. uncinata, we can explore the universality of eukaryotic features while also providing examples of novel properties (i.e., the presence of a gene bank) that build from these features. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  16. Biomechanical consequences of rapid evolution in the polar bear lineage.

    Directory of Open Access Journals (Sweden)

    Graham J Slater

    2010-11-01

    Full Text Available The polar bear is the only living ursid with a fully carnivorous diet. Despite a number of well-documented craniodental adaptations for a diet of seal flesh and blubber, molecular and paleontological data indicate that this morphologically distinct species evolved less than a million years ago from the omnivorous brown bear. To better understand the evolution of this dietary specialization, we used phylogenetic tests to estimate the rate of morphological specialization in polar bears. We then used finite element analysis (FEA to compare the limits of feeding performance in the polar bear skull to that of the phylogenetically and geographically close brown bear. Results indicate that extremely rapid evolution of semi-aquatic adaptations and dietary specialization in the polar bear lineage produced a cranial morphology that is weaker than that of brown bears and less suited to processing tough omnivorous or herbivorous diets. Our results suggest that continuation of current climate trends could affect polar bears by not only eliminating their primary food source, but also through competition with northward advancing, generalized brown populations for resources that they are ill-equipped to utilize.

  17. Extraordinary molecular evolution in the PRDM9 fertility gene.

    Directory of Open Access Journals (Sweden)

    James H Thomas

    2009-12-01

    Full Text Available Recent work indicates that allelic incompatibility in the mouse PRDM9 (Meisetz gene can cause hybrid male sterility, contributing to genetic isolation and potentially speciation. The only phenotype of mouse PRDM9 knockouts is a meiosis I block that causes sterility in both sexes. The PRDM9 gene encodes a protein with histone H3(K4 trimethyltransferase activity, a KRAB domain, and a DNA-binding domain consisting of multiple tandem C2H2 zinc finger (ZF domains. We have analyzed human coding polymorphism and interspecies evolutionary changes in the PRDM9 gene. The ZF domains of PRDM9 are evolving very rapidly, with compelling evidence of positive selection in primates. Positively selected amino acids are predominantly those known to make nucleotide specific contacts in C2H2 zinc fingers. These results suggest that PRDM9 is subject to recurrent selection to change DNA-binding specificity. The human PRDM9 protein is highly polymorphic in its ZF domains and nearly all polymorphisms affect the same nucleotide contact residues that are subject to positive selection. ZF domain nucleotide sequences are strongly homogenized within species, indicating that interfinger recombination contributes to their evolution. PRDM9 has previously been assumed to be a transcription factor required to induce meiosis specific genes, a role that is inconsistent with its molecular evolution. We suggest instead that PRDM9 is involved in some aspect of centromere segregation conflict and that rapidly evolving centromeric DNA drives changes in PRDM9 DNA-binding domains.

  18. Molecular evolution of the Bovini tribe (Bovidae, Bovinae: Is there evidence of rapid evolution or reduced selective constraint in Domestic cattle?

    Directory of Open Access Journals (Sweden)

    McCulloch Alan

    2009-04-01

    Full Text Available Abstract Background If mutation within the coding region of the genome is largely not adaptive, the ratio of nonsynonymous (dN to synonymous substitutions (dS per site (dN/dS should be approximately equal among closely related species. Furthermore, dN/dS in divergence between species should be equivalent to dN/dS in polymorphisms. This hypothesis is of particular interest in closely related members of the Bovini tribe, because domestication has promoted rapid phenotypic divergence through strong artificial selection of some species while others remain undomesticated. We examined a number of genes that may be involved in milk production in Domestic cattle and a number of their wild relatives for evidence that domestication had affected molecular evolution. Elevated rates of dN/dS were further queried to determine if they were the result of positive selection, low effective population size (Ne or reduced selective constraint. Results We have found that the domestication process has contributed to higher dN/dS ratios in cattle, especially in the lineages leading to the Domestic cow (Bos taurus and Mithan (Bos frontalis and within some breeds of Domestic cow. However, the high rates of dN/dS polymorphism within B. taurus when compared to species divergence suggest that positive selection has not elevated evolutionary rates in these genes. Likewise, the low rate of dN/dS in Bison, which has undergone a recent population bottleneck, indicates a reduction in population size alone is not responsible for these observations. Conclusion The effect of selection depends on effective population size and the selection coefficient (Nes. Typically under domestication both selection pressure for traits important in fitness in the wild and Ne are reduced. Therefore, reduced selective constraint could be responsible for the observed elevated evolutionary ratios in domesticated species, especially in B. taurus and B. frontalis, which have the highest dN/dS in the

  19. Rapid molecular diagnostics for multi-drug resistant tuberculosis in India.

    Science.gov (United States)

    Ramachandran, Rajeswari; Muniyandi, M

    2018-03-01

    Rapid molecular diagnostic methods help in the detection of TB and Rifampicin resistance. These methods detect TB early, are accurate and play a crucial role in reducing the burden of drug resistant tuberculosis. Areas covered: This review analyses rapid molecular diagnostic tools used in the diagnosis of MDR-TB in India, such as the Line Probe Assay and GeneXpert. We have discussed the burden of MDR-TB and the impact of recent diagnostic tools on case detection and treatment outcomes. This review also discusses the costs involved in establishing these new techniques in India. Expert commentary: Molecular methods have considerable advantages for the programmatic management of drug resistant TB. These include speed, standardization of testing, potentially high throughput and reduced laboratory biosafety requirements. There is a desperate need for India to adopt modern, rapid, molecular tools with point-of-care tests being currently evaluated. New molecular diagnostic tests appear to be cost effective and also help in detecting missing cases. There is enough evidence to support the scaling up of these new tools in India.

  20. Evolution of molecular phenotypes under stabilizing selection

    International Nuclear Information System (INIS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes. (paper)

  1. MEvoLib v1.0: the first molecular evolution library for Python.

    Science.gov (United States)

    Álvarez-Jarreta, Jorge; Ruiz-Pesini, Eduardo

    2016-10-28

    Molecular evolution studies involve many different hard computational problems solved, in most cases, with heuristic algorithms that provide a nearly optimal solution. Hence, diverse software tools exist for the different stages involved in a molecular evolution workflow. We present MEvoLib, the first molecular evolution library for Python, providing a framework to work with different tools and methods involved in the common tasks of molecular evolution workflows. In contrast with already existing bioinformatics libraries, MEvoLib is focused on the stages involved in molecular evolution studies, enclosing the set of tools with a common purpose in a single high-level interface with fast access to their frequent parameterizations. The gene clustering from partial or complete sequences has been improved with a new method that integrates accessible external information (e.g. GenBank's features data). Moreover, MEvoLib adjusts the fetching process from NCBI databases to optimize the download bandwidth usage. In addition, it has been implemented using parallelization techniques to cope with even large-case scenarios. MEvoLib is the first library for Python designed to facilitate molecular evolution researches both for expert and novel users. Its unique interface for each common task comprises several tools with their most used parameterizations. It has also included a method to take advantage of biological knowledge to improve the gene partition of sequence datasets. Additionally, its implementation incorporates parallelization techniques to enhance computational costs when handling very large input datasets.

  2. Evolution of egg coats: linking molecular biology and ecology.

    Science.gov (United States)

    Shu, Longfei; Suter, Marc J-F; Räsänen, Katja

    2015-08-01

    One central goal of evolutionary biology is to explain how biological diversity emerges and is maintained in nature. Given the complexity of the phenotype and the multifaceted nature of inheritance, modern evolutionary ecological studies rely heavily on the use of molecular tools. Here, we show how molecular tools help to gain insight into the role of egg coats (i.e. the extracellular structures surrounding eggs and embryos) in evolutionary diversification. Egg coats are maternally derived structures that have many biological functions from mediating fertilization to protecting the embryo from environmental hazards. They show great molecular, structural and functional diversity across species, but intraspecific variability and the role of ecology in egg coat evolution have largely been overlooked. Given that much of the variation that influences egg coat function is ultimately determined by their molecular phenotype, cutting-edge molecular tools (e.g. proteomics, glycomics and transcriptomics), combined with functional assays, are needed for rigorous inferences on their evolutionary ecology. Here, we identify key research areas and highlight emerging molecular techniques that can increase our understanding of the role of egg coats in the evolution of biological diversity, from adaptation to speciation. © 2015 John Wiley & Sons Ltd.

  3. Molecular evolution of cyclin proteins in animals and fungi

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2011-07-01

    Full Text Available Abstract Background The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. Results We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. Conclusions The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.

  4. Molecular evolution and thermal adaptation

    Science.gov (United States)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  5. Molecular phylogeny and evolution of mosquito parasitic Microsporidia (Microsporidia: Amblyosporidae)

    Czech Academy of Sciences Publication Activity Database

    Vossbrinck, C. R.; Andreadis, T.; Vávra, Jiří; Becnel, J. J.

    2004-01-01

    Roč. 51, č. 1 (2004), s. 88-95 ISSN 1066-5234 Institutional research plan: CEZ:AV0Z6022909 Keywords : Microsporidia * molecular phylogeny * evolution Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.403, year: 2004

  6. Adaptive evolution of molecular phenotypes

    International Nuclear Information System (INIS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-01-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak. (paper)

  7. Rapidly Evoluting Congenital Cystic Neuroblastoma in a Neonate

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Tae Jun; Kim, Myung Jun; Han, Seok Joo; Lee, Mi Jung [Severance Children' s Hospital, Yonsei University, College of Medicine, Seoul(Korea, Republic of)

    2012-08-15

    Perinatal detection of neonatal suprarenal masses has increased. Here, we report an unusual case of an adrenal cystic neuroblastoma that presented as a purely cystic lesion upon initial postnatal ultrasonography (US) and showed rapid evolution to a mixed cystic and solid mass during follow-up US and MRI. We suggest a short-term (two weeks) follow-up US for neonatal adrenal cystic lesions, even if they appear as purely cystic.

  8. Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest.

    Science.gov (United States)

    Bracewell, Ryan R; Bentz, Barbara J; Sullivan, Brian T; Good, Jeffrey M

    2017-11-17

    Genome evolution is predicted to be rapid following the establishment of new (neo) sex chromosomes, but it is not known if neo-sex chromosome evolution plays an important role in speciation. Here we combine extensive crossing experiments with population and functional genomic data to examine neo-XY chromosome evolution and incipient speciation in the mountain pine beetle. We find a broad continuum of intrinsic incompatibilities in hybrid males that increase in strength with geographic distance between reproductively isolated populations. This striking progression of reproductive isolation is coupled with extensive gene specialization, natural selection, and elevated genetic differentiation on both sex chromosomes. Closely related populations isolated by hybrid male sterility also show fixation of alternative neo-Y haplotypes that differ in structure and male-specific gene content. Our results suggest that neo-sex chromosome evolution can drive rapid functional divergence between closely related populations irrespective of ecological drivers of divergence.

  9. The Jukes-Cantor Model of Molecular Evolution

    Science.gov (United States)

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  10. Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns.

    Science.gov (United States)

    Korall, Petra; Schuettpelz, Eric; Pryer, Kathleen M

    2010-09-01

    Molecular rate heterogeneity, whereby rates of molecular evolution vary among groups of organisms, is a well-documented phenomenon. Nonetheless, its causes are poorly understood. For animals, generation time is frequently cited because longer-lived species tend to have slower rates of molecular evolution than their shorter-lived counterparts. Although a similar pattern has been uncovered in flowering plants, using proxies such as growth form, the underlying process has remained elusive. Here, we find a deceleration of molecular evolutionary rate to be coupled with the origin of arborescence in ferns. Phylogenetic branch lengths within the “tree fern” clade are considerably shorter than those of closely related lineages, and our analyses demonstrate that this is due to a significant difference in molecular evolutionary rate. Reconstructions reveal that an abrupt rate deceleration coincided with the evolution of the long-lived tree-like habit at the base of the tree fern clade. This suggests that a generation time effect may well be ubiquitous across the green tree of life, and that the search for a responsible mechanism must focus on characteristics shared by all vascular plants. Discriminating among the possibilities will require contributions from various biological disciplines,but will be necessary for a full appreciation of molecular evolution.

  11. Solving QCD evolution equations in rapidity space with Markovian Monte Carlo

    CERN Document Server

    Golec-Biernat, K; Placzek, W; Skrzypek, M

    2009-01-01

    This work covers methodology of solving QCD evolution equation of the parton distribution using Markovian Monte Carlo (MMC) algorithms in a class of models ranging from DGLAP to CCFM. One of the purposes of the above MMCs is to test the other more sophisticated Monte Carlo programs, the so-called Constrained Monte Carlo (CMC) programs, which will be used as a building block in the parton shower MC. This is why the mapping of the evolution variables (eikonal variable and evolution time) into four-momenta is also defined and tested. The evolution time is identified with the rapidity variable of the emitted parton. The presented MMCs are tested independently, with ~0.1% precision, against the non-MC program APCheb especially devised for this purpose.

  12. An analytically solvable model for rapid evolution of modular structure.

    Directory of Open Access Journals (Sweden)

    Nadav Kashtan

    2009-04-01

    Full Text Available Biological systems often display modularity, in the sense that they can be decomposed into nearly independent subsystems. Recent studies have suggested that modular structure can spontaneously emerge if goals (environments change over time, such that each new goal shares the same set of sub-problems with previous goals. Such modularly varying goals can also dramatically speed up evolution, relative to evolution under a constant goal. These studies were based on simulations of model systems, such as logic circuits and RNA structure, which are generally not easy to treat analytically. We present, here, a simple model for evolution under modularly varying goals that can be solved analytically. This model helps to understand some of the fundamental mechanisms that lead to rapid emergence of modular structure under modularly varying goals. In particular, the model suggests a mechanism for the dramatic speedup in evolution observed under such temporally varying goals.

  13. Molecular evolution and the natural history of select virus epidemics

    DEFF Research Database (Denmark)

    Bruhn, Christian Anders Wathne

    Molecular evolution of pathogenic viruses with RNA based genomes is most often fast enough to leave an informative genomic sequence signal within a timeframe that is relevant for the study of both recent and on-­‐going epidemics (and epizootics). The true power of molecular evolutionary methodolo...

  14. Advances on molecular mechanism of the adaptive evolution of Chiroptera (bats).

    Science.gov (United States)

    Yunpeng, Liang; Li, Yu

    2015-01-01

    As the second biggest animal group in mammals, Chiroptera (bats) demonstrates many unique adaptive features in terms of flight, echolocation, auditory acuity, feeding habit, hibernation and immune defense, providing an excellent system for understanding the molecular basis of how organisms adapt to the living environments encountered. In this review, we summarize the researches on the molecular mechanism of the adaptive evolution of Chiroptera, especially the recent researches at the genome levels, suggesting a far more complex evolutionary pattern and functional diversity than previously thought. In the future, along with the increasing numbers of Chiroptera species genomes available, new evolutionary patterns and functional divergence will be revealed, which can promote the further understanding of this animal group and the molecular mechanism of adaptive evolution.

  15. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment.

    Directory of Open Access Journals (Sweden)

    Billie Gould

    Full Text Available Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE, cell wall modification (OsSTAR1, and internal Al detoxification (OsNRAT1 in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.

  16. De Novo Transcriptome Assembly and Identification of Gene Candidates for Rapid Evolution of Soil Al Tolerance in Anthoxanthum odoratum at the Long-Term Park Grass Experiment.

    Science.gov (United States)

    Gould, Billie; McCouch, Susan; Geber, Monica

    2015-01-01

    Studies of adaptation in the wild grass Anthoxanthum odoratum at the Park Grass Experiment (PGE) provided one of the earliest examples of rapid evolution in plants. Anthoxanthum has become locally adapted to differences in soil Al toxicity, which have developed there due to soil acidification from long-term experimental fertilizer treatments. In this study, we used transcriptome sequencing to identify Al stress responsive genes in Anthoxanhum and identify candidates among them for further molecular study of rapid Al tolerance evolution at the PGE. We examined the Al content of Anthoxanthum tissues and conducted RNA-sequencing of root tips, the primary site of Al induced damage. We found that despite its high tolerance Anthoxanthum is not an Al accumulating species. Genes similar to those involved in organic acid exudation (TaALMT1, ZmMATE), cell wall modification (OsSTAR1), and internal Al detoxification (OsNRAT1) in cultivated grasses were responsive to Al exposure. Expression of a large suite of novel loci was also triggered by early exposure to Al stress in roots. Three-hundred forty five transcripts were significantly more up- or down-regulated in tolerant vs. sensitive Anthoxanthum genotypes, providing important targets for future study of rapid evolution at the PGE.

  17. The Molecular Basis of Evolution and Disease: A Cold War Alliance.

    Science.gov (United States)

    Suárez-Díaz, Edna

    2017-03-28

    This paper extends previous arguments against the assumption that the study of variation at the molecular level was instigated with a view to solving an internal conflict between the balance and classical schools of population genetics. It does so by focusing on the intersection of basic research in protein chemistry and the molecular approach to disease with the enactment of global health campaigns during the Cold War period. The paper connects advances in research on protein structure and function as reflected in Christian Anfinsen's The molecular basis of evolution, with a political reading of Emilé Zuckerkandl and Linus Pauling's identification of molecular disease and evolution. Beyond atomic fallout, these advances constituted a rationale for the promotion of genetic surveys of human populations in the Third World, in connection with international health programs. Light is shed not only on the experimental roots of the molecular challenge but on the broader geopolitical context where the rising role of biomedicine and public health (particularly the malaria eradication campaigns) had an impact on evolutionary biology.

  18. Toxin structures as evolutionary tools: Using conserved 3D folds to study the evolution of rapidly evolving peptides.

    Science.gov (United States)

    Undheim, Eivind A B; Mobli, Mehdi; King, Glenn F

    2016-06-01

    Three-dimensional (3D) structures have been used to explore the evolution of proteins for decades, yet they have rarely been utilized to study the molecular evolution of peptides. Here, we highlight areas in which 3D structures can be particularly useful for studying the molecular evolution of peptide toxins. Although we focus our discussion on animal toxins, including one of the most widespread disulfide-rich peptide folds known, the inhibitor cystine knot, our conclusions should be widely applicable to studies of the evolution of disulfide-constrained peptides. We show that conserved 3D folds can be used to identify evolutionary links and test hypotheses regarding the evolutionary origin of peptides with extremely low sequence identity; construct accurate multiple sequence alignments; and better understand the evolutionary forces that drive the molecular evolution of peptides. Also watch the video abstract. © 2016 WILEY Periodicals, Inc.

  19. Rapid methods for the extraction and archiving of molecular grade fungal genomic DNA.

    Science.gov (United States)

    Borman, Andrew M; Palmer, Michael; Johnson, Elizabeth M

    2013-01-01

    The rapid and inexpensive extraction of fungal genomic DNA that is of sufficient quality for molecular approaches is central to the molecular identification, epidemiological analysis, taxonomy, and strain typing of pathogenic fungi. Although many commercially available and in-house extraction procedures do eliminate the majority of contaminants that commonly inhibit molecular approaches, the inherent difficulties in breaking fungal cell walls lead to protocols that are labor intensive and that routinely take several hours to complete. Here we describe several methods that we have developed in our laboratory that allow the extremely rapid and inexpensive preparation of fungal genomic DNA.

  20. DNA Re-EvolutioN: a game for learning molecular genetics and evolution.

    Science.gov (United States)

    Miralles, Laura; Moran, Paloma; Dopico, Eduardo; Garcia-Vazquez, Eva

    2013-01-01

    Evolution is a main concept in biology, but not many students understand how it works. In this article we introduce the game DNA Re-EvolutioN as an active learning tool that uses genetic concepts (DNA structure, transcription and translation, mutations, natural selection, etc.) as playing rules. Students will learn about molecular evolution while playing a game that mixes up theory and entertainment. The game can be easily adapted to different educational levels. The main goal of this play is to arrive at the end of the game with the longest protein. Students play with pawns and dices, a board containing hypothetical events (mutations, selection) that happen to molecules, "Evolution cards" with indications for DNA mutations, prototypes of a DNA and a mRNA chain with colored "nucleotides" (plasticine balls), and small pieces simulating t-RNA with aminoacids that will serve to construct a "protein" based on the DNA chain. Students will understand how changes in DNA affect the final protein product and may be subjected to positive or negative selection, using a didactic tool funnier than classical theory lectures and easier than molecular laboratory experiments: a flexible and feasible game to learn and enjoy molecular evolution at no-cost. The game was tested by majors and non-majors in genetics from 13 different countries and evaluated with pre- and post-tests obtaining very positive results. © 2013 by The International Union of Biochemistry and Molecular Biology.

  1. Three-Fingered RAVERs: Rapid Accumulation of Variations in Exposed Residues of Snake Venom Toxins

    Science.gov (United States)

    Sunagar, Kartik; Jackson, Timothy N. W.; Undheim, Eivind A. B.; Ali, Syed. A.; Antunes, Agostinho; Fry, Bryan G.

    2013-01-01

    Three-finger toxins (3FTx) represent one of the most abundantly secreted and potently toxic components of colubrid (Colubridae), elapid (Elapidae) and psammophid (Psammophiinae subfamily of the Lamprophidae) snake venom arsenal. Despite their conserved structural similarity, they perform a diversity of biological functions. Although they are theorised to undergo adaptive evolution, the underlying diversification mechanisms remain elusive. Here, we report the molecular evolution of different 3FTx functional forms and show that positively selected point mutations have driven the rapid evolution and diversification of 3FTx. These diversification events not only correlate with the evolution of advanced venom delivery systems (VDS) in Caenophidia, but in particular the explosive diversification of the clade subsequent to the evolution of a high pressure, hollow-fanged VDS in elapids, highlighting the significant role of these toxins in the evolution of advanced snakes. We show that Type I, II and III α-neurotoxins have evolved with extreme rapidity under the influence of positive selection. We also show that novel Oxyuranus/Pseudonaja Type II forms lacking the apotypic loop-2 stabilising cysteine doublet characteristic of Type II forms are not phylogenetically basal in relation to other Type IIs as previously thought, but are the result of secondary loss of these apotypic cysteines on at least three separate occasions. Not all 3FTxs have evolved rapidly: κ-neurotoxins, which form non-covalently associated heterodimers, have experienced a relatively weaker influence of diversifying selection; while cytotoxic 3FTx, with their functional sites, dispersed over 40% of the molecular surface, have been extremely constrained by negative selection. We show that the a previous theory of 3FTx molecular evolution (termed ASSET) is evolutionarily implausible and cannot account for the considerable variation observed in very short segments of 3FTx. Instead, we propose a theory of

  2. HIV-TRACE (Transmission Cluster Engine): a tool for large scale molecular epidemiology of HIV-1 and other rapidly evolving pathogens.

    Science.gov (United States)

    Kosakovsky Pond, Sergei L; Weaver, Steven; Leigh Brown, Andrew J; Wertheim, Joel O

    2018-01-31

    In modern applications of molecular epidemiology, genetic sequence data are routinely used to identify clusters of transmission in rapidly evolving pathogens, most notably HIV-1. Traditional 'shoeleather' epidemiology infers transmission clusters by tracing chains of partners sharing epidemiological connections (e.g., sexual contact). Here, we present a computational tool for identifying a molecular transmission analog of such clusters: HIV-TRACE (TRAnsmission Cluster Engine). HIV-TRACE implements an approach inspired by traditional epidemiology, by identifying chains of partners whose viral genetic relatedness imply direct or indirect epidemiological connections. Molecular transmission clusters are constructed using codon-aware pairwise alignment to a reference sequence followed by pairwise genetic distance estimation among all sequences. This approach is computationally tractable and is capable of identifying HIV-1 transmission clusters in large surveillance databases comprising tens or hundreds of thousands of sequences in near real time, i.e., on the order of minutes to hours. HIV-TRACE is available at www.hivtrace.org and from github.com/veg/hivtrace, along with the accompanying result visualization module from github.com/veg/hivtrace-viz. Importantly, the approach underlying HIV-TRACE is not limited to the study of HIV-1 and can be applied to study outbreaks and epidemics of other rapidly evolving pathogens. © The Author 2018. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. A review of the evolution of viviparity in squamate reptiles: the past, present and future role of molecular biology and genomics.

    Science.gov (United States)

    Murphy, Bridget F; Thompson, Michael B

    2011-07-01

    Squamate reptiles (lizards and snakes) offer a unique model system for testing hypotheses about the evolutionary transition from oviparity (egg-laying) to viviparity (live-bearing) in amniote vertebrates. The evolution of squamate viviparity has occurred remarkably frequently (>108 times) and has resulted in major changes in reproductive physiology. Such frequent changes in reproductive strategy pose two questions: (1) what are the molecular mechanisms responsible for the evolution of squamate viviparity? (2) Are these molecular mechanisms the same for separate origins of viviparity? Molecular approaches, such as RT-PCR, in situ hybridisation, Western blotting and immunofluorescence, have been invaluable for identifying genes and proteins that are involved in squamate placental development, materno-foetal immunotolerance, placental transport, placental angiogenesis, hormone synthesis and hormone receptor expression. However, the candidate-gene or -protein approach that has been used until now does not allow for de novo gene/protein discovery; results to date suggest that the reproductive physiologies of mammals and squamate reptiles are very similar, but this conclusion may simply be due to a limited capacity to study the subset of genes and proteins that are unique to reptiles. Progress has also been slowed by the lack of appropriate molecular and genomic resources for squamate reptiles. The advent of next-generation sequencing provides a relatively inexpensive way to conduct rapid high-throughput sequencing of genomes and transcriptomes. We discuss the potential use of next-generation sequencing technologies to analyse differences in gene expression between oviparous and viviparous squamates, provide important sequence information for reptiles, and generate testable hypotheses for the evolution of viviparity.

  4. Molecular evolution, intracellular organization, and the quinary structure of proteins.

    OpenAIRE

    McConkey, E H

    1982-01-01

    High-resolution two-dimensional polyacrylamide gel electrophoresis shows that at least half of 370 denatured polypeptides from hamster cells and human cells are indistinguishable in terms of isoelectric points and molecular weights. Molecular evolution may have been more conservative for this set of proteins than sequence studies on soluble proteins have implied. This may be a consequence of complexities of intracellular organization and the numerous macromolecular interactions in which most ...

  5. The impact of rapid evolution on population dynamics in the wild: experimental test of eco-evolutionary dynamics.

    Science.gov (United States)

    Turcotte, Martin M; Reznick, David N; Hare, J Daniel

    2011-11-01

    Rapid evolution challenges the assumption that evolution is too slow to impact short-term ecological dynamics. This insight motivates the study of 'Eco-Evolutionary Dynamics' or how evolution and ecological processes reciprocally interact on short time scales. We tested how rapid evolution impacts concurrent population dynamics using an aphid (Myzus persicae) and an undomesticated host (Hirschfeldia incana) in replicated wild populations. We manipulated evolvability by creating non-evolving (single clone) and potentially evolving (two-clone) aphid populations that contained genetic variation in intrinsic growth rate. We observed significant evolution in two-clone populations whether or not they were exposed to predators and competitors. Evolving populations grew up to 42% faster and attained up to 67% higher density, compared with non-evolving control populations but only in treatments exposed to competitors and predators. Increased density also correlates with relative fitness of competing clones suggesting a full eco-evolutionary dynamic cycle defined as reciprocal interactions between evolution and density. © 2011 Blackwell Publishing Ltd/CNRS.

  6. Unexpectedly rapid evolution of mandibular shape in hominins.

    Science.gov (United States)

    Raia, P; Boggioni, M; Carotenuto, F; Castiglione, S; Di Febbraro, M; Di Vincenzo, F; Melchionna, M; Mondanaro, A; Papini, A; Profico, A; Serio, C; Veneziano, A; Vero, V A; Rook, L; Meloro, C; Manzi, G

    2018-05-09

    Members of the hominins - namely the so-called 'australopiths' and the species of the genus Homo - are known to possess short and deep mandibles and relatively small incisors and canines. It is commonly assumed that this suite of traits evolved in early members of the clade in response to changing environmental conditions and increased consumption of though food items. With the emergence of Homo, the functional meaning of mandible shape variation is thought to have been weakened by technological advancements and (later) by the control over fire. In contrast to this expectation, we found that mandible shape evolution in hominins is exceptionally rapid as compared to any other primate clade, and that the direction and rate of shape change (from the ape ancestor) are no different between the australopiths and Homo. We deem several factors including the loss of honing complex, canine reduction, and the acquisition of different diets may have concurred in producing such surprisingly high evolutionary rates. This study reveals the evolution of mandibular shape in hominins has strong morpho-functional and ecological significance attached.

  7. Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene.

    Science.gov (United States)

    Jordan, I K; Sutter, B A; McClure, M A

    2000-01-01

    Presented here is an analysis of the molecular evolutionary dynamics of the P gene among 76 representative sequences of the Paramyxoviridae and Rhabdoviridae RNA virus families. In a number of Paramyxoviridae taxa, as well as in vesicular stomatitis viruses of the Rhabdoviridae, the P gene encodes multiple proteins from a single genomic RNA sequence. These products include the phosphoprotein (P), as well as the C and V proteins. The complexity of the P gene makes it an intriguing locus to study from an evolutionary perspective. Amino acid sequence alignments of the proteins encoded at the P and N loci were used in independent phylogenetic reconstructions of the Paramyxoviridae and Rhabdoviridae families. P-gene-coding capacities were mapped onto the Paramyxoviridae phylogeny, and the most parsimonious path of multiple-coding-capacity evolution was determined. Levels of amino acid variation for Paramyxoviridae and Rhabdoviridae P-gene-encoded products were also analyzed. Proteins encoded in overlapping reading frames from the same nucleotides have different levels of amino acid variation. The nucleotide architecture that underlies the amino acid variation was determined in order to evaluate the role of selection in the evolution of the P gene overlapping reading frames. In every case, the evolution of one of the proteins encoded in the overlapping reading frames has been constrained by negative selection while the other has evolved more rapidly. The integrity of the overlapping reading frame that represents a derived state is generally maintained at the expense of the ancestral reading frame encoded by the same nucleotides. The evolution of such multicoding sequences is likely a response by RNA viruses to selective pressure to maximize genomic information content while maintaining small genome size. The ability to evolve such a complex genomic strategy is intimately related to the dynamics of the viral quasispecies, which allow enhanced exploration of the adaptive

  8. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology.

    Science.gov (United States)

    Elliott, Briony; Androga, Grace O; Knight, Daniel R; Riley, Thomas V

    2017-04-01

    Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Bayesian semiparametric regression models to characterize molecular evolution

    Directory of Open Access Journals (Sweden)

    Datta Saheli

    2012-10-01

    Full Text Available Abstract Background Statistical models and methods that associate changes in the physicochemical properties of amino acids with natural selection at the molecular level typically do not take into account the correlations between such properties. We propose a Bayesian hierarchical regression model with a generalization of the Dirichlet process prior on the distribution of the regression coefficients that describes the relationship between the changes in amino acid distances and natural selection in protein-coding DNA sequence alignments. Results The Bayesian semiparametric approach is illustrated with simulated data and the abalone lysin sperm data. Our method identifies groups of properties which, for this particular dataset, have a similar effect on evolution. The model also provides nonparametric site-specific estimates for the strength of conservation of these properties. Conclusions The model described here is distinguished by its ability to handle a large number of amino acid properties simultaneously, while taking into account that such data can be correlated. The multi-level clustering ability of the model allows for appealing interpretations of the results in terms of properties that are roughly equivalent from the standpoint of molecular evolution.

  10. A predator-2 prey fast-slow dynamical system for rapid predator evolution

    DEFF Research Database (Denmark)

    Piltz, Sofia Helena; Veerman, Frits; Maini, Philip K.

    2017-01-01

    We consider adaptive change of diet of a predator population that switches its feeding between two prey populations. We develop a novel 1 fast-3 slow dynamical system to describe the dynamics of the three populations amidst continuous but rapid evolution of the predator's diet choice. The two ext...

  11. Testing the molecular clock using mechanistic models of fossil preservation and molecular evolution.

    Science.gov (United States)

    Warnock, Rachel C M; Yang, Ziheng; Donoghue, Philip C J

    2017-06-28

    Molecular sequence data provide information about relative times only, and fossil-based age constraints are the ultimate source of information about absolute times in molecular clock dating analyses. Thus, fossil calibrations are critical to molecular clock dating, but competing methods are difficult to evaluate empirically because the true evolutionary time scale is never known. Here, we combine mechanistic models of fossil preservation and sequence evolution in simulations to evaluate different approaches to constructing fossil calibrations and their impact on Bayesian molecular clock dating, and the relative impact of fossil versus molecular sampling. We show that divergence time estimation is impacted by the model of fossil preservation, sampling intensity and tree shape. The addition of sequence data may improve molecular clock estimates, but accuracy and precision is dominated by the quality of the fossil calibrations. Posterior means and medians are poor representatives of true divergence times; posterior intervals provide a much more accurate estimate of divergence times, though they may be wide and often do not have high coverage probability. Our results highlight the importance of increased fossil sampling and improved statistical approaches to generating calibrations, which should incorporate the non-uniform nature of ecological and temporal fossil species distributions. © 2017 The Authors.

  12. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity.

    Science.gov (United States)

    Barrera-Redondo, Josué; Ramírez-Barahona, Santiago; Eguiarte, Luis E

    2018-05-01

    Variation in rates of molecular evolution (heterotachy) is a common phenomenon among plants. Although multiple theoretical models have been proposed, fundamental questions remain regarding the combined effects of ecological and morphological traits on rate heterogeneity. Here, we used tree ferns to explore the correlation between rates of molecular evolution in chloroplast DNA sequences and several morphological and environmental factors within a Bayesian framework. We revealed direct and indirect effects of body size, biological productivity, and temperature on substitution rates, where smaller tree ferns living in warmer and less productive environments tend to have faster rates of molecular evolution. In addition, we found that variation in the ratio of nonsynonymous to synonymous substitution rates (dN/dS) in the chloroplast rbcL gene was significantly correlated with ecological and morphological variables. Heterotachy in tree ferns may be influenced by effective population size associated with variation in body size and productivity. Macroevolutionary hypotheses should go beyond explaining heterotachy in terms of mutation rates and instead, should integrate population-level factors to better understand the processes affecting the tempo of evolution at the molecular level. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.

  13. Rapid evolution meets invasive species control: The potential for pesticide resistance in sea lamprey

    Science.gov (United States)

    Dunlop, Erin S.; McLaughlin, Robert L.; Adams, Jean V.; Jones, Michael L.; Birceanu, Oana; Christie, Mark R.; Criger, Lori A.; Hinderer, Julia L.M.; Hollingworth, Robert M.; Johnson, Nicholas; Lantz, Stephen R.; Li, Weiming; Miller, James R.; Morrison, Bruce J.; Mota-Sanchez, David; Muir, Andrew M.; Sepulveda, Maria S.; Steeves, Todd B.; Walter, Lisa; Westman, Erin; Wirgin, Isaac; Wilkie, Michael P.

    2018-01-01

    Rapid evolution of pest, pathogen and wildlife populations can have undesirable effects; for example, when insects evolve resistance to pesticides or fishes evolve smaller body size in response to harvest. A destructive invasive species in the Laurentian Great Lakes, the sea lamprey (Petromyzon marinus) has been controlled with the pesticide 3-trifluoromethyl-4-nitrophenol (TFM) since the 1950s. We evaluated the likelihood of sea lamprey evolving resistance to TFM by (1) reviewing sea lamprey life history and control; (2) identifying physiological and behavioural resistance strategies; (3) estimating the strength of selection from TFM; (4) assessing the timeline for evolution; and (5) analyzing historical toxicity data for evidence of resistance. The number of sea lamprey generations exposed to TFM was within the range observed for fish populations where rapid evolution has occurred. Mortality from TFM was estimated as 82-90%, suggesting significant selective pressure. However, 57 years of toxicity data revealed no increase in lethal concentrations of TFM. Vigilance and the development of alternative controls are required to prevent this aquatic invasive species from evolving strategies to evade control.

  14. Non-Molecular-Clock-Like Evolution following Viral Origins in Homo sapiens

    Directory of Open Access Journals (Sweden)

    Wendy Mok

    2007-01-01

    Full Text Available Researchers routinely adopt molecular clock assumptions in conducting sequence analyses to estimate dates for viral origins in humans. We used computational methods to examine the extent to which this practice can result in inaccurate ‘retrodiction.’ Failing to account for dynamic molecular evolution can affect greatly estimating index case dates, resulting in an overestimated age for the SARS-CoV-human infection, for instance.

  15. Collateral damage: rapid exposure-induced evolution of pesticide resistance leads to increased susceptibility to parasites.

    Science.gov (United States)

    Jansen, Mieke; Stoks, Robby; Coors, Anja; van Doorslaer, Wendy; de Meester, Luc

    2011-09-01

    Although natural populations may evolve resistance to anthropogenic stressors such as pollutants, this evolved resistance may carry costs. Using an experimental evolution approach, we exposed different Daphnia magna populations in outdoor containers to the carbamate pesticide carbaryl and control conditions, and assessed the resulting populations for both their resistance to carbaryl as well as their susceptibility to infection by the widespread bacterial microparasite Pasteuria ramosa. Our results show that carbaryl selection led to rapid evolution of carbaryl resistance with seemingly no cost when assessed in a benign environment. However, carbaryl-resistant populations were more susceptible to parasite infection than control populations. Exposure to both stressors reveals a synergistic effect on sterilization rate by P. ramosa, but this synergism did not evolve under pesticide selection. Assessing costs of rapid adaptive evolution to anthropogenic stress in a semi-natural context may be crucial to avoid too optimistic predictions for the fitness of the evolving populations. © 2011 The Author(s).

  16. Clinical librarian support for rapid review of clinical utility of cancer molecular biomarkers.

    Science.gov (United States)

    Geng, Yimin; Fowler, Clara S; Fulton, Stephanie

    2015-01-01

    The clinical librarian used a restricted literature searching and quality-filtering approach to provide relevant clinical evidence for the use of cancer molecular biomarkers by institutional policy makers and clinicians in the rapid review process. The librarian-provided evidence was compared with the cited references in the institutional molecular biomarker algorithm. The overall incorporation rate of the librarian-provided references into the algorithm was above 80%. This study suggests the usefulness of clinical librarian expertise for clinical practice. The searching and filtering methods for high-level evidence can be adopted by information professionals who are involved in the rapid literature review.

  17. Rapid parallel evolution overcomes global honey bee parasite.

    Science.gov (United States)

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  18. Rapid evolution mitigates the ecological consequences of an invasive species (Bythotrephes longimanus) in lakes in Wisconsin.

    Science.gov (United States)

    Gillis, Michael K; Walsh, Matthew R

    2017-07-12

    Invasive species have extensive negative consequences for biodiversity and ecosystem health. Novel species also drive contemporary evolution in many native populations, which could mitigate or amplify their impacts on ecosystems. The predatory zooplankton Bythotrephes longimanus invaded lakes in Wisconsin, USA, in 2009. This invasion caused precipitous declines in zooplankton prey ( Daphnia pulicaria ), with cascading impacts on ecosystem services (water clarity). Here, we tested the link between Bythotrephes invasion, evolution in Daphnia and post-invasion ecological dynamics using 15 years of long-term data in conjunction with comparative experiments. Invasion by Bythotrephes is associated with rapid increases in the body size of Daphnia Laboratory experiments revealed that such shifts have a genetic component; third-generation laboratory-reared Daphnia from 'invaded' lakes are significantly larger and exhibit greater reproductive effort than individuals from 'uninvaded' lakes. This trajectory of evolution should accelerate Daphnia population growth and enhance population persistence. We tested this prediction by comparing analyses of long-term data with laboratory-based simulations, and show that rapid evolution in Daphnia is associated with increased population growth in invaded lakes. © 2017 The Authors.

  19. Linking the molecular evolution of avian beta (β) keratins to the evolution of feathers.

    Science.gov (United States)

    Greenwold, Matthew J; Sawyer, Roger H

    2011-12-15

    Feathers of today's birds are constructed of beta (β)-keratins, structural proteins of the epidermis that are found solely in reptiles and birds. Discoveries of "feathered dinosaurs" continue to stimulate interest in the evolutionary origin of feathers, but few studies have attempted to link the molecular evolution of their major structural proteins (β-keratins) to the appearance of feathers in the fossil record. Using molecular dating methods, we show that before the appearance of Anchiornis (∼155 Million years ago (Ma)) the basal β-keratins of birds began diverging from their archosaurian ancestor ∼216 Ma. However, the subfamily of feather β-keratins, as found in living birds, did not begin diverging until ∼143 Ma. Thus, the pennaceous feathers on Anchiornis, while being constructed of avian β-keratins, most likely did not contain the feather β-keratins found in the feathers of modern birds. Our results demonstrate that the evolutionary origin of feathers does not coincide with the molecular evolution of the feather β-keratins found in modern birds. More likely, during the Late Jurassic, the epidermal structures that appeared on organisms in the lineage leading to birds, including early forms of feathers, were constructed of avian β-keratins other than those found in the feathers of modern birds. Recent biophysical studies of the β-keratins in feathers support the view that the appearance of the subfamily of feather β-keratins altered the biophysical nature of the feather establishing its role in powered flight. Copyright © 2011 Wiley Periodicals, Inc., A Wiley Company.

  20. Molecular phylogeny and character evolution in terete-stemmed Andean opuntias (Cactaceae-Opuntioideae).

    Science.gov (United States)

    Ritz, C M; Reiker, J; Charles, G; Hoxey, P; Hunt, D; Lowry, M; Stuppy, W; Taylor, N

    2012-11-01

    The cacti of tribe Tephrocacteae (Cactaceae-Opuntioideae) are adapted to diverse climatic conditions over a wide area of the southern Andes and adjacent lowlands. They exhibit a range of life forms from geophytes and cushion-plants to dwarf shrubs, shrubs or small trees. To confirm or challenge previous morphology-based classifications and molecular phylogenies, we sampled DNA sequences from the chloroplast trnK/matK region and the nuclear low copy gene phyC and compared the resulting phylogenies with previous data gathered from nuclear ribosomal DNA sequences. The here presented chloroplast and nuclear low copy gene phylogenies were mutually congruent and broadly coincident with the classification based on gross morphology and seed micro-morphology and anatomy. Reconstruction of hypothetical ancestral character states suggested that geophytes and cushion-forming species probably evolved several times from dwarf shrubby precursors. We also traced an increase of embryo size at the expense of the nucellus-derived storage tissue during the evolution of the Tephrocacteae, which is thought to be an evolutionary advantage because nutrients are then more rapidly accessible for the germinating embryo. In contrast to these highly concordant phylogenies, nuclear ribosomal DNA data sampled by a previous study yielded conflicting phylogenetic signals. Secondary structure predictions of ribosomal transcribed spacers suggested that this phylogeny is strongly influenced by the inclusion of paralogous sequence probably arisen by genome duplication during the evolution of this plant group. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Karyotypic evolution in the Galliformes: an examination of the process of karyotypic evolution by comparison of the molecular cytogenetic findings with the molecular phylogeny.

    Science.gov (United States)

    Shibusawa, M; Nishibori, M; Nishida-Umehara, C; Tsudzuki, M; Masabanda, J; Griffin, D K; Matsuda, Y

    2004-01-01

    To define the process of karyotypic evolution in the Galliformes on a molecular basis, we conducted genome-wide comparative chromosome painting for eight species, i.e. silver pheasant (Lophura nycthemera), Lady Amherst's pheasant (Chrysolophus amherstiae), ring-necked pheasant (Phasianus colchicus), turkey (Meleagris gallopavo), Western capercaillie (Tetrao urogallus), Chinese bamboo-partridge (Bambusicola thoracica) and common peafowl (Pavo cristatus) of the Phasianidae, and plain chachalaca (Ortalis vetula) of the Cracidae, with chicken DNA probes of chromosomes 1-9 and Z. Including our previous data from five other species, chicken (Gallus gallus), Japanese quail (Coturnix japonica) and blue-breasted quail (Coturnix chinensis) of the Phasianidae, guinea fowl (Numida meleagris) of the Numididae and California quail (Callipepla californica) of the Odontophoridae, we represented the evolutionary changes of karyotypes in the 13 species of the Galliformes. In addition, we compared the cytogenetic data with the molecular phylogeny of the 13 species constructed with the nucleotide sequences of the mitochondrial cytochrome b gene, and discussed the process of karyotypic evolution in the Galliformes. Comparative chromosome painting confirmed the previous data on chromosome rearrangements obtained by G-banding analysis, and identified several novel chromosome rearrangements. The process of the evolutionary changes of macrochromosomes in the 13 species was in good accordance with the molecular phylogeny, and the ancestral karyotype of the Galliformes is represented. Copyright 2004 S. Karger AG, Basel

  2. Molecular evolution of the primate antiviral restriction factor tetherin.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available BACKGROUND: Tetherin is a recently identified antiviral restriction factor that restricts HIV-1 particle release in the absence of the HIV-1 viral protein U (Vpu. It is reminiscent of APOBEC3G and TRIM5a that also antagonize HIV. APOBEC3G and TRIM5a have been demonstrated to evolve under pervasive positive selection throughout primate evolution, supporting the red-queen hypothesis. Therefore, one naturally presumes that Tetherin also evolves under pervasive positive selection throughout primate evolution and supports the red-queen hypothesis. Here, we performed a detailed evolutionary analysis to address this presumption. METHODOLOGY/PRINCIPAL FINDINGS: Results of non-synonymous and synonymous substitution rates reveal that Tetherin as a whole experiences neutral evolution rather than pervasive positive selection throughout primate evolution, as well as in non-primate mammal evolution. Sliding-window analyses show that the regions of the primate Tetherin that interact with viral proteins are under positive selection or relaxed purifying selection. In particular, the sites identified under positive selection generally focus on these regions, indicating that the main selective pressure acting on the primate Tetherin comes from virus infection. The branch-site model detected positive selection acting on the ancestral branch of the New World Monkey lineage, suggesting an episodic adaptive evolution. The positive selection was also found in duplicated Tetherins in ruminants. Moreover, there is no bias in the alterations of amino acids in the evolution of the primate Tetherin, implying that the primate Tetherin may retain broad spectrum of antiviral activity by maintaining structure stability. CONCLUSIONS/SIGNIFICANCE: These results conclude that the molecular evolution of Tetherin may be attributed to the host-virus arms race, supporting the Red Queen hypothesis, and Tetherin may be in an intermediate stage in transition from neutral to pervasive

  3. Amino acid properties conserved in molecular evolution.

    Directory of Open Access Journals (Sweden)

    Witold R Rudnicki

    Full Text Available That amino acid properties are responsible for the way protein molecules evolve is natural and is also reasonably well supported both by the structure of the genetic code and, to a large extent, by the experimental measures of the amino acid similarity. Nevertheless, there remains a significant gap between observed similarity matrices and their reconstructions from amino acid properties. Therefore, we introduce a simple theoretical model of amino acid similarity matrices, which allows splitting the matrix into two parts - one that depends only on mutabilities of amino acids and another that depends on pairwise similarities between them. Then the new synthetic amino acid properties are derived from the pairwise similarities and used to reconstruct similarity matrices covering a wide range of information entropies. Our model allows us to explain up to 94% of the variability in the BLOSUM family of the amino acids similarity matrices in terms of amino acid properties. The new properties derived from amino acid similarity matrices correlate highly with properties known to be important for molecular evolution such as hydrophobicity, size, shape and charge of amino acids. This result closes the gap in our understanding of the influence of amino acids on evolution at the molecular level. The methods were applied to the single family of similarity matrices used often in general sequence homology searches, but it is general and can be used also for more specific matrices. The new synthetic properties can be used in analyzes of protein sequences in various biological applications.

  4. Molecular evolution of the keratin associated protein gene family in mammals, role in the evolution of mammalian hair.

    Science.gov (United States)

    Wu, Dong-Dong; Irwin, David M; Zhang, Ya-Ping

    2008-08-23

    Hair is unique to mammals. Keratin associated proteins (KRTAPs), which contain two major groups: high/ultrahigh cysteine and high glycine-tyrosine, are one of the major components of hair and play essential roles in the formation of rigid and resistant hair shafts. The KRTAP family was identified as being unique to mammals, and near-complete KRTAP gene repertoires for eight mammalian genomes were characterized in this study. An expanded KRTAP gene repertoire was found in rodents. Surprisingly, humans have a similar number of genes as other primates despite the relative hairlessness of humans. We identified several new subfamilies not previously reported in the high/ultrahigh cysteine KRTAP genes. Genes in many subfamilies of the high/ultrahigh cysteine KRTAP genes have evolved by concerted evolution with frequent gene conversion events, yielding a higher GC base content for these gene sequences. In contrast, the high glycine-tyrosine KRTAP genes have evolved more dynamically, with fewer gene conversion events and thus have a lower GC base content, possibly due to positive selection. Most of the subfamilies emerged early in the evolution of mammals, thus we propose that the mammalian ancestor should have a diverse KRTAP gene repertoire. We propose that hair content characteristics have evolved and diverged rapidly among mammals because of rapid divergent evolution of KRTAPs between species. In contrast, subfamilies of KRTAP genes have been homogenized within each species due to concerted evolution.

  5. The rapid evolution of CT findings in pulmonary langerhans cell histiocytosis: a case report

    International Nuclear Information System (INIS)

    Kang, Tae Wook; Lee, Kyung Soo; Cho, Eun Yoon

    2007-01-01

    Imaging findings of pulmonary Langerhans cell histiocytosis (PLCH) demonstrate evolving changes over time, and the radiological transitions shown by imaging tools may allow a prediction of histopathological activity in PLCH. However, there are no reports describing how rapidly CT findings change with time. We describe a case of PLCH that showed a rapid evolutional change of the pulmonary lesions in a 48-year-old man, in which the nodular lesions showed cystic changes within two-month follow-up periods on chest CT scans

  6. Evolution and genome architecture in fungal plant pathogens.

    Science.gov (United States)

    Möller, Mareike; Stukenbrock, Eva H

    2017-12-01

    The fungal kingdom comprises some of the most devastating plant pathogens. Sequencing the genomes of fungal pathogens has shown a remarkable variability in genome size and architecture. Population genomic data enable us to understand the mechanisms and the history of changes in genome size and adaptive evolution in plant pathogens. Although transposable elements predominantly have negative effects on their host, fungal pathogens provide prominent examples of advantageous associations between rapidly evolving transposable elements and virulence genes that cause variation in virulence phenotypes. By providing homogeneous environments at large regional scales, managed ecosystems, such as modern agriculture, can be conducive for the rapid evolution and dispersal of pathogens. In this Review, we summarize key examples from fungal plant pathogen genomics and discuss evolutionary processes in pathogenic fungi in the context of molecular evolution, population genomics and agriculture.

  7. Rapid recent human evolution and the accumulation of balanced genetic polymorphisms.

    Science.gov (United States)

    Wills, Christopher

    2011-01-01

    All evolutionary change can be traced to alterations in allele frequencies in populations over time. DNA sequencing on a massive scale now permits us to follow the genetic consequences as our species has diverged from our close relatives and as we have colonized different parts of the world and adapted to them. But it has been difficult to disentangle natural selection from many other factors that alter frequencies. These factors include mutation and intragenic reciprocal recombination, gene conversion, segregation distortion, random drift, and gene flow between populations (these last two are greatly influenced by splits and coalescences of populations over time). The first part of this review examines recent studies that have had some success in dissecting out the role of natural selection, especially in humans and Drosophila. Among many examples, these studies include those that have followed the rapid evolution of traits that may permit adaptation to high altitude in Tibetan and Andean populations. In some cases, directional selection has been so strong that it may have swept alleles close to fixation in the span of a few thousand years, a rapidity of change that is also sometimes encountered in other organisms. The second part of the review summarizes data showing that remarkably few alleles have been carried completely to fixation during our recent evolution. Some of the alleles that have not reached fixation may be approaching new internal equilibria, which would indicate polymorphisms that are maintained by balancing selection. Finally, the review briefly examines why genetic polymorphisms, particularly those that are maintained by negative frequency dependence, are likely to have played an important role in the evolution of our species. A method is suggested for measuring the contribution of these polymorphisms to our gene pool. Such polymorphisms may add to the ability of our species to adapt to our increasingly complex and challenging environment.

  8. Evolution of man in the light of molecular genetics: a review. Part I. Our evolutionary history and genomics.

    Science.gov (United States)

    Portin, Petter

    2007-07-01

    The discovery in the mid 1970s of efficient methods of DNA sequencing and their subsequent development into more and more rapid procedures followed by sequencing the genomes of many species, including man in 2001, revolutionised the whole of biology. Remarkably, new light could be cast on the evolutionary relations of different species, and the tempo and mode of evolution within a given species, notably man, could quantitatively be illuminated including ongoing evolution possibly involving also the size of the brains. This review is a short summary of the results of the molecular genetic investigations of human evolution including the time and place of the formation of our species, our evolutionary relation to the closest living species relatives as well as extinct forms of the genus Homo. The nature and amount of genetic polymorphism in man is also considered with special emphasis on the causes of this variation, and the role of natural selection in human evolution. A consensus about the mosaic nature of our genome and the rather dynamic structure of our ancestral population is gradually emerging. The modern gene pool has most likely been contributed to several different ancestral demes either before or after the emergence of the anatomically modern human phenotype in the extent that even the nature of the evolutionary lineage leading to the anatomically modern man as a distinct biological species is disputable. Regulation of the function of genes, as well as the evolution of brains will be dealt with in the second part of this review.

  9. Mass Balance Evolution of Black Rapids Glacier, Alaska, 1980–2100, and Its Implications for Surge Recurrence

    Directory of Open Access Journals (Sweden)

    Christian Kienholz

    2017-07-01

    Full Text Available Surge-type Black Rapids Glacier, Alaska, has undergone strong retreat since it last surged in 1936–1937. To assess its evolution during the late Twentieth and Twenty-first centuries and determine potential implications for surge likelihood, we run a simplified glacier model over the periods 1980–2015 (hindcasting and 2015–2100 (forecasting. The model is forced by daily temperature and precipitation fields, with downscaled reanalysis data used for the hindcasting. A constant climate scenario and an RCP 8.5 scenario based on the GFDL-CM3 climate model are employed for the forecasting. Debris evolution is accounted for by a debris layer time series derived from satellite imagery (hindcasting and a parametrized debris evolution model (forecasting. A retreat model accounts for the evolution of the glacier geometry. Model calibration, validation and parametrization rely on an extensive set of in situ and remotely sensed observations. To explore uncertainties in our projections, we run the glacier model in a Monte Carlo fashion, varying key model parameters and input data within plausible ranges. Our results for the hindcasting period indicate a negative mass balance trend, caused by atmospheric warming in the summer, precipitation decrease in the winter and surface elevation lowering (climate-elevation feedback, which exceed the moderating effects from increasing debris cover and glacier retreat. Without the 2002 rockslide deposits on Black Rapids' lower reaches, the mass balances would be more negative, by ~20% between the 2003 and 2015 mass-balance years. Despite its retreat, Black Rapids Glacier is substantially out of balance with the current climate. By 2100, ~8% of Black Rapids' 1980 area are projected to vanish under the constant climate scenario and ~73% under the RCP 8.5 scenario. For both scenarios, the remaining glacier portions are out of balance, suggesting continued retreat after 2100. Due to mass starvation, a surge in the Twenty

  10. Implementation of Rapid Molecular Infectious Disease Diagnostics: the Role of Diagnostic and Antimicrobial Stewardship.

    Science.gov (United States)

    Messacar, Kevin; Parker, Sarah K; Todd, James K; Dominguez, Samuel R

    2017-03-01

    New rapid molecular diagnostic technologies for infectious diseases enable expedited accurate microbiological diagnoses. However, diagnostic stewardship and antimicrobial stewardship are necessary to ensure that these technologies conserve, rather than consume, additional health care resources and optimally affect patient care. Diagnostic stewardship is needed to implement appropriate tests for the clinical setting and to direct testing toward appropriate patients. Antimicrobial stewardship is needed to ensure prompt appropriate clinical action to translate faster diagnostic test results in the laboratory into improved outcomes at the bedside. This minireview outlines the roles of diagnostic stewardship and antimicrobial stewardship in the implementation of rapid molecular infectious disease diagnostics. Copyright © 2017 American Society for Microbiology.

  11. Rapid Evolution of the Gaseous Exoplanetary Debris around the White Dwarf Star HE 1349–2305

    Science.gov (United States)

    Dennihy, E.; Clemens, J. C.; Dunlap, B. H.; Fanale, S. M.; Fuchs, J. T.; Hermes, J. J.

    2018-02-01

    Observations of heavy metal pollution in white dwarf stars indicate that metal-rich planetesimals are frequently scattered into star-grazing orbits, tidally disrupted, and accreted onto the white dwarf surface, offering direct insight into the dynamical evolution of post-main-sequence exoplanetary systems. Emission lines from the gaseous debris in the accretion disks of some of these systems show variations on timescales of decades, and have been interpreted as the general relativistic precession of a recently formed, elliptical disk. Here we present a comprehensive spectroscopic monitoring campaign of the calcium infrared triplet emission in one system, HE 1349–2305, which shows morphological emission profile variations suggestive of a precessing, asymmetric intensity pattern. The emission profiles are shown to vary on a timescale of one to two years, which is an order of magnitude shorter than what has been observed in other similar systems. We demonstrate that this timescale is likely incompatible with general relativistic precession, and consider alternative explanations for the rapid evolution, including the propagation of density waves within the gaseous debris. We conclude with recommendations for follow-up observations, and discuss how the rapid evolution of the gaseous debris in HE 1349–2305 could be leveraged to test theories of exoplanetary debris disk evolution around white dwarf stars.

  12. Molecular Evolution at a Meiosis Gene Mediates Species Differences in the Rate and Patterning of Recombination.

    Science.gov (United States)

    Brand, Cara L; Cattani, M Victoria; Kingan, Sarah B; Landeen, Emily L; Presgraves, Daven C

    2018-04-23

    Crossing over between homologous chromosomes during meiosis repairs programmed DNA double-strand breaks, ensures proper segregation at meiosis I [1], shapes the genomic distribution of nucleotide variability in populations, and enhances the efficacy of natural selection among genetically linked sites [2]. Between closely related Drosophila species, large differences exist in the rate and chromosomal distribution of crossing over. Little, however, is known about the molecular genetic changes or population genetic forces that mediate evolved differences in recombination between species [3, 4]. Here, we show that a meiosis gene with a history of rapid evolution acts as a trans-acting modifier of species differences in crossing over. In transgenic flies, the dicistronic gene, mei-217/mei-218, recapitulates a large part of the species differences in the rate and chromosomal distribution of crossing over. These phenotypic differences appear to result from changes in protein sequence not gene expression. Our population genetics analyses show that the protein-coding sequence of mei-218, but not mei-217, has a history of recurrent positive natural selection. By modulating the intensity of centromeric and telomeric suppression of crossing over, evolution at mei-217/-218 has incidentally shaped gross differences in the chromosomal distribution of nucleotide variability between species. We speculate that recurrent bouts of adaptive evolution at mei-217/-218 might reflect a history of coevolution with selfish genetic elements. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The interface of protein structure, protein biophysics, and molecular evolution

    Science.gov (United States)

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  14. MBEToolbox: a Matlab toolbox for sequence data analysis in molecular biology and evolution

    Directory of Open Access Journals (Sweden)

    Xia Xuhua

    2005-03-01

    Full Text Available Abstract Background MATLAB is a high-performance language for technical computing, integrating computation, visualization, and programming in an easy-to-use environment. It has been widely used in many areas, such as mathematics and computation, algorithm development, data acquisition, modeling, simulation, and scientific and engineering graphics. However, few functions are freely available in MATLAB to perform the sequence data analyses specifically required for molecular biology and evolution. Results We have developed a MATLAB toolbox, called MBEToolbox, aimed at filling this gap by offering efficient implementations of the most needed functions in molecular biology and evolution. It can be used to manipulate aligned sequences, calculate evolutionary distances, estimate synonymous and nonsynonymous substitution rates, and infer phylogenetic trees. Moreover, it provides an extensible, functional framework for users with more specialized requirements to explore and analyze aligned nucleotide or protein sequences from an evolutionary perspective. The full functions in the toolbox are accessible through the command-line for seasoned MATLAB users. A graphical user interface, that may be especially useful for non-specialist end users, is also provided. Conclusion MBEToolbox is a useful tool that can aid in the exploration, interpretation and visualization of data in molecular biology and evolution. The software is publicly available at http://web.hku.hk/~jamescai/mbetoolbox/ and http://bioinformatics.org/project/?group_id=454.

  15. The evolution of mollusc shells.

    Science.gov (United States)

    McDougall, Carmel; Degnan, Bernard M

    2018-05-01

    Molluscan shells are externally fabricated by specialized epithelial cells on the dorsal mantle. Although a conserved set of regulatory genes appears to underlie specification of mantle progenitor cells, the genes that contribute to the formation of the mature shell are incredibly diverse. Recent comparative analyses of mantle transcriptomes and shell proteomes of gastropods and bivalves are consistent with shell diversity being underpinned by a rapidly evolving mantle secretome (suite of genes expressed in the mantle that encode secreted proteins) that is the product of (a) high rates of gene co-option into and loss from the mantle gene regulatory network, and (b) the rapid evolution of coding sequences, particular those encoding repetitive low complexity domains. Outside a few conserved genes, such as carbonic anhydrase, a so-called "biomineralization toolkit" has yet to be discovered. Despite this, a common suite of protein domains, which are often associated with the extracellular matrix and immunity, appear to have been independently and often uniquely co-opted into the mantle secretomes of different species. The evolvability of the mantle secretome provides a molecular explanation for the evolution and diversity of molluscan shells. These genomic processes are likely to underlie the evolution of other animal biominerals, including coral and echinoderm skeletons. This article is categorized under: Comparative Development and Evolution > Regulation of Organ Diversity Comparative Development and Evolution > Evolutionary Novelties. © 2018 Wiley Periodicals, Inc.

  16. Protein change in plant evolution: tracing one thread connecting molecular and phenotypic diversity

    Directory of Open Access Journals (Sweden)

    Madelaine eBartlett

    2013-10-01

    Full Text Available Proteins change over the course of evolutionary time. New protein-coding genes and gene families emerge and diversify, ultimately affecting an organism’s phenotype and interactions with its environment. Here we survey the range of structural protein change observed in plants and review the role these changes have had in the evolution of plant form and function. Verified examples tying evolutionary change in protein structure to phenotypic change remain scarce. We will review the existing examples, as well as draw from investigations into domestication, and quantitative trait locus (QTL cloning studies searching for the molecular underpinnings of natural variation. The evolutionary significance of many cloned QTL has not been assessed, but all the examples identified so far have begun to reveal the extent of protein structural diversity tolerated in natural systems. This molecular (and phenotypic diversity could come to represent part of natural selection’s source material in the adaptive evolution of novel traits. Protein structure and function can change in many distinct ways, but the changes we identified in studies of natural diversity and protein evolution were predicted to fall primarily into one of six categories: altered active and binding sites; hypomorphic and hypermorphic alleles; altered protein-protein interactions; altered domain content; altered protein stability; and altered activity as an activator or repressor. Variability was also observed in the evolutionary scale at which particular changes were observed. Some changes were detected at both micro- and macroevolutionary timescales, while others were observed primarily at deep or shallow phylogenetic levels. This variation might be used to determine the trajectory of future investigations in structural molecular evolution.

  17. Dynamical quenching of tunneling in molecular magnets

    International Nuclear Information System (INIS)

    José Santander, María; Nunez, Alvaro S.; Roldán-Molina, A.; Troncoso, Roberto E.

    2015-01-01

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation

  18. Dynamical quenching of tunneling in molecular magnets

    Energy Technology Data Exchange (ETDEWEB)

    José Santander, María, E-mail: maria.jose.noemi@gmail.com [Recursos Educativos Quántica, Santiago (Chile); Departamento de Física, Universidad de Santiago de Chile and CEDENNA, Avda. Ecuador 3493, Santiago (Chile); Nunez, Alvaro S., E-mail: alnunez@dfi.uchile.cl [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 487-3, Santiago (Chile); Roldán-Molina, A. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Avenida Universidad 330, Curauma, Valparaíso (Chile); Troncoso, Roberto E., E-mail: r.troncoso.c@gmail.com [Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Avda. Ecuador 3493, Santiago 9170124 (Chile); Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso (Chile)

    2015-12-15

    It is shown that a single molecular magnet placed in a rapidly oscillating magnetic field displays the phenomenon of quenching of tunneling processes. The results open a way to manipulate the quantum states of molecular magnets by means of radiation in the terahertz range. Our analysis separates the time evolution into slow and fast components thereby obtaining an effective theory for the slow dynamics. This effective theory presents quenching of the tunnel effect, in particular, stands out its difference with the so-called coherent destruction of tunneling. We support our prediction with numerical evidence based on an exact solution of Schrödinger's equation. - Highlights: • Single molecular magnets under rapidly oscillating magnetic fields is studied. • It is shown that this system displays the quenching of tunneling processes. • Our findings provide a control of quantum molecular magnets via terahertz radiation.

  19. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    Science.gov (United States)

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  20. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function

    Directory of Open Access Journals (Sweden)

    Zhang Rui

    2011-10-01

    Full Text Available Abstract Background Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. Results We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. Conclusions RHOXF2 is a fast-evolving homeobox gene in primates. The rapid

  1. Evolution of the Normal State of a Strongly Interacting Fermi Gas from a Pseudogap Phase to a Molecular Bose Gas

    International Nuclear Information System (INIS)

    Perali, A.; Palestini, F.; Pieri, P.; Strinati, G. C.; Stewart, J. T.; Gaebler, J. P.; Drake, T. E.; Jin, D. S.

    2011-01-01

    Wave-vector resolved radio frequency spectroscopy data for an ultracold trapped Fermi gas are reported for several couplings at T c , and extensively analyzed in terms of a pairing-fluctuation theory. We map the evolution of a strongly interacting Fermi gas from the pseudogap phase into a fully gapped molecular Bose gas as a function of the interaction strength, which is marked by a rapid disappearance of a remnant Fermi surface in the single-particle dispersion. We also show that our theory of a pseudogap phase is consistent with a recent experimental observation as well as with quantum Monte Carlo data of thermodynamic quantities of a unitary Fermi gas above T c .

  2. Molecular evolution of a Y chromosome to autosome gene duplication in Drosophila.

    Science.gov (United States)

    Dyer, Kelly A; White, Brooke E; Bray, Michael J; Piqué, Daniel G; Betancourt, Andrea J

    2011-03-01

    In contrast to the rest of the genome, the Y chromosome is restricted to males and lacks recombination. As a result, Y chromosomes are unable to respond efficiently to selection, and newly formed Y chromosomes degenerate until few genes remain. The rapid loss of genes from newly formed Y chromosomes has been well studied, but gene loss from highly degenerate Y chromosomes has only recently received attention. Here, we identify and characterize a Y to autosome duplication of the male fertility gene kl-5 that occurred during the evolution of the testacea group species of Drosophila. The duplication was likely DNA based, as other Y-linked genes remain on the Y chromosome, the locations of introns are conserved, and expression analyses suggest that regulatory elements remain linked. Genetic mapping reveals that the autosomal copy of kl-5 resides on the dot chromosome, a tiny autosome with strongly suppressed recombination. Molecular evolutionary analyses show that autosomal copies of kl-5 have reduced polymorphism and little recombination. Importantly, the rate of protein evolution of kl-5 has increased significantly in lineages where it is on the dot versus Y linked. Further analyses suggest this pattern is a consequence of relaxed purifying selection, rather than adaptive evolution. Thus, although the initial fixation of the kl-5 duplication may have been advantageous, slightly deleterious mutations have accumulated in the dot-linked copies of kl-5 faster than in the Y-linked copies. Because the dot chromosome contains seven times more genes than the Y and is exposed to selection in both males and females, these results suggest that the dot suffers the deleterious effects of genetic linkage to more selective targets compared with the Y chromosome. Thus, a highly degenerate Y chromosome may not be the worst environment in the genome, as is generally thought, but may in fact be protected from the accumulation of deleterious mutations relative to other nonrecombining

  3. The molecular biology and evolution of feline immunodeficiency viruses of cougars

    Science.gov (United States)

    Poss, Mary; Ross, Howard; Rodrigo, Allen; Terwee, Julie; VandeWoude, Sue; Biek, Roman

    2008-01-01

    Feline immunodeficiency virus (FIV) is a lentivirus that has been identified in many members of the family Felidae but domestic cats are the only FIV host in which infection results in disease. We studied FIVpco infection of cougars (Puma concolor) as a model for asymptomatic lentivirus infections to understand the mechanisms of host-virus coexistence. Several natural cougar populations were evaluated to determine if there are any consequences of FIVpco infection on cougar fecundity, survival, or susceptibility to other infections. We have sequenced full length viral genomes and conducted a detailed analysis of viral molecular evolution on these sequences and on genome fragments of serially sampled animals to determine the evolutionary forces experienced by this virus in cougars. In addition, we have evaluated the molecular genetics of FIVpco in a new host, domestic cats, to determine the evolutionary consequences to a host-adapted virus associated with cross-species infection. Our results indicate that there are no significant differences in survival, fecundity or susceptibility to other infections between FIVpco-infected and uninfected cougars. The molecular evolution of FIVpco is characterized by a slower evolutionary rate and an absence of positive selection, but also by proviral and plasma viral loads comparable to those of epidemic lentiviruses such as HIV-1 or FIVfca. Evolutionary and recombination rates and selection profiles change significantly when FIVpco replicates in a new host. PMID:18295904

  4. New genes as drivers of phenotypic evolution

    Science.gov (United States)

    Chen, Sidi; Krinsky, Benjamin H.; Long, Manyuan

    2014-01-01

    During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution. PMID:23949544

  5. The rapid evolution of molecular genetic diagnostics in neuromuscular diseases.

    Science.gov (United States)

    Volk, Alexander E; Kubisch, Christian

    2017-10-01

    The development of massively parallel sequencing (MPS) has revolutionized molecular genetic diagnostics in monogenic disorders. The present review gives a brief overview of different MPS-based approaches used in clinical diagnostics of neuromuscular disorders (NMDs) and highlights their advantages and limitations. MPS-based approaches like gene panel sequencing, (whole) exome sequencing, (whole) genome sequencing, and RNA sequencing have been used to identify the genetic cause in NMDs. Although gene panel sequencing has evolved as a standard test for heterogeneous diseases, it is still debated, mainly because of financial issues and unsolved problems of variant interpretation, whether genome sequencing (and to a lesser extent also exome sequencing) of single patients can already be regarded as routine diagnostics. However, it has been shown that the inclusion of parents and additional family members often leads to a substantial increase in the diagnostic yield in exome-wide/genome-wide MPS approaches. In addition, MPS-based RNA sequencing just enters the research and diagnostic scene. Next-generation sequencing increasingly enables the detection of the genetic cause in highly heterogeneous diseases like NMDs in an efficient and affordable way. Gene panel sequencing and family-based exome sequencing have been proven as potent and cost-efficient diagnostic tools. Although clinical validation and interpretation of genome sequencing is still challenging, diagnostic RNA sequencing represents a promising tool to bypass some hurdles of diagnostics using genomic DNA.

  6. Comparative transcriptomics of Entelegyne spiders (Araneae, Entelegynae), with emphasis on molecular evolution of orphan genes.

    Science.gov (United States)

    Carlson, David E; Hedin, Marshal

    2017-01-01

    Next-generation sequencing technology is rapidly transforming the landscape of evolutionary biology, and has become a cost-effective and efficient means of collecting exome information for non-model organisms. Due to their taxonomic diversity, production of interesting venom and silk proteins, and the relative scarcity of existing genomic resources, spiders in particular are excellent targets for next-generation sequencing (NGS) methods. In this study, the transcriptomes of six entelegyne spider species from three genera (Cicurina travisae, C. vibora, Habronattus signatus, H. ustulatus, Nesticus bishopi, and N. cooperi) were sequenced and de novo assembled. Each assembly was assessed for quality and completeness and functionally annotated using gene ontology information. Approximately 100 transcripts with evidence of homology to venom proteins were discovered. After identifying more than 3,000 putatively orthologous genes across all six taxa, we used comparative analyses to identify 24 instances of positively selected genes. In addition, between ~ 550 and 1,100 unique orphan genes were found in each genus. These unique, uncharacterized genes exhibited elevated rates of amino acid substitution, potentially consistent with lineage-specific adaptive evolution. The data generated for this study represent a valuable resource for future phylogenetic and molecular evolutionary research, and our results provide new insight into the forces driving genome evolution in taxa that span the root of entelegyne spider phylogeny.

  7. Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster.

    Science.gov (United States)

    Collet, Julie M; Fuentes, Sara; Hesketh, Jack; Hill, Mark S; Innocenti, Paolo; Morrow, Edward H; Fowler, Kevin; Reuter, Max

    2016-04-01

    Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex-specific phenotypes. Despite its importance for sex-specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the "LHM " population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  8. Rapid and Parallel Adaptive Evolution of the Visual System of Neotropical Midas Cichlid Fishes.

    Science.gov (United States)

    Torres-Dowdall, Julián; Pierotti, Michele E R; Härer, Andreas; Karagic, Nidal; Woltering, Joost M; Henning, Frederico; Elmer, Kathryn R; Meyer, Axel

    2017-10-01

    Midas cichlid fish are a Central American species flock containing 13 described species that has been dated to only a few thousand years old, a historical timescale infrequently associated with speciation. Their radiation involved the colonization of several clear water crater lakes from two turbid great lakes. Therefore, Midas cichlids have been subjected to widely varying photic conditions during their radiation. Being a primary signal relay for information from the environment to the organism, the visual system is under continuing selective pressure and a prime organ system for accumulating adaptive changes during speciation, particularly in the case of dramatic shifts in photic conditions. Here, we characterize the full visual system of Midas cichlids at organismal and genetic levels, to determine what types of adaptive changes evolved within the short time span of their radiation. We show that Midas cichlids have a diverse visual system with unexpectedly high intra- and interspecific variation in color vision sensitivity and lens transmittance. Midas cichlid populations in the clear crater lakes have convergently evolved visual sensitivities shifted toward shorter wavelengths compared with the ancestral populations from the turbid great lakes. This divergence in sensitivity is driven by changes in chromophore usage, differential opsin expression, opsin coexpression, and to a lesser degree by opsin coding sequence variation. The visual system of Midas cichlids has the evolutionary capacity to rapidly integrate multiple adaptations to changing light environments. Our data may indicate that, in early stages of divergence, changes in opsin regulation could precede changes in opsin coding sequence evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Thermal force approach to molecular evolution.

    Science.gov (United States)

    Braun, Dieter; Libchaber, Albert

    2004-06-01

    Recent experiments are discussed where temperature gradients across mesoscopic pores are shown to provide essential mechanisms for autonomous molecular evolution. On the one hand, laminar thermal convection can drive DNA replication as the molecules are continuously cycled between hot and cold regions of a chamber. On the other hand, thermophoresis can accumulate charged biopolymers in similar convection settings. The experiments show that temperature differences analogous to those across porous rocks present a robust nonequilibrium boundary condition to feed the replication and accumulation of evolving molecules. It is speculated that similar nonequilibrium conditions near porous submarine hydrothermal mounds could have triggered the origin of life. In such a scenario, the encapsulation of cells with membranes would be a later development. It is expected that detailed studies of mesoscopic boundary conditions under nonequilibrium conditions will reveal new connecting pieces in the fascinating puzzle of the origins of life.

  10. Highly sensitive and rapid bacteria detection using molecular beacon-Au nanoparticles hybrid nanoprobes.

    Science.gov (United States)

    Cao, Jing; Feng, Chao; Liu, Yan; Wang, Shouyu; Liu, Fei

    2014-07-15

    Since many diseases are caused by pathogenic bacterial infections, accurate and rapid detection of pathogenic bacteria is in urgent need to timely apply appropriate treatments and to reduce economic costs. To end this, we designed molecular beacon-Au nanoparticle hybrid nanoprobes to improve the bacterial detection efficiency and sensitivity. Here, we show that the designed molecular beacon modified Au nanoparticles could specifically recognize synthetic DNAs targets and can readily detect targets in clinical samples. Moreover, the hybrid nanoprobes can recognize Escherichia coli within an hour at a concentration of 10(2) cfu/ml, which is 1000-folds sensitive than using molecular beacon directly. Our results show that the molecular beacon-Au nanoparticle hybrid nanoprobes have great potential in medical and biological applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Molecular dynamics study of dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Qi-Long; Huang, Duo-Hui; Yang, Jun-Sheng; Wan, Min-Jie; Wang, Fan-Hou, E-mail: eatonch@gmail.com

    2014-10-01

    Molecular dynamics simulations were applied to study the dynamic and structural properties of supercooled liquid and glassy iron in the rapid-cooling processes. The mean-square displacement and the non-Gaussian parameter were used to describe the dynamic properties. The evolution of structural properties was investigated using the pair distribution functions and bond-angle distribution functions. Results for dynamic and structural relaxations indicate that the dynamic features are consistently correlated with the structure evolution, and there are three temperature regions as the temperature decreases: (1) at higher temperatures (1500 K, 1300 K, and 1100 K), the system remains in the liquid characteristics during the overall relaxation process. (2) At medial temperatures (1050 K, 900 K, and 700 K), a fast β-relaxation is followed by a much slower α-relaxation. There is a little change in the structural properties in the β-relaxation region, while major configuration rearrangements occurred in the α-relaxation range and the crystallization process was completed at the end of α-relaxation region. (3) At lower temperature (500 K), the system shows glassy characteristics during the overall relaxation process. In addition, the melting temperature, glass transition temperature and diffusion coefficients of supercooled liquid iron are also computed.

  12. Molecular Evolution of the dotA Gene in Legionella pneumophila

    OpenAIRE

    Ko, Kwan Soo; Hong, Seong Karp; Lee, Hae Kyung; Park, Mi-Yeoun; Kook, Yoon-Hoh

    2003-01-01

    The molecular evolution of dotA, which is related to the virulence of Legionella pneumophila, was investigated by comparing the sequences of 15 reference strains (serogroups 1 to 15). It was found that dotA has a complex mosaic structure. The whole dotA gene of Legionella pneumophila subsp. pneumophila serogroups 2, 6, and 12 has been transferred from Legionella pneumophila subsp. fraseri. A discrepancy was found between the trees inferred from the nucleotide and deduced amino acid sequences ...

  13. The molecular origin and evolution of dim-light vision in mammals.

    Science.gov (United States)

    Bickelmann, Constanze; Morrow, James M; Du, Jing; Schott, Ryan K; van Hazel, Ilke; Lim, Steve; Müller, Johannes; Chang, Belinda S W

    2015-11-01

    The nocturnal origin of mammals is a longstanding hypothesis that is considered instrumental for the evolution of endothermy, a potential key innovation in this successful clade. This hypothesis is primarily based on indirect anatomical inference from fossils. Here, we reconstruct the evolutionary history of rhodopsin--the vertebrate visual pigment mediating the first step in phototransduction at low-light levels--via codon-based model tests for selection, combined with gene resurrection methods that allow for the study of ancient proteins. Rhodopsin coding sequences were reconstructed for three key nodes: Amniota, Mammalia, and Theria. When expressed in vitro, all sequences generated stable visual pigments with λMAX values similar to the well-studied bovine rhodopsin. Retinal release rates of mammalian and therian ancestral rhodopsins, measured via fluorescence spectroscopy, were significantly slower than those of the amniote ancestor, indicating altered molecular function possibly related to nocturnality. Positive selection along the therian branch suggests adaptive evolution in rhodopsin concurrent with therian ecological diversification events during the Mesozoic that allowed for an exploration of the environment at varying light levels. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  14. Information Theory Broadens the Spectrum of Molecular Ecology and Evolution.

    Science.gov (United States)

    Sherwin, W B; Chao, A; Jost, L; Smouse, P E

    2017-12-01

    Information or entropy analysis of diversity is used extensively in community ecology, and has recently been exploited for prediction and analysis in molecular ecology and evolution. Information measures belong to a spectrum (or q profile) of measures whose contrasting properties provide a rich summary of diversity, including allelic richness (q=0), Shannon information (q=1), and heterozygosity (q=2). We present the merits of information measures for describing and forecasting molecular variation within and among groups, comparing forecasts with data, and evaluating underlying processes such as dispersal. Importantly, information measures directly link causal processes and divergence outcomes, have straightforward relationship to allele frequency differences (including monotonicity that q=2 lacks), and show additivity across hierarchical layers such as ecology, behaviour, cellular processes, and nongenetic inheritance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Molecular mechanisms involved in convergent crop domestication.

    Science.gov (United States)

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Molecular Evolution of Aralkylamine N-Acetyltransferase in Fish: A Genomic Survey

    Directory of Open Access Journals (Sweden)

    Jia Li

    2015-12-01

    Full Text Available All living organisms synchronize biological functions with environmental changes; melatonin plays a vital role in regulating daily and seasonal variations. Due to rhythmic activity of the timezyme aralkylamine N-acetyltransferase (AANAT, the blood level of melatonin increases at night and decreases during daytime. Whereas other vertebrates have a single form of AANAT, bony fishes possess various isoforms of aanat genes, though the reasons are still unclear. Here, we have taken advantage of multiple unpublished teleost aanat sequences to explore and expand our understanding of the molecular evolution of aanat in fish. Our results confirm that two rounds of whole-genome duplication (WGD led to the existence of three fish isoforms of aanat, i.e., aanat1a, aanat1b, and aanat2; in addition, gene loss led to the absence of some forms from certain special fish species. Furthermore, we suggest the different roles of two aanat1s in amphibious mudskippers, and speculate that the loss of aanat1a, may be related to terrestrial vision change. Several important sites of AANAT proteins and regulatory elements of aanat genes were analyzed for structural comparison and functional forecasting, respectively, which provides insights into the molecular evolution of the differences between AANAT1 and AANAT2.

  17. Increase in Complexity and Information through Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Peter Schuster

    2016-11-01

    Full Text Available Biological evolution progresses by essentially three different mechanisms: (I optimization of properties through natural selection in a population of competitors; (II development of new capabilities through cooperation of competitors caused by catalyzed reproduction; and (III variation of genetic information through mutation or recombination. Simplified evolutionary processes combine two out of the three mechanisms: Darwinian evolution combines competition (I and variation (III and is represented by the quasispecies model, major transitions involve cooperation (II of competitors (I, and the third combination, cooperation (II and variation (III provides new insights in the role of mutations in evolution. A minimal kinetic model based on simple molecular mechanisms for reproduction, catalyzed reproduction and mutation is introduced, cast into ordinary differential equations (ODEs, and analyzed mathematically in form of its implementation in a flow reactor. Stochastic aspects are investigated through computer simulation of trajectories of the corresponding chemical master equations. The competition-cooperation model, mechanisms (I and (II, gives rise to selection at low levels of resources and leads to symbiontic cooperation in case the material required is abundant. Accordingly, it provides a kind of minimal system that can undergo a (major transition. Stochastic effects leading to extinction of the population through self-enhancing oscillations destabilize symbioses of four or more partners. Mutations (III are not only the basis of change in phenotypic properties but can also prevent extinction provided the mutation rates are sufficiently large. Threshold phenomena are observed for all three combinations: The quasispecies model leads to an error threshold, the competition-cooperation model allows for an identification of a resource-triggered bifurcation with the transition, and for the cooperation-mutation model a kind of stochastic threshold for

  18. New Gene Evolution: Little Did We Know

    Science.gov (United States)

    Long, Manyuan; VanKuren, Nicholas W.; Chen, Sidi; Vibranovski, Maria D.

    2014-01-01

    Genes are perpetually added to and deleted from genomes during evolution. Thus, it is important to understand how new genes are formed and evolve as critical components of the genetic systems determining the biological diversity of life. Two decades of effort have shed light on the process of new gene origination, and have contributed to an emerging comprehensive picture of how new genes are added to genomes, ranging from the mechanisms that generate new gene structures to the presence of new genes in different organisms to the rates and patterns of new gene origination and the roles of new genes in phenotypic evolution. We review each of these aspects of new gene evolution, summarizing the main evidence for the origination and importance of new genes in evolution. We highlight findings showing that new genes rapidly change existing genetic systems that govern various molecular, cellular and phenotypic functions. PMID:24050177

  19. Chemical evolution of the Galaxy at the initial rapid-collapse phase

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Istituto di Astronomia

    1978-04-01

    Equations for the chemical evolution of the Galaxy are derived, accounting for (i) the dynamical evolution of the Galaxy (i.e. the collapse of the proto-galaxy) and (ii) either a variable mass-spectrum in the birth-rate stellar function of the type B(m,t) = psi(t)phi(m,t), or a constant mass-spectrum with variable lower mass limit for star birth: msub(mf) = msub(mf)(Z). Simple equations are adopted for the collapse of the proto-galaxy, accounting for the experimental data (i.e. axial ratio and major semi-axis) relative to the halo and to the disk, and best fitted for a rapid collapse; gas density is assumed to be always uniform. Numerical computations of several cases show that there is qualitative agreement with the experimental data relative to the Z(t) function when: (i) the mass-spectrum is nearly constant in time: phi(m,t) approximately phi(m) = msup(-2.35); (ii) the efficiency phi(t) proportional to rhosup(..cap alpha..) is sufficiently high; moreover, the super metallic effect (SME) takes place for ..cap alpha.. greater than a given value (..cap alpha.. > approximately 1.5); (iii) the shorter the collapse time Tsub(c), the more rapid is the initial increase of metallicity, the asymptotic value being left nearly unaltered. The theoretical results are not in complete agreement with the observed data bearing on the Nsub(n)(Z) function (Nsub(n) is the number of stars whose Main-Sequence lifetime is not less than the age of the Galaxy), while a hypothesis of star formation with different efficiencies in different zones of the Galaxy, and successive stellar mixing from zone to zone, is not inconsistent with such data.

  20. Chemical evolution of the Galaxy at the initial rapid-collapse phase

    International Nuclear Information System (INIS)

    Caimmi, R.

    1978-01-01

    Equations for the chemical evolution of the Galaxy are derived, accounting for (i) the dynamical evolution of the Galaxy (i.e. the collapse of the proto-galaxy) and (ii) either a variable mass-spectrum in the birth-rate stellar function of the type B(m,t) = psi(t)phi(m,t), or a constant mass-spectrum with variable lower mass limit for star birth: msub(mf) = msub(mf)(Z). Simple equations are adopted for the collapse of the proto-galaxy, accounting for the experimental data (i.e. axial ratio and major semi-axis) relative to the halo and to the disk, and best fitted for a rapid collapse; gas density is assumed to be always uniform. Numerical computations of several cases show that there is qualitative agreement with the experimental data relative to the Z(t) function when: (i) the mass-spectrum is nearly constant in time: phi(m,t) approximately phi(m) = msup(-2.35); (ii) the efficiency phi(t) proportional to rhosup(α) is sufficiently high; moreover, the super metallic effect (SME) takes place for α greater than a given value (α > approximately 1.5); (iii) the shorter the collapse time Tsub(c), the more rapid is the initial increase of metallicity, the asymptotic value being left nearly unaltered. The theoretical results are not in complete agreement with the observed data bearing on the Nsub(n)(Z) function (Nsub(n) is the number of stars whose Main-Sequence lifetime is not less than the age of the Galaxy), while a hypothesis of star formation with different efficiencies in different zones of the Galaxy, and successive stellar mixing from zone to zone, is not inconsistent with such data. (Auth.)

  1. Degeneration and domestication of a selfish gene in yeast: molecular evolution versus site-directed mutagenesis.

    Science.gov (United States)

    Koufopanou, Vassiliki; Burt, Austin

    2005-07-01

    VDE is a homing endonuclease gene in yeasts with an unusual evolutionary history including horizontal transmission, degeneration, and domestication into the mating-type switching locus HO. We investigate here the effects of these features on its molecular evolution. In addition, we correlate rates of evolution with results from site-directed mutagenesis studies. Functional elements have lower rates of evolution than degenerate ones and higher conservation at functionally important sites. However, functionally important and unimportant sites are equally likely to have been involved in the evolution of new function during the domestication of VDE into HO. The domestication event also indicates that VDE has been lost in some species and that VDE has been present in yeasts for more than 50 Myr.

  2. Rapid Molecular Identification of Human Taeniid Cestodes by Pyrosequencing Approach

    Science.gov (United States)

    Thanchomnang, Tongjit; Tantrawatpan, Chairat; Intapan, Pewpan M.; Sanpool, Oranuch; Janwan, Penchom; Lulitanond, Viraphong; Tourtip, Somjintana; Yamasaki, Hiroshi; Maleewong, Wanchai

    2014-01-01

    Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse. PMID:24945530

  3. Contrasted patterns of molecular evolution in dominant and recessive self-incompatibility haplotypes in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Pauline M Goubet

    Full Text Available Self-incompatibility has been considered by geneticists a model system for reproductive biology and balancing selection, but our understanding of the genetic basis and evolution of this molecular lock-and-key system has remained limited by the extreme level of sequence divergence among haplotypes, resulting in a lack of appropriate genomic sequences. In this study, we report and analyze the full sequence of eleven distinct haplotypes of the self-incompatibility locus (S-locus in two closely related Arabidopsis species, obtained from individual BAC libraries. We use this extensive dataset to highlight sharply contrasted patterns of molecular evolution of each of the two genes controlling self-incompatibility themselves, as well as of the genomic region surrounding them. We find strong collinearity of the flanking regions among haplotypes on each side of the S-locus together with high levels of sequence similarity. In contrast, the S-locus region itself shows spectacularly deep gene genealogies, high variability in size and gene organization, as well as complete absence of sequence similarity in intergenic sequences and striking accumulation of transposable elements. Of particular interest, we demonstrate that dominant and recessive S-haplotypes experience sharply contrasted patterns of molecular evolution. Indeed, dominant haplotypes exhibit larger size and a much higher density of transposable elements, being matched only by that in the centromere. Overall, these properties highlight that the S-locus presents many striking similarities with other regions involved in the determination of mating-types, such as sex chromosomes in animals or in plants, or the mating-type locus in fungi and green algae.

  4. Dracula's children: molecular evolution of vampire bat venom.

    Science.gov (United States)

    Low, Dolyce H W; Sunagar, Kartik; Undheim, Eivind A B; Ali, Syed A; Alagon, Alejandro C; Ruder, Tim; Jackson, Timothy N W; Pineda Gonzalez, Sandy; King, Glenn F; Jones, Alun; Antunes, Agostinho; Fry, Bryan G

    2013-08-26

    While vampire bat oral secretions have been the subject of intense research, efforts have concentrated only on two components: DSPA (Desmodus rotundus salivary plasminogen activator) and Draculin. The molecular evolutionary history of DSPA has been elucidated, while conversely draculin has long been known from only a very small fragment and thus even the basic protein class was not even established. Despite the fact that vampire bat venom has a multitude of effects unaccounted by the documented bioactivities of DSPA and draculin, efforts have not been made to establish what other bioactive proteins are secreted by their submaxillary gland. In addition, it has remained unclear whether the anatomically distinct anterior and posterior lobes of the submaxillary gland are evolving on separate gene expression trajectories or if they remain under the shared genetic control. Using a combined proteomic and transcriptomic approach, we show that identical proteins are simultaneously expressed in both lobes. In addition to recovering the known structural classes of DSPA, we recovered a novel DSPA isoform as well as obtained a very large sequence stretch of draculin and thus established that it is a mutated version of the lactotransferrin scaffold. This study reveals a much more complex secretion profile than previously recognised. In addition to obtaining novel versions of scaffolds convergently recruited into other venoms (allergen-like, CRiSP, kallikrein, Kunitz, lysozyme), we also documented novel expression of small peptides related to calcitonin, PACAP, and statherin. Other overexpressed protein types included BPI-fold, lacritin, and secretoglobin. Further, we investigate the molecular evolution of various vampire bat venom-components and highlight the dominant role of positive selection in the evolution of these proteins. Conspicuously many of the proteins identified in the proteome were found to be homologous to proteins with known activities affecting vasodilation and

  5. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  6. Molecular Phylogenetic: Organism Taxonomy Method Based on Evolution History

    Directory of Open Access Journals (Sweden)

    N.L.P Indi Dharmayanti

    2011-03-01

    Full Text Available Phylogenetic is described as taxonomy classification of an organism based on its evolution history namely its phylogeny and as a part of systematic science that has objective to determine phylogeny of organism according to its characteristic. Phylogenetic analysis from amino acid and protein usually became important area in sequence analysis. Phylogenetic analysis can be used to follow the rapid change of a species such as virus. The phylogenetic evolution tree is a two dimensional of a species graphic that shows relationship among organisms or particularly among their gene sequences. The sequence separation are referred as taxa (singular taxon that is defined as phylogenetically distinct units on the tree. The tree consists of outer branches or leaves that represents taxa and nodes and branch represent correlation among taxa. When the nucleotide sequence from two different organism are similar, they were inferred to be descended from common ancestor. There were three methods which were used in phylogenetic, namely (1 Maximum parsimony, (2 Distance, and (3 Maximum likehoood. Those methods generally are applied to construct the evolutionary tree or the best tree for determine sequence variation in group. Every method is usually used for different analysis and data.

  7. Quantum state specific reactant preparation in a molecular beam by rapid adiabatic passage

    Science.gov (United States)

    Chadwick, Helen; Hundt, P. Morten; van Reijzen, Maarten E.; Yoder, Bruce L.; Beck, Rainer D.

    2014-01-01

    Highly efficient preparation of molecules in a specific rovibrationally excited state for gas/surface reactivity measurements is achieved in a molecular beam using tunable infrared (IR) radiation from a single mode continuous wave optical parametric oscillator (cw-OPO). We demonstrate that with appropriate focusing of the IR radiation, molecules in the molecular beam crossing the fixed frequency IR field experience a Doppler tuning that can be adjusted to achieve complete population inversion of a two-level system by rapid adiabatic passage (RAP). A room temperature pyroelectric detector is used to monitor the excited fraction in the molecular beam and the population inversion is detected and quantified using IR bleaching by a second IR-OPO. The second OPO is also used for complete population transfer to an overtone or combination vibration via double resonance excitation using two spatially separated RAP processes.

  8. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution.

    Science.gov (United States)

    Guillén, Yolanda; Ruiz, Alfredo

    2012-02-01

    Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  9. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Directory of Open Access Journals (Sweden)

    Guillén Yolanda

    2012-02-01

    Full Text Available Abstract Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution.

  10. Gene alterations at Drosophila inversion breakpoints provide prima facie evidence for natural selection as an explanation for rapid chromosomal evolution

    Science.gov (United States)

    2012-01-01

    Background Chromosomal inversions have been pervasive during the evolution of the genus Drosophila, but there is significant variation between lineages in the rate of rearrangement fixation. D. mojavensis, an ecological specialist adapted to a cactophilic niche under extreme desert conditions, is a chromosomally derived species with ten fixed inversions, five of them not present in any other species. Results In order to explore the causes of the rapid chromosomal evolution in D. mojavensis, we identified and characterized all breakpoints of seven inversions fixed in chromosome 2, the most dynamic one. One of the inversions presents unequivocal evidence for its generation by ectopic recombination between transposon copies and another two harbor inverted duplications of non-repetitive DNA at the two breakpoints and were likely generated by staggered single-strand breaks and repair by non-homologous end joining. Four out of 14 breakpoints lay in the intergenic region between preexisting duplicated genes, suggesting an adaptive advantage of separating previously tightly linked duplicates. Four out of 14 breakpoints are associated with transposed genes, suggesting these breakpoints are fragile regions. Finally two inversions contain novel genes at their breakpoints and another three show alterations of genes at breakpoints with potential adaptive significance. Conclusions D. mojavensis chromosomal inversions were generated by multiple mechanisms, an observation that does not provide support for increased mutation rate as explanation for rapid chromosomal evolution. On the other hand, we have found a number of gene alterations at the breakpoints with putative adaptive consequences that directly point to natural selection as the cause of D. mojavensis rapid chromosomal evolution. PMID:22296923

  11. Molecular epidemiology and evolution of fish Novirhabdoviruses

    Science.gov (United States)

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  12. Near neutrality: leading edge of the neutral theory of molecular evolution.

    Science.gov (United States)

    Hughes, Austin L

    2008-01-01

    The nearly neutral theory represents a development of Kimura's neutral theory of molecular evolution that makes testable predictions that go beyond a mere null model. Recent evidence has strongly supported several of these predictions, including the prediction that slightly deleterious variants will accumulate in a species that has undergone a severe bottleneck or in cases where recombination is reduced or absent. Because bottlenecks often occur in speciation and slightly deleterious mutations in coding regions will usually be nonsynonymous, we should expect that the ratio of nonsynonymous to synonymous fixed differences between species should often exceed the ratio of nonsynonymous to synonymous polymorphisms within species. Many data support this prediction, although they have often been wrongly interpreted as evidence for positive Darwinian selection. The use of conceptually flawed tests for positive selection has become widespread in recent years, seriously harming the quest for an understanding of genome evolution. When properly analyzed, many (probably most) claimed cases of positive selection will turn out to involve the fixation of slightly deleterious mutations by genetic drift in bottlenecked populations. Slightly deleterious variants are a transient feature of evolution in the long term, but they have substantially affected contemporary species, including our own.

  13. Molecular characterization and volatility evolution of α-pinene ozonolysis SOA during isothermal evaporations

    Science.gov (United States)

    D'Ambro, E.; Schobesberger, S.; Lopez-Hilfiker, F.; Shilling, J. E.; Lee, B. H.; Thornton, J. A.

    2017-12-01

    α-Pinene (C10H16), the most abundantly emitted monoterpene, is a large contributor to global biogenic secondary organic aerosol (SOA) budgets due to its high SOA yields upon oxidation. We probe the volatility and evaporation behavior upon dilution of α-pinene SOA to further our understanding of the nascent volatility distribution, viscosity, and how these evolve in time absent photochemical oxidation. We present molecular composition measurements of the gas and particle phases of α-pinene ozonolysis SOA formed at 0% and 50% relative humidity (RH), followed by room-temperature evaporation in ultra-high purity N2 humidified to 20-90% RH. Experiments were performed in the Pacific Northwest National Laboratory 10.6 m3 and the University of Washington 0.7 m3 environmental chambers utilizing a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time of flight chemical ionization mass spectrometer utilizing iodide adduct ionization. We present novel insights into the total mass that evaporates as a function of time from 10 min to 24 hours without heating, the molecular speciation of the evaporate, as well as the effective volatility and composition of the SOA mass remaining. Consistent with previous studies, we find two stages of evaporation: a rapid loss of a large portion of the total signal over the course of ≤3 hours, followed by a stage of much slower evaporation over the proceeding 21 hours. Varying the RH of formation effects evaporation rate on timescales ≤3 hours, however the mass fraction remaining after 24 hours converges to 30-50% under all formation and evaporation RHs. We simulate the evaporation behavior and remaining fractions desorbed via temperature programmed thermal desorption to derive effective saturation vapor concentrations, mass accommodation coefficients, and rates of chemical evolution producing both higher and lower volatility components during the evaporation time period.

  14. Rapid molecular identification of human taeniid cestodes by pyrosequencing approach.

    Directory of Open Access Journals (Sweden)

    Tongjit Thanchomnang

    Full Text Available Taenia saginata, T. solium, and T. asiatica are causative agents of taeniasis in humans. The difficulty of morphological identification of human taeniids can lead to misdiagnosis or confusion. To overcome this problem, several molecular methods have been developed, but use of these tends to be time-consuming. Here, a rapid and high-throughput pyrosequencing approach was developed for the identification of three human taeniids originating from various countries. Primers targeting the mitochondrial cytochrome c oxidase subunit 1 (cox1 gene of the three Taenia species were designed. Variations in a 26-nucleotide target region were used for identification. The reproducibility and accuracy of the pyrosequencing technology was confirmed by Sanger sequencing. This technique will be a valuable tool to distinguish between sympatric human taeniids that occur in Thailand, Asia and Pacific countries. This method could potentially be used for the molecular identification of the taeniid species that might be associated with suspicious cysts and lesions, or cyst residues in humans or livestock at the slaughterhouse.

  15. Role of Chromosome Changes in Evolution and Diversity

    Directory of Open Access Journals (Sweden)

    Kornsorn Srikulnath

    2015-12-01

    Full Text Available The karyotypes of most species of crocodilians were studied using conventional and molecular cytogenetics. These provided an important contribution of chromosomal rearrangements for the evolutionary processes of Crocodylia and Sauropsida (birds and reptiles. The karyotypic features of crocodilians contain small diploid chromosome numbers (30~42, with little interspecific variation of the chromosome arm number (fundamental number among crocodiles (56~60. This suggested that centric fusion and/or fission events occurred in the lineage, leading to crocodilian evolution and diversity. The chromosome numbers of Alligator, Caiman, Melanosuchus, Paleosuchus, Gavialis, Tomistoma, Mecistops, and Osteolaemus were stable within each genus, whereas those of Crocodylus (crocodylians varied within the taxa. This agreed with molecular phylogeny that suggested a highly recent radiation of Crocodylus species. Karyotype analysis also suggests the direction of molecular phylogenetic placement among Crocodylus species and their migration from the Indo-Pacific to Africa and The New World. Crocodylus species originated from an ancestor in the Indo-Pacific around 9~16 million years ago (MYA in the mid-Miocene, with a rapid radiation and dispersion into Africa 8~12 MYA. This was followed by a trans-Atlantic dispersion to the New World between 4~8 MYA in the Pliocene. The chromosomes provided a better understanding of crocodilian evolution and diversity, which will be useful for further study of the genome evolution in Crocodylia.

  16. Rapid molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus L., based on large Y-chromosomal insertions.

    Science.gov (United States)

    Bakker, Theo C M; Giger, Thomas; Frommen, Joachim G; Largiadèr, Carlo R

    2017-08-01

    There is a need for rapid and reliable molecular sexing of three-spined sticklebacks, Gasterosteus aculeatus, the supermodel species for evolutionary biology. A DNA region at the 5' end of the sex-linked microsatellite Gac4202 was sequenced for the X chromosome of six females and the Y chromosome of five males from three populations. The Y chromosome contained two large insertions, which did not recombine with the phenotype of sex in a cross of 322 individuals. Genetic variation (SNPs and indels) within the insertions was smaller than on flanking DNA sequences. Three molecular PCR-based sex tests were developed, in which the first, the second or both insertions were covered. In five European populations (from DE, CH, NL, GB) of three-spined sticklebacks, tests with both insertions combined showed two clearly separated bands on agarose minigels in males and one band in females. The tests with the separate insertions gave similar results. Thus, the new molecular sexing method gave rapid and reliable results for sexing three-spined sticklebacks and is an improvement and/or alternative to existing methods.

  17. Molecular modeling of the microstructure evolution during carbon fiber processing

    Science.gov (United States)

    Desai, Saaketh; Li, Chunyu; Shen, Tongtong; Strachan, Alejandro

    2017-12-01

    The rational design of carbon fibers with desired properties requires quantitative relationships between the processing conditions, microstructure, and resulting properties. We developed a molecular model that combines kinetic Monte Carlo and molecular dynamics techniques to predict the microstructure evolution during the processes of carbonization and graphitization of polyacrylonitrile (PAN)-based carbon fibers. The model accurately predicts the cross-sectional microstructure of the fibers with the molecular structure of the stabilized PAN fibers and physics-based chemical reaction rates as the only inputs. The resulting structures exhibit key features observed in electron microcopy studies such as curved graphitic sheets and hairpin structures. In addition, computed X-ray diffraction patterns are in good agreement with experiments. We predict the transverse moduli of the resulting fibers between 1 GPa and 5 GPa, in good agreement with experimental results for high modulus fibers and slightly lower than those of high-strength fibers. The transverse modulus is governed by sliding between graphitic sheets, and the relatively low value for the predicted microstructures can be attributed to their perfect longitudinal texture. Finally, the simulations provide insight into the relationships between chemical kinetics and the final microstructure; we observe that high reaction rates result in porous structures with lower moduli.

  18. "Simulated molecular evolution" or computer-generated artifacts?

    Science.gov (United States)

    Darius, F; Rojas, R

    1994-11-01

    1. The authors define a function with value 1 for the positive examples and 0 for the negative ones. They fit a continuous function but do not deal at all with the error margin of the fit, which is almost as large as the function values they compute. 2. The term "quality" for the value of the fitted function gives the impression that some biological significance is associated with values of the fitted function strictly between 0 and 1, but there is no justification for this kind of interpretation and finding the point where the fit achieves its maximum does not make sense. 3. By neglecting the error margin the authors try to optimize the fitted function using differences in the second, third, fourth, and even fifth decimal place which have no statistical significance. 4. Even if such a fit could profit from more data points, the authors should first prove that the region of interest has some kind of smoothness, that is, that a continuous fit makes any sense at all. 5. "Simulated molecular evolution" is a misnomer. We are dealing here with random search. Since the margin of error is so large, the fitted function does not provide statistically significant information about the points in search space where strings with cleavage sites could be found. This implies that the method is a highly unreliable stochastic search in the space of strings, even if the neural network is capable of learning some simple correlations. 6. Classical statistical methods are for these kind of problems with so few data points clearly superior to the neural networks used as a "black box" by the authors, which in the way they are structured provide a model with an error margin as large as the numbers being computed.7. And finally, even if someone would provide us with a function which separates strings with cleavage sites from strings without them perfectly, so-called simulated molecular evolution would not be better than random selection.Since a perfect fit would only produce exactly ones or

  19. Quantum Dot-Fullerene Based Molecular Beacon Nanosensors for Rapid, Highly Sensitive Nucleic Acid Detection.

    Science.gov (United States)

    Liu, Ye; Kannegulla, Akash; Wu, Bo; Cheng, Li-Jing

    2018-05-15

    Spherical fullerene (C 60 ) can quench the fluorescence of a quantum dot (QD) through energy transfer and charge transfer processes, with the quenching efficiency regulated by the number of proximate C 60 on each QD. With the quenching property and its small size compared with other nanoparticle-based quenchers, it is advantageous to group a QD reporter and multiple C 60 -labeled oligonucleotide probes to construct a molecular beacon (MB) probe for sensitive, robust nucleic acid detection. We demonstrated a rapid, high-sensitivity DNA detection method using the nanosensors composed of QD-C 60 based MBs carried by magnetic nanoparticles (MNPs). The assay was accelerated by first dispersing the nanosensors in analytes for highly efficient DNA capture resulting from short-distance 3-dimensional diffusion of targets to the sensor surface and then concentrating the nanosensors to a substrate by magnetic force to amplify the fluorescence signal for target quantification. The enhanced mass transport enabled a rapid detection (< 10 min) with a small sample volume (1-10 µl). The high signal-to-noise ratio produced by the QD-C 60 pairs and magnetic concentration yielded a detection limit of 100 fM (~106 target DNA copies for a 10 µl analyte). The rapid, sensitive, label-free detection method will benefit the applications in point-of-care molecular diagnostic technologies.

  20. The Rapid Evolution of the Exciting Star of the Stingray Nebula

    Science.gov (United States)

    Reindl, N.; Rauch, T.; Parthasarathy, M.; Werner, K.; Kruk, J.W.; Hamann, W. R.; Sander, A.; Todt, H.

    2014-01-01

    Context: SAO244567, the exciting star of the Stingray nebula, is rapidly evolving. Previous analyses suggested that it has heated up from an effective temperature of about 21 kK in 1971 to over 50 kK in the 1990s. Canonical post-asymptotic giant branch evolution suggests a relatively high mass while previous analyses indicate a low-mass star. Aims: A comprehensive model-atmosphere analysis of UV and optical spectra taken during 1988-2006 should reveal the detailed temporal evolution of its atmospheric parameters and provide explanations for the unusually fast evolution. Methods: Fitting line profiles from static and expanding non-LTE model atmospheres to the observed spectra allowed us to study the temporal change of effective temperature, surface gravity, mass-loss rate, and terminal wind velocity. In addition, we determined the chemical composition of the atmosphere. Results: We find that the central star has steadily increased its effective temperature from 38 kK in 1988 to a peak value of 60 kK in 2002. During the same time, the star was contracting, as concluded from an increase in surface gravity from log g = 4.8 to 6.0 and a drop in luminosity. Simultaneously, the mass-loss rate declined from log(M/M (solar mass) yr (exp -1)) = -9.0 to -11.6 and the terminal wind velocity increased from v (infinity) = 1800 km s (exp -1) to 2800 km s (exp -1). Since around 2002, the star stopped heating and has cooled down again to 55 kK by 2006. It has a largely solar surface composition with the exception of slightly subsolar carbon, phosphorus, and sulfur. The results are discussed by considering different evolutionary scenarios. Conclusions: The position of SAO244567 in the log T (sub eff) -log g plane places the star in the region of sdO stars. By comparison with stellar-evolution calculations, we confirm that SAO244567 must be a low-mass star (M nebula with a kinematical age of only about 1000 years. We speculate that the star could be a late He-shell flash object

  1. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    Science.gov (United States)

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  2. Evolution of the metazoan mitochondrial replicase.

    Science.gov (United States)

    Oliveira, Marcos T; Haukka, Jani; Kaguni, Laurie S

    2015-03-03

    The large number of complete mitochondrial DNA (mtDNA) sequences available for metazoan species makes it a good system for studying genome diversity, although little is known about the mechanisms that promote and/or are correlated with the evolution of this organellar genome. By investigating the molecular evolutionary history of the catalytic and accessory subunits of the mtDNA polymerase, pol γ, we sought to develop mechanistic insight into its function that might impact genome structure by exploring the relationships between DNA replication and animal mitochondrial genome diversity. We identified three evolutionary patterns among metazoan pol γs. First, a trend toward stabilization of both sequence and structure occurred in vertebrates, with both subunits evolving distinctly from those of other animal groups, and acquiring at least four novel structural elements, the most important of which is the HLH-3β (helix-loop-helix, 3 β-sheets) domain that allows the accessory subunit to homodimerize. Second, both subunits of arthropods and tunicates have become shorter and evolved approximately twice as rapidly as their vertebrate homologs. And third, nematodes have lost the gene for the accessory subunit, which was accompanied by the loss of its interacting domain in the catalytic subunit of pol γ, and they show the highest rate of molecular evolution among all animal taxa. These findings correlate well with the mtDNA genomic features of each group described above, and with their modes of DNA replication, although a substantive amount of biochemical work is needed to draw conclusive links regarding the latter. Describing the parallels between evolution of pol γ and metazoan mtDNA architecture may also help in understanding the processes that lead to mitochondrial dysfunction and to human disease-related phenotypes. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Atomic and electronic structure transformations of silver nanoparticles under rapid cooling conditions

    OpenAIRE

    Lobato, I.; Rojas, J.; Landauro, C. V.; Torres, J.

    2008-01-01

    The structural evolution and dynamics of silver nanodrops Ag${}_{2896}$ (4.4 nm in diameter) during rapid cooling conditions has been studied by means of molecular dynamics simulations and electronic density of state calculations. The interaction of silver atoms is modeled by a tight-binding semiempirical interatomic potential proposed by Cleri and Rosato. The pair correlation functions and the pair analysis technique is applied to reveal the structural transition in the process of solidifica...

  4. Parasite histories and novel phylogenetic tools: alternative approaches to inferring parasite evolution from molecular markers

    Czech Academy of Sciences Publication Activity Database

    Hypša, Václav

    2006-01-01

    Roč. 36, č. 2 (2006), s. 141-155 ISSN 0020-7519 R&D Projects: GA ČR GA206/04/0520 Institutional research plan: CEZ:AV0Z60220518 Keywords : molecular phylogeny * parasite evolution Subject RIV: EE - Microbiology, Virology Impact factor: 3.337, year: 2006

  5. Molecular representation of molar domain (volume), evolution equations, and linear constitutive relations for volume transport.

    Science.gov (United States)

    Eu, Byung Chan

    2008-09-07

    In the traditional theories of irreversible thermodynamics and fluid mechanics, the specific volume and molar volume have been interchangeably used for pure fluids, but in this work we show that they should be distinguished from each other and given distinctive statistical mechanical representations. In this paper, we present a general formula for the statistical mechanical representation of molecular domain (volume or space) by using the Voronoi volume and its mean value that may be regarded as molar domain (volume) and also the statistical mechanical representation of volume flux. By using their statistical mechanical formulas, the evolution equations of volume transport are derived from the generalized Boltzmann equation of fluids. Approximate solutions of the evolution equations of volume transport provides kinetic theory formulas for the molecular domain, the constitutive equations for molar domain (volume) and volume flux, and the dissipation of energy associated with volume transport. Together with the constitutive equation for the mean velocity of the fluid obtained in a previous paper, the evolution equations for volume transport not only shed a fresh light on, and insight into, irreversible phenomena in fluids but also can be applied to study fluid flow problems in a manner hitherto unavailable in fluid dynamics and irreversible thermodynamics. Their roles in the generalized hydrodynamics will be considered in the sequel.

  6. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria

    Directory of Open Access Journals (Sweden)

    Ochman Howard

    2009-09-01

    Full Text Available Abstract Background Because bacteria do not have a robust fossil record, attempts to infer the timing of events in their evolutionary history requires comparisons of molecular sequences. This use of molecular clocks is based on the assumptions that substitution rates for homologous genes or sites are fairly constant through time and across taxa. Violation of these conditions can lead to erroneous inferences and result in estimates that are off by orders of magnitude. In this study, we examine the consistency of substitution rates among a set of conserved genes in diverse bacterial lineages, and address the questions regarding the validity of molecular dating. Results By examining the evolution of 16S rRNA gene in obligate endosymbionts, which can be calibrated by the fossil record of their hosts, we found that the rates are consistent within a clade but varied widely across different bacterial lineages. Genome-wide estimates of nonsynonymous and synonymous substitutions suggest that these two measures are highly variable in their rates across bacterial taxa. Genetic drift plays a fundamental role in determining the accumulation of substitutions in 16S rRNA genes and at nonsynonymous sites. Moreover, divergence estimates based on a set of universally conserved protein-coding genes also exhibit low correspondence to those based on 16S rRNA genes. Conclusion Our results document a wide range of substitution rates across genes and bacterial taxa. This high level of variation cautions against the assumption of a universal molecular clock for inferring divergence times in bacteria. However, by applying relative-rate tests to homologous genes, it is possible to derive reliable local clocks that can be used to calibrate bacterial evolution. Reviewers This article was reviewed by Adam Eyre-Walker, Simonetta Gribaldo and Tal Pupko (nominated by Dan Graur.

  7. Rapid evolution in insect pests: the importance of space and time in population genomics studies.

    Science.gov (United States)

    Pélissié, Benjamin; Crossley, Michael S; Cohen, Zachary Paul; Schoville, Sean D

    2018-04-01

    Pest species in agroecosystems often exhibit patterns of rapid evolution to environmental and human-imposed selection pressures. Although the role of adaptive processes is well accepted, few insect pests have been studied in detail and most research has focused on selection at insecticide resistance candidate genes. Emerging genomic datasets provide opportunities to detect and quantify selection in insect pest populations, and address long-standing questions about mechanisms underlying rapid evolutionary change. We examine the strengths of recent studies that stratify population samples both in space (along environmental gradients and comparing ancestral vs. derived populations) and in time (using chronological sampling, museum specimens and comparative phylogenomics), resulting in critical insights on evolutionary processes, and providing new directions for studying pests in agroecosystems. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Molecular evolution across the Asteraceae: micro- and macroevolutionary processes.

    Science.gov (United States)

    Kane, Nolan C; Barker, Michael S; Zhan, Shing H; Rieseberg, Loren H

    2011-12-01

    The Asteraceae (Compositae) is a large family of over 20,000 wild, weedy, and domesticated species that comprise approximately 10% of all angiosperms, including annual and perennial herbs, shrubs and trees, and species on every continent except Antarctica. As a result, the Asteraceae provide a unique opportunity to understand the evolutionary genomics of lineage radiation and diversification at numerous phylogenetic scales. Using publicly available expressed sequence tags from 22 species representing four of the major Asteraceae lineages, we assessed neutral and nonneutral evolutionary processes across this diverse plant family. We used bioinformatic tools to identify candidate genes under selection in each species. Evolution at silent and coding sites were assessed for different Gene Ontology functional categories to compare rates of evolution over both short and long evolutionary timescales. Our results indicate that patterns of molecular change across the family are surprisingly consistent on a macroevolutionary timescale and much more so more than would be predicted from the analysis of one (or many) examples of microevolution. These analyses also point to particular classes of genes that may be crucial in shaping the radiation of this diverse plant family. Similar analyses of nuclear and chloroplast genes in six other plant families confirm that many of these patterns are common features of the plant kingdom.

  9. Molecular evolution and diversification of snake toxin genes, revealed by analysis of intron sequences.

    Science.gov (United States)

    Fujimi, T J; Nakajyo, T; Nishimura, E; Ogura, E; Tsuchiya, T; Tamiya, T

    2003-08-14

    The genes encoding erabutoxin (short chain neurotoxin) isoforms (Ea, Eb, and Ec), LsIII (long chain neurotoxin) and a novel long chain neurotoxin pseudogene were cloned from a Laticauda semifasciata genomic library. Short and long chain neurotoxin genes were also cloned from the genome of Laticauda laticaudata, a closely related species of L. semifasciata, by PCR. A putative matrix attached region (MAR) sequence was found in the intron I of the LsIII gene. Comparative analysis of 11 structurally relevant snake toxin genes (three-finger-structure toxins) revealed the molecular evolution of these toxins. Three-finger-structure toxin genes diverged from a common ancestor through two types of evolutionary pathways (long and short types), early in the course of evolution. At a later stage of evolution in each gene, the accumulation of mutations in the exons, especially exon II, by accelerated evolution may have caused the increased diversification in their functions. It was also revealed that the putative MAR sequence found in the LsIII gene was integrated into the gene after the species-level divergence.

  10. The Lifetimes and Evolution of Molecular Cloud Cores

    Science.gov (United States)

    Vázquez-Semadeni, Enrique; Kim, Jongsoo; Shadmehri, Mohsen; Ballesteros-Paredes, Javier

    2005-01-01

    We discuss the lifetimes and evolution of clumps and cores formed as turbulent density fluctuations in nearly isothermal molecular clouds. In order to maintain a broad perspective, we consider both the magnetic and nonmagnetic cases. In the latter, we argue that clumps are unlikely to reach a hydrostatic state if molecular clouds can in general be described as single-phase media with an effective polytropic exponent γecriticality of their ``parent clouds'' (the numerical boxes). In subcritical boxes, magnetostatic clumps do not form. A minority of moderately gravitationally bound clumps form, which however are dispersed by the turbulence in ~1.3 Myr, suggesting that these few longer lived cores can marginally be ``captured'' by AD to increase their mass-to-flux ratio and eventually collapse, although on timescales not significantly longer than the dynamical ones. In supercritical boxes, some cores manage to become locally supercritical and collapse in typical timescales of 2 tfc (~1 Myr). In the most supercritical simulation, a few longer lived cores are observed, which last for up to ~3 Myr, but these end up re-expanding rather than collapsing, because they are sub-Jeans in spite of being supercritical. Fewer clumps and cores form in these simulations than in their nonmagnetic counterpart. Our results suggest the following: (1) not all cores observed in molecular clouds will necessarily form stars and that a class of ``failed cores'' should exist, which will eventually redisperse and which may be related to the observed starless cores; (2) cores may be out-of-equilibrium, transient structures, rather than quasi-magnetostatic configurations; (3) the magnetic field may help reduce the star formation efficiency by reducing the probability of core formation, rather than by significantly delaying the collapse of individual cores, even in magnetically supercritical clouds.

  11. Molecular evolution of a novel family of putative calcium transporters.

    Directory of Open Access Journals (Sweden)

    Didier Demaegd

    Full Text Available The UPF0016 family is a group of uncharacterized membrane proteins, well conserved through evolution and defined by the presence of one or two copies of an E-Φ-G-D-(KR-(ST consensus motif. Our previous results have shown that two members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and might form a new group of cation/Ca2+ exchangers. Most members of the family are made of two homologous clusters of three transmembrane spans, separated by a central loop and assembled with an opposite orientation in the membrane. However, some bacterial members of the family have only one cluster of transmembrane domains. Among these 'single-domain membrane proteins' some cyanobacterial members were found as pairs of adjacent genes within the genome, but each gene was slightly different. We performed a bioinformatic analysis to propose the molecular evolution of the UPF0016 family and the emergence of the antiparallel topology. Our hypotheses were confirmed experimentally using functional complementation in yeast. This suggests an important and conserved function for UPF0016 proteins in a fundamental cellular process. We also show that members of the UPF0016 family share striking similarities, but no primary sequence homology, with members of the cation/Ca2+ exchangers (CaCA superfamily. Such similarities could be an example of convergent evolution, supporting the previous hypothesis that members of the UPF0016 family are cation/Ca2+ exchangers.

  12. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read–Write Genome Evolution as an Active Biological Process

    Directory of Open Access Journals (Sweden)

    James A. Shapiro

    2016-06-01

    Full Text Available The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess “Read–Write Genomes” they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.

  13. Rapid Molecular detection of citrus brown spot disease using ACT gene in Alternaria alternata

    Directory of Open Access Journals (Sweden)

    Hamid Moghimi

    2017-06-01

    Full Text Available Introduction:Using rapid detection methods is important for detection of plant pathogens and also prevention through spreading pests in agriculture. Citrus brown spot disease caused by pathogenic isolates of Alternaria alternata is a common disease in Iran. Materials and methods: In this study, for the first time a PCR based molecular method was used for rapid diagnosis of brown spot disease. Nine isolates of A. Alternata were isolated in PDA medium from different citrus gardens. The plant pathogenic activity was examined in tangerine leaves for isolates. Results showed that these isolates are the agents of brown spot disease. PCR amplification of specific ACT-toxin gene was performed for DNA extracted from A. alternata isolates, with 11 different fungal isolates as negative controls and 5 DNA samples extracted from soil. Results: Results showed that A. alternata, the causal agent of brown spot disease, can be carefully distinguished from other pathogenic agents by performing PCR amplification with specific primers for ACT toxin gene. Also, the results from Nested-PCR method confirmed the primary reaction and the specificity of A. alternata for brown spot disease. PCR results to control samples of the other standard fungal isolates, showed no amplification band. In addition, PCR with the DNA extracted from contaminated soils confirmed the presence of ACT toxin gene. Discussion and conclusion: Molecular procedure presented here can be used in rapid identification and prevention of brown spot infection in citrus gardens all over the country.

  14. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N W; Casewell, Nicholas R; Undheim, Eivind A B; Vidal, Nicolas; Ali, Syed A; King, Glenn F; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  15. Fluorescence In Situ Hybridization (FISH-Based Karyotyping Reveals Rapid Evolution of Centromeric and Subtelomeric Repeats in Common Bean (Phaseolus vulgaris and Relatives

    Directory of Open Access Journals (Sweden)

    Aiko Iwata-Otsubo

    2016-04-01

    Full Text Available Fluorescence in situ hybridization (FISH-based karyotyping is a powerful cytogenetics tool to study chromosome organization, behavior, and chromosome evolution. Here, we developed a FISH-based karyotyping system using a probe mixture comprised of centromeric and subtelomeric satellite repeats, 5S rDNA, and chromosome-specific BAC clones in common bean, which enables one to unambiguously distinguish all 11 chromosome pairs. Furthermore, we applied the karyotyping system to several wild relatives and landraces of common bean from two distinct gene pools, as well as other related Phaseolus species, to investigate repeat evolution in the genus Phaseolus. Comparison of karyotype maps within common bean indicates that chromosomal distribution of the centromeric and subtelomeric satellite repeats is stable, whereas the copy number of the repeats was variable, indicating rapid amplification/reduction of the repeats in specific genomic regions. In Phaseolus species that diverged approximately 2–4 million yr ago, copy numbers of centromeric repeats were largely reduced or diverged, and chromosomal distributions have changed, suggesting rapid evolution of centromeric repeats. We also detected variation in the distribution pattern of subtelomeric repeats in Phaseolus species. The FISH-based karyotyping system revealed that satellite repeats are actively and rapidly evolving, forming genomic features unique to individual common bean accessions and Phaseolus species.

  16. Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX).

    Science.gov (United States)

    Huang, Chao-June; Lin, Hsin-I; Shiesh, Shu-Chu; Lee, Gwo-Bin

    2010-03-15

    The systematic evolution of ligands by exponential enrichment (SELEX) is an experimental procedure that allows screening of given molecular targets by desired binding affinities from an initial random pool of oligonucleotides and oligomers. The final products of SELEX are usually referred as aptamers, which are recognized as promising molecules for a variety of biomedical applications. However, SELEX is an iterative process requiring multiple rounds of extraction and amplification that demands significant time and labor. Therefore, this study presents a novel, automatic, miniature SELEX platform. As a demonstration, the rapid screening of C-reactive protein (CRP) aptamers was performed. By utilizing microfluidic technologies and magnetic beads conjugated with CRP, aptamers with a high affinity to CRP were extracted from a random single-strand deoxyribonucleic acid (ssDNA) pool. These aptamers were further amplified by an on-chip polymerase chain reaction (PCR) process. After five consecutive extraction and amplification cycles, a specific aptamer with the highest affinity was screened automatically. The screened aptamers were used as a recognition molecule for the detection of CRP. The developed microsystem demonstrated fast screening of CRP aptamers and can be used as a powerful tool to select analyte-specific aptamers for biomedical applications. (c) 2009 Elsevier B.V. All rights reserved.

  17. Molecular Evolution and Functional Divergence of Trace Amine-Associated Receptors.

    Directory of Open Access Journals (Sweden)

    Seong-Il Eyun

    Full Text Available Trace amine-associated receptors (TAARs are a member of the G-protein-coupled receptor superfamily and are known to be expressed in olfactory sensory neurons. A limited number of molecular evolutionary studies have been done for TAARs so far. To elucidate how lineage-specific evolution contributed to their functional divergence, we examined 30 metazoan genomes. In total, 493 TAAR gene candidates (including 84 pseudogenes were identified from 26 vertebrate genomes. TAARs were not identified from non-vertebrate genomes. An ancestral-type TAAR-like gene appeared to have emerged in lamprey. We found four therian-specific TAAR subfamilies (one eutherian-specific and three metatherian-specific in addition to previously known nine subfamilies. Many species-specific TAAR gene duplications and losses contributed to a large variation of TAAR gene numbers among mammals, ranging from 0 in dolphin to 26 in flying fox. TAARs are classified into two groups based on binding preferences for primary or tertiary amines as well as their sequence similarities. Primary amine-detecting TAARs (TAAR1-4 have emerged earlier, generally have single-copy orthologs (very few duplication or loss, and have evolved under strong functional constraints. In contrast, tertiary amine-detecting TAARs (TAAR5-9 have emerged more recently and the majority of them experienced higher rates of gene duplications. Protein members that belong to the tertiary amine-detecting TAAR group also showed the patterns of positive selection especially in the area surrounding the ligand-binding pocket, which could have affected ligand-binding activities and specificities. Expansions of the tertiary amine-detecting TAAR gene family may have played important roles in terrestrial adaptations of therian mammals. Molecular evolution of the TAAR gene family appears to be governed by a complex, species-specific, interplay between environmental and evolutionary factors.

  18. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram

    2015-07-15

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  19. Immobilization of molecular cobalt electrocatalyst by hydrophobic interaction with hematite photoanode for highly stable oxygen evolution

    KAUST Repository

    Joya, Khurram; Morlanes, Natalia; Maloney, Edward; Rodionov, Valentin; Takanabe, Kazuhiro

    2015-01-01

    A unique modification of a hematite photoanode with perfluorinated Co-phthalocyanine (CoFPc) by strong binding associated with hydrophobic interaction is demonstrated. The resultant molecular electrocatalyst – hematite photoanode hybrid material showed significant onset shift and high stability for photoelectrochemical oxidation evolution reaction (OER).

  20. Structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy

    Science.gov (United States)

    Kanzyuba, Vasily; Dong, Sining; Liu, Xinyu; Li, Xiang; Rouvimov, Sergei; Okuno, Hanako; Mariette, Henri; Zhang, Xueqiang; Ptasinska, Sylwia; Tracy, Brian D.; Smith, David J.; Dobrowolska, Margaret; Furdyna, Jacek K.

    2017-02-01

    We describe the structural evolution of dilute magnetic (Sn,Mn)Se films grown by molecular beam epitaxy on GaAs (111) substrates, as revealed by transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. When the Mn concentration is increased, the lattice of the ternary (Sn,Mn)Se films evolves quasi-coherently from a SnSe2 two-dimensional (2D) crystal structure into a more complex quasi-2D lattice rearrangement, ultimately transforming into the magnetically concentrated antiferromagnetic MnSe 3D rock-salt structure as Mn approaches 50 at. % of this material. These structural transformations are expected to underlie the evolution of magnetic properties of this ternary system reported earlier in the literature.

  1. Evolution of circadian rhythms: from bacteria to human.

    Science.gov (United States)

    Bhadra, Utpal; Thakkar, Nirav; Das, Paromita; Pal Bhadra, Manika

    2017-07-01

    The human body persists in its rhythm as per its initial time zone, and transition always occur according to solar movements around the earth over 24 h. While traveling across different latitudes and longitudes, at the pace exceeding the earth's movement, the changes in the external cues exceed the level of toleration of the body's biological clock. This poses an alteration in our physiological activities of sleep-wake pattern, mental alertness, organ movement, and eating habits, causing them to temporarily lose the track of time. This is further re-synchronized with the physiological cues of the destination over time. The mechanism of resetting of the clocks with varying time zones and cues occur in organisms from bacteria to humans. It is the result of the evolution of different pathways and molecular mechanisms over the time. There has been evolution of numerous comprehensive mechanisms using various research tools to get a deeper insight into the rapid turnover of molecular mechanisms in various species. This review reports insights into the evolution of the circadian mechanism and its evolutionary shift which is vital and plays a major role in assisting different organisms to adapt in different zones and controls their internal biological clocks with changing external cues. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Rapid Evolution of Ovarian-Biased Genes in the Yellow Fever Mosquito (Aedes aegypti).

    Science.gov (United States)

    Whittle, Carrie A; Extavour, Cassandra G

    2017-08-01

    Males and females exhibit highly dimorphic phenotypes, particularly in their gonads, which is believed to be driven largely by differential gene expression. Typically, the protein sequences of genes upregulated in males, or male-biased genes, evolve rapidly as compared to female-biased and unbiased genes. To date, the specific study of gonad-biased genes remains uncommon in metazoans. Here, we identified and studied a total of 2927, 2013, and 4449 coding sequences (CDS) with ovary-biased, testis-biased, and unbiased expression, respectively, in the yellow fever mosquito Aedes aegypti The results showed that ovary-biased and unbiased CDS had higher nonsynonymous to synonymous substitution rates (dN/dS) and lower optimal codon usage (those codons that promote efficient translation) than testis-biased genes. Further, we observed higher dN/dS in ovary-biased genes than in testis-biased genes, even for genes coexpressed in nonsexual (embryo) tissues. Ovary-specific genes evolved exceptionally fast, as compared to testis- or embryo-specific genes, and exhibited higher frequency of positive selection. Genes with ovary expression were preferentially involved in olfactory binding and reception. We hypothesize that at least two potential mechanisms could explain rapid evolution of ovary-biased genes in this mosquito: (1) the evolutionary rate of ovary-biased genes may be accelerated by sexual selection (including female-female competition or male-mate choice) affecting olfactory genes during female swarming by males, and/or by adaptive evolution of olfactory signaling within the female reproductive system ( e.g. , sperm-ovary signaling); and/or (2) testis-biased genes may exhibit decelerated evolutionary rates due to the formation of mating plugs in the female after copulation, which limits male-male sperm competition. Copyright © 2017 by the Genetics Society of America.

  3. Molecular tools for bathing water assessment in Europe: Balancing social science research with a rapidly developing environmental science evidence-base.

    Science.gov (United States)

    Oliver, David M; Hanley, Nick D; van Niekerk, Melanie; Kay, David; Heathwaite, A Louise; Rabinovici, Sharyl J M; Kinzelman, Julie L; Fleming, Lora E; Porter, Jonathan; Shaikh, Sabina; Fish, Rob; Chilton, Sue; Hewitt, Julie; Connolly, Elaine; Cummins, Andy; Glenk, Klaus; McPhail, Calum; McRory, Eric; McVittie, Alistair; Giles, Amanna; Roberts, Suzanne; Simpson, Katherine; Tinch, Dugald; Thairs, Ted; Avery, Lisa M; Vinten, Andy J A; Watts, Bill D; Quilliam, Richard S

    2016-02-01

    The use of molecular tools, principally qPCR, versus traditional culture-based methods for quantifying microbial parameters (e.g., Fecal Indicator Organisms) in bathing waters generates considerable ongoing debate at the science-policy interface. Advances in science have allowed the development and application of molecular biological methods for rapid (~2 h) quantification of microbial pollution in bathing and recreational waters. In contrast, culture-based methods can take between 18 and 96 h for sample processing. Thus, molecular tools offer an opportunity to provide a more meaningful statement of microbial risk to water-users by providing near-real-time information enabling potentially more informed decision-making with regard to water-based activities. However, complementary studies concerning the potential costs and benefits of adopting rapid methods as a regulatory tool are in short supply. We report on findings from an international Working Group that examined the breadth of social impacts, challenges, and research opportunities associated with the application of molecular tools to bathing water regulations.

  4. Effects of in-cascade defect clustering on near-term defect evolution

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-08-01

    The effects of in-cascade defect clustering on the nature of the subsequent defect population are being studied using stochastic annealing simulations applied to cascades generated in molecular dynamics (MD) simulations. The results of the simulations illustrates the strong influence of the defect configuration existing in the primary damage state on subsequent defect evolution. The large differences in mobility and stability of vacancy and interstitial defects and the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades have been shown to be significant factors affecting the evolution of the defect distribution. In recent work, the effects of initial cluster sizes appear to be extremely important.

  5. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids.

    Science.gov (United States)

    Llopart, Ana

    2012-12-01

    The X chromosome has a large effect on hybrid dysfunction, particularly on hybrid male sterility. Although the evidence for this so-called large-X effect is clear, its molecular causes are not yet fully understood. One possibility is that, under certain conditions, evolution proceeds faster in X-linked than in autosomal loci (i.e., faster-X effect) due to both natural selection and their hemizygosity in males, an effect that is expected to be greatest in genes with male-biased expression. Here, I study genome-wide variation in transcript abundance between Drosophila yakuba and D. santomea, within these species and in their hybrid males to evaluate both the faster-X and large-X effects at the level of expression. I find that in X-linked male-biased genes (MBGs) expression evolves faster than in their autosomal counterparts, an effect that is accompanied by a unique reduction in expression polymorphism. This suggests that Darwinian selection is driving expression differences between species, likely enhanced by the hemizygosity of the X chromosome in males. Despite the recent split of the two sister species under study, abundant changes in both cis- and trans-regulatory elements underlie expression divergence in the majority of the genes analyzed, with significant differences in allelic ratios of transcript abundance between the two reciprocal F(1) hybrid males. Cis-trans coevolution at molecular level, evolved shortly after populations become isolated, may therefore contribute to explain the breakdown of the regulation of gene expression in hybrid males. Additionally, the X chromosome plays a large role in this hybrid male misexpression, which affects not only MBG but also, to a lesser degree, nonsex-biased genes. Interestingly, hybrid male misexpression is concentrated mostly in autosomal genes, likely facilitated by the rapid evolution of sex-linked trans-acting factors. I suggest that the faster evolution of X-linked MBGs, at both protein and expression levels

  6. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    monophyletic clades including, respectively, all the SMOs and APAOs from vertebrates. The two vertebrate monophyletic clades clustered strictly mirroring the organismal phylogeny of fishes, amphibians, reptiles, birds, and mammals. Evidences from comparative genomic analysis, structural evolution and functional divergence in a phylogenetic framework across Metazoa suggested an evolutionary scenario where the ancestor PAO coding sequence, present in invertebrates as an orthologous gene, has been duplicated in the vertebrate branch to originate the paralogous SMO and APAO genes. A further genome evolution event concerns the SMO gene of placental, but not marsupial and monotremate, mammals which increased its functional variation following an alternative splicing (AS mechanism. Conclusions In this study the explicit integration in a phylogenomic framework of phylogenetic tree construction, structure prediction, and biochemical function data/prediction, allowed inferring the molecular evolutionary history of the PAO gene family and to disambiguate paralogous genes related by duplication event (SMO and APAO and orthologous genes related by speciation events (PAOs, SMOs/APAOs. Further, while in vertebrates experimental data corroborate SMO and APAO molecular function predictions, in invertebrates the finding of a supported phylogenetic clusters of insect PAOs and the co-occurrence of two PAO variants in the amphioxus urgently claim the need for future structure-function studies.

  7. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Science.gov (United States)

    Allen, Benjamin; Sample, Christine; Dementieva, Yulia; Medeiros, Ruben C; Paoletti, Christopher; Nowak, Martin A

    2015-02-01

    Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  8. The molecular clock of neutral evolution can be accelerated or slowed by asymmetric spatial structure.

    Directory of Open Access Journals (Sweden)

    Benjamin Allen

    2015-02-01

    Full Text Available Over time, a population acquires neutral genetic substitutions as a consequence of random drift. A famous result in population genetics asserts that the rate, K, at which these substitutions accumulate in the population coincides with the mutation rate, u, at which they arise in individuals: K = u. This identity enables genetic sequence data to be used as a "molecular clock" to estimate the timing of evolutionary events. While the molecular clock is known to be perturbed by selection, it is thought that K = u holds very generally for neutral evolution. Here we show that asymmetric spatial population structure can alter the molecular clock rate for neutral mutations, leading to either Ku. Our results apply to a general class of haploid, asexually reproducing, spatially structured populations. Deviations from K = u occur because mutations arise unequally at different sites and have different probabilities of fixation depending on where they arise. If birth rates are uniform across sites, then K ≤ u. In general, K can take any value between 0 and Nu. Our model can be applied to a variety of population structures. In one example, we investigate the accumulation of genetic mutations in the small intestine. In another application, we analyze over 900 Twitter networks to study the effect of network topology on the fixation of neutral innovations in social evolution.

  9. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution.

    Science.gov (United States)

    Melkikh, Alexey V; Khrennikov, Andrei

    2017-11-01

    A review of the mechanisms of speciation is performed. The mechanisms of the evolution of species, taking into account the feedback of the state of the environment and mechanisms of the emergence of complexity, are considered. It is shown that these mechanisms, at the molecular level, cannot work steadily in terms of classical mechanics. Quantum mechanisms of changes in the genome, based on the long-range interaction potential between biologically important molecules, are proposed as one of possible explanation. Different variants of interactions of the organism and environment based on molecular recognition and leading to new species origins are considered. Experiments to verify the model are proposed. This bio-physical study is completed by the general operational model of based on quantum information theory. The latter is applied to model of epigenetic evolution. We briefly present the basics of the quantum-like approach to modeling of bio-informational processes. This approach is illustrated by the quantum-like model of epigenetic evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    Energy Technology Data Exchange (ETDEWEB)

    Heinisch, H.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-04-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies.

  11. The effects of self-interstitial clusters on cascade defect evolution beyond the primary damage state

    International Nuclear Information System (INIS)

    Heinisch, H.L.

    1997-01-01

    The intracascade evolution of the defect distributions of cascades in copper is investigated using stochastic annealing simulations applied to cascades generated with molecular dynamics (MD). The temperature and energy dependencies of annihilation, clustering and free defect production are determined for individual cascades. The annealing simulation results illustrate the strong influence on intracascade evolution of the defect configuration existing in the primary damage state. Another factor significantly affecting the evolution of the defect distribution is the rapid one-dimensional diffusion of small, glissile interstitial loops produced directly in cascades. This phenomenon introduces a cascade energy dependence of defect evolution that is apparent only beyond the primary damage state, amplifying the need for further study of the annealing phase of cascade evolution and for performing many more MD cascade simulations at higher energies

  12. Evolution of lateral ordering in symmetric block copolymer thin films upon rapid thermal processing

    International Nuclear Information System (INIS)

    Ceresoli, Monica; Ferrarese Lupi, Federico; Seguini, Gabriele; Perego, Michele; Sparnacci, Katia; Gianotti, Valentina; Antonioli, Diego; Laus, Michele; Boarino, Luca

    2014-01-01

    This work reports experimental findings about the evolution of lateral ordering of lamellar microdomains in symmetric PS-b-PMMA thin films on featureless substrates. Phase separation and microdomain evolution are explored in a rather wide range of temperatures (190–340 °C) using a rapid thermal processing (RTP) system. The maximum processing temperature that enables the ordering of block copolymers without introducing any significant degradation of macromolecules is identified. The reported results clearly indicate that the range of accessible temperatures in the processing of these self-assembling materials is mainly limited by the thermal instability of the grafted random copolymer layer, which starts to degrade at T > 300 °C, inducing detachment of the block copolymer thin film. For T ⩽ 290 °C, clear dependence of correlation length (ξ) values on temperature is observed. The highest level of lateral order achievable in the current system in a quasi-equilibrium condition was obtained at the upper processing temperature limit after an annealing time as short as 60 s. (paper)

  13. Negative correlation between rates of molecular evolution and flowering cycles in temperate woody bamboos revealed by plastid phylogenomics.

    Science.gov (United States)

    Ma, Peng-Fei; Vorontsova, Maria S; Nanjarisoa, Olinirina Prisca; Razanatsoa, Jacqueline; Guo, Zhen-Hua; Haevermans, Thomas; Li, De-Zhu

    2017-12-21

    Heterogeneous rates of molecular evolution are universal across the tree of life, posing challenges for phylogenetic inference. The temperate woody bamboos (tribe Arundinarieae, Poaceae) are noted for their extremely slow molecular evolutionary rates, supposedly caused by their mysterious monocarpic reproduction. However, the correlation between substitution rates and flowering cycles has not been formally tested. Here we present 15 newly sequenced plastid genomes of temperate woody bamboos, including the first genomes ever sequenced from Madagascar representatives. A data matrix of 46 plastid genomes representing all 12 lineages of Arundinarieae was assembled for phylogenetic and molecular evolutionary analyses. We conducted phylogenetic analyses using different sequences (e.g., coding and noncoding) combined with different data partitioning schemes, revealing conflicting relationships involving internodes among several lineages. A great difference in branch lengths were observed among the major lineages, and topological inconsistency could be attributed to long-branch attraction (LBA). Using clock model-fitting by maximum likelihood and Bayesian approaches, we furthermore demonstrated extensive rate variation among these major lineages. Rate accelerations mainly occurred for the isolated lineages with limited species diversification, totaling 11 rate shifts during the tribe's evolution. Using linear regression analysis, we found a negative correlation between rates of molecular evolution and flowering cycles for Arundinarieae, notwithstanding that the correlation maybe insignificant when taking the phylogenetic structure into account. Using the temperate woody bamboos as an example, we found further evidence that rate heterogeneity is universal in plants, suggesting that this will pose a challenge for phylogenetic reconstruction of bamboos. The bamboos with longer flowering cycles tend to evolve more slowly than those with shorter flowering cycles, in accordance

  14. Bioinspired molecular co-catalysts bonded to a silicon photocathode for solar hydrogen evolution

    DEFF Research Database (Denmark)

    Hou, Yidong; Abrams, Billie L.; Vesborg, Peter Christian Kjærgaard

    2011-01-01

    The production of fuels from sunlight represents one of the main challenges in the development of a sustainable energy system. Hydrogen is the simplest fuel to produce and although platinum and other noble metals are efficient catalysts for photoelectrochemical hydrogen evolution, earth...... that harvests red photons in the solar spectrum. The current densities at the reversible potential match the requirement of a photoelectrochemical hydrogen production system with a solar-to-hydrogen efficiency in excess of 10% (ref. 16). The experimental observations are supported by density functional theory......-abundant alternatives are needed for large-scale use. We show that bioinspired molecular clusters based on molybdenum and sulphur evolve hydrogen at rates comparable to that of platinum. The incomplete cubane-like clusters (Mo3S 4) efficiently catalyse the evolution of hydrogen when coupled to a p-type Si semiconductor...

  15. Molecular evolution of vertebrate neurotrophins: co-option of the highly conserved nerve growth factor gene into the advanced snake venom arsenalf.

    Directory of Open Access Journals (Sweden)

    Kartik Sunagar

    Full Text Available Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF, brain-derived neurotrophic factors (BDNF and neurotrophin-3 (NT-3, which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74% and on the molecular surface of the protein (92%, while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation.

  16. Molecular Evolution of Vertebrate Neurotrophins: Co-Option of the Highly Conserved Nerve Growth Factor Gene into the Advanced Snake Venom Arsenalf

    Science.gov (United States)

    Sunagar, Kartik; Fry, Bryan Grieg; Jackson, Timothy N. W.; Casewell, Nicholas R.; Undheim, Eivind A. B.; Vidal, Nicolas; Ali, Syed A.; King, Glenn F.; Vasudevan, Karthikeyan; Vasconcelos, Vitor; Antunes, Agostinho

    2013-01-01

    Neurotrophins are a diverse class of structurally related proteins, essential for neuronal development, survival, plasticity and regeneration. They are characterized by major family members, such as the nerve growth factors (NGF), brain-derived neurotrophic factors (BDNF) and neurotrophin-3 (NT-3), which have been demonstrated here to lack coding sequence variations and follow the regime of negative selection, highlighting their extremely important conserved role in vertebrate homeostasis. However, in stark contrast, venom NGF secreted as part of the chemical arsenal of the venomous advanced snake family Elapidae (and to a lesser extent Viperidae) have characteristics consistent with the typical accelerated molecular evolution of venom components. This includes a rapid rate of diversification under the significant influence of positive-selection, with the majority of positively-selected sites found in the secreted β-polypeptide chain (74%) and on the molecular surface of the protein (92%), while the core structural and functional residues remain highly constrained. Such focal mutagenesis generates active residues on the toxin molecular surface, which are capable of interacting with novel biological targets in prey to induce a myriad of pharmacological effects. We propose that caenophidian NGFs could participate in prey-envenoming by causing a massive release of chemical mediators from mast cells to mount inflammatory reactions and increase vascular permeability, thereby aiding the spread of other toxins and/or by acting as proapoptotic factors. Despite their presence in reptilian venom having been known for over 60 years, this is the first evidence that venom-secreted NGF follows the molecular evolutionary pattern of other venom components, and thus likely participates in prey-envenomation. PMID:24312363

  17. Has Human Evolution Stopped?

    Directory of Open Access Journals (Sweden)

    Alan R. Templeton

    2010-07-01

    Full Text Available It has been argued that human evolution has stopped because humans now adapt to their environment via cultural evolution and not biological evolution. However, all organisms adapt to their environment, and humans are no exception. Culture defines much of the human environment, so cultural evolution has actually led to adaptive evolution in humans. Examples are given to illustrate the rapid pace of adaptive evolution in response to cultural innovations. These adaptive responses have important implications for infectious diseases, Mendelian genetic diseases, and systemic diseases in current human populations. Moreover, evolution proceeds by mechanisms other than natural selection. The recent growth in human population size has greatly increased the reservoir of mutational variants in the human gene pool, thereby enhancing the potential for human evolution. The increase in human population size coupled with our increased capacity to move across the globe has induced a rapid and ongoing evolutionary shift in how genetic variation is distributed within and among local human populations. In particular, genetic differences between human populations are rapidly diminishing and individual heterozygosity is increasing, with beneficial health effects. Finally, even when cultural evolution eliminates selection on a trait, the trait can still evolve due to natural selection on other traits. Our traits are not isolated, independent units, but rather are integrated into a functional whole, so selection on one trait can cause evolution to occur on another trait, sometimes with mildly maladaptive consequences.

  18. The nearly neutral and selection theories of molecular evolution under the fisher geometrical framework: substitution rate, population size, and complexity.

    Science.gov (United States)

    Razeto-Barry, Pablo; Díaz, Javier; Vásquez, Rodrigo A

    2012-06-01

    The general theories of molecular evolution depend on relatively arbitrary assumptions about the relative distribution and rate of advantageous, deleterious, neutral, and nearly neutral mutations. The Fisher geometrical model (FGM) has been used to make distributions of mutations biologically interpretable. We explored an FGM-based molecular model to represent molecular evolutionary processes typically studied by nearly neutral and selection models, but in which distributions and relative rates of mutations with different selection coefficients are a consequence of biologically interpretable parameters, such as the average size of the phenotypic effect of mutations and the number of traits (complexity) of organisms. A variant of the FGM-based model that we called the static regime (SR) represents evolution as a nearly neutral process in which substitution rates are determined by a dynamic substitution process in which the population's phenotype remains around a suboptimum equilibrium fitness produced by a balance between slightly deleterious and slightly advantageous compensatory substitutions. As in previous nearly neutral models, the SR predicts a negative relationship between molecular evolutionary rate and population size; however, SR does not have the unrealistic properties of previous nearly neutral models such as the narrow window of selection strengths in which they work. In addition, the SR suggests that compensatory mutations cannot explain the high rate of fixations driven by positive selection currently found in DNA sequences, contrary to what has been previously suggested. We also developed a generalization of SR in which the optimum phenotype can change stochastically due to environmental or physiological shifts, which we called the variable regime (VR). VR models evolution as an interplay between adaptive processes and nearly neutral steady-state processes. When strong environmental fluctuations are incorporated, the process becomes a selection model

  19. Rates and patterns of molecular evolution in freshwater versus terrestrial insects.

    Science.gov (United States)

    Mitterboeck, T Fatima; Fu, Jinzhong; Adamowicz, Sarah J

    2016-11-01

    Insect lineages have crossed between terrestrial and aquatic habitats many times, for both immature and adult life stages. We explore patterns in molecular evolutionary rates between 42 sister pairs of related terrestrial and freshwater insect clades using publicly available protein-coding DNA sequence data from the orders Coleoptera, Diptera, Lepidoptera, Hemiptera, Mecoptera, Trichoptera, and Neuroptera. We furthermore test for habitat-associated convergent molecular evolution in the cytochrome c oxidase subunit I (COI) gene in general and at a particular amino acid site previously reported to exhibit habitat-linked convergence within an aquatic beetle group. While ratios of nonsynonymous-to-synonymous substitutions across available loci were higher in terrestrial than freshwater-associated taxa in 26 of 42 lineage pairs, a stronger trend was observed (20 of 31, p binomial = 0.15, p Wilcoxon = 0.017) when examining only terrestrial-aquatic pairs including fully aquatic taxa. We did not observe any widespread changes at particular amino acid sites in COI associated with habitat shifts, although there may be general differences in selection regime linked to habitat.

  20. Surface Functionalization of g-C 3 N 4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts

    KAUST Repository

    Chen, Yin; Lin, Bin; Yu, Weili; Yang, Yong; Bashir, Shahid M.; Wang, Hong; Takanabe, Kazuhiro; Idriss, Hicham; Basset, Jean-Marie

    2015-01-01

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3N4) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site

  1. Evolution of the protists and protistan parasites from the perspective of molecular systematics.

    Science.gov (United States)

    Sogin, M L; Silberman, J D

    1998-01-01

    Unlike prokaryotes, the Protista are rich in morphological and ultrastructure information. Their amazing phenotypic diversity permits assignment of many protists to cohesive phyletic assemblages but sometimes blurs relationships between major lineages. With the advent of molecular techniques, it became possible to test evolutionary hypotheses that were originally formulated according to shared phenotypic traits. More than any other gene family, studies of rRNAs changed our understanding of protist evolution. Stramenopiles (oomycetes, chrysophytes, phaeophytes, synurophytes, diatoms, xanthophytes, bicosoecids, slime nets) and alveolates (dinoflagellates, apicomplexans, ciliates) are two novel, complex evolutionary assemblages which diverged nearly simultaneously with animals, fungi, plants, rhodophytes, haptophytes and a myriad of independent amoeboid lineages. Their separation may have occurred one billion years ago and collectively these lineages make up the "crown" of the eukaryotic tree. Deeper branches in the eukaryotic tree show 16S-like rRNA sequence variation that is much greater than that observed within the Archaea and the Bacteria. A progression of independent protist branches, some as ancient as the divergence between the two prokaryotic domains, preceded the sudden radiation of "crown" groups. Trichomonads, diplomonads and Microsporidia are basal to all other eukaryotes included in rRNA studies. Together with pelobionts, oxymonads, retortamonads and hypermastigids, these amitochondriate taxa comprise the Archaezoa. This skeletal phylogeny suggested that early branching eukaryotes lacked mitochondria, peroxisomes and typical stacked Golgi dictyosomes. However, recent studies of heat shock proteins indicate that the first eukaryotes may have had mitochondria. When evaluated in terms of evolution of ultrastructure, lifestyles and other phenotypic traits, the rRNA phylogenies provide the most consistent of molecular trees. They permit identification of the

  2. Investigation of uranium molecular species using laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Curreli, Davide [Univ. of Illinois, Urbana, IL (United States). Dept. of Nuclear, Plasma, and Radiological Engineering

    2017-07-12

    The goal of this project is to investigate the dynamic evolution of uranium oxide (UOx) molecular species in a rapidly cooling low-temperature plasma using a coupled experimental and modeling approach. Our purpose is to develop quantitative constraints on the UOx phase chemistry under physical conditions similar to that of a nuclear fireball at the time of debris condensation. This work is motivated by a need to better understand the factors controlling uranium chemical fractionation in post-detonation nuclear debris.

  3. First comparative study of primate morphological and molecular evolutionary rates including muscle data: implications for the tempo and mode of primate and human evolution

    Science.gov (United States)

    Diogo, Rui; Peng, Zuogang; Wood, Bernard

    2013-01-01

    Here we provide the first report about the rates of muscle evolution derived from Bayesian and parsimony cladistic analyses of primate higher-level phylogeny, and compare these rates with published rates of molecular evolution. It is commonly accepted that there is a ‘general molecular slow-down of hominoids’, but interestingly the rates of muscle evolution in the nodes leading and within the hominoid clade are higher than those in the vast majority of other primate clades. The rate of muscle evolution at the node leading to Homo (1.77) is higher than that at the nodes leading to Pan (0.89) and particularly to Gorilla (0.28). Notably, the rates of muscle evolution at the major euarchontan and primate nodes are different, but within each major primate clade (Strepsirrhini, Platyrrhini, Cercopithecidae and Hominoidea) the rates at the various nodes, and particularly at the nodes leading to the higher groups (i.e. including more than one genera), are strikingly similar. We explore the implications of these new data for the tempo and mode of primate and human evolution. PMID:23320764

  4. Hydro-chemical study of the evolution of interstellar pre-biotic molecules during the collapse of molecular clouds

    International Nuclear Information System (INIS)

    Majumdar, Liton; Das, Ankan; Chakrabarti, Sandip K.; Chakrabarti, Sonali

    2012-01-01

    One of the stumbling blocks for studying the evolution of interstellar molecules is the lack of adequate knowledge about the rate coefficients of various reactions which take place in the interstellar medium and molecular clouds. Some theoretical models of rate coefficients do exist in the literature for computing abundances of complex pre-biotic molecules. So far these have been used to study the abundances of these molecules in space. However, in order to obtain more accurate final compositions in these media, we have calculated the rate coefficients for the formation of some of the most important interstellar pre-biotic molecules by using quantum chemical theory. We use these rates inside our hydro-chemical model to examine the chemical evolution and final abundances of pre-biotic species during the collapsing phase of a proto-star. We find that a significant amount of various pre-biotic molecules could be produced during the collapse phase of a proto-star. We thoroughly study the formation of these molecules via successive neutral-neutral and radical-radical/radical-molecular reactions. We present the time evolution of the chemical species with an emphasis on how the production of these molecules varies with the depth of a cloud. We compare the formation of adenine in interstellar space using our rate-coefficients and using those obtained from existing theoretical models. Formation routes of the pre-biotic molecules are found to be highly dependent on the abundances of the reactive species and the rate coefficients involved in the reactions. The presence of grains strongly affects the abundances of the gas phase species. We also carry out a comparative study between different pathways available for the synthesis of adenine, alanine, glycine and other molecules considered in our network. Despite the huge abundances of the neutral reactive species, production of adenine is found to be strongly dominated by the radical-radical/radical-molecular reaction pathways

  5. Influence of Auroral Streamers on Rapid Evolution of Ionospheric SAPS Flows

    Science.gov (United States)

    Gallardo-Lacourt, Bea; Nishimura, Y.; Lyons, L. R.; Mishin, E. V.; Ruohoniemi, J. M.; Donovan, E. F.; Angelopoulos, V.; Nishitani, N.

    2017-12-01

    Subauroral polarization streams (SAPS) often show large, rapid enhancements above their slowly varying component. We present simultaneous observations from ground-based all-sky imagers and flows from the Super Dual Auroral Radar Network radars to investigate the relationship between auroral phenomena and flow enhancement. We first identified auroral streamers approaching the equatorward boundary of the auroral oval to examine how often the subauroral flow increased. We also performed the reverse query starting with subauroral flow enhancements and then evaluated the auroral conditions. In the forward study, 98% of the streamers approaching the equatorward boundary were associated with SAPS flow enhancements reaching 700 m/s and typically hundreds of m/s above background speeds. The reverse study reveals that flow enhancements associated with streamers (60%) and enhanced larger-scale convection (37%) contribute to SAPS flow enhancements. The strong correlation of auroral streamers with rapid evolution (approximately minutes) of SAPS flows suggests that transient fast earthward plasma sheet flows can often lead to westward SAPS flow enhancements in the subauroral region and that such enhancements are far more common than only during substorms because of the much more frequent occurrences of streamers under various geomagnetic conditions. We also found a strong correlation between flow duration and streamer duration and a weak correlation between SAPS flow velocity and streamer intensity. This result suggests that intense flow bursts in the plasma sheet (which correlate with intense streamers) are associated with intense SAPS ionospheric flows perhaps by enhancing the ring current pressure and localized pressure gradients when they are able to penetrate close enough to Earth.

  6. Molecular development of fibular reduction in birds and its evolution from dinosaurs.

    Science.gov (United States)

    Botelho, João Francisco; Smith-Paredes, Daniel; Soto-Acuña, Sergio; O'Connor, Jingmai; Palma, Verónica; Vargas, Alexander O

    2016-03-01

    Birds have a distally reduced, splinter-like fibula that is shorter than the tibia. In embryonic development, both skeletal elements start out with similar lengths. We examined molecular markers of cartilage differentiation in chicken embryos. We found that the distal end of the fibula expresses Indian hedgehog (IHH), undergoing terminal cartilage differentiation, and almost no Parathyroid-related protein (PTHrP), which is required to develop a proliferative growth plate (epiphysis). Reduction of the distal fibula may be influenced earlier by its close contact with the nearby fibulare, which strongly expresses PTHrP. The epiphysis-like fibulare however then separates from the fibula, which fails to maintain a distal growth plate, and fibular reduction ensues. Experimental downregulation of IHH signaling at a postmorphogenetic stage led to a tibia and fibula of equal length: The fibula is longer than in controls and fused to the fibulare, whereas the tibia is shorter and bent. We propose that the presence of a distal fibular epiphysis may constrain greater growth in the tibia. Accordingly, many Mesozoic birds show a fibula that has lost its distal epiphysis, but remains almost as long as the tibia, suggesting that loss of the fibulare preceded and allowed subsequent evolution of great fibulo-tibial disparity. © 2016 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.

  7. Transient Evolutional Dynamics of Quantum-Dot Molecular Phase Coherence for Sensitive Optical Switching

    Science.gov (United States)

    Shen, Jian Qi; Gu, Jing

    2018-04-01

    Atomic phase coherence (quantum interference) in a multilevel atomic gas exhibits a number of interesting phenomena. Such an atomic quantum coherence effect can be generalized to a quantum-dot molecular dielectric. Two quantum dots form a quantum-dot molecule, which can be described by a three-level Λ-configuration model { |0> ,|1> ,|2> } , i.e., the ground state of the molecule is the lower level |0> and the highly degenerate electronic states in the two quantum dots are the two upper levels |1> ,|2> . The electromagnetic characteristics due to the |0>-|1> transition can be controllably manipulated by a tunable gate voltage (control field) that drives the |2>-|1> transition. When the gate voltage is switched on, the quantum-dot molecular state can evolve from one steady state (i.e., |0>-|1> two-level dressed state) to another steady state (i.e., three-level coherent-population-trapping state). In this process, the electromagnetic characteristics of a quantum-dot molecular dielectric, which is modified by the gate voltage, will also evolve. In this study, the transient evolutional behavior of the susceptibility of a quantum-dot molecular thin film and its reflection spectrum are treated by using the density matrix formulation of the multilevel systems. The present field-tunable and frequency-sensitive electromagnetic characteristics of a quantum-dot molecular thin film, which are sensitive to the applied gate voltage, can be utilized to design optical switching devices.

  8. Molecular evolution of colorectal cancer: from multistep carcinogenesis to the big bang.

    Science.gov (United States)

    Amaro, Adriana; Chiara, Silvana; Pfeffer, Ulrich

    2016-03-01

    Colorectal cancer is characterized by exquisite genomic instability either in the form of microsatellite instability or chromosomal instability. Microsatellite instability is the result of mutation of mismatch repair genes or their silencing through promoter methylation as a consequence of the CpG island methylator phenotype. The molecular causes of chromosomal instability are less well characterized. Genomic instability and field cancerization lead to a high degree of intratumoral heterogeneity and determine the formation of cancer stem cells and epithelial-mesenchymal transition mediated by the TGF-β and APC pathways. Recent analyses using integrated genomics reveal different phases of colorectal cancer evolution. An initial phase of genomic instability that yields many clones with different mutations (big bang) is followed by an important, previously not detected phase of cancer evolution that consists in the stabilization of several clones and a relatively flat outgrowth. The big bang model can best explain the coexistence of several stable clones and is compatible with the fact that the analysis of the bulk of the primary tumor yields prognostic information.

  9. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants

    Energy Technology Data Exchange (ETDEWEB)

    Schenck, Craig A.; Holland, Cynthia K.; Schneider, Matthew R.; Men, Yusen; Lee, Soon Goo; Jez, Joseph M.; Maeda , Hiroshi A. (UW); (WU)

    2017-06-26

    L-Tyrosine (Tyr) is essential for protein synthesis and is a precursor of numerous specialized metabolites crucial for plant and human health. Tyr can be synthesized via two alternative routes by different key regulatory TyrA family enzymes, prephenate dehydrogenase (PDH, also known as TyrAp) or arogenate dehydrogenase (ADH, also known as TyrAa), representing a unique divergence of primary metabolic pathways. The molecular foundation underlying the evolution of these alternative Tyr pathways is currently unknown. Here we characterized recently diverged plant PDH and ADH enzymes, obtained the X-ray crystal structure of soybean PDH, and identified a single amino acid residue that defines TyrA substrate specificity and regulation. Structures of mutated PDHs co-crystallized with Tyr indicate that substitutions of Asn222 confer ADH activity and Tyr sensitivity. Reciprocal mutagenesis of the corresponding residue in divergent plant ADHs further introduced PDH activity and relaxed Tyr sensitivity, highlighting the critical role of this residue in TyrA substrate specificity that underlies the evolution of alternative Tyr biosynthetic pathways in plants.

  10. Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster

    Science.gov (United States)

    Robertson, Hugh M.; Warr, Coral G.; Carlson, John R.

    2003-01-01

    The insect chemoreceptor superfamily in Drosophila melanogaster is predicted to consist of 62 odorant receptor (Or) and 68 gustatory receptor (Gr) proteins, encoded by families of 60 Or and 60 Gr genes through alternative splicing. We include two previously undescribed Or genes and two previously undescribed Gr genes; two previously predicted Or genes are shown to be alternative splice forms. Three polymorphic pseudogenes and one highly defective pseudogene are recognized. Phylogenetic analysis reveals deep branches connecting multiple highly divergent clades within the Gr family, and the Or family appears to be a single highly expanded lineage within the superfamily. The genes are spread throughout the Drosophila genome, with some relatively recently diverged genes still clustered in the genome. The Gr5a gene on the X chromosome, which encodes a receptor for the sugar trehalose, has transposed from one such tandem cluster of six genes at cytological location 64, as has Gr61a, and all eight of these receptors might bind sugars. Analysis of intron evolution suggests that the common ancestor consisted of a long N-terminal exon encoding transmembrane domains 1-5 followed by three exons encoding transmembrane domains 6-7. As many as 57 additional introns have been acquired idiosyncratically during the evolution of the superfamily, whereas the ancestral introns and some of the older idiosyncratic introns have been lost at least 48 times independently. Altogether, these patterns of molecular evolution suggest that this is an ancient superfamily of chemoreceptors, probably dating back at least to the origin of the arthropods. PMID:14608037

  11. Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles.

    Science.gov (United States)

    Li, Yang I; Kong, Lesheng; Ponting, Chris P; Haerty, Wilfried

    2013-01-01

    Sequencing of vertebrate genomes permits changes in distinct protein families, including gene gains and losses, to be ascribed to lineage-specific phenotypes. A prominent example of this is the large-scale duplication of beta-keratin genes in the ancestors of birds, which was crucial to the subsequent evolution of their beaks, claws, and feathers. Evidence suggests that the shell of Pseudomys nelsoni contains at least 16 beta-keratins proteins, but it is unknown whether this is a complete set and whether their corresponding genes are orthologous to avian beak, claw, or feather beta-keratin genes. To address these issues and to better understand the evolution of the turtle shell at a molecular level, we surveyed the diversity of beta-keratin genes from the genome assemblies of three turtles, Chrysemys picta, Pelodiscus sinensis, and Chelonia mydas, which together represent over 160 Myr of chelonian evolution. For these three turtles, we found 200 beta-keratins, which indicate that, as for birds, a large expansion of beta-keratin genes in turtles occurred concomitantly with the evolution of a unique phenotype, namely, their plastron and carapace. Phylogenetic reconstruction of beta-keratin gene evolution suggests that separate waves of gene duplication within a single genomic location gave rise to scales, claws, and feathers in birds, and independently the scutes of the shell in turtles.

  12. Phylogenomics of a rapid radiation: is chromosomal evolution linked to increased diversification in north american spiny lizards (Genus Sceloporus)?

    Science.gov (United States)

    Leaché, Adam D; Banbury, Barbara L; Linkem, Charles W; de Oca, Adrián Nieto-Montes

    2016-03-22

    Resolving the short phylogenetic branches that result from rapid evolutionary diversification often requires large numbers of loci. We collected targeted sequence capture data from 585 nuclear loci (541 ultraconserved elements and 44 protein-coding genes) to estimate the phylogenetic relationships among iguanian lizards in the North American genus Sceloporus. We tested for diversification rate shifts to determine if rapid radiation in the genus is correlated with chromosomal evolution. The phylogenomic trees that we obtained for Sceloporus using concatenation and coalescent-based species tree inference provide strong support for the monophyly and interrelationships among nearly all major groups. The diversification analysis supported one rate shift on the Sceloporus phylogeny approximately 20-25 million years ago that is associated with the doubling of the speciation rate from 0.06 species/million years (Ma) to 0.15 species/Ma. The posterior probability for this rate shift occurring on the branch leading to the Sceloporus species groups exhibiting increased chromosomal diversity is high (posterior probability = 0.997). Despite high levels of gene tree discordance, we were able to estimate a phylogenomic tree for Sceloporus that solves some of the taxonomic problems caused by previous analyses of fewer loci. The taxonomic changes that we propose using this new phylogenomic tree help clarify the number and composition of the major species groups in the genus. Our study provides new evidence for a putative link between chromosomal evolution and the rapid divergence and radiation of Sceloporus across North America.

  13. Monte Carlo molecular simulations: improving the statistical efficiency of samples with the help of artificial evolution algorithms; Simulations moleculaires de Monte Carlo: amelioration de l'efficacite statistique de l'echantillonnage grace aux algorithmes d'evolution artificielle

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, B.

    2002-03-01

    Molecular simulation aims at simulating particles in interaction, describing a physico-chemical system. When considering Markov Chain Monte Carlo sampling in this context, we often meet the same problem of statistical efficiency as with Molecular Dynamics for the simulation of complex molecules (polymers for example). The search for a correct sampling of the space of possible configurations with respect to the Boltzmann-Gibbs distribution is directly related to the statistical efficiency of such algorithms (i.e. the ability of rapidly providing uncorrelated states covering all the configuration space). We investigated how to improve this efficiency with the help of Artificial Evolution (AE). AE algorithms form a class of stochastic optimization algorithms inspired by Darwinian evolution. Efficiency measures that can be turned into efficiency criteria have been first searched before identifying parameters that could be optimized. Relative frequencies for each type of Monte Carlo moves, usually empirically chosen in reasonable ranges, were first considered. We combined parallel simulations with a 'genetic server' in order to dynamically improve the quality of the sampling during the simulations progress. Our results shows that in comparison with some reference settings, it is possible to improve the quality of samples with respect to the chosen criterion. The same algorithm has been applied to improve the Parallel Tempering technique, in order to optimize in the same time the relative frequencies of Monte Carlo moves and the relative frequencies of swapping between sub-systems simulated at different temperatures. Finally, hints for further research in order to optimize the choice of additional temperatures are given. (author)

  14. Rapid evolution of troglomorphic characters suggests selection rather than neutral mutation as a driver of eye reduction in cave crabs.

    Science.gov (United States)

    Klaus, Sebastian; Mendoza, José C E; Liew, Jia Huan; Plath, Martin; Meier, Rudolf; Yeo, Darren C J

    2013-04-23

    This study asked whether reductive traits in cave organisms evolve at a slower pace (suggesting neutral evolution under relaxed selection) than constructive changes, which are likely to evolve under directional selection. We investigated 11 subterranean and seven surface populations of Sundathelphusa freshwater crabs on Bohol Island, Philippines, and examined constructive traits associated with improved food finding in darkness (increased leg and setae length) and reductive traits (reduced cornea size and eyestalk length). All changes occurred rapidly, given that the age of the most recent common ancestor was estimated to be 722-271 ka based on three mitochondrial markers. In order to quantify the speed of character change, we correlated the degree of morphological change with genetic distances between surface and subterranean individuals. The temporal pattern of character change following the transition to subterranean life was indistinguishable for constructive and reductive traits, characterized by an immediate onset and rapid evolutionary change. We propose that the evolution of these reductive traits-just like constructive traits-is most likely driven by strong directional selection.

  15. Correlations and discreteness in nonlinear QCD evolution

    International Nuclear Information System (INIS)

    Armesto, N.; Milhano, J.

    2006-01-01

    We consider modifications of the standard nonlinear QCD evolution in an attempt to account for some of the missing ingredients discussed recently, such as correlations, discreteness in gluon emission and Pomeron loops. The evolution is numerically performed using the Balitsky-Kovchegov equation on individual configurations defined by a given initial value of the saturation scale, for reduced rapidities y=(α s N c /π)Y<10. We consider the effects of averaging over configurations as a way to implement correlations, using three types of Gaussian averaging around a mean saturation scale. Further, we heuristically mimic discreteness in gluon emission by considering a modified evolution in which the tails of the gluon distributions are cut off. The approach to scaling and the behavior of the saturation scale with rapidity in these modified evolutions are studied and compared with the standard mean-field results. For the large but finite values of rapidity explored, no strong quantitative difference in scaling for transverse momenta around the saturation scale is observed. At larger transverse momenta, the influence of the modifications in the evolution seems most noticeable in the first steps of the evolution. No influence on the rapidity behavior of the saturation scale due to the averaging procedure is found. In the cutoff evolution the rapidity evolution of the saturation scale is slowed down and strongly depends on the value of the cutoff. Our results stress the need to go beyond simple modifications of evolution by developing proper theoretical tools that implement such recently discussed ingredients

  16. Rapid Determination of Six Low Molecular Carbonyl Compounds in Tobacco Smoke by the APCI-MS/MS Coupled to Data Mining

    Directory of Open Access Journals (Sweden)

    Wuduo Zhao

    2017-01-01

    Full Text Available A simple method was established for the rapid determination of low molecular carbonyl compounds by the combination of atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS and data mining. The ionization was carried out in positive mode, and six low molecular carbonyl compounds of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde were analyzed by both full scan mode and daughter scan mode. To overcome the quantitative difficulties from isomer of acetone/propionaldehyde and butanone/butyraldehyde, the quantitation procedure was performed with the characteristic ion of [CH3O]+ under CID energy of 5 and 15 eV. Subsequently, the established method was successfully applied to analysis of six low molecular carbonyl compounds in tobacco smoke with analytical period less than four minutes. The contents of acrolein, acetone, propionaldehyde, crotonaldehyde, butanone, and butyraldehyde for a cigarette were about 63±5.8, 325±82, 55±9.7, 11±1.4, 67±5.9, and 12±1.8 μg/cig, respectively. The experimental results indicated that the established method had the potential application in rapid determination of low molecular carbonyl compounds.

  17. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs).

    Science.gov (United States)

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  18. Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs

    Directory of Open Access Journals (Sweden)

    Ingo eDreyer

    2012-11-01

    Full Text Available Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant SLAC-like and 422 (402 non-redundant ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  19. Molecular pathways to parallel evolution: I. Gene nexuses and their morphological correlates.

    Science.gov (United States)

    Zuckerkandl, E

    1994-12-01

    Aspects of the regulatory interactions among genes are probably as old as most genes are themselves. Correspondingly, similar predispositions to changes in such interactions must have existed for long evolutionary periods. Features of the structure and the evolution of the system of gene regulation furnish the background necessary for a molecular understanding of parallel evolution. Patently "unrelated" organs, such as the fat body of a fly and the liver of a mammal, can exhibit fractional homology, a fraction expected to become subject to quantitation. This also seems to hold for different organs in the same organism, such as wings and legs of a fly. In informational macromolecules, on the other hand, homology is indeed all or none. In the quite different case of organs, analogy is expected usually to represent attenuated homology. Many instances of putative convergence are likely to turn out to be predominantly parallel evolution, presumably including the case of the vertebrate and cephalopod eyes. Homology in morphological features reflects a similarity in networks of active genes. Similar nexuses of active genes can be established in cells of different embryological origins. Thus, parallel development can be considered a counterpart to parallel evolution. Specific macromolecular interactions leading to the regulation of the c-fos gene are given as an example of a "controller node" defined as a regulatory unit. Quantitative changes in gene control are distinguished from relational changes, and frequent parallelism in quantitative changes is noted in Drosophila enzymes. Evolutionary reversions in quantitative gene expression are also expected. The evolution of relational patterns is attributed to several distinct mechanisms, notably the shuffling of protein domains. The growth of such patterns may in part be brought about by a particular process of compensation for "controller gene diseases," a process that would spontaneously tend to lead to increased regulatory

  20. Effects of expanding compact H II regions upon molecular clouds: Molecular dissociation waves, shock waves, and carbon ionization

    International Nuclear Information System (INIS)

    Hill, J.K.; Hollenbach, D.J.

    1978-01-01

    The effect of young expanding compact H II regions upon their molecular environments are studied, emphasizing the simultaneous evolution of the molecular hydrogen dissociation front and the shocked shell of gas surrounding the nebula. For H II regions powered by 05 stars embedded in molecular clouds of ambient density 10 3 -10 4 cm -3 the dissociation wave initially travels outward much more rapidly than the shock, but later decelerates and is swept up by the shock about 10 5 yr after the expansion begins. The 21 cm line of atomic hydrogen will be optically thick in both the preshock and postshock gas for most of this period. The most important coolant transitions are the [O I] 63 μm line and, for t> or approx. =10 5 yr, the rotational transitions of H 2 and/or the rotational transitions of CO. The vibrational transitions of H 2 are excited predominantly by ultraviolet pumping. We estimate the preshock and postshock carbon recombination-line emission measures

  1. Parallel Evolution of Sperm Hyper-Activation Ca2+ Channels.

    Science.gov (United States)

    Cooper, Jacob C; Phadnis, Nitin

    2017-07-01

    Sperm hyper-activation is a dramatic change in sperm behavior where mature sperm burst into a final sprint in the race to the egg. The mechanism of sperm hyper-activation in many metazoans, including humans, consists of a jolt of Ca2+ into the sperm flagellum via CatSper ion channels. Surprisingly, all nine CatSper genes have been independently lost in several animal lineages. In Drosophila, sperm hyper-activation is performed through the cooption of the polycystic kidney disease 2 (pkd2) Ca2+ channel. The parallels between CatSpers in primates and pkd2 in Drosophila provide a unique opportunity to examine the molecular evolution of the sperm hyper-activation machinery in two independent, nonhomologous calcium channels separated by > 500 million years of divergence. Here, we use a comprehensive phylogenomic approach to investigate the selective pressures on these sperm hyper-activation channels. First, we find that the entire CatSper complex evolves rapidly under recurrent positive selection in primates. Second, we find that pkd2 has parallel patterns of adaptive evolution in Drosophila. Third, we show that this adaptive evolution of pkd2 is driven by its role in sperm hyper-activation. These patterns of selection suggest that the evolution of the sperm hyper-activation machinery is driven by sexual conflict with antagonistic ligands that modulate channel activity. Together, our results add sperm hyper-activation channels to the class of fast evolving reproductive proteins and provide insights into the mechanisms used by the sexes to manipulate sperm behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genome-Wide Identification, Molecular Evolution, and Expression Profiling Analysis of Pectin Methylesterase Inhibitor Genes in Brassica campestris ssp. chinensis

    Directory of Open Access Journals (Sweden)

    Tingting Liu

    2018-05-01

    Full Text Available Pectin methylesterase inhibitor genes (PMEIs are a large multigene family and play crucial roles in cell wall modifications in plant growth and development. Here, a comprehensive analysis of the PMEI gene family in Brassica campestris, an important leaf vegetable, was performed. We identified 100 Brassica campestris PMEI genes (BcPMEIs, among which 96 BcPMEIs were unevenly distributed on 10 chromosomes and nine tandem arrays containing 20 BcPMEIs were found. We also detected 80 pairs of syntenic PMEI orthologs. These findings indicated that whole-genome triplication (WGT and tandem duplication (TD were the main mechanisms accounting for the current number of BcPMEIs. In evolution, BcPMEIs were retained preferentially and biasedly, consistent with the gene balance hypothesis and two-step theory, respectively. The molecular evolution analysis of BcPMEIs manifested that they evolved through purifying selection and the divergence time is in accordance with the WGT data of B. campestris. To obtain the functional information of BcPMEIs, the expression patterns in five tissues and the cis-elements distributed in promoter regions were investigated. This work can provide a better understanding of the molecular evolution and biological function of PMEIs in B. campestris.

  3. Rapid directed evolution of stabilized proteins with cellular high-throughput encapsulation solubilization and screening (CHESS).

    Science.gov (United States)

    Yong, K J; Scott, D J

    2015-03-01

    Directed evolution is a powerful method for engineering proteins towards user-defined goals and has been used to generate novel proteins for industrial processes, biological research and drug discovery. Typical directed evolution techniques include cellular display, phage display, ribosome display and water-in-oil compartmentalization, all of which physically link individual members of diverse gene libraries to their translated proteins. This allows the screening or selection for a desired protein function and subsequent isolation of the encoding gene from diverse populations. For biotechnological and industrial applications there is a need to engineer proteins that are functional under conditions that are not compatible with these techniques, such as high temperatures and harsh detergents. Cellular High-throughput Encapsulation Solubilization and Screening (CHESS), is a directed evolution method originally developed to engineer detergent-stable G proteins-coupled receptors (GPCRs) for structural biology. With CHESS, library-transformed bacterial cells are encapsulated in detergent-resistant polymers to form capsules, which serve to contain mutant genes and their encoded proteins upon detergent mediated solubilization of cell membranes. Populations of capsules can be screened like single cells to enable rapid isolation of genes encoding detergent-stable protein mutants. To demonstrate the general applicability of CHESS to other proteins, we have characterized the stability and permeability of CHESS microcapsules and employed CHESS to generate thermostable, sodium dodecyl sulfate (SDS) resistant green fluorescent protein (GFP) mutants, the first soluble proteins to be engineered using CHESS. © 2014 Wiley Periodicals, Inc.

  4. Spatial and Temporal Evolution of Urban Systems in China during Rapid Urbanization

    Directory of Open Access Journals (Sweden)

    Huan Li

    2016-07-01

    Full Text Available The structure of urban hierarchy and the role of cities of different sizes have drawn considerable scholarly interests and societal concerns. This paper analyzes the evolution and underlying mechanisms of urban hierarchy in China during the recent period of rapid urbanization. By comparing scale changes of seven types of cities (megacity, large city, Type I big city, Type II big city, medium-sized city, type I small city and type II small city, we find that allometry is the main characteristic of urban hierarchical evolution in China. We also test the validity of Zipf’s law and Gibrat’s law, which broaden the scope of existing studies by including county-level cities. We find that urban hierarchical distribution is lognormal, rather than Pareto. The result also shows that city size growth rates are constant across cities of different types. For better understanding of the mechanisms of urban hierarchical formation, we measure the optimal city size and resource allocation by the Pareto optimality criterion and non-parametric frontier method. The main findings are as follows: (1 scale efficiency is still at a relatively low level among the seven types of cities; (2 the economic efficiency of megacities and large cities is overestimated when compared to economic-environmental efficiency. Hence, this paper has two policy implications: (1 to correct factor market (land, labor and infrastructure investment distortions among different types of cities for the improvement of efficiency; (2 to strengthen rural property rights to improve social equity, as well as land use intensity.

  5. Sex speeds adaptation by altering the dynamics of molecular evolution.

    Science.gov (United States)

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations.

  6. Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    2007-08-01

    Full Text Available It frequently has been postulated that intersexual coevolution between the male ejaculate and the female reproductive tract is a driving force in the rapid evolution of reproductive proteins. The dearth of research on female tracts, however, presents a major obstacle to empirical tests of this hypothesis. Here, we employ a comparative EST approach to identify 241 candidate female reproductive proteins in Drosophila arizonae, a repleta group species in which physiological ejaculate-female coevolution has been documented. Thirty-one of these proteins exhibit elevated amino acid substitution rates, making them candidates for molecular coevolution with the male ejaculate. Strikingly, we also discovered 12 unique digestive proteases whose expression is specific to the D. arizonae lower female reproductive tract. These enzymes belong to classes most commonly found in the gastrointestinal tracts of a diverse array of organisms. We show that these proteases are associated with recent, lineage-specific gene duplications in the Drosophila repleta species group, and exhibit strong signatures of positive selection. Observation of adaptive evolution in several female reproductive tract proteins indicates they are active players in the evolution of reproductive tract interactions. Additionally, pervasive gene duplication, adaptive evolution, and rapid acquisition of a novel digestive function by the female reproductive tract points to a novel coevolutionary mechanism of ejaculate-female interaction.

  7. Molecular dynamics simulations of the structure evolutions of Cu-Zr metallic glasses under irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Lang, Lin [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China); Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Tian, Zean; Xiao, Shifang [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Deng, Huiqiu, E-mail: hqdeng@hnu.edu.cn [Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082 (China); Ao, Bingyun [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Chen, Piheng, E-mail: chenpiheng@caep.cn [Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621907 (China); Hu, Wangyu [College of Materials Science and Engineering, Hunan University, Changsha 410082 (China)

    2017-02-15

    Highlights: • The structural evolution of Cu{sub 64.5}Zr{sub 35.5} MG under irradiation was studied. • The structure clusters were analyzed using the LSCA method. • Most of these radiation damages have been self-recovered quickly. - Abstract: Molecular dynamics simulations have been performed to investigate the structural evolution of Cu{sub 64.5}Zr{sub 35.5} metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.

  8. Patterns of molecular evolution of an avian neo-sex chromosome.

    Science.gov (United States)

    Pala, Irene; Hasselquist, Dennis; Bensch, Staffan; Hansson, Bengt

    2012-12-01

    Newer parts of sex chromosomes, neo-sex chromosomes, offer unique possibilities for studying gene degeneration and sequence evolution in response to loss of recombination and population size decrease. We have recently described a neo-sex chromosome system in Sylvioidea passerines that has resulted from a fusion between the first half (10 Mb) of chromosome 4a and the ancestral sex chromosomes. In this study, we report the results of molecular analyses of neo-Z and neo-W gametologs and intronic parts of neo-Z and autosomal genes on the second half of chromosome 4a in three species within different Sylvioidea lineages (Acrocephalidea, Timaliidae, and Alaudidae). In line with hypotheses of neo-sex chromosome evolution, we observe 1) lower genetic diversity of neo-Z genes compared with autosomal genes, 2) moderate synonymous and weak nonsynonymous sequence divergence between neo-Z and neo-W gametologs, and 3) lower GC content on neo-W than neo-Z gametologs. Phylogenetic reconstruction of eight neo-Z and neo-W gametologs suggests that recombination continued after the split of Alaudidae from the rest of the Sylvioidea lineages (i.e., after ~42.2 Ma) and with some exceptions also after the split of Acrocephalidea and Timaliidae (i.e., after ~39.4 Ma). The Sylvioidea neo-sex chromosome shares classical evolutionary features with the ancestral sex chromosomes but, as expected from its more recent origin, shows weaker divergence between gametologs.

  9. THE GLOBAL EVOLUTION OF GIANT MOLECULAR CLOUDS. II. THE ROLE OF ACCRETION

    International Nuclear Information System (INIS)

    Goldbaum, Nathan J.; Krumholz, Mark R.; Matzner, Christopher D.; McKee, Christopher F.

    2011-01-01

    We present virial models for the global evolution of giant molecular clouds (GMCs). Focusing on the presence of an accretion flow and accounting for the amount of mass, momentum, and energy supplied by accretion and star formation feedback, we are able to follow the growth, evolution, and dispersal of individual GMCs. Our model clouds reproduce the scaling relations observed in both galactic and extragalactic clouds. We find that accretion and star formation contribute roughly equal amounts of turbulent kinetic energy over the lifetime of the cloud. Clouds attain virial equilibrium and grow in such a way as to maintain roughly constant surface densities, with typical surface densities of order 50-200 M sun pc -2 , in good agreement with observations of GMCs in the Milky Way and nearby external galaxies. We find that as clouds grow, their velocity dispersion and radius must also increase, implying that the linewidth-size relation constitutes an age sequence. Lastly, we compare our models to observations of GMCs and associated young star clusters in the Large Magellanic Cloud and find good agreement between our model clouds and the observed relationship between H II regions, young star clusters, and GMCs.

  10. Rapid evolution of the mitochondrial genome in Chalcidoid wasps (Hymenoptera: Chalcidoidea driven by parasitic lifestyles.

    Directory of Open Access Journals (Sweden)

    Jin-Hua Xiao

    Full Text Available Among the Chalcidoids, hymenopteran parasitic wasps that have diversified lifestyles, a partial mitochondrial genome has been reported only from Nasonia. This genome had many unusual features, especially a dramatic reorganization and a high rate of evolution. Comparisons based on more mitochondrial genomic data from the same superfamily were required to reveal weather these unusual features are peculiar to Nasonia or not. In the present study, we sequenced the nearly complete mitochondrial genomes from the species Philotrypesis. pilosa and Philotrypesis sp., both of which were associated with Ficus hispida. The acquired data included all of the protein-coding genes, rRNAs, and most of the tRNAs, and in P. pilosa the control region. High levels of nucleotide divergence separated the two species. A comparison of all available hymenopteran mitochondrial genomes (including a submitted partial genome from Ceratosolen solmsi revealed that the Chalcidoids had dramatic mitochondrial gene rearrangments, involved not only the tRNAs, but also several protein-coding genes. The AT-rich control region was translocated and inverted in Philotrypesis. The mitochondrial genomes also exhibited rapid rates of evolution involving elevated nonsynonymous mutations.

  11. THE MOLECULAR EVOLUTION OF THE MOST DANGEROUS EMERGING VIRUS INFECTIONS

    Directory of Open Access Journals (Sweden)

    Popov NN

    2016-03-01

    Full Text Available In this paper we reviewed what is known about the emerging viruses, the hosts that they originate in, and the molecular events that drive their emergence. When a pathogen crosses over from animals to humans, or an existing human disease suddenly increases in incidence, the infectious disease is said to be ‘emerging’. Most of the emerging pathogens originate from nonhuman animal species which has been termed natural reservoirs. The number of emerging infectious diseases has increased over the last few decades, driven by both anthropogenic and environmental factors such as population growth, urbanization, global travel and trade, intensification of livestock production. Now it has been believed that the emergence process may include four steps. On the first step the exposure of the humans to a novel virus occures. On the second step the subset of the viruses overcome the cross-species barrier. Host shifts have resulted in multiple human pandemics, such as HIV from chimps the H1N1, ‘‘spanish flu’’ from birds, SARS-CoV and virus Ebola from bats. Then some viruses enables to transmit from one human to another. And on the last step the viruses that are sufficiently transmissible between humans cause outbreaks and become endemic in human populations without the requirement of a natural reservoir. This review aims to discuss the molecular mechanisms that govern virus cross-species transmission and following stage, using the emergence of HIV, SARS-CoV, virus Ebola and influenza virus A as the models.Populations of many viruses harbour abundant genetic variability due to a combination of high mutation, recombination or reassortation rates and large population sizes. Mutations and recombinations has been associated with the increases in virulence, the evasion of host immunity and the evolution of resistance to antivirals. Genetic alterations in one species may results in the acquisition of variations that allow them to overcome cross species

  12. Concerted evolution rapidly eliminates sequence variation in rDNA coding regions but not in intergenic spacers in Nicotiana tabacum allotetraploid

    Czech Academy of Sciences Publication Activity Database

    Lunerová Bedřichová, Jana; Renny-Byfield, S.; Matyášek, Roman; Leitch, A.; Kovařík, Aleš

    2017-01-01

    Roč. 303, č. 8 (2017), s. 1043-1060 ISSN 0378-2697 R&D Projects: GA ČR(CZ) GA17-11642S; GA ČR(CZ) GC16-02149J Institutional support: RVO:68081707 Keywords : Concerted evolution * Immunomodulation * Neutrophils Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 1.239, year: 2016

  13. In vitro evolution and affinity-maturation with Coliphage qβ display.

    Directory of Open Access Journals (Sweden)

    Claudia Skamel

    Full Text Available The Escherichia coli bacteriophage, Qβ (Coliphage Qβ, offers a favorable alternative to M13 for in vitro evolution of displayed peptides and proteins due to high mutagenesis rates in Qβ RNA replication that better simulate the affinity maturation processes of the immune response. We describe a benchtop in vitro evolution system using Qβ display of the VP1 G-H loop peptide of foot-and-mouth disease virus (FMDV. DNA encoding the G-H loop was fused to the A1 minor coat protein of Qβ resulting in a replication-competent hybrid phage that efficiently displayed the FMDV peptide. The surface-localized FMDV VP1 G-H loop cross-reacted with the anti-FMDV monoclonal antibody (mAb SD6 and was found to decorate the corners of the Qβ icosahedral shell by electron microscopy. Evolution of Qβ-displayed peptides, starting from fully degenerate coding sequences corresponding to the immunodominant region of VP1, allowed rapid in vitro affinity maturation to SD6 mAb. Qβ selected under evolutionary pressure revealed a non-canonical, but essential epitope for mAb SD6 recognition consisting of an Arg-Gly tandem pair. Finally, the selected hybrid phages induced polyclonal antibodies in guinea pigs with good affinity to both FMDV and hybrid Qβ-G-H loop, validating the requirement of the tandem pair epitope. Qβ-display emerges as a novel framework for rapid in vitro evolution with affinity-maturation to molecular targets.

  14. Rapid experimental evolution of pesticide resistance in C. elegans entails no costs and affects the mating system.

    Directory of Open Access Journals (Sweden)

    Patricia C Lopes

    Full Text Available Pesticide resistance is a major concern in natural populations and a model trait to study adaptation. Despite the importance of this trait, the dynamics of its evolution and of its ecological consequences remain largely unstudied. To fill this gap, we performed experimental evolution with replicated populations of Caenorhabditis elegans exposed to the pesticide Levamisole during 20 generations. Exposure to Levamisole resulted in decreased survival, fecundity and male frequency, which declined from 30% to zero. This was not due to differential susceptibility of males. Rather, the drug affected mobility, resulting in fewer encounters, probably leading to reduced outcrossing rates. Adaptation, i.e., increased survival and fecundity, occurred within 10 and 20 generations, respectively. Male frequency also increased by generation 20. Adaptation costs were undetected in the ancestral environment and in presence of Ivermectin, another widely-used pesticide with an opposite physiological effect. Our results demonstrate that pesticide resistance can evolve at an extremely rapid pace. Furthermore, we unravel the effects of behaviour on life-history traits and test the environmental dependence of adaptation costs. This study establishes experimental evolution as a powerful tool to tackle pesticide resistance, and paves the way to further investigations manipulating environmental and/or genetic factors underlying adaptation to pesticides.

  15. Molecular evolution in court: analysis of a large hepatitis C virus outbreak from an evolving source.

    Science.gov (United States)

    González-Candelas, Fernando; Bracho, María Alma; Wróbel, Borys; Moya, Andrés

    2013-07-19

    Molecular phylogenetic analyses are used increasingly in the epidemiological investigation of outbreaks and transmission cases involving rapidly evolving RNA viruses. Here, we present the results of such an analysis that contributed to the conviction of an anesthetist as being responsible for the infection of 275 of his patients with hepatitis C virus. We obtained sequences of the NS5B and E1-E2 regions in the viral genome for 322 patients suspected to have been infected by the doctor, and for 44 local, unrelated controls. The analysis of 4,184 cloned sequences of the E1-E2 region allowed us to exclude 47 patients from the outbreak. A subset of patients had known dates of infection. We used these data to calibrate a relaxed molecular clock and to determine a rough estimate of the time of infection for each patient. A similar analysis led to an estimate for the time of infection of the source. The date turned out to be 10 years before the detection of the outbreak. The number of patients infected was small at first, but it increased substantially in the months before the detection of the outbreak. We have developed a procedure to integrate molecular phylogenetic reconstructions of rapidly evolving viral populations into a forensic setting adequate for molecular epidemiological analysis of outbreaks and transmission events. We applied this procedure to a large outbreak of hepatitis C virus caused by a single source and the results obtained played a key role in the trial that led to the conviction of the suspected source.

  16. Impact of rapid molecular diagnostic tests on time to treatment initiation and outcomes in patients with multidrug-resistant tuberculosis, Tamil Nadu, India.

    Science.gov (United States)

    Nair, Dina; Navneethapandian, Pooranaganga D; Tripathy, Jaya Prasad; Harries, Anthony D; Klinton, Joel S; Watson, Basilea; Sivaramakrishnan, Gomathi N; Reddy, Devarajulu S; Murali, Lakshmi; Natrajan, Mohan; Swaminathan, Soumya

    2016-09-01

    India is replacing culture and drug sensitivity testing (CDST) with rapid molecular tests for diagnosing MDR-TB. We assessed the impact of rapid tests on time to initiation of treatment and outcomes in patients with MDR-TB compared with CDST. A retrospective cohort study involving MDR-TB patients from six districts in Tamil Nadu state, who underwent CDST (2010-2011) and rapid tests (2012-2013). There were 135 patients in the CDST group and 389 in the rapid diagnostic test group. Median time from sputum receipt at the laboratory to initiation of MDR-TB treatment was 130 days (IQR 75-213) in the CDST group and 22 days (IQR 14-38) in the rapid diagnostic test group (p30% in both groups and missing data were higher in CDST (13%) compared with rapid tests (3%). There were significantly higher risks of unfavourable treatment outcomes in males (aRR 1.3, 95% CI 1.1-1.5) and those with treatment initiation delays >30 days (aRR 1.3, 95% CI 1.0-1.6). Rapid molecular diagnostic tests shortened the time to initiate treatment which was associated with reduced unfavourable outcomes in MDR-TB patients. This supports the policy to scale up these tests in India. © The Author 2016. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Rapid evolution of phenology during range expansion with recent climate change.

    Science.gov (United States)

    Lustenhouwer, Nicky; Wilschut, Rutger A; Williams, Jennifer L; van der Putten, Wim H; Levine, Jonathan M

    2018-02-01

    Although climate warming is expected to make habitat beyond species' current cold range edge suitable for future colonization, this new habitat may present an array of biotic or abiotic conditions not experienced within the current range. Species' ability to shift their range with climate change may therefore depend on how populations evolve in response to such novel environmental conditions. However, due to the recent nature of thus far observed range expansions, the role of rapid adaptation during climate change migration is only beginning to be understood. Here, we evaluated evolution during the recent native range expansion of the annual plant Dittrichia graveolens, which is spreading northward in Europe from the Mediterranean region. We examined genetically based differentiation between core and edge populations in their phenology, a trait that is likely under selection with shorter growing seasons and greater seasonality at northern latitudes. In parallel common garden experiments at range edges in Switzerland and the Netherlands, we grew plants from Dutch, Swiss, and central and southern French populations. Population genetic analysis following RAD-sequencing of these populations supported the hypothesized central France origins of the Swiss and Dutch range edge populations. We found that in both common gardens, northern plants flowered up to 4 weeks earlier than southern plants. This differentiation in phenology extended from the core of the range to the Netherlands, a region only reached from central France over approximately the last 50 years. Fitness decreased as plants flowered later, supporting the hypothesized benefits of earlier flowering at the range edge. Our results suggest that native range expanding populations can rapidly adapt to novel environmental conditions in the expanded range, potentially promoting their ability to spread. © 2017 John Wiley & Sons Ltd.

  18. Rapid Evolution of Assortative Fertilization between Recently Allopatric Species of Drosophila.

    Science.gov (United States)

    Ahmed-Braimah, Yasir H; McAllister, Bryant F

    2012-01-01

    The virilis group of Drosophila represents a relatively unexplored but potentially useful model to investigate the genetics of speciation. Good resolution of phylogenetic relationships and the ability to obtain fertile hybrid offspring make the group especially promising for analysis of genetic changes underlying reproductive isolation separate from hybrid sterility and inviability. Phylogenetic analyses reveal a close relationship between the sister species, Drosophila americana and D. novamexicana, yet excepting their contemporary allopatric distributions, factors that contribute to reproductive isolation between this species pair remain uncharacterized. A previous report has shown reduced progeny numbers in laboratory crosses between the two species, especially when female D. novamexicana are crossed with male D. americana. We show that the hatch rate of eggs produced from heterospecific matings is reduced relative to conspecific matings. Failure of eggs to hatch, and consequent reduction in hybrid progeny number, is caused by low fertilization success of heterospecific sperm, thus representing a postmating, prezygotic incompatibility. Following insemination, storage and motility of heterospecific sperm is visibly compromised in female D. novamexicana. Our results provide evidence for a mechanism of reproductive isolation that is seldom reported for Drosophila species, and indicate the rapid evolution of postmating, prezygotic reproductive barriers in allopatry.

  19. Recombinase polymerase amplification: Emergence as a critical molecular technology for rapid, low-resource diagnostics.

    Science.gov (United States)

    James, Ameh; Macdonald, Joanne

    2015-01-01

    Isothermal molecular diagnostics are bridging the technology gap between traditional diagnostics and polymerase chain reaction-based methods. These new techniques enable timely and accurate testing, especially in settings where there is a lack of infrastructure to support polymerase chain reaction facilities. Despite this, there is a significant lack of uptake of these technologies in developing countries where they are highly needed. Among these novel isothermal technologies, recombinase polymerase amplification (RPA) holds particular potential for use in developing countries. This rapid nucleic acid amplification approach is fast, highly sensitive and specific, and amenable to countries with a high burden of infectious diseases. Implementation of RPA technology in developing countries is critically required to assess limitations and potentials of the diagnosis of infectious disease, and may help identify impediments that prevent adoption of new molecular technologies in low resource- and low skill settings. This review focuses on approaching diagnosis of infectious disease with RPA.

  20. Rapid isolation of gene homologs across taxa: Efficient identification and isolation of gene orthologs from non-model organism genomes, a technical report

    Directory of Open Access Journals (Sweden)

    Heffer Alison

    2011-03-01

    Full Text Available Abstract Background Tremendous progress has been made in the field of evo-devo through comparisons of related genes from diverse taxa. While the vast number of species in nature precludes a complete analysis of the molecular evolution of even one single gene family, this would not be necessary to understand fundamental mechanisms underlying gene evolution if experiments could be designed to systematically sample representative points along the path of established phylogenies to trace changes in regulatory and coding gene sequence. This isolation of homologous genes from phylogenetically diverse, representative species can be challenging, especially if the gene is under weak selective pressure and evolving rapidly. Results Here we present an approach - Rapid Isolation of Gene Homologs across Taxa (RIGHT - to efficiently isolate specific members of gene families. RIGHT is based upon modification and a combination of degenerate polymerase chain reaction (PCR and gene-specific amplified fragment length polymorphism (AFLP. It allows targeted isolation of specific gene family members from any organism, only requiring genomic DNA. We describe this approach and how we used it to isolate members of several different gene families from diverse arthropods spanning millions of years of evolution. Conclusions RIGHT facilitates systematic isolation of one gene from large gene families. It allows for efficient gene isolation without whole genome sequencing, RNA extraction, or culturing of non-model organisms. RIGHT will be a generally useful method for isolation of orthologs from both distant and closely related species, increasing sample size and facilitating the tracking of molecular evolution of gene families and regulatory networks across the tree of life.

  1. MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex.

    Directory of Open Access Journals (Sweden)

    Carolina Firacative

    Full Text Available BACKGROUND: The Cryptococcus neoformans/C. gattii species complex comprises two sibling species that are divided into eight major molecular types, C. neoformans VNI to VNIV and C. gattii VGI to VGIV. These genotypes differ in host range, epidemiology, virulence, antifungal susceptibility and geographic distribution. The currently used phenotypic and molecular identification methods for the species/molecular types are time consuming and expensive. As Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry (MALDI-TOF MS offers an effective alternative for the rapid identification of microorganisms, the objective of this study was to examine its potential for the identification of C. neoformans and C. gattii strains at the intra- and inter-species level. METHODOLOGY: Protein extracts obtained via the formic acid extraction method of 164 C. neoformans/C. gattii isolates, including four inter-species hybrids, were studied. RESULTS: The obtained mass spectra correctly identified 100% of all studied isolates, grouped each isolate according to the currently recognized species, C. neoformans and C. gattii, and detected potential hybrids. In addition, all isolates were clearly separated according to their major molecular type, generating greater spectral differences among the C. neoformans molecular types than the C. gattii molecular types, most likely reflecting a closer phylogenetic relationship between the latter. The number of colonies used and the incubation length did not affect the results. No spectra were obtained from intact yeast cells. An extended validated spectral library containing spectra of all eight major molecular types was established. CONCLUSIONS: MALDI-TOF MS is a rapid identification tool for the correct recognition of the two currently recognized human pathogenic Cryptococcus species and offers a simple method for the separation of the eight major molecular types and the detection of hybrid strains within this

  2. Molecular musings in microbial ecology and evolution.

    Science.gov (United States)

    Case, Rebecca J; Boucher, Yan

    2011-11-10

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology.The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology.The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology).The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  3. Rapid evolution of the paraglacial Moosfluh rock slope instability (Swiss Alps) captured by Sentinel-1

    Science.gov (United States)

    Manconi, Andrea; Glueer, Franziska; Loew, Simon

    2017-04-01

    of the most active area, and to define a strategy for the installation of additional in-situ monitoring targets. Thus, we have improved our capability to monitor in near-real-time the evolution of surface displacement, as well as to provide a better interpretation of the ongoing critical phase and to define evolutionary scenarios. Space borne DInSAR for the analysis of unstable slopes is experiencing a new Era. In former times, the combination of poor temporal sampling and rapid evolution of surface displacements has hindered this technique from performing analysis on landslides during critical acceleration phases. Indeed, the time spanning between the acquisition of a robust SAR dataset and the availability of reliable results were in the order months or, in some cases, even years. Nowadays, by leveraging the unprecedented spatial and temporal coverage provided by the ESA Sentinel-1 A and B, the time spanning from data acquisition to the generation of ground displacements has been reduced to weeks or, in some cases, days. Thus, we can now obtain information current stage of the slope instability and also to catch the rapid evolution towards a potential catastrophic failure.

  4. Enhancer evolution across 20 mammalian species

    DEFF Research Database (Denmark)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah

    2015-01-01

    The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders...... by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements....... These results provide important insight into the functional genetics underpinning mammalian regulatory evolution....

  5. Molecular diagnostics of myeloproliferative neoplasms.

    Science.gov (United States)

    Langabeer, Stephen E; Andrikovics, Hajnalka; Asp, Julia; Bellosillo, Beatriz; Carillo, Serge; Haslam, Karl; Kjaer, Lasse; Lippert, Eric; Mansier, Olivier; Oppliger Leibundgut, Elisabeth; Percy, Melanie J; Porret, Naomi; Palmqvist, Lars; Schwarz, Jiri; McMullin, Mary F; Schnittger, Susanne; Pallisgaard, Niels; Hermouet, Sylvie

    2015-10-01

    Since the discovery of the JAK2 V617F mutation in the majority of the myeloproliferative neoplasms (MPN) of polycythemia vera, essential thrombocythemia and primary myelofibrosis ten years ago, further MPN-specific mutational events, notably in JAK2 exon 12, MPL exon 10 and CALR exon 9 have been identified. These discoveries have been rapidly incorporated into evolving molecular diagnostic algorithms. Whilst many of these mutations appear to have prognostic implications, establishing MPN diagnosis is of immediate clinical importance with selection, implementation and the continual evaluation of the appropriate laboratory methodology to achieve this diagnosis similarly vital. The advantages and limitations of these approaches in identifying and quantitating the common MPN-associated mutations are considered herein with particular regard to their clinical utility. The evolution of molecular diagnostic applications and platforms has occurred in parallel with the discovery of MPN-associated mutations, and it therefore appears likely that emerging technologies such as next-generation sequencing and digital PCR will in the future play an increasing role in the molecular diagnosis of MPN. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. The molecular evolution of cytochrome P450 genes within and between drosophila species.

    Science.gov (United States)

    Good, Robert T; Gramzow, Lydia; Battlay, Paul; Sztal, Tamar; Batterham, Philip; Robin, Charles

    2014-04-20

    We map 114 gene gains and 74 gene losses in the P450 gene family across the phylogeny of 12 Drosophila species by examining the congruence of gene trees and species trees. Although the number of P450 genes varies from 74 to 94 in the species examined, we infer that there were at least 77 P450 genes in the ancestral Drosophila genome. One of the most striking observations in the data set is the elevated loss of P450 genes in the Drosophila sechellia lineage. The gain and loss events are not evenly distributed among the P450 genes-with 30 genes showing no gene gains or losses whereas others show as many as 20 copy number changes among the species examined. The P450 gene clades showing the fewest number of gene gain and loss events tend to be those evolving with the most purifying selection acting on the protein sequences, although there are exceptions, such as the rapid rate of amino acid replacement observed in the single copy phantom (Cyp306a1) gene. Within D. melanogaster, we observe gene copy number polymorphism in ten P450 genes including multiple cases of interparalog chimeras. Nonallelic homologous recombination (NAHR) has been associated with deleterious mutations in humans, but here we provide a second possible example of an NAHR event in insect P450s being adaptive. Specifically, we find that a polymorphic Cyp12a4/Cyp12a5 chimera correlates with resistance to an insecticide. Although we observe such interparalog exchange in our within-species data sets, we have little evidence of it between species, raising the possibility that such events may occur more frequently than appreciated but are masked by subsequent sequence change. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Science.gov (United States)

    Sun, Zhonglou; Pan, Tao; Hu, Chaochao; Sun, Lu; Ding, Hengwu; Wang, Hui; Zhang, Chenling; Jin, Hong; Chang, Qing; Kan, Xianzhao; Zhang, Baowei

    2017-01-01

    The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes). Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma). Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma). Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  8. Rapid and recent diversification patterns in Anseriformes birds: Inferred from molecular phylogeny and diversification analyses.

    Directory of Open Access Journals (Sweden)

    Zhonglou Sun

    Full Text Available The Anseriformes is a well-known and widely distributed bird order, with more than 150 species in the world. This paper aims to revise the classification, determine the phylogenetic relationships and diversification patterns in Anseriformes by exploring the Cyt b, ND2, COI genes and the complete mitochondrial genomes (mito-genomes. Molecular phylogeny and genetic distance analyses suggest that the Dendrocygna species should be considered as an independent family, Dendrocygnidae, rather than a member of Anatidae. Molecular timescale analyses suggests that the ancestral diversification occurred during the Early Eocene Climatic Optimum (58 ~ 50 Ma. Furthermore, diversification analyses showed that, after a long period of constant diversification, the median initial speciation rate was accelerated three times, and finally increased to approximately 0.3 sp/My. In the present study, both molecular phylogeny and diversification analyses results support that Anseriformes birds underwent rapid and recent diversification in their evolutionary history, especially in modern ducks, which show extreme diversification during the Plio-Pleistocene (~ 5.3 Ma. Therefore, our study support that the Plio-Pleistocene climate fluctuations are likely to have played a significant role in promoting the recent diversification for Anseriformes.

  9. Characteristics and evolution of the ecosystem of software tools supporting research in molecular biology.

    Science.gov (United States)

    Pazos, Florencio; Chagoyen, Monica

    2018-01-16

    Daily work in molecular biology presently depends on a large number of computational tools. An in-depth, large-scale study of that 'ecosystem' of Web tools, its characteristics, interconnectivity, patterns of usage/citation, temporal evolution and rate of decay is crucial for understanding the forces that shape it and for informing initiatives aimed at its funding, long-term maintenance and improvement. In particular, the long-term maintenance of these tools is compromised because of their specific development model. Hundreds of published studies become irreproducible de facto, as the software tools used to conduct them become unavailable. In this study, we present a large-scale survey of >5400 publications describing Web servers within the two main bibliographic resources for disseminating new software developments in molecular biology. For all these servers, we studied their citation patterns, the subjects they address, their citation networks and the temporal evolution of these factors. We also analysed how these factors affect the availability of these servers (whether they are alive). Our results show that this ecosystem of tools is highly interconnected and adapts to the 'trendy' subjects in every moment. The servers present characteristic temporal patterns of citation/usage, and there is a worrying rate of server 'death', which is influenced by factors such as the server popularity and the institutions that hosts it. These results can inform initiatives aimed at the long-term maintenance of these resources. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  10. [Evolution of pathogenic micro-organisms as a challenge for medicine].

    Science.gov (United States)

    Vaara, Martti

    2009-01-01

    Successful parasitic micro-organisms are able to adapt to the circumstances of the host's organ system, and it is usually not expedient for them to kill their host. Under selection pressure, the evolution of micro-organisms is vastly quicker that that of man. The selection pressure brought about by rapid ecological changes and alterations associated with human action provides for the development of new, dangerous pathogens and transformation of familiar pathogens to become more dangerous. Progress in molecular biology has thus far not yielded as many new tools for the treatment of infectious diseases as the hopes were in the early 2000's.

  11. Gene duplication, silencing and expression alteration govern the molecular evolution of PRC2 genes in plants.

    Science.gov (United States)

    Furihata, Hazuka Y; Suenaga, Kazuya; Kawanabe, Takahiro; Yoshida, Takanori; Kawabe, Akira

    2016-10-13

    PRC2 genes were analyzed for their number of gene duplications, d N /d S ratios and expression patterns among Brassicaceae and Gramineae species. Although both amino acid sequences and copy number of the PRC2 genes were generally well conserved in both Brassicaceae and Gramineae species, we observed that some rapidly evolving genes experienced duplications and expression pattern changes. After multiple duplication events, all but one or two of the duplicated copies tend to be silenced. Silenced copies were reactivated in the endosperm and showed ectopic expression in developing seeds. The results indicated that rapid evolution of some PRC2 genes is initially caused by a relaxation of selective constraint following the gene duplication events. Several loci could become maternally expressed imprinted genes and acquired functional roles in the endosperm.

  12. Sexual and Natural Selection Both Influence Male Genital Evolution

    OpenAIRE

    House, Clarissa M.; Lewis, Zenobia; Hodgson, Dave J.; Wedell, Nina; Sharma, Manmohan D.; Hunt, John; Hosken, David J.

    2013-01-01

    Rapid and divergent evolution of male genital morphology is a conspicuous and general pattern across internally fertilizing animals. Rapid genital evolution is thought to be the result of sexual selection, and the role of natural selection in genital evolution remains controversial. However, natural and sexual selection are believed to act antagonistically on male genital form. We conducted an experimental evolution study to investigate the combined effects of natural and sexual selection on ...

  13. Testing the neutral theory of molecular evolution using genomic data: a comparison of the human and bovine transcriptome

    Directory of Open Access Journals (Sweden)

    McCulloch Alan

    2006-04-01

    Full Text Available Abstract Despite growing evidence of rapid evolution in protein coding genes, the contribution of positive selection to intra- and interspecific differences in protein coding regions of the genome is unclear. We attempted to see if genes coding for secreted proteins and genes with narrow expression, specifically those preferentially expressed in the mammary gland, have diverged at a faster rate between domestic cattle (Bos taurus and humans (Homo sapiens than other genes and whether positive selection is responsible. Using a large data set, we identified groups of genes based on secretion and expression patterns and compared them for the rate of nonsynonymous (dN and synonymous (dS substitutions per site and the number of radical (Dr and conservative (Dc amino acid substitutions. We found evidence of rapid evolution in genes with narrow expression, especially for those expressed in the liver and mammary gland and for genes coding for secreted proteins. We compared common human polymorphism data with human-cattle divergence and found that genes with high evolutionary rates in human-cattle divergence also had a large number of common human polymorphisms. This argues against positive selection causing rapid divergence in these groups of genes. In most cases dN/dS ratios were lower in human-cattle divergence than in common human polymorphism presumably due to differences in the effectiveness of purifying selection between long-term divergence and short-term polymorphism.

  14. Rapid Isolation and Molecular Detection of Streptomycin-Producing Streptomycetes

    Directory of Open Access Journals (Sweden)

    M Motovali-bashi

    2006-07-01

    Full Text Available Introduction: Streptomyces species are mycelial, aerobic gram-positive bacteria that are isolated from soil and produce a diverse range of antibiotics. Streptomyces griseus produces the antibiotic, streptomycin and forms spores even in a liquid culture. The gene cluster for the production of Streptomycin antibiotic contains strR gene that encodes StrR, a pathway-specific regulator. Then, this pathway-specific regulator induces transcription of other streptomycin production genes in the gene cluster. The overall aim of this work was rapid isolation and molecular detection of streptomycin-producing Streptomycetes, especially S. griseus, from Iranian soils in order to manipulate them for increased production of streptomycin. Methods: This research used new initiative half-specific medium for isolation of Streptomycetes from natural environments, called FZmsn. The fifty colonies of Streptomyces strains grown on the surface of FZmsn medium isolated from environmental samples were defined on the basis of their morphological characteristics and light microscope studies. A set of primers was designed to detect strR by OLIGO software. Results: In colony-PCR reactions followed by gel electrophoresis, 6 colonies from Streptomyces strains colonies were detected as S. griseus colonies. Conclusion: These native Streptomyces strains will be used for genetic manipulation of S. griseus in order to increase production levels of streptomycin.

  15. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing.

    Science.gov (United States)

    Sánchez, Rubén; Serra, François; Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Pulido, Luis; de María, Alejandro; Capella-Gutíerrez, Salvador; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2011-07-01

    Phylemon 2.0 is a new release of the suite of web tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. It has been designed as a response to the increasing demand of molecular sequence analyses for experts and non-expert users. Phylemon 2.0 has several unique features that differentiates it from other similar web resources: (i) it offers an integrated environment that enables evolutionary analyses, format conversion, file storage and edition of results; (ii) it suggests further analyses, thereby guiding the users through the web server; and (iii) it allows users to design and save phylogenetic pipelines to be used over multiple genes (phylogenomics). Altogether, Phylemon 2.0 integrates a suite of 30 tools covering sequence alignment reconstruction and trimming; tree reconstruction, visualization and manipulation; and evolutionary hypotheses testing.

  16. Phylemon 2.0: a suite of web-tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing

    Science.gov (United States)

    Sánchez, Rubén; Serra, François; Tárraga, Joaquín; Medina, Ignacio; Carbonell, José; Pulido, Luis; de María, Alejandro; Capella-Gutíerrez, Salvador; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2011-01-01

    Phylemon 2.0 is a new release of the suite of web tools for molecular evolution, phylogenetics, phylogenomics and hypotheses testing. It has been designed as a response to the increasing demand of molecular sequence analyses for experts and non-expert users. Phylemon 2.0 has several unique features that differentiates it from other similar web resources: (i) it offers an integrated environment that enables evolutionary analyses, format conversion, file storage and edition of results; (ii) it suggests further analyses, thereby guiding the users through the web server; and (iii) it allows users to design and save phylogenetic pipelines to be used over multiple genes (phylogenomics). Altogether, Phylemon 2.0 integrates a suite of 30 tools covering sequence alignment reconstruction and trimming; tree reconstruction, visualization and manipulation; and evolutionary hypotheses testing. PMID:21646336

  17. Rapid evolution of the Helicobacter pylori AlpA adhesin in a high gastric cancer risk region from Colombia

    Directory of Open Access Journals (Sweden)

    Andrés Julián Gutiérrez-Escobar

    2018-05-01

    Full Text Available To be able to survive, Helicobacter pylori must adhere to the gastric epithelial cells of its human host. For this purpose, the bacterium employs an array of adhesins, for example, AlpA. The adhesin AlpA has been proposed as a major adhesin because of its critical role in human stomach colonization. Therefore, understanding how AlpA evolved could be important for the development of new diagnostic strategies. However, the genetic variation and microevolutionary patterns of alpA have not been described in Colombia. The study aim was to describe the variation patterns and microevolutionary process of alpA in Colombian clinical isolates of H. pylori. The existing polymorphisms, which are deviations from the neutral model of molecular evolution, and the genetic differentiation of the alpA gene from Colombian clinical isolates of H. pylori were determined. The analysis shows that gene conversion and purifying selection have shaped the evolution of three different variants of alpA in Colombia.

  18. Surface Functionalization of g-C 3 N 4 : Molecular-Level Design of Noble-Metal-Free Hydrogen Evolution Photocatalysts

    KAUST Repository

    Chen, Yin

    2015-06-12

    A stable noble-metal-free hydrogen evolution photocatalyst based on graphite carbon nitride (g-C3N4) was developed by a molecular-level design strategy. Surface functionalization was successfully conducted to introduce a single nickel active site onto the surface of the semiconducting g-C3N4. This catalyst family (with less than 0.1 wt% of Ni) has been found to produce hydrogen with a rate near to the value obtained by using 3 wt% platinum as co-catalyst. This new catalyst also exhibits very good stability under hydrogen evolution conditions, without any evidence of deactivation after 24h. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Biomimetic molecular design tools that learn, evolve, and adapt

    Science.gov (United States)

    2017-01-01

    A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine. PMID:28694872

  20. Biomimetic molecular design tools that learn, evolve, and adapt

    Directory of Open Access Journals (Sweden)

    David A Winkler

    2017-06-01

    Full Text Available A dominant hallmark of living systems is their ability to adapt to changes in the environment by learning and evolving. Nature does this so superbly that intensive research efforts are now attempting to mimic biological processes. Initially this biomimicry involved developing synthetic methods to generate complex bioactive natural products. Recent work is attempting to understand how molecular machines operate so their principles can be copied, and learning how to employ biomimetic evolution and learning methods to solve complex problems in science, medicine and engineering. Automation, robotics, artificial intelligence, and evolutionary algorithms are now converging to generate what might broadly be called in silico-based adaptive evolution of materials. These methods are being applied to organic chemistry to systematize reactions, create synthesis robots to carry out unit operations, and to devise closed loop flow self-optimizing chemical synthesis systems. Most scientific innovations and technologies pass through the well-known “S curve”, with slow beginning, an almost exponential growth in capability, and a stable applications period. Adaptive, evolving, machine learning-based molecular design and optimization methods are approaching the period of very rapid growth and their impact is already being described as potentially disruptive. This paper describes new developments in biomimetic adaptive, evolving, learning computational molecular design methods and their potential impacts in chemistry, engineering, and medicine.

  1. Rapid evolution of the sequences and gene repertoires of secreted proteins in bacteria.

    Directory of Open Access Journals (Sweden)

    Teresa Nogueira

    Full Text Available Proteins secreted to the extracellular environment or to the periphery of the cell envelope, the secretome, play essential roles in foraging, antagonistic and mutualistic interactions. We hypothesize that arms races, genetic conflicts and varying selective pressures should lead to the rapid change of sequences and gene repertoires of the secretome. The analysis of 42 bacterial pan-genomes shows that secreted, and especially extracellular proteins, are predominantly encoded in the accessory genome, i.e. among genes not ubiquitous within the clade. Genes encoding outer membrane proteins might engage more frequently in intra-chromosomal gene conversion because they are more often in multi-genic families. The gene sequences encoding the secretome evolve faster than the rest of the genome and in particular at non-synonymous positions. Cell wall proteins in Firmicutes evolve particularly fast when compared with outer membrane proteins of Proteobacteria. Virulence factors are over-represented in the secretome, notably in outer membrane proteins, but cell localization explains more of the variance in substitution rates and gene repertoires than sequence homology to known virulence factors. Accordingly, the repertoires and sequences of the genes encoding the secretome change fast in the clades of obligatory and facultative pathogens and also in the clades of mutualists and free-living bacteria. Our study shows that cell localization shapes genome evolution. In agreement with our hypothesis, the repertoires and the sequences of genes encoding secreted proteins evolve fast. The particularly rapid change of extracellular proteins suggests that these public goods are key players in bacterial adaptation.

  2. Moving toward rapid and low-cost point-of-care molecular diagnostics with a repurposed 3D printer and RPA.

    Science.gov (United States)

    Chan, Kamfai; Wong, Pui-Yan; Parikh, Chaitanya; Wong, Season

    2018-03-15

    Traditionally, the majority of nucleic acid amplification-based molecular diagnostic tests are done in centralized settings. In recent years, point-of-care tests have been developed for use in low-resource settings away from central laboratories. While most experts agree that point-of-care molecular tests are greatly needed, their availability as cost-effective and easy-to-operate tests remains an unmet goal. In this article, we discuss our efforts to develop a recombinase polymerase amplification reaction-based test that will meet these criteria. First, we describe our efforts in repurposing a low-cost 3D printer as a platform that can carry out medium-throughput, rapid, and high-performing nucleic acid extraction. Next, we address how these purified templates can be rapidly amplified and analyzed using the 3D printer's heated bed or the deconstructed, low-cost thermal cycler we have developed. In both approaches, real-time isothermal amplification and detection of template DNA or RNA can be accomplished using a low-cost portable detector or smartphone camera. Last, we demonstrate the capability of our technologies using foodborne pathogens and the Zika virus. Our low-cost approach does not employ complicated and high-cost components, making it suitable for resource-limited settings. When integrated and commercialized, it will offer simple sample-to-answer molecular diagnostics. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Comparative Genomic Analysis of Rapid Evolution of an Extreme-Drug-Resistant Acinetobacter baumannii Clone

    DEFF Research Database (Denmark)

    Tan, Sean Yang-Yi; Chua, Song Lin; Liu, Yang

    2013-01-01

    , comparative genomics has been employed to analyze the rapid evolution of an EDR Acinetobacter baumannii clone from the intensive care unit (ICU) of Rigshospitalet at Copenhagen. Two resistant A. baumannii strains, 48055 and 53264, were sequentially isolated from two individuals who had been admitted to ICU...... within a 1-month interval. Multilocus sequence typing indicates that these two isolates belonged to ST208. The A. baumannii 53264 strain gained colistin resistance compared with the 48055 strain and became an EDR strain. Genome sequencing indicates that A. baumannii 53264 and 48055 have almost identical...... genomes—61 single-nucleotide polymorphisms (SNPs) were found between them. The A. baumannii 53264 strain was assembled into 130 contigs, with a total length of 3,976,592 bp with 38.93% GC content. The A. baumannii 48055 strain was assembled into 135 contigs, with a total length of 4,049,562 bp with 39...

  4. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses.

    Science.gov (United States)

    Lemieux, Bertrand; Li, Ying; Kong, Huimin; Tang, Yi-Wei

    2012-06-01

    The first near instrument-free, inexpensive and simple molecular diagnostic device (IsoAmp HSV, BioHelix Corp., MA, USA) recently received US FDA clearance for use in the detection of herpes simplex viruses (HSV) in genital and oral lesion specimens. The IsoAmp HSV assay uses isothermal helicase-dependent amplification in combination with a disposable, hermetically-sealed, vertical-flow strip identification. The IsoAmp HSV assay has a total test-to-result time of less than 1.5 h by omitting the time-consuming nucleic acid extraction. The diagnostic sensitivity and specificity are comparable to PCR and are superior to culture-based methods. The near instrument-free, rapid and simple characteristics of the IsoAmp HSV assay make it potentially suitable for point-of-care testing.

  5. Using rapid diagnostic tests as source of malaria parasite DNA for molecular analyses in the era of declining malaria prevalence

    DEFF Research Database (Denmark)

    Ishengoma, Deus S; Lwitiho, Sudi; Madebe, Rashid A

    2011-01-01

    was conducted to examine if sufficient DNA could be successfully extracted from malaria rapid diagnostic tests (RDTs), used and collected as part of routine case management services in health facilities, and thus forming the basis for molecular analyses, surveillance and quality control (QC) testing of RDTs....... continued molecular surveillance of malaria parasites is important to early identify emerging anti-malarial drug resistance, it is becoming increasingly difficult to obtain parasite samples from ongoing studies, such as routine drug efficacy trials. To explore other sources of parasite DNA, this study...

  6. Instant Update: Considering the Molecular Mechanisms of Mutation & Natural Selection

    Science.gov (United States)

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important concept to understand but one that students and teachers often find challenging. This article provides training and guidance for teachers on how to present molecular evolution concepts so that students will associate molecular changes with the evolution of form and function in organisms. Included…

  7. Fabrication of Polymerase Chain Reaction Plastic Lab-on-a-Chip Device for Rapid Molecular Diagnoses

    Directory of Open Access Journals (Sweden)

    Kieu The Loan Trinh

    2016-05-01

    Full Text Available Purpose: We aim to fabricate a thermoplastic poly(methylmethacrylate (PMMA Lab-on-a-Chip device to perform continuous- flow polymerase chain reactions (PCRs for rapid molecular detection of foodborne pathogen bacteria. Methods: A miniaturized plastic device was fabricated by utilizing PMMA substrates mediated by poly(dimethylsiloxane interfacial coating, enabling bonding under mild conditions, and thus avoiding the deformation or collapse of microchannels. Surface characterizations were carried out and bond strength was measured. The feasibility of the Lab-on-a-Chip device for performing on-chip PCR utilizing a lab-made, portable dual heater was evaluated. The results were compared with those obtained using a commercially available thermal cycler. Results: A PMMA Lab-on-a-Chip device was designed and fabricated for conducting PCR using foodborne pathogens as sample targets. A robust bond was established between the PMMA substrates, which is essential for performing miniaturized PCR on plastic. The feasibility of on-chip PCR was evaluated using Escherichia coli O157:H7 and Cronobacter condimenti, two worldwide foodborne pathogens, and the target amplicons were successfully amplified within 25 minutes. Conclusions: In this study, we present a novel design of a low-cost and high-throughput thermoplastic PMMA Lab-on-a-Chip device for conducting microscale PCR, and we enable rapid molecular diagnoses of two important foodborne pathogens in minute resolution using this device. In this regard, the introduced highly portable system design has the potential to enable PCR investigations of many diseases quickly and accurately.

  8. Quantifying and Validating Rapid Floodplain Geomorphic Evolution, a Monitoring and Modelling Case Study

    Science.gov (United States)

    Scott, R.; Entwistle, N. S.

    2017-12-01

    Gravel bed rivers and their associated wider systems present an ideal subject for development and improvement of rapid monitoring tools, with features dynamic enough to evolve within relatively short-term timescales. For detecting and quantifying topographical evolution, UAV based remote sensing has manifested as a reliable, low cost, and accurate means of topographic data collection. Here we present some validated methodologies for detection of geomorphic change at resolutions down to 0.05 m, building on the work of Wheaton et al. (2009) and Milan et al. (2007), to generate mesh based and pointcloud comparison data to produce a reliable picture of topographic evolution. Results are presented for the River Glen, Northumberland, UK. Recent channel avulsion and floodplain interaction, resulting in damage to flood defence structures make this site a particularly suitable case for application of geomorphic change detection methods, with the UAV platform at its centre. We compare multi-temporal, high-resolution point clouds derived from SfM processing, cross referenced with aerial LiDAR data, over a 1.5 km reach of the watercourse. Changes detected included bank erosion, bar and splay deposition, vegetation stripping and incipient channel avulsion. Utilisation of the topographic data for numerical modelling, carried out using CAESAR-Lisflood predicted the avulsion of the main channel, resulting in erosion of and potentially complete circumvention of original channel and flood levees. A subsequent UAV survey highlighted topographic change and reconfiguration of the local sedimentary conveyor as we predicted with preliminary modelling. The combined monitoring and modelling approach has allowed probable future geomorphic configurations to be predicted permitting more informed implementation of channel and floodplain management strategies.

  9. Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox family of enzymes

    Directory of Open Access Journals (Sweden)

    Lambeth J David

    2007-07-01

    Full Text Available Abstract Background NADPH-oxidases (Nox and the related Dual oxidases (Duox play varied biological and pathological roles via regulated generation of reactive oxygen species (ROS. Members of the Nox/Duox family have been identified in a wide variety of organisms, including mammals, nematodes, fruit fly, green plants, fungi, and slime molds; however, little is known about the molecular evolutionary history of these enzymes. Results We assembled and analyzed the deduced amino acid sequences of 101 Nox/Duox orthologs from 25 species, including vertebrates, urochordates, echinoderms, insects, nematodes, fungi, slime mold amoeba, alga and plants. In contrast to ROS defense enzymes, such as superoxide dismutase and catalase that are present in prokaryotes, ROS-generating Nox/Duox orthologs only appeared later in evolution. Molecular taxonomy revealed seven distinct subfamilies of Noxes and Duoxes. The calcium-regulated orthologs representing 4 subfamilies diverged early and are the most widely distributed in biology. Subunit-regulated Noxes represent a second major subdivision, and appeared first in fungi and amoeba. Nox5 was lost in rodents, and Nox3, which functions in the inner ear in gravity perception, emerged the most recently, corresponding to full-time adaptation of vertebrates to land. The sea urchin Strongylocentrotus purpuratus possesses the earliest Nox2 co-ortholog of vertebrate Nox1, 2, and 3, while Nox4 first appeared somewhat later in urochordates. Comparison of evolutionary substitution rates demonstrates that Nox2, the regulatory subunits p47phox and p67phox, and Duox are more stringently conserved in vertebrates than other Noxes and Nox regulatory subunits. Amino acid sequence comparisons identified key catalytic or regulatory regions, as 68 residues were highly conserved among all Nox/Duox orthologs, and 14 of these were identical with those mutated in Nox2 in variants of X-linked chronic granulomatous disease. In addition to

  10. Phylogenomic Insights into Animal Evolution.

    Science.gov (United States)

    Telford, Maximilian J; Budd, Graham E; Philippe, Hervé

    2015-10-05

    Animals make up only a small fraction of the eukaryotic tree of life, yet, from our vantage point as members of the animal kingdom, the evolution of the bewildering diversity of animal forms is endlessly fascinating. In the century following the publication of Darwin's Origin of Species, hypotheses regarding the evolution of the major branches of the animal kingdom - their relationships to each other and the evolution of their body plans - was based on a consideration of the morphological and developmental characteristics of the different animal groups. This morphology-based approach had many successes but important aspects of the evolutionary tree remained disputed. In the past three decades, molecular data, most obviously primary sequences of DNA and proteins, have provided an estimate of animal phylogeny largely independent of the morphological evolution we would ultimately like to understand. The molecular tree that has evolved over the past three decades has drastically altered our view of animal phylogeny and many aspects of the tree are no longer contentious. The focus of molecular studies on relationships between animal groups means, however, that the discipline has become somewhat divorced from the underlying biology and from the morphological characteristics whose evolution we aim to understand. Here, we consider what we currently know of animal phylogeny; what aspects we are still uncertain about and what our improved understanding of animal phylogeny can tell us about the evolution of the great diversity of animal life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Molecular basis for convergent evolution of glutamate recognition by pentameric ligand-gated ion channels

    DEFF Research Database (Denmark)

    Lynagh, Timothy; Beech, Robin N.; Lalande, Maryline J.

    2015-01-01

    that glutamate recognition requires an arginine residue in the base of the binding site, which originated at least three distinct times according to phylogenetic analysis. Most remarkably, the arginine emerged on the principal face of the binding site in the Lophotrochozoan lineage, but 65 amino acids upstream......Glutamate is an indispensable neurotransmitter, triggering postsynaptic signals upon recognition by postsynaptic receptors. We questioned the phylogenetic position and the molecular details of when and where glutamate recognition arose in the glutamate-gated chloride channels. Experiments revealed......, on the complementary face, in the Ecdysozoan lineage. This combined experimental and computational approach throws new light on the evolution of synaptic signalling....

  12. Evolution of complex organic molecules in hot molecular cores. Synthetic spectra at (sub-)mm wavebands

    Science.gov (United States)

    Choudhury, R.; Schilke, P.; Stéphan, G.; Bergin, E.; Möller, T.; Schmiedeke, A.; Zernickel, A.

    2015-03-01

    Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH3OH), ethanol (C2H5OH), dimethyl ether (CH3OCH3), and methyl formate (HCOOCH3) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims: We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods: We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results: Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (~100 K) expands and the spatial distribution of gas phase abundances of

  13. Evolution of the outflow activity of protostars

    International Nuclear Information System (INIS)

    Bontemps, Sylvain

    1996-01-01

    After a first part describing the formation of low-mass stars (sites of stellar formation, protostellar evolution) and matter outflows from young objects (molecular flows and their origin, optical and radio jets, outflow mechanisms), this research thesis discusses the evolution of molecular flows by reprinting a published article (Evolution of outflow activity around low-mass embedded young stellar objects), and by outlining some remaining issues (differences between clouds of stellar formation, morphological evolution of molecular flows). The author then discusses the continuous radio centimetre emission: origin, systematic search for Class 0 objects by using the VLA (Very Large Array radio interferometer), presentation of a new Class 0 protostar (HH24MMS). The author reports the study of H_2 emission in the infrared: generalities on protostellar shocks, infrared jet by HH24MMS, H_2 emission at 10 microns by using the ISOCAM camera [fr

  14. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  15. Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi

    Directory of Open Access Journals (Sweden)

    LaMunyon Craig W

    2009-01-01

    Full Text Available Abstract Background As exemplified by the famously successful model organism Caenorhabditis elegans, nematodes offer outstanding animal systems for investigating diverse biological phenomena due to their small genome sizes, short generation times and ease of laboratory maintenance. Nematodes in the genus Panagrolaimus have served in comparative development and anhydrobiosis studies, and the Antarctic species P. davidi offers a powerful paradigm for understanding the biological mechanisms of extreme cold tolerance. Panagrolaimus nematodes are also unique in that examples of gonochoristic, hermaphroditic and parthenogenetic reproductive modes have been reported for members of this genus. The evolutionary origins of these varying reproductive modes and the Antarctic species P. davidi, however, remain enigmatic. Results We collected nuclear ribosomal RNA gene and mitochondrial protein-coding gene sequences from diverse Panagrolaimus species and strains, including newly discovered isolates from Oregon, to investigate phylogenetic relationships in this nematode genus. Nuclear phylogenies showed that the species and strains historically identified as members of Panagrolaimus constitute a paraphyletic group, suggesting that taxonomic revision is required for Panagrolaimus and related nematode lineages. Strain-specific reproductive modes were mapped onto the molecular phylogeny to show a single origin of parthenogenesis from a presumably gonochoristic ancestor. The hermaphroditic strains were all placed outside a major monophyletic clade that contained the majority of other Panagrolaimus nematodes. Phylogenetic analyses of mitochondrial sequences showed that substantial molecular and geographic diversity exists within the clade of parthenogenetic strains. The Antarctic species P. davidi was found to be very closely related to two Panagrolaimus strains from southern California. Phylogenetic and molecular clock analyses suggested that P. davidi and the

  16. Spectral evolution of galaxies: current views

    International Nuclear Information System (INIS)

    Bruzual, A.G.

    1985-01-01

    A summary of current views on the interpretation of the various evolutionary tests aimed at detecting spectral evolution in galaxies is presented. It is concluded that the evolution taking place in known galaxy samples is a slow process (perhaps consistent with no evolution at all), and that the early phases of rapid spectral evolution in early-type galaxies have not yet been detected. (author)

  17. A rapid, one step molecular identification of Trichoderma citrinoviride and Trichoderma reesei.

    Science.gov (United States)

    Saroj, Dina B; Dengeti, Shrinivas N; Aher, Supriya; Gupta, Anil K

    2015-06-01

    Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.

  18. Design of two molecular methodologies for the rapid identification of Colombian community-acquired methicillin-resistant Staphylococcus aureus isolates

    OpenAIRE

    Escobar, Javier Antonio; Gómez, Ingrid Tatiana; Murillo, Martha Johanna; Castro, Betsy Esperanza; Chavarro, Bibiana; Márquez, Ricaurte Alejandro; Vanegas, Natasha

    2012-01-01

    Introduction. Community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) infections are found with increasing the frequency, both in healthy individuals in the community and in hospitalized patients. In Colombia and the Andean region, CA-MRSA isolates have a genetic background that is related to the pandemic USA300 clone. Objective. Two molecular methods are designed and standardized for the rapid differentiation of Colombian community-acquired and hospital-acquired methicillin-...

  19. Synthesis of molecularly imprinted dye-silica nanocomposites with high selectivity and sensitivity: Fluorescent imprinted sensor for rapid and efficient detection of τ-fluvalinate in vodka.

    Science.gov (United States)

    Wang, Yunyun; Wang, Jixiang; Cheng, Rujia; Sun, Lin; Dai, Xiaohui; Yan, Yongsheng

    2018-04-01

    An imprinted fluorescent sensor was fabricated based on SiO 2 nanoparticles encapsulated with a molecularly imprinted polymer containing allyl fluorescein. High fluorine cypermethirin as template molecules, methyl methacrylate as functional monomer, and allyl fluorescein as optical materials synthesized a core-shell fluorescent molecular imprinted sensor, which showed a high and rapid sensitivity and selectivity for the detection of τ-fluvalinate. The sensor presented appreciable sensitivity with a limit of 13.251 nM, rapid detection that reached to equilibrium within 3 min, great linear relationship in the relevant concentration range from 0 to 150 nM, and excellent selectivity over structural analogues. In addition, the fluorescent sensor demonstrated desirable regeneration ability (eight cycling operations). The molecularly imprinted polymers ensured specificity, while the fluorescent dyes provided the stabile sensitivity. Finally, an effective application of the sensor was implemented by the detection of τ-fluvalinate in real samples from vodka. The molecularly imprinted fluorescent sensor showed a promising potential in environmental monitoring and food safety. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Rapid evolution of cancer/testis genes on the X chromosome

    Directory of Open Access Journals (Sweden)

    Simpson Andrew J

    2007-05-01

    Full Text Available Abstract Background Cancer/testis (CT genes are normally expressed only in germ cells, but can be activated in the cancer state. This unusual property, together with the finding that many CT proteins elicit an antigenic response in cancer patients, has established a role for this class of genes as targets in immunotherapy regimes. Many families of CT genes have been identified in the human genome, but their biological function for the most part remains unclear. While it has been shown that some CT genes are under diversifying selection, this question has not been addressed before for the class as a whole. Results To shed more light on this interesting group of genes, we exploited the generation of a draft chimpanzee (Pan troglodytes genomic sequence to examine CT genes in an organism that is closely related to human, and generated a high-quality, manually curated set of human:chimpanzee CT gene alignments. We find that the chimpanzee genome contains homologues to most of the human CT families, and that the genes are located on the same chromosome and at a similar copy number to those in human. Comparison of putative human:chimpanzee orthologues indicates that CT genes located on chromosome X are diverging faster and are undergoing stronger diversifying selection than those on the autosomes or than a set of control genes on either chromosome X or autosomes. Conclusion Given their high level of diversifying selection, we suggest that CT genes are primarily responsible for the observed rapid evolution of protein-coding genes on the X chromosome.

  1. Molecular Evolution of the Infrared Sensory Gene TRPA1 in Snakes and Implications for Functional Studies

    Science.gov (United States)

    Jiang, Ke; Zhang, Peng

    2011-01-01

    TRPA1 is a calcium ion channel protein recently identified as the infrared receptor in pit organ-containing snakes. Therefore, understanding the molecular evolution of TRPA1 may help to illuminate the origin of “heat vision” in snakes and reveal the molecular mechanism of infrared sensitivity for TRPA1. To this end, we sequenced the infrared sensory gene TRPA1 in 24 snake species, representing nine snake families and multiple non-snake outgroups. We found that TRPA1 is under strong positive selection in the pit-bearing snakes studied, but not in other non-pit snakes and non-snake vertebrates. As a comparison, TRPV1, a gene closely related to TRPA1, was found to be under strong purifying selection in all the species studied, with no difference in the strength of selection between pit-bearing snakes and non-pit snakes. This finding demonstrates that the adaptive evolution of TRPA1 specifically occurred within the pit-bearing snakes and may be related to the functional modification for detecting infrared radiation. In addition, by comparing the TRPA1 protein sequences, we identified 11 amino acid sites that were diverged in pit-bearing snakes but conserved in non-pit snakes and other vertebrates, 21 sites that were diverged only within pit-vipers but conserved in the remaining snakes. These specific amino acid substitutions may be potentially functional important for infrared sensing. PMID:22163322

  2. Evolution of recrystallization microstructure and texture during rapid annealing in strip-cast non-oriented electrical steels

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Feng [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Xu, Yun-Bo, E-mail: yunbo_xu@126.com [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Zhang, Yuan-Xiang; Wang, Yang; Lu, Xiang [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Misra, R.D.K [Laboratory for Excellence in Advanced Steel Research, Center for Structural and Functional Materials Research and Innovation and Department of Metallurgical and Materials Engineering, University of Texas at El Paso, 500W, University Avenue, El Paso, TX 79968 (United States); Wang, Guo-Dong [The State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-05-01

    Non-oriented electrical steel as-cast strip was produced by twin roll strip casting process, and subsequently cold rolled and annealed at heating rates in the range of 3–450 °C/s with the aim to elucidate the effect of heating rate on the evolution of recrystallized microstructure and texture. The average grain size was rapidly increased when the heating rate was increased from 3 to 25 °C/s, and decreased when the heating rate was greater than 25 °C/s. The average grain size did not increase linearly with heating rate, which was related to different degree of nucleation and growth rate. The recrystallization texture exhibited pronounced improvement during rapid annealing. At high heating rate, the Goss and Cube had a higher probability of nucleation of shear bands with high stored energy, while the intensity of the γ-fiber texture was significantly reduced. The highest B{sub 50} value attained was 1.803 T at a heating rate of 300 °C/s. The study indicates that rapid heating has strong effect on the recrystallization behavior in non-oriented electrical steels, which facilitates optimization of microstructure and texture, especially in the coarse-grained structure. - Highlights: • The effects of heating rate on the microstructure and texture of non-oriented steel were investigated. • The average grain size did not change monotonically with heating rate. • Recrystallization texture exhibited pronounced improvement in the as-cast strip. • Superior magnetic properties were obtained in twin-rolled strip casting process.

  3. Evolutionary molecular medicine.

    Science.gov (United States)

    Nesse, Randolph M; Ganten, Detlev; Gregory, T Ryan; Omenn, Gilbert S

    2012-05-01

    Evolution has long provided a foundation for population genetics, but some major advances in evolutionary biology from the twentieth century that provide foundations for evolutionary medicine are only now being applied in molecular medicine. They include the need for both proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, competition between alleles, co-evolution, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are transforming evolutionary biology in ways that create even more opportunities for progress at its interfaces with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and related principles to speed the development of evolutionary molecular medicine.

  4. ALMA SPECTROSCOPIC SURVEY IN THE HUBBLE ULTRA DEEP FIELD: CO LUMINOSITY FUNCTIONS AND THE EVOLUTION OF THE COSMIC DENSITY OF MOLECULAR GAS

    Energy Technology Data Exchange (ETDEWEB)

    Decarli, Roberto; Walter, Fabian [Max-Planck Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Aravena, Manuel; Assef, Roberto J. [Núcleo de Astronomía, Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Carilli, Chris [National Radio Astronomy Observatory, Pete V. Domenici Array Science Center, P.O. Box O, Socorro, NM 87801 (United States); Bouwens, Rychard [Leiden Observatory, Leiden University, P.O. Box 9513, NL2300 RA Leiden (Netherlands); Da Cunha, Elisabete [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia); Daddi, Emanuele [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette cedex (France); Ivison, R. J.; Popping, Gergö [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748, Garching (Germany); Riechers, Dominik [Cornell University, 220 Space Sciences Building, Ithaca, NY 14853 (United States); Smail, Ian R. [6 Centre for Extragalactic Astronomy, Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Swinbank, Mark [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-053121 Bonn (Germany); Weiss, Axel; Anguita, Timo, E-mail: decarli@mpia.de [Departamento de Ciencias Físicas, Universidad Andres Bello, Fernandez Concha 700, Las Condes, Santiago (Chile); and others

    2016-12-10

    In this paper we use ASPECS, the ALMA Spectroscopic Survey in the Hubble Ultra Deep Field in band 3 and band 6, to place blind constraints on the CO luminosity function and the evolution of the cosmic molecular gas density as a function of redshift up to z  ∼ 4.5. This study is based on galaxies that have been selected solely through their CO emission and not through any other property. In all of the redshift bins the ASPECS measurements reach the predicted “knee” of the CO luminosity function (around 5 × 10{sup 9} K km s{sup −1} pc{sup 2}). We find clear evidence of an evolution in the CO luminosity function with respect to z  ∼ 0, with more CO-luminous galaxies present at z  ∼ 2. The observed galaxies at z  ∼ 2 also appear more gas-rich than predicted by recent semi-analytical models. The comoving cosmic molecular gas density within galaxies as a function of redshift shows a drop by a factor of 3–10 from z  ∼ 2 to z  ∼ 0 (with significant error bars), and possibly a decline at z  > 3. This trend is similar to the observed evolution of the cosmic star formation rate density. The latter therefore appears to be at least partly driven by the increased availability of molecular gas reservoirs at the peak of cosmic star formation ( z  ∼ 2).

  5. Galaxy evolution in extreme environments: Molecular gas content star formation and AGN in isolated void galaxies

    Science.gov (United States)

    Das, Mousumi; Iono, Daisuke; Saito, Toshiki; Subramanian, Smitha

    Since the early redshift surveys of the large scale structure of our universe, it has become clear that galaxies cluster along walls, sheet and filaments leaving large, empty regions called voids between them. Although voids represent the most under dense parts of our universe, they do contain a sparse but significant population of isolated galaxies that are generally low luminosity, late type disk galaxies. Recent studies show that most void galaxies have ongoing star formation and are in an early stage of evolution. We present radio, optical studies of the molecular gas content and star formation in a sample of void galaxies. Using SDSS data, we find that AGN are rare in these systems and are found only in the Bootes void; their black hole masses and radio properties are similar to bright spirals galaxies. Our studies suggest that close galaxy interactions and gas accretion are the main drivers of galaxy evolution in these systems despite their location in the underdense environment of the voids.

  6. Star formation in evolving molecular clouds

    Science.gov (United States)

    Völschow, M.; Banerjee, R.; Körtgen, B.

    2017-09-01

    Molecular clouds are the principle stellar nurseries of our universe; they thus remain a focus of both observational and theoretical studies. From observations, some of the key properties of molecular clouds are well known but many questions regarding their evolution and star formation activity remain open. While numerical simulations feature a large number and complexity of involved physical processes, this plethora of effects may hide the fundamentals that determine the evolution of molecular clouds and enable the formation of stars. Purely analytical models, on the other hand, tend to suffer from rough approximations or a lack of completeness, limiting their predictive power. In this paper, we present a model that incorporates central concepts of astrophysics as well as reliable results from recent simulations of molecular clouds and their evolutionary paths. Based on that, we construct a self-consistent semi-analytical framework that describes the formation, evolution, and star formation activity of molecular clouds, including a number of feedback effects to account for the complex processes inside those objects. The final equation system is solved numerically but at much lower computational expense than, for example, hydrodynamical descriptions of comparable systems. The model presented in this paper agrees well with a broad range of observational results, showing that molecular cloud evolution can be understood as an interplay between accretion, global collapse, star formation, and stellar feedback.

  7. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  8. Green's function-stochastic methods framework for probing nonlinear evolution problems: Burger's equation, the nonlinear Schroedinger's equation, and hydrodynamic organization of near-molecular-scale vorticity

    International Nuclear Information System (INIS)

    Keanini, R.G.

    2011-01-01

    Research highlights: → Systematic approach for physically probing nonlinear and random evolution problems. → Evolution of vortex sheets corresponds to evolution of an Ornstein-Uhlenbeck process. → Organization of near-molecular scale vorticity mediated by hydrodynamic modes. → Framework allows calculation of vorticity evolution within random strain fields. - Abstract: A framework which combines Green's function (GF) methods and techniques from the theory of stochastic processes is proposed for tackling nonlinear evolution problems. The framework, established by a series of easy-to-derive equivalences between Green's function and stochastic representative solutions of linear drift-diffusion problems, provides a flexible structure within which nonlinear evolution problems can be analyzed and physically probed. As a preliminary test bed, two canonical, nonlinear evolution problems - Burgers' equation and the nonlinear Schroedinger's equation - are first treated. In the first case, the framework provides a rigorous, probabilistic derivation of the well known Cole-Hopf ansatz. Likewise, in the second, the machinery allows systematic recovery of a known soliton solution. The framework is then applied to a fairly extensive exploration of physical features underlying evolution of randomly stretched and advected Burger's vortex sheets. Here, the governing vorticity equation corresponds to the Fokker-Planck equation of an Ornstein-Uhlenbeck process, a correspondence that motivates an investigation of sub-sheet vorticity evolution and organization. Under the assumption that weak hydrodynamic fluctuations organize disordered, near-molecular-scale, sub-sheet vorticity, it is shown that these modes consist of two weakly damped counter-propagating cross-sheet acoustic modes, a diffusive cross-sheet shear mode, and a diffusive cross-sheet entropy mode. Once a consistent picture of in-sheet vorticity evolution is established, a number of analytical results, describing the

  9. Evolution of Vision

    Science.gov (United States)

    Ostrovsky, Mikhail

    The evolution of photoreception, giving rise to eye, offers a kaleidoscopic view on selection acting at both the organ and molecular levels. The molecular level is mainly considered in the lecture. The greatest progress to date has been made in relation to the opsin visual pigments. Opsins appeared before eyes did. Two- and three-dimensional organization for rhodopsin in the rod outer segment disk membrane, as well as molecular mechanisms of visual pigments spectral tuning, photoisomerization and also opsin as a G-protein coupled receptor are considered. Molecular mechanisms of visual pigments spectral tuning, namely switching of chromophore (physiological time scale) and amino acid changes in the chromophore site of opsin (evolutionary time scale) is considered in the lecture. Photoisomerization of rhodopsin chromophore, 11-cis retinal is the only photochemical reaction in vision. The reaction is extemely fast (less that 200 fs) and high efficient (. is 0.65). The rhodopsin photolysis and kinetics of the earlier products appearance, photo- and bathorhodopsin, is considered. It is known that light is not only a carrier of information, but also a risk factor of damage to the eye. This photobiological paradox of vision is mainly due to the nature of rhodopsin chromophore. Photooxidation is the base of the paradox. All factors present in the phototrceptor cells to initiate free-radical photooxidation: photosensitizers, oxygen and substrates of oxidation: lipids and proteins (opsin). That is why photoprotective system of the eye structures appeared in the course of evolution. Three lines of protective system to prevent light damage to the retina and retina pigment epithelium is known: permanent renewal of rod and cone outer segment, powerful antioxidant system and optical media as cut-off filters where the lens is a key component. The molecular mechanisms of light damage to the eye and photoprotective system of the eye is considered in the lecture. The molecular

  10. Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium

    International Nuclear Information System (INIS)

    Liffman, K.; Clayton, D.D.

    1989-01-01

    The evolution course of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium (ISM) is studied using a simple model of the chemical evolution of ISM. It is assumed that, in this medium, the stars are born in molecular clouds, but new nucleosynthesis products and stellar return are entered into a complementary diffuse medium; the well-mixed matter of each interstellar phase is repeatedly cycled stochastically through the complementary phase and back. The dust is studied on a particle-by-particle bases as it is sputtered by shock waves in the diffuse medium, accretes an amorphous mantle of gaseous refractory atoms while its local medium joins the molecular cloud medium, and encounters the possibility of astration within molecular clouds. Results are presented relevant to the size spectrum of accreted mantles, its age spectrum and the distinction among its several lifetimes, depletion factors of refractory atoms in the diffuse gas, and isotopic anomalies. 26 refs

  11. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    International Nuclear Information System (INIS)

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W.

    2010-01-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size ∼10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  12. Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution

    Directory of Open Access Journals (Sweden)

    Vaibhav eBhandari

    2012-07-01

    Full Text Available The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning whether the Darwinian model of evolution is applicable to the prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs and conserved signature proteins (CSPs for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical

  13. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution.

    Science.gov (United States)

    Bhandari, Vaibhav; Naushad, Hafiz S; Gupta, Radhey S

    2012-01-01

    The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.

  14. Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology.

    Science.gov (United States)

    Bhargava, Rohit; Madabhushi, Anant

    2016-07-11

    Pathology is essential for research in disease and development, as well as for clinical decision making. For more than 100 years, pathology practice has involved analyzing images of stained, thin tissue sections by a trained human using an optical microscope. Technological advances are now driving major changes in this paradigm toward digital pathology (DP). The digital transformation of pathology goes beyond recording, archiving, and retrieving images, providing new computational tools to inform better decision making for precision medicine. First, we discuss some emerging innovations in both computational image analytics and imaging instrumentation in DP. Second, we discuss molecular contrast in pathology. Molecular DP has traditionally been an extension of pathology with molecularly specific dyes. Label-free, spectroscopic images are rapidly emerging as another important information source, and we describe the benefits and potential of this evolution. Third, we describe multimodal DP, which is enabled by computational algorithms and combines the best characteristics of structural and molecular pathology. Finally, we provide examples of application areas in telepathology, education, and precision medicine. We conclude by discussing challenges and emerging opportunities in this area.

  15. LIGHT ECHOES FROM η CARINAE'S GREAT ERUPTION: SPECTROPHOTOMETRIC EVOLUTION AND THE RAPID FORMATION OF NITROGEN-RICH MOLECULES

    International Nuclear Information System (INIS)

    Prieto, J. L.; Knapp, G. R.; Rest, A.; Walborn, N. R.; Bianco, F. B.; Matheson, T.; Smith, N.; Hsiao, E. Y.; Campillay, A.; Contreras, C.; González, C.; Morrell, N.; Phillips, M. M.; Chornock, R.; Paredes Álvarez, L.; James, D.; Smith, R. C.; Kunder, A.; Margheim, S.; Welch, D. L.

    2014-01-01

    We present follow-up optical imaging and spectroscopy of one of the light echoes of η Carinae's nineteenth century Great Eruption discovered by Rest et al. By obtaining images and spectra at the same light echo position between 2011 and 2014, we follow the evolution of the Great Eruption on a 3 yr timescale. We find remarkable changes in the photometric and spectroscopic evolution of the echo light. The i-band light curve shows a decline of ∼0.9 mag in ∼1 yr after the peak observed in early 2011 and a flattening at later times. The spectra show a pure-absorption early G-type stellar spectrum at peak, but a few months after peak the lines of the Ca II triplet develop strong P-Cygni profiles and we see the appearance of [Ca II] 7291, 7324 doublet in emission. These emission features and their evolution in time resemble those observed in the spectra of some Type IIn supernovae and supernova impostors. Most surprisingly, starting ∼300 days after peak brightness, the spectra show strong molecular transitions of CN at ≳ 6800 Å. The appearance of these CN features can be explained if the ejecta are strongly nitrogen enhanced, as is observed in modern spectroscopic studies of the bipolar Homunculus nebula. Given the spectroscopic evolution of the light echo, velocities of the main features, and detection of strong CN, we are likely seeing ejecta that contributes directly to the Homunculus nebula

  16. The Hawaiian bobtail squid (Euprymna scolopes): a model to study the molecular basis of eukaryote-prokaryote mutualism and the development and evolution of morphological novelties in cephalopods.

    Science.gov (United States)

    Lee, Patricia N; McFall-Ngai, Margaret J; Callaerts, Patrick; de Couet, H Gert

    2009-11-01

    The Hawaiian bobtail squid, Euprymna scolopes, is a cephalopod whose small size, short lifespan, rapid growth, and year-round availability make it suitable as a model organism. E. scolopes is studied in three principal contexts: (1) as a model of cephalopod development; (2) as a model of animal-bacterial symbioses; and (3) as a system for studying adaptations of tissues that interact with light. E. scolopes embryos can be obtained continually and can be reared in the laboratory over an entire generation. The embryos and protective chorions are optically clear, facilitating in situ developmental observations, and can be manipulated experimentally. Many molecular protocols have been developed for studying E. scolopes development. This species is best known, however, for its symbiosis with the luminous marine bacterium Vibrio fischeri and has been used to study determinants of symbiont specificity, the influence of symbiosis on development of the squid light organ, and the mechanisms by which a stable association is achieved. Both partners can be grown independently under laboratory conditions, a feature that offers the unusual opportunity to manipulate the symbiosis experimentally. Molecular and genetic tools have been developed for V. fischeri, and a large expressed sequence tag (EST) database is available for the host symbiotic tissues. Additionally, comparisons between light organ form and function to those of the eye can be made. Both types of tissue interact with light, but have divergent embryonic development. As such, they offer an opportunity to study the molecular basis for the evolution of morphological novelties.

  17. Neurogenomics and the role of a large mutational target on rapid behavioral change.

    Science.gov (United States)

    Stanley, Craig E; Kulathinal, Rob J

    2016-11-08

    Behavior, while complex and dynamic, is among the most diverse, derived, and rapidly evolving traits in animals. The highly labile nature of heritable behavioral change is observed in such evolutionary phenomena as the emergence of converged behaviors in domesticated animals, the rapid evolution of preferences, and the routine development of ethological isolation between diverging populations and species. In fact, it is believed that nervous system development and its potential to evolve a seemingly infinite array of behavioral innovations played a major role in the successful diversification of metazoans, including our own human lineage. However, unlike other rapidly evolving functional systems such as sperm-egg interactions and immune defense, the genetic basis of rapid behavioral change remains elusive. Here we propose that the rapid divergence and widespread novelty of innate and adaptive behavior is primarily a function of its genomic architecture. Specifically, we hypothesize that the broad diversity of behavioral phenotypes present at micro- and macroevolutionary scales is promoted by a disproportionately large mutational target of neurogenic genes. We present evidence that these large neuro-behavioral targets are significant and ubiquitous in animal genomes and suggest that behavior's novelty and rapid emergence are driven by a number of factors including more selection on a larger pool of variants, a greater role of phenotypic plasticity, and/or unique molecular features present in large genes. We briefly discuss the origins of these large neurogenic genes, as they relate to the remarkable diversity of metazoan behaviors, and highlight key consequences on both behavioral traits and neurogenic disease across, respectively, evolutionary and ontogenetic time scales. Current approaches to studying the genetic mechanisms underlying rapid phenotypic change primarily focus on identifying signatures of Darwinian selection in protein-coding regions. In contrast

  18. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  19. Framework for evolution in double parton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Buffing, Maarten G.A.

    2017-07-15

    Double parton scattering (DPS) describes two colliding hadrons having interactions in the form of two hard processes, each initiated by a separate pair of partons. Just as for single parton scattering, the resummation of soft gluon exchange gives rise to a soft function, which is a necessary ingredient for obtaining rapidity evolution equations. For various regions of phase space, we derive the rapidity evolution and the scale evolution of double transverse momentum dependent parton distribution functions (DTMDs) as well as of the p{sub T}-resummed cross section for double Drell-Yan like processes. This contributes to a framework that can be used for phenomenological DPS studies including resummation.

  20. Observation of the Distribution of Molecular Spin States by Resonant Quantum Tunneling of the Magnetization

    Science.gov (United States)

    Wernsdorfer, W.; Ohm, T.; Sangregorio, C.; Sessoli, R.; Mailly, D.; Paulsen, C.

    1999-05-01

    Below 360 mK, Fe8 magnetic molecular clusters are in the pure quantum relaxation regime and we show that the predicted ``square-root time'' relaxation is obeyed, allowing us to develop a new method for watching the evolution of the distribution of molecular spin states in the sample. We measure as a function of applied field H the statistical distribution P\\(ξH\\) of magnetic energy bias ξH acting on the molecules. Tunneling initially causes rapid transitions of molecules, thereby ``digging a hole'' in P\\(ξH\\) (around the resonant condition ξH = 0). For small initial magnetization values, the hole width shows an intrinsic broadening which may be due to nuclear spins.

  1. Molecular evolution of a chordate specific family of G protein-coupled receptors

    Directory of Open Access Journals (Sweden)

    Leese Florian

    2011-08-01

    Full Text Available Abstract Background Chordate evolution is a history of innovations that is marked by physical and behavioral specializations, which led to the development of a variety of forms from a single ancestral group. Among other important characteristics, vertebrates obtained a well developed brain, anterior sensory structures, a closed circulatory system and gills or lungs as blood oxygenation systems. The duplication of pre-existing genes had profound evolutionary implications for the developmental complexity in vertebrates, since mutations modifying the function of a duplicated protein can lead to novel functions, improving the evolutionary success. Results We analyzed here the evolution of the GPRC5 family of G protein-coupled receptors by comprehensive similarity searches and found that the receptors are only present in chordates and that the size of the receptor family expanded, likely due to genome duplication events in the early history of vertebrate evolution. We propose that a single GPRC5 receptor coding gene originated in a stem chordate ancestor and gave rise by duplication events to a gene family comprising three receptor types (GPRC5A-C in vertebrates, and a fourth homologue present only in mammals (GPRC5D. Additional duplications of GPRC5B and GPRC5C sequences occurred in teleost fishes. The finding that the expression patterns of the receptors are evolutionarily conserved indicates an important biological function of these receptors. Moreover, we found that expression of GPRC5B is regulated by vitamin A in vivo, confirming previous findings that linked receptor expression to retinoic acid levels in tumor cell lines and strengthening the link between the receptor expression and the development of a complex nervous system in chordates, known to be dependent on retinoic acid signaling. Conclusions GPRC5 receptors, a class of G protein-coupled receptors with unique sequence characteristics, may represent a molecular novelty that helped non

  2. Evolution and variation of multigene families

    CERN Document Server

    Ohta, Tomoko

    1980-01-01

    During the last decade and a half, studies of evolution and variation have been revolutionized by the introduction of the methods and concepts of molecular genetics. We can now construct reliable phylogenetic trees, even when fossil records are missing, by compara­ tive studies of protein or mRNA sequences. If, in addition, paleon­ tological information is available, we can estimate the rate at which genes are substituted in the species in the course of evolution. Through the application of electrophoretic methods, it has become possible to study intraspecific variation in molecular terms. We now know that an immense genetic variability exists in a sexually repro­ ducing species, and our human species is no exception. The mathematical theory of population genetics (particularly its stochastic aspects) in conjunction with these new developments led us to formulate the "neutral theory" of molecular evolution, pointing out that chance, in the form of random gene frequency drift, is playing a much more importa...

  3. Molecular evolution of flavonoid dioxygenases in the family Apiaceae.

    Science.gov (United States)

    Gebhardt, Yvonne; Witte, Simone; Forkmann, Gert; Lukacin, Richard; Matern, Ulrich; Martens, Stefan

    2005-06-01

    Plant species of the family Apiaceae are known to accumulate flavonoids mainly in the form of flavones and flavonols. Three 2-oxoglutarate-dependent dioxygenases, flavone synthase or flavanone 3 beta-hydroxylase and flavonol synthase are involved in the biosynthesis of these secondary metabolites. The corresponding genes were cloned recently from parsley (Petroselinum crispum) leaves. Flavone synthase I appears to be confined to the Apiaceae, and the unique occurrence as well as its high sequence similarity to flavanone 3beta-hydroxylase laid the basis for evolutionary studies. In order to examine the relationship of these two enzymes throughout the Apiaceae, RT-PCR based cloning and functional identification of flavone synthases I or flavanone 3beta-hydroxylases were accomplished from Ammi majus, Anethum graveolens, Apium graveolens, Pimpinella anisum, Conium maculatum and Daucus carota, yielding three additional synthase and three additional hydroxylase cDNAs. Molecular and phylogenetic analyses of these sequences were compatible with the phylogeny based on morphological characteristics and suggested that flavone synthase I most likely resulted from gene duplication of flavanone 3beta-hydroxylase, and functional diversification at some point during the development of the apiaceae subfamilies. Furthermore, the genomic sequences from Petroselinum crispum and Daucus carota revealed two introns in each of the synthases and a lack of introns in the hydroxylases. These results might be explained by intron losses from the hydroxylases occurring at a later stage of evolution.

  4. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO2 nanoparticles in dark at ambient conditions

    International Nuclear Information System (INIS)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang

    2015-01-01

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO 2 catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO 2 nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater

  5. Evolution of dynamic susceptibility in molecular glass formers-a critical assessment

    International Nuclear Information System (INIS)

    Brodin, A; Gainaru, C; Porokhonskyy, V; Roessler, E A

    2007-01-01

    Dielectric, depolarized light scattering (LS) and optical Kerr effect (OKE) data are critically discussed in an attempt to achieve a common interpretation of the evolution of dynamic susceptibility in molecular glass formers at temperatures down to the glass transition T g . The so-called intermediate power-law, observed in OKE data below a certain temperature T x , is identified with the excess wing, long since known from dielectric spectroscopy, with a temperature-independent exponent. This is in contrast with several recent analyses that concluded a considerable temperature dependence of spectral shapes. We introduce a new approach to disentangle α-peak and excess wing contributions in the dielectric spectra, which allows for frequency-temperature superposition (FTS) of the α-process at all temperatures above T g . From the LS spectra we conclude, in particular, that FTS holds even at temperatures well above the melting point, i.e. in normal equilibrium liquids. Attempting to correlate the fragility and stretching, our conclusions are opposite to those made previously. Specifically, we observe that a high fragility is associated with a less stretched relaxation function

  6. Rapid Characterization of Molecular Chemistry, Nutrient Make-Up and Microlocation of Internal Seed Tissue

    International Nuclear Information System (INIS)

    Yu, P.; Block, H.; Niu, Z.; Doiron, K.

    2007-01-01

    Wheat differs from corn in biodegradation kinetics and fermentation characteristics. Wheat exhibits a relatively high rate (23% h 01 ) and extent (78% DM) of biodegradation, which can lead to metabolic problems such as acidosis and bloat in ruminants. The objective of this study was to rapidly characterize the molecular chemistry of the internal structure of wheat (cv. AC Barrie) and reveal both its structural chemical make-up and nutrient component matrix by analyzing the intensity and spatial distribution of molecular functional groups within the intact seed using advanced synchrotron-powered Fourier transform infrared (FTIR) microspectroscopy. The experiment was performed at the U2B station of the National Synchrotron Light Source at Brookhaven National Laboratory, New York, USA. The wheat tissue was imaged systematically from the pericarp, seed coat, aleurone layer and endosperm under the peaks at ∼1732 (carbonyl C(double b ond)O ester), 1515 (aromatic compound of lignin), 1650 (amide I), 1025 (non-structural CHO), 1550 (amide II), 1246 (cellulosic material), 1160, 1150, 1080, 930, 860 (all CHO), 3350 (OH and NH stretching), 2928 (CH 2 stretching band) and 2885 cm -1 (CH 3 stretching band). Hierarchical cluster analysis and principal component analysis were applied to analyze the molecular FTIR spectra obtained from the different inherent structures within the intact wheat tissues. The results showed that, with synchrotron-powered FTIR microspectroscopy, images of the molecular chemistry of wheat could be generated at an ultra-spatial resolution. The features of aromatic lignin, structural and non-structural carbohydrates, as well as nutrient make-up and interactions in the seeds, could be revealed. Both principal component analysis and hierarchical cluster analysis methods are conclusive in showing that they can discriminate and classify the different inherent structures within the seed tissue. The wheat exhibited distinguishable differences in the

  7. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2

    Science.gov (United States)

    McElhinney, Lorraine M.; Zanoni, Reto; Kooi, Engbert A.; Neubauer-Juric, Antonie; Nokireki, Tiina; Müller, Thomas; Fooks, Anthony R.

    2018-01-01

    Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986–1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5–100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10−5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra

  8. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2

    Directory of Open Access Journals (Sweden)

    Lorraine M. McElhinney

    2018-01-01

    Full Text Available Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1 and European Bat Lyssavirus 2 (EBLV-2. Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986–1987 identified 263 cases (more than a fifth of all reported cases to date. Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97% being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme. The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5–100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10−5, and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV

  9. Molecular Epidemiology and Evolution of European Bat Lyssavirus 2.

    Science.gov (United States)

    McElhinney, Lorraine M; Marston, Denise A; Wise, Emma L; Freuling, Conrad M; Bourhy, Hervé; Zanoni, Reto; Moldal, Torfinn; Kooi, Engbert A; Neubauer-Juric, Antonie; Nokireki, Tiina; Müller, Thomas; Fooks, Anthony R

    2018-01-05

    Bat rabies cases in Europe are mainly attributed to two lyssaviruses, namely European Bat Lyssavirus 1 (EBLV-1) and European Bat Lyssavirus 2 (EBLV-2). Prior to the death of a bat worker in Finland in 1985, very few bat rabies cases were reported. Enhanced surveillance in the two subsequent years (1986-1987) identified 263 cases (more than a fifth of all reported cases to date). Between 1977 and 2016, 1183 cases of bat rabies were reported, with the vast majority (>97%) being attributed to EBLV-1. In contrast, there have been only 39 suspected cases of EBLV-2, of which 34 have been confirmed by virus typing and presently restricted to just two bat species; Myotis daubentonii and Myotis dasycneme . The limited number of EBLV-2 cases in Europe prompted the establishment of a network of European reference laboratories to collate all available viruses and data. Despite the relatively low number of EBLV-2 cases, a large amount of anomalous data has been published in the scientific literature, which we have here reviewed and clarified. In this review, 29 EBLV-2 full genome sequences have been analysed to further our understanding of the diversity and molecular evolution of EBLV-2 in Europe. Analysis of the 29 complete EBLV-2 genome sequences clearly corroborated geographical relationships with all EBLV-2 sequences clustering at the country level irrespective of the gene studied. Further geographical clustering was also observed at a local level. There are high levels of homogeneity within the EBLV-2 species with nucleotide identities ranging from 95.5-100% and amino acid identities between 98.7% and 100%, despite the widespread distribution of the isolates both geographically and chronologically. The mean substitution rate for EBLV-2 across the five concatenated genes was 1.65 × 10 -5 , and evolutionary clock analysis confirms the slow evolution of EBLV-2 both between and within countries in Europe. This is further supported by the first detailed EBLV-2 intra

  10. Evolution of interface and surface structures of ZnO/Al2 O3 multilayers upon rapid thermal annealing

    Science.gov (United States)

    Liu, H. H.; Chen, Q. Y.; Chang, C. F.; Hsieh, W. C.; Wadekar, P. V.; Huang, H. C.; Liao, H. H.; Seo, H. W.; Chu, W. K.

    2015-03-01

    ZnO ∖Al2O3 multilayers were deposited on sapphires by atomic layer deposition at 85°C. This low substrate temperature ensures good interface smoothness useful for study of interfacial reaction or interdiffusion. Our study aimed at the effects of rapid thermal annealing at different annealing temperatures, times and PAr:PO2. XRR and XRD techniques were used to investigate the kinetics from which various terms of the activation energies could be determined. HR-TEM and electron diffraction were carried out to correlate the microstructures and interfacial alignments as a result of the reactions. AFM were used to assist SEM profiling of the surface morphological evolution in association with the TEM observations.

  11. Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations.

    Science.gov (United States)

    Lenski, Richard E

    2017-10-01

    Evolution is an on-going process, and it can be studied experimentally in organisms with rapid generations. My team has maintained 12 populations of Escherichia coli in a simple laboratory environment for >25 years and 60 000 generations. We have quantified the dynamics of adaptation by natural selection, seen some of the populations diverge into stably coexisting ecotypes, described changes in the bacteria's mutation rate, observed the new ability to exploit a previously untapped carbon source, characterized the dynamics of genome evolution and used parallel evolution to identify the genetic targets of selection. I discuss what the future might hold for this particular experiment, briefly highlight some other microbial evolution experiments and suggest how the fields of experimental evolution and microbial ecology might intersect going forward.

  12. A methodological overview on molecular preimplantation genetic diagnosis and screening: a genomic future?

    Science.gov (United States)

    Vendrell, Xavier; Bautista-Llácer, Rosa

    2012-12-01

    The genetic diagnosis and screening of preimplantation embryos generated by assisted reproduction technology has been consolidated in the prenatal care framework. The rapid evolution of DNA technologies is tending to molecular approaches. Our intention is to present a detailed methodological view, showing different diagnostic strategies based on molecular techniques that are currently applied in preimplantation genetic diagnosis. The amount of DNA from one single, or a few cells, obtained by embryo biopsy is a limiting factor for the molecular analysis. In this sense, genetic laboratories have developed molecular protocols considering this restrictive condition. Nevertheless, the development of whole-genome amplification methods has allowed preimplantation genetic diagnosis for two or more indications simultaneously, like the selection of histocompatible embryos plus detection of monogenic diseases or aneuploidies. Moreover, molecular techniques have permitted preimplantation genetic screening to progress, by implementing microarray-based comparative genome hybridization. Finally, a future view of the embryo-genetics field based on molecular advances is proposed. The normalization, cost-effectiveness analysis, and new technological tools are the next topics for preimplantation genetic diagnosis and screening. Concomitantly, these additions to assisted reproduction technologies could have a positive effect on the schedules of preimplantation studies.

  13. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    Science.gov (United States)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  14. Enhancer Evolution across 20 Mammalian Species

    Science.gov (United States)

    Villar, Diego; Berthelot, Camille; Aldridge, Sarah; Rayner, Tim F.; Lukk, Margus; Pignatelli, Miguel; Park, Thomas J.; Deaville, Robert; Erichsen, Jonathan T.; Jasinska, Anna J.; Turner, James M.A.; Bertelsen, Mads F.; Murchison, Elizabeth P.; Flicek, Paul; Odom, Duncan T.

    2015-01-01

    Summary The mammalian radiation has corresponded with rapid changes in noncoding regions of the genome, but we lack a comprehensive understanding of regulatory evolution in mammals. Here, we track the evolution of promoters and enhancers active in liver across 20 mammalian species from six diverse orders by profiling genomic enrichment of H3K27 acetylation and H3K4 trimethylation. We report that rapid evolution of enhancers is a universal feature of mammalian genomes. Most of the recently evolved enhancers arise from ancestral DNA exaptation, rather than lineage-specific expansions of repeat elements. In contrast, almost all liver promoters are partially or fully conserved across these species. Our data further reveal that recently evolved enhancers can be associated with genes under positive selection, demonstrating the power of this approach for annotating regulatory adaptations in genomic sequences. These results provide important insight into the functional genetics underpinning mammalian regulatory evolution. PMID:25635462

  15. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): Parallel evolution in a globally distributed family of octocorals

    KAUST Repository

    Bilewitch, Jaret P.

    2014-04-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. © 2014 Elsevier Inc.

  16. Molecular and morphological systematics of the Ellisellidae (Coelenterata: Octocorallia): Parallel evolution in a globally distributed family of octocorals

    KAUST Repository

    Bilewitch, Jaret P.; Ekins, Merrick; Hooper, John; Degnan, Sandie M.

    2014-01-01

    The octocorals of the Ellisellidae constitute a diverse and widely distributed family with subdivisions into genera based on colonial growth forms. Branching patterns are repeated in several genera and congeners often display region-specific variations in a given growth form. We examined the systematic patterns of ellisellid genera and the evolution of branching form diversity using molecular phylogenetic and ancestral morphological reconstructions. Six of eight included genera were found to be polyphyletic due to biogeographical incompatibility with current taxonomic assignments and the creation of at least six new genera plus several reassignments among existing genera is necessary. Phylogenetic patterns of diversification of colony branching morphology displayed a similar transformation order in each of the two primary ellisellid clades, with a sea fan form estimated as the most-probable common ancestor with likely origins in the Indo-Pacific region. The observed parallelism in evolution indicates the existence of a constraint on the genetic elements determining ellisellid colonial morphology. However, the lack of correspondence between levels of genetic divergence and morphological diversity among genera suggests that future octocoral studies should focus on the role of changes in gene regulation in the evolution of branching patterns. © 2014 Elsevier Inc.

  17. Rapid sampling of molecular motions with prior information constraints.

    Science.gov (United States)

    Raveh, Barak; Enosh, Angela; Schueler-Furman, Ora; Halperin, Dan

    2009-02-01

    Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT). Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  18. Rapid sampling of molecular motions with prior information constraints.

    Directory of Open Access Journals (Sweden)

    Barak Raveh

    2009-02-01

    Full Text Available Proteins are active, flexible machines that perform a range of different functions. Innovative experimental approaches may now provide limited partial information about conformational changes along motion pathways of proteins. There is therefore a need for computational approaches that can efficiently incorporate prior information into motion prediction schemes. In this paper, we present PathRover, a general setup designed for the integration of prior information into the motion planning algorithm of rapidly exploring random trees (RRT. Each suggested motion pathway comprises a sequence of low-energy clash-free conformations that satisfy an arbitrary number of prior information constraints. These constraints can be derived from experimental data or from expert intuition about the motion. The incorporation of prior information is very straightforward and significantly narrows down the vast search in the typically high-dimensional conformational space, leading to dramatic reduction in running time. To allow the use of state-of-the-art energy functions and conformational sampling, we have integrated this framework into Rosetta, an accurate protocol for diverse types of structural modeling. The suggested framework can serve as an effective complementary tool for molecular dynamics, Normal Mode Analysis, and other prevalent techniques for predicting motion in proteins. We applied our framework to three different model systems. We show that a limited set of experimentally motivated constraints may effectively bias the simulations toward diverse predicates in an outright fashion, from distance constraints to enforcement of loop closure. In particular, our analysis sheds light on mechanisms of protein domain swapping and on the role of different residues in the motion.

  19. The evolution of heart gene delivery vectors

    Science.gov (United States)

    Wasala, Nalinda B.; Shin, Jin-Hong; Duan, Dongsheng

    2012-01-01

    Gene therapy holds promise for treating numerous heart diseases. A key premise for the success of cardiac gene therapy is the development of powerful gene transfer vehicles that can achieve highly efficient and persistent gene transfer specifically in the heart. Other features of an ideal vector include negligible toxicity, minimal immunogenicity and easy manufacturing. Rapid progress in the fields of molecular biology and virology has offered great opportunities to engineer various genetic materials for heart gene delivery. Several nonviral vectors (e.g. naked plasmids, plasmid lipid/polymer complexes and oligonucleotides) have been tested. Commonly used viral vectors include lentivirus, adenovirus and adeno-associated virus. Among these, adeno-associated virus has shown many attractive features for pre-clinical experimentation in animal models of heart diseases. We review the history and evolution of these vectors for heart gene transfer. PMID:21837689

  20. Rapid molecular technique to distinguish Fusarium species

    CSIR Research Space (South Africa)

    Lodolo, EJ

    1993-03-01

    Full Text Available The nuclear DNA (nDNA) of different isolates of three closely related, toxin-producing Fusarium species, F. moniliforme, F. nygamai and F. napiforme, was compared to ascertain the sensitivity of a molecular method to distinguish these three species...

  1. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  2. Sequence analysis of serum albumins reveals the molecular evolution of ligand recognition properties.

    Science.gov (United States)

    Fanali, Gabriella; Ascenzi, Paolo; Bernardi, Giorgio; Fasano, Mauro

    2012-01-01

    Serum albumin (SA) is a circulating protein providing a depot and carrier for many endogenous and exogenous compounds. At least seven major binding sites have been identified by structural and functional investigations mainly in human SA. SA is conserved in vertebrates, with at least 49 entries in protein sequence databases. The multiple sequence analysis of this set of entries leads to the definition of a cladistic tree for the molecular evolution of SA orthologs in vertebrates, thus showing the clustering of the considered species, with lamprey SAs (Lethenteron japonicum and Petromyzon marinus) in a separate outgroup. Sequence analysis aimed at searching conserved domains revealed that most SA sequences are made up by three repeated domains (about 600 residues), as extensively characterized for human SA. On the contrary, lamprey SAs are giant proteins (about 1400 residues) comprising seven repeated domains. The phylogenetic analysis of the SA family reveals a stringent correlation with the taxonomic classification of the species available in sequence databases. A focused inspection of the sequences of ligand binding sites in SA revealed that in all sites most residues involved in ligand binding are conserved, although the versatility towards different ligands could be peculiar of higher organisms. Moreover, the analysis of molecular links between the different sites suggests that allosteric modulation mechanisms could be restricted to higher vertebrates.

  3. Rapid Evaporation of Water on Graphene/Graphene-Oxide: A Molecular Dynamics Study.

    Science.gov (United States)

    Li, Qibin; Xiao, Yitian; Shi, Xiaoyang; Song, Shufeng

    2017-09-07

    To reveal the mechanism of energy storage in the water/graphene system and water/grapheme-oxide system, the processes of rapid evaporation of water molecules on the sheets of graphene and graphene-oxide are investigated by molecular dynamics simulations. The results show that both the water/graphene and water/grapheme-oxide systems can store more energy than the pure water system during evaporation. The hydroxyl groups on the surface of graphene-oxide are able to reduce the attractive interactions between water molecules and the sheet of graphene-oxide. Also, the radial distribution function of the oxygen atom indicates that the hydroxyl groups affect the arrangement of water molecules at the water/graphene-oxide interface. Therefore, the capacity of thermal energy storage of the water/graphene-oxide system is lower than that of the water/graphene system, because of less desorption energy at the water/graphene-oxide interface. Also, the evaporation rate of water molecules on the graphene-oxide sheet is slower than that on the graphene sheet. The Leidenfrost phenomenon can be observed during the evaporation process in the water/grapheme-oxide system.

  4. PyContact: Rapid, Customizable, and Visual Analysis of Noncovalent Interactions in MD Simulations.

    Science.gov (United States)

    Scheurer, Maximilian; Rodenkirch, Peter; Siggel, Marc; Bernardi, Rafael C; Schulten, Klaus; Tajkhorshid, Emad; Rudack, Till

    2018-02-06

    Molecular dynamics (MD) simulations have become ubiquitous in all areas of life sciences. The size and model complexity of MD simulations are rapidly growing along with increasing computing power and improved algorithms. This growth has led to the production of a large amount of simulation data that need to be filtered for relevant information to address specific biomedical and biochemical questions. One of the most relevant molecular properties that can be investigated by all-atom MD simulations is the time-dependent evolution of the complex noncovalent interaction networks governing such fundamental aspects as molecular recognition, binding strength, and mechanical and structural stability. Extracting, evaluating, and visualizing noncovalent interactions is a key task in the daily work of structural biologists. We have developed PyContact, an easy-to-use, highly flexible, and intuitive graphical user interface-based application, designed to provide a toolkit to investigate biomolecular interactions in MD trajectories. PyContact is designed to facilitate this task by enabling identification of relevant noncovalent interactions in a comprehensible manner. The implementation of PyContact as a standalone application enables rapid analysis and data visualization without any additional programming requirements, and also preserves full in-program customization and extension capabilities for advanced users. The statistical analysis representation is interactively combined with full mapping of the results on the molecular system through the synergistic connection between PyContact and VMD. We showcase the capabilities and scientific significance of PyContact by analyzing and visualizing in great detail the noncovalent interactions underlying the ion permeation pathway of the human P2X 3 receptor. As a second application, we examine the protein-protein interaction network of the mechanically ultrastable cohesin-dockering complex. Copyright © 2017 Biophysical Society

  5. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    Science.gov (United States)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.

  6. Microbial oxidation of lithospheric organic carbon in rapidly eroding tropical mountain soils.

    Science.gov (United States)

    Hemingway, Jordon D; Hilton, Robert G; Hovius, Niels; Eglinton, Timothy I; Haghipour, Negar; Wacker, Lukas; Chen, Meng-Chiang; Galy, Valier V

    2018-04-13

    Lithospheric organic carbon ("petrogenic"; OC petro ) is oxidized during exhumation and subsequent erosion of mountain ranges. This process is a considerable source of carbon dioxide (CO 2 ) to the atmosphere over geologic time scales, but the mechanisms that govern oxidation rates in mountain landscapes are poorly constrained. We demonstrate that, on average, 67 ± 11% of the OC petro initially present in bedrock exhumed from the tropical, rapidly eroding Central Range of Taiwan is oxidized in soils, leading to CO 2 emissions of 6.1 to 18.6 metric tons of carbon per square kilometer per year. The molecular and isotopic evolution of bulk OC and lipid biomarkers during soil formation reveals that OC petro remineralization is microbially mediated. Rapid oxidation in mountain soils drives CO 2 emission fluxes that increase with erosion rate, thereby counteracting CO 2 drawdown by silicate weathering and biospheric OC burial. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Host imprints on bacterial genomes--rapid, divergent evolution in individual patients.

    Directory of Open Access Journals (Sweden)

    Jaroslaw Zdziarski

    Full Text Available Bacteria lose or gain genetic material and through selection, new variants become fixed in the population. Here we provide the first, genome-wide example of a single bacterial strain's evolution in different deliberately colonized patients and the surprising insight that hosts appear to personalize their microflora. By first obtaining the complete genome sequence of the prototype asymptomatic bacteriuria strain E. coli 83972 and then resequencing its descendants after therapeutic bladder colonization of different patients, we identified 34 mutations, which affected metabolic and virulence-related genes. Further transcriptome and proteome analysis proved that these genome changes altered bacterial gene expression resulting in unique adaptation patterns in each patient. Our results provide evidence that, in addition to stochastic events, adaptive bacterial evolution is driven by individual host environments. Ongoing loss of gene function supports the hypothesis that evolution towards commensalism rather than virulence is favored during asymptomatic bladder colonization.

  8. The genome diversity and karyotype evolution of mammals

    Directory of Open Access Journals (Sweden)

    Trifonov Vladimir A

    2011-10-01

    Full Text Available Abstract The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat, laboratory (mice and rat and agricultural (cattle, pig, and horse animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.

  9. Rapid degradation of Congo red by molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} nanoparticles in dark at ambient conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Shoutai; Hu, Xiaolei; Liu, Hualong; Wang, Qiang; He, Chiyang, E-mail: chiyanghe@hotmail.com

    2015-08-30

    Highlights: • Molecularly imprinted polypyrrole-coated magnetic TiO{sub 2} catalyst was prepared. • The catalyst degraded Congo red rapidly in dark at ambient conditions. • Degradation mechanism was proposed according to LC–MS analysis. • The catalyst can be easily recycled by a magnet. - Abstract: A novel molecularly imprinted polymer (MIP)-coated magnetic TiO{sub 2} nanocomposite was prepared, using methyl orange (MO) as the dummy template and pyrrole as functional monomer, for degradation of Congo red (CR). The nanocomposite was characterized by Fourier transform infrared spectroscopy, thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy, and vibrating sample magnetometer. The imprinting efficiency of the imprinted nanoparticles was investigated by static binding test, and their degradation ability toward CR was also studied. Moreover, the effects of pH, temperature, dissolved oxygen and oscillation rate on degradation rate of CR were investigated. Results showed that the imprinted nanocomposite had higher adsorption ability for MO compared with the non-imprinted one. Moreover, it could degrade CR rapidly in dark at room temperature and atmospheric pressure and could be recycled easily by a magnet with a good reusability. A degradation mechanism was proposed according to LC–MS analysis of degradation products of CR. The new imprinted nanoparticles showed high catalytic activity at ambient conditions without light illumination and additional chemicals, and therefore, it can be potentially applied to the rapid, “green” and low-cost degradation of CR in industrial printing and dyeing wastewater.

  10. EVOLUTIONARY FOUNDATIONS FOR MOLECULAR MEDICINE

    Science.gov (United States)

    Nesse, Randolph M.; Ganten, Detlev; Gregory, T. Ryan; Omenn, Gilbert S.

    2015-01-01

    Evolution has long provided a foundation for population genetics, but many major advances in evolutionary biology from the 20th century are only now being applied in molecular medicine. They include the distinction between proximate and evolutionary explanations, kin selection, evolutionary models for cooperation, and new strategies for tracing phylogenies and identifying signals of selection. Recent advances in genomics are further transforming evolutionary biology and creating yet more opportunities for progress at the interface of evolution with genetics, medicine, and public health. This article reviews 15 evolutionary principles and their applications in molecular medicine in hopes that readers will use them and others to speed the development of evolutionary molecular medicine. PMID:22544168

  11. Venom Evolution

    Indian Academy of Sciences (India)

    IAS Admin

    Therefore, the platypus sequence was studied to quantify the role of gene duplication in the evolution of venom. ... Platypus venom is present only in males and is used for asserting dominance over com- petitors during the ... Certain toxin gene families are known to re- peatedly evolve through gene duplications. The rapidly ...

  12. Mitochondrial genomes suggest rapid evolution of dwarf California Channel Islands foxes (Urocyon littoralis).

    Science.gov (United States)

    Hofman, Courtney A; Rick, Torben C; Hawkins, Melissa T R; Funk, W Chris; Ralls, Katherine; Boser, Christina L; Collins, Paul W; Coonan, Tim; King, Julie L; Morrison, Scott A; Newsome, Seth D; Sillett, T Scott; Fleischer, Robert C; Maldonado, Jesus E

    2015-01-01

    Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California's Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200-7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.

  13. Rapid, efficient and selective preconcentration of benzo[a]pyrene (BaP) by molecularly imprinted composite cartridge and HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Çorman, Mehmet Emin, E-mail: mecorman@sinop.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey); Sinop University, Department of Bioengineering, Sinop (Turkey); Armutcu, Canan [Hacettepe University, Department of Chemistry, Ankara (Turkey); Uzun, Lokman, E-mail: lokman@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey); Denizli, Adil [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2017-01-01

    In this study, cryogel-based molecularly imprinted composite cartridges were designed for the rapid, efficient, and selective preconcentration of benzo[a]pyrene (BaP) from water samples. First, a BaP-imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-(L)-phenylalanine) composite cartridge was synthesized under semi-frozen conditions and characterized by scanning electron microscopy, elemental analysis, Fourier transform infrared spectroscopy, and swelling tests. After the optimization of preconcentration parameters, i.e., pH and initial BaP concentration, the selectivity and preconcentration efficiency, and reusability of these cartridges were also evaluated. In selectivity experiments, BaP imprinted composite cartridge exhibited binding capacities 3.09, 9.52, 8.87, and 8.77-fold higher than that of the non-imprinted composite cartridge in the presence of competitors, such as benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), indeno[1,2,3-cd]pyrene (IcdP), and 1-naphthol, respectively. The method detection limit (MDL), relative standard deviation (RSD) and preconcentration efficiency (PE) of the synthesized composite cartridge were calculated as 24.86 μg/L, 1.60%, and 349.6%, respectively. - Highlights: • Cryogel based molecularly imprinted composite cartridges as solid-phase extraction sorbents • Combination unique structural features of cryogels with MIP • An excellent ability to recognize the BaP molecule even if single-run contact • Rapid, efficient, selective and cost-friendly PAH preconcentration • Hydrophobic interactions via N-methacryloyl-(L)-phenylalanine.

  14. The Burmese python genome reveals the molecular basis for extreme adaptation in snakes.

    Science.gov (United States)

    Castoe, Todd A; de Koning, A P Jason; Hall, Kathryn T; Card, Daren C; Schield, Drew R; Fujita, Matthew K; Ruggiero, Robert P; Degner, Jack F; Daza, Juan M; Gu, Wanjun; Reyes-Velasco, Jacobo; Shaney, Kyle J; Castoe, Jill M; Fox, Samuel E; Poole, Alex W; Polanco, Daniel; Dobry, Jason; Vandewege, Michael W; Li, Qing; Schott, Ryan K; Kapusta, Aurélie; Minx, Patrick; Feschotte, Cédric; Uetz, Peter; Ray, David A; Hoffmann, Federico G; Bogden, Robert; Smith, Eric N; Chang, Belinda S W; Vonk, Freek J; Casewell, Nicholas R; Henkel, Christiaan V; Richardson, Michael K; Mackessy, Stephen P; Bronikowski, Anne M; Bronikowsi, Anne M; Yandell, Mark; Warren, Wesley C; Secor, Stephen M; Pollock, David D

    2013-12-17

    Snakes possess many extreme morphological and physiological adaptations. Identification of the molecular basis of these traits can provide novel understanding for vertebrate biology and medicine. Here, we study snake biology using the genome sequence of the Burmese python (Python molurus bivittatus), a model of extreme physiological and metabolic adaptation. We compare the python and king cobra genomes along with genomic samples from other snakes and perform transcriptome analysis to gain insights into the extreme phenotypes of the python. We discovered rapid and massive transcriptional responses in multiple organ systems that occur on feeding and coordinate major changes in organ size and function. Intriguingly, the homologs of these genes in humans are associated with metabolism, development, and pathology. We also found that many snake metabolic genes have undergone positive selection, which together with the rapid evolution of mitochondrial proteins, provides evidence for extensive adaptive redesign of snake metabolic pathways. Additional evidence for molecular adaptation and gene family expansions and contractions is associated with major physiological and phenotypic adaptations in snakes; genes involved are related to cell cycle, development, lungs, eyes, heart, intestine, and skeletal structure, including GRB2-associated binding protein 1, SSH, WNT16, and bone morphogenetic protein 7. Finally, changes in repetitive DNA content, guanine-cytosine isochore structure, and nucleotide substitution rates indicate major shifts in the structure and evolution of snake genomes compared with other amniotes. Phenotypic and physiological novelty in snakes seems to be driven by system-wide coordination of protein adaptation, gene expression, and changes in the structure of the genome.

  15. Genetic diversity and molecular evolution of Ornithogalum mosaic virus based on the coat protein gene sequence

    Directory of Open Access Journals (Sweden)

    Fangluan Gao

    2018-03-01

    Full Text Available Ornithogalum mosaic virus (OrMV has a wide host range and affects the production of a variety of ornamentals. In this study, the coat protein (CP gene of OrMVwas used to investigate the molecular mechanisms underlying the evolution of this virus. The 36 OrMV isolates fell into two groups which have significant subpopulation differentiation with an FST value of 0.470. One isolate was identified as a recombinant and the other 35 recombination-free isolates could be divided into two major clades under different evolutionary constraints with dN/dS values of 0.055 and 0.028, respectively, indicating a role of purifying selection in the differentiation of OrMV. In addition, the results from analysis of molecular variance (AMOVA indicated that the effect of host species on the genetic divergence of OrMV is greater than that of geography. Furthermore, OrMV isolates from the genera Ornithogalum, Lachenalia and Diuri tended to group together, indicating that OrMV diversification was maintained, in part, by host-driven adaptation.

  16. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process

    OpenAIRE

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-01-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution e...

  17. Evolution of the genus Aristolochia - Systematics, Molecular Evolution and Ecology

    OpenAIRE

    Wanke, Stefan

    2007-01-01

    Evolution of Piperales – matK gene and trnK intron sequence data reveal lineage specific resolution contrast. Piperales are one of the largest basal angiosperm orders with a nearly worldwide distribution. The order includes three species rich genera, Piper (ca. 1,000 species), Peperomia (ca. 1,500-1,700 species), and Aristolochia s. l. (ca. 500 species). Sequences of the matK gene and the non-coding trnK group II intron are analysed for a dense set of 105 taxa representing all families (excep...

  18. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  19. Rapid preparation of functional polysaccharides from Pyropia yezoensis by microwave-assistant rapid enzyme digest system.

    Science.gov (United States)

    Lee, Ji-Hyeok; Kim, Hyung-Ho; Ko, Ju-Young; Jang, Jun-Ho; Kim, Gwang-Hoon; Lee, Jung-Suck; Nah, Jae-Woon; Jeon, You-Jin

    2016-11-20

    This study describes a simple preparation of functional polysaccharides from Pyropia yezoensis using a microwave-assistant rapid enzyme digest system (MAREDS) with various carbohydrases, and evaluates their antioxidative effects. Polysaccharide hydrolysates were prepared using MAREDS under different hydrolytic conditions of the carbohydrases and microwave powers. Polysaccharides less than 10kDa (Low molecular weight polysaccharides, LMWP, ≤10kDa) were efficiently obtained using an ultrafiltration (molecular weight cut-off of 10kDa). MAREDS increases AMG activation via an increased degree of hydrolysis; the best AMG hydrolysate was prepared using a 10:1 ratio of substrate to enzyme for 2h in MAREDS with 400W. LMWP consisted of galactose (27.3%), glucose (64.5%), and mannose (8.3%) from the AMG hydrolysate had stronger antioxidant effects than the high molecular weight polysaccharides (>10kDa). We rapidly prepared functional LMWPs by using MAREDS with carbohydrases, and suggest that LMWP might be potentially a valuable algal polysaccharide antioxidant. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Molecular Evolution of Two Distinct dmrt1 Promoters for Germ and Somatic Cells in Vertebrate Gonads.

    Science.gov (United States)

    Mawaribuchi, Shuuji; Musashijima, Masato; Wada, Mikako; Izutsu, Yumi; Kurakata, Erina; Park, Min Kyun; Takamatsu, Nobuhiko; Ito, Michihiko

    2017-03-01

    The transcription factor DMRT1 has important functions in two distinct processes, somatic-cell masculinization and germ-cell development in mammals. However, it is unknown whether the functions are conserved during evolution, and what mechanism underlies its expression in the two cell lineages. Our analysis of the Xenopus laevis and Silurana tropicalis dmrt1 genes indicated the presence of two distinct promoters: one upstream of the noncoding first exon (ncEx1), and one within the first intron. In contrast, only the ncEx1-upstream promoter was detected in the dmrt1 gene of the agnathan sand lamprey, which expressed dmrt1 exclusively in the germ cells. In X. laevis, the ncEx1- and exon 2-upstream promoters were predominantly used for germ-cell and somatic-cell transcription, respectively. Importantly, knockdown of the ncEx1-containing transcript led to reduced germ-cell numbers in X. laevis gonads. Intriguingly, two genetically female individuals carrying the knockdown construct developed testicles. Analysis of the reptilian leopard gecko dmrt1 revealed the absence of ncEx1. We propose that dmrt1 regulated germ-cell development in the vertebrate ancestor, then acquired another promoter in its first intron to regulate somatic-cell masculinization during gnathostome evolution. In the common ancestor of reptiles and mammals, only one promoter got function for both the two cell lineages, accompanied with the loss of ncEx1. In addition, we found a conserved noncoding sequence (CNS) in the dmrt1 5'-flanking regions only among amniote species, and two CNSs in the introns among most vertebrates except for agnathans. Finally, we discuss relationships between these CNSs and the promoters of dmrt1 during vertebrate evolution. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Second Symposium on Chemical Evolution and the Origin of Life

    International Nuclear Information System (INIS)

    Devincenzi, D.L.; Dufour, P.A.

    1986-05-01

    Recent findings by NASA Exobiology investigators are reported. Scientific papers are presented in the following areas: cosmic evolution of biogenic compounds, prebiotic evolution (planetary and molecular), early evolution of life (biological and geochemical), evolution of advanced life, solar system exploration, and the Search for Extraterrestrial Intelligence (SETI)

  2. Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw.

    Science.gov (United States)

    Drake, Travis W; Wickland, Kimberly P; Spencer, Robert G M; McKnight, Diane M; Striegl, Robert G

    2015-11-10

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high-temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low-molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  3. Ancient low–molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw

    Science.gov (United States)

    Drake, Travis W.; Wickland, Kimberly P.; Spencer, Robert G. M.; McKnight, Diane M.; Striegl, Robert G.

    2015-01-01

    Northern permafrost soils store a vast reservoir of carbon, nearly twice that of the present atmosphere. Current and projected climate warming threatens widespread thaw of these frozen, organic carbon (OC)-rich soils. Upon thaw, mobilized permafrost OC in dissolved and particulate forms can enter streams and rivers, which are important processors of OC and conduits for carbon dioxide (CO2) to the atmosphere. Here, we demonstrate that ancient dissolved organic carbon (DOC) leached from 35,800 y B.P. permafrost soils is rapidly mineralized to CO2. During 200-h experiments in a novel high–temporal-resolution bioreactor, DOC concentration decreased by an average of 53%, fueling a more than sevenfold increase in dissolved inorganic carbon (DIC) concentration. Eighty-seven percent of the DOC loss to microbial uptake was derived from the low–molecular-weight (LMW) organic acids acetate and butyrate. To our knowledge, our study is the first to directly quantify high CO2 production rates from permafrost-derived LMW DOC mineralization. The observed DOC loss rates are among the highest reported for permafrost carbon and demonstrate the potential importance of LMW DOC in driving the rapid metabolism of Pleistocene-age permafrost carbon upon thaw and the outgassing of CO2 to the atmosphere by soils and nearby inland waters.

  4. Evolution and molecular epidemiology of classical swine fever virus during a multi-annual outbreak amongst European wild boar.

    Science.gov (United States)

    Goller, Katja V; Gabriel, Claudia; Dimna, Mireille Le; Le Potier, Marie-Frédérique; Rossi, Sophie; Staubach, Christoph; Merboth, Matthias; Beer, Martin; Blome, Sandra

    2016-03-01

    Classical swine fever is a viral disease of pigs that carries tremendous socio-economic impact. In outbreak situations, genetic typing is carried out for the purpose of molecular epidemiology in both domestic pigs and wild boar. These analyses are usually based on harmonized partial sequences. However, for high-resolution analyses towards the understanding of genetic variability and virus evolution, full-genome sequences are more appropriate. In this study, a unique set of representative virus strains was investigated that was collected during an outbreak in French free-ranging wild boar in the Vosges-du-Nord mountains between 2003 and 2007. Comparative sequence and evolutionary analyses of the nearly full-length sequences showed only slow evolution of classical swine fever virus strains over the years and no impact of vaccination on mutation rates. However, substitution rates varied amongst protein genes; furthermore, a spatial and temporal pattern could be observed whereby two separate clusters were formed that coincided with physical barriers.

  5. Molecular evolution of rbcL in three gymnosperm families: identifying adaptive and coevolutionary patterns

    LENUS (Irish Health Repository)

    Sen, Lin

    2011-06-03

    mutations put forward the conclusion that this evolutionary scenario has been possible through a complex interplay between adaptive mutations, often structurally destabilizing, and compensatory mutations. Our results unearth patterns of evolution that have likely optimized the Rubisco activity and uncover mutational dynamics useful in the molecular engineering of enzymatic activities. Reviewers This article was reviewed by Prof. Christian Blouin (nominated by Dr W Ford Doolittle), Dr Endre Barta (nominated by Dr Sandor Pongor), and Dr Nicolas Galtier.

  6. Selective loss of polymorphic mating types is associated with rapid phenotypic evolution during morphic speciation.

    Science.gov (United States)

    Corl, Ammon; Davis, Alison R; Kuchta, Shawn R; Sinervo, Barry

    2010-03-02

    Polymorphism may play an important role in speciation because new species could originate from the distinctive morphs observed in polymorphic populations. However, much remains to be understood about the process by which morphs found new species. To detail the steps of this mode of speciation, we studied the geographic variation and evolutionary history of a throat color polymorphism that distinguishes the "rock-paper-scissors" mating strategies of the side-blotched lizard, Uta stansburiana. We found that the polymorphism is geographically widespread and has been maintained for millions of years. However, there are many populations with reduced numbers of throat color morphs. Phylogenetic reconstruction showed that the polymorphism is ancestral, but it has been independently lost eight times, often giving rise to morphologically distinct subspecies/species. Changes to the polymorphism likely involved selection because the allele for one particular male strategy, the "sneaker" morph, has been lost in all cases. Polymorphism loss was associated with accelerated evolution of male size, female size, and sexual dimorphism, which suggests that polymorphism loss can promote rapid divergence among populations and aid species formation.

  7. Leishmania OligoC-TesT as a simple, rapid, and standardized tool for molecular diagnosis of cutaneous leishmaniasis in Peru.

    Science.gov (United States)

    Espinosa, Diego; Boggild, Andrea K; Deborggraeve, Stijn; Laurent, Thierry; Valencia, Cristian; Pacheco, Rosa; Miranda-Verástegui, César; Llanos-Cuentas, Alejandro; Leclipteux, Thierry; Dujardin, Jean-Claude; Büscher, Philippe; Arévalo, Jorge

    2009-08-01

    Molecular methods such as PCR have become attractive tools for diagnosis of cutaneous leishmaniasis (CL), both for their high sensitivity and for their specificity. However, their practical use in routine diagnosis is limited due to the infrastructural requirements and the lack of any standardization. Recently, a simplified and standardized PCR format for molecular detection of Leishmania was developed. The Leishmania OligoC-TesT is based on simple and rapid detection using a dipstick with PCR-amplified Leishmania DNA. In this study, we estimated the diagnostic accuracy of the Leishmania OligoC-TesT for 61 specimens from 44 CL-suspected patients presenting at the leishmaniasis clinic of the Instituto de Medicina Tropical Alexander von Humboldt, Peru. On the basis of parasitological detection and the leishmanin skin test (LST), patients were classified as (i) confirmed CL cases, (ii) LST-positive cases, and (iii) LST-negative cases. The sensitivities of the Leishmania OligoC-TesT was 74% (95% confidence interval (CI), 60.5% to 84.1%) for lesion aspirates and 92% (95% CI, 81.2% to 96.9%) for scrapings. A significantly higher sensitivity was observed with a conventional PCR targeting the kinetoplast DNA on the aspirates (94%) (P = 0.001), while there was no significant difference in sensitivity for the lesion scrapings (88%) (P = 0.317). In addition, the Leishmania OligoC-TesT was evaluated for 13 CL-suspected patients in two different peripheral health centers in the central jungle of Peru. Our findings clearly indicate the high accuracy of the Leishmania OligoC-TesT for lesion scrapings for simple and rapid molecular diagnosis of CL in Peru.

  8. Leishmania OligoC-TesT as a Simple, Rapid, and Standardized Tool for Molecular Diagnosis of Cutaneous Leishmaniasis in Peru▿

    Science.gov (United States)

    Espinosa, Diego; Boggild, Andrea K.; Deborggraeve, Stijn; Laurent, Thierry; Valencia, Cristian; Pacheco, Rosa; Miranda-Verástegui, César; Llanos-Cuentas, Alejandro; Leclipteux, Thierry; Dujardin, Jean-Claude; Büscher, Philippe; Arévalo, Jorge

    2009-01-01

    Molecular methods such as PCR have become attractive tools for diagnosis of cutaneous leishmaniasis (CL), both for their high sensitivity and for their specificity. However, their practical use in routine diagnosis is limited due to the infrastructural requirements and the lack of any standardization. Recently, a simplified and standardized PCR format for molecular detection of Leishmania was developed. The Leishmania OligoC-TesT is based on simple and rapid detection using a dipstick with PCR-amplified Leishmania DNA. In this study, we estimated the diagnostic accuracy of the Leishmania OligoC-TesT for 61 specimens from 44 CL-suspected patients presenting at the leishmaniasis clinic of the Instituto de Medicina Tropical Alexander von Humboldt, Peru. On the basis of parasitological detection and the leishmanin skin test (LST), patients were classified as (i) confirmed CL cases, (ii) LST-positive cases, and (iii) LST-negative cases. The sensitivities of the Leishmania OligoC-TesT was 74% (95% confidence interval (CI), 60.5% to 84.1%) for lesion aspirates and 92% (95% CI, 81.2% to 96.9%) for scrapings. A significantly higher sensitivity was observed with a conventional PCR targeting the kinetoplast DNA on the aspirates (94%) (P = 0.001), while there was no significant difference in sensitivity for the lesion scrapings (88%) (P = 0.317). In addition, the Leishmania OligoC-TesT was evaluated for 13 CL-suspected patients in two different peripheral health centers in the central jungle of Peru. Our findings clearly indicate the high accuracy of the Leishmania OligoC-TesT for lesion scrapings for simple and rapid molecular diagnosis of CL in Peru. PMID:19553579

  9. Molecular mechanics work station for protein conformational studies

    International Nuclear Information System (INIS)

    Fine, R.; Levinthal, C.; Schoenborn, B.; Dimmier, G.; Rankowitz, C.

    1984-01-01

    Interest in computational problems in Biology has intensified over the last few years, partly due to the development of techniques for the rapid cloning, sequencing, and mutagenesis of genes from organisims ranging from E. coli to Man. The central dogma of molecular biology; that DNA codes for mRNA which codes for protein, has been understood in a linear programming sense since the genetic code was cracked. But what is not understood at present is how a protein, once assembled as a long sequence of amino acids, folds back on itself to produce a three-dimensional structure which is unique to that protein and which dictates its chemical and biological activity. This folding process is purely physics, and involves the time evolution of a system of several thousand atoms which interact with each other and with atoms from the surrounding solvent. Molecular dynamics simulations on smaller molecules suggest that approaches which treat the protein as a classical ensemble of atoms interacting with each other via an empirical Hamiltonian can yield the kind of predictive results one would like when applied to proteins

  10. Evolution of Mobile Applications

    Directory of Open Access Journals (Sweden)

    Phongtraychack Anachack

    2018-01-01

    Full Text Available Currently, we can see the rapid evolution of mobile technology, which involves mobile communication, mobile hardware, and mobile software. Features of mobile phones largely depend on software. In contemporary information and communication age [1–4], mobile application is one of the most concerned and rapidly developing areas. At the same time, the development of mobile application undergoes great changes with the introduction of new software, service platforms and software development kits (SDK. These changes lead to appearance of many new service platforms such as Google with Android and Apple with iOS. This article presents the information about the evolution of mobile application, gives some statistical data on the past and present situation, demonstrates how individual users of mobile devices can benefit, and shows how mobile applications affect society from the ethical perspective.

  11. The evolution of gene expression levels in mammalian organs

    DEFF Research Database (Denmark)

    Brawand, David; Soumillon, Magali; Necsulea, Anamaria

    2011-01-01

    and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped......Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across...... ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages...

  12. Molecular evolution of the endosperm starch synthesis pathway genes in rice (Oryza sativa L.) and its wild ancestor, O. rufipogon L.

    Science.gov (United States)

    Yu, Guoqin; Olsen, Kenneth M; Schaal, Barbara A

    2011-01-01

    The evolution of metabolic pathways is a fundamental but poorly understood aspect of evolutionary change. One approach for understanding the complexity of pathway evolution is to examine the molecular evolution of genes that together comprise an integrated metabolic pathway. The rice endosperm starch biosynthetic pathway is one of the most thoroughly characterized metabolic pathways in plants, and starch is a trait that has evolved in response to strong selection during rice domestication. In this study, we have examined six key genes (AGPL2, AGPS2b, SSIIa, SBEIIb, GBSSI, ISA1) in the rice endosperm starch biosynthesis pathway to investigate the evolution of these genes before and after rice domestication. Genome-wide sequence tagged sites data were used as a neutral reference to overcome the problems of detecting selection in species with complex demographic histories such as rice. Five variety groups of Oryza sativa (aus, indica, tropical japonica, temperate japonica, aromatic) and its wild ancestor (O. rufipogon) were sampled. Our results showed evidence of purifying selection at AGPL2 in O. rufipogon and strong evidence of positive selection at GBSSI in temperate japonica and tropical japonica varieties and at GBSSI and SBEIIb in aromatic varieties. All the other genes showed a pattern consistent with neutral evolution in both cultivated rice and its wild ancestor. These results indicate the important role of positive selection in the evolution of starch genes during rice domestication. We discuss the role of SBEIIb and GBSSI in the evolution of starch quality during rice domestication and the power and limitation of detecting selection using genome-wide data as a neutral reference.

  13. Structural Approaches to Sequence Evolution Molecules, Networks, Populations

    CERN Document Server

    Bastolla, Ugo; Roman, H. Eduardo; Vendruscolo, Michele

    2007-01-01

    Structural requirements constrain the evolution of biological entities at all levels, from macromolecules to their networks, right up to populations of biological organisms. Classical models of molecular evolution, however, are focused at the level of the symbols - the biological sequence - rather than that of their resulting structure. Now recent advances in understanding the thermodynamics of macromolecules, the topological properties of gene networks, the organization and mutation capabilities of genomes, and the structure of populations make it possible to incorporate these key elements into a broader and deeply interdisciplinary view of molecular evolution. This book gives an account of such a new approach, through clear tutorial contributions by leading scientists specializing in the different fields involved.

  14. Temperature specification in atomistic molecular dynamics and its impact on simulation efficacy

    Science.gov (United States)

    Ocaya, R. O.; Terblans, J. J.

    2017-10-01

    Temperature is a vital thermodynamical function for physical systems. Knowledge of system temperature permits assessment of system ergodicity, entropy, system state and stability. Rapid theoretical and computational developments in the fields of condensed matter physics, chemistry, material science, molecular biology, nanotechnology and others necessitate clarity in the temperature specification. Temperature-based materials simulations, both standalone and distributed computing, are projected to grow in prominence over diverse research fields. In this article we discuss the apparent variability of temperature modeling formalisms used currently in atomistic molecular dynamics simulations, with respect to system energetics,dynamics and structural evolution. Commercial simulation programs, which by nature are heuristic, do not openly discuss this fundamental question. We address temperature specification in the context of atomistic molecular dynamics. We define a thermostat at 400K relative to a heat bath at 300K firstly using a modified ab-initio Newtonian method, and secondly using a Monte-Carlo method. The thermostatic vacancy formation and cohesion energies, equilibrium lattice constant for FCC copper is then calculated. Finally we compare and contrast the results.

  15. Rapid plant evolution in the presence of an introduced species alters community composition.

    Science.gov (United States)

    Smith, David Solance; Lau, Matthew K; Jacobs, Ryan; Monroy, Jenna A; Shuster, Stephen M; Whitham, Thomas G

    2015-10-01

    Because introduced species may strongly interact with native species and thus affect their fitness, it is important to examine how these interactions can cascade to have ecological and evolutionary consequences for whole communities. Here, we examine the interactions among introduced Rocky Mountain elk, Cervus canadensis nelsoni, a common native plant, Solidago velutina, and the diverse plant-associated community of arthropods. While introduced species are recognized as one of the biggest threats to native ecosystems, relatively few studies have investigated an evolutionary mechanism by which introduced species alter native communities. Here, we use a common garden design that addresses and supports two hypotheses. First, native S. velutina has rapidly evolved in the presence of introduced elk. We found that plants originating from sites with introduced elk flowered nearly 3 weeks before plants originating from sites without elk. Second, evolution of S. velutina results in a change to the plant-associated arthropod community. We found that plants originating from sites with introduced elk supported an arthropod community that had ~35 % fewer total individuals and a different species composition. Our results show that the impacts of introduced species can have both ecological and evolutionary consequences for strongly interacting species that subsequently cascade to affect a much larger community. Such evolutionary consequences are likely to be long-term and difficult to remediate.

  16. Molecular phylogenetic analysis of Commiphora (Burseraceae) yields insight on the evolution and historical biogeography of an "impossible" genus.

    Science.gov (United States)

    Weeks, Andrea; Simpson, Beryl B

    2007-01-01

    Expansion of the arid zone of sub-Saharan tropical Africa during the Miocene is posited as a significant contributing factor in the evolution of contemporary African flora. Nevertheless, few molecular phylogenetic studies have tested this hypothesis using reconstructed historical biogeographies of plants within this zone. Here, we present a molecular phylogeny of Commiphora, a predominantly tropical African, arid-adapted tree genus, in order to test the monophyly of its taxonomic sections and identify clades that will help direct future study of this species-rich and geographically widespread taxon. We then use multiple fossil calibrations of Commiphora phylogeny to determine the timing of well-supported diversification events within the genus and interpret these age estimates to determine the relative contribution of vicariance and dispersal in the expansion of Commiphora's geographic range. We find that Commiphora is sister to Vietnamese Bursera tonkinensis and that its crown group radiation corresponds with the onset of the Miocene.

  17. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.; Stoffa, Paul L.

    2010-01-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  18. Time evolution of the wave equation using rapid expansion method

    KAUST Repository

    Pestana, Reynam C.

    2010-07-01

    Forward modeling of seismic data and reverse time migration are based on the time evolution of wavefields. For the case of spatially varying velocity, we have worked on two approaches to evaluate the time evolution of seismic wavefields. An exact solution for the constant-velocity acoustic wave equation can be used to simulate the pressure response at any time. For a spatially varying velocity, a one-step method can be developed where no intermediate time responses are required. Using this approach, we have solved for the pressure response at intermediate times and have developed a recursive solution. The solution has a very high degree of accuracy and can be reduced to various finite-difference time-derivative methods, depending on the approximations used. Although the two approaches are closely related, each has advantages, depending on the problem being solved. © 2010 Society of Exploration Geophysicists.

  19. Phylogenetic estimates of diversification rate are affected by molecular rate variation.

    Science.gov (United States)

    Duchêne, D A; Hua, X; Bromham, L

    2017-10-01

    Molecular phylogenies are increasingly being used to investigate the patterns and mechanisms of macroevolution. In particular, node heights in a phylogeny can be used to detect changes in rates of diversification over time. Such analyses rest on the assumption that node heights in a phylogeny represent the timing of diversification events, which in turn rests on the assumption that evolutionary time can be accurately predicted from DNA sequence divergence. But there are many influences on the rate of molecular evolution, which might also influence node heights in molecular phylogenies, and thus affect estimates of diversification rate. In particular, a growing number of studies have revealed an association between the net diversification rate estimated from phylogenies and the rate of molecular evolution. Such an association might, by influencing the relative position of node heights, systematically bias estimates of diversification time. We simulated the evolution of DNA sequences under several scenarios where rates of diversification and molecular evolution vary through time, including models where diversification and molecular evolutionary rates are linked. We show that commonly used methods, including metric-based, likelihood and Bayesian approaches, can have a low power to identify changes in diversification rate when molecular substitution rates vary. Furthermore, the association between the rates of speciation and molecular evolution rate can cause the signature of a slowdown or speedup in speciation rates to be lost or misidentified. These results suggest that the multiple sources of variation in molecular evolutionary rates need to be considered when inferring macroevolutionary processes from phylogenies. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  20. Molecular evolution of the Li/li chemical defence polymorphism in white clover (Trifolium repens L.).

    Science.gov (United States)

    Olsen, K M; Sutherland, B L; Small, L L

    2007-10-01

    White clover (Trifolium repens) is naturally polymorphic for cyanogenesis (hydrogen cyanide release following tissue damage). The ecological factors favouring cyanogenic and acyanogenic plants have been examined in numerous studies over the last half century, making this one of the best-documented examples of an adaptive polymorphism in plants. White clover cyanogenesis is controlled by two, independently segregating Mendelian genes: Ac/ac controls the presence/absence of cyanogenic glucosides; and Li/li controls the presence/absence of their hydrolysing enzyme, linamarase. In this study, we examine the molecular evolution and population genetics of Li as it relates to the cyanogenesis polymorphism. We report here that Li exists as a single-copy gene in plants possessing linamarase activity, and that the absence of enzyme activity in li/li plants is correlated with the absence of much or all of the gene from the white clover genome. Consistent with this finding, we confirm by reverse transcription-polymerase chain reaction that Li gene expression is absent in plants lacking enzyme activity. In a molecular population genetic analysis of Li and three unlinked genes using a worldwide sample of clover plants, we find an absence of nucleotide variation and statistically significant deviations from neutrality at Li; these findings are consistent with recent positive directional selection at this cyanogenesis locus.

  1. Molecular evolution of myoglobin in the Tibetan Plateau endemic schizothoracine fish (Cyprinidae, Teleostei) and tissue-specific expression changes under hypoxia.

    Science.gov (United States)

    Qi, Delin; Chao, Yan; Zhao, Yongli; Xia, Mingzhe; Wu, Rongrong

    2018-04-01

    Myoglobin (Mb) is an oxygen-binding hemoprotein that was once thought to be exclusively expressed in oxidative myocytes of skeletal and cardiac muscle where it serves in oxygen storage and facilitates intracellular oxygen diffusion. In this study, we cloned the coding sequence of the Mb gene from four species, representing three groups, of the schizothoracine fish endemic to the Qinghai-Tibetan Plateau (QTP), then conducted molecular evolution analyses. We also investigated tissue expression patterns of Mb and the expression response to moderate and severe hypoxia at the mRNA and protein levels in a representative of the highly specialized schizothoracine fish species, Schizopygopsis pylzovi. Molecular evolution analyses showed that Mb from the highly specialized schizothoracine fish have undergone positive selection and one positively selected residue (81L) was identified, which is located in the F helix, close to or in contact with the heme. We present tentative evidence that the Mb duplication event occurred in the ancestor of the schizothoracine and Cyprininae fish (common carp and goldfish), and that the Mb2 paralog was subsequently lost in the schizothoracine fish. In S. pylzovi, Mb mRNA is expressed in various tissues with the exception of the intestine and gill, but all such tissues, including the liver, muscle, kidney, brain, eye, and skin, expressed very low levels of Mb mRNA (Tibetan Plateau fish.

  2. Molecular Diagnostics

    OpenAIRE

    Choe, Hyonmin; Deirmengian, Carl A.; Hickok, Noreen J.; Morrison, Tiffany N.; Tuan, Rocky S.

    2015-01-01

    Orthopaedic infections are complex conditions that require immediate diagnosis and accurate identification of the causative organisms to facilitate appropriate management. Conventional methodologies for diagnosis of these infections sometimes lack accuracy or sufficient rapidity. Current molecular diagnostics are an emerging area of bench-to-bedside research in orthopaedic infections. Examples of promising molecular diagnostics include measurement of a specific biomarker in the synovial fluid...

  3. Duplicate Abalone Egg Coat Proteins Bind Sperm Lysin Similarly, but Evolve Oppositely, Consistent with Molecular Mimicry at Fertilization

    Science.gov (United States)

    Aagaard, Jan E.; Springer, Stevan A.; Soelberg, Scott D.; Swanson, Willie J.

    2013-01-01

    Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis), some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp.), a model system of reproductive protein evolution. We test the evolutionary rates (d N/d S) of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14), and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL. PMID:23408913

  4. Duplicate abalone egg coat proteins bind sperm lysin similarly, but evolve oppositely, consistent with molecular mimicry at fertilization.

    Directory of Open Access Journals (Sweden)

    Jan E Aagaard

    Full Text Available Sperm and egg proteins constitute a remarkable paradigm in evolutionary biology: despite their fundamental role in mediating fertilization (suggesting stasis, some of these molecules are among the most rapidly evolving ones known, and their divergence can lead to reproductive isolation. Because of strong selection to maintain function among interbreeding individuals, interacting fertilization proteins should also exhibit a strong signal of correlated divergence among closely related species. We use evidence of such molecular co-evolution to target biochemical studies of fertilization in North Pacific abalone (Haliotis spp., a model system of reproductive protein evolution. We test the evolutionary rates (d(N/d(S of abalone sperm lysin and two duplicated egg coat proteins (VERL and VEZP14, and find a signal of co-evolution specific to ZP-N, a putative sperm binding motif previously identified by homology modeling. Positively selected residues in VERL and VEZP14 occur on the same face of the structural model, suggesting a common mode of interaction with sperm lysin. We test this computational prediction biochemically, confirming that the ZP-N motif is sufficient to bind lysin and that the affinities of VERL and VEZP14 are comparable. However, we also find that on phylogenetic lineages where lysin and VERL evolve rapidly, VEZP14 evolves slowly, and vice versa. We describe a model of sexual conflict that can recreate this pattern of anti-correlated evolution by assuming that VEZP14 acts as a VERL mimic, reducing the intensity of sexual conflict and slowing the co-evolution of lysin and VERL.

  5. A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water

    International Nuclear Information System (INIS)

    Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona; Zhou, Hui; Li, Hui; Zhu, Xiaohong; Wang, Yan

    2014-01-01

    Graphical abstract: - Highlights: • Successful preparation of a novel type of magnetic halloysite molecularly imprinted material. • Rapid enrichment for 2,4-dichlorophenoxyacetic acid in water. • This material possesses high adsorption capacity and specific recognition to 2,4-dichlorophenoxyacetic acid. • Magnetic halloysite were synthesized by co-precipitation method. - Abstract: A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3 mg/g and 35.2 mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85–94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water

  6. A novel molecularly imprinted material based on magnetic halloysite nanotubes for rapid enrichment of 2,4-dichlorophenoxyacetic acid in water

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Shian; Zhou, Chengyun; Zhang, Xiaona [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Zhou, Hui [Cancer Hospital of Xiangya Medical College, Central South University, Changsha 410013 (China); Li, Hui; Zhu, Xiaohong [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); Wang, Yan, E-mail: yanwangcsu@163.com [School of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2014-07-15

    Graphical abstract: - Highlights: • Successful preparation of a novel type of magnetic halloysite molecularly imprinted material. • Rapid enrichment for 2,4-dichlorophenoxyacetic acid in water. • This material possesses high adsorption capacity and specific recognition to 2,4-dichlorophenoxyacetic acid. • Magnetic halloysite were synthesized by co-precipitation method. - Abstract: A new type of magnetic halloysite nanotubes molecularly imprinted polymer (MHNTs@MIP) based on halloysite nanotubes (HNTs) with embedded magnetic nanoparticles was introduced in this study. MHNTs@MIP was prepared through surface imprinting technology, using 2,4-dichlorophenoxyacetic acid (2,4-D) as a template, 4-vinylpyridine as the monomer, divinylbenzene as cross-linking agents, and 2,2-azodiisobutyronitrile as initiator. MHNTs@MIP was characterized by Fourier Transform Infrared Spectrometer, transmission electron microscopy, X-ray diffraction, and vibrating sample magnetometer. MHNTs@MIP exhibited rapid and reliable analysis with supermagnetic properties, as well as repeated use and template-specific recognition. The adsorption capacity of magnetic halloysite nanotubes non-imprinted polymer (MHNTs@NIP) and MHNTs@MIP was 10.3 mg/g and 35.2 mg/g, respectively. In the detailed discussion on specific selectivity, MHNTs@MIP can be applied as an adsorbent for sample pretreatment extraction and obtain high recoveries of about 85–94%. After extraction, high-performance liquid chromatography was used to detect 2,4-D residue in water.

  7. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation.

    Science.gov (United States)

    Liu, Xiaofeng; Bai, Fang; Ouyang, Sisheng; Wang, Xicheng; Li, Honglin; Jiang, Hualiang

    2009-03-31

    Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105-112). Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 A to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 +/- 0.18 seconds per molecule) renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms other four multiple conformer generators in the case of

  8. Cyndi: a multi-objective evolution algorithm based method for bioactive molecular conformational generation

    Directory of Open Access Journals (Sweden)

    Li Honglin

    2009-03-01

    Full Text Available Abstract Background Conformation generation is a ubiquitous problem in molecule modelling. Many applications require sampling the broad molecular conformational space or perceiving the bioactive conformers to ensure success. Numerous in silico methods have been proposed in an attempt to resolve the problem, ranging from deterministic to non-deterministic and systemic to stochastic ones. In this work, we described an efficient conformation sampling method named Cyndi, which is based on multi-objective evolution algorithm. Results The conformational perturbation is subjected to evolutionary operation on the genome encoded with dihedral torsions. Various objectives are designated to render the generated Pareto optimal conformers to be energy-favoured as well as evenly scattered across the conformational space. An optional objective concerning the degree of molecular extension is added to achieve geometrically extended or compact conformations which have been observed to impact the molecular bioactivity (J Comput -Aided Mol Des 2002, 16: 105–112. Testing the performance of Cyndi against a test set consisting of 329 small molecules reveals an average minimum RMSD of 0.864 Å to corresponding bioactive conformations, indicating Cyndi is highly competitive against other conformation generation methods. Meanwhile, the high-speed performance (0.49 ± 0.18 seconds per molecule renders Cyndi to be a practical toolkit for conformational database preparation and facilitates subsequent pharmacophore mapping or rigid docking. The copy of precompiled executable of Cyndi and the test set molecules in mol2 format are accessible in Additional file 1. Conclusion On the basis of MOEA algorithm, we present a new, highly efficient conformation generation method, Cyndi, and report the results of validation and performance studies comparing with other four methods. The results reveal that Cyndi is capable of generating geometrically diverse conformers and outperforms

  9. Chloroplast DNA analysis of Tunisian cork oak populations (Quercus suber L.): sequence variations and molecular evolution of the trnL (UAA)-trnF (GAA) region.

    Science.gov (United States)

    Abdessamad, A; Baraket, G; Sakka, H; Ammari, Y; Ksontini, M; Hannachi, A Salhi

    2016-10-24

    Sequences of the trnL-trnF spacer and combined trnL-trnF region in chloroplast DNA of cork oak (Quercus suber L.) were analyzed to detect polymorphisms and to elucidate molecular evolution and demographic history. The aligned sequences varied in length and nucleotide composition. The overall ratio of transition/transversion (ti/tv) of 0.724 for the intergenic spacer and 0.258 for the pooled sequences were estimated, and indicated that transversions are more frequent than transitions. The molecular evolution and demographic history of Q. suber were investigated. Neutrality tests (Tajima's D and Fu and Li) ruled out the null hypothesis of a strictly neutral model, and Fu's Fs and Ramos-Onsins and Rozas' R2 confirmed the recent expansion of cork oak trees, validating its persistency in North Africa since the last glaciation during the Quaternary. The observed uni-modal mismatch distribution and the Harpending's raggedness index confirmed the demographic history model for cork oak. A phylogenetic dendrogram showed that the distribution of Q. suber trees occurs independently of geographical origin, the relief of the population site, and the bioclimatic stages. The molecular history and cytoplasmic diversity suggest that in situ and ex situ conservation strategies can be recommended for preserving landscape value and facing predictable future climatic changes.

  10. Simulation of shock-induced energy flux in molecular solids. Revision 1

    International Nuclear Information System (INIS)

    Karo, A.M.; Walker, F.E.; DeBoni, T.M.; Hardy, J.R.

    1984-01-01

    Computer molecular dynamics has been used to study the time evolution of the energy of diatomic molecules embedded in a monatomic host lattice when the system is shock loaded. Center-of-mass, rotational, and internal energies were each monitored. For H 2 and CH groups in an iron host, the results demonstrate rapid and violent internal excitation of a totally athermal nature. The origins of this are discussed as are the reasons for the absence of a similar effect for a CH group in a carbon lattice. From these results for diatomic systems it is argued that large molecules, similarly treated, may easily be excited to the point of rupture. If they are so situated (e.g., at or near a surface) that during, or shortly after, excitation they escape from the lattice, they will rupture rather than de-excite and thus generate molecular fragments (e.g., free radicals) which could, in the case of an explosive system, serve to initiate detonation

  11. Molecular dynamics study on the evolution of interfacial dislocation network and mechanical properties of Ni-based single crystal superalloys

    Science.gov (United States)

    Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai

    2018-05-01

    The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.

  12. Digital Direct-to-Consumer Advertising: A Perfect Storm of Rapid Evolution and Stagnant Regulation

    Science.gov (United States)

    Mackey, Tim K.

    2016-01-01

    The adoption and use of digital forms of direct-to-consumer advertising (also known as "eDTCA") is on the rise. At the same time, the universe of eDTCA is expanding, as technology on Internet-based platforms continues to evolve, from static websites, to social media, and nearly ubiquitous use of mobile devices. However, little is known about how this unique form of pharmaceutical marketing impacts consumer behavior, public health, and overall healthcare utilization. The study by Kim analyzing US Food and Drug Administration (FDA) notices of violations (NOVs) and warning letters regarding online promotional activities takes us in the right direction, but study results raise as many questions as it does answers. Chief among these are unanswered concerns about the unique regulatory challenges posed by the "disruptive" qualities of eDTCA, and whether regulators have sufficient resources and oversight powers to proactively address potential violations. Further, the globalization of eDTCA via borderless Internet-based technologies raises larger concerns about the potential global impact of this form of health marketing unique to only the United States and New Zealand. Collectively, these challenges make it unlikely that regulatory science will be able to keep apace with the continued rapid evolution of eDTCA unless more creative policy solutions are explored. PMID:27239871

  13. The evolution, morphology and development of fern leaves

    Directory of Open Access Journals (Sweden)

    Alejandra eVasco

    2013-09-01

    Full Text Available Leaves are lateral determinate structures formed in a predictable sequence (phyllotaxy on the flanks of an indeterminate shoot apical meristem. The origin and evolution of leaves in vascular plants has been widely debated. Being the main conspicuous organ of nearl all vascular plants and often easy to recognize as such, it seems surprising that leaves have had multiple origins. For decades, morphologists, anatomists, paleobotanists, and systematists have contributed data to this debate. More recently, molecular genetic studies have provided insight into leaf evolution and development mainly within angiosperms and, to a lesser extent, lycophytes. There has been recent interest in extending leaf evolutionary developmental studies to other species and lineages, particularly in lycophytes and ferns. Therefore, a review of fern leaf morphology, evolution and development is timely. Here we discuss the theories of leaf evolution in ferns, morphology and diversity of fern leaves, and experimental results of fern leaf development. We summarize what is known about the molecular genetics of fern leaf development and what future studies might tell us about the evolution of fern leaf development.

  14. A model of early formation of uranium molecular oxides in laser-ablated plasmas

    Science.gov (United States)

    Finko, Mikhail; Curreli, Davide; Azer, Magdi; Weisz, David; Crowhurst, Jonathan; Rose, Timothy; Koroglu, Batikan; Radousky, Harry; Zaug, Joseph; Armstrong, Mike

    2017-10-01

    An important problem within the field of nuclear forensics is fractionation: the formation of post-detonation nuclear debris whose composition does not reflect that of the source weapon. We are investigating uranium fractionation in rapidly cooling plasma using a combined experimental and modeling approach. In particular, we use laser ablation of uranium metal samples to produce a low-temperature plasma with physical conditions similar to a condensing nuclear fireball. Here we present a first plasma-chemistry model of uranium molecular species formation during the early stage of laser ablated plasma evolution in atmospheric oxygen. The system is simulated using a global kinetic model with rate coefficients calculated according to literature data and the application of reaction rate theory. The model allows for a detailed analysis of the evolution of key uranium molecular species and represents the first step in producing a uranium fireball model that is kinetically validated against spatially and temporally resolved spectroscopy measurements. This project was sponsored by the DoD, Defense Threat Reduction Agency, Grant HDTRA1-16- 1-0020. This work was performed in part under the auspices of the U.S. DoE by Lawrence Livermore National Laboratory under Contract DE-AC52- 07NA27344.

  15. RapidRMSD: Rapid determination of RMSDs corresponding to motions of flexible molecules.

    Science.gov (United States)

    Neveu, Emilie; Popov, Petr; Hoffmann, Alexandre; Migliosi, Angelo; Besseron, Xavier; Danoy, Grégoire; Bouvry, Pascal; Grudinin, Sergei

    2018-03-15

    The root mean square deviation (RMSD) is one of the most used similarity criteria in structural biology and bioinformatics. Standard computation of the RMSD has a linear complexity with respect to the number of atoms in a molecule, making RMSD calculations time-consuming for the large-scale modeling applications, such as assessment of molecular docking predictions or clustering of spatially proximate molecular conformations. Previously we introduced the RigidRMSD algorithm to compute the RMSD corresponding to the rigid-body motion of a molecule. In this study we go beyond the limits of the rigid-body approximation by taking into account conformational flexibility of the molecule. We model the flexibility with a reduced set of collective motions computed with e.g. normal modes or principal component analysis. The initialization of our algorithm is linear in the number of atoms and all the subsequent evaluations of RMSD values between flexible molecular conformations depend only on the number of collective motions that are selected to model the flexibility. Therefore, our algorithm is much faster compared to the standard RMSD computation for large-scale modeling applications. We demonstrate the efficiency of our method on several clustering examples, including clustering of flexible docking results and molecular dynamics (MD) trajectories. We also demonstrate how to use the presented formalism to generate pseudo-random constant-RMSD structural molecular ensembles and how to use these in cross-docking. We provide the algorithm written in C ++ as the open-source RapidRMSD library governed by the BSD-compatible license, which is available at http://team.inria.fr/nano-d/software/RapidRMSD/. The constant-RMSD structural ensemble application and clustering of MD trajectories is available at http://team.inria.fr/nano-d/software/nolb-normal-modes/. sergei.grudinin@inria.fr. Supplementary data are available at Bioinformatics.

  16. Plant domestication slows pest evolution.

    Science.gov (United States)

    Turcotte, Martin M; Lochab, Amaneet K; Turley, Nash E; Johnson, Marc T J

    2015-09-01

    Agricultural practices such as breeding resistant varieties and pesticide use can cause rapid evolution of pest species, but it remains unknown how plant domestication itself impacts pest contemporary evolution. Using experimental evolution on a comparative phylogenetic scale, we compared the evolutionary dynamics of a globally important economic pest - the green peach aphid (Myzus persicae) - growing on 34 plant taxa, represented by 17 crop species and their wild relatives. Domestication slowed aphid evolution by 13.5%, maintained 10.4% greater aphid genotypic diversity and 5.6% higher genotypic richness. The direction of evolution (i.e. which genotypes increased in frequency) differed among independent domestication events but was correlated with specific plant traits. Individual-based simulation models suggested that domestication affects aphid evolution directly by reducing the strength of selection and indirectly by increasing aphid density and thus weakening genetic drift. Our results suggest that phenotypic changes during domestication can alter pest evolutionary dynamics. © 2015 John Wiley & Sons Ltd/CNRS.

  17. Teaching Molecular Biology with Microcomputers.

    Science.gov (United States)

    Reiss, Rebecca; Jameson, David

    1984-01-01

    Describes a series of computer programs that use simulation and gaming techniques to present the basic principles of the central dogma of molecular genetics, mutation, and the genetic code. A history of discoveries in molecular biology is presented and the evolution of these computer assisted instructional programs is described. (MBR)

  18. Molecular microenvironments: Solvent interactions with nucleic acid bases and ions

    Science.gov (United States)

    Macelroy, R. D.; Pohorille, A.

    1986-01-01

    The possibility of reconstructing plausible sequences of events in prebiotic molecular evolution is limited by the lack of fossil remains. However, with hindsight, one goal of molecular evolution was obvious: the development of molecular systems that became constituents of living systems. By understanding the interactions among molecules that are likely to have been present in the prebiotic environment, and that could have served as components in protobiotic molecular systems, plausible evolutionary sequences can be suggested. When stable aggregations of molecules form, a net decrease in free energy is observed in the system. Such changes occur when solvent molecules interact among themselves, as well as when they interact with organic species. A significant decrease in free energy, in systems of solvent and organic molecules, is due to entropy changes in the solvent. Entropy-driven interactioins played a major role in the organization of prebiotic systems, and understanding the energetics of them is essential to understanding molecular evolution.

  19. The physics of evolution

    Science.gov (United States)

    Eigen, Manfred

    1988-12-01

    The Darwinian concept of evolution through natural selection has been revised and put on a solid physical basis, in a form which applies to self-replicable macromolecules. Two new concepts are introduced: sequence space and quasi-species. Evolutionary change in the DNA- or RNA-sequence of a gene can be mapped as a trajectory in a sequence space of dimension ν, where ν corresponds to the number of changeable positions in the genomic sequence. Emphasis, however, is shifted from the single surviving wildtype, a single point in the sequence space, to the complex structure of the mutant distribution that constitutes the quasi-species. Selection is equivalent to an establishment of the quasi-species in a localized region of sequence space, subject to threshold conditions for the error rate and sequence length. Arrival of a new mutant may violate the local threshold condition and thereby lead to a displacement of the quasi-species into a different region of sequence space. This transformation is similar to a phase transition; the dynamical equations that describe the quase-species have been shown to be analogous to those of the two-dimensional Ising model of ferromagnetism. The occurrence of a selectively advantageous mutant is biased by the particulars of the quasi-species distribution, whose mutants are populated according to their fitness relative to that of the wild-type. Inasmuch as fitness regions are connected (like mountain ridges) the evolutionary trajectory is guided to regions of optimal fitness. Evolution experiments in test tubes confirm this modification of the simple chance and law nature of the Darwinian concept. The results of the theory can also be applied to the construction of a machine that provides optimal conditions for a rapid evolution of functionally active macromolecules. An introduction to the physics of molecular evolution by the author has appeared recently.1 Detailed studies of the kinetics and mechanisms of replication of RNA, the most

  20. Methylome evolution in plants

    NARCIS (Netherlands)

    Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank

    2016-01-01

    Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over

  1. Rabi oscillations and rapid-passage effects in the molecular-beam CO2-laser Stark spectroscopy of CH3F

    International Nuclear Information System (INIS)

    Adam, A.G.; Gough, T.E.; Isenor, N.R.; Scoles, G.

    1985-01-01

    sub-Doppler molecular-beam laser Stark spectroscopy has been employed to produce high-contrast Rabi oscillations in the ν 3 band of CH 3 F. By varying the intensity of the cw CO 2 laser, up to five complete oscillations were observed before the phenomenon was washed out by rapid-passage effects and damping mechanisms. Besides being useful in clarifying key features of coherent ir molecular-beam spectroscopy, the observation of Rabi oscillations provides one of the most accurate means of directly measuring transition dipole moments. Analysis of the present data on three rovibrational transitions, Q(1,1) -1reverse arrow0, P(1,0) 0reverse arrow0, and R(1,1) 0reverse arrow1, has yielded a rotationless transition dipole moment of 0.21 +- 0.01 D for the ν 3 = 1reverse arrow0 vibration. This result is in agreement with values estimated from both band-intensity and absorption-coefficient data in the literature

  2. Modelling Geomorphic Systems: Landscape Evolution

    OpenAIRE

    Valters, Declan

    2016-01-01

    Landscape evolution models (LEMs) present the geomorphologist with a means of investigating how landscapes evolve in response to external forcings, such as climate and tectonics, as well as internal process laws. LEMs typically incorporate a range of different geomorphic transport laws integrated in a way that simulates the evolution of a 3D terrain surface forward through time. The strengths of LEMs as research tools lie in their ability to rapidly test many different hypotheses of landscape...

  3. Cyanobacterial evolution during the Precambrian

    Science.gov (United States)

    Schirrmeister, Bettina E.; Sanchez-Baracaldo, Patricia; Wacey, David

    2016-07-01

    Life on Earth has existed for at least 3.5 billion years. Yet, relatively little is known of its evolution during the first two billion years, due to the scarceness and generally poor preservation of fossilized biological material. Cyanobacteria, formerly known as blue green algae were among the first crown Eubacteria to evolve and for more than 2.5 billion years they have strongly influenced Earth's biosphere. Being the only organism where oxygenic photosynthesis has originated, they have oxygenated Earth's atmosphere and hydrosphere, triggered the evolution of plants -being ancestral to chloroplasts- and enabled the evolution of complex life based on aerobic respiration. Having such a strong impact on early life, one might expect that the evolutionary success of this group may also have triggered further biosphere changes during early Earth history. However, very little is known about the early evolution of this phylum and ongoing debates about cyanobacterial fossils, biomarkers and molecular clock analyses highlight the difficulties in this field of research. Although phylogenomic analyses have provided promising glimpses into the early evolution of cyanobacteria, estimated divergence ages are often very uncertain, because of vague and insufficient tree-calibrations. Results of molecular clock analyses are intrinsically tied to these prior calibration points, hence improving calibrations will enable more precise divergence time estimations. Here we provide a review of previously described Precambrian microfossils, biomarkers and geochemical markers that inform upon the early evolution of cyanobacteria. Future research in micropalaeontology will require novel analyses and imaging techniques to improve taxonomic affiliation of many Precambrian microfossils. Consequently, a better understanding of early cyanobacterial evolution will not only allow for a more specific calibration of cyanobacterial and eubacterial phylogenies, but also provide new dates for the tree

  4. Evolution of supernova remnants. III. Thermal waves

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1975-01-01

    The effect of heat conduction on the evolution of supernova remnants is investigated. A thermal wave, or electron conduction front, can travel more rapidly than a shock wave during the first thousand years of the remnant's evolution. A self-similar solution describing this phase has been found by Barenblatt. Numerical computations verify the solution and give the evolution past the thermal wave phase. While shell formation is not impeded, the interior density and temperature profiles are smoothed by the action of conduction

  5. Molecular Evolution and Expansion Analysis of the NAC Transcription Factor in Zea mays

    Science.gov (United States)

    Fan, Kai; Wang, Ming; Miao, Ying; Ni, Mi; Bibi, Noreen; Yuan, Shuna; Li, Feng; Wang, Xuede

    2014-01-01

    NAC (NAM, ATAF1, 2 and CUC2) family is a plant-specific transcription factor and it controls various plant developmental processes. In the current study, 124 NAC members were identified in Zea mays and were phylogenetically clustered into 13 distinct subfamilies. The whole genome duplication (WGD), especially an additional WGD event, may lead to expanding ZmNAC members. Different subfamily has different expansion rate, and NAC subfamily preference was found during the expansion in maize. Moreover, the duplication events might occur after the divergence of the lineages of Z. mays and S. italica, and segmental duplication seemed to be the dominant pattern for the gene duplication in maize. Furthermore, the expansion of ZmNAC members may be also related to gain and loss of introns. Besides, the restriction of functional divergence was discovered after most of the gene duplication events. These results could provide novel insights into molecular evolution and expansion analysis of NAC family in maize, and advance the NAC researches in other plants, especially polyploid plants. PMID:25369196

  6. Impact of gene molecular evolution on phylogenetic reconstruction: a case study in the rosids (Superorder Rosanae, Angiosperms).

    Science.gov (United States)

    Hilu, Khidir W; Black, Chelsea M; Oza, Dipan

    2014-01-01

    Rate of substitution of genomic regions is among the most debated intrinsic features that impact phylogenetic informativeness. However, this variable is also coupled with rates of nonsynonymous substitutions that underscore the nature and degree of selection on the selected genes. To empirically address these variables, we constructed four completely overlapping data sets of plastid matK, atpB, rbcL, and mitochondrial matR genes and used the rosid lineage (angiosperms) as a working platform. The genes differ in combinations of overall rates of nucleotide and amino acid substitutions. Tree robustness, homoplasy, accuracy in contrast to a reference tree, and phylogenetic informativeness are evaluated. The rapidly evolving/unconstrained matK faired best, whereas remaining genes varied in degrees of contribution to rosid phylogenetics across the lineage's 108 million years evolutionary history. Phylogenetic accuracy was low with the slowly evolving/unconstrained matR despite least amount of homoplasy. Third codon positions contributed the highest amount of parsimony informative sites, resolution and informativeness, but magnitude varied with gene mode of evolution. These findings are in clear contrast with the views that rapidly evolving regions and the 3rd codon position have inevitable negative impact on phylogenetic reconstruction at deep historic level due to accumulation of multiple hits and subsequent elevation in homoplasy and saturation. Relaxed evolutionary constraint in rapidly evolving genes distributes substitutions across codon positions, an evolutionary mode expected to reduce the frequency of multiple hits. These findings should be tested at deeper evolutionary histories.

  7. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    Science.gov (United States)

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  8. Evolution of the central black hole in an active galactic nucleus. I. Evolution with a constant mass influx

    International Nuclear Information System (INIS)

    Park, S.J.; Vishniac, E.T.

    1988-01-01

    The long-term evolution of the central black hole in an active galactic nucleus (AGN), whose rotational energy is being extracted by the Blandford-Znajek process, was analyzed. The model is based on previous axisymmetric, stationary descriptions of the black hole and its magnetosphere, but includes the secular effects of the mass accretion rate. The properties of the black hole and the nonthermal radiation from its environment are calculated under the assumption that the mass influx is constant. It is noted that this model fails to explain the correlation of evolutionary time scale with luminosity or the extremely rapid evolution required for the most luminous sources. It is concluded that the evolution of AGNs is driven by a rapid decrease in mass accretion rate. Since the nature of an AGN is dependent on the ratio mass accretion/total mass, this leads to a conclusion that AGNs evolve from QSOs into the nuclei of Seyfert or radio galaxies. 20 references

  9. The role of macromolecular crowding in the evolution of lens crystallins with high molecular refractive index

    International Nuclear Information System (INIS)

    Zhao, Huaying; Magone, M Teresa; Schuck, Peter

    2011-01-01

    Crystallins are present in the lens at extremely high concentrations in order to provide transparency and generate a high refractive power of the lens. The crystallin families prevalent in the highest density lens tissues are γ-crystallins in vertebrates and S-crystallins in cephalopods. As shown elsewhere, in parallel evolution, both have evolved molecular refractive index increments 5–10% above those of most proteins. Although this is a small increase, it is statistically very significant and can be achieved only by very unusual amino acid compositions. In contrast, such a molecular adaptation to aid in the refractive function of the lens did not occur in crystallins that are preferentially located in lower density lens tissues, such as vertebrate α-crystallin and taxon-specific crystallins. In the current work, we apply a model of non-interacting hard spheres to examine the thermodynamic contributions of volume exclusion at lenticular protein concentrations. We show that the small concentration decrease afforded by the higher molecular refractive index increment of crystallins can amplify nonlinearly to produce order of magnitude differences in chemical activities, and lead to reduced osmotic pressure and the reduced propensity for protein aggregation. Quantitatively, this amplification sets in only at protein concentrations as high as those found in hard lenses or the nucleus of soft lenses, in good correspondence to the observed crystallin properties in different tissues and different species. This suggests that volume exclusion effects provide the evolutionary driving force for the unusual refractive properties and the unusual amino acid compositions of γ-crystallins and S-crystallins

  10. Redundancy and molecular evolution: the rapid Induction of bone formation by the mammalian transforming growth factor-β3 isoform

    Directory of Open Access Journals (Sweden)

    Ugo Ripamonti

    2016-09-01

    Full Text Available The soluble osteogenic molecular signals of the transforming growth factor-β (TGF-β supergene family are the molecular bases of the induction of bone formation and postnatal bone tissue morphogenesis with translation into clinical contexts. The mammalian TGF-β3 isoform, a pleiotropic member of the family, controls a vast array of biological processes including the induction of bone formation. Recombinant hTGF-β3 induces substantial bone formation when implanted with either collagenous bone matrices or coral-derived macroporous bioreactors in the rectus abdominis muscle of the non-human primate Papio ursinus. In marked contrast, the three mammalian TGF-βs do not initiate the induction of bone formation in rodents and lagomorphs. The induction of bone by hTGF-β3/preloaded bioreactors is orchestrated by inducing fibrin-fibronectin rings that structurally organize tissue patterning and morphogenesis within the macroporous spaces. Induced advancing extracellular matrix rings provide the structural anchorage for hyper chromatic cells, interpreted as differentiating osteoblasts re-programmed by hTGF-β3 from invading myoblastic and/or pericytic differentiated cells. Runx2 and Osteocalcin expression are significantly up-regulated correlating to multiple invading cells differentiating into the osteoblastic phenotype. Bioreactors pre-loaded with recombinant human Noggin (hNoggin, a BMPs antagonist, show down-regulation of BMP-2 and other profiled osteogenic proteins’ genes resulting in minimal bone formation. Coral-derived macroporous constructs preloaded with binary applications of hTGF-β3 and hNoggin also show down-regulation of BMP-2 with the induction of limited bone formation. The induction of bone formation by hTGF-β3 is via the BMPs pathway and it is thus blocked by hNoggin. Our systematic studies in Papio ursinus with translational hTGF-β3 in large cranio-mandibulo-facial defects in humans are now requesting the re-evaluation of Bone

  11. Using current molecular techniques for rapid differentiation of ...

    African Journals Online (AJOL)

    Typhoid fever is responsible for the deaths of many people annually. However, conventional and timeconsuming detection methods for Salmonella Typhi still dominate. By using a molecular based approach, it was possible to identify Salmonella Typhi by amplifying two specific genes (viaB and tyv) and by using RFLP ...

  12. Molecular evidence of malaria and zoonotic diseases among rapid diagnostic test-negative febrile patients in low-transmission season, Mali

    DEFF Research Database (Denmark)

    Touré, Mahamoudou; Petersen, Pelle T; Bathily, Sidy N'd

    2017-01-01

    From November to December 2012 in Sélingué-Mali, blood samples from 88 febrile patients who tested negative by malaria Paracheck (®) rapid diagnostic tests (RDTs) were used to assess the presence of sub-RDT Plasmodium falciparum as well as Borrelia, Coxiella burnetii, and Babesia applying molecular...... tools. Plasmodium sp. was present among 57 (60.2%) of the 88 malaria RDT-negative patients, whereas the prevalence of Borrelia, C. burnetii, and Babesia were 3.4% (N = 3), 1.1% (N = 1), and 0.0%, respectively. The additional diagnostic use of polymerase chain reaction (PCR) identified a high proportion...

  13. Using molecular techniques for rapid detection of Salmonella ...

    African Journals Online (AJOL)

    PRECIOUS

    2010-02-01

    Feb 1, 2010 ... A total of 152 samples of chicken and chicken products ... detection of Salmonella species in the collected field samples ... that 16 million new cases of typhoid fever occur each ... vative methods for the rapid identification of Salmonella ... saved for the PCR-Non Selective test (PCR-NS) and 1 ml of the.

  14. Rapid sequencing of the bamboo mitochondrial genome using Illumina technology and parallel episodic evolution of organelle genomes in grasses.

    Science.gov (United States)

    Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu

    2012-01-01

    Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast

  15. Rapid evolution of stability and productivity at the origin of a microbial mutualism

    Energy Technology Data Exchange (ETDEWEB)

    Hillesland, Kristina L.; Stahl, David A.

    2009-12-01

    Mutualistic interactions are taxonomically and functionally diverse. Despite their ubiquity, the basic ecological and evolutionary processes underlying their origin and maintenance are poorly understood. A major reason for this has been the lack of an experimentally tractable model system. We examine the evolution of an experimentally imposed obligate mutualism between sulfate-reducing and methanogenic microorganisms that have no known history of prior interaction. Twenty-four independent pairings (cocultures) of the bacterium Desulfovibrio vulgaris and the archaeon Methanococcus maripaludis were established and followed for 300 community doublings in two environments, one allowing for the development of a heterogeneous distribution of resources and the other not. Evolved cocultures grew up to 80percent faster and were up to 30percent more productive (biomass yield per mole substrate) than the ancestors. The evolutionary process was marked by periods of significant instability leading to extinction of two of the cocultures, but resulted in more stable, efficient, and productive mutualisms for most replicated pairings. Comparisons of evolved cocultures with those assembled from one evolved and one ancestral mutualist showed that evolution of both species contributed to improved productivity. Surprisingly, however, overall improvements in growth rate and yield were less than the sum of individual contributions, suggesting antagonistic interactions between mutations from the coevolved populations. Physical constraints on the transfer of metabolites in the evolution environment affected the evolution of M. maripaludis but not D. vulgaris. Together, these results show that challenges can imperil nascent obligate mutualisms and demonstrate the evolutionary responses that enable their persistence and future evolution.

  16. Star formation induced by cloud-cloud collisions and galactic giant molecular cloud evolution

    Science.gov (United States)

    Kobayashi, Masato I. N.; Kobayashi, Hiroshi; Inutsuka, Shu-ichiro; Fukui, Yasuo

    2018-05-01

    Recent millimeter/submillimeter observations towards nearby galaxies have started to map the whole disk and to identify giant molecular clouds (GMCs) even in the regions between galactic spiral structures. Observed variations of GMC mass functions in different galactic environments indicates that massive GMCs preferentially reside along galactic spiral structures whereas inter-arm regions have many small GMCs. Based on the phase transition dynamics from magnetized warm neutral medium to molecular clouds, Kobayashi et al. (2017, ApJ, 836, 175) proposes a semi-analytical evolutionary description for GMC mass functions including a cloud-cloud collision (CCC) process. Their results show that CCC is less dominant in shaping the mass function of GMCs than the accretion of dense H I gas driven by the propagation of supersonic shock waves. However, their formulation does not take into account the possible enhancement of star formation by CCC. Millimeter/submillimeter observations within the Milky Way indicate the importance of CCC in the formation of star clusters and massive stars. In this article, we reformulate the time-evolution equation largely modified from Kobayashi et al. (2017, ApJ, 836, 175) so that we additionally compute star formation subsequently taking place in CCC clouds. Our results suggest that, although CCC events between smaller clouds are more frequent than the ones between massive GMCs, CCC-driven star formation is mostly driven by massive GMCs ≳ 10^{5.5} M_{⊙} (where M⊙ is the solar mass). The resultant cumulative CCC-driven star formation may amount to a few 10 percent of the total star formation in the Milky Way and nearby galaxies.

  17. Evolution of the Largest Mammalian Genome.

    Science.gov (United States)

    Evans, Ben J; Upham, Nathan S; Golding, Goeffrey B; Ojeda, Ricardo A; Ojeda, Agustina A

    2017-06-01

    The genome of the red vizcacha rat (Rodentia, Octodontidae, Tympanoctomys barrerae) is the largest of all mammals, and about double the size of their close relative, the mountain vizcacha rat Octomys mimax, even though the lineages that gave rise to these species diverged from each other only about 5 Ma. The mechanism for this rapid genome expansion is controversial, and hypothesized to be a consequence of whole genome duplication or accumulation of repetitive elements. To test these alternative but nonexclusive hypotheses, we gathered and evaluated evidence from whole transcriptome and whole genome sequences of T. barrerae and O. mimax. We recovered support for genome expansion due to accumulation of a diverse assemblage of repetitive elements, which represent about one half and one fifth of the genomes of T. barrerae and O. mimax, respectively, but we found no strong signal of whole genome duplication. In both species, repetitive sequences were rare in transcribed regions as compared with the rest of the genome, and mostly had no close match to annotated repetitive sequences from other rodents. These findings raise new questions about the genomic dynamics of these repetitive elements, their connection to widespread chromosomal fissions that occurred in the T. barrerae ancestor, and their fitness effects-including during the evolution of hypersaline dietary tolerance in T. barrerae. ©The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. The rhabdoviruses: biodiversity, phylogenetics, and evolution.

    Science.gov (United States)

    Kuzmin, I V; Novella, I S; Dietzgen, R G; Padhi, A; Rupprecht, C E

    2009-07-01

    Rhabdoviruses (family Rhabdoviridae) include a diversity of important pathogens of animals and plants. They share morphology and genome organization. The understanding of rhabdovirus phylogeny, ecology and evolution has progressed greatly during the last 30 years, due to enhanced surveillance and improved methodologies of molecular characterization. Along with six established genera, several phylogenetic groups at different levels were described within the Rhabdoviridae. However, comparative relationships between viral phylogeny and taxonomy remains incomplete, with multiple representatives awaiting further genetic characterization. The same is true for rhabdovirus evolution. To date, rather simplistic molecular clock models only partially describe the evolutionary dynamics of postulated viral lineages. Ongoing progress in viral evolutionary and ecological investigations will provide the platform for future studies of this diverse family.

  19. Country-wide surveillance of molecular markers of antimalarial drug resistance in Senegal by use of positive Malaria Rapid Diagnostic Tests

    DEFF Research Database (Denmark)

    Ndiaye, Magatte; Sow, Doudou; Nag, Sidsel

    2017-01-01

    of drug resistance. Therefore, surveillance of drug resistance in the malaria parasites is essential. The objective of this pilot study was to test the feasibility of routinely sampled malaria rapid diagnostic tests (RDTs) at a national scale to assess the temporal changes in the molecular profiles...... of antimalarial drug resistance markers of Plasmodium falciparum parasites. Overall, 9,549 positive malaria RDTs were collected from 14 health facilities across the country. A limited random set of RDTs were analyzed regarding Pfcrt gene polymorphisms at codon 72-76. Overall, a high but varied prevalence (> 50...

  20. The Evolution of Darwinism.

    Science.gov (United States)

    Stebbins, G. Ledyard; Ayala, Francisco J.

    1985-01-01

    Recent developments in molecular biology and new interpretations of the fossil record are gradually altering and adding to Charles Darwin's theory, which has been the standard view of the process of evolution for 40 years. Several of these developments and interpretations are identified and discussed. (JN)

  1. Niche evolution and diversification in a Neotropical radiation of birds (Aves: Furnariidae).

    Science.gov (United States)

    Seeholzer, Glenn F; Claramunt, Santiago; Brumfield, Robb T

    2017-03-01

    Rapid diversification may be caused by ecological adaptive radiation via niche divergence. In this model, speciation is coupled with niche divergence and lineage diversification is predicted to be correlated with rates of niche evolution. Studies of the role of niche evolution in diversification have generally focused on ecomorphological diversification but climatic-niche evolution may also be important. We tested these alternatives using a phylogeny of 298 species of ovenbirds (Aves: Furnariidae). We found that within Furnariidae, variation in species richness and diversification rates of subclades were best predicted by rate of climatic-niche evolution than ecomorphological evolution. Although both are clearly important, univariate regression and multivariate model averaging more consistently supported the climatic-niche as the best predictor of lineage diversification. Our study adds to the growing body of evidence, suggesting that climatic-niche divergence may be an important driver of rapid diversification in addition to ecomorphological evolution. However, this pattern may depend on the phylogenetic scale at which rate heterogeneity is examined. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  2. Exploring the Early Structure of a Rapidly Decompressed Particle Bed

    Science.gov (United States)

    Zunino, Heather; Adrian, R. J.; Clarke, Amanda; Johnson, Blair; Arizona State University Collaboration

    2017-11-01

    Rapid expansion of dense, pressurized beds of fine particles subjected to rapid reduction of the external pressure is studied in a vertical shock tube. A near-sonic expansion wave impinges on the particle bed-gas interface and rapidly unloads the particle bed. A high-speed video camera captures events occurring during bed expansion. The particle bed does not expand homogeneously, but breaks down into horizontal slabs and then transforms into a cellular-type structure. There are several key parameters that affect the particle bed evolution, including particle size and initial bed height. Analyses of this bed structure evolution from experiments with varying particle sizes and initial bed heights is presented. This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science and Academic Alliance Program, under Contract No. DE-NA0002378.

  3. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    International Nuclear Information System (INIS)

    Bekki, Kenji

    2015-01-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H 2 ) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H 2 gas fraction (f H 2 ), and gas-phase chemical abundances (e.g., A O = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f H 2 can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A O -D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A O is smaller. The simulated galaxies with larger total dust masses show larger H 2 and stellar masses and higher f H 2 . Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z

  4. COSMIC EVOLUTION OF DUST IN GALAXIES: METHODS AND PRELIMINARY RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bekki, Kenji [ICRAR, M468, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia 6009 (Australia)

    2015-02-01

    We investigate the redshift (z) evolution of dust mass and abundance, their dependences on initial conditions of galaxy formation, and physical correlations between dust, gas, and stellar contents at different z based on our original chemodynamical simulations of galaxy formation with dust growth and destruction. In this preliminary investigation, we first determine the reasonable ranges of the most important two parameters for dust evolution, i.e., the timescales of dust growth and destruction, by comparing the observed and simulated dust mass and abundances and molecular hydrogen (H{sub 2}) content of the Galaxy. We then investigate the z-evolution of dust-to-gas ratios (D), H{sub 2} gas fraction (f{sub H{sub 2}}), and gas-phase chemical abundances (e.g., A {sub O} = 12 + log (O/H)) in the simulated disk and dwarf galaxies. The principal results are as follows. Both D and f{sub H{sub 2}} can rapidly increase during the early dissipative formation of galactic disks (z ∼ 2-3), and the z-evolution of these depends on initial mass densities, spin parameters, and masses of galaxies. The observed A {sub O}-D relation can be qualitatively reproduced, but the simulated dispersion of D at a given A {sub O} is smaller. The simulated galaxies with larger total dust masses show larger H{sub 2} and stellar masses and higher f{sub H{sub 2}}. Disk galaxies show negative radial gradients of D and the gradients are steeper for more massive galaxies. The observed evolution of dust masses and dust-to-stellar-mass ratios between z = 0 and 0.4 cannot be reproduced so well by the simulated disks. Very extended dusty gaseous halos can be formed during hierarchical buildup of disk galaxies. Dust-to-metal ratios (i.e., dust-depletion levels) are different within a single galaxy and between different galaxies at different z.

  5. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution.

    Directory of Open Access Journals (Sweden)

    Andrea Baiocchini

    Full Text Available Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis. Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies.

  6. STAR FORMATION IN DISK GALAXIES. I. FORMATION AND EVOLUTION OF GIANT MOLECULAR CLOUDS VIA GRAVITATIONAL INSTABILITY AND CLOUD COLLISIONS

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Tan, Jonathan C.

    2009-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of three-dimensional adaptive mesh refinement numerical simulations that follow both the global evolution on scales of ∼20 kpc and resolve down to scales ∼ H ≥ 100 cm -3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ∼140 Myr a large fraction of the gas in the disk has fragmented into clouds with masses ∼10 6 M sun and a mass spectrum similar to that of Galactic GMCs. The disk settles into a quasi-steady-state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ∼1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This helps to keep clouds only moderately gravitationally bound, with virial parameters of order unity. Many other observed GMC properties, such as mass surface density, angular momentum, velocity dispersion, and vertical distribution, can be accounted for in this simple model with no stellar feedback.

  7. Deceptive desmas: molecular phylogenetics suggests a new classification and uncovers convergent evolution of lithistid demosponges.

    Directory of Open Access Journals (Sweden)

    Astrid Schuster

    Full Text Available Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera. 'Lithistida', a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of 'lithistid' demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous 'order Lithistida'. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences, we show that 8 out of 13 'Lithistida' families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae--we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different 'lithistid' taxa, and

  8. Rapid evolution of coral proteins responsible for interaction with the environment.

    Science.gov (United States)

    Voolstra, Christian R; Sunagawa, Shinichi; Matz, Mikhail V; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; Desalvo, Michael K; Lindquist, Erika; Szmant, Alina M; Coffroth, Mary Alice; Medina, Mónica

    2011-01-01

    Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.

  9. Rapid molecular diagnostics of severe primary immunodeficiency determined by using targeted next-generation sequencing.

    Science.gov (United States)

    Yu, Hui; Zhang, Victor Wei; Stray-Pedersen, Asbjørg; Hanson, Imelda Celine; Forbes, Lisa R; de la Morena, M Teresa; Chinn, Ivan K; Gorman, Elizabeth; Mendelsohn, Nancy J; Pozos, Tamara; Wiszniewski, Wojciech; Nicholas, Sarah K; Yates, Anne B; Moore, Lindsey E; Berge, Knut Erik; Sorte, Hanne; Bayer, Diana K; ALZahrani, Daifulah; Geha, Raif S; Feng, Yanming; Wang, Guoli; Orange, Jordan S; Lupski, James R; Wang, Jing; Wong, Lee-Jun

    2016-10-01

    Primary immunodeficiency diseases (PIDDs) are inherited disorders of the immune system. The most severe form, severe combined immunodeficiency (SCID), presents with profound deficiencies of T cells, B cells, or both at birth. If not treated promptly, affected patients usually do not live beyond infancy because of infections. Genetic heterogeneity of SCID frequently delays the diagnosis; a specific diagnosis is crucial for life-saving treatment and optimal management. We developed a next-generation sequencing (NGS)-based multigene-targeted panel for SCID and other severe PIDDs requiring rapid therapeutic actions in a clinical laboratory setting. The target gene capture/NGS assay provides an average read depth of approximately 1000×. The deep coverage facilitates simultaneous detection of single nucleotide variants and exonic copy number variants in one comprehensive assessment. Exons with insufficient coverage (diagnostic yield of severe primary immunodeficiency. Establishing a molecular diagnosis enables early immune reconstitution through prompt therapeutic intervention and guides management for improved long-term quality of life. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  10. Introducing molecular selectivity in rapid impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.

    2014-05-01

    This research article reports a real-time and non-invasive detection technique for phthalates in liquids by Electrochemical Impedance Spectroscopy (EIS), incorporating molecular imprinting technique to introduce selectivity for the phthalate molecule in the detection system. A functional polymer with Bis (2-ethylhexyl) phthalate (DEHP) template was immobilized on the sensing surface of the inter-digital (ID) capacitive sensor with sputtered gold sensing electrodes fabricated over a native layer of silicon dioxide on a single crystal silicon substrate. Various concentrations (10 to 200 ppm) of DEHP in deionized MilliQ water were exposed to the sensor surface functionalized with molecular imprinted polymer (MIP) in order to capture the analyte molecule, hence introducing molecular selectivity to the testing system. Impedance spectra were obtained using EIS in order to determine sample conductance for evaluation of phthalate concentration in the solution. Electrochemical Spectrum Analyzer algorithm was used to deduce equivalent circuit and equivalent component parameters from the experimentally obtained impedance spectra employing Randle\\'s cell model curve fitting technique. Experimental results confirmed that the immobilization of the functional polymer on sensing surface introduces selectivity for phthalates in the sensing system. The results were validated by testing the samples using High Performance Liquid Chromatography (HPLC-DAD). © 2014 IEEE.

  11. Rapid Evolutionary Rates and Unique Genomic Signatures Discovered in the First Reference Genome for the Southern Ocean Salp, Salpa thompsoni (Urochordata, Thaliacea).

    Science.gov (United States)

    Jue, Nathaniel K; Batta-Lona, Paola G; Trusiak, Sarah; Obergfell, Craig; Bucklin, Ann; O'Neill, Michael J; O'Neill, Rachel J

    2016-10-30

    A preliminary genome sequence has been assembled for the Southern Ocean salp, Salpa thompsoni (Urochordata, Thaliacea). Despite the ecological importance of this species in Antarctic pelagic food webs and its potential role as an indicator of changing Southern Ocean ecosystems in response to climate change, no genomic resources are available for S. thompsoni or any closely related urochordate species. Using a multiple-platform, multiple-individual approach, we have produced a 318,767,936-bp genome sequence, covering >50% of the estimated 602 Mb (±173 Mb) genome size for S. thompsoni Using a nonredundant set of predicted proteins, >50% (16,823) of sequences showed significant homology to known proteins and ∼38% (12,151) of the total protein predictions were associated with Gene Ontology functional information. We have generated 109,958 SNP variant and 9,782 indel predictions for this species, serving as a resource for future phylogenomic and population genetic studies. Comparing the salp genome to available assemblies for four other urochordates, Botryllus schlosseri, Ciona intestinalis, Ciona savignyi and Oikopleura dioica, we found that S. thompsoni shares the previously estimated rapid rates of evolution for these species. High mutation rates are thus independent of genome size, suggesting that rates of evolution >1.5 times that observed for vertebrates are a broad taxonomic characteristic of urochordates. Tests for positive selection implemented in PAML revealed a small number of genes with sites undergoing rapid evolution, including genes involved in ribosome biogenesis and metabolic and immune process that may be reflective of both adaptation to polar, planktonic environments as well as the complex life history of the salps. Finally, we performed an initial survey of small RNAs, revealing the presence of known, conserved miRNAs, as well as novel miRNA genes; unique piRNAs; and mature miRNA signatures for varying developmental stages. Collectively, these

  12. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H

    2008-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  13. Principles of molecular oncology

    National Research Council Canada - National Science Library

    Bronchud, Miguel H; Thomas, E. Donnall; Weatherall, D. J; Crowther, D. G

    2004-01-01

    ...-threatening diseases. Many new molecularly targeted diagnostics and therapeutics described in this text, developed based on the rapid growth in our understanding of the molecular basis of cancer, already substantially improve survival of patients with previously lethal malignancies, and also improve quality of life because of fewer toxicities. Clearly re...

  14. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches

    Directory of Open Access Journals (Sweden)

    Cooper W James

    2009-01-01

    data support a tight and biomechanically defined link between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

  15. Form and function of damselfish skulls: rapid and repeated evolution into a limited number of trophic niches.

    Science.gov (United States)

    Cooper, W James; Westneat, Mark W

    2009-01-30

    between structure and the functional ecology of fish skulls, and indicate that certain mechanisms for transmitting motion through their jaw linkages may require particular anatomical configurations, a conclusion that contravenes the concept of "many-to-one mapping" for fish jaw mechanics. Damselfish trophic evolution is characterized by rapid and repeated shifts between a small number of eco-morphological states, an evolutionary pattern that we describe as reticulate adaptive radiation.

  16. [Mobile genetic elements in plant sex evolution].

    Science.gov (United States)

    Gerashchenkov, G A; Rozhnova, N A

    2010-11-01

    The most significant theories of the appearance and maintenance of sex are presented. However, in the overwhelming majority of existing theories, the problem of sex, which is the central problem of evolutionary biology, is considered primarily through the prism of reproductive features of living organisms, whereas the issue of molecular driving forces of sexual reproduction id restricted to the possible role of mobile genetic elements (MGEs) in the appearance of sexual reproduction. The structural and functional significance of MGEs in the genomic organization of plants is illustrated. It is shown that MGEs could act as important molecular drivers of sex evolution in plants. The involvement of MGEs in the formation of sex chromosomes and possible participation in seeds-without-sex reproduction (apomixis) is discussed. Thus, the hypothesis on the active MGE participation in sex evolution is in good agreement with the modern views on pathways and directions of sex evolution in plants.

  17. Evolution of heteromorphic sex chromosomes in the order Aulopiformes.

    Science.gov (United States)

    Ota, K; Kobayashi, T; Ueno, K; Gojobori, T

    2000-12-23

    The fish order Aulopiformes contains both synchronously hermaphroditic and gonochoristic species. From the cytogenetic viewpoint, few reports show that gonochoristic Aulopiformes have heteromorphic sex chromosomes. Because fish in this order give us a unique opportunity to elucidate the evolution of sex chromosomes, it is important to examine a phylogenetic relationship in Aulopiformes by both molecular evolutionary and cytogenetic methods. Thus, we conducted molecular phylogenetic and cytogenetic studies of six Aulopiform species. Our results suggested that hermaphroditic species were evolutionarily derived from gonochoristic species. It follows that the hermaphroditic species might have lost the heteromorphic sex chromosomes during evolution. Here, we suggest a possibility that heteromorphic sex chromosomes can disappear from the genome, even if they have appeared once in evolution. Taking into account Ohno's hypothesis that heteromorphic sex chromosomes might have emerged from autosomes, we propose the hypothesis that heteromorphic sex chromosomes may have undergone repeated events of appearance and disappearance during the course of fish evolution.

  18. Evolution of high mobility group nucleosome-binding proteins and its implications for vertebrate chromatin specialization.

    Science.gov (United States)

    González-Romero, Rodrigo; Eirín-López, José M; Ausió, Juan

    2015-01-01

    High mobility group (HMG)-N proteins are a family of small nonhistone proteins that bind to nucleosomes (N). Despite the amount of information available on their structure and function, there is an almost complete lack of information on the molecular evolutionary mechanisms leading to their exclusive differentiation. In the present work, we provide evidence suggesting that HMGN lineages constitute independent monophyletic groups derived from a common ancestor prior to the diversification of vertebrates. Based on observations of the functional diversification across vertebrate HMGN proteins and on the extensive silent nucleotide divergence, our results suggest that the long-term evolution of HMGNs occurs under strong purifying selection, resulting from the lineage-specific functional constraints of their different protein domains. Selection analyses on independent lineages suggest that their functional specialization was mediated by bursts of adaptive selection at specific evolutionary times, in a small subset of codons with functional relevance-most notably in HMGN1, and in the rapidly evolving HMGN5. This work provides useful information to our understanding of the specialization imparted on chromatin metabolism by HMGNs, especially on the evolutionary mechanisms underlying their functional differentiation in vertebrates. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Introducing molecular selectivity in rapid impedimetric sensing of phthalates

    KAUST Repository

    Zia, Asif I.; Mukhopadhyay, Subhas Chandra; Al-Bahadly, Ibrahim H.; Yu, Paklam; Gooneratne, Chinthaka Pasan; Kosel, Jü rgen

    2014-01-01

    This research article reports a real-time and non-invasive detection technique for phthalates in liquids by Electrochemical Impedance Spectroscopy (EIS), incorporating molecular imprinting technique to introduce selectivity for the phthalate

  20. Electrophoretic variation in low molecular weight lens crystallins from inbred strains of rats.

    Science.gov (United States)

    Donner, M E; Skow, L C; Kunz, H W; Gill, T J

    1985-10-01

    Analysis of rat lens soluble proteins by analytical isoelectric focusing detected two inherited electrophoretic differences in low molecular weight (LM) crystallins from inbred strains of rats (Rattus norvegicus). The polymorphic lens crystallins were shown to be similar to a genetically variant LM crystallin, LEN-1, previously described in mice (Mus musculus) and encoded on chromosome 1, at a locus linked to Pep-3 (dipeptidase). Linkage analysis demonstrated that the rat crystallin locus was loosely linked to Pep-3 at a recombination distance of 38 +/- 4.5 U. These data suggest the conservation of a large chromosomal region during the evolution of Rodentia and support the hypothesis that the gamma-crystallins are evolving more rapidly than alpha- or beta-crystallins.

  1. Rapid evolution of female-biased genes among four species of Anopheles malaria mosquitoes.

    Science.gov (United States)

    Papa, Francesco; Windbichler, Nikolai; Waterhouse, Robert M; Cagnetti, Alessia; D'Amato, Rocco; Persampieri, Tania; Lawniczak, Mara K N; Nolan, Tony; Papathanos, Philippos Aris

    2017-09-01

    Understanding how phenotypic differences between males and females arise from the sex-biased expression of nearly identical genomes can reveal important insights into the biology and evolution of a species. Among Anopheles mosquito species, these phenotypic differences include vectorial capacity, as it is only females that blood feed and thus transmit human malaria. Here, we use RNA-seq data from multiple tissues of four vector species spanning the Anopheles phylogeny to explore the genomic and evolutionary properties of sex-biased genes. We find that, in these mosquitoes, in contrast to what has been found in many other organisms, female-biased genes are more rapidly evolving in sequence, expression, and genic turnover than male-biased genes. Our results suggest that this atypical pattern may be due to the combination of sex-specific life history challenges encountered by females, such as blood feeding. Furthermore, female propensity to mate only once in nature in male swarms likely diminishes sexual selection of post-reproductive traits related to sperm competition among males. We also develop a comparative framework to systematically explore tissue- and sex-specific splicing to document its conservation throughout the genus and identify a set of candidate genes for future functional analyses of sex-specific isoform usage. Finally, our data reveal that the deficit of male-biased genes on the X Chromosomes in Anopheles is a conserved feature in this genus and can be directly attributed to chromosome-wide transcriptional regulation that de-masculinizes the X in male reproductive tissues. © 2017 Papa et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Science.gov (United States)

    Kishimoto, Toshihiko; Ying, Bei-Wen; Tsuru, Saburo; Iijima, Leo; Suzuki, Shingo; Hashimoto, Tomomi; Oyake, Ayana; Kobayashi, Hisaka; Someya, Yuki; Narisawa, Dai; Yomo, Tetsuya

    2015-07-01

    The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  3. Molecular Clock of Neutral Mutations in a Fitness-Increasing Evolutionary Process.

    Directory of Open Access Journals (Sweden)

    Toshihiko Kishimoto

    2015-07-01

    Full Text Available The molecular clock of neutral mutations, which represents linear mutation fixation over generations, is theoretically explained by genetic drift in fitness-steady evolution or hitchhiking in adaptive evolution. The present study is the first experimental demonstration for the molecular clock of neutral mutations in a fitness-increasing evolutionary process. The dynamics of genome mutation fixation in the thermal adaptive evolution of Escherichia coli were evaluated in a prolonged evolution experiment in duplicated lineages. The cells from the continuously fitness-increasing evolutionary process were subjected to genome sequencing and analyzed at both the population and single-colony levels. Although the dynamics of genome mutation fixation were complicated by the combination of the stochastic appearance of adaptive mutations and clonal interference, the mutation fixation in the population was simply linear over generations. Each genome in the population accumulated 1.6 synonymous and 3.1 non-synonymous neutral mutations, on average, by the spontaneous mutation accumulation rate, while only a single genome in the population occasionally acquired an adaptive mutation. The neutral mutations that preexisted on the single genome hitchhiked on the domination of the adaptive mutation. The successive fixation processes of the 128 mutations demonstrated that hitchhiking and not genetic drift were responsible for the coincidence of the spontaneous mutation accumulation rate in the genome with the fixation rate of neutral mutations in the population. The molecular clock of neutral mutations to the fitness-increasing evolution suggests that the numerous neutral mutations observed in molecular phylogenetic trees may not always have been fixed in fitness-steady evolution but in adaptive evolution.

  4. Molecular phylogeny of Pompilinae (Hymenoptera: Pompilidae): Evidence for rapid diversification and host shifts in spider wasps.

    Science.gov (United States)

    Rodriguez, Juanita; Pitts, James P; Florez, Jaime A; Bond, Jason E; von Dohlen, Carol D

    2016-01-01

    Pompilinae is one of the largest subfamilies of spider wasps (Pompilidae). Most pompilines are generalist spider predators at the family level, but some taxa exhibit ecological specificity (i.e., to spider-host guild). Here we present the first molecular phylogenetic analysis of Pompilinae, toward the aim of evaluating the monophyly of tribes and genera. We further test whether changes in the rate of diversification are associated with host-guild shifts. Molecular data were collected from five nuclear loci (28S, EF1-F2, LWRh, Wg, Pol2) for 76 taxa in 39 genera. Data were analyzed using maximum likelihood (ML) and Bayesian inference (BI). The phylogenetic results were compared with previous hypotheses of subfamilial and tribal classification, as well as generic relationships in the subfamily. The classification of Pompilus and Agenioideus is also discussed. A Bayesian relaxed molecular clock analysis was used to examine divergence times. Diversification rate-shift tests accounted for taxon-sampling bias using ML and BI approaches. Ancestral host family and host guild were reconstructed using MP and ML methods. Ancestral host guild for all Pompilinae, for the ancestor at the node where a diversification rate-shift was detected, and two more nodes back in time was inferred using BI. In the resulting phylogenies, Aporini was the only previously proposed monophyletic tribe. Several genera (e.g., Pompilus, Microphadnus and Schistonyx) are also not monophyletic. Dating analyses produced a well-supported chronogram consistent with topologies from BI and ML results. The BI ancestral host-use reconstruction inferred the use of spiders belonging to the guild "other hunters" (frequenting the ground and vegetation) as the ancestral state for Pompilinae. This guild had the highest probability for the ML reconstruction and was equivocal for the MP reconstruction; various switching events to other guilds occurred throughout the evolution of the group. The diversification of

  5. Molecular Evolution of the CYP2D Subfamily in Primates: Purifying Selection on Substrate Recognition Sites without the Frequent or Long-Tract Gene Conversion

    Science.gov (United States)

    Yasukochi, Yoshiki; Satta, Yoko

    2015-01-01

    The human cytochrome P450 (CYP) 2D6 gene is a member of the CYP2D gene subfamily, along with the CYP2D7P and CYP2D8P pseudogenes. Although the CYP2D6 enzyme has been studied extensively because of its clinical importance, the evolution of the CYP2D subfamily has not yet been fully understood. Therefore, the goal of this study was to reveal the evolutionary process of the human drug metabolic system. Here, we investigate molecular evolution of the CYP2D subfamily in primates by comparing 14 CYP2D sequences from humans to New World monkey genomes. Window analysis and statistical tests revealed that entire genomic sequences of paralogous genes were extensively homogenized by gene conversion during molecular evolution of CYP2D genes in primates. A neighbor-joining tree based on genomic sequences at the nonsubstrate recognition sites showed that CYP2D6 and CYP2D8 genes were clustered together due to gene conversion. In contrast, a phylogenetic tree using amino acid sequences at substrate recognition sites did not cluster the CYP2D6 and CYP2D8 genes, suggesting that the functional constraint on substrate specificity is one of the causes for purifying selection at the substrate recognition sites. Our results suggest that the CYP2D gene subfamily in primates has evolved to maintain the regioselectivity for a substrate hydroxylation activity between individual enzymes, even though extensive gene conversion has occurred across CYP2D coding sequences. PMID:25808902

  6. Rapid evolution of coral proteins responsible for interaction with the environment.

    Directory of Open Access Journals (Sweden)

    Christian R Voolstra

    Full Text Available Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures, pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably.We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7% of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineage-specific genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium.This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals' evolutionary response to global climate change.

  7. Rapid Evolution of Coral Proteins Responsible for Interaction with the Environment

    Energy Technology Data Exchange (ETDEWEB)

    Voolstra, Christian R.; Sunagawa, Shinichi; Matz, Mikhail V.; Bayer, Till; Aranda, Manuel; Buschiazzo, Emmanuel; DeSalvo, Michael K.; Lindquist, Erika; Szmant, Alina M.; Coffroth, Mary Alice; Medina, Monica

    2011-01-31

    Background: Corals worldwide are in decline due to climate change effects (e.g., rising seawater temperatures), pollution, and exploitation. The ability of corals to cope with these stressors in the long run depends on the evolvability of the underlying genetic networks and proteins, which remain largely unknown. A genome-wide scan for positively selected genes between related coral species can help to narrow down the search space considerably. Methodology/Principal Findings: We screened a set of 2,604 putative orthologs from EST-based sequence datasets of the coral species Acropora millepora and Acropora palmata to determine the fraction and identity of proteins that may experience adaptive evolution. 7percent of the orthologs show elevated rates of evolution. Taxonomically-restricted (i.e. lineagespecific) genes show a positive selection signature more frequently than genes that are found across many animal phyla. The class of proteins that displayed elevated evolutionary rates was significantly enriched for proteins involved in immunity and defense, reproduction, and sensory perception. We also found elevated rates of evolution in several other functional groups such as management of membrane vesicles, transmembrane transport of ions and organic molecules, cell adhesion, and oxidative stress response. Proteins in these processes might be related to the endosymbiotic relationship corals maintain with dinoflagellates in the genus Symbiodinium. Conclusion/Relevance: This study provides a birds-eye view of the processes potentially underlying coral adaptation, which will serve as a foundation for future work to elucidate the rates, patterns, and mechanisms of corals? evolutionary response to global climate change.

  8. Methylome evolution in plants.

    Science.gov (United States)

    Vidalis, Amaryllis; Živković, Daniel; Wardenaar, René; Roquis, David; Tellier, Aurélien; Johannes, Frank

    2016-12-20

    Despite major progress in dissecting the molecular pathways that control DNA methylation patterns in plants, little is known about the mechanisms that shape plant methylomes over evolutionary time. Drawing on recent intra- and interspecific epigenomic studies, we show that methylome evolution over long timescales is largely a byproduct of genomic changes. By contrast, methylome evolution over short timescales appears to be driven mainly by spontaneous epimutational events. We argue that novel methods based on analyses of the methylation site frequency spectrum (mSFS) of natural populations can provide deeper insights into the evolutionary forces that act at each timescale.

  9. Assembly constraints drive co-evolution among ribosomal constituents.

    Science.gov (United States)

    Mallik, Saurav; Akashi, Hiroshi; Kundu, Sudip

    2015-06-23

    Ribosome biogenesis, a central and essential cellular process, occurs through sequential association and mutual co-folding of protein-RNA constituents in a well-defined assembly pathway. Here, we construct a network of co-evolving nucleotide/amino acid residues within the ribosome and demonstrate that assembly constraints are strong predictors of co-evolutionary patterns. Predictors of co-evolution include a wide spectrum of structural reconstitution events, such as cooperativity phenomenon, protein-induced rRNA reconstitutions, molecular packing of different rRNA domains, protein-rRNA recognition, etc. A correlation between folding rate of small globular proteins and their topological features is known. We have introduced an analogous topological characteristic for co-evolutionary network of ribosome, which allows us to differentiate between rRNA regions subjected to rapid reconstitutions from those hindered by kinetic traps. Furthermore, co-evolutionary patterns provide a biological basis for deleterious mutation sites and further allow prediction of potential antibiotic targeting sites. Understanding assembly pathways of multicomponent macromolecules remains a key challenge in biophysics. Our study provides a 'proof of concept' that directly relates co-evolution to biophysical interactions during multicomponent assembly and suggests predictive power to identify candidates for critical functional interactions as well as for assembly-blocking antibiotic target sites. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  10. The molecular basis of speciation: from patterns to processes, rules ...

    Indian Academy of Sciences (India)

    To explain the rules, we propose a new 'hierarchical faster-sex' theory: the rapid evolution of sex and reproduction-related (SRR) genes (faster-SRR evolution), in combination with the preferential involvement of the X-chromosome (hemizygous X-effects) and sexually selected male traits (faster-male evolution). This unified ...

  11. Evolution and molecular control of hybrid incompatibility in plants

    Directory of Open Access Journals (Sweden)

    Chen Chen

    2016-08-01

    Full Text Available Postzygotic reproductive isolation (RI plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with parasitic selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities.

  12. LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes

    Science.gov (United States)

    Binks, Sophie N M; Klein, Christopher J; Waters, Patrick; Pittock, Sean J; Irani, Sarosh R

    2018-01-01

    Recent biochemical observations have helped redefine antigenic components within the voltage-gated potassium channel (VGKC) complex. The related autoantibodies may be now divided into likely pathogenic entities, which target the extracellular domains of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), and species that target intracellular neuronal components and are likely non-pathogenic. This distinction has enhanced clinical practice as direct determination of LGI1 and CASPR2 antibodies offers optimal sensitivity and specificity. In this review, we describe and compare the clinical features associated with pathogenic LGI1 and CASPR2 antibodies, illustrate emerging laboratory techniques for antibody determination and describe the immunological mechanisms that may mediate antibody-induced pathology. We highlight marked clinical overlaps between patients with either LGI1 or CASPR2 antibodies that include frequent focal seizures, prominent amnesia, dysautonomia, neuromyotonia and neuropathic pain. Although occurring at differing rates, these commonalities are striking and only faciobrachial dystonic seizures reliably differentiate these two conditions. Furthermore, the coexistence of both LGI1 and CASPR2 antibodies in an individual occurs surprisingly frequently. Patients with either antibody respond well to immunotherapies, although systematic studies are required to determine the magnitude of the effect beyond placebo. Finally, data have suggested that CASPR2 and LGI1 modulation via genetic or autoimmune mechanisms may share common intermediate molecules. Taken together, the biochemical distinction of antigenic targets has led to important clinical advances for patient care. However, the striking syndrome similarities, coexistence of two otherwise rare antibodies and molecular insights suggest the VGKC complex may yet be a common functional effector of antibody action. Hence, we argue for a molecular evolution alongside a

  13. Cascades of convergent evolution: The corresponding evolutionary histories of euglenozoans and dinoflagellates

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Leander, B. S.; Keeling, P. J.

    2009-01-01

    Roč. 106, č. 1 (2009), s. 9963-9970 ISSN 0027-8424 R&D Projects: GA ČR GA204/09/1667; GA MŠk LC07032; GA MŠk 2B06129 Institutional research plan: CEZ:AV0Z60220518 Keywords : comparative genomics * convergent evolution * dinoflagellates * Euglenozoa * mitochondria * molecular evolution * plastids * RNA editing * RNA editing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.432, year: 2009

  14. Within-Host Evolution of Human Influenza Virus.

    Science.gov (United States)

    Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D

    2018-03-10

    The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Bony cranial ornamentation linked to rapid evolution of gigantic theropod dinosaurs

    Science.gov (United States)

    Gates, Terry A.; Organ, Chris; Zanno, Lindsay E.

    2016-09-01

    Exaggerated cranial structures such as crests and horns, hereafter referred to collectively as ornaments, are pervasive across animal species. These structures perform vital roles in visual communication and physical interactions within and between species. Yet the origin and influence of ornamentation on speciation and ecology across macroevolutionary time scales remains poorly understood for virtually all animals. Here, we explore correlative evolution of osseous cranial ornaments with large body size in theropod dinosaurs using a phylogenetic comparative framework. We find that body size evolved directionally toward phyletic giantism an order of magnitude faster in theropod species possessing ornaments compared with unadorned lineages. In addition, we find a body mass threshold below which bony cranial ornaments do not originate. Maniraptoriform dinosaurs generally lack osseous cranial ornaments despite repeatedly crossing this body size threshold. Our study provides novel, quantitative support for a shift in selective pressures on socio-sexual display mechanisms in theropods coincident with the evolution of pennaceous feathers.

  16. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili

    2014-08-19

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Tethering metal ions to photocatalyst particulate surfaces by bifunctional molecular linkers for efficient hydrogen evolution

    KAUST Repository

    Yu, Weili; Isimjan, Tayirjan T.; Del Gobbo, Silvano; Anjum, Dalaver Hussain; Abdel-Azeim, Safwat; Cavallo, Luigi; Garcia Esparza, Angel T.; Domen, Kazunari; Xu, Wei; Takanabe, Kazuhiro

    2014-01-01

    A simple and versatile method for the preparation of photocatalyst particulates modified with effective cocatalysts is presented; the method involves the sequential soaking of photocatalyst particulates in solutions containing bifunctional organic linkers and metal ions. The modification of the particulate surfaces is a universal and reproducible method because the molecular linkers utilize strong covalent bonds, which in turn result in modified monolayer with a small but controlled quantity of metals. The photocatalysis results indicated that the CdS with likely photochemically reduced Pd and Ni, which were initially immobilized via ethanedithiol (EDT) as a linker, were highly efficient for photocatalytic hydrogen evolution from Na2S-Na2SO3-containing aqueous solutions. The method developed in this study opens a new synthesis route for the preparation of effective photocatalysts with various combinations of bifunctional linkers, metals, and photocatalyst particulate materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Convergent evolution of the genomes of marine mammals

    Science.gov (United States)

    Foote, Andrew D.; Liu, Yue; Thomas, Gregg W.C.; Vinař, Tomáš; Alföldi, Jessica; Deng, Jixin; Dugan, Shannon; van Elk, Cornelis E.; Hunter, Margaret; Joshi, Vandita; Khan, Ziad; Kovar, Christie; Lee, Sandra L.; Lindblad-Toh, Kerstin; Mancia, Annalaura; Nielsen, Rasmus; Qin, Xiang; Qu, Jiaxin; Raney, Brian J.; Vijay, Nagarjun; Wolf, Jochen B. W.; Hahn, Matthew W.; Muzny, Donna M.; Worley, Kim C.; Gilbert, M. Thomas P.; Gibbs, Richard A.

    2015-01-01

    Marine mammals from different mammalian orders share several phenotypic traits adapted to the aquatic environment and therefore represent a classic example of convergent evolution. To investigate convergent evolution at the genomic level, we sequenced and performed de novo assembly of the genomes of three species of marine mammals (the killer whale, walrus and manatee) from three mammalian orders that share independently evolved phenotypic adaptations to a marine existence. Our comparative genomic analyses found that convergent amino acid substitutions were widespread throughout the genome and that a subset of these substitutions were in genes evolving under positive selection and putatively associated with a marine phenotype. However, we found higher levels of convergent amino acid substitutions in a control set of terrestrial sister taxa to the marine mammals. Our results suggest that, whereas convergent molecular evolution is relatively common, adaptive molecular convergence linked to phenotypic convergence is comparatively rare.

  19. Automated Online Solid-Phase Derivatization for Sensitive Quantification of Endogenous S-Nitrosoglutathione and Rapid Capture of Other Low-Molecular-Mass S-Nitrosothiols.

    Science.gov (United States)

    Wang, Xin; Garcia, Carlos T; Gong, Guanyu; Wishnok, John S; Tannenbaum, Steven R

    2018-02-06

    S-Nitrosothiols (RSNOs) constitute a circulating endogenous reservoir of nitric oxide and have important biological activities. In this study, an online coupling of solid-phase derivatization (SPD) with liquid chromatography-mass spectrometry (LC-MS) was developed and applied in the analysis of low-molecular-mass RSNOs. A derivatizing-reagent-modified polymer monolithic column was prepared and adapted for online SPD-LC-MS. Analytes from the LC autosampler flowed through the monolithic column for derivatization and then directly into the LC-MS for analysis. This integration of the online derivatization, LC separation, and MS detection facilitated system automation, allowing rapid, laborsaving, and sensitive detection of RSNOs. S-Nitrosoglutathione (GSNO) was quantified using this automated online method with good linearity (R 2 = 0.9994); the limit of detection was 0.015 nM. The online SPD-LC-MS method has been used to determine GSNO levels in mouse samples, 138 ± 13.2 nM of endogenous GSNO was detected in mouse plasma. Besides, the GSNO concentrations in liver (64.8 ± 11.3 pmol/mg protein), kidney (47.2 ± 6.1 pmol/mg protein), heart (8.9 ± 1.8 pmol/mg protein), muscle (1.9 ± 0.3 pmol/mg protein), hippocampus (5.3 ± 0.9 pmol/mg protein), striatum (6.7 ± 0.6 pmol/mg protein), cerebellum (31.4 ± 6.5 pmol/mg protein), and cortex (47.9 ± 4.6 pmol/mg protein) were also successfully quantified. When the derivatization was performed within 8 min, followed by LC-MS detection, samples could be rapidly analyzed compared with the offline manual method. Other low-molecular-mass RSNOs, such as S-nitrosocysteine and S-nitrosocysteinylglycine, were captured by rapid precursor-ion scanning, showing that the proposed method is a potentially powerful tool for capture, identification, and quantification of RSNOs in biological samples.

  20. Extinction Events Can Accelerate Evolution

    DEFF Research Database (Denmark)

    Lehman, Joel; Miikkulainen, Risto

    2015-01-01

    Extinction events impact the trajectory of biological evolution significantly. They are often viewed as upheavals to the evolutionary process. In contrast, this paper supports the hypothesis that although they are unpredictably destructive, extinction events may in the long term accelerate...... evolution by increasing evolvability. In particular, if extinction events extinguish indiscriminately many ways of life, indirectly they may select for the ability to expand rapidly through vacated niches. Lineages with such an ability are more likely to persist through multiple extinctions. Lending...... computational support for this hypothesis, this paper shows how increased evolvability will result from simulated extinction events in two computational models of evolved behavior. The conclusion is that although they are destructive in the short term, extinction events may make evolution more prolific...

  1. Molecular evolution of the hyperthermophilic archaea of the Pyrococcus genus: analysis of adaptation to different environmental conditions

    Directory of Open Access Journals (Sweden)

    Afonnikov Dmitry A

    2009-12-01

    Full Text Available Abstract Background Prokaryotic microorganisms are able to survive and proliferate in severe environmental conditions. The increasing number of complete sequences of prokaryotic genomes has provided the basis for studying the molecular mechanisms of their adaptation at the genomic level. We apply here a computer-based approach to compare the genomes and proteomes from P. furiosus, P. horikoshii, and P. abyssi to identify features of their molecular evolution related to adaptation strategy to diverse environmental conditions. Results Phylogenetic analysis of rRNA genes from 26 Pyrococcus strains suggested that the divergence of P. furiosus, P. horikoshii and P. abyssi might have occurred from ancestral deep-sea organisms. It was demonstrated that the function of genes that have been subject to positive Darwinian selection is closely related to abiotic and biotic conditions to which archaea managed to become adapted. Divergence of the P. furiosus archaea might have been due to loss of some genes involved in cell motility or signal transduction, and/or to evolution under positive selection of the genes for translation machinery. In the course of P. horikoshii divergence, positive selection was found to operate mainly on the transcription machinery; divergence of P. abyssi was related with positive selection for the genes mainly involved in inorganic ion transport. Analysis of radical amino acid replacement rate in evolving P. furiosus, P. horikoshii and P. abyssi showed that the fixation rate was higher for radical substitutions relative to the volume of amino acid side-chain. Conclusions The current results give due credit to the important role of hydrostatic pressure as a cause of variability in the P. furiosus, P. horikoshii and P. abyssi genomes evolving in different habitats. Nevertheless, adaptation to pressure does not appear to be the sole factor ensuring adaptation to environment. For example, at the stage of the divergence of P

  2. Topology evolution in macromolecular networks

    NARCIS (Netherlands)

    Kryven, I.

    2014-01-01

    Governed by various intermolecular forces, molecular networks tend to evolve from simple to very complex formations that have random structure. This randomness in the connectivity of the basic units can still be captured employing distributional description of the state of the system; the evolution

  3. The Relation between Recombination Rate and Patterns of Molecular Evolution and Variation in Drosophila melanogaster

    Science.gov (United States)

    Campos, José L.; Halligan, Daniel L.; Haddrill, Penelope R.; Charlesworth, Brian

    2014-01-01

    Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill–Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect. PMID:24489114

  4. Quasi-molecular states in sd-shell nuclei

    International Nuclear Information System (INIS)

    Kubono, S.; Ikeda, N.; Nomura, T.

    1988-08-01

    Quasi-molecular states near and below the threshold of the molecular configuration in sd-shell nuclei are discussed using recent experimental data with particle-gamma coincidence method and particle-particle coincidence method. Possible quasi-molecular states have been identified in 24 Mg as well as in 28 Si and 32 S. The important role of quasi-molecular states are discussed, specifically for the shape evolution of nuclei as a function of excitation energy and angular momentum. (author)

  5. Molecular phylogeny and character evolution of the chthamaloid barnacles (Cirripedia:Thoracica)

    DEFF Research Database (Denmark)

    Pérez-Losada, Marcos; Høeg, Jens Thorvald; Crandall, Keith A.

    2012-01-01

    surrounded by whorls of small imbricating plates; but this hypothesis has never been subjected to a rigorous phylogenetic test. Here we used multilocus sequence data and extensive taxon sampling to build a comprehensive phylogeny of the Chthamaloidea as a basis for understanding their morphological evolution......The Chthamaloidea (Balanomorpha) present the most plesiomorphic characters in shell plates and cirri, mouthparts, and oral cone within the acorn barnacles (Thoracica: Sessilia). Due to their importance in understanding both the origin and diversification of the Balanomorpha, the evolution...... of the Chthamaloidea has been debated since Darwin's seminal monographs. Theories of morphological and ontogenetic evolution suggest that the group could have evolved multiple times from pedunculated relatives and that shell plate number diminished gradually (8¿6¿4) from an ancestral state with eight wall plates...

  6. Molecular Epidemiology and Genomics of Group A Streptococcus

    Science.gov (United States)

    Bessen, Debra E.; McShan, W. Michael; Nguyen, Scott V.; Shetty, Amol; Agrawal, Sonia; Tettelin, Hervé

    2014-01-01

    Streptococcus pyogenes (group A streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed. PMID:25460818

  7. Molecular initiating events of the intersex phenotype: Low-dose exposure to 17α-ethinylestradiol rapidly regulates molecular networks associated with gonad differentiation in the adult fathead minnow testis

    International Nuclear Information System (INIS)

    Feswick, April; Loughery, Jennifer R.; Isaacs, Meghan A.; Munkittrick, Kelly R.; Martyniuk, Christopher J.

    2016-01-01

    testis, despite the fact that dmrt1 itself was not different in expression from control males. Transcriptional networks involving forkhead box L2 (foxl2) (transcript involved in ovarian follicle development) were increased in expression in the testis. Noteworthy was that a gene network associated to granulosa cell development was increased over 100%, suggesting that this transcriptome network may be important for monitoring estrogenic exposures. Other cell processes rapidly downregulated by EE2 at the transcript level included glucose homeostasis, response to heavy metal, amino acid catabolism, and the cyclooxygenase pathway. Conversely, lymphocyte chemotaxis, intermediate filament polymerization, glucocorticoid metabolism, carbohydrate utilization, and anterior/posterior axis specification were increased. These data provide new insight into the transcriptional responses that are perturbed prior to gonadal remodeling and intersex following exposure to estrogens. These data demonstrate that low concentrations of EE2 (1) rapidly suppresses male hormone production, (2) down-regulate molecular networks related to male sex differentiation, and (3) induce transcriptional networks related to granulosa cell development in the adult testis. These responses are hypothesized to be key molecular initiating events that occur prior to the development of the intersex phenotype following estrogenic exposures.

  8. Molecular initiating events of the intersex phenotype: Low-dose exposure to 17α-ethinylestradiol rapidly regulates molecular networks associated with gonad differentiation in the adult fathead minnow testis

    Energy Technology Data Exchange (ETDEWEB)

    Feswick, April; Loughery, Jennifer R.; Isaacs, Meghan A.; Munkittrick, Kelly R.; Martyniuk, Christopher J., E-mail: cmartyni@yahoo.ca

    2016-12-15

    testis, despite the fact that dmrt1 itself was not different in expression from control males. Transcriptional networks involving forkhead box L2 (foxl2) (transcript involved in ovarian follicle development) were increased in expression in the testis. Noteworthy was that a gene network associated to granulosa cell development was increased over 100%, suggesting that this transcriptome network may be important for monitoring estrogenic exposures. Other cell processes rapidly downregulated by EE2 at the transcript level included glucose homeostasis, response to heavy metal, amino acid catabolism, and the cyclooxygenase pathway. Conversely, lymphocyte chemotaxis, intermediate filament polymerization, glucocorticoid metabolism, carbohydrate utilization, and anterior/posterior axis specification were increased. These data provide new insight into the transcriptional responses that are perturbed prior to gonadal remodeling and intersex following exposure to estrogens. These data demonstrate that low concentrations of EE2 (1) rapidly suppresses male hormone production, (2) down-regulate molecular networks related to male sex differentiation, and (3) induce transcriptional networks related to granulosa cell development in the adult testis. These responses are hypothesized to be key molecular initiating events that occur prior to the development of the intersex phenotype following estrogenic exposures.

  9. Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini).

    Science.gov (United States)

    Brand, Philipp; Ramírez, Santiago R; Leese, Florian; Quezada-Euan, J Javier G; Tollrian, Ralph; Eltz, Thomas

    2015-08-28

    Insects rely more on chemical signals (semiochemicals) than on any other sensory modality to find, identify, and choose mates. In most insects, pheromone production is typically regulated through biosynthetic pathways, whereas pheromone sensory detection is controlled by the olfactory system. Orchid bees are exceptional in that their semiochemicals are not produced metabolically, but instead male bees collect odoriferous compounds (perfumes) from the environment and store them in specialized hind-leg pockets to subsequently expose during courtship display. Thus, the olfactory sensory system of orchid bees simultaneously controls male perfume traits (sender components) and female preferences (receiver components). This functional linkage increases the opportunities for parallel evolution of male traits and female preferences, particularly in response to genetic changes of chemosensory detection (e.g. Odorant Receptor genes). To identify whether shifts in pheromone composition among related lineages of orchid bees are associated with divergence in chemosensory genes of the olfactory periphery, we searched for patterns of divergent selection across the antennal transcriptomes of two recently diverged sibling species Euglossa dilemma and E. viridissima. We identified 3185 orthologous genes including 94 chemosensory loci from five different gene families (Odorant Receptors, Ionotropic Receptors, Gustatory Receptors, Odorant Binding Proteins, and Chemosensory Proteins). Our results revealed that orthologs with signatures of divergent selection between E. dilemma and E. viridissima were significantly enriched for chemosensory genes. Notably, elevated signals of divergent selection were almost exclusively observed among chemosensory receptors (i.e. Odorant Receptors). Our results suggest that rapid changes in the chemosensory gene family occurred among closely related species of orchid bees. These findings are consistent with the hypothesis that strong divergent selection

  10. The structural evolution of InN nanorods to microstructures on Si (111) by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Anyebe, E A; Zhuang, Q; Kesaria, M; Krier, A

    2014-01-01

    We report the catalyst free growth of wurtzite InN nanorods (NRs) and microislands on bare Si (111) by plasma-assisted molecular beam epitaxy at various temperatures. The morphological evolution from NRs to three dimensional (3D) islands as a function of growth temperature is investigated. A combination of tapered, non-tapered, and pyramidal InN NRs are observed at 490 °C, whereas the InN evolves to faceted microislands with an increase in growth temperature to 540 °C and further developed to indented and smooth hemispherical structures at extremely high temperatures (630 °C). The evolution from NRs to microislands with increase in growth temperature is attributed to the lowering of the surface free energy of the growing crystals with disproportionate growth velocities along different growth fronts. The preferential adsorption of In atoms on the (0001) c-plane and (10-10) m-plane promotes the growth of NRs at relatively low growth temperature and 3D microislands at higher temperatures. The growth rate imbalance along different planes facilitates the development of facets on 3D microislands. A strong correlation between the morphological and structural properties of the 3D films is established. XRD studies reveal that the NRs and the faceted microislands are crystalline, whereas the hemispherical microislands grown at extremely high growth temperature contain In adlayers. Finally, photoluminescent emissions were observed at ∼0.75 eV from the InN NRs. (paper)

  11. Evolution of Karyotypes in Chameleons

    Czech Academy of Sciences Publication Activity Database

    Rovatsos, M.; Altmanová, M.; Johnson Pokorná, Martina; Velenský, P.; Baca, A. S.; Kratochvíl, L.

    2017-01-01

    Roč. 8, č. 12 (2017), č. článku 382. ISSN 2073-4425 Institutional support: RVO:67985904 Keywords : karyotype evolution * ITS * rDNA Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.600, year: 2016

  12. Rapid molecular detection of rifampicin resistance facilitates early diagnosis and treatment of multi-drug resistant tuberculosis: case control study.

    Directory of Open Access Journals (Sweden)

    Philly O'Riordan

    2008-09-01

    Full Text Available Multi-drug resistant tuberculosis (MDR-TB is a major public health concern since diagnosis is often delayed, increasing the risk of spread to the community and health care workers. Treatment is prolonged, and the total cost of treating a single case is high. Diagnosis has traditionally relied upon clinical suspicion, based on risk factors and culture with sensitivity testing, a process that can take weeks or months. Rapid diagnostic molecular techniques have the potential to shorten the time to commencing appropriate therapy, but have not been put to the test under field conditions.This retrospective case-control study aimed to identify risk factors for MDR-TB, and analyse the impact of testing for rifampicin resistance using RNA polymerase B (rpoB mutations as a surrogate for MDR-TB. Forty two MDR-TB cases and 84 fully sensitive TB controls were matched by date of diagnosis; and factors including demographics, clinical presentation, microbiology findings, management and outcome were analysed using their medical records. Conventionally recognised risk factors for MDR-TB were absent in almost half (43% of the cases, and 15% of cases were asymptomatic. A significant number of MDR-TB cases were identified in new entrants to the country. Using rpoB mutation testing, the time to diagnosis of MDR-TB was dramatically shortened by a median of 6 weeks, allowing patients to be commenced on appropriate therapy a median of 51days earlier than those diagnosed by conventional culture and sensitivity testing.MDR-TB is frequently an unexpected finding, may be asymptomatic, and is particularly prevalent among TB infected new entrants to the country. Molecular resistance testing of all acid fast bacilli positive specimens has the potential to rapidly identify MDR-TB patients and commence them on appropriate therapy significantly earlier than by conventional methods.

  13. Stasis and convergence characterize morphological evolution in eupolypod II ferns.

    Science.gov (United States)

    Sundue, Michael A; Rothfels, Carl J

    2014-01-01

    Patterns of morphological evolution at levels above family rank remain underexplored in the ferns. The present study seeks to address this gap through analysis of 79 morphological characters for 81 taxa, including representatives of all ten families of eupolypod II ferns. Recent molecular phylogenetic studies demonstrate that the evolution of the large eupolypod II clade (which includes nearly one-third of extant fern species) features unexpected patterns. The traditional 'athyrioid' ferns are scattered across the phylogeny despite their apparent morphological cohesiveness, and mixed among these seemingly conservative taxa are morphologically dissimilar groups that lack any obvious features uniting them with their relatives. Maximum-likelihood and maximum-parsimony character optimizations are used to determine characters that unite the seemingly disparate groups, and to test whether the polyphyly of the traditional athyrioid ferns is due to evolutionary stasis (symplesiomorphy) or convergent evolution. The major events in eupolypod II character evolution are reviewed, and character and character state concepts are reappraised, as a basis for further inquiries into fern morphology. Characters were scored from the literature, live plants and herbarium specimens, and optimized using maximum-parsimony and maximum-likelihood, onto a highly supported topology derived from maximum-likelihood and Bayesian analysis of molecular data. Phylogenetic signal of characters were tested for using randomization methods and fitdiscrete. The majority of character state changes within the eupolypod II phylogeny occur at the family level or above. Relative branch lengths for the morphological data resemble those from molecular data and fit an ancient rapid radiation model (long branches subtended by very short backbone internodes), with few characters uniting the morphologically disparate clades. The traditional athyrioid ferns were circumscribed based upon a combination of

  14. Hominid evolution: genetics versus memetics

    Science.gov (United States)

    Carter, Brandon

    2012-01-01

    The last few million years on planet Earth have witnessed two remarkable phases of hominid development, starting with a phase of biological evolution characterized by rather rapid increase of the size of the brain. This has been followed by a phase of even more rapid technological evolution and concomitant expansion of the size of the population that began when our own particular ‘sapiens’ species emerged, just a few hundred thousand years ago. The present investigation exploits the analogy between the neo-Darwinian genetic evolution mechanism governing the first phase, and the memetic evolution mechanism governing the second phase. From the outset of the latter until very recently - about the year 2000 - the growth of the global population N was roughly governed by an equation of the form dN/Ndt=N/T*, in which T* is a coefficient introduced (in 1960) by von Foerster, who evaluated it empirically as about 200 000 million years. It is shown here how the value of this hitherto mysterious timescale governing the memetic phase is explicable in terms of what happened in the preceding genetic phase. The outcome is that the order of magnitude of the Foerster timescale can be accounted for as the product of the relevant (human) generation timescale, about 20 years, with the number of bits of information in the genome, of the order of 10 000 million. Whereas the origin of our ‘homo’ genus may well have involved an evolutionary hard step, it transpires that the emergence of our particular ‘sapiens’ species was rather an automatic process.

  15. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    International Nuclear Information System (INIS)

    Kuiper, R.; Yorke, H. W.

    2013-01-01

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t ≤ 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates

  16. The complete plastome of macaw palm [Acrocomia aculeata (Jacq.) Lodd. ex Mart.] and extensive molecular analyses of the evolution of plastid genes in Arecaceae.

    Science.gov (United States)

    de Santana Lopes, Amanda; Gomes Pacheco, Túlio; Nimz, Tabea; do Nascimento Vieira, Leila; Guerra, Miguel P; Nodari, Rubens O; de Souza, Emanuel Maltempi; de Oliveira Pedrosa, Fábio; Rogalski, Marcelo

    2018-04-01

    The plastome of macaw palm was sequenced allowing analyses of evolution and molecular markers. Additionally, we demonstrated that more than half of plastid protein-coding genes in Arecaceae underwent positive selection. Macaw palm is a native species from tropical and subtropical Americas. It shows high production of oil per hectare reaching up to 70% of oil content in fruits and an interesting plasticity to grow in different ecosystems. Its domestication and breeding are still in the beginning, which makes the development of molecular markers essential to assess natural populations and germplasm collections. Therefore, we sequenced and characterized in detail the plastome of macaw palm. A total of 221 SSR loci were identified in the plastome of macaw palm. Additionally, eight polymorphism hotspots were characterized at level of subfamily and tribe. Moreover, several events of gain and loss of RNA editing sites were found within the subfamily Arecoideae. Aiming to uncover evolutionary events in Arecaceae, we also analyzed extensively the evolution of plastid genes. The analyses show that highly divergent genes seem to evolve in a species-specific manner, suggesting that gene degeneration events may be occurring within Arecaceae at the level of genus or species. Unexpectedly, we found that more than half of plastid protein-coding genes are under positive selection, including genes for photosynthesis, gene expression machinery and other essential plastid functions. Furthermore, we performed a phylogenomic analysis using whole plastomes of 40 taxa, representing all subfamilies of Arecaceae, which placed the macaw palm within the tribe Cocoseae. Finally, the data showed here are important for genetic studies in macaw palm and provide new insights into the evolution of plastid genes and environmental adaptation in Arecaceae.

  17. Molecular evolution of the odorant and gustatory receptor genes in lepidopteran insects: implications for their adaptation and speciation.

    Science.gov (United States)

    Engsontia, Patamarerk; Sangket, Unitsa; Chotigeat, Wilaiwan; Satasook, Chutamas

    2014-08-01

    Lepidoptera (comprised of butterflies and moths) is one of the largest groups of insects, including more than 160,000 described species. Chemoreception plays important roles in the adaptation of these species to a wide range of niches, e.g., plant hosts, egg-laying sites, and mates. This study investigated the molecular evolution of the lepidopteran odorant (Or) and gustatory receptor (Gr) genes using recently identified genes from Bombyx mori, Danaus plexippus, Heliconius melpomene, Plutella xylostella, Heliothis virescens, Manduca sexta, Cydia pomonella, and Spodoptera littoralis. A limited number of cases of large lineage-specific gene expansion are observed (except in the P. xylostella lineage), possibly due to selection against tandem gene duplication. There has been strong purifying selection during the evolution of both lepidopteran odorant and gustatory genes, as shown by the low ω values estimated through CodeML analysis, ranging from 0.0093 to 0.3926. However, purifying selection has been relaxed on some amino acid sites in these receptors, leading to sequence divergence, which is a precursor of positive selection on these sequences. Signatures of positive selection were detected only in a few loci from the lineage-specific analysis. Estimation of gene gains and losses suggests that the common ancestor of the Lepidoptera had fewer Or genes compared to extant species and an even more reduced number of Gr genes, particularly within the bitter receptor clade. Multiple gene gains and a few gene losses occurred during the evolution of Lepidoptera. Gene family expansion may be associated with the adaptation of lepidopteran species to plant hosts, especially after angiosperm radiation. Phylogenetic analysis of the moth sex pheromone receptor genes suggested that chromosomal translocations have occurred several times. New sex pheromone receptors have arisen through tandem gene duplication. Positive selection was detected at some amino acid sites predicted to be

  18. Meteorite Impact-Induced Rapid NH3 Production on Early Earth: Ab Initio Molecular Dynamics Simulation

    Science.gov (United States)

    Shimamura, Kohei; Shimojo, Fuyuki; Nakano, Aiichiro; Tanaka, Shigenori

    2016-12-01

    NH3 is an essential molecule as a nitrogen source for prebiotic amino acid syntheses such as the Strecker reaction. Previous shock experiments demonstrated that meteorite impacts on ancient oceans would have provided a considerable amount of NH3 from atmospheric N2 and oceanic H2O through reduction by meteoritic iron. However, specific production mechanisms remain unclear, and impact velocities employed in the experiments were substantially lower than typical impact velocities of meteorites on the early Earth. Here, to investigate the issues from the atomistic viewpoint, we performed multi-scale shock technique-based ab initio molecular dynamics simulations. The results revealed a rapid production of NH3 within several picoseconds after the shock, indicating that shocks with greater impact velocities would provide further increase in the yield of NH3. Meanwhile, the picosecond-order production makes one expect that the important nitrogen source precursors of amino acids were obtained immediately after the impact. It was also observed that the reduction of N2 proceeded according to an associative mechanism, rather than a dissociative mechanism as in the Haber-Bosch process.

  19. Mobile DNA and evolution in the 21st century

    Directory of Open Access Journals (Sweden)

    Shapiro James A

    2010-01-01

    Full Text Available Abstract Scientific history has had a profound effect on the theories of evolution. At the beginning of the 21st century, molecular cell biology has revealed a dense structure of information-processing networks that use the genome as an interactive read-write (RW memory system rather than an organism blueprint. Genome sequencing has documented the importance of mobile DNA activities and major genome restructuring events at key junctures in evolution: exon shuffling, changes in cis-regulatory sites, horizontal transfer, cell fusions and whole genome doublings (WGDs. The natural genetic engineering functions that mediate genome restructuring are activated by multiple stimuli, in particular by events similar to those found in the DNA record: microbial infection and interspecific hybridization leading to the formation of allotetraploids. These molecular genetic discoveries, plus a consideration of how mobile DNA rearrangements increase the efficiency of generating functional genomic novelties, make it possible to formulate a 21st century view of interactive evolutionary processes. This view integrates contemporary knowledge of the molecular basis of genetic change, major genome events in evolution, and stimuli that activate DNA restructuring with classical cytogenetic understanding about the role of hybridization in species diversification.

  20. Deceptive Desmas: Molecular Phylogenetics Suggests a New Classification and Uncovers Convergent Evolution of Lithistid Demosponges

    Science.gov (United States)

    Schuster, Astrid; Erpenbeck, Dirk; Pisera, Andrzej; Hooper, John; Bryce, Monika; Fromont, Jane; Wörheide, Gert

    2015-01-01

    Reconciling the fossil record with molecular phylogenies to enhance the understanding of animal evolution is a challenging task, especially for taxa with a mostly poor fossil record, such as sponges (Porifera). ‘Lithistida’, a polyphyletic group of recent and fossil sponges, are an exception as they provide the richest fossil record among demosponges. Lithistids, currently encompassing 13 families, 41 genera and >300 recent species, are defined by the common possession of peculiar siliceous spicules (desmas) that characteristically form rigid articulated skeletons. Their phylogenetic relationships are to a large extent unresolved and there has been no (taxonomically) comprehensive analysis to formally reallocate lithistid taxa to their closest relatives. This study, based on the most comprehensive molecular and morphological investigation of ‘lithistid’ demosponges to date, corroborates some previous weakly-supported hypotheses, and provides novel insights into the evolutionary relationships of the previous ‘order Lithistida’. Based on molecular data (partial mtDNA CO1 and 28S rDNA sequences), we show that 8 out of 13 ‘Lithistida’ families belong to the order Astrophorida, whereas Scleritodermidae and Siphonidiidae form a separate monophyletic clade within Tetractinellida. Most lithistid astrophorids are dispersed between different clades of the Astrophorida and we propose to formally reallocate them, respectively. Corallistidae, Theonellidae and Phymatellidae are monophyletic, whereas the families Pleromidae and Scleritodermidae are polyphyletic. Family Desmanthidae is polyphyletic and groups within Halichondriidae – we formally propose a reallocation. The sister group relationship of the family Vetulinidae to Spongillida is confirmed and we propose here for the first time to include Vetulina into a new Order Sphaerocladina. Megascleres and microscleres possibly evolved and/or were lost several times independently in different

  1. Light and Redox Switchable Molecular Components for Molecular Electronics

    NARCIS (Netherlands)

    Browne, Wesley R.; Feringa, Bernard

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen

  2. Morphological and Molecular Evolution of Flesh Flies of Sarcophaginae (Diptera: Sarcophagidae)

    DEFF Research Database (Denmark)

    Buenaventura Ruiz, Ingrid Eliana

    ))). Peckiamyia was sister to Retrocitomyia,and Titanogrypa was sister to Villegasia, which together with Engelimyia formed a lineageemerging in a basal divergence with regard to the clade with no median stylus. Alternativehomology interpretations of the median stylus were also studied and tested......, this will help to understand male genitalia evolution and the use of these8structures as a source of phylogenetic information, but it could also provide a contribution to ourgeneral understanding on insect morphological evolution....

  3. Rapid assessment breast clinics--evolution through audit.

    Science.gov (United States)

    Toomey, D P; Cahill, R A; Birido, N; Jeffers, M; Loftus, B; McInerney, D; Rothwell, J; Geraghty, J G

    2006-11-01

    This observational, cohort study aimed to examine the potential utility of Rapid Assessment Breast Clinics (RABC) beyond cancer detection at presentation. One thousand four hundred and twenty nine women were studied over an 18 month period. 154 (10.7%) had breast cancer - 87.7% of whom were seen expediently with 92.9% being diagnosed at one attendance. One hundred and forty three (10%) of those with a benign diagnosis were found by routine questioning to have significant familial risk separate to their reason for referral. Despite careful triage, considerable contamination of appointment allotment occurred with many who were correctly triaged as non-urgent being seen 'urgently'. One hundred and seventy six attendees (12.3%) had neither the symptom that triggered referral, nor breast lump, nipple discharge nor family history of breast cancer, while 283 (19.8%) had no objective clinical or radiological abnormality. Although RABC reliably categorise malignant versus non-malignant diagnoses despite cluttering by low risk women, a significant proportion of non-cancer patients still require address of future risk rather than reassurance of their present status alone.

  4. On the Evolution of the Mammalian Brain.

    Science.gov (United States)

    Torday, John S; Miller, William B

    2016-01-01

    Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Hobson et al., 2014). This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation). This circumvents the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment, that is felt by many to correspond to evolution per se. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday, 2015a), perhaps being the functional homolog for brain heat dissipation and conscious/mindful information processing. The skin and brain similarly share molecular homologies through the "skin-brain" hypothesis, giving insight to the cellular-molecular "arc" of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the predictive capabilities of the brain and self-organizational processes.

  5. Molecular anthropology in the genomic era.

    Science.gov (United States)

    Destro-Bisol, Giovanni; Jobling, Mark A; Rocha, Jorge; Novembre, John; Richards, Martin B; Mulligan, Connie; Batini, Chiara; Manni, Franz

    2010-01-01

    Molecular Anthropology is a relatively young field of research. In fact, less than 50 years have passed since the symposium "Classification and Human Evolution" (1962, Burg Wartenstein, Austria), where the term was formally introduced by Emil Zuckerkandl. In this time, Molecular Anthropology has developed both methodologically and theoretically and extended its applications, so covering key aspects of human evolution such as the reconstruction of the history of human populations and peopling processes, the characterization of DNA in extinct humans and the role of adaptive processes in shaping the genetic diversity of our species. In the current scientific panorama, molecular anthropologists have to face a double challenge. As members of the anthropological community, we are strongly committed to the integration of biological findings and other lines of evidence (e.g. linguistic and archaeological), while keeping in line with methodological innovations which are moving the approach from the genetic to the genomic level. In this framework, the meeting "DNA Polymorphisms in Human Populations: Molecular Anthropology in the Genomic Era" (Rome, December 3-5, 2009) offered an opportunity for discussion among scholars from different disciplines, while paying attention to the impact of recent methodological innovations. Here we present an overview of the meeting and discuss perspectives and prospects of Molecular Anthropology in the genomic era.

  6. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection.

    Science.gov (United States)

    Barreda-García, Susana; Miranda-Castro, Rebeca; de-Los-Santos-Álvarez, Noemí; Miranda-Ordieres, Arturo J; Lobo-Castañón, María Jesús

    2018-01-01

    Highly sensitive testing of nucleic acids is essential to improve the detection of pathogens, which pose a major threat for public health worldwide. Currently available molecular assays, mainly based on PCR, have a limited utility in point-of-need control or resource-limited settings. Consequently, there is a strong interest in developing cost-effective, robust, and portable platforms for early detection of these harmful microorganisms. Since its description in 2004, isothermal helicase-dependent amplification (HDA) has been successfully applied in the development of novel molecular-based technologies for rapid, sensitive, and selective detection of viruses and bacteria. In this review, we highlight relevant analytical systems using this simple nucleic acid amplification methodology that takes place at a constant temperature and that is readily compatible with microfluidic technologies. Different strategies for monitoring HDA amplification products are described. In addition, we present technological advances for integrating sample preparation, HDA amplification, and detection. Future perspectives and challenges toward point-of-need use not only for clinical diagnosis but also in food safety testing and environmental monitoring are also discussed. Graphical Abstract Expanding the analytical toolbox for the detection of DNA sequences specific of pathogens with isothermal helicase dependent amplification (HDA).

  7. Hosting Early Evolution in Heated Pores of Rock

    Science.gov (United States)

    Mast, C. B.; Möller, F.; Lanzmich, S.; Keil, L.; Braun, D.

    2017-07-01

    Recent experiments with non-equilibrium micro­systems suggest that porous rock conditions drive early molecular evolution in many ways, including accumulation, polymerization, replication, length selection and gelation.

  8. The Contribution of Genetic Recombination to CRISPR Array Evolution.

    Science.gov (United States)

    Kupczok, Anne; Landan, Giddy; Dagan, Tal

    2015-06-16

    loss rather than recombination. Since the evolution of spacer content is characterized by a rapid turnover, it is likely that recombination is not beneficial for improving phage resistance in the strains under study, or that it cannot be detected in the resolution of intraspecies comparisons. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. The new galaxy evolution paradigm revealed by the Herschel surveys

    Science.gov (United States)

    Eales, Stephen; Smith, Dan; Bourne, Nathan; Loveday, Jon; Rowlands, Kate; van der Werf, Paul; Driver, Simon; Dunne, Loretta; Dye, Simon; Furlanetto, Cristina; Ivison, R. J.; Maddox, Steve; Robotham, Aaron; Smith, Matthew W. L.; Taylor, Edward N.; Valiante, Elisabetta; Wright, Angus; Cigan, Philip; De Zotti, Gianfranco; Jarvis, Matt J.; Marchetti, Lucia; Michałowski, Michał J.; Phillipps, Steven; Viaene, Sebastien; Vlahakis, Catherine

    2018-01-01

    The Herschel Space Observatory has revealed a very different galaxyscape from that shown by optical surveys which presents a challenge for galaxy-evolution models. The Herschel surveys reveal (1) that there was rapid galaxy evolution in the very recent past and (2) that galaxies lie on a single Galaxy Sequence (GS) rather than a star-forming 'main sequence' and a separate region of 'passive' or 'red-and-dead' galaxies. The form of the GS is now clearer because far-infrared surveys such as the Herschel ATLAS pick up a population of optically red star-forming galaxies that would have been classified as passive using most optical criteria. The space-density of this population is at least as high as the traditional star-forming population. By stacking spectra of H-ATLAS galaxies over the redshift range 0.001 high stellar masses, high star-formation rates but, even several billion years in the past, old stellar populations - they are thus likely to be relatively recent ancestors of early-type galaxies in the Universe today. The form of the GS is inconsistent with rapid quenching models and neither the analytic bathtub model nor the hydrodynamical EAGLE simulation can reproduce the rapid cosmic evolution. We propose a new gentler model of galaxy evolution that can explain the new Herschel results and other key properties of the galaxy population.

  10. Automatic Knowledge Base Evolution by Learning Instances

    OpenAIRE

    Kim, Sundong

    2016-01-01

    Knowledge base is the way to store structured and unstructured data throughout the web. Since the size of the web is increasing rapidly, there are huge needs to structure the knowledge in a fully automated way. However fully-automated knowledge-base evolution on the Semantic Web is a major challenges, although there are many ontology evolution techniques available. Therefore learning ontology automatically can contribute to the semantic web society significantly. In this paper, we propose ful...

  11. Molecular Evolution and Expression Divergence of HMT Gene Family in Plants

    Directory of Open Access Journals (Sweden)

    Man Zhao

    2018-04-01

    Full Text Available Homocysteine methyltransferase (HMT converts homocysteine to methionine using S-methylmethionine (SMM or S-adenosylmethionine (SAM as methyl donors in organisms, playing an important role in supplying methionine for the growth and the development of plants. To better understand the functions of the HMT genes in plants, we conducted a wide evolution and expression analysis of these genes. Reconstruction of the phylogenetic relationship showed that the HMT gene family was divided into Class 1 and Class 2. In Class 1, HMTs were only found in seed plants, while Class 2 presented in all land plants, which hinted that the HMT genes might have diverged in seed plants. The analysis of gene structures and selection pressures showed that they were relatively conserved during evolution. However, type I functional divergence had been detected in the HMTs. Furthermore, the expression profiles of HMTs showed their distinct expression patterns in different tissues, in which some HMTs were widely expressed in various organs, whereas the others were highly expressed in some specific organs, such as seeds or leaves. Therefore, according to our results in the evolution, functional divergence, and expression, the HMT genes might have diverged during evolution. Further analysis in the expression patterns of AthHMTs with their methyl donors suggested that the diverged HMTs might be related to supply methionine for the development of plant seeds.

  12. Multidrug-resistant tuberculosis: Rapid molecular detection with MTBDRplus® assay in clinical samples

    Directory of Open Access Journals (Sweden)

    Rita Macedo

    2009-05-01

    Full Text Available Nowadays, the greatest concern of tuberculosis control programmes is the appearance of multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Rapid determination of drug resistance in clinical samples, with Mycobacterium tuberculosis complex (MTC, is the prerequisite for initiating effective chemotherapy, ensuring successful treatment of the patient and preventing further spread of drugresistant isolates.The aim of our study was to determine the sensitivity of the new MTBDRplus® assay in comparison to culture, identification and classic DST, directly from smear-positive clinical specimens.A total of 68 smear-positive sputum specimens were processed by both the classical mycobacteriological methods and the molecular assay, MTBDRplus®.MTBDRplus® assay allowed an accurate identification of MTC species by detection of the specific band in all samples, from which we also isolated and identified MTC strains by culture methods. In the samples from which we isolated susceptible strains (63.2%, wild type patterns were found using MTBDRplus® assay. The samples from which we isolated resistant strains (36.8% showed specific mutations associated with the correspondent resistant phenotype.Our study indicated that this assay allows rapid detection of resistance, always in agreement with classic methods. Resumo: Uma das principais problematicas no controlo da tuberculose e o aparecimento de casos de tuberculose multirresistente (TB-MR e tuberculose extensivamente resistente (TB-XDR. A deteccao precoce da resistencia a farmacos, directamente a partir de amostras respiratorias, e essencial para que se assegure o tratamento atempado, adequado e eficaz da tuberculose, bem como para prevenir a disseminacao destes casos de especial gravidade.O nosso objectivo foi avaliar a sensibilidade e comparar os resultados obtidos com um metodo de genetica molecular disponivel comercialmente – MTBDRplus® – e o isolamento

  13. Molecular biology of Mycoplasma

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Jensen, Lise T.; Boesen, Thomas

    1997-01-01

    Mycoplasmas are the smallest free living microorganisms with the smallest genome. The G+C content is in general low (25-33%) and the coding capacity is about 600 proteins. Mycoplasma species are phylogenetically related, they use the genetic codon UGA for tryptophan, and show rapid evolution, wit...

  14. Towards an alternative evolution model.

    Science.gov (United States)

    van Waesberghe, H

    1982-01-01

    Lamarck and Darwin agreed on the inconstancy of species and on the exclusive gradualism of evolution (nature does not jump). Darwinism, revived as neo-Darwinism, was almost generally accepted from about 1930 till 1960. In the sixties the evolutionary importance of selection has been called in question by the neutralists. The traditional conception of the gene is disarranged by recent molecular-biological findings. Owing to the increasing confusion about the concept of genotype, this concept is reconsidered. The idea of the genotype as a cluster of genes is replaced by a cybernetical interpretation of the genotype. As nature does jump, exclusive gradualism is dismissed. Saltatory evolution is a natural phenomenon, provided by a sudden collapse of the thresholds which resist against evolution. The fossil record and the taxonomic system call for a macromutational interpretation. As Lamarck and Darwin overlooked the resistance of evolutionary thresholds, an alternative evolution model is needed, the first to be constructed on a palaeontological and taxonomic basis.

  15. Molecular evolution of the crustacean hyperglycemic hormone family in ecdysozoans

    Directory of Open Access Journals (Sweden)

    Soyez Daniel

    2010-02-01

    Full Text Available Abstract Background Crustacean Hyperglycemic Hormone (CHH family peptides are neurohormones known to regulate several important functions in decapod crustaceans such as ionic and energetic metabolism, molting and reproduction. The structural conservation of these peptides, together with the variety of functions they display, led us to investigate their evolutionary history. CHH family peptides exist in insects (Ion Transport Peptides and may be present in all ecdysozoans as well. In order to extend the evolutionary study to the entire family, CHH family peptides were thus searched in taxa outside decapods, where they have been, to date, poorly investigated. Results CHH family peptides were characterized by molecular cloning in a branchiopod crustacean, Daphnia magna, and in a collembolan, Folsomia candida. Genes encoding such peptides were also rebuilt in silico from genomic sequences of another branchiopod, a chelicerate and two nematodes. These sequences were included in updated datasets to build phylogenies of the CHH family in pancrustaceans. These phylogenies suggest that peptides found in Branchiopoda and Collembola are more closely related to insect ITPs than to crustacean CHHs. Datasets were also used to support a phylogenetic hypothesis about pancrustacean relationships, which, in addition to gene structures, allowed us to propose two evolutionary scenarios of this multigenic family in ecdysozoans. Conclusions Evolutionary scenarios suggest that CHH family genes of ecdysozoans originate from an ancestral two-exon gene, and genes of arthropods from a three-exon one. In malacostracans, the evolution of the CHH family has involved several duplication, insertion or deletion events, leading to neuropeptides with a wide variety of functions, as observed in decapods. This family could thus constitute a promising model to investigate the links between gene duplications and functional divergence.

  16. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals.

    Science.gov (United States)

    Sunagar, Kartik; Moran, Yehu

    2015-10-01

    Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes). By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a 'two-speed' mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion) in the evolutionary history of the species-the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia-the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections in shaping animal

  17. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals.

    Directory of Open Access Journals (Sweden)

    Kartik Sunagar

    2015-10-01

    Full Text Available Animal venoms are theorized to evolve under the significant influence of positive Darwinian selection in a chemical arms race scenario, where the evolution of venom resistance in prey and the invention of potent venom in the secreting animal exert reciprocal selection pressures. Venom research to date has mainly focused on evolutionarily younger lineages, such as snakes and cone snails, while mostly neglecting ancient clades (e.g., cnidarians, coleoids, spiders and centipedes. By examining genome, venom-gland transcriptome and sequences from the public repositories, we report the molecular evolutionary regimes of several centipede and spider toxin families, which surprisingly accumulated low-levels of sequence variations, despite their long evolutionary histories. Molecular evolutionary assessment of over 3500 nucleotide sequences from 85 toxin families spanning the breadth of the animal kingdom has unraveled a contrasting evolutionary strategy employed by ancient and evolutionarily young clades. We show that the venoms of ancient lineages remarkably evolve under the heavy constraints of negative selection, while toxin families in lineages that originated relatively recently rapidly diversify under the influence of positive selection. We propose that animal venoms mostly employ a 'two-speed' mode of evolution, where the major influence of diversifying selection accompanies the earlier stages of ecological specialization (e.g., diet and range expansion in the evolutionary history of the species-the period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the potent toxin pharmacopeia-the period of purification and fixation. However, species in the period of purification may re-enter the period of expansion upon experiencing a major shift in ecology or environment. Thus, we highlight for the first time the significant roles of purifying and episodic selections

  18. Phase evolution and infrared transmittance in monophasic VO{sub 2} synthesized by a rapid non-equilibrium process

    Energy Technology Data Exchange (ETDEWEB)

    Rajeswaran, Bharathi, E-mail: rajeswaran.bharathi@gmail.com; Umarji, A.M.

    2017-04-01

    VO{sub 2} displays a semiconducting to metallic (SMT) transition accessible near room temperature. This makes it one of the most sought after materials for electrical and optical switching. But this can be utilized only when the synthesis process yields phase pure VO{sub 2} without other oxides of vanadium. Across the SMT, VO{sub 2} exhibits difference crystal structures with a rich phase behavior of insulating monoclinic M1, M2 and T phases. The objective of this study is to synthesize phase pure VO{sub 2} and to investigate its structural evolution and infrared switching during the transition. In this work, a rapid non-equilibrium process namely Solution Combustion Synthesis (SCS) was employed. The structural phase transition (SPT) of VO{sub 2} nanostructures synthesized by SCS was investigated by in-situ temperature controlled XRD across the SMT. Gaussian curve fittings for measured XRD patterns revealed that competing phases of M1 and R significantly contribute to the observed pattern at every increase in temperature. The powders were further characterized by FTIR, DSC and DC electrical conductivity. These studies show that a sharp SMT was observed at 68–70 °C. Infrared transmittance experiments pinpointed the transition. Carrier density and mobility of VO{sub 2} were calculated. This suggests that this VO{sub 2} thus synthesized displays excellent phase transition behavior and can be utilized in optical and electrical switching. - Highlights: • VO{sub 2} has been synthesized by an easy, rapid, cost-effective, two-step, novel reaction. • High temperature XRD and DSC showed first order phase transition. • IR transmittance showed a decrease in transmittance at high temperatures enabling it to be used for IR sensing.

  19. Hydrogen evolution by a metal-free electrocatalyst

    KAUST Repository

    Zheng, Yao; Jiao, Yan; Zhu, Yihan; Li, Luhua; Han, Yu; Chen, Ying; Du, Aijun; Jaronieć, Mietek; Qiao, Shizhang

    2014-01-01

    Electrocatalytic reduction of water to molecular hydrogen via the hydrogen evolution reaction may provide a sustainable energy supply for the future, but its commercial application is hampered by the use of precious platinum catalysts. All

  20. Ribosome evolution: Emergence of peptide synthesis machinery

    Indian Academy of Sciences (India)

    suggested the dynamic movement of ribosomal proteins. The L2 protein (a .... Such kinds of interactions are important in elucidating the evolution of RNA .... Tamura K 2009 Molecular handedness of life: significance of RNA aminoacylation.

  1. Rapidity distributions of hadrons in the HydHSD hybrid model

    Energy Technology Data Exchange (ETDEWEB)

    Khvorostukhin, A. S., E-mail: hvorost@theor.jinr.ru; Toneev, V. D. [Joint Institute for Nuclear Research (Russian Federation)

    2017-03-15

    A multistage hybrid model intended for describing heavy-ion interactions in the energy region of the NICA collider under construction in Dubna is proposed. The model combines the initial, fast, interaction stage described by the model of hadron string dynamics (HSD) and the subsequent evolution that the expanding system formed at the first stage experiences at the second stage and which one treats on the basis of ideal hydrodynamics; after the completion of the second stage, the particles involved may still undergo rescattering (third interaction stage). The model admits three freeze-out scenarios: isochronous, isothermal, and isoenergetic. Generally, the HydHSD hybrid model developed in the present study provides fairly good agreement with available experimental data on proton rapidity spectra. It is shown that, within this hybrid model, the two-humped structure of proton rapidity distributions can be obtained either by increasing the freeze-out temperature and energy density or by more lately going over to the hydrodynamic stage. Although the proposed hybrid model reproduces rapidity spectra of protons, it is unable to describe rapidity distributions of pions, systematically underestimating their yield. It is necessary to refine the model by including viscosity effects at the hydrodynamic stage of evolution of the system and by considering in more detail the third interaction stage.

  2. Heme pathway evolution in kinetoplastid protists

    Czech Academy of Sciences Publication Activity Database

    Cenci, U.; Moog, D.; Curtis, B.A.; Tanifuji, G.; Eme, L.; Lukeš, Julius; Archibald, J.M.

    2016-01-01

    Roč. 16, MAY 18 (2016), č. článku 109. ISSN 1471-2148 Institutional support: RVO:60077344 Keywords : heme * kinetoplastea * Paramoeba pemaquidensis * Perkinsela * evolution * endosymbiosis * Prokinetoplastina * lateral gene transfer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.221, year: 2016

  3. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  4. Optical veiling, disk accretion, and the evolution of T Tauri stars

    International Nuclear Information System (INIS)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar mass is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs

  5. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  6. A novel C-type lysozyme from Mytilus galloprovincialis: insight into innate immunity and molecular evolution of invertebrate C-type lysozymes.

    Directory of Open Access Journals (Sweden)

    Qing Wang

    Full Text Available A c-type lysozyme (named as MgCLYZ gene was cloned from the mussel Mytilus galloprovincialis. Blast analysis indicated that MgCLYZ was a salivary c-type lysozyme which was mainly found in insects. The nucleotide sequence of MgCLYZ was predicted to encode a polypeptide of 154 amino acid residues with the signal peptide comprising the first 24 residues. The deduced mature peptide of MgCLYZ was of a calculated molecular weight of 14.4 kD and a theoretical isoelectric point (pI of 8.08. Evolution analysis suggested that bivalve branch of the invertebrate c-type lysozymes phylogeny tree underwent positive selection during evolution. By quantitative real-time RT-PCR (qRT-PCR analysis, MgCLYZ transcript was widely detected in all examined tissues and responded sensitively to bacterial challenge in hemocytes and hepatopancreas. The optimal temperature and pH of recombinant MgCLYZ (rMgCLYZ were 20°C and 4, respectively. The rMgCLYZ displayed lytic activities against Gram-positive bacteria including Micrococcus luteus and Staphyloccocus aureus, and Gram-negative bacteria including Vibrio anguillarum, Enterobacter cloacae, Pseudomonas putida, Proteus mirabilis and Bacillus aquimaris. These results suggest that MgCLYZ perhaps play an important role in innate immunity of M. galloprovincialis, and invertebrate c-type lysozymes might be under positive selection in a species-specific manner during evolution for undergoing adaptation to different environment and diverse pathogens.

  7. PROTOPLANETARY DISK STRUCTURE WITH GRAIN EVOLUTION: THE ANDES MODEL

    International Nuclear Information System (INIS)

    Akimkin, V.; Wiebe, D.; Pavlyuchenkov, Ya.; Zhukovska, S.; Semenov, D.; Henning, Th.; Vasyunin, A.; Birnstiel, T.

    2013-01-01

    We present a self-consistent model of a protoplanetary disk: 'ANDES' ('AccretioN disk with Dust Evolution and Sedimentation'). ANDES is based on a flexible and extendable modular structure that includes (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. For the first time, grain evolution and time-dependent molecular chemistry are included in a protoplanetary disk model. We find that grain growth and sedimentation of large grains onto the disk midplane lead to a dust-depleted atmosphere. Consequently, dust and gas temperatures become higher in the inner disk (R ∼ 50 AU), in comparison with the disk model with pristine dust. The response of disk chemical structure to the dust growth and sedimentation is twofold. First, due to higher transparency a partly UV-shielded molecular layer is shifted closer to the dense midplane. Second, the presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO there, while in adjacent upper layers the depletion is still effective. Molecular concentrations and thus column densities of many species are enhanced in the disk model with dust evolution, e.g., CO 2 , NH 2 CN, HNO, H 2 O, HCOOH, HCN, and CO. We also show that time-dependent chemistry is important for a proper description of gas thermal balance.

  8. Molecular biodiversity of Red Sea demosponges

    International Nuclear Information System (INIS)

    Erpenbeck, Dirk; Voigt, Oliver; Al-Aidaroos, Ali M.; Berumen, Michael L.; Büttner, Gabriele; Catania, Daniela; Guirguis, Adel Naguib; Paulay, Gustav; Schätzle, Simone

    2016-01-01

    Sponges are important constituents of coral reef ecosystems, including those around the Arabian Peninsula. Despite their importance, our knowledge on demosponge diversity in this area is insufficient to recognize, for example, faunal changes caused by anthropogenic disturbances. We here report the first assessment of demosponge molecular biodiversity from Arabia, with focus on the Saudi Arabian Red Sea, based on mitochondrial and nuclear ribosomal molecular markers gathered in the framework of the Sponge Barcoding Project. We use a rapid molecular screening approach on Arabian demosponge collections and analyze results in comparison against published material in terms of biodiversity. We use a variable region of 28S rDNA, applied for the first time in the assessment of demosponge molecular diversity. Our data constitutes a solid foundation for a future more comprehensive understanding of sponge biodiversity of the Red Sea and adjacent waters. - Highlights: •First assessment of demosponge molecular biodiversity from Arabia •Rapid molecular screening approach on Arabian demosponge collections •Assessment of 28S 'C-Region' for demosponge barcoding •Data for a future comprehensive understanding of sponge biodiversity of the Red Sea

  9. Light and redox switchable molecular components for molecular electronics.

    Science.gov (United States)

    Browne, Wesley R; Feringa, Ben L

    2010-01-01

    The field of molecular and organic electronics has seen rapid progress in recent years, developing from concept and design to actual demonstration devices in which both single molecules and self-assembled monolayers are employed as light-responsive components. Research in this field has seen numerous unexpected challenges that have slowed progress and the initial promise of complex molecular-based computers has not yet been realised. Primarily this has been due to the realisation at an early stage that molecular-based nano-electronics brings with it the interface between the hard (semiconductor) and soft (molecular) worlds and the challenges which accompany working in such an environment. Issues such as addressability, cross-talk, molecular stability and perturbation of molecular properties (e.g., inhibition of photochemistry) have nevertheless driven development in molecular design and synthesis as well as our ability to interface molecular components with bulk metal contacts to a very high level of sophistication. Numerous groups have played key roles in progressing this field not least teams such as those led by Whitesides, Aviram, Ratner, Stoddart and Heath. In this short review we will however focus on the contributions from our own group and those of our collaborators, in employing diarylethene based molecular components.

  10. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress.

    Science.gov (United States)

    Komaki, Shinichiro; Schnittger, Arp

    2017-10-23

    The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Sublethal Ciprofloxacin Treatment Leads to Rapid Development of High-Level Ciprofloxacin Resistance during Long-Term Experimental Evolution of Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jørgensen, Karin Meinike; Wassermann, Tina; Jensen, Peter Østrup

    2013-01-01

    that mutants with high-level ciprofloxacin resistance are selected in P. aeruginosa bacterial populations exposed to sub-MICs of ciprofloxacin. This can have implications for the long-term persistence of resistant bacteria and spread of antibiotic resistance by exposure of commensal bacterial flora to low......The dynamics of occurrence and the genetic basis of ciprofloxacin resistance were studied in a long-term evolution experiment (940 generations) in wild-type, reference strain (PAO1) and hypermutable (PAOΔmutS and PAOMY-Mgm) P. aeruginosa populations continuously exposed to sub-MICs (1....../4) of ciprofloxacin. A rapid occurrence of ciprofloxacin-resistant mutants (MIC of ≥12 μg/ml, representing 100 times the MIC of the original population) were observed in all ciprofloxacin-exposed lineages of PAOΔmutS and PAOMY-Mgm populations after 100 and 170 generations, respectively, and in one of the PAO1...

  12. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns

    Science.gov (United States)

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E.

    2016-01-01

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this ‘ancient’ fern lineage across the tropics. PMID:27412279

  13. Rates of ecological divergence and body size evolution are correlated with species diversification in scaly tree ferns.

    Science.gov (United States)

    Ramírez-Barahona, Santiago; Barrera-Redondo, Josué; Eguiarte, Luis E

    2016-07-13

    Variation in species richness across regions and between different groups of organisms is a major feature of evolution. Several factors have been proposed to explain these differences, including heterogeneity in the rates of species diversification and the age of clades. It has been frequently assumed that rapid rates of diversification are coupled to high rates of ecological and morphological evolution, leading to a prediction that remains poorly explored for most species: the positive association between ecological niche divergence, morphological evolution and species diversification. We combined a time-calibrated phylogeny with distribution, ecological and body size data for scaly tree ferns (Cyatheaceae) to test whether rates of species diversification are predicted by the rates at which clades have evolved distinct ecological niches and body sizes. We found that rates of species diversification are positively correlated with rates of ecological and morphological evolution, with rapidly diversifying clades also showing rapidly evolving ecological niches and body sizes. Our results show that rapid diversification of scaly tree ferns is associated with the evolution of species with comparable morphologies that diversified into similar, yet distinct, environments. This suggests parallel evolutionary pathways opening in different tropical regions whenever ecological and geographical opportunities arise. Accordingly, rates of ecological niche and body size evolution are relevant to explain the current patterns of species richness in this 'ancient' fern lineage across the tropics. © 2016 The Author(s).

  14. Evolution of Gas Across Spiral Arms in the Whirlpool Galaxy

    Science.gov (United States)

    Louie, Melissa Nicole

    To investigate the dynamic evolution of gas across spiral arms, we conducted a detailed study of the gas and star formation along the spiral arms in the Whirlpool Galaxy, M51. This nearby, face-on spiral galaxy provides a unique laboratory to study the relationship between gas dynamics and star formation. The textbook picture of interstellar medium (ISM) evolution is rapidly changing. Molecular gas was once believed to form along spiral arms from the diffuse atomic gas in the inter-arm regions. Star formation occurs within giant molecular clouds during spiral arm passage. Lastly, the molecular gas is photo-dissociated back into atomic gas by massive stars on the downstream side of the spiral arm. Recent evidence, however, is revealing a new picture of the interstellar medium and the process of star formation. We seek development of a new picture by studying the development and evolution of molecular gas and the role of large scale galactic dynamics in organizing the interstellar medium. This thesis begins by presenting work measuring the geometrical offsets between interstellar gas and recent star formation. Interstellar gas is traced by atomic hydrogen and carbon monoxide (CO). Star formation is traced by ionized hydrogen recombination lines and infrared emission from dust warmed by young bright stars. Measuring these offsets can help determine the underlying large scale galactic dynamics. Along the spiral arms in M51, offsets between CO and the star formation tracers suggest that gas is flowing through the spiral arms, but the offsets do not show the expected signature of a single pattern speed and imply a more complicated pattern. This thesis also examines the intermediate stages of gas evolution, by studying a denser component of the ISM closer to which stars will form. Only a small percent of the bulk molecular gas will become dense enough to form stars. HCN and HCO+ probe densities ˜104 cm-3, where as the bulk gas is 500 cm-3. This thesis looks at HCN and

  15. Early evolution without a tree of life.

    Science.gov (United States)

    Martin, William F

    2011-06-30

    Life is a chemical reaction. Three major transitions in early evolution are considered without recourse to a tree of life. The origin of prokaryotes required a steady supply of energy and electrons, probably in the form of molecular hydrogen stemming from serpentinization. Microbial genome evolution is not a treelike process because of lateral gene transfer and the endosymbiotic origins of organelles. The lack of true intermediates in the prokaryote-to-eukaryote transition has a bioenergetic cause.

  16. Molecular evolution of a-kinase anchoring protein (AKAP-7: implications in comparative PKA compartmentalization

    Directory of Open Access Journals (Sweden)

    Johnson Keven R

    2012-07-01

    Full Text Available Abstract Background A-Kinase Anchoring Proteins (AKAPs are molecular scaffolding proteins mediating the assembly of multi-protein complexes containing cAMP-dependent protein kinase A (PKA, directing the kinase in discrete subcellular locations. Splice variants from the AKAP7 gene (AKAP15/18 are vital components of neuronal and cardiac phosphatase complexes, ion channels, cardiac Ca2+ handling and renal water transport. Results Shown in evolutionary analyses, the formation of the AKAP7-RI/RII binding domain (required for AKAP/PKA-R interaction corresponds to vertebrate-specific gene duplication events in the PKA-RI/RII subunits. Species analyses of AKAP7 splice variants shows the ancestral AKAP7 splice variant is AKAP7α, while the ancestral long form AKAP7 splice variant is AKAP7γ. Multi-species AKAP7 gene alignments, show the recent formation of AKAP7δ occurs with the loss of native AKAP7γ in rats and basal primates. AKAP7 gene alignments and two dimensional Western analyses indicate that AKAP7γ is produced from an internal translation-start site that is present in the AKAP7δ cDNA of mice and humans but absent in rats. Immunofluorescence analysis of AKAP7 protein localization in both rat and mouse heart suggests AKAP7γ replaces AKAP7δ at the cardiac sarcoplasmic reticulum in species other than rat. DNA sequencing identified Human AKAP7δ insertion-deletions (indels that promote the production of AKAP7γ instead of AKAP7δ. Conclusions This AKAP7 molecular evolution study shows that these vital scaffolding proteins developed in ancestral vertebrates and that independent mutations in the AKAP7 genes of rodents and early primates has resulted in the recent formation of AKAP7δ, a splice variant of likely lesser importance in humans than currently described.

  17. Cell evolution and Earth history: stasis and revolution.

    Science.gov (United States)

    Cavalier-Smith, Thomas

    2006-06-29

    oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.

  18. Carbon Isotope Chemistry in Molecular Clouds

    Science.gov (United States)

    Robertson, Amy N.; Willacy, Karen

    2012-01-01

    Few details of carbon isotope chemistry are known, especially the chemical processes that occur in astronomical environments like molecular clouds. Observational evidence shows that the C-12/C-13 abundance ratios vary due to the location of the C-13 atom within the molecular structure. The different abundances are a result of the diverse formation pathways that can occur. Modeling can be used to explore the production pathways of carbon molecules in an effort to understand and explain the chemical evolution of molecular clouds.

  19. Evolution of magnetic islands in tokamaks

    International Nuclear Information System (INIS)

    Dubois, M.; Samain, A.

    1980-01-01

    The evolution of magnetic islands is studied by a variational method on the assumption that it consists of a sequence of equilibria. The characteristic time of the evolution is then a resistive time. The sequence may, however, reach a configuration where the angle of the flux lines at the X-point vanishes. This behaviour is plausible in the case of q=1 islands, in contrast to the case of q>1. The subsequent evolution must assign a certain role to inertia. It is shown that this role cannot consist of a rapid displacement of the separatrix preserving its topology, but must be due to the onset of small-grain kinetic and magnetic turbulence extending from the separatrix in a large domain. (author)

  20. DYNAMICALLY DRIVEN EVOLUTION OF THE INTERSTELLAR MEDIUM IN M51

    International Nuclear Information System (INIS)

    Koda, Jin; Scoville, Nick; Potts, Ashley E.; Carpenter, John M.; Corder, Stuartt A.; Patience, Jenny; Sargent, Anneila I.; Sawada, Tsuyoshi; La Vigne, Misty A.; Vogel, Stuart N.; White, Stephen M.; Zauderer, B. Ashley; Pound, Marc W.; Wright, Melvyn C. H.; Plambeck, Richard L.; Bock, Douglas C. J.; Hawkins, David; Hodges, Mark; Lamb, James W.; Kemball, Athol

    2009-01-01

    Massive star formation occurs in giant molecular clouds (GMCs); an understanding of the evolution of GMCs is a prerequisite to develop theories of star formation and galaxy evolution. We report the highest-fidelity observations of the grand-design spiral galaxy M51 in carbon monoxide (CO) emission, revealing the evolution of GMCs vis-a-vis the large-scale galactic structure and dynamics. The most massive GMCs (giant molecular associations (GMAs)) are first assembled and then broken up as the gas flow through the spiral arms. The GMAs and their H 2 molecules are not fully dissociated into atomic gas as predicted in stellar feedback scenarios, but are fragmented into smaller GMCs upon leaving the spiral arms. The remnants of GMAs are detected as the chains of GMCs that emerge from the spiral arms into interarm regions. The kinematic shear within the spiral arms is sufficient to unbind the GMAs against self-gravity. We conclude that the evolution of GMCs is driven by large-scale galactic dynamics-their coagulation into GMAs is due to spiral arm streaming motions upon entering the arms, followed by fragmentation due to shear as they leave the arms on the downstream side. In M51, the majority of the gas remains molecular from arm entry through the interarm region and into the next spiral arm passage.

  1. Nuclear magnetic resonance in solids: evolution of spin temperature under multipulse irradiation and high symmetry molecular motions

    International Nuclear Information System (INIS)

    Quiroga, Luis

    1982-01-01

    In a first part, autocorrelation functions are calculated taking into account the symmetry of molecular motions by group theoretical techniques. This very general calculation method is then used to evaluate the NMR spin-lattice relaxation times T 1 and T 1 p as a function of the relative orientations of the magnetic field, the crystal and the rotation axis, in particular for cyclic, dihedral and cubic groups. Models of molecular reorientations such as jumps between a finite number of allowed orientations, rotational diffusion and superimposed reorientations are all investigated with the same formalism. In part two, the effect of the coherent excitation of spins, by multipulse sequences of the WHH-4 type, on the evolution of the heat capacity and spin temperature of the dipolar reservoir is analysed. It is shown both theoretically and experimentally that adiabatic (reversible) reduction of the dipolar Hamiltonian and its spin temperature is obtained when the amplitude of pulses (rotation angle) is slowly raised. The sudden switching on and off of the HW-8 sequence is then shown to lead to the same reversible reduction in a shorter time. It is also shown that, by this way, sensibility and selectivity of double resonance measurements of weak gyromagnetic ratio nuclei are strongly increased. This is experimentally illustrated in some cases. (author) [fr

  2. Tempo and mode in human evolution.

    Science.gov (United States)

    McHenry, H M

    1994-01-01

    The quickening pace of paleontological discovery is matched by rapid developments in geochronology. These new data show that the pattern of morphological change in the hominid lineage was mosaic. Adaptations essential to bipedalism appeared early, but some locomotor features changed much later. Relative to the highly derived postcrania of the earliest hominids, the craniodental complex was quite primitive (i.e., like the reconstructed last common ancestor with the African great apes). The pattern of craniodental change among successively younger species of Hominidae implies extensive parallel evolution between at least two lineages in features related to mastication. Relative brain size increased slightly among successively younger species of Australopithecus, expanded significantly with the appearance of Homo, but within early Homo remained at about half the size of Homo sapiens for almost a million years. Many apparent trends in human evolution may actually be due to the accumulation of relatively rapid shifts in successive species. PMID:8041697

  3. Evolution of the carabid ground beetles.

    Science.gov (United States)

    Osawa, S; Su, Z H; Kim, C G; Okamoto, M; Tominaga, O; Imura, Y

    1999-01-01

    The phylogenetic relationships of the carabid ground beetles have been estimated by analysing a large part of the ND5 gene sequences of more than 1,000 specimens consisting of the representative species and geographic races covering most of the genera and subgenera known in the world. From the phylogenetic analyses in conjunction with the mtDNA-based dating, a scenario of the establishment of the present habitats of the respective Japanese carabids has been constructed. The carabid diversification took place ca. 40 MYA as an explosive radiation of the major genera. During evolution, occasional small or single bangs also took place, sometimes accompanied by parallel morphological evolution in phylogenetically remote as well as close lineages. The existence of silent periods, in which few morphological changes took place, has been recognized during evolution. Thus, the carabid evolution is discontinuous, alternatively having a phase of rapid morphological change and a silent phase.

  4. Evolution Of Nonlinear Waves in Compressing Plasma

    International Nuclear Information System (INIS)

    Schmit, P.F.; Dodin, I.Y.; Fisch, N.J.

    2011-01-01

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size Δ during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches Δ. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  5. Evolution Of Nonlinear Waves in Compressing Plasma

    Energy Technology Data Exchange (ETDEWEB)

    P.F. Schmit, I.Y. Dodin, and N.J. Fisch

    2011-05-27

    Through particle-in-cell simulations, the evolution of nonlinear plasma waves is examined in one-dimensional collisionless plasma undergoing mechanical compression. Unlike linear waves, whose wavelength decreases proportionally to the system length L(t), nonlinear waves, such as solitary electron holes, conserve their characteristic size {Delta} during slow compression. This leads to a substantially stronger adiabatic amplification as well as rapid collisionless damping when L approaches {Delta}. On the other hand, cessation of compression halts the wave evolution, yielding a stable mode.

  6. A rapid PCR-based approach for molecular identification of filamentous fungi.

    Science.gov (United States)

    Chen, Yuanyuan; Prior, Bernard A; Shi, Guiyang; Wang, Zhengxiang

    2011-08-01

    In this study, a novel rapid and efficient DNA extraction method based on alkaline lysis, which can deal with a large number of filamentous fungal isolates in the same batch, was established. The filamentous fungal genomic DNA required only 20 min to prepare and can be directly used as a template for PCR amplification. The amplified internal transcribed spacer regions were easy to identify by analysis. The extracted DNA also can be used to amplify other protein-coding genes for fungal identification. This method can be used for rapid systematic identification of filamentous fungal isolates.

  7. Application of next-generation sequencing for rapid marker development in molecular plant breeding: a case study on anthracnose disease resistance in Lupinus angustifolius L.

    Directory of Open Access Journals (Sweden)

    Yang Huaan

    2012-07-01

    Full Text Available Abstract Background In the last 30 years, a number of DNA fingerprinting methods such as RFLP, RAPD, AFLP, SSR, DArT, have been extensively used in marker development for molecular plant breeding. However, it remains a daunting task to identify highly polymorphic and closely linked molecular markers for a target trait for molecular marker-assisted selection. The next-generation sequencing (NGS technology is far more powerful than any existing generic DNA fingerprinting methods in generating DNA markers. In this study, we employed a grain legume crop Lupinus angustifolius (lupin as a test case, and examined the utility of an NGS-based method of RAD (restriction-site associated DNA sequencing as DNA fingerprinting for rapid, cost-effective marker development tagging a disease resistance gene for molecular breeding. Results Twenty informative plants from a cross of RxS (disease resistant x susceptible in lupin were subjected to RAD single-end sequencing by multiplex identifiers. The entire RAD sequencing products were resolved in two lanes of the 16-lanes per run sequencing platform Solexa HiSeq2000. A total of 185 million raw reads, approximately 17 Gb of sequencing data, were collected. Sequence comparison among the 20 test plants discovered 8207 SNP markers. Filtration of DNA sequencing data with marker identification parameters resulted in the discovery of 38 molecular markers linked to the disease resistance gene Lanr1. Five randomly selected markers were converted into cost-effective, simple PCR-based markers. Linkage analysis using marker genotyping data and disease resistance phenotyping data on a F8 population consisting of 186 individual plants confirmed that all these five markers were linked to the R gene. Two of these newly developed sequence-specific PCR markers, AnSeq3 and AnSeq4, flanked the target R gene at a genetic distance of 0.9 centiMorgan (cM, and are now replacing the markers previously developed by a traditional DNA

  8. Evolution of Life and SETI (Evo-SETI)

    Science.gov (United States)

    Maccone, Claudio

    forced by us to have their peak value located on the exponential mean-value curve of the GBM (this is the so-called “Peak-Locus Theorem”). In the framework of Darwinian Evolution, the resulting mathematical construction was shown to identify with Cladistics (refs. [2], [3], [4]). 4) The (Shannon) Entropy of such b-lognormals is then seen to represent the “degree of progress” reached by each living organism or by each big set of living organisms, like historic human civilizations. Having understood this fact, Human History may then be cast into the language of b-lognormals that are more and more organized in time (i.e. having smaller and smaller entropy, or smaller and smaller “chaos”), and have their peaks located on the increasing GBM exponential. This exponential is thus the “trend of progress” in Human History. 5) But our most striking new result is about the well-known “Molecular Clock of Evolution”, namely the “constant rate of Evolution at the molecular level” as shown by Kimura’s Neutral Theory of Molecular Evolution. We showed that that the Molecular Clock identifies with Entropy in our Evo-SETI model because they both grew linearly in time since the origin of life. 6) Furthermore, we applid our Evo-SETI model to lognormal stochastic processes other then the GBMs. For instance, we showed that the Markov-Korotayev (2007-2008, refs. [5], [6]) model for Darwinian Evolution identifies with an Evo-SETI model for which the mean value of the lognormal stochastic process is a cubic (third degree polynomial) function of the time. In conclusion: we have provided a vast mathematical model capable of embracing Molecular Evolution, SETI and Entropy into a simple set of statistical equations based upon b-lognormals pdfs and lognormal stochastic processes Keywords: Molecular Clock, Darwinian evolution, statistical Drake equation, lognormal probability densities, geometric Brownian motion, entropy. REFERENCES [1] Maccone, C. (2008), “The Statistical

  9. LGI1, CASPR2 and related antibodies: a molecular evolution of the phenotypes.

    Science.gov (United States)

    Binks, Sophie N M; Klein, Christopher J; Waters, Patrick; Pittock, Sean J; Irani, Sarosh R

    2018-05-01

    Recent biochemical observations have helped redefine antigenic components within the voltage-gated potassium channel (VGKC) complex. The related autoantibodies may be now divided into likely pathogenic entities, which target the extracellular domains of leucine-rich glioma-inactivated 1 (LGI1) and contactin-associated protein-like 2 (CASPR2), and species that target intracellular neuronal components and are likely non-pathogenic. This distinction has enhanced clinical practice as direct determination of LGI1 and CASPR2 antibodies offers optimal sensitivity and specificity. In this review, we describe and compare the clinical features associated with pathogenic LGI1 and CASPR2 antibodies, illustrate emerging laboratory techniques for antibody determination and describe the immunological mechanisms that may mediate antibody-induced pathology. We highlight marked clinical overlaps between patients with either LGI1 or CASPR2 antibodies that include frequent focal seizures, prominent amnesia, dysautonomia, neuromyotonia and neuropathic pain. Although occurring at differing rates, these commonalities are striking and only faciobrachial dystonic seizures reliably differentiate these two conditions. Furthermore, the coexistence of both LGI1 and CASPR2 antibodies in an individual occurs surprisingly frequently. Patients with either antibody respond well to immunotherapies, although systematic studies are required to determine the magnitude of the effect beyond placebo. Finally, data have suggested that CASPR2 and LGI1 modulation via genetic or autoimmune mechanisms may share common intermediate molecules. Taken together, the biochemical distinction of antigenic targets has led to important clinical advances for patient care. However, the striking syndrome similarities, coexistence of two otherwise rare antibodies and molecular insights suggest the VGKC complex may yet be a common functional effector of antibody action. Hence, we argue for a molecular evolution alongside a

  10. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  11. ROHHAD syndrome and evolution of sleep disordered breathing

    OpenAIRE

    Reppucci, Diana; Hamilton, Jill; Yeh, E Ann; Katz, Sherri; Al-Saleh, Suhail; Narang, Indra

    2016-01-01

    Background Rapid-onset obesity with hypothalamic dysfunction, hypoventilation and autonomic dysregulation (ROHHAD) is a rare disease with a high mortality rate. Although nocturnal hypoventilation (NH) is central to ROHHAD, the evolution of sleep disordered breathing (SDB) is not well studied. The aim of the study was to assess early manifestations of SDB and their evolution in ROHHAD syndrome. Methods Retrospective study of children with ROHHAD at two Canadian centers. All children with suspe...

  12. Microwave regeneration of molecular sieves

    International Nuclear Information System (INIS)

    Singh, V.P.

    1984-05-01

    Molecular sieve driers have been included in the design of tritium handling systems for fusion reactors. In these systems there is a need to maintain extremely low exit dew points from the driers as well as a capability to rapidly reduce tritium concentrations following an accident. The required capacity of the driers is very high. The conventional method of regenerating these sieves after a water adsorption cycle is with hot air. However, because water is rapidly heated by microwave energy, this technology may be suitable for decreasing the bed regeneration time and hence may allow reduced capital and operating costs associated with a smaller bed. The present study was conducted to obtain preliminary information on the technical feasibility of regenerating molecular sieves with microwave energy. The study concentrated on Type 4A molecular sieve with a few tests on Type 13X sieve and also a silica gel adsorbent

  13. Cluster evolution

    International Nuclear Information System (INIS)

    Schaeffer, R.

    1987-01-01

    The galaxy and cluster luminosity functions are constructed from a model of the mass distribution based on hierarchical clustering at an epoch where the matter distribution is non-linear. These luminosity functions are seen to reproduce the present distribution of objects as can be inferred from the observations. They can be used to deduce the redshift dependence of the cluster distribution and to extrapolate the observations towards the past. The predicted evolution of the cluster distribution is quite strong, although somewhat less rapid than predicted by the linear theory

  14. Introduction to basic molecular biologic techniques for molecular imaging researches

    International Nuclear Information System (INIS)

    Kang, Joo Hyun

    2004-01-01

    Molecular imaging is a rapidly growing field due to the advances in molecular biology and imaging technologies. With the introduction of imaging reporter genes into the cell, diverse cellular processes can be monitored, quantified and imaged non-invasively in vivo. These processes include the gene expression, protein-protein interactions, signal transduction pathways, and monitoring of cells such as cancer cells, immune cells, and stem cells. In the near future, molecular imaging analysis will allow us to observe the incipience and progression of the disease. These will make us easier to give a diagnosis in the early stage of intractable diseases such as cancer, neuro-degenerative disease, and immunological disorders. Additionally, molecular imaging method will be a valuable tool for the real-time evaluation of cells in molecular biology and the basic biological studies. As newer and more powerful molecular imaging tools become available, it will be necessary to corporate clinicians, molecular biologists and biochemists for the planning, interpretation, and application of these techniques to their fullest potential. In order for such a multidisciplinary team to be effective, it is essential that a common understanding of basic biochemical and molecular biologic techniques is achieved. Basic molecular techniques for molecular imaging methods are presented in this paper

  15. On the evolution of the mammalian brain

    Directory of Open Access Journals (Sweden)

    John Steven Torday

    2016-04-01

    Full Text Available Hobson and Friston have hypothesized that the brain must actively dissipate heat in order to process information (Virtual reality and consciousness inference in dreaming. Front Psychol. 2014 Oct 9;5:1133.. This physiologic trait is functionally homologous with the first instantation of life formed by lipids suspended in water forming micelles- allowing the reduction in entropy (heat dissipation, circumventing the Second Law of Thermodynamics permitting the transfer of information between living entities, enabling them to perpetually glean information from the environment (= evolution. The next evolutionary milestone was the advent of cholesterol, embedded in the cell membranes of primordial eukaryotes, facilitating metabolism, oxygenation and locomotion, the triadic basis for vertebrate evolution. Lipids were key to homeostatic regulation of calcium, forming calcium channels. Cell membrane cholesterol also fostered metazoan evolution by forming lipid rafts for receptor-mediated cell-cell signaling, the origin of the endocrine system. The eukaryotic cell membrane exapted to all complex physiologic traits, including the lung and brain, which are molecularly homologous through the function of neuregulin, mediating both lung development and myelinization of neurons. That cooption later exapted as endothermy during the water-land transition (Torday JS. A Central Theory of Biology. Med Hypotheses. 2015 Jul;85(1:49-57, perhaps being the functional homolog for brain heat dissipation and consciousness/mind. The skin and brain similarly share molecular homologies through the ‘skin-brain’ hypothesis, giving insight to the cellular-molecular ‘arc’ of consciousness from its unicellular origins to integrated physiology. This perspective on the evolution of the central nervous system clarifies self-organization, reconciling thermodynamic and informational definitions of the underlying biophysical mechanisms, thereby elucidating relations between the

  16. Spontaneous chiral symmetry breaking in early molecular networks

    Directory of Open Access Journals (Sweden)

    Markovitch Omer

    2010-05-01

    Full Text Available Abstract Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian, Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel and Sergei Maslov.

  17. Climatic Change and Human Evolution.

    Science.gov (United States)

    Garratt, John R.

    1995-01-01

    Traces the history of the Earth over four billion years, and shows how climate has had an important role to play in the evolution of humans. Posits that the world's rapidly growing human population and its increasing use of energy is the cause of present-day changes in the concentrations of greenhouse gases in the atmosphere. (Author/JRH)

  18. Rapidity distributions in unequal nuclei collision at high energies and hydrodynamic model

    International Nuclear Information System (INIS)

    Zhuang Pengfei; Wang Zhengqing; Liu Liansou

    1986-01-01

    The mechanism of high-energy A'-A collisions (A>A', A'sup(1/3)>>1) and the space-time evolution of the fluid formed in the collision are analysed. The corresponding 1+1 dimensional hydrodynamic equations are set up. The average rapidity distributions are estimated and compared with cosmic ray data. The origin of the unsymmetry of rapidity distributions is explained. (orig.)

  19. Rapidity distributions in unequal nuclei collision at high energies and hydrodynamical model

    International Nuclear Information System (INIS)

    Zhuang Pengfei; Wang Zhengqing

    1987-01-01

    The mechanism of high-energy A'-A collision (A > A', A' 1/3 >> 1) and the space-time evolution of the fluid formed in the collision are analysed. The corresponding 1 + 1 dimensional hydrodynamical equations are established. The average rapidity distributions are estimated and compared with some cosmic ray events. The origin of the nonsymmetry of rapidity distribution is explained

  20. Molecular outflows in the L1641 region of Orion

    International Nuclear Information System (INIS)

    Morgan, J.A.

    1990-01-01

    Little is known about the interaction between molecular outflows associated with young stellar objects and the parent molecular cloud that produced them. This is because molecular outflows are a recently discovered phenomenon and, so, have not had their global properties studied in great detail and molecular clouds were not mapped to sufficiently high spatial resolution to resolve the interaction. The interaction between molecular outflows and the L1641 molecular cloud is addressed by both identifying and mapping all the molecular outflows as well as the detailed structure of the cloud. Candidate molecular outflows were found from single point 12-CO observations of young stellar objects identified from the IRAS survey data. The candidate sources were then mapped to confirm their molecular outflow nature. From these maps, molecular outflow characteristics such as their morphology, orientation, and energetics were determined. In addition, the Orion molecular cloud was mapped to compare directly with the molecular outflows. The molecular outflows identified were found to have rising infrared spectra, radio continuum emission that suggests a stellar wind or optically thick H II region, and molecular line strengths that indicate that they are embedded within a very dense environment. The lack of an optical counterpart for many molecular outflows suggests that they occur at the earliest stages of stellar evolution. The lack of an optical counterpart for many molecular outflows suggest that they occur at the earliest stages of stellar evolution. The orientations of the molecular outflows appear to lie in no preferred direction and they have shapes that indicate that the molecular cloud is responsible for determining their direction and collimation

  1. Role of accelerated segment switch in exons to alter targeting (ASSET in the molecular evolution of snake venom proteins

    Directory of Open Access Journals (Sweden)

    Kini R Manjunatha

    2009-06-01

    Full Text Available Abstract Background Snake venom toxins evolve more rapidly than other proteins through accelerated changes in the protein coding regions. Previously we have shown that accelerated segment switch in exons to alter targeting (ASSET might play an important role in its functional evolution of viperid three-finger toxins. In this phenomenon, short sequences in exons are radically changed to unrelated sequences and hence affect the folding and functional properties of the toxins. Results Here we analyzed other snake venom protein families to elucidate the role of ASSET in their functional evolution. ASSET appears to be involved in the functional evolution of three-finger toxins to a greater extent than in several other venom protein families. ASSET leads to replacement of some of the critical amino acid residues that affect the biological function in three-finger toxins as well as change the conformation of the loop that is involved in binding to specific target sites. Conclusion ASSET could lead to novel functions in snake venom proteins. Among snake venom serine proteases, ASSET contributes to changes in three surface segments. One of these segments near the substrate binding region is known to affect substrate specificity, and its exchange may have significant implications for differences in isoform catalytic activity on specific target protein substrates. ASSET therefore plays an important role in functional diversification of snake venom proteins, in addition to accelerated point mutations in the protein coding regions. Accelerated point mutations lead to fine-tuning of target specificity, whereas ASSET leads to large-scale replacement of multiple functionally important residues, resulting in change or gain of functions.

  2. Evaluating fossil calibrations for dating phylogenies in light of rates of molecular evolution: a comparison of three approaches.

    Science.gov (United States)

    Lukoschek, Vimoksalehi; Scott Keogh, J; Avise, John C

    2012-01-01

    Evolutionary and biogeographic studies increasingly rely on calibrated molecular clocks to date key events. Although there has been significant recent progress in development of the techniques used for molecular dating, many issues remain. In particular, controversies abound over the appropriate use and placement of fossils for calibrating molecular clocks. Several methods have been proposed for evaluating candidate fossils; however, few studies have compared the results obtained by different approaches. Moreover, no previous study has incorporated the effects of nucleotide saturation from different data types in the evaluation of candidate fossils. In order to address these issues, we compared three approaches for evaluating fossil calibrations: the single-fossil cross-validation method of Near, Meylan, and Shaffer (2005. Assessing concordance of fossil calibration points in molecular clock studies: an example using turtles. Am. Nat. 165:137-146), the empirical fossil coverage method of Marshall (2008. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171:726-742), and the Bayesian multicalibration method of Sanders and Lee (2007. Evaluating molecular clock calibrations using Bayesian analyses with soft and hard bounds. Biol. Lett. 3:275-279) and explicitly incorporate the effects of data type (nuclear vs. mitochondrial DNA) for identifying the most reliable or congruent fossil calibrations. We used advanced (Caenophidian) snakes as a case study; however, our results are applicable to any taxonomic group with multiple candidate fossils, provided appropriate taxon sampling and sufficient molecular sequence data are available. We found that data type strongly influenced which fossil calibrations were identified as outliers, regardless of which method was used. Despite the use of complex partitioned models of sequence evolution and multiple calibrations throughout the tree, saturation

  3. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    Science.gov (United States)

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  4. Molecular sensors and molecular logic gates

    International Nuclear Information System (INIS)

    Georgiev, N.; Bojinov, V.

    2013-01-01

    Full text: The rapid grow of nanotechnology field extended the concept of a macroscopic device to the molecular level. Because of this reason the design and synthesis of (supra)-molecular species capable of mimicking the functions of macroscopic devices are currently of great interest. Molecular devices operate via electronic and/or nuclear rearrangements and, like macroscopic devices, need energy to operate and communicate between their elements. The energy needed to make a device work can be supplied as chemical energy, electrical energy, or light. Luminescence is one of the most useful techniques to monitor the operation of molecular-level devices. This fact determinates the synthesis of novel fluorescence compounds as a considerable and inseparable part of nanoscience development. Further miniaturization of semiconductors in electronic field reaches their limit. Therefore the design and construction of molecular systems capable of performing complex logic functions is of great scientific interest now. In semiconductor devices the logic gates work using binary logic, where the signals are encoded as 0 and 1 (low and high current). This process is executable on molecular level by several ways, but the most common are based on the optical properties of the molecule switches encoding the low and high concentrations of the input guest molecules and the output fluorescent intensities with binary 0 and 1 respectively. The first proposal to execute logic operations at the molecular level was made in 1988, but the field developed only five years later when the analogy between molecular switches and logic gates was experimentally demonstrated by de Silva. There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR and XNOR and all of them were achieved by molecules, the fluorescence switching as well. key words: fluorescence, molecular sensors, molecular logic gates

  5. Evolution of parasitism in kinetoplastid flagellates

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Skalický, Tomáš; Týč, Jiří; Votýpka, Jan; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 195, č. 2 (2014), s. 115-122 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Evolution * Phylogeny * Vectors * Diversity * Parasitism * Trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  6. Modular co-evolution of metabolic networks

    Directory of Open Access Journals (Sweden)

    Yu Zhong-Hao

    2007-08-01

    Full Text Available Abstract Background The architecture of biological networks has been reported to exhibit high level of modularity, and to some extent, topological modules of networks overlap with known functional modules. However, how the modular topology of the molecular network affects the evolution of its member proteins remains unclear. Results In this work, the functional and evolutionary modularity of Homo sapiens (H. sapiens metabolic network were investigated from a topological point of view. Network decomposition shows that the metabolic network is organized in a highly modular core-periphery way, in which the core modules are tightly linked together and perform basic metabolism functions, whereas the periphery modules only interact with few modules and accomplish relatively independent and specialized functions. Moreover, over half of the modules exhibit co-evolutionary feature and belong to specific evolutionary ages. Peripheral modules tend to evolve more cohesively and faster than core modules do. Conclusion The correlation between functional, evolutionary and topological modularity suggests that the evolutionary history and functional requirements of metabolic systems have been imprinted in the architecture of metabolic networks. Such systems level analysis could demonstrate how the evolution of genes may be placed in a genome-scale network context, giving a novel perspective on molecular evolution.

  7. Practical aspects of protein co-evolution.

    Science.gov (United States)

    Ochoa, David; Pazos, Florencio

    2014-01-01

    Co-evolution is a fundamental aspect of Evolutionary Theory. At the molecular level, co-evolutionary linkages between protein families have been used as indicators of protein interactions and functional relationships from long ago. Due to the complexity of the problem and the amount of genomic data required for these approaches to achieve good performances, it took a relatively long time from the appearance of the first ideas and concepts to the quotidian application of these approaches and their incorporation to the standard toolboxes of bioinformaticians and molecular biologists. Today, these methodologies are mature (both in terms of performance and usability/implementation), and the genomic information that feeds them large enough to allow their general application. This review tries to summarize the current landscape of co-evolution-based methodologies, with a strong emphasis on describing interesting cases where their application to important biological systems, alone or in combination with other computational and experimental approaches, allowed getting new insight into these.

  8. Evolution of the giant planets

    International Nuclear Information System (INIS)

    Bodenheimer, P.

    1985-01-01

    The theory of the evolution of the giant planets is discussed with emphasis on detailed numerical calculations in the spherical approximation. Initial conditions are taken to be those provided by the two main hypotheses for the origin of the giant planets. If the planets formed by gravitational instability in the solar nebula, the initial mass is comparable to the present mass or larger. The evolution then goes through the following phases: (1) an initial contraction phase in hydrostatic equilibrium; (2) a hydrodynamic collapse induced by molecular dissociation; and (3) a second equilibrium phase involving contraction and cooling to the present state. During phase (1) a rock-ice core must form by precipitation or accretion. If, on the other hand, the giant planets formed by first accreting a solid core and then capturing gas from the surrounding nebula, then the evolutionary phases are as follows: (1) a period during which planetesimals accrete to form a core of about one earth mass, composed of rock and ice; (2) a gas accretion phase, during which a relatively low-mass gaseous envelope in hydrostatic equilibrium exists around the core, which itself continues to grow to 10 to 20 Earth masses; (3) the point of arrival at the ''critical'' core mass at which point the accretion of gas is much faster than the accretion of the core, and the envelope contracts rapidly; (4) continuation of accretion of gas from the nebula and buildup of the envelope mass to its present value (for the case of Jupiter or Saturn); and (5) a final phase, after termination of accretion, during which the protoplanet contracts and cools to its present state. Some observational constraints are described, and some problems with the two principal hypotheses are discussed

  9. Molecular modeling

    Directory of Open Access Journals (Sweden)

    Aarti Sharma

    2009-01-01

    Full Text Available The use of computational chemistry in the development of novel pharmaceuticals is becoming an increasingly important tool. In the past, drugs were simply screened for effectiveness. The recent advances in computing power and the exponential growth of the knowledge of protein structures have made it possible for organic compounds to be tailored to decrease the harmful side effects and increase the potency. This article provides a detailed description of the techniques employed in molecular modeling. Molecular modeling is a rapidly developing discipline, and has been supported by the dramatic improvements in computer hardware and software in recent years.

  10. Simrank: Rapid and sensitive general-purpose k-mer search tool

    Energy Technology Data Exchange (ETDEWEB)

    DeSantis, T.Z.; Keller, K.; Karaoz, U.; Alekseyenko, A.V; Singh, N.N.S.; Brodie, E.L; Pei, Z.; Andersen, G.L; Larsen, N.

    2011-04-01

    Terabyte-scale collections of string-encoded data are expected from consortia efforts such as the Human Microbiome Project (http://nihroadmap.nih.gov/hmp). Intra- and inter-project data similarity searches are enabled by rapid k-mer matching strategies. Software applications for sequence database partitioning, guide tree estimation, molecular classification and alignment acceleration have benefited from embedded k-mer searches as sub-routines. However, a rapid, general-purpose, open-source, flexible, stand-alone k-mer tool has not been available. Here we present a stand-alone utility, Simrank, which allows users to rapidly identify database strings the most similar to query strings. Performance testing of Simrank and related tools against DNA, RNA, protein and human-languages found Simrank 10X to 928X faster depending on the dataset. Simrank provides molecular ecologists with a high-throughput, open source choice for comparing large sequence sets to find similarity.

  11. Radiation and the evolution of life

    International Nuclear Information System (INIS)

    Gentner, N.E.; Myers, D.K.

    1980-08-01

    A general review is presented of the nature of various forms of radiation; radiant energy which reaches the earth from the sun; the role of this energy in prebiotic chemical evolution; current ideas on the origin of life; the dependence of living organisms upon radiant energy; the mechanisms responsible for the evolution of life, from the viewpoint of modern genetics and molecular biology; the biological consequences of alterations in the genetic material; and the role of ionizing radiation in production of genetic changes and in evolution. In the final analysis, the biosynthetic processes of life are driven by radiant energy from the sun. This overview is necessarily focussed on the infrared, visible and ultraviolet regions of the solar output spectrum since these particular radiations are responsible for most of the radiant energy that reaches the earth's surface. Ionizing radiation appears to have played at best a minor role in biological evolution. Small increments in the amounts of ionizing radiation are therefore unlikely to have a significant effect on life or its evolution. (auth)

  12. A simple and rapid molecular method for Leptospira species identification

    NARCIS (Netherlands)

    Ahmed, Ahmed; Anthony, Richard M.; Hartskeerl, Rudy A.

    2010-01-01

    Serological and DNA-based classification systems only have little correlation. Currently serological and molecular methods for characterizing Leptospira are complex and costly restricting their world-wide distribution and use. Ligation mediated amplification combined with microarray analysis

  13. Evolution through cold and deep waters: the molecular phylogeny of the Lithodidae (Crustacea: Decapoda)

    Science.gov (United States)

    Hall, Sally; Thatje, Sven

    2018-04-01

    The objectives of this work are to use gene sequence data to assess the hypothesis that the Lithodinae arose from ancestors with uncalcified abdomens in shallow waters of the North-East Pacific, investigate the monophyly and interrelationships of genera within the Lithodinae and to estimate the scale and minimum number of biogeographic transitions from the shallow environment to the deep sea and vice versa. To do this, phylogenetic analysis from three mitochondrial and three nuclear markers was conducted using minimum evolution, maximum likelihood and Bayesian methods. The Lithodinae as defined to include North Pacific genus Cryptolithodes may be paraphyletic, with the Hapalogastrinae and Cryptolithodes as sister taxa. This implies that the soft-bodied abdomen of the Hapalogastrinae might not be plesiomorphic for the Lithodidae. Paralomis, Lopholithodes, Phyllolithodes, Lithodes and Neolithodes share a common ancestor, from which the North Pacific Hapalogastrinae did not descend. Lithodid ancestors are likely to have had a north Pacific, shallow water distribution and to have had planktotrophic larvae. North Pacific genus Paralithodes is paraphyletic; P. brevipes is the most basal member of the genus (as sampled) while P. camtschaticus and P. platypus are more closely related to the genera Lithodes and Neolithodes. Genera Lithodes, Neolithodes and Paralomis (as sampled) are monophyletic if Glyptolithodes is included within Paralomis. Lopholithodes is closely related to, but not included within, the Paralomis genus. Paralomis is divided into at least two major lineages: one containing South Atlantic, West African, and Indian Ocean species, and the other containing Pacific and South American species. Several species of Paralomis do not resolve consistently with any other groups sampled, implying a complex and possibly rapid global evolution early in the history of the genus. Relationships within the Lithodes genus vary between analytical methods, suggesting that

  14. Testing Convergent Evolution in Auditory Processing Genes between Echolocating Mammals and the Aye-Aye, a Percussive-Foraging Primate.

    Science.gov (United States)

    Bankoff, Richard J; Jerjos, Michael; Hohman, Baily; Lauterbur, M Elise; Kistler, Logan; Perry, George H

    2017-07-01

    Several taxonomically distinct mammalian groups-certain microbats and cetaceans (e.g., dolphins)-share both morphological adaptations related to echolocation behavior and strong signatures of convergent evolution at the amino acid level across seven genes related to auditory processing. Aye-ayes (Daubentonia madagascariensis) are nocturnal lemurs with a specialized auditory processing system. Aye-ayes tap rapidly along the surfaces of trees, listening to reverberations to identify the mines of wood-boring insect larvae; this behavior has been hypothesized to functionally mimic echolocation. Here we investigated whether there are signals of convergence in auditory processing genes between aye-ayes and known mammalian echolocators. We developed a computational pipeline (Basic Exon Assembly Tool) that produces consensus sequences for regions of interest from shotgun genomic sequencing data for nonmodel organisms without requiring de novo genome assembly. We reconstructed complete coding region sequences for the seven convergent echolocating bat-dolphin genes for aye-ayes and another lemur. We compared sequences from these two lemurs in a phylogenetic framework with those of bat and dolphin echolocators and appropriate nonecholocating outgroups. Our analysis reaffirms the existence of amino acid convergence at these loci among echolocating bats and dolphins; some methods also detected signals of convergence between echolocating bats and both mice and elephants. However, we observed no significant signal of amino acid convergence between aye-ayes and echolocating bats and dolphins, suggesting that aye-aye tap-foraging auditory adaptations represent distinct evolutionary innovations. These results are also consistent with a developing consensus that convergent behavioral ecology does not reliably predict convergent molecular evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  15. Snake venoms are integrated systems, but abundant venom proteins evolve more rapidly.

    Science.gov (United States)

    Aird, Steven D; Aggarwal, Shikha; Villar-Briones, Alejandro; Tin, Mandy Man-Ying; Terada, Kouki; Mikheyev, Alexander S

    2015-08-28

    While many studies have shown that extracellular proteins evolve rapidly, how selection acts on them remains poorly understood. We used snake venoms to understand the interaction between ecology, expression level, and evolutionary rate in secreted protein systems. Venomous snakes employ well-integrated systems of proteins and organic constituents to immobilize prey. Venoms are generally optimized to subdue preferred prey more effectively than non-prey, and many venom protein families manifest positive selection and rapid gene family diversification. Although previous studies have illuminated how individual venom protein families evolve, how selection acts on venoms as integrated systems, is unknown. Using next-generation transcriptome sequencing and mass spectrometry, we examined microevolution in two pitvipers, allopatrically separated for at least 1.6 million years, and their hybrids. Transcriptomes of parental species had generally similar compositions in regard to protein families, but for a given protein family, the homologs present and concentrations thereof sometimes differed dramatically. For instance, a phospholipase A2 transcript comprising 73.4 % of the Protobothrops elegans transcriptome, was barely present in the P. flavoviridis transcriptome (king cobra genome, suggesting that rapid evolution of abundant proteins may be generally true for snake venoms. Looking more broadly at Protobothrops, we show that rapid evolution of the most abundant components is due to positive selection, suggesting an interplay between abundance and adaptation. Given log-scale differences in toxin abundance, which are likely correlated with biosynthetic costs, we hypothesize that as a result of natural selection, snakes optimize return on energetic investment by producing more of venom proteins that increase their fitness. Natural selection then acts on the additive genetic variance of these components, in proportion to their contributions to overall fitness. Adaptive

  16. Evolution of external genitalia: insights from reptilian development.

    Science.gov (United States)

    Gredler, Marissa L; Larkins, Christine E; Leal, Francisca; Lewis, A Kelsey; Herrera, Ana M; Perriton, Claire L; Sanger, Thomas J; Cohn, Martin J

    2014-01-01

    External genitalia are found in each of the major clades of amniotes. The phallus is an intromittent organ that functions to deliver sperm into the female reproductive tract for internal fertilization. The cellular and molecular genetic mechanisms of external genital development have begun to be elucidated from studies of the mouse genital tubercle, an embryonic appendage adjacent to the cloaca that is the precursor of the penis and clitoris. Progress in this area has improved our understanding of genitourinary malformations, which are among the most common birth defects in humans, and created new opportunities for comparative studies of other taxa. External genitalia evolve rapidly, which has led to a striking diversity of anatomical forms. Within the past year, studies of external genital development in non-mammalian amniotes, including birds, lizards, snakes, alligators, and turtles, have begun to shed light on the molecular and morphogenetic mechanisms underlying the diversification of phallus morphology. Here, we review recent progress in the comparative developmental biology of external genitalia and discuss the implications of this work for understanding external genital evolution. We address the question of the deep homology (shared common ancestry) of genital structures and of developmental mechanisms, and identify new areas of investigation that can be pursued by taking a comparative approach to studying development of the external genitalia. We propose an evolutionary interpretation of hypospadias, a congenital malformation of the urethra, and discuss how investigations of non-mammalian species can provide novel perspectives on human pathologies.

  17. JINR rapid communications

    International Nuclear Information System (INIS)

    1996-01-01

    The present collection of rapid communications from JINR, Dubna, contains five separate reports on analytic QCD running coupling with finite IR behaviour and universal α bar s (0) value, quark condensate in the interacting pion- nucleon medium at finite temperature and baryon number density, γ-π 0 discrimination with a shower maximum detector using neural networks for the solenoidal tracker at RHIC, off-specular neutron reflection from magnetic media with nondiagonal reflectivity matrices and molecular cytogenetics of radiation-induced gene mutations in Drosophila melanogaster. 21 fig., 1 tab

  18. Adaptive evolution of the venom-targeted vWF protein in opossums that eat pitvipers.

    Directory of Open Access Journals (Sweden)

    Sharon A Jansa

    Full Text Available The rapid evolution of venom toxin genes is often explained as the result of a biochemical arms race between venomous animals and their prey. However, it is not clear that an arms race analogy is appropriate in this context because there is no published evidence for rapid evolution in genes that might confer toxin resistance among routinely envenomed species. Here we report such evidence from an unusual predator-prey relationship between opossums (Marsupialia: Didelphidae and pitvipers (Serpentes: Crotalinae. In particular, we found high ratios of replacement to silent substitutions in the gene encoding von Willebrand Factor (vWF, a venom-targeted hemostatic blood protein, in a clade of opossums known to eat pitvipers and to be resistant to their hemorrhagic venom. Observed amino-acid substitutions in venom-resistant opossums include changes in net charge and hydrophobicity that are hypothesized to weaken the bond between vWF and one of its toxic snake-venom ligands, the C-type lectin-like protein botrocetin. Our results provide the first example of rapid adaptive evolution in any venom-targeted molecule, and they support the notion that an evolutionary arms race might be driving the rapid evolution of snake venoms. However, in the arms race implied by our results, venomous snakes are prey, and their venom has a correspondingly defensive function in addition to its usual trophic role.

  19. Molecular marker systems for Oenothera genetics.

    Science.gov (United States)

    Rauwolf, Uwe; Golczyk, Hieronim; Meurer, Jörg; Herrmann, Reinhold G; Greiner, Stephan

    2008-11-01

    The genus Oenothera has an outstanding scientific tradition. It has been a model for studying aspects of chromosome evolution and speciation, including the impact of plastid nuclear co-evolution. A large collection of strains analyzed during a century of experimental work and unique genetic possibilities allow the exchange of genetically definable plastids, individual or multiple chromosomes, and/or entire haploid genomes (Renner complexes) between species. However, molecular genetic approaches for the genus are largely lacking. In this study, we describe the development of efficient PCR-based marker systems for both the nuclear genome and the plastome. They allow distinguishing individual chromosomes, Renner complexes, plastomes, and subplastomes. We demonstrate their application by monitoring interspecific exchanges of genomes, chromosome pairs, and/or plastids during crossing programs, e.g., to produce plastome-genome incompatible hybrids. Using an appropriate partial permanent translocation heterozygous hybrid, linkage group 7 of the molecular map could be assigned to chromosome 9.8 of the classical Oenothera map. Finally, we provide the first direct molecular evidence that homologous recombination and free segregation of chromosomes in permanent translocation heterozygous strains is suppressed.

  20. Bacterial flagella and Type III secretion: case studies in the evolution of complexity.

    Science.gov (United States)

    Pallen, M J; Gophna, U

    2007-01-01

    Bacterial flagella at first sight appear uniquely sophisticated in structure, so much so that they have even been considered 'irreducibly complex' by the intelligent design movement. However, a more detailed analysis reveals that these remarkable pieces of molecular machinery are the product of processes that are fully compatible with Darwinian evolution. In this chapter we present evidence for such processes, based on a review of experimental studies, molecular phylogeny and microbial genomics. Several processes have played important roles in flagellar evolution: self-assembly of simple repeating subunits, gene duplication with subsequent divergence, recruitment of elements from other systems ('molecular bricolage'), and recombination. We also discuss additional tentative new assignments of homology (FliG with MgtE, FliO with YscJ). In conclusion, rather than providing evidence of intelligent design, flagellar and non-flagellar Type III secretion systems instead provide excellent case studies in the evolution of complex systems from simpler components.